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Abstract

This thesis includes four main parts. The first part is an exposition about Malliavin calculus,

Malliavin-Stein method, Walsh stochastic integral and existence and regularity of mild solution to

stochastic heat equation. In the second part, we study Malliavin differentibility of the solution of

stochastic heat equation and establishing Lp-bounds for Malliavin derivatives. One way to obtain

such results is through Feynman-Kac formula which is studied in the second part as well.

Last two parts are devoted to quantitative rates of convergences corresponding to some central

limit theorems: We start with studying such problem for spatial averages of the solution to the

stochastic heat equation. Then, we establish rate of convergence results in total variation as well

as in Wasserstein distances for the Breuer-Major theorem.

iii



Acknowledgements

I would like to thank my advisor David Nualart for his guidance throughout my studies and his

patience with my questions. His enthusiasm and seriousness towards mathematics inspired me. I

am grateful to Jin Feng, Mathew Johnson, Zhipeng Liu, and Tarun Sabarwal who do me the honor

of being in the committee of my thesis defense. I want to express my deep gratitude to Jin Feng

for valuable discussions and words of encouragement.

I would like to thank all my teachers who touched my life from primary school to university and

helped me reach this point in my education. I would like to thank all my professors at University of
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my studies. I thank Agnieszka Miȩdlar and Paul Cazeaux for their warm friendship and valuable

advice. I thank Jila Niknejad for her friendly leadership and support.

I would like to thank fellow graduate students Ray Zhang, Chen Ma, Panqiu Xia, Josué Knorst,

Raul Balaños Guerrero, Bhargobjyoti Saikia for beneficial reading sessions. I am grateful to

Guangqu Zheng for his valuable insights and support. I would like to thank all fellow graduate

students and young faculty at University of Kansas for their friendship.

Thank you from bottom of my heart to my big family in Turkey and in Kansas for always being

there for me. In particular, I am so grateful to Melek Erkoç for her support and encouragement.

I would like to thank my friend Feride Ceren Köse with whom I have shared moments of deep

anxiety but also of big excitement. Finally, I thank my husband Mehmet Yenisey for his everlasting

support and tirelessly proofreading my writings.

iv



To my father Fatih, my mother Meryem, and my brother Muhammed...

v



Contents

1 Introduction 1

2 Malliavin calculus 4

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Malliavin derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Divergence operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Wiener chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Itô integral and Malliavin calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Existence of density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Malliavin-Stein method 28

3.1 Stein’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Stein’s method combined with Malliavin calculus . . . . . . . . . . . . . . . . . . 32

4 Walsh stochastic integral 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Walsh integral and Malliavin calculus . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Stochastic heat equation 47

5.1 Existence and regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Malliavin differentiblity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Parabolic Anderson model . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Flat initial condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



6 Study of spatial averages 70

6.1 Flat initial condition in SHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Dirac delta initial condition in PAM . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Rate of Convergence in Breuer-Major Theorem 102

7.1 Breuer-Major theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Fixed Wiener chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3 Total variation distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3.1 Some preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.3.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3.3 Some other results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4 Wasserstein distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 Technical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A Appendix 145

A.1 Some inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 Brownian bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

A.3 Some elementary computations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

vii



Chapter 1

Introduction

In this introduction we explain the problems considered in the projects which form this thesis.

The connection between heat flow and Brownian motion is a well-known and recurring theme

in the mathematical study of these two objects. Feynman-Kac formula exhibits this well-known

connection by representing the solution to the heat equation with a deterministic external forcing

term as an expectation of a functional of Brownian motion. One should then ask whether a similar

representation exists in the case of stochastic heat equation (5.1). Indeed, in the case g(x) = x,

see for example [25], a Feynman-Kac representation for the p-th moment of the solution is ob-

tained as in (5.17) as a functional of {B j} j=1,··· ,p, which is a family of independent Brownian

motions independent of the noise W in the equation. The main purpose of the work in [32] which

we recall in subsection 5.2.1 is to obtain a similar representation for moments of iterated deriva-

tives Dr1,z1 · · ·DrN ,zN u(t,x) of the solution u(t,x) in terms of independent pinned Brownian motions

starting from x with each component pinned at times t− rm to the points zm for 1 ≤ m ≤ N. We

proposed a formula Theorem 5.18 for the moments of the iterated Malliavin derivatives, which

is interesting on its own, and implies the estimate Corollary 5.19 which can be immediately used

together with Malliavin-Stein estimates.

Following the ideas by Conus, Joseph, and Khoshnevisan [19], Huang, Nualart and Viitasaari

[27] observed that the spatial integral,
∫ R
−R u(t,x)dx of the solution to the equation (5.1) with the

constant initial condition behaves like a sum of i.i.d. random variables. Indeed, they proved that

the variance of the spatial integral behaves like R and
∫ R
−R u(t,x)dx/

√
R converges in distribution

to a normal random variable. Using Malliavin-Stein bound Theorem 3.10, they also established

a quantitative version, see Theorem 6.2. In [31] which we present in chapter 6, we studied such
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quantitative estimates using the distance between densities with respect to the supremum norm.

First, we have established the existence of the density using results from Malliavin calculus, see

Proposition 2.50. Then, we have applied a Malliavin-Stein approach to obtain Malliavin-Stein

bound Theorem 3.13 between the density of a random variable given in the form F = δ (V ) and

the density φ of a standard normal distribution and then used these results to prove Theorem 6.4.

One of the main two challenging parts of this methodology was the estimation of the moments of

second derivative of the solution which had not been considered before except in the case g(x) = x.

The other challenge was to get a uniform estimate for the negative moments of 〈DFR,t ,VR,t〉H using

a non-degeneracy condition on g(u(t,x)). The latter parts of the proof rely highly on the positivity

as well as Hölder continuity of the solution.

We also considered the case with the initial condition u0(x) = δ0(x) and g(x) = x. One impor-

tant difference from the previous set-up lies in the fact that for a fixed t > 0, the process {u(t,x)}x∈R

itself is not stationary but {U(t,x)}x∈R = {u(t,x)/pt(x)}x∈R is, see [1]. An advantage is that the

second derivative estimate in this case follows from the bound (6.46) as a corollary to Feynman-

Kac formula that we obtained in [32]. Using again Theorem 3.13, we have obtained the rate of

convergence result, see Theorem 6.8. Finally, note that negative moments of 〈DGR,t ,wR,t〉H are not

necessarily bounded so that their growth must be taken into account when estimating the rate of

convergence.

In the last chapter, we consider a centered stationary Gaussian sequence of random variables

X = {Xn}n∈N0 defined in Definition 7.1. Breuer and Major established a normal approximation

result in [8] which states that if the covariance function ρ of X safisfies the integrability condition

(7.3), then the sequence Fn defined in (7.1) converges in law to the centered normal distribution.

Using Dini’s theorem one can show that convergence holds with respect to the Kolmogorov dis-

tance, however, determining the convergence in total variation distance is a more delicate question.

For example, if g is taking values in a discrete subset of R, then dTV(Fn,N(0,σ2)) = 1 for all

n ∈ N. In [30], we investigated the rate of convergence in total variation and Wasserstein distances

associated to this normal approximation, see Theorem 7.8, Theorem 7.10, Theorem 7.15. In this
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paper, chaos expansions together with Malliavin-Stein method is used to establish the rates corre-

sponding to total variation and Wasserstein distances under a technical assumption that A(g)∈D1,4

(See (7.9)). Later, in [41], Nourdin, Nualart and Peccati obtained the same bound for total varia-

tion distance under the strictly weaker assumption that g ∈ D1,4 using a combination of Gebelein’s

inequality (see [41, Lemma 2.5]) together with Malliavin-Stein bounds. In particular, the estimate

is now valid for g(x) = |x|p−E [|Z|p] for any p ≥ 1. It is important to note that the two sum-

mands on the right hand side of (7.11) are not comparable in general but the bound still implies the

convergence in total variation distance under the assumption ‖ρ‖l2 < ∞ (See Lemma 7.14).

We will first give a thorough presentation of the preliminary materials in chapter 2, chapter 3,

chapter 4, chapter 5 and partly in other chapters, and then present the results which we mentioned

above in parts of chapter 5, chapter 6 and chapter 7. Readers can choose to read in the order chap-

ter 2, chapter 3, chapter 4, chapter 5, chapter 6, or chapter 2, chapter 3, chapter 7 independently.
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Chapter 2

Malliavin calculus

Malliavin [34] constructed a differential calculus on the Wiener space to obtain a purely proba-

bilistic proof of Hörmander’s theorem on the existence and smoothness of densities for solutions

of stochastic differential equations. Since then Malliavin calculus have found its applications in

various topics. In this chapter, we first recall the basic results in this theory using the book Nu-

alart [42], as well as the books Baudoin [4], Matsumoto and Taniguchi [35], Nualart and Nualart

[43], Nourdin and Peccati [38], Sanz-Solé [52], Üstünel [55] and lecture notes Bally [3], Hairer

[22], Kunze [29], Nualart [47]. The density theorem presented in the last section is first proved in

Caballero, Fernández, and Nualart [9].

2.1 Introduction

Let H be a real separable Hilbert space with inner product 〈·, ·〉H and associated norm ‖ · ‖H =

〈·, ·〉1/2
H . (Ω,F,P) is a fixed probability space.

Definition 2.1. W = {W (h)}h∈H is called isonormal Gaussian process over H if W is a centered

Gaussian family, that is a collection of jointly Gaussian random variables, defined on a probability

space (Ω,F,P) with covariance function E [W (h)W (g)] = 〈g,h〉H. Further assume F is the σ -field

generated by W .

Lemma 2.2. Let {W (h)}h∈H be an isonormal Gaussian process over H. Then the map h 7→W (h)

is a linear isometry.
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Proof. Let g,h ∈ H and α,β ∈ R, then we have

E
[
(W (αh+βg)−αW (h)−βW (g))2

]
= E

[
(W (αh+βg))2

]
+α

2E
[
(W (h))2

]
+β

2E
[
(W (g))2

]
−2αE [W (αh+βg)W (h)]−2βE [W (αh+βg)W (g)]−2αβE [W (g)W (h)]

= ‖αh+βg‖2
H+α

2‖h‖2
H+β

2‖g‖2
H−2α〈αh+βg,h〉H−2β 〈αh+βg,g〉H−2αβ 〈h,g〉H

= 0

which implies that W (αh+βg) = αW (h)+βW (g) almost surely.

Lemma 2.3. The map h 7→W (h) is a linear isometry from H to a closed subspace of L2(Ω,F,P)

such that for all h ∈ H, W (h) is a real valued centred Gaussian random variable if and only if

W = {W (h)}h∈H is an isonormal Gaussian process over H.

Proof. For the forward direction, it is enough to show that {W (h)}h∈H is a Gaussian family.

Indeed, for any h1, · · ·hn ∈ H and α1 · · ·αn ∈ R, using linearity, we have ∑
n
i=1 αiW (hi) = W (h)

where h = ∑
n
i=1 αihi is centred Gaussian random variable. Converse implication follows from

Lemma 2.2.

Proposition 2.4. There exists an isonormal Gaussian process W over H for any given real separable

Hilbert space H.

Proof. Let {Ni}i∈N be a sequence of i.i.d. normal random variables defined on the probability space

(Ω,F,P) and let {ei}i∈N be an orthonormal basis of H. For h = ∑
∞
i=1 hiei where hi = 〈h,ei〉H, i∈N,

set W (h) : = ∑
∞
i=1 hiNi in L2(Ω,F,P). Then W : H→ L2(Ω,F,P) is linear and each W (h) is is a

centred Gaussian random variable. Moreover

E [W (h)W (g)] =
∞

∑
i=1

higi = 〈h,g〉H.

Then, the result follows from Lemma 2.3.

5



Example 2.5. Let H := L2 ([0,1],B([0,1]),m) where m is Lebesgue measure on [0,1]. Then by

Proposition 2.4, there is an isonormal Gaussian process W over L2 ([0,1],B([0,1]),m). Let Bt :=

W (111[0,t]). Then, for t,s ∈ [0,1]

E [BtBs] =
∫ 1

0
111[0,t](r)111[0,s](r)dr = s∧ t.

Moreover, given 0 ≤ t0 < t1 < · · · < tn = t ≤ 1, the functions 111(t0,t1], · · · ,111(tn−1,t] are orthogonal in

L2 ([0,1],B([0,1]),m), hence Bt1−Bt0 =W (111(t0,t1]), · · · ,Bt−Btn−1 =W (111(tn−1,t]) are uncorrelated,

hence independent by being jointly Gaussian. Thus the process (Bt)t∈[0,1] is a Brownian motion

with the filtration Ft := σ(Bs : s ≤ t) if we can show that it has continuous paths. Indeed, by

Kolmogorov’s theorem, it can be showed that Bt has continuous modification. We will write

∫ t

0
f (s)dB(s) :=W (111[0,t] f )

and call
∫ t

0 f (s)dB(s) the Wiener integral of f over [0, t].

Definition 2.6. For n∈N0, the n-th Hermite polynomial Hn(x) is defined as, H0≡ 1, and for n≥ 1:

Hn(x) :=
(−1)n

n!
ex2/2 dn

dxn (e
− x2

2 ).

First few Hermite polynomials are H0(x) = 1, H1(x) = x, H2(x) = x2−1
2 .

Notation 2.7. Let φ(x) := 1√
2π

e−x2/2 be the density of the standard normal distribution.

Some basic properties of Hermite polynomials are listed in the following lemma:

Lemma 2.8. Hermite polynomials satisfy the following properties:

(i) For all t ∈ R, exp
(
tx− t2/2

)
= ∑

∞
n=0 tnHn(x) in L2(R,B(R),φ(x)dx).

(ii) For all n ∈ N, H ′n(x) = nHn−1(x).

(iii) For all n ∈ N, Hn+1(x) = xHn(x)−nHn−1(x).

6



(iv) For all n ∈ N, Hn(−x) = (−1)nHn(x).

The following lemma reflects the close relation between Hermite polynomials and Gaussian

random variables.

Lemma 2.9. Let M,N be standard Gaussian random variables which are jointly Gaussian. Then

for m,n ∈ N0, we have

E [Hn(M)Hm(N)] =


0, if n 6= m,

(E[MN])n

n! , if n = m.

Definition 2.10. Let W be an isonormal Gaussian process over H. For each n∈N0, the n-th Wiener

chaos Hn is the closure of the linear span of {Hn(W (h)) : h ∈ H,‖h‖H = 1} in L2(Ω,F,P).

Note that since H0≡ 1, the 0-th Wiener chaos H0 is the set of all constants and since H1(x) = x,

H1 = {W (h) : h ∈ H} is the 1-st Wiener chaos.

Lemma 2.11. Let W be an isonormal Gaussian process over H and {Hn}n∈N0 be the corresponding

Wiener chaos. Then for m 6= n, Hn and Hm are orthogonal.

Lemma 2.12. The random variables {eW (h)}h∈H form a total subset of L2(Ω,F,P). In other words,

if X ∈ L2(Ω,F,P) is such that E
[
XeW (h)

]
= 0 for all h ∈ H, then X = 0 .

Theorem 2.13. Let W be an isonormal Gaussian process over H and {Hn}n∈N be the correspond-

ing Wiener chaos. Then

∞⊕
n=0

Hn = L2(Ω,F,P) (2.1)

and this decomposition is orthogonal. In other words, every F ∈ L2(Ω,F,P) admits a unique

expansion of the form

F =
∞

∑
n=0

Vn in L2(Ω,F,P)

7



where for each n ∈ N0, Vn ∈Hn, and F0 = E [F ] .

Corollary 2.14. {
√

n!Hn}n∈N is an orthonormal basis of L2(R,B(R),φ(x)dx).

Proof. Let (Ω,F,P) = (R,B(R),φ(x)dx) and H = R. Define W : R→ L2(R,B(R),φ(x)dx) by

(W (h))(x) = hx. Then W is an isonormal Gaussian process. Indeed, under φ(x)dx, x is a Gaussian

random variable. Moreover, E [W (h)W (g)] = hg
∫

R x2dφ(x)dx = hg. Furthermore, note that H= R

has only two elements of norm 1 which corresponds to the random variables x and −x. But since

Hn(−x) = (−1)nHn(x) from Lemma 2.8, each Hn is one-dimensional. Thus, by Theorem 2.13

and Lemma 2.9, {
√

n!Hn} is an orthonormal basis of L2(R,F,φ(x)dx). Finally, claim follows by

noting that F= σ(x) = B(R).

Definition 2.15. Let f ∈ L2(R,B(R),φ(x)dx) have mean zero. By Corollary 2.14, f admits Her-

mite expansion

f (x) =
∞

∑
n=1

anHn(x).

The Hermite rank of the function f is then defined as

inf{n≥ 1 : a1 = a2 = · · ·= an−1 = 0,an 6= 0}=: d.

2.2 Malliavin derivative

Let C∞
p (R

m) denote the set of all infinitely continuously differentiable functions f : Rm→ R such

that f and all of its partial derivatives have polynomial growth. Let S = ∪m∈NC∞
p (R

m). Let S

denote the set of all random variables of the form f (W (h1), · · · ,W (hm)), where m≥ 1, f ∈Cp(Rm)

and hi ∈ H, for i = 1, · · · ,m. Elements of S will be called smooth functionals of W . Also for any

separable Hilbert space K, set

S (K) :=

{
n

∑
j=1

Fjk j : Fj ∈S , k j ∈K , j = 1, · · ·n, n ∈ Z+

}
.

8



Lemma 2.16. The spaces S and S (K) are dense in Lp(Ω,F,P), Lp(Ω,F,P;K) respectively for

every p ∈ [1,∞).

For p > 1, this claim can be proved by showing for all X ∈ L
p

p−1 , E [XF ] = 0 for all F ∈S implies

X = 0 a.e.

Definition 2.17. Let F ∈S be of the form f (W (h1), · · · ,W (hm)) for some h1 · · ·hm ∈H and m∈N0.

The Malliavin Derivative DF of F (with respect to the underlying isonormal Gaussian family W )

is the element of L2(Ω,F,P;H) defined by

DF :=
m

∑
i=1

∂ f
∂xi

(W (h1), · · · ,W (hm))hi. (2.2)

Remark 2.18. This definition is well-defined in the sense that it doesn’t depend on the repre-

sentation of the given random variable. To see this let {ei}i∈N ⊂ H be an orthonormal basis and

h1, · · ·hm ∈ H. Assume F ∈S has representations

F = f (W (h1), · · · ,W (hm)) = g(W (e1), · · · ,W (en))

for some f ,g. Without loss of generality we may assume that

span{e1, · · · ,en}= span{h1, · · · ,hm},

and m = n. Otherwise, we can let hm+1 = e1, · · · ,hn+m = en and em+1 = h1, · · · ,em+n = hm and

replacing f ,g with f̃ , g̃, where f̃ (x1, · · · ,xm+n)= f (x1, · · · ,xn) and g̃(x1, · · · ,xm+n)= g(x1, · · · ,xm).

This doesn’t effect the derivative because ∂ j f̃ = 0 for j > n and ∂ jg̃ = 0 for j > n. Let T : Rn→ Rn

be the linear transformation such that Ti j = 〈hi,e j〉 for all i, j ∈ {1, · · · ,n}. Then by linearity of W ,

T (W (e1), · · ·W (en)) = (W (h1), · · · ,W (hn)), so that

( f ◦T )(W (e1), · · ·W (en)) = g(W (h1), · · · ,W (hn)) = X . (2.3)

9



This implies that f ◦T = g. Indeed, if f ◦T (x0) 6= g(x0) for some for some x0 ∈ Rn, then by conti-

nuity | f ◦T −g|> ε in a neighborhood of x0. Since the standard Gaussian vector W (e1), · · ·W (en)

has strictly positive probability of being in that neighbourhood, this contradicts the equality (2.3).

This using the chain rule from elementary calculus,

n

∑
i=1

∂ig(W (e1), · · ·W (en))ei =
n

∑
i=1

∂i f ◦T (W (e1), · · ·W (en))ei

=
n

∑
i, j=1

∂ j( f ◦T )(W (e1), · · ·W (en))〈h j,ei〉ei

=
n

∑
j=1

∂ j f (W (h1), · · ·W (hn))h j.

Before we get into some properties of the Malliavin operator, let us consider some examples.

Example 2.19. If f (x) = x, we see D(W (h)) = h.

Example 2.20. Let W be as in Example 2.5 and F = f (W (1[0,t])) ∈S . Then for each h ∈ H =

L2 ([0,1],B([0,1]),m), using the definition of Malliavin derivative, we have

〈DF,h〉H = f ′(W (1[0,t]))〈1[0,t],h〉H = f ′(W (1[0,t]))
∫ t

0
h(s)ds.

Note that the left hand side of this equation in the path space is also equal to

d
dε

F(ω + ε

∫ ·
0

h(s)ds)
∣∣∣
ε=0

.

Define the the Cameron-Martin space H1 of Ω as

H1 := {h̃ ∈C([0,1]) : h̃(t) =
∫ t

0
h(s)ds, for some h ∈ H}.

H1 is an Hilbert space with the inner product

〈h̃, g̃〉H1 =
∫ 1

0
h(s)g(s)ds,

10



and it is isomorphic to H. Then, for any h ∈ H, 〈DF,h〉H is the directional derivative of F in the

direction h̃ ∈ H1 where h̃(t) =
∫ t

0 h(s)ds.

Remark 2.21. In general, the derivative DF can be interpreted as the directional derivative as

follows: For F = f (W (h)) ∈S and g ∈ H, on one had, we have

〈DF,g〉H = f ′(W (h))〈h,g〉H,

and on the other hand

lim
ε→0

f (W (h)+ ε〈h,g〉H)− f (W (h))
ε

= lim
ε→0

f ′(W (h))ε〈h,g〉H
ε

= f ′(W (h))〈h,g〉H.

Hence, one has

〈DF,g〉H = lim
ε→0

f (W (h)+ ε〈h,g〉H)− f (W (h))
ε

.

Now we will prove some preliminary integration by parts formula which will then allow us to

extend the derivative operator to a larger class of random variables.

Lemma 2.22. Let F, F̃ ∈S and h ∈ H. Then

E [〈DF,h〉H] = E [FW (h)] , (2.4)

E
[
F̃〈DF,h〉H

]
= E

[
FF̃W (h)

]
−E

[
F〈DF̃ ,h〉H

]
. (2.5)

Proof. Note that Leibniz formula

D(FF̃) = F̃DF +FDF̃ (2.6)

follows from the Leibniz formula for the usual derivative. For (2.4) we may assume ‖h‖H = 1 by

linearity and F = f (W (e1),W (e2), · · · ,W (en)) where f ∈ S and {e1,e2, · · · ,en} ⊂ H are orthonor-
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mal and e1 = h. Then using the usual integration by parts, we get

E [〈DF,h〉H] =
∫

Rn
∂1 f (x)φ(x)dx =

∫
Rn

f (x)φ(x)x1dx = E [FW (e1)] = E [FW (h)] .

Notice if F, F̃ ∈S so is FF̃ . Applying (2.4) to FF̃ and using (2.6), we finally obtain (2.5).

Proposition 2.23. Let p ∈ [1,∞). Then the operator D : S ⊂ Lp(Ω,F,P)→ Lp(Ω,F,P;H) is

closable. In other words for every sequence {Fn}n∈N0 ⊂ S such that Fn → 0 in Lp(Ω,F,P) as

n→ ∞, and DFn→ Y in Lp(Ω,F,P;H) as n→ ∞, it holds that Y = 0 P-a.e.

Proof. We will give a proof for the case p > 1. Let {Fn}n∈N0 be a sequence in⊂S such that Fn→

0 in Lp(Ω,F,P) as n→ ∞, and DFn→ Y in Lp(Ω,F,P;H) as n→ ∞. Then 〈DFn,h〉H→ 〈Y,h〉H in

Lp(Ω,F,P) for any h ∈ H. Let G ∈S . By (2.5), we have

E [G〈Y,h〉H] = lim
n→∞

E [G〈DFn,h〉H] = lim
n→∞

E [Fn (W (h)G−〈DG,h〉H)] = 0

where the last equality follows from Hölder’s inequality since Fn→ 0 in Lp(Ω,F,P) and W (h)G,

〈DG,h〉H ∈ L
p

p−1 . Now since E [G〈Y,h〉H] = 0 for all G ∈ S , by Lemma 2.16, we have, for all

h ∈ H, 〈Y,h〉H = 0 P-a.e. which then implies Y = 0, P-a.e.

We will use the same notation for the closed extension of the derivative. Fix p ∈ [1,∞), the

domain of the operator D is the space D1,p, defined as the closure of S with respect to the norm:

‖F‖D1,p =
(
E [|F |p]+E

[
‖DF‖p

H

]
)
)1/p

.

Observe that D1,2 is a Hilbert space with the inner product

〈F,G〉D1,2 = E [FG]+E [〈DF,DG〉H] .

More generally, we can also define the Malliavin derivative as an unbounded operator from S (K)⊂

12



Lp(Ω,F,P;K) to Lp(Ω,F,P;H⊗K) as

DF :=
n

∑
j=1

DFj⊗ k j.

Consequently, we can define the k-th Malliavin derivative of F , denoted DkF , for any k ∈N, as the

H⊗k-valued random variable obtained by iterating k-times the operator D. That is to say,

DkF =
m

∑
i1,··· ,ik=1

∂
k
i1,··· ,ik f (W (h1), · · ·W (hm))(hi1⊗·· ·⊗hik).

Similar to Proposition 2.23, Dk : S ⊂ Lp(Ω,F,P)→ Lp(Ω,F,P;H⊗k) can be shown to be closable.

The domain of the operator Dk is the space Dk,p defined as the completion of S with respect to

the norm

‖F‖Dk,p =

(
k

∑
i=0

E(‖DiF‖p
H⊗i)

)1/p

where we used the convention H0 = R, D0F = F and ‖ ·‖0,p = ‖ ·‖p. We will call Dk,p the domain

of Dk in Lp(Ω,F,P). Finally, we set D∞,p := ∩k≥1Dk,p, and D∞ := ∩p≥1D∞,p. Furthermore, for

any other separable Hilbert space K, let Dk,p(K) denote the domain of Dk viewed as an unbounded

operator from Lp(Ω,F,P;K) to Lp(Ω,F,P;H⊗k⊗K) .

Proposition 2.24. Let ϕ : R→ R be a Lipschitz function. Suppose F ∈ D1,p for some p≥ 1. Then

ϕ(F) ∈ D1,p and

D(ϕ(F)) = ϕ
′(F)DF.

Proof. If F ∈S , this result easily follows from classical chain rule. In general, let {Fn}n∈N ⊂S

be a sequence converging to F in D1,p. In other words, Fn = fn(W (h1), · · · ,W (hmn)) → F in

Lp(Ω,F,P) and DFn → DF in Lp(Ω,F,P;H). Further assume {ϕn}n∈N ⊂ C∞
b be a sequence of

bounded functions such that ϕn(x)→ ϕ(x) pointwise. (Existence of such sequence can be verified

13



using mollifiers.) Then, ϕn(Fn) ∈S and

D(ϕn(Fn)) =
mn

∑
i=1

(ϕn ◦ fn)
′(W (h1), · · · ,W (hmn)hi

=
mn

∑
i=1

ϕ
′
n( fn(W (h1, · · · ,hmn))) f ′n(W (h1), · · · ,W (hmn)hi = ϕ

′
n(Fn)DFn.

Moreover, by triangle inequality, we have

∥∥ϕ
′
n(Fn)DFn−ϕ

′(F)DF
∥∥

Lp(Ω,F,P;H) ≤
∥∥ϕ
′
n(Fn)(DFn−DF)

∥∥
Lp(Ω,F,P;H)

+
∥∥(ϕ ′n(Fn)−ϕ

′(Fn))DF
∥∥

Lp(Ω,F,P;H)+
∥∥(ϕ ′(Fn)−ϕ

′(F))DF
∥∥

Lp(Ω,F,P;H) .

Observe that supn∈N |ϕ ′n(Fn)| ≤ C < ∞ a.s. and hence the first term in the right hand side of

the above inequality converges to zero as n→ ∞. Moreover, dominated convergence theorem

implies that the other two terms converge to zero as n→ ∞. Thus we obtain, D(ϕn(Fn)) converges

to ϕ ′(F)DF in Lp(Ω,F,P;H) as n→ ∞. But on the other hand, ϕ ′n(Fn) converges to ϕ(F) in

Lp(Ω,F,P) as n→ ∞. Finally, applying the closability of the operator D in Proposition 2.23,

we get ϕ(F) ∈ D1,p and D(ϕ(F)) = ϕ ′(F)DF . For the argument where ϕ is Lipschitz see [42,

Proposition 1.23].

Lemma 2.25. Let {Fn}n∈N be a sequence of random variables in D1,2 which converges to F in

L2(Ω,F,P) and such that

sup
n∈N

E
[
‖DFn‖2

H

]
< ∞.

Then F ∈ D1,2, and the sequence of derivatives {DFn}n∈N converges to DF in the weak topology

of L2(Ω,F,P;H).

Lemma 2.26. Let {Fn}n∈N be a sequence of random variables converging to F in Lp(Ω,F,P) for
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some p > 1. Suppose that

sup
n∈N
‖Fn‖Dk,p < ∞.

for some k ≥ 1. Then F ∈ Dk,p.

2.3 Divergence operator

In this section we will introduce the adjoint of the derivative operator which is called divergence

operator. (In the white noise case it is also called Skorohod integral)

Definition 2.27. We call the adjoint of the derivative operator divergence operator and denote it

by δ . That is, δ is an unbounded operator from Dom(δ )⊂ L2(Ω,F,P;H) to L2(Ω,F,P) such that:

• The domain of δ , denoted by Dom(δ ), is the subset of L2(Ω,F,P;H) composed of those

elements V such that there exists a cV > 0 satisfying

|E [〈DF,V 〉H]| ≤ cV

√
E [F2] for all F ∈ S

or, equivalently, for all F ∈ D1,2.

• If V ∈ Dom(δ ), then δ (V ) is the unique element of L2(Ω,F,P) characterized by the follow-

ing duality formula:

E [Fδ (V )] = E [〈DF,V 〉H] for all F ∈ S (2.7)

or, equivalently, for all F ∈ D1,2.

Such operator exists: fix V ∈Dom(δ ), then the linear operator F→ E [〈DF,V 〉H] is continuous

from S , equipped with the L2(Ω,F,P)-norm, into R. By Riesz representation theorem, there exists

a unique element in L2(Ω,F,P), which we denoted by δ (V ), satisfying (2.7). Some properties of

this operator is listed in the following proposition.
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Proposition 2.28. (i) δ is a linear and closed operator in Dom(δ ).

(ii) E [δ (V )] = 0 for all V ∈ Dom(δ ).

(iii) If V ∈S (H), then V ∈ Dom(δ ) and

δ (V ) =
m

∑
i=1

FiW (hi)−
m

∑
i=1
〈DFi,hi〉H.

(iv) Let V ∈S (H), F ∈S and h ∈ H. Then

〈D(δ (V )),h〉H = 〈V,h〉H+δ

(
m

∑
i=1
〈DFi,h〉Hhi

)
.

Proof. (i) δ is closed by being the adjoint of an unbounded densely defined operator.

(ii) This follows from applying (2.7) with F = 1.

(iii) Let us first show that S (H)⊂Dom(δ ) . Let V ∈S (H), then V = ∑
n
i=1 Fihi for some Fi ∈S

and hi ∈ H for i = 1, · · ·n, n ∈ Z+. Using (2.5), we have, for all F ∈S ,

|E [〈DF,V 〉H]|=

∣∣∣∣∣ n

∑
i=1

E [Fi〈DF,hi〉H]

∣∣∣∣∣
≤

n

∑
i=1

(|E [F〈DFi,hi〉H]|+ |E [FFiW (hi)] |)

≤ cV‖F‖L2(Ω,F,P),

where the last line follows from Cauchy-Schwarz inequality and cV < ∞ follows from Fi =

f (W (hi1), · · · ,W (hi j)) where fi and and its derivatives has at most polynomial growth. This

proves V ∈ Dom(δ ). Moreover, using (2.5), we get for all F ∈S ,

E [Fδ (V )] = E [〈DF,V 〉H] = E

[
n

∑
i=1

(FiW (hi)−〈DFi,hi〉H)

]

which verifies (iii).
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(iv) Using (iii) for δ (V ), we get

〈D(δ (V )),h〉H =
n

∑
i=1

(W (hi)〈DFi,h〉H+Fi〈hi,h〉+W (hi)〈D(〈DFi,hi〉H,h〉H)) .

On the other hand, again using (2.5), we have

δ

(
m

∑
i=1
〈DFi,h〉Hhi

)
=

n

∑
i=1

(
W (h j)〈DFi,h〉−〈D〈DFi,h〉,hi〉H

)
.

Then the claim follows putting these two equations together.

Proposition 2.29. If V ∈ D1,2(H), then

‖δ (V )‖2
L2(Ω,F,P) = E

[
δ (V )2]≤ ‖V‖D1,2(H).

In particular, D1,2(H)⊂ Domδ and δ : D1,2(H)→ L2(Ω,F,P) is continuous.

The following lemma is a factorization property of the divergence operator, obtained in this

generality in [9, Lemma 1].

Lemma 2.30. Fix p, p′ > 1 with 1/p+ 1/p′ = 1. Let F ∈ D1,p′ , V ∈ Domδ , be such that V ∈

Lp(Ω,F,P;H) and δ (V ) ∈ Lp(Ω,F,P). Then FV ∈ Domδ , and

δ (FV ) = Fδ (V )−〈DF,V 〉H.

Because δ is a continuous linear operator from D1,p(H) to Lp(Ω,F,P), Lemma 2.30 holds true

provided F ∈ D1,p′ and V ∈ D1,p(H).
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2.4 Wiener chaos

In this section, we will consider the case where H = L2(T,B(T ),µ) for a σ -finite measure space

(T,B(T ),µ) without atoms.

Remark 2.31. Given a random variable F ∈ D1,2, the Malliavin derivative DF is an element of

L2(Ω,F,P;L2(T,B(T ),µ)) which can be identified with L2(T ×Ω,B(T )⊗F,µ ⊗P). Thus the

Malliavin derivative can be viewed as a stochastic process {DtF : t ∈ T} where DtF is defined a.e

with respect to to the measure µ⊗P. Similar remarks also apply to divergence operator.

Definition 2.32. Let {W (h)}h∈H be an isonormal Gaussian processes over H where H=L2(T,B,µ)

for a σ -finite measure space (T,B,µ) without atoms. Then W (A) := W (1A) for A ∈B is called

the white noise on T . It has the covariance structure

E [W (A)W (B)] =
∫

T
1A(x)1B(x)µ(dx) = µ(A∩B).

Remark 2.33. Notice that in this case, we can recover the isonormal Gaussion process from the

white noise.

Example 2.34. Let (T,B,µ) = (R+,B(R+),m) where m is the Lebesgue measure. Then W is the

white noise in R+ and Bt := W ([0, t]) is the one dimensional Brownian motion. The details are

similar to Example 2.5.

Fix n ∈ N and let Bb(T ) := {A ∈B(T ) : µ(A) < ∞}. Further let En be the set of elementary

functions of the form

f (t1, · · · , tn) =
n

∑
i1,··· ,in=1

ai1,··· ,in1Ai1×···×Ain
(t1, · · · , tn) (2.8)

where A1, · · · ,An ∈Bb(T ) are pairwise disjoint and the coefficients ai1,··· ,in = 0 if i j = ik for any

j 6= k.

Proposition 2.35. The set of elementary functions En is dense in L2(T n,B(T n),µ⊗n).
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Definition 2.36. For an elementary function of the form (2.8), the multiple stochastic integral is

defined as follows:

In( f ) =
m

∑
i1,··· ,in

ai1,··· ,inW (Ai1) · · ·×W (Ain) (2.9)

Let L2
s (T

n,B(T n),µ⊗n) denote the space of symmetric square integrable functions. If f : T n→

R, define its symmetrization by

f̃ (t1, · · · , tn) =
1
n! ∑

σ

f (tσ(1), · · · , tσ(n)) (2.10)

where sum runs over all permutations σ of {1, · · · ,n}. Observe ‖ f̃‖L2(T n,B(T n),µ⊗n)≤‖ f‖L2(T n,B(T n),µ⊗n)).

Proposition 2.37. (i) The definition (2.9) doesn’t depend on the particular representation of the

function f .

(ii) Let f̃ denote the symmetrization of f ∈ En as defined in (2.10). Then

In( f ) = In( f̃ ).

Lemma 2.38. For all n,m ∈ N and f ∈ En and g ∈ Em, we have

E [In( f )Im(g)] =


0 if n 6= m

n!〈 f̃ , g̃〉L2(T n,B(T n),µ⊗n) if n = m.

Proposition 2.39. The linear operator In : En→ L2(Ω,F,P) can be extended to a continuous linear

operator from L2(T n,B(T n),µ⊗n) to L2(Ω,F,P). Moreover, for all f ,g ∈ L2(T n,B(T n),µ⊗n),
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In( f ) = In( f̃ ) and

E [In( f )Im(g)] =


0 if n 6= m

n!〈 f̃ , g̃〉L2(T n,B(T n),µ⊗n) if n = m.

still holds.

Definition 2.40. Let f ∈L2(T n,B(T n),µ⊗n) and g∈L2(T m,B(T m),µ⊗m)). For any r = 0, · · · ,m∧

n, define the contraction of f and g of order r to be the element of L2(T n+m−2r,B(T n+m−2r),µ⊗n+m−2r)

as

( f ⊗r g)(t1, · · · , tn−r,s1, · · ·sm−r)

=
∫

T r
f (t1, · · · , tn−r,x)g(s1, · · ·sm−r,x)µr(dx).

Denote the symmetrization of f ⊗r g by f ⊗̃rg.

Proposition 2.41. Let f ∈ L2
s (T

n,B(T n),µ⊗n) and g ∈ L2
s (T

m,B(T m),µ⊗m) for some m,n ∈N0.

Then,

In( f )Im(g) =
n∧m

∑
r=0

r!
(

m
r

)(
n
r

)
In+m−2r( f ⊗r g).

Proposition 2.42. For any g ∈ L2(T,B(T ),µ), we have

In(g⊗n) = n!‖g‖n
L2(T,B(T ),µ)Hn

(
W (g)

‖g‖L2(T,B(T ),µ)

)
,

where g⊗n(t1, · · · , tn) = g(t1) · · ·g(tn). In particular, if ‖g‖L2(T,B(T ),µ) = 1, then

In(g⊗n) = n!Hn (W (g)) .

As a consequence of Proposition 2.42 and Theorem 2.13, we deduce following version of the
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Wiener chaos expansion.

Theorem 2.43. Every F ∈ L2(Ω,F,P) can be uniquely expanded into a sum of stochastic integrals

as follows:

F =
∞

∑
n=0

In( fn),

where f0 = E [F ], and I0 denotes the identity map on constants and fn ∈ L2(T n,B(T n),µ⊗n).

Further we can assume that the functions fn ∈ L2
s (T

n,B(T n),µ⊗n) and in this case are uniquely

determined by F .

Using chaos expansion we can easily compute the derivative as follows:

Proposition 2.44. Let F ∈D1,2 be a random variable with chaos expansion given in Theorem 2.43

where fn’s are symmetric . Then,

DtF =
∞

∑
n=1

nIn−1( fn(·, t)).

Proof. Let F = In( fn) for a particular n ∈ N0 where fn is symmetric and of the form (2.8) and

assume t ∈ Ai j for some i j ∈ {1, · · · ,n}. Then

DtF = Dt

(
n

∑
i1,··· ,in=1

ai1,··· ,inW (Ai1) · · ·W (Ain)

)

=
n

∑
j=1

n

∑
i1,··· ,in=1

ai1,··· ,inW (Ai1) · · ·111Ai j
(t) · · ·W (Ain)

= nIn−1( fn(·, t)).

The general case then follows.
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Proposition 2.45. Let F ∈ L2(Ω,F,P) be a random variable with chaos expansion given in Theo-

rem 2.43 and A ∈B(T ). Then,

E
[
F
∣∣Ft
]
=

∞

∑
n=0

In( fn(·)111⊗n
[0,t]).

Proof. Let F = In( fn) for a particular n ∈ N0 where fn of the form 111A1×···×An where A1, · · ·An ∈

Bb(T ) mutually disjoint. Then

E
[
F
∣∣Ft
]
= E

[
W (A1) · · ·W (An)

∣∣Ft
]
= E

[
n

∏
i=1

W (Ai∩ [0, t])+W (Ai∩ [0, t]c)
∣∣Ft

]

= In(111(A1∩[0,t]×···×(An∩[0,t])).

The general case then follows.

An element V (t) ∈ L2(T ×Ω,B(T )⊗F,m⊗P) has a Wiener chaos decomposition of the form

V (t) =
∞

∑
n=0

In( fn(·, t)), (2.11)

where for each n∈N, fn ∈ L2(T n+1) which is symmetric in the first n-components. The next result

shows how divergence operator applies to Wiener chaos decomposition.

Proposition 2.46. Let V (t) ∈ L2(T ×Ω,B(T )⊗F,m⊗P) be given as in (2.11). Then V ∈ Domδ

if and only if the series

∞

∑
n=0

In+1( f̃n)

where

f̃n(t1, t2, · · · , tn, t) :=
1

n+1

(
fn(t1, · · · , tn, t)+

n

∑
i=1

fn(t1, · · · , ti−1, t, ti+1 · · · , tn, ti)

)
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converges in L2(Ω,F,P). Moreover,

δ (V ) =
∞

∑
n=0

In+1( f̃n).

2.5 Itô integral and Malliavin calculus

We will focus on Example 2.34 where H= L2(R+,B(R+),m) throughout this section. Following

Remark 2.31 we will use the identification L2(Ω,F,P;L2(R+,B(R+),m))
∼
= L2(R+×Ω,B(R+)⊗

F,m⊗P). Thus the Malliavin derivative is a stochastic process (DtF)t∈R+
. Let (Ft)t∈R+

be the

filtration such that

Ft = F0
t ∨N , F0

t := σ(Bs,0≤ s≤ t) (2.12)

where N is the σ -field generated by P-null sets. We say a process {Vt}t∈R+ is adapted if Vt is Ft-

measurable for all t ∈ R+. Let L2
a(R+×Ω,B(R+)⊗F,m⊗P) be the set of square integrable and

adapted processes. Further, let E (R+) denote the set of all finite linear combinations of elementary

adapted processes of the form

V (s) = F111[a,b)(s) (2.13)

where 0 < a < b < ∞, F ∈ L2(Ω,F,P), Fa-measurable. Recall that for an elementary adapted

process of the type (2.13), the Itô integral is given by

∫
R+

V (s)dBs = F(Bb−Ba) = FW (111[a,b)).
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Theorem 2.47. The space L2
a(Ω,F,P;L2(R+,B(R+),m)) is included in the domain of δ , moreover

δ (V ) =
∫

R+

V (s)dBs

for any V ∈ L2
a(Ω,F,P;L2(R+,B(R+),m)).

Proof. Let V (s) = F111[a,b)(s) where F ∈S . Then for any G ∈S , we have

E [〈V,DG〉H] = E
[
F〈111[a,b),DG〉H

]
= E

[
FGW (111[a,b))−G〈1[a,b),DF〉H

]
(2.14)

where we used (2.5) in the last equality. Note that since F ∈ S is Fa-measurable, and F =

f (W (h1), · · · ,W (hn)) for some smooth f and hi ∈ L2(R+,B(R+),m) such that supp hi ⊂ [0,a].

This implies, in particular, 〈111[a,b),hi〉 = 0 for all i = 1, · · ·m and 〈111[a,b),DF〉 = 0. So, the above

identity becomes

E [〈V,DG〉H] = E
[
FGW (1[a,b)

]
which can be rewritten using (2.14) as

E [〈V,DG〉H] = E
[

F
∫

R+

V (s)dBs

]
.

The proof can then be completed by an approximation argument.

The following theorem includes Clark-Ocone Formula and Poincare inequality.

Theorem 2.48. For every F ∈ D1,2,

F = E [F ]+
∫

R+

E [DsF |Fs]dBs, a.s.
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Consequently, we have the Poincare inequality:

Var [F ]≤ E
[
‖DF‖2

L2(R+,B(R+),m)

]

Proof. By martingale representation theorem, there is a unique process V ∈ L2
a(R+×Ω,B(R+)⊗

F,m⊗P) such that

F = E [F ]+
∫

R+

U(s)dBs. (2.15)

Let U ∈ L2
a(R+×Ω,B(R+)⊗F,m⊗P). On one hand, using the isometry property of Itô integral,

we see

E [δ (U)F ] =
∫

R+

E [U(s)V (s)]ds.

On the other hand, using integration by parts (2.7), we get

E [δ (U)F ] = E
[∫

∞

0
U(t)DtFdt

]
=
∫

∞

0
E
[
U(s)E

[
DsF

∣∣Fs
]]

ds

where we used the fact that U is adapted to the filtration {Fs}s∈R+ . The above findings together

implies V (s) = E
[
DsF

∣∣Fs
]

.

Remark 2.49. Another way to prove Clark-Ocone formula is using chaos expansion in Theo-

rem 2.43 together with Proposition 2.44, Proposition 2.45 and Proposition 2.46. See [42, Proposi-

tion 1.3.14] for details.

2.6 Existence of density

The following density formula under general assumptions on the random variable has been proved

in [9, Proposition 1].
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Proposition 2.50. Let F ∈ D1,1 and V ∈ L1(Ω,F,P;H) be such that DV F 6= 0 a.s. Assume that

V/DV F ∈ Domδ . Then the law of F has a continuous and bounded density given by

fF(x) = E
[

111[F>x]δ

(
V

DV F

)]
.

Remark 2.51. Using Lemma 2.30, in the context of Proposition 2.50, the following constitute

sufficient conditions for V/DV F ∈Domδ , for some p, p′ with 1/p+1/p′ = 1 (see [9, Lemma 3]):

(i) (DV F)−1 ∈ D1,p′ .

(ii) V ∈ D1,p(H).

In view of [9, Lemma 4], a sufficient condition for (i) is (DV F)−1 ∈ Lp′(Ω,F,P) and

(DV F)−2 [‖D2F‖H⊗H‖V‖H+‖DV‖H⊗H‖DF‖H
]
∈ Lp′(Ω,F,P).

Therefore, assuming that F ∈ D2,p and (DV F)−1 ∈ Lq(Ω,F,P), then condition (i) holds if 2/q+

3/p = 1 for some p > 3 and q > 2. In particular, we can take q = 4 and p = 6.

Proof of Proposition 2.50. Let ψ ∈C∞
c (R;R+) and define ϕ(y) =

∫ y
−∞ ψ(z)dz for y ∈ R. Then by

Proposition 2.24, we have ϕ(F) ∈ D1,1 and

〈D(ϕ(F)),V 〉H = ψ(F)〈DF,V 〉H.

Using DV F 6= 0 a.s., we obtain

E [ψ(F)] = E
[〈

D(ϕ(F)),
V

〈DF,V 〉

〉
H

]
.

Let {Fn}n∈N ⊂ S be a sequence of random variables converging to F in D1,1. Then, using the
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definition of the divergence operator δ , we get

E
[〈

D(ϕ(F)),
V

〈DF,V 〉H

〉
H

]
= lim

n→∞
E
[〈

D(ϕ(Fn)),
V

〈DF,V 〉H

〉
H

]
= lim

n→∞
E
[

ϕ(Fn)),δ

(
V

〈DF,V 〉H

)]
= E

[
ϕ(F))δ

(
V

〈DF,V 〉H

)]
.

Hence, we get

E [ψ(F)] = E
[

ϕ(F)δ

(
V

〈DF,V 〉H

)]
. (2.16)

By an approximation argument, (2.16) holds for the function ψ(y)= 111[a,b](y) and as a consequence,

applying Fubini’s theorem, we obtain

P(a≤ F ≤ b) = E
[(∫ F

−∞

111[a,b](x)dx
)

δ

(
V

〈DF,V 〉H

)]
=
∫ b

a
E
[

111[F>x]δ

(
V

〈DF,V 〉H

)]
dx

which concludes the proof of the claim.
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Chapter 3

Malliavin-Stein method

Stein’s method [54] was established in 1970s to provide quantitative results to estimate how far a

random variable is from being normal. Before Stein [54] first used the method, a Fourier transform

approach was used (characteristic functions) to show the convergence to a normal random variable

in distribution. Although this method is a strong tool to establish convergence in distribution, it

lacks to provide the estimates on the error term in general. In 2005, Nualart and Peccati [44]

formulated a new central limit theorem on a fixed Wiener chaos, which is called the fourth moment

theorem. Later in 2009, Nourdin and Peccati [37], when considering the rate of convergence for

the fourth moment theorem, explored an interplay between Malliavin calculus and Stein’s method

leading to quantitative estimates. This chapter is based on the books Chen, Goldstein, and Shao

[17], Nourdin and Peccati [38], Nualart [42], as well as the surveys Nourdin [36], Nourdin and

Peccati [37], Ross [51]. At the end of this chapter we will recall with its proofs particular Malliavin-

Stein bounds one for Wasserstein distane and other for the uniform distance between densities.

These estimates are based on the results in Kuzgun and Nualart [30] and Hu, Lu, and Nualart [24],

Kuzgun and Nualart [31].

3.1 Stein’s method

The following is an important characterization of the normal distribution.

Lemma 3.1 (Stein’s Lemma). If Z has the standard normal distribution, then

E
[
ϕ
′(Z)−Zϕ(Z)

]
= 0
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for all absolutely continuous function ϕ with ϕ ′ ∈ L1(R,B(R),φ(x)dx). On the other hand, if F is

a random variable such that

E
[
ϕ
′(F)−Fϕ(F))

]
= 0

for all absolutely continuous function ϕ with ϕ ′ ∈ L1(R,B(R),φ(x)dx) with E [Fϕ(F)]< ∞, then

F has the standard normal distribution.

This characterization of the normal distribution motivates the Stein equation (3.2).

Proposition 3.2. For ϕ ∈ L1(R,B(R),φ(x)dx), the function

fϕ(x) := ex2/2
∫

∞

x
(ϕ(y)−E [ϕ(Z)])e−y2/2dy. (3.1)

is the unique solution to the Stein’s equation

f (x)− x f ′(x) = ϕ(x)−E [ϕ(Z)] (3.2)

satisfying the growth condition

lim
x→±∞

e−x2/2 f (x) = 0.

The following lemma presents some properties of the solution fϕ to Stein’s equation for par-

ticular choices of ϕ .

Lemma 3.3.

(i) Let ϕ(y) = 111(−∞,x)(y) for some x ∈ R. Then,

‖ fϕ‖L∞ ≤
√

2π

4
, ‖ f ′ϕ‖L∞ ≤ 1.
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(ii) Let ϕ : R→ [0,1] be Borel measurable. Then,

‖ fϕ‖L∞ ≤
√

π

2
, ‖ f ′ϕ‖L∞ ≤ 2.

(iii) Let ϕ : R→ R be absolutely continuous, then

‖ fϕ‖L∞ ≤ 2‖ϕ ′‖L∞ , ‖ f ′ϕ‖L∞ ≤ 4‖ϕ ′‖L∞ , ‖ f ′′ϕ‖L∞ ≤ 2‖ϕ ′‖L∞ .

Heuristically, Stein’s method aims to use the characterization in Lemma 3.1 to estimate how

far a random variable is from being normally distributed. Before we state the results in this respect,

let us first introduce how we measure the distance between two random variables.

Definition 3.4. For two real random variables F,G on a probability space (Ω,F,P), define

dC (F,G) := sup
ϕ∈C
|E [ϕ(F)]−E [ϕ(G)]|

where C is an appropriate class of test functions.

We will mainly be interested in the following cases:

Definition 3.5.

(i) If we take C := {111(−∞,x];x ∈ R}, then we obtain the Kolmogorov’s distance:

dKol(F,G) := sup
x∈R
|P(F ≤ x)−P(G≤ x)|

(ii) If we take C := {111B(·) : B ∈B(R)}, we get the total variation distance:

dTV(F,G) := sup
B∈B(R)

|P(F ∈ B)−P(G ∈ B)|
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(iii) If we take C := {ϕ : R→ R : |ϕ(x)−ϕ(y)| ≤ |x− y| for all x,y ∈ R} =: Lip(1), we get the

Wasserstein’s distance:

dW(F,G) := sup
ϕ∈Lip(1)

|E [ϕ(F)]−E [ϕ(G)]| .

The following proposition is the central result in Stein’s method which characterizes the dis-

tances in term of the solution to the Stein’s equation (3.2).

Proposition 3.6. Let F be an integrable random variable and Z has a normal distribution, then

dC (F,Z) = sup
ϕ∈C

E
[

f ′ϕ(F)−F fϕ(F)
]

for any class of functions C introduced in Definition 3.5 where fϕ given in (3.1) is the solution to

the Stein equation (3.2).

Using Lemma 3.3 and Proposition 3.6 we obtain following corollaries which will be used when

we introduce the Malliavin-Stein method in the next section.

Corollary 3.7. Let F be an integrable random variable and Z has a normal distribution, then

dKol(F,Z)≤ sup
f∈FKol

∣∣E[ f ′(F)
]
−E [F f (F)]

∣∣
where FKol is the class of piecewise continuously differentiable functions where ‖ f‖L∞ ≤

√
2π/4

and ‖ f ′‖L∞ ≤ 1.

Corollary 3.8. Let F be an integrable random variable and Z has a normal distribution, then

dTV(F,Z)≤ sup
f∈FTV

∣∣E[ f ′(F)
]
−E [F f (F)]

∣∣
where FTV is the class of absolutely continuous functions ‖ f‖L∞ ≤

√
π/2 whose derivative has a

version such that ‖ f ′‖L∞ ≤ 2}.
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Corollary 3.9. Let F be an integrable random variable and Z has a normal distribution, then

dW(F,Z)≤ sup
f∈FW

∣∣E[ f ′(F)
]
−E [F f (F)]

∣∣
where FW is the class of twice differentiable functions such that ‖ f‖L∞ ≤ 2, ‖ f ′‖L∞ ≤

√
π/2,

‖ f ′′‖L∞ ≤ 2}.

3.2 Stein’s method combined with Malliavin calculus

Now, we are ready to combine Malliavin calculus with Stein’s method to give estimates for the dis-

tances introduced in the previous section. The theorems below are stated for the random variables

of the form F = δ (V ) for some V ∈Dom(δ ) which suits for our purposes in the later chapters. For

a broader treatment and the proofs, see [38]. These estimates are first obtained in [37]. Throughout

this section, we fix an isonormal Gaussian process W over H on a probability space (Ω,F,P).

Theorem 3.10. Suppose that F ∈ D1,2 satisfies F = δ (V ) where V belongs to the Dom(δ ) and

E
[
F2]= 1. Let C be the one of the classes of functions defined in Definition 3.5. Then,

dC (F,Z)≤

(
sup
ϕ∈C
‖ f ′ϕ‖L∞

)√
Var [〈DF,V 〉H],

where Z is a standard normal random variable. In particular,

dKol(F,Z)≤
√

Var [〈DF,V 〉H], (3.3)

dTV(F,Z)≤ 2
√

Var [〈DF,V 〉H], (3.4)

dW(F,Z)≤
√

π/2
√

Var [〈DF,V 〉H]. (3.5)

Proof. Let us prove this for the total variation distance. The others follow the same steps. By (2.4),
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we see E [δ (V ) f (F)] = E [〈D( f (F)),V 〉H]. As a consequence, using Corollary 3.8, we can write

dTV (F,Z)≤ sup
f∈FTV

|E
[

f ′(F)
]
−E [F f (F)] |

= sup
f∈FTV

|E
[

f ′(F)
]
−E [δ (V ) f (F)] |

= sup
f∈FTV

|E
[

f ′(F)
]
−E [〈D( f (F)),V 〉H] |

= sup
f∈FTV

|E
[

f ′(F)
]
−E

[
f ′(F)〈DF,V 〉H

]
|

≤ 2E [|1−〈DF,V 〉H|] ,

where we used Proposition 2.24 and f ∈FTV satisfies ‖ f ′‖L∞ ≤ 2. Since 1=E
[
F2]=E [Fδ (V )] =

E [〈DF,V 〉H], using Cauchy-Schwarz inequality, we get

E [|1−〈DF,V 〉H|]≤
√

E
[
|E [〈DF,V 〉H]−〈DF,V 〉H|2

]
=
√

Var [〈DF,V 〉H] ,

which concludes our proof.

An iterative application of the Malliavin-Stein approach leads to the following result, which

requires the random variable F = δ (V ) to be three times differentiable (see [46, Proposition 3.2.]).

Proposition 3.11. Assume that V ∈ Domδ , F = δ (V ) ∈ D3,2 and E
[
F2]= 1. Then,

dTV (F,Z)≤ (8+
√

32π)Var [〈DF,V 〉H]+
√

2π|E
[
F3] |+√32πE

[
|D2

V F |2
]
+4πE

[
|D3

V F |
]
,

where we have used the notation DV F = 〈V,DF〉H and Di+1
V F = 〈V,D(Di

V F)〉H for i≥ 1.

In the next proposition we present another estimate for the Wasserstein’s distance between

a random variable F where F = δ 2(V ) and a normal random variable obtained using iterative

application of Malliavin-Stein method. This is proved in [30].
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Proposition 3.12. Assume that V ∈ Dom
(
δ 2), F = δ 2(V ) ∈ D2,2 and E

[
F2]= 1. Then,

dW(F,Z)≤
√

π/2
√

Var
[
〈D2F,V 〉H⊗2

]
+2E

[∣∣〈DF⊗DF,V 〉H⊗2

∣∣] .
Proof. By iterating (2.4), we see E

[
δ 2(V ) f (F)

]
= E

[
〈D2( f (F)),V 〉H⊗2

]
. As a consequence, us-

ing Corollary 3.9, we can write

dW(F,Z)≤ sup
f∈FW

|E
[

f ′(F)
]
−E [F f (F)] |

= sup
f∈FW

|E
[

f ′(F)
]
−E

[
δ

2(V ) f (F)
]
|

= sup
f∈FW

|E
[

f ′(F)
]
−E

[
〈D2( f (F)),V 〉H⊗2

]
|

= sup
f∈FW

|E
[

f ′(F)
]
−E

[
f ′(F)〈D2F,V 〉H⊗2

]
−E

[
f ′′(F)〈DF⊗DF,V 〉H⊗2

]
|

≤
√

π/2E
[∣∣1−〈D2F,V 〉H⊗2

∣∣]+2E
[∣∣〈DF⊗DF,V 〉H⊗2

∣∣] ,
where we used Proposition 2.24 and f ∈FW satisfies ‖ f ′‖L∞ ≤

√
π/2, ‖ f ′′‖L∞ ≤ 2}. Since 1 =

E
[
F2]= E

[
Fδ 2(V )

]
= E

[
〈D2F,V 〉H⊗2

]
, using Cauchy-Schwarz inequality, we get

E
[∣∣1−〈D2F,V 〉H⊗2

∣∣]≤√E
[∣∣E[〈D2F,V 〉H⊗2

]
−〈D2F,V 〉H⊗2

∣∣2]=√Var
[
〈D2F,V 〉H⊗2

]
,

which concludes our proof.

Now, we will use Malliavin-Stein method to obtain a bound for the uniform distance between

the density of of a random variable and the density of the normal distribution. In order to obtain

such estimate, we will use Proposition 2.50. Variations of this result are obtained in [24]. The

proof here is given in [31].

Theorem 3.13. Assume that V ∈ D1,6(H) and F = δ (V ) ∈ D2,6 with E [F ] = 0, E
[
F2] = 1 and

(DV F)−1 ∈ L4(Ω,F,P). Then, V/DV F ∈ Domδ , F admits a density fF(x) and the following
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inequality holds true

sup
x∈R
| fF(x)−φ(x)| ≤

(
‖F‖4

∥∥(DV F)−1∥∥
4 +2

)
‖1−DV F‖2

+
∥∥(DV F)−1∥∥2

4 ‖DV (DV F)‖2 , (3.6)

where φ(x) is the density of the normal distribution.

Proof. First, note that, by Proposition 2.50, the Remark 2.51 F admits a density fF(x)=E
[
111[F>x]δ (V̄ )

]
,

where V̄ =V/DV F . As a consequence, we can write

sup
x∈R
| fF(x)−φ(x)|= sup

x∈R

∣∣E[111[F>x]δ (V̄ )
]
−E

[
111[Z>x]Z

]∣∣ , (3.7)

where Z denotes a standard random variable. We have

δ (v̄) = δ

(
V

DV F

)
=

F
DV F

−DV

(
1

DV F

)
=

F
DV F

+
DV (DV F)

(DV F)2 . (3.8)

Indeed, the second equality follows from Lemma 2.30 together with F = δ (V ), and the third one

follows from the chain rule. Then, substituting (3.8) into (3.7), yields

Φx :=
∣∣E[111[F>x]δ (V̄ )

]
−E

[
111[Z>x]Z

]∣∣
=

∣∣∣∣∣E
[

111[F>x]F
DV F

]
−E

[
111[F>x]DV (DV F)

(DV F)2

]
−E

[
111{Z>x}Z

]∣∣∣∣∣ . (3.9)

Adding and subtracting E
[
111[F>x]F

]
in (3.9), we get

Φx ≤ E
[∣∣∣∣(1−DV F)F

DV F

∣∣∣∣]+E

[
|DV (DV F) |
(DV F)2

]
+
∣∣E[F111[F>x]−Z111[Z>x]

]∣∣ . (3.10)

Applying Hölder’s inequlity to the first term, we obtain

E
[∣∣∣∣(1−DV F)F

DV F

∣∣∣∣]≤ ‖F‖4

∥∥∥(DV F)−1
∥∥∥

4
‖1−DV F‖2 . (3.11)

35



Meanwhile, applying Hölder’s inequality to the second term, we get

E

[
|DV (DV F) |
(DV F)2

]
≤
∥∥∥(DV F)−1

∥∥∥2

4
‖DV (DV F)‖2 . (3.12)

Finally, applying Stein’s method Theorem 3.10 with ϕ(y) = y111[y>x] which is a Lip(1) function, we

obtain

∣∣E[F111[F>x]−Z111[Z>x]
]∣∣≤√π/2

√
Var [〈DF,V 〉H]. (3.13)

Then, substituting (3.11), (3.12) into (3.10) yields the desired estimate.
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Chapter 4

Walsh stochastic integral

Walsh introduced multi-parameter stochastic integration which is an extension of Itô’s calculus

in the seminal paper [56]. In this chapter, we will first give a brief sketch of this integration

theory in the context of a spatially homogeneous noise and recall the facts that the main results of

Itô’s theory extends to Walsh integration. Afterwards, we present how this theory connects with

Malliavin calculus. The first two section of this chapter is mainly based on lecture notes Perkowski

[50]. We also utilized the lecture notes Balan [2], the papers Dalang [20], Walsh [56], the books

Khoshnevisan [28], Dalang, Khoshnevisan, Mueller, Nualart, and Xiao [21], and the theses Chen

[10], Conus [18]. The last section is based on a recent paper Chen, Khoshnevisan, Nualart, and Pu

[16].

4.1 Introduction

Definition 4.1. An isonormal Gaussian process W = (W (h))h∈H over H defined on a complete

probability space (Ω,F,P) is called spatially homogeneous noise on R+×Rd if there is a nonneg-

ative definite tempered Borel measure Λ on Rd such that

E [W (h)W (g)] = 〈h,g〉H
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for all h,g ∈ H where H is the the completion of the set of Schwartz functions S(R+×Rd) with

respect to the inner product

〈h,g〉H :=
∫

∞

0

∫
Rd

(h(s, ·)∗̄g(s, ·))(y)Λ(dy)ds

where

(h(s, ·)∗̄g(s, ·))(y) =
∫

Rd
h(s,x)g(s,x− y)dx.

We will call this measure Λ the spectral measure of the noise. If Λ is the Dirac mass at 0, then

we call W white noise on R+×Rd . If Λ is absolutely continuous with respect to Lebesgue measure,

we will write Λ(dx) = λ (x)dx. Let, also, H0 be the completion of S(Rd) with respect to the inner

product

〈h,g〉H0 :=
∫

Rd
(h∗̄g)(y)Λ(dy)

and Bb(Rd) := {A ∈B(Rd) : ‖111A‖H0 < ∞}.

Now, let W be a spatially homogeneous noise on R+× Rd with a spectral measure Λ and

consider the random field (Wt(A))(t,A)∈R+×Bb(Rd) defined as follows:

Wt(A) :=W (1[0,t]×A), for (t,A) ∈ R+×Bb(R
d). (4.1)

Let further (Ft)t∈R+
be the filtration such that

Ft = F0
t ∨N , F0

t := σ(Ws(A),s≤ t,A ∈Bb(R
d)) (4.2)

where N is the σ -field generated by P-null sets. By construction (Wt(A))(t,A)∈R+×Bb(Rd) is a

centred Gaussian random field.

Lemma 4.2. Let W be a spatially homogeneous noise on R+×Rd with spectral measure Λ. Then
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the centered Gaussian random field (Wt(A))(t,A)∈R+×Bb
defined in (4.1) is a Gaussian martingale

measure. That is to say for all A,B ∈Bb, we have

(i) W0(A) = 0;

(ii) (Wt(A))t∈R+
is a continuous martingale with respect to the filtration (Ft)t∈R+ defined in (4.2);

(iii) E [Ws(A)Wt(B)] = (s∧ t)
∫

Rd(111A∗̄111B)(y)Λ(dy) = (s∧ t)〈111A,111B〉H0 .

Proof. (i) Since E
[
(W0(A))

2
]
= E

[(
W (111{0}×A)

)2
]
= 0, it follows that W0(A) = 0 P-a.s. (ii) This

follows from the definition of the filtration. (iii) This also follows quickly from the definition of W

since

E [Ws(A)Wt(B)] =
∫

R+

∫
R2d

111[0,t](r)111[0,s](r)111A(x)111B(x− y)dxΛ(dy)dr.

Lemma 4.3. Let W be a spatially homogeneous noise on R+×Rd with spectral measure Λ and

(Wt(A))(t,A)∈R+×Bb(Rd) be the corresponding Gaussian martingale measure. Let (An)n∈N⊂Bb(Rd)

be pairwise disjoint sets with ∪n∈NAn ∈Bb(Rd). Then for all t ∈ R+:

Wt(∪n∈NAn) = ∑
n∈N

Wt(An),

where the series on the left converges in L2(Ω,F,P).

Proof. Let A := ∪n∈NAn and BN := ∪N
n=1An. For N ∈ N, we have

E

( N

∑
n=1

Wt(An)−Wt(A)

)2
= E

[
N

∑
n,m=1

Wt(An)Wt(Am)−2Wt(A)
N

∑
n=1

Wt(An)+Wt(A)2

]

=
N

∑
n,m=1

t〈111An,111Am〉H0−2t
N

∑
n=1
〈111A,111An〉H0 + t〈111A,111A〉H0

= t〈111BN ,111BN 〉H0−2t〈111A,111BN 〉H0 + t〈111A,111A〉H0 .
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Since 111BN ↗ 111A, by monotone convergence theorem, we have

lim
N→∞

E

( N

∑
n=1

Wt(An)−Wt(A)

)2
= 0.

Examples 4.4. (i) An important example of a spatially homogeneous noise on R+×Rd is the

space-time white noise where Λ(dx) = δ0(dx) with the corresponding Hilbert space H =

L2(R+×Rd,B(R+×Rd),m).

(ii) Another important example is where Λ(dx) = λ (x)dx, λ (x) = |x|−β for β ∈ [0,d) called

Riesz kernel.

(iii) For a given spatially homogeneous noise, we can construct other spatially homogeneous

noises as follows: For ϕ ∈C∞
c (R

d), let

W ϕ(h) :=W (h∗x ϕ),

where ∗x corresponds to convolution in space variable.

Definition 4.5. A random field X = {X(s,y)} on a complete probability space (Ω,F,P) is elemen-

tary if

X(s,y) = F111(a,b](s)111A(y), (4.3)

where 0 ≤ a < b, A ∈Bb(Rd) and F is a bounded, Fa-measurable random variable. Let E (R+×

Rd×Ω) denote the set of all finite linear combinations of elementary random fields.

Let P be the smallest σ -algebra on R+×Rd×Ω such that all X ∈ E is measurable. A function

X : R+×Rd×Ω→ R is called predictable if it is measurable with respect to P . For a predictable
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process X , define the norm

‖X‖2
L2(W ) := E

[∫
∞

0

∫
Rd
|(X(s, ·)∗̄X(s, ·))(y)|Λ(dy)ds

]

and the space

L2(W ) :=
{

X : R+×Rd×Ω→ R; X is predictable and ‖X‖W < ∞

}
,

where we identify X ,X ′ ∈ L2(W ) such that ‖X−X ′‖W = 0.

Proposition 4.6. (i) L2(W ) is a Banach space .

(ii) E ∩L2(W ) is dense in L2(W ).

Proof. See Walsh [56, Proposition 2.6] and Conus [18, Theorem 2.6].

Definition 4.7. For an elementary random field X of the form (4.3), define

∫
[0,t]×Rd

X(s,y)W (ds,dy) = F(Wb∧t(A)−Wa∧t(A)). (4.4)

Proposition 4.8. Let X ∈ E ∩L2(W ). Then for t ≥ 0

Mt :=
∫
[0,t]×Rd

X(s,y)W (ds,dy)

is a continuous martingale with quadratic variation

〈M〉t =
∫ t

0

∫
Rd
(X(s, ·)∗̄X(s, ·))(y)Λ(dy)ds.

In particular, Itô isometry holds:

E

[(∫
R+×Rd

X(s,y)W (ds,dy)
)2
]
= E

[∫
∞

0

∫
Rd
(X(s, ·)∗̄X(s, ·))(y)Λ(dy)ds

]
≤ ‖X‖2

W .

41



Proof. We will only consider the case where X is elementary. The case for X ∈ E ∩L2(W ) follows

by linearity. Let X(t,x) be given as in (4.3). Then Mt = F(Wb∧t(A)−Wa∧t(A)) being continuous

martingale and the formula

〈M〉t =
∫ t

0

∫
Rd

F2111[a,b)(s)(111A∗̄111A)(y)Λ(dy)ds

=
∫ t

0

∫
Rd
(X(s, ·)∗̄X(s, ·))(y)Λ(dy)ds

follows from Lemma 4.2 together the fact that F is Fa-measurable.

Let M 2
c be the family of uniformly integrable continuous martingales M such that M0 = 0 and

E
[
M2

∞

]
< ∞. After identifying two martingales if they are indistinguishable, M 2

c is a Hilbert space

with the inner product

(M,N)M 2
c

:= E [M∞N∞] = E [〈M,N〉∞] .

Define the map

IW : E ∩L2(W )→M 2
c ,

X 7→
∫
[0,·]×Rd

X(s,y)W (ds,dy)
(4.5)

which is linear by construction. Moreover, from previous proposition we have that for X ∈ E ∩

L2(W ),

‖IW (X)‖M 2
c
≤ ‖X‖L2(W ),

which implies IW is Lipschitz.

Theorem 4.9. The map JW uniquely extends to a linear map from L2(W ) to M 2
c which we still
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denote by JW . Moreover, Itô’s isometry holds: For all t ∈ [0,∞] and X ∈ L2(W ), we have

E

[(∫
[0,t]×Rd

X(s,y)W (ds,dy)
)2
]
= E

[∫ t

0

∫
Rd
(X(s, ·)∗̄X(s, ·))(y)Λ(dy)ds

]
≤ ‖111[0,t]X‖2

W . (4.6)

We will call JW (X) =
∫
[0,·]×Rd X(s,y)W (ds,dy) the stochastic integral of X with respect to W .

Proof. By Proposition 4.6 (ii), we know E ∩L2(W ) is dense in L2(W ). For given X ∈ L2(W ), let

(Xn)n∈N ⊂ E ∩L2(W ) be a sequence converging to X in L2(W ). Then (JW (Xn))n∈N is a Cauchy

sequence in M 2
c by Itô-Walsh isometry in Proposition 4.8 and therefore has a limit, denoted

JW (X) =
∫
[0,·]×Rd X(s,y)W (ds,dy). This definition is independent of the approximating sequence.

Indeed, using Itô isometry and Lipschitz property of JW , this can easily be verified. Linearity, Itô’s

isometry, and Lipschitz continuity follows similarly.

The following result follows applying the usual Burkholder-Davis-Gundy inequality for the

continuous martingales to the martingale Mt =
∫
[0,t]×Rd X(s,y)W (ds,dy) with quadratic variation

〈M〉t =
∫ t

0
∫

Rd(X(s, ·)∗̄X(s, ·))(y)Λ(dy)ds.

Theorem 4.10. For all p > 0 there extists a constant Cp > 0 such that for all X ∈ L2(W ) and for

all t ∈ [0,∞]:

1
Cp

E

[(∫ t

0

∫
R2d

X(s,x)X(s,x− y)dxΛ(dy)ds
)p/2

]
≤ E

[
sup

s∈[0,t]

∣∣∣∣∫
[0,s]×Rd

X(r,x)W (dr,dx)
∣∣∣∣p
]

≤CpE

[(∫ t

0

∫
R2d

X(s,x)X(s,x− y)dxΛ(dy)ds
)p/2

]

4.2 Walsh integral and Malliavin calculus

The results in this section are extensions of Theorem 2.47 and Theorem 2.48, for spatially homo-

geneous noise first obtained in [16].

Let W be the spatially homogeneous noise with spectral measure Λ and D, δ be the Malliavin

derivative and divergence operators introduced in first chapter corresponding to W . From this
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construction, we see that H= L2(R+,B(R+),m;H0). We will use the identification

L2(Ω,F,P;L2(R+,B(R+),m;H0))
∼
= L2(R+×Ω,B(R+)⊗F,m⊗P;H0).

Thus the Malliavin derivative can be viewed as a stochastic process {DtX : t ∈ R+} taking values

in H0. For an elementary process V of the form (4.3), recall that the Walsh integral is given by

∫
R+×Rd

V (s,y)W (ds,dy) = F(Wb(A)−Wa(A)) = FW (111[a,b)×A).

V can be seen as a process taking values in H0 as follows:

V (t) = F111A
[a,b)(t)

where

111A
[a,b) : R+→ H0, 111A

[a,b)(t) 7→ 111[a,b)(t)111A.

Theorem 4.11. Let V ∈ L2(W ), then V ∈ Dom(δ ) as an H0-valued process, moreover

δ (V ) =
∫

R+×Rd
V (s,y)W (ds,dy)

for any V ∈ L2(W ).

Proof. Let V be an elementary random field of the form (2.8) where F ∈S . Using integration by

parts (2.5), we see

E [〈V,DG〉H] = E
[
F〈111A

[a,b),DG〉H
]
= E

[
FGW (111A

[a,b))−G〈111A
[a,b),DF〉H

]
. (4.7)

Note that since F ∈S is Fa-measurable, F = f (W (h1), · · · ,W (hn)) for some smooth f and hi ∈

L2(R+,B(R+),m;H0) such that supp hi ⊂ [0,a]. This implies, in particular, 〈111A
[a,b),hi〉= 0 for all
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i = 1, · · ·m and 〈111A
[a,b),DF〉H = 0. So, the above identity becomes

E [〈V,DG〉H] = E
[
FGW (111A

[s,t)

]

which can be rewritten using (4.7) as

E [〈V,DG〉H] = E
[

G
∫

R+×Rd
V (s,y)W (ds,dy)

]
.

Then the proof can be completed by an approximation argument.

The following is the extension of Clark-Ocone formula 2.48 for spatially homogeneous noise.

Theorem 4.12. For every F ∈ D1,2,

F = E [F ]+
∫

R+×Rd
E [Ds,yF |Fs]W (ds,dy), a.s.

Consequently, Poincare inequality holds:

Var [F ]≤ E
[
‖DF‖2

H

]

Proof. Let F ∈ D1,2 be given. Since one can extend the martingale representation theorem to

martingales taking values in a Hilbert space, it follows that there is an adapted random field U(s,y)

such that

F = E [F ]+
∫

R+×Rd
U(s,y)W (ds,dy). (4.8)

We want to show that U(s,y) = E
[
Ds,yF

∣∣Fs
]

as elements in L2
a(R+×Ω,B(Rd)⊗F,m⊗P;H0).

Let V ∈ L2
a(R+×Ω,B(Rd)⊗F,m⊗P;H0). On one hand, using the isometry property of Walsh
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integral (4.6), we see

E [δ (V )F ] = E [〈U,V 〉H] .

On the other hand, using integration by parts (2.7), we get

E [δ (V )F ] = E [〈V,DF〉H] = E
[∫

R+

∫
Rd
(V (s, ·)∗̄Ds,·F)(y)Λ(dy)ds

]
=
∫

R+

∫
Rd

E
[(

V (s, ·)∗̄E
[
Ds,·F

∣∣Fs
])]

(y)Λ(dy)ds

where we used the fact that V is adapted to the filtration {Ft}t∈R+ . The above findings together

verifies the claim.

Remark 4.13. In dimension 1 and the case where Λ = δ0, the operators D and δ satisfy the

following commutation relation

Ds,y(δ (V )) =V (s,y)+δ (Ds,yV ), (4.9)

for almost all (s,y) ∈ R+×R, provided V ∈ D1,2(H) is such that for almost all (s,y) ∈ R+×R,

Ds,yV belongs to the domain of the divergence in L2 and E
[∫

R+×R |δ (Ds,yV )|2dsdy
]
< ∞ (see [42,

Proposition 1.3.2]).
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Chapter 5

Stochastic heat equation

Stochastic partial differential equations (SPDEs) are mathematical objects that model physical

phenomena under influence of random noise and stochastic heat equation (SHE) is one important

example. Among different approaches to solving such equations we concentrate on the random

field approach, in which the multi-parameter stochastic integral that we have introduced in the pre-

vious chapter can be viewed as a continuation of Itô’s stochastic calculus is used. This approach is

pioneered in Walsh’s lecture notes [56]. In particular, we focus on the stochastic heat equation gov-

erned by a spatially homogeneous noise. In the first half of this chapter, we establish the existence

and regularity of the solution using the references Chen [10], Dalang [20], Dalang, Khoshnevisan,

Mueller, Nualart, and Xiao [21], Hairer [22], Khoshnevisan [28], Perkowski [50], Walsh [56]. We

then establish Malliavin differentiability of the solution in the second part for which we refer to

the papers Chen and Huang [12], Chen and Kim [13], Chen, Hu, and Nualart [14], Kuzgun and

Nualart [32].

5.1 Existence and regularity

Let W be a spatially homogeneous noise in R+×Rd with spectral measure Λ. Consider


∂u
∂ t =

1
2∆u+g(u)Ẇ , (t,x) ∈ R+×Rd,

u(0,x) = u0,

(5.1)
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where d ∈ N, and ∆ = ∑
d
i=1

∂ 2

∂x2
i

is the Laplacian operator. The initial condition u0 is in general

assumed to be a signed Borel measure on Rd such that for all c > 0,

∫
Rd

e−c|x|2|u0|(dx)< ∞ (5.2)

and g is a nonrandom Lipschitz function with Lipschitz constant Lipg.

Definition 5.1. We say that a nonnegative, nonnegative definite, tempered, Borel measure Λ on Rd

satisfy Dalang’s condition with r ∈ (0,1] if

∫
Rd

µ(dξ )

(1+ |ξ |2)r < ∞ (5.3)

where Λ is the Fourier transform of a tempered Borel measure µ . In other words: for h,g ∈ S(Rd),

〈h,g〉H0 :=
∫

Rd
(h∗̄g)(y)Λ(dy) =

∫
Rd

h(ξ )g(ξ )µ(dξ ).

Examples 5.2. (i) Recall space-time white noise in Examples 4.4. Λ(dx) = δ0(dx) satisfies

Dalang’s condition for all r ∈ (0,1] if d = 1. Otherwise, it doesn’t satisfy the Dalang’s

condition. This can be seen by noting that µ(dξ ) = dξ .

(ii) Recall the noise W with the spectral measure λ (x) = |x|−β Examples 4.4. Then, W satisfies

the Dalang’s condition with any r < β/2 ∈ (0,1) if β < min(2,d). Note that in this case

µ(dξ ) = |ξ |d−β dξ .

Remark 5.3. Λ is the Fourier transform of a tempered measure µ on Rd follows from Bochner-

Schwartz theorem. See [53].

Now, we define the notion of the mild and weak solutions to the SHE (5.1) using the stochastic

integral we introduced in previous section. Under some conditions it turns out that these two

definitions are equivalent, see for example [48, Proposition 3.2], [22, Proposition 5.7]. For the
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sake of completeness, we will give both definitions but will only use the mild solution in the rest

of this thesis.

Definition 5.4. A predictable random field u = {u(t,x)}(t,x)∈R+×Rd is called weak solution to the

stochastic heat equation in (5.1) if for all ϕ ∈Cc(Rd) the following integrals are well-defined

∫
Rd

u(t,x)ϕ(x)dx =
∫

Rd
ϕ(x)u0(dx)+

∫ t

0

∫
Rd

u(s,x)∆ϕ(x)dxds+
∫
[0,t]×Rd

g(u(s,x))ϕ(x)W (ds,dx).

(5.4)

Notation 5.5. For (t,x) ∈ R+×Rd , set

pppt(x) :=
1

(2πt)d/2 e−
|x|2
2t (5.5)

which we call heat kernel.

Definition 5.6. A predictable random field u = {u(t,x)}(t,x)∈R+×Rd is called mild solution to the

stochastic heat equation in (5.1) if all of the following integrals are well-defined and for all (t,x) ∈

R+×Rd ,

u(t,x) =
∫

Rd
pppt(x− y)u0(dy)+

∫
[0,t]×Rd

pppt−s(x− y)g(u(s,x))W (ds,dx). (5.6)

Let τz denote the translation operator for z ∈ Rd and let hz ∈ H be such that hz := τz(h).

Lemma 5.7. Let W be a spatially homogeneous noise on R+×Rd with spectral measure Λ. Let

z ∈ Rd . Then for any h ∈ H, W (h) and Wz(h) :=W (hz) has the same law.

Proof. It enough to show that for all z ∈ Rd , the covariances agree, that is 〈h,g〉H = 〈hz,gz〉H. In-

deed if h,g∈S(R+×Rd), this claim follows from the fact that (h(t, ·)∗̄g(t, ·))(y)= (hz(t, ·)∗̄gz(t, ·))(y)

for all y ∈ Rd .
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Lemma 5.8. Let X(s,y) be a random field such that for all y,z ∈ Rd

gs(z) := E [X(s,y)X(s,y+ z)]

is independent of y and pt−·(x−·)u(·, ·) ∈ L2(W ), then so

E
[(∫

[0,t]×Rd
pt−s(x− y)X(s,y)W (ds,dy)

)(∫
[0,t]×Rd

pt−s(x+ z− y)X(s,y)W (ds,dy)
)]

is independent of x.

Proof. Following the ideas in [16] and Lemma 5.7, we see that

∫
[0,t]×Rd

pt−s(x+ z− y)X(s,y)W (ds,dy) =
∫
[0,t]×Rd

pt−s(x− y)X(s,y+ z)Wz(ds,dy)

has the same distribution as

∫
[0,t]×Rd

pt−s(x− y)X(s,y+ z)W (ds,dy).

Then result follows by the assumption, together with Itô-Walsh isometry.

Lemma 5.9. Let Λ be a measure satisfying Dalang’s condition (5.3) with some r ∈ (0,1]. Then,

for all T > 0 there exists 0 <CT,r < ∞ such that

∫ T

0

∫
Rd

(pppt ∗ pppt)(z)Λ(dz)dt ≤CT,r (5.7)

Proof. Note that the spatial Fourier transform of the heat kernel is

p̂ppt(ξ ) = e−t|ξ |2.
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Then, using the properties of Fourier transform, we have

∫
Rd

(pppt ∗ pppt)(z)Λ(dz) =
∫

Rd
e−iξ ·xe−t|ξ |2

µ(dξ )

and

∫ T

0

∫
Rd

(pppt ∗ pppt)(z)Λ(dz)dt =
∫

Rd

∫ T

0
e−iξ ·xe−t|ξ |2

µ(dξ )dt =
∫

Rd

1− e−T |ξ |2

|ξ |2
µ(dξ )

Now, multiplying and dividing by (1+ |ξ |2)r using Dalang’s condition (5.3) on µ , we see

∫ T

0

∫
Rd

(pppt ∗ pppt)(x− z)Λ(dz)≤CT,r

(∫
|ξ |≤1

µ(dξ )+
∫
|ξ |>1

µ(dξ )

(1+ |ξ |2)r

)
≤CT,r < ∞

which completes the proof.

Theorem 5.10. Let W be a spatially homogeneous noise on R+×Rd with a spectral measure Λ

which satisfies Dalang’s condition with r ∈ (0,1]. Let u0 be a bounded function on (Rd,B(Rd)).

Assume g is a Lipschitz function. Then there exists a unique predictable process u satisfying

sup
(t,x)∈[0,T ]×Rd

‖u(t,x)‖Lp(Ω,F,P) ≤CT,p.

which is a mild solution to (5.1).

Proof. We will only consider the case u0 ≡ 0. We will follow the Picard iteration: Let u0(t,x) =

0 and assuming that un has been defined as a L2-bounded random field such that un(t,x) is Ft

measurable and L2(Ω,F,P)-continuous, set

un+1(t,x) =
∫
[0,t]×Rd

pppt−s(x− y)g(un(s,y))W (ds,dy). (5.8)

Then, un+1 as defined in (5.8) is well-defined, L2-bounded, L2(Ω,F,P) continuous, Ft-measurable.
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See [20, Theorem 13] or [10, Proposition 3.3.4].

Now, we claim that (un(t,x))n converges in LP(Ω,F,P), uniformly in (t,x) ∈ [0,T ]×Rd . To

prove this, let

fn(t) = sup
x∈Rd

E [|un+1(t,x)−un(t,x)|p] .

By the isometry property of the Walsh integral (4.6) and using g being Lipschitz together with

Lemma 5.8, we obtain

fn(t)≤Cg

∫ t

0
fn(s)G(t− s)ds,

where

G(s) : =
∫

R2d
ppps(x− y+ y′)ppps(x− y)dyΛ(dy′)

=
∫

Rd
ppp2s(y

′)Λ(dy′),

where we used semigroup property. Since G is a nonnegative, integrable function on [0,T ], we can

apply Gronwall’s Lemma A.2, we obtain

sup
(t,x)∈[0,T ]×Rd

E [|um(t,x)−un(t,x)|p]≤
m

∑
k=n+1

a1/p
k → 0

as m,n→ ∞. Uniqueness also follows similarly.

The following version covers the delta initial condition, see [11] for a proof.

Theorem 5.11. Let W be a spatially homogeneous noise on R+×Rd with a spectral measure Λ

which satisfies Dalang’s condition with r ∈ (0,1]. Let u0 = δ0 be the Dirac mass at 0. Assume g is

a Lipschitz function. Then there exists a unique predictable process u which satisfies

‖u(t,x)‖Lp(Ω,F,P) ≤CT,p pppt(x)
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and a mild solution to (5.1).

See [10] and [11] for the following result.

Theorem 5.12. Let W be a spatially homogeneous noise on R+×Rd with a spectral measure Λ

which satisfies Dalang’s condition with r ∈ (0,1). Let u be the mild solution to (5.1). Then for all

p≥ 2, γ1 ∈ (0, 1−r
2 ),γ2 ∈ (0,1− r), there exists a constant C such that for all s, t ∈ [0,T ]

‖u(t,x)−u(s,y)‖Lp(Ω,F,P) ≤C
(
|t− s|γ1 + |x− y|γ2

)
+ |I0(t,x)− I0(s,y)|

where we used the notation

I0(t,x) :=
∫

Rd
pt(x−ξ )u0(dξ ).

Corollary 5.13. Let W be a white noise on R+×R and u be the mild solution to (5.1) with initial

condition u0≡ 1 or u0≡ δ0. Then for all p≥ 2, there exists a constant C such that for all s, t ∈ [0,T ]

‖u(t,x)−u(s,y)‖Lp(Ω,F,P) ≤C
(
|t− s|1/4 + |x− y|1/2

)
.

See [12] and [14] for the following result.

Theorem 5.14. Let W be a spatially homogeneous noise on R+×Rd with a spectral measure Λ

which satisfies Dalang’s condition with r ∈ (0,1], and u be the mild solution to (5.1) with nonneg-

ative initial condition u0 > 0 satisfying (5.2). Further assume g is a Lipschitz function such that

g(0) = 0. Then for all p > 0, K ⊂ Rd compact, and t > 0:

E

[(
inf
x∈K

u(t,x)
)−p

]
< ∞.

Furthermore,
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(a) If W is space-time white noise in dimension d = 1, g(x) = x and u0(x) = 1, then

E

[(
inf

(t,x)∈K
u(t,x)

)−p
]
< ∞

for any K ⊂ R+×R compact.

(b) If W is space-time white noise in dimension d = 1, g(x) = x and u0(x) = δ0(x), then

E

[(
inf
t∈K

u(t,0)
)−p

]
< ∞

for any K ⊂ R+ compact.

5.2 Malliavin differentiblity

5.2.1 Parabolic Anderson model

In this subsection, we will consider the case where g(u) = u. Namely, the equation


∂u
∂ t =

1
2∆u+uẆ , x ∈ Rd, t ∈ R>0,

u(0,x) = u0,

(5.9)

with initial condition u0 is assumed to be a signed Borel measure on Rd satisfying (5.2).

Proposition 5.15. For any (t,x) ∈ (0,∞)×Rd , u(t,x) ∈ D∞.

Proof. From Part (2) of [12, Proposion 3.2] it follows that u(t,x) ∈ D1,p for all (t,x) ∈ (0,∞)×Rd

and for all p≥ 1. Because we are dealing with the parabolic Anderson model, the proof of Part (3)

of [12, Proposion 3.2] implies that u(t,x) ∈ D∞ for all (t,x) ∈ (0,∞)×Rd .

When we are in this specific case, there are more tools to work with to obtain some properties

of the solution. One of these is Feynman-Kac formulas. The purpose of this section is to obtain
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such formulas for the moments of the solution and its derivatives. These formulas will then be used

to get estimates for the p-th norm of the first and higher order derivatives which are important in

the application of Malliavin-Stein method.

Keeping this motivation in mind, we will now introduce an approximation scheme for the

homogeneous noise that we will then use to approximate the solution to the parabolic Anderson

model (5.9).

For each ε > 0 and any ϕ ∈ S(R+×Rd), we define (recall from Examples 4.4)

W ε(ϕ) =W (ϕ(t, ·)∗ pppε(·)),

where ∗ denotes the convolution in the space variable and pppε(x) is the d-dimensional heat kernel

defined in (5.5). Then, the Gaussian family W ε =
{

W ε(ϕ);ϕ ∈ S
(
R+×Rd)} has the covariance

structure

E [W ε(ϕ)W ε(ψ)]

=
∫

∞

0

∫
R2d

(ϕ(s, ·)∗ pppε(·))(y)(ψ(s, ·)∗ pppε(·))(y− y′)Λ(dy′)dyds

=
∫

∞

0

∫
Rd
F(ϕ)(s,ξ )F(ψ)(s,ξ )e−ε|ξ |2

µ(dξ )ds,

that is, the noise W ε is white in time and it has a spatial covariance given by

λε(x) =
1

(2π)d

∫
Rd

eix·ξ−ε|ξ |2
µ(dξ ), (5.10)

whose Fourier transform is µε(dξ ) = e−ε|ξ |2 µ(dξ ). Notice that µε is a finite measure and λε is a

bounded smooth function. In this way, we can write

E [W ε(ϕ)W ε(ψ)] =
∫

∞

0

∫
R2d

ϕ(s,y)ψ(s,y′)λε(y− y′)dydy′ds

=
∫

∞

0

∫
Rd
F(ϕ)(s,ξ )F(ψ)(s,ξ )µε(dξ )ds.
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As before, we denote by Hε the completion of S(R+×Rd) under the inner product

〈ϕ,ψ〉Hε = E [W ε(ϕ)W ε(ψ)] .

Let φ t : [0, t]→Rd be a continuous function for each t ∈R+. Then, the map (s,y) 7→ 111[0,t](s)pppε (φ
t(s)− y)

belongs to the space H since

‖111[0,t](•)pppε

(
φ

t(•)−?
)
‖2
H

=
∫ t

0

∫
R2d

pppε

(
φ

t(s)− y
)

pppε

(
φ

t(s)− y′+ y
)

Λ(dy′)dyds

=
∫ t

0

∫
Rd

e−ε|ξ |2
µ(dξ )ds = t

∫
Rd

e−ε|ξ |2
µ(dξ )

= t(2π)d
λε(0)< ∞ (5.11)

and we can define the stochastic integral

W
(
111[0,t](•)pppε

(
φ

t(•)−?
))

=
∫
[0,t]×Rd

pppε(φ
t(s)− y)W (ds,dy).

Throughout, we will use the following notation:

∫ t

0
W ε(ds,φ t(s)) :=

∫
[0,t]×Rd

pppε(φ
t(s)− y)W (ds,dy).

From (5.11) it follows that
∫ t

0 W ε(ds,φ t(s)) is a centered Gaussian random variable with variance

t(2π)dλε(0).

Now, we consider the heat equation driven by W ε ,

∂u
∂ t

=
1
2

∆u+uẆ ε , (t,x) ∈ R+×Rd, (5.12)

with the same initial condition u(0,x) = u0 . An adapted and jointly measurable random field

uε = {uε(t,x);(t,x)∈R+×Rd} such that E [uε(t,x)]2 <∞ for all (t,x)∈R+×Rd is a mild solution
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to equation (5.12), if for any (t,x) ∈ R+× Rd , the process {pppt−s(x− y)uε(s,y)111[0,t](s);(s,y) ∈

R+×Rd} is integrable with respect to W ε , and the following holds:

uε(t,x) = (pppt ∗u0)(x)+
∫
[0,t]×Rd

pppt−s(x− y)uε(s,y)W ε(ds,dy). (5.13)

It follows from the general theory that this mild solution exists and it is unique. Furthermore,

because the spectral measure is finite, there is a Feynman-Kac representation of the solution, given

in the following lemma.

Lemma 5.16. For each ε > 0, the following random field uε(t,x) is the solution to the heat equation

given in (5.12):

uε(t,x) = EB
[

u0(Bx
t )exp

(∫ t

0
W ε
(
ds,Bx

t−s
)
− 1

2
t(2π)d

λε(0)
)]

, (5.14)

where Bx is a d-dimensional standard Brownian motion independent of W that starts at x and EB

denotes the mathematical expectation with respect to Bx.

Remark 1. Notice that, because u0 is a signed measure, the composition u0(Bx
t ) is not immediately

well defined. The right-hand side of equation (5.14), will be interpreted as follows:

uε(t,x) =
∫

Rd
u0(dθ)pppt(x−θ)

× EB̂
[

exp
(∫

[0,t]×Rd
pppε(B̂

θ ,x
0,t (s)− y)W (ds,dy)− 1

2
t(2π)d

Λε(0)
)]

,

where {B̂θ ,x
0,t (s),s ∈ [0, t]} denotes a d-dimensional Brownian bridge in the interval [0, t] from θ to

x. The above integral is well defined almost surely because on one hand
∫

Rd |u0|(dθ)pt(x−θ)< ∞

and moreover, we have

EW EB̂
[

exp
(∫

[0,t]×Rd
pppε(B̂

θ ,x
0,t (s)− y)W (ds,dy)

)]
= e

1
2 t(2π)dλε (0).

Proof of Lemma 5.16. Let G ∈ L2(Ω,F,P) be such that G = eW (h)− 1
2‖h‖

2
H for some h ∈ H. From
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(5.14), we obtain

E [Guε(t,x)]

= EW
[

GEB
[

u0(Bx
t )exp

(∫ t

0
W ε
(
ds,Bx

t−s
)
− 1

2
t(2π)d

λε(0)
)]]

= EB
[

u0(Bx
t )E

W
[

exp
(

W (h+ pppε(B
x
t−•−?))− 1

2
‖h‖2

H−
1
2

t(2π)d
λε(0)

)]]
= EB

[
u0(Bx

t )exp
(

1
2
‖h+ pppε(B

x
t−•−?)‖2

H−
1
2
‖h‖2

H−
1
2

t(2π)d
λε(0)

)]
= EB

[
u0(Bx

t )exp
(〈

pppε(B
x
t−•−?),h

〉
H

)]
= EB

[
u0(Bx

t )exp
(∫ t

0

〈
pppε(B

x
t−s−?),h(s,?)

〉
H0

ds
)]

.

Letting St,x(h) = EW [Guε(t,x)], by the classical Feynmann-Kac’s formula, the above calculation

shows that St,x(h) satisfies the classical heat equation with potential 〈pppε(x−?),h(s,?)〉H0
, and

initial condition u0, i.e.

∂St,x(h)
∂ t

=
1
2

∆St,x(h)+St,x(h)〈pppε(x−?),h(t,?)〉H0
.

As a consequence, we have

St,x(h) = (pppt ∗u0)(x)+
∫ t

0

∫
Rd

pppt−s(x− y)Ss,y(h)〈pppε(y−?),h(s,?)〉H0
dsdy

= (pppt ∗u0)(x)+
∫ t

0

∫
Rd

pppt−s(x− y)E
[
uε

s,y 〈pppε(y−?),Ds,?G〉H0

]
dsdy,

where we used DG = hG. In conclusion, we have proved that

E [Guε(t,x)] = (pppt ∗u0)(x)

+E
[〈

111[0,t](•)
∫

Rd
pppt−•(x− y)pppε(y−?)uε(•,y)dy,DG

〉
H

]
.

By the fact that the Dalang-Walsh stochastic integral concides with the divergence operator for
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adapted integrands see Theorem 4.11, we deduce that

uε(t,x) = (pppt ∗u0)(x)

+
∫
[0,t]×Rd

(∫
Rd

pppt−s(x− y)pppε(y− z)uε(s,y)dy
)

W (ds,dz),

which implies equation (3.7).

Next, we will establish the fact that uε(t,x) converges to the solution u(t,x) of the stochastic

heat equation (5.9) in Lp(Ω,F,P) for all p ≥ 1, and, as a consequence, we derive a Feynman-

Kac formula for the moments of the solution u. This type of Feynman-Kac formula has been

verifed in the literature under different conditions (see, for instance, [25, Theorem 3.6] for the case

where Λ(dx) = λ (x)dx for a function λ and there is also a correlation in time, or [23] when the

noise is white in space and a fractional Brownian motion with Hurst parameter H > 1/2 in time)

assuming that u0 is a bounded function. We will give here a detailed proof of this convergence

based on the approximation uε(t,x). This result and ideas in its proof will be useful in the proof of

Theorem 5.18.

Proposition 5.17. Let uε be the solution to equation (3.7) with an initial condition u0 satisfying

(5.2). Then, for any k ≥ 1, we have

sup
ε>0

E
[
|uε(t,x)|k

]
< ∞ (5.15)

and the following convergence holds in Lp(Ω,F,P) for any p≥ 1,

lim
ε→0

uε(t,x) = u(t,x), (5.16)

where u is the solution to the stochastic heat equation (5.9) with initial condition u0. Furthermore,
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for any integer k ≥ 2, the following Feynmann-Kac formula holds,

E
[
uk(t,x)

]
= E

[
k

∏
j=1

u0(B
j,x
t )exp

(
∑

1≤ j<l≤k

∫ t

0
Λ(B j

s−Bl
s)ds

)]
, (5.17)

where B = {B j} j=1,...,k is an independent family of d-dimensional standard Brownian motions and

the integrals
∫ t

0
Λ(B j

s−Bl
s)ds are defined according to Proposition A.4 (ii).

Proof. Set Ψk
t,x =: ∏

k
j=1 u0(B

j,x
t ). Using Lemma A.11, we have

E
[
(uε(t,x))k

]
=EW EB

[
Ψ

k
t,x exp

(
k

∑
j=1

∫ t

0
W ε(ds,B j,x

t−s)−
1
2

t(2π)d
λε(0)

)]
, (5.18)

where B = {B j} j=1,...,k is a family of d-dimensional independent standard Brownian motions in-

dependent of W and B j,x = B j + x. Here again the expectation in (5.18) has to be understood as in

Remark 1. Changing the order of the expectations, yields

E
[
(uε(t,x))k

]
= EB

Ψ
k
t,xEW

exp

 k

∑
j=1

t∫
0

∫
Rd

pppε(B
j,x
t−s− y)W (ds,dy)− t(2π)d

2
λε(0)



= E

Ψ
k
t,x exp

 k

∑
j,l=1
j<l

∫ t

0

∫
R2d

pppε(B
j,x
t−s− y)pppε(B

l,x
t−s− y+ y′)Λ(dy′)dyds




= E

[
Ψ

k
t,x exp

(
∑

1≤ j<l≤k

∫ t

0
λ2ε(B j,x

s −Bl,x
s )ds

)]
. (5.19)

Integrating with respect to the law of the random vector (B1,x
t , . . . ,Bk,x

t ) whose density is θ 7→
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∏
k
j=1 pppt(x−θ j), the above expectation can be written as follows.

E
[
(uε(t,x))k

]
=
∫

Rkd

k

∏
j=1

u0(dθ j)pppt(x−θ j)

×E

[
exp

(
∑

1≤ j<l≤k

∫ t

0
λ2ε(B̂

j,x,θ j
0,t (s)− B̂l,x,θl

0,t (s))ds

)]
,

where
{

B̂ j,θ j,x
0,t , j = 1, . . .k

}
denotes a family of d-dimensional Brownian bridges in the interval

[0, t] from x to θ j. Now, using the expression (A.4) for Brownian bridges, we can write

E
[
(uε(t,x))k

]
=
∫

Rkd

k

∏
j=1

u0(dθ j)pppt(x−θ j)

×E

[
exp

(
∑

1≤ j<l≤k

∫ t

0
λ2ε

(
B̂ j

0,t(s)− B̂l
0,t(s)+

s(θ j−θl)

t

)
ds

)]
. (5.20)

Now we can proceed with the proof of the proposition. First, we only need to show (5.15)

when k is even. In this case, (5.15) follows from formula (5.20), condition (5.2) and (A.5). Indeed,

we have

E
[
(uε(t,x))k

]
≤ ct

(∫
Rd
|u0|(dθ)pppt(x−θ)

)k

< ∞,

where ct is a finite constant only depending on t. We claim that uε(t,x) converges in Lp(Ω,F,P)

as ε → 0, for all p≥ 2. Indeed,

E [uε1(t,x)uε2(t,x)] =
∫

R2d

2

∏
j=1

u0(dθ j)pppt(x−θ j)

×E
[

exp
(∫ t

0
λε1+ε2

(
B̂1

0,t(s)− B̂2
0,t(s)+

s(θ1−θ2)

t

)
ds
)]

converges, as ε1,ε2 tend to 0, to

∫
R2d

2

∏
j=1

u0(dθ j)pppt(x−θ j)E
[

exp
(∫ t

0
Λ

(
B̂1

0,t(s)− B̂2
0,t(s)+

s(θ1−θ2)

t

)
ds
)]

thanks to Proposition A.4. This implies that for any εk ↓ 0, the sequence uεk(t,x) is Cauchy and
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hence convergent in L2(Ω,F,P) as k→ ∞ to some limit v(t,x). The fact that the convergence is

in Lp(Ω,F,P) follows from (5.19) and Proposition A.4 (i). Taking the limit in (5.19) as ε tends to

zero, and using Proposition A.4 (iii), we obtain the Feynman-Kac formula (5.17) for the moments

of v(t,x).

It remains to show that v(t,x) coincides with the solution to equation (5.9). By the proof of the

Lemma A.11, we know that for any random variable of the form G = eW (h)− 1
2‖h‖

2
H with h ∈ H, uε

satisfies

E [Guε(t,x)] = (pppt ∗u0)(x)

+E

[〈∫
[0,t]×Rd

pppt−s(x− y)uε(s,y)pppε(x−?)W (ds,dy),Ds,?G
〉

H0

]
.

Now letting ε → 0, we see that

E [Gv(t,x)] = (pppt ∗u0)(x)+E [〈vpppt−•(x−?),DG〉H] ,

which implies that the process v is also a solution to the equation (5.9), and by uniqueness v =

u.

Theorem 5.18. Let u be the unique solution of (5.9) with initial condition u0 which is a signed

Borel measure satisfying (5.2) and N ≥ 1 an integer. Then for integer k ≥ 2, we have

E
[(

DN
rrrN ,zzzN

u(t,x)
)k
]
=

[
N−1

∏
m=1

ppprm+1−rm
(zm+1− zm)

]k

pppk
t−rN

(x− zN)

×
∫

Rkd

k

∏
j=1

u0(dθ
j)

k

∏
j=1

pppr1
(z1−θ

j)

×E

[
exp

(
∑

1≤ j<l≤k

∫ t

0
Λ(B̂ j,x,zzzN ,θ

j

0,t−rt−rt−rN ,t (s)− B̂l,x,zzzN ,θ
l

0,t−rt−rt−rN ,t (s))ds

)]
,

for almost all z1, . . . ,zN ∈ Rd and 0 < r1 < · · · < rN < t, where t− rt− rt− rN = (t − r1, . . . , t − rN) and

B̂ j,x,zzzN ,θ
j

0,t−rt−rt−rN ,t , j = 1, . . . ,k are independent d-dimensional pinned Brownian motions starting from x
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with each component pinned at times t− rm to the points zm for 1 ≤ m ≤ N, and pinned at θ j at

time t.

Moreover,

E

[
exp

(
∑

1≤ j<l≤k

∫ t

0
Λ(B̂ j,x,zzzN ,θ

j

0,t−rt−rt−rN ,t (s)− B̂l,x,zzzN ,θ
l

0,t−rt−rt−rN ,t (s))ds

)]
≤Ct,k,

where Ct,k is a constant depending only on t and k.

In the above theorem, taking into account that Λ might be a measure, the composition Λ(B̂ j,x,zzzN ,θ
j

0,t−rt−rt−rN ,t (s)−

B̂l,x,zzzN ,θ
l

0,t−rt−rt−rN ,t (s)) needs to be properly defined as a limit in L2(Ω), using an approximation argument,

see Proposition A.4, part (ii). When Λ(dx) = λ (x)dx, then this is just an ordinary composition of

the density λ with the random variable B̂ j,x,zzzN ,θ
j

0,t−rt−rt−rN ,t (s)− B̂l,x,zzzN ,θ
l

0,t−rt−rt−rN ,t (s).

As a consequence of Theorem 5.18, we deduce the following result.

Corollary 5.19. Under the assumptions and notation of Theorem 5.18, we have

∥∥DN
rrrN ,zzzN

u(t,x)
∥∥

Lp(Ω,F,P) ≤C1/p
t,p (pppr1

∗ |u0|)(z1)

(
N

∏
m=1

ppprm+1−rm
(zm+1− zm)

)
, (5.21)

where rN+1 = t, zN+1 = x.

Corollary 5.20. Under the assumptions of Theorem 5.18,

(i) if u0 ≡ 1, then

∥∥Ds,yu(t,x)
∥∥

Lp(Ω,F,P) ≤Ct,p pppt−s(x− y), and (5.22)∥∥Dr,zDs,yu(t,x)
∥∥

Lp(Ω,F,P) ≤Ct,p pppt−s(x− y)ppps−r(y− z),

for all 0 < r < s < t and y,z ∈ Rd .
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(ii) if u0 ≡ δ0, then

∥∥Ds,yu(t,x)
∥∥

Lp(Ω,F,P) ≤Ct,p pppt−s(x− y)ppps(y), and (5.23)∥∥Dr,zDs,yu(t,x)
∥∥

Lp(Ω,F,P) ≤Ct,p pppt−s(x− y)ppps−r(y− z)pppr(z),

for all 0 < r < s < t and y, z ∈ Rd .

5.2.2 Flat initial condition

We will now investigate the stochastic heat equation (5.1) with flat initial condition u0 ≡ 1. A

variation of following result can be found in [45, Proposition 5.1] or [12, Proposition 3.2].

Proposition 5.21. Let u be the mild solution to the stochastic heat equation (5.1) with initial

condition u0 = 1, with a noise satisfying the Dalang’s condition (5.3). Assume further g∈C1(R;R)

with bounded Lipschitz continuous derivative. Fix (t,x) ∈ R+×Rd , then u(t,x) ∈ ∩p≥2D1,p and

for almost all 0 < s < t, y ∈ Rd , the derivative Ds,yu(t,x) satisfies the following linear stochastic

differential equation:

Ds,yu(t,x) = pppt−s(x− y)g(u(s,y))

+
∫
[s,t]×Rd

pppt−τ(x−ξ )g′(u(τ,ξ ))Ds,yu(τ,ξ )W (dτ,dξ ). (5.24)

Moreover, for all 0 < s < t ≤ T and x,y ∈ Rd , we have

∥∥Ds,yu(t,x)
∥∥

Lp(Ω,F,P) ≤CT,p pppt−s(x− y), (5.25)

where CT,p is a constant that depends on T , p and g.

The following result is obtained in [31].

Proposition 5.22. Let u be the mild solution to the stochastic heat equation (5.1) with initial

condition u0 = 1, in dimension d = 1 and the noise is space-time white noise. Assume further
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g∈C2(R;R) with g′ bounded and |g′′(x)| ≤C(1+ |x|m), for some m > 0. Fix (t,x)∈ R+×R. Then

u(t,x) ∈ ∩p≥2D2,p and for almost all 0 < r < s < t, y,z ∈ R, the second derivative Dr,zDs,yu(t,x)

satisfies the following linear stochastic differential equation:

Dr,zDs,yu(t,x) = pt−s(x− y)g′(u(s,y))Dr,zu(s,y)

+
∫
[s,t]×R

pt−τ(x−ξ )g′′(u(τ,ξ ))Dr,zu(τ,ξ )Ds,yu(τ,ξ )W (dτ,dξ )

+
∫
[s,t]×R

pt−τ(x−ξ )g′(u(τ,ξ ))Dr,zDs,yu(τ,ξ )W (dτ,dξ ). (5.26)

Moreover, for all 0≤ r < s < t ≤ T and x,y,z ∈ R, we have

∥∥Dr,zDs,yu(t,x)
∥∥

Lp(Ω,F,P) ≤CT,pΦr,z,s,y(t,x), (5.27)

where CT,p is a constant that depends on T , p and g and

Φr,z,s,y(t,x) :=pt−s(x− y) (5.28)

×
(

ps−r(y− z)+
pt−r(z− y)+ pt−r(z− x)+111[|y−x|>|z−y|]

(s− r)1/4

)
.

Remark 5.23. Note that in higher dimensions this problem is still open for general g and spatially

homogeneous noise with a general kernel.

Proof of Proposition 5.22 . We will make use of the Picard iteration scheme which is similar to

the one used to prove the existence of the mild solution Theorem 5.10. For any (t,x) ∈ R+×R we

put u0(t,x) = 1, and for n ∈ N we inductively define

un+1(t,x) = 1+
∫
[0,t]×R

pt−τ(x−ξ )g(un(τ,ξ ))W (dτ,dξ ).
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Then, for any p≥ 2, there exists a constant cT,p such that for all (t,x) ∈ [0,T ]×R

sup
n∈N
‖un(t,x)‖p ≤ cT,p. (5.29)

This result is proved in [42, Theorem 2.4.3] for the case of the stochastic heat equation on [0,1]

with Dirichlet boundary conditions and the proof works similarly for the equation on R.

We apply the properties of the divergence operator, namely using (4.9), to get that for almost

all (s,y) ∈ [0, t]×R and x ∈ R,

Ds,yun+1(t,x) = pt−s(x− y)gn,s,y +
∫
[s,t]×R

pt−τ(x−ξ )g′n,τ,ξ Ds,yun(τ,ξ )W (dτ,dξ ), (5.30)

and for almost all s > t, Ds,yun+1(t,x) = 0, where we made use of the notation:

gn,s,y := g(un(s,y)) and g′n,τ,ξ := g′(un(τ,ξ )). (5.31)

It has also been proven in [27, Lemma A.1] that there is a constant cT,p, depending on T and p,

such that for almost all (s,y) ∈ [0, t]×R and for all (t,x) ∈ [0,T ]×R,

sup
n∈N
‖Ds,yun(t,x)‖Lp(Ω,F,P) ≤ cT,p pt−s(x− y). (5.32)

Once again using (4.9) and (5.30) together with the Leibniz rule for derivatives, we have, for almost

every r,z such that 0 < r < s < t and z ∈ R,

Dr,zDs,yun+1(t,x) = pt−s(x− y)g′n,s,yDr,zun(s,y)

+
∫
[s,t]×R

pt−τ(x−ξ )g′′n,τ,ξ Dr,zun(τ,ξ )Ds,yun(τ,ξ )W (dτ,dξ )

+
∫
[s,t]×R

pt−τ(x−ξ )g′n,τ,ξ Dr,zDs,yun(τ,ξ )W (dτ,dξ ), (5.33)

where g′′n,τ,ξ := g′′(un(τ,ξ )). Applying Burkholder-Davis-Gundy inequality in Theorem 4.10 in
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(5.33), the estimate (5.32), hypothesis on g, and the moment estimates (5.29), for any p ≥ 2 we

have for all (t,x) ∈ [0,T ]×R,

∥∥Dr,zDs,yun+1(t,x)
∥∥2

Lp(Ω,F,P) ≤CT,p p2
t−s(x− y)p2

s−r(y− z)

+CT,p

∫ t

s

∫
R

p2
t−τ(x−ξ )p2

τ−r(ξ − z)p2
τ−s(ξ − y)dξ dτ

+CT,p

∫ t

s

∫
R

p2
t−τ(x−ξ )‖Dr,zDs,yun(τ,ξ )‖2

Lp(Ω,F,P)dξ dτ, (5.34)

for some constant CT,p > 0 which depends on T , p and g. Let J be the measure on [s, t]×R defined

by

J(dτ,dξ ) := p2
τ−r(ξ − z)δs,y(dτ,dξ )+ p2

τ−r(ξ − z)p2
τ−s(ξ − y)dτdξ .

Then, we can put the first two summands in (5.34) together and rewrite this inequality as follows:

∥∥Dr,zDs,yun+1(t,x)
∥∥2

Lp(Ω,F,P) ≤CT,p

∫
[s,t]×R

p2
t−τ(x−ξ )J(dτ,dξ )

+CT,p

∫
[s,t]×R

p2
t−τ(x−ξ )

∥∥Dr,zDs,yun(τ,ξ )
∥∥2

Lp(Ω,F,P) dτdξ .

After one iteration, this leads to

∥∥Dr,zDs,yun+1(t,x)
∥∥2

Lp(Ω,F,P) ≤CT,p

∫ t

s

∫
R

p2
t−s1

(x− y1)J(ds1,dy1)

+C2
T,p

∫ t

s

∫
R

∫ s1

s

∫
R

p2
t−s1

(x− y1)p2
s1−s2

(y1− y2)J(ds2,dy2)dy1ds1

+C2
T,p

∫ t

s

∫ s1

s

∫
R2

p2
t−s1

(x− y1)p2
s1−s2

(y1− y2)
∥∥Dr,zDs,yun−1(s2,y2)

∥∥2
Lp(Ω,F,P) dy2dy1ds2ds1.
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If we perform n−1 iterations, taking into account that
∥∥Dr,zDs,yu1(s,y)

∥∥2
Lp(Ω,F,P) = 0, we obtain

∥∥Dr,zDs,yun+1(t,x)
∥∥2

Lp(Ω,F,P) ≤CT,p

∫ t

s

∫
R

p2
t−s1

(x− y1)J(ds1,dy1)

+
n−1

∑
k=1

Ck+1
T,p

∫ t

s

∫
R

∫ s1

s

∫
R
· · ·
∫ sk

s

∫
R

p2
t−s1

(x− y1)p2
s1−s2

(y1− y2) · · ·

× p2
sk−sk+1

(yk− yk+1)J(dsk+1,dyk+1)dykdsk · · ·dy1ds1.

For 0≤ r < s < t, x,y,z ∈ R, set

K2
r,z,s,y(t,x) :=

∫ t

s

∫
R

p2
t−s1

(x− y1)J(ds1,dy1). (5.35)

For the sake of simplicity, we use K2(t,x) to denote K2
r,z,s,y(t,x). The identity p2

t (x) =
1√
2πt

pt/2(x)

now implies

‖Dr,zDs,yun+1(t,x)‖2
Lp(Ω,F,P) ≤CT,pK2(t,x)

+
n−1

∑
k=1

Ck+1
T,p

(2π)
k+1

2

∫
s<sk+1<···<s2<s1<t

ds1 · · ·dsk

∫
Rk+1

dy1 · · ·dyk

× [(t− s1)(s1− s2) · · ·(sk− sk+1)]
− 1

2

× p t−s1
2
(x− y1)p s1−s2

2
(y1− y2) · · · p sk−sk+1

2
(yk− yk+1)J(dsk+1,dyk+1).

Integrating in the variables y1, . . . ,yk and using the semigroup property of the heat kernel yields
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‖Dr,zDs,yun+1(t,x)‖2
Lp(Ω,F,P) ≤CT,pK2(t,x)+

n−1

∑
k=1

Ck+1
T,p

(2π)
k+1

2

∫
s<sk+1<···<s2<s1<t

dsk · · ·ds1

× [(t− s1)(s1− s2) · · ·(sk− sk+1)]
− 1

2

∫
R

p t−sk+1
2

(x− yk+1)J(dsk+1,dyk+1)

=CT,pK2(t,x)+
n−1

∑
k=1

Ck+1
T,p

(2π)
k+1

2

∫
0<rk<···<r2<r1<1

drk · · ·dr1

× [(1− r1)(r1− r2) · · ·rk]
− 1

2

∫
R

∫ t

s
(t− τ)

k
2 p t−τ

2
(x−ξ )J(dτ,dξ )

=CT,pK2(t,x)+
n−1

∑
k=1

Γ(1/2)kCk+1

(2π)
k
2 Γ(k/2)

∫
R

∫ t

s
(t− τ)

k+1
2 p2

t−τ(x−ξ )J(τ,dξ )

≤CK2(t,x)+
n−1

∑
k=1

Γ(1/2)kCk+1
T,p T

k+1
2

(2π)
k
2 Γ(k/2)

∫
R

∫ t

s
p2

t−τ(x−ξ )J(dτ,dξ )

≤

(
CT,p +

∞

∑
k=1

Γ(1/2)kCk+1
T,p T

k+1
2

(2π)
k
2 Γ(k/2)

)
K2(t,x) =: C̃2

T,pK2(t,x).

Using Lemma A.6, we arrive at the upper-bound

sup
n∈N
‖Dr,zDs,yun(t,x)‖Lp(Ω,F,P) ≤ C̃T,pΦr,z,s,y(t,x).

As a consequence, applying Minkowski’s inequality and then using Lemma A.7 we can write

sup
n∈N

E
[∥∥D2un(t,x)

∥∥p
H⊗H

]
≤ sup

n∈N

(∫
[0,t]2

∫
R2
‖Dr,zDs,yun(t,x)‖2

pdydzdrds
) p

2

≤ C̃p
T,p

(
2
∫ t

0

∫ s

0

∫
R2

Φ
2
r,z,s,y(t,x)dzdydrds

) p
2

< ∞.

Since un(t,x) converges in Lp(Ω,F,P) to u(t,x) for all p ≥ 2, using Lemma 2.26 we deduce that

u(t,x) ∈ ∩p≥2D2,p. Following the arguments in the proof of [16, Theorem 6.4] we deduce

‖Dr,zDs,yu(t,x)‖Lp(Ω,F,P) ≤ C̃T,pΦr,z,s,y(t,x).
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Chapter 6

Study of spatial averages

In this chapter, we investigate the recent results on the study of spatial averages of the solution to

stochastic heat equation. For the sake of simplicity, we focus on the case where the equation is

governed by a space-time white noise in dimension 1 and the initial condition is either constant

or dirac mass at 0. This chapter is based on the papers Chen, Khoshnevisan, Nualart, and Pu

[16, 15], Huang, Nualart, and Viitasaari [27], Kuzgun and Nualart [31].

6.1 Flat initial condition in SHE

Let the random field u = {u(t,x) : (t,x) ∈ R+×R} be the mild solution to the stochastic heat

equation (5.1) in dimension 1 with initial condition u0 ≡ 1 and a space-time white noise W . Set

QR := [−R,R], and define for 0 < s < t and y ∈ R

φR,t(s,y) :=
1

σR,t

∫
QR

pt−s(x− y)dx. (6.1)

Fix R > 0 and consider the corresponding centered and normalized spatial averages defined by

FR,t :=
1

σR,t

(∫
QR

u(t,x)dx−2R
)
, where σ

2
R,t := Var

[∫ R

−R
u(t,x)dx

]
. (6.2)
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For any fixed t > 0, the random variable FR,t defined in (6.2) is given by

FR,t =
1

σR,t

(∫
QR

∫
[0,t]×R

pt−s(x− y)g(u(s,y))W (ds,dy)dx
)

=
∫
[0,t]×R

1
σR,t

(∫
QR

pt−s(x− y)g(u(s,y))dx
)

W (ds,dy) ,

where we recall that QR = [−R,R]. So, taking into account that the Itô-Walsh stochastic integral

coincides with the divergence operator for adapted integrands, we obtain the representation

FR,t = δ (vR,t),

where

vR,t(s,y) = 111[0,t](s)
1

σR,t

∫
QR

pt−s(x− y)g(u(s,y))dx. (6.3)

Lemma 6.1. Let FR,t and σR,t be as defined in (6.2) and set η(s) = E
[
(g(u(s,y)))2

]
which doesn’t

depend on y by stationarity of u. Then, for any s, t ≥ 0,

lim
R→∞

1
R

Cov
[∫ R

−R
u(t,x)dx−2R,

∫ R

−R
u(t,x)dx−2R

]
= 2

∫ s∧t

0
η(τ)dτ.

In particular,

lim
R→∞

σ2
R,t

R
= 2

∫ t

0
η(τ)dτ.

Proof. Using the mild formulation (5.6) of u followed by Itô-Walsh isometry (4.6) and semigroup

property of heat kernel, we have

E [u(t,x)u(s,y)] = 1+
∫ s∧t

0

∫
R

pt−τ(x−ξ )ps−τ(y−ξ )E
[
(g(u(τ,ξ )))2]dξ dτ

= 1+
∫ t∧s

0
η(τ)

∫
R

pt−τ(x−ξ )ps−τ(y−ξ )dξ dτ

= 1+
∫ t∧s

0
η(s)pt+s−2τ(x− y)dτ.
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Using the fact that

E
[∫ R

−R
u(t,x)dx

]
= 2R,

we obtain

Cov
[∫ R

−R
u(t,x)dx−2R,

∫ R

−R
u(t,x)dx−2R

]
=
∫ s∧t

0
η(τ)

∫ R

−R

∫ R

−R
pt+s−2τ(x− y)dxdydτ

= 2
∫ s∧t

0
η(τ)

∫ 2R

0
pt+s−2τ(y)(2R− y)dydτ.

Hence, we get

lim
R→∞

Cov
[∫ R

−R
u(t,x)dx−2R,

∫ R

−R
u(t,x)dx−2R

]
= lim

R→∞
2
∫ s∧t

0
η(τ)

∫ 2R

0
pt+s−2τ(y)(2−

y
R
)dydτ

= 2
∫ t∧s

0
η(τ)dτ

which completes the proof of our claim.

Theorem 6.2. For every t > 0, there exist Ct =C(t)> 0 such that for all R≥ 1,

dTV (FR,t ,N)≤Ct
1√
R
. (6.4)

Proof. By (3.4), and (6.3), we know

dTV (FR,t ,N)≤ 2
√

Var [〈DFR,t ,vR,t〉].

Now consider

Ds,yFR,t =
1

σR,t

∫ R

−R
Ds,yu(t,x)dx. (6.5)
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and

〈DFR,t ,vR,t〉H =
1

σ2
R,t

∫ t

0

∫
R

∫ R

−R

∫ R

−R
pt−s(x− y)g(u(s,y))Ds,yu(t,x′)dxdx′dyds.

Using (5.24) we get

〈DFR,t ,vR,t〉H =
1

σ2
R,t

∫ t

0

∫
R

(∫ R

−R
pt−s(x− y)dx

)2

g2(u(s,y))dyds (6.6)

+
1

σ2
R,t

∫ t

0

∫
R

∫ R

−R

∫ R

−R
pt−s(x− y)g(u(s,y))(∫

[s,t]×R
pt−τ(x′−ξ )g′

τ,ξ Ds,yu(τ,ξ )W (dτ,dξ )

)
dxdx′dyds.

Now, using Lemma A.12, we can estimate
√

Var [〈DFR,t ,vR,t〉H] as follows:

√
Var [〈DFR,t ,vR,t〉H]≤

∫ t

0
a(s)+b(s)ds (6.7)

where

a(s) :=
1

σ2
R,t

√√√√Var

[∫
R

(∫ R

−R
pt−s(x− y)dx

)2

g2(u(s,y))dy

]
(6.8)

b(s) :=
1

σ2
R,t

√
Var
[∫

R

∫ R

−R

∫ R

−R
pt−s(x− y)gs,y

(∫
[s,t]×R

pt−τ(x′−ξ )g′
τ,ξ

Ds,yu(τ,ξ )W (dτ,dξ )

)
dxdx′dy

]
.

(6.9)

Now we will estimate both of these terms in two steps.

Estimate for a(s): Note that

a(s) =
1

σ2
R,t

√∫
R2

(∫ R

−R
pt−s(x− y)dx

)2 ∫
R2

(∫ R

−R
pt−s(x′− y′)dx

)2

Cov [g2(u(s,y)),g2(u(s,y′))]dydy′.

(6.10)
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Let us start by estimating Cov
[
g2(u(s,y)),g2(u(s,y′))

]
. Using Theorem 4.12, we write

g2(u(s,y)) = E
[
g2(u(s,y))

]
+
∫
[0,s]×R

E
[
Dτ,ξ (g

2(u(s,y)))
∣∣Fτ

]
W (dτ,dξ ).

Using this representation, and Itô-Walsh isometry Proposition 4.8, we see

Cov
[
g2(u(s,y)),g2(u(s,y′))

]
=
∫ s

0

∫
R

E
[
E
[
Dτ,ξ (g

2(u(s,y)))
∣∣Fτ

]
E
[
Dτ,ξ (g

2(u(s,y′)))
∣∣Fτ

]]
dξ dτ.

(6.11)

Applying the chain rule in Proposition Proposition 2.24, we have

Dτ,ξ (g
2(u(s,y))) = 2gs,yg′s,yDτ,ξ u(s,y).

Now let Lipg be the Lipschitz constant of g and

Kp(t) := sup
(s,y)∈[0,t]×R

‖g(u(s,y))‖p < ∞ (6.12)

since moments of u are finite for fixed [0, t]. Using this notation, together with contractivity of

conditional expectation and Hölder’s inequality, we obtain

∥∥E
[
Dτ,ξ (g

2(u,sy))
∣∣Fτ

]∥∥
2 =

∥∥E
[
2gs,yg′s,yDτ,ξ u(s,y)

∣∣Fτ

]∥∥
2 ≤ 2K4(t)Lipg

∥∥Dτ,ξ u(s,y)
∥∥

4 .

Now, using the above estimate in (6.11) together with (5.25) and Hölder’s inequality, we see

Cov
[
g2(u(s,y)),g2(u(s,y′))

]
≤4K2

4 (t)Lip2
g

∫ s

0

∫
R

∥∥Dτ,ξ u(s,y)
∥∥

4

∥∥Dτ,ξ u(s,y′)
∥∥

4 dξ dτ

≤4K2
4 (t)Lip2

g

∫ s

0

∫
R

ps−τ(ξ − y)ps−τ(ξ − y′)dξ dτ

=4K2
4 (t)Lip2

g

∫ s

0
p2s−2τ(y− y′)dτ.
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Using this bound, we can now estimate (6.10) as follows:

a(s)≤
2K4(t)Lipg

σ2
R,t

(∫ s

0

∫
R2

∫
[−R,R]4

pt−s(x− y)pt−s(x̃− y)pt−s(x′− y′)pt−s(x̃′− y′)

p2s−2τ(y− y′)dx′dxdx̃′dx̃dydy′dτ
)1/2

.

Integrating in x̃, x̃′ over whole line and using Lemma 6.1, and then y,y′ using semigroup property,

we get

a(s)≤ Ct

R

(∫ s

0

∫
[−R,R]2

p2t−2τ(x− x′)dx′dxdτ

)1/2

. (6.13)

Finally, integrating x over R, we obtain

a(s)≤ Ct

R

(∫ s

0

∫
[−R,R]

dxdτ

)1/2

(6.14)

≤ Ct√
R
. (6.15)

Estimate for b(s): Using Burkholder-David-Gundy inequality in Theorem 4.10, we have

b(s)≤ 1
σ2

R,t

(∫ t

s

∫
R3

∫
[−R,R]4

pt−s(x− y)pt−s(x′− y′)pt−τ(x̃−ξ )pt−τ(x̃′−ξ )

E
[
gs,ygs,y′g

′2
τ,ξ Ds,yu(τ,ξ )Ds,y′u(τ,ξ )

]
dxdx′dx̃dx̃′dydy′dξ dτ

)1/2

Recalling the notation (6.12) and the estimate (5.24), and applying Hölder’s inequality, we have

E
[
gs,ygs,y′g

′2
τ,ξ Ds,yu(τ,ξ )Ds,y′u(τ,ξ )

]
≤ K2

4 (t)Lip2
g pτ−s(ξ − y)pτ−s(ξ − y′).
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Using this and Lemma 6.1 in b(s), we get

b(s)≤ Ct

R

(∫ t

s

∫
R3

∫
[−R,R]4

pt−s(x− y)pt−s(x′− y′)pt−τ(x̃−ξ )pt−τ(x̃′−ξ )

pτ−s(ξ − y)pτ−s(ξ − y′)dxdx′dx̃dx̃′dydy′dξ dτ
)1/2

.

Integrating over x̃, x̃′ over R and integrating y and y′ using semigroup property, we see

b(s)≤ Ct

R

(∫ t

s

∫
[−R,R]2

∫
R

pt+τ−2s(x−ξ )pt+τ−2s(x′−ξ )dξ dxdx′dτ

)1/2

≤ Ct

R

(∫ t

s

∫
[−R,R]2

∫
R

p2t+2τ−4s(x− x′)dxdx′dτ

)1/2

where we used semigroup property integrating in ξ . Finally, integrating x in all R, we get

b(s)≤ Ct√
R
.

Putting these two cases together in (6.7), we obtain

√
Var [〈DFR,t ,vR,t〉H]≤

Ct√
R
, (6.16)

which completes our proof.

Proposition 6.3. Let u be the solution to the integral equation (5.6) and assume that g is Lipschitz.

Fix p≥ 2, t > 0 and assume that there exists q > 5p such that E
[
|g(u(t,0))|−2q

]
< ∞. Then, there

exists R0 > 0 such that

sup
R≥R0

E
[∣∣DvR,t FR,t

∣∣−p
]
< ∞. (6.17)

Proof. Consider the Malliavin derivative of FR,t given by

Dr,zFR,t =
1

σR,t

∫
QR

dxDr,zu(t,x).
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From (6.3) and (6.2), we can write

DvR,t FR,t =
∫ t

0

∫
R

vR,t(r,z)Dr,zFR,tdzdr

=
1

σ2
R,t

∫
Q2

R

∫ t

0

∫
R

pt−r(x1− z)g(u(r,z))Dr,zu(t,x2)dzdrdx1dx2

=
1

σ2
R,t

∫
Q2

R

∫ t

0

∫
R

pt−r(x1− z)g2(u(r,z))Ψr,z(t,x2)dzdrdx1dx2, (6.18)

with the notation

Ψ
r,z(t,x) =

Dr,zu(t,x)
g(u(r,z))

,

for any r < t. Notice that g(u(r,z)) 6= 0 almost surely because E
[
|g(u(r,z))|−2q

]
< ∞ due to our

hypothesis and the stationarity of the process {u(r,z) : z ∈ R}.

We claim that

Ψ
r,z(t,x)≥ 0. (6.19)

Indeed, from equation (5.24), it follows that{Ψr,z(t,x) : (t,x) ∈ [r,∞)×R} satisfies:

Ψ
r,z(t,x) = pt−r(x− z)+

∫
[r,t]×R

pt−s(x− y)g′(u(s,y))Ψr,z(s,y)W (ds,dy).

That means,Ψr,z(t,x) solves the heat equation

∂Ψr,z

∂ t
=

1
2

∂ 2Ψr,z

∂x2 +g′(u)Ψr,zẆ , x ∈ R, t ∈ [r,∞),

with initial condition Ψr,z(t,x)
∣∣
t=r = δz(x) and, in particular, Ψr,z(t,x) is nonnegative.

As a consequence, from (6.18) and (6.19) it follows that DvR,t FR,t ≥ 0 and we can write

DvR,t FR,t ≥
1

σ2
R,t

∫
Q2

R

∫ t

t−εα

∫
R

pt−r(x1− z)g(u(r,z))Dr,zu(t,x2)dzdrdx1dx2,
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for any ε < t and α < 1. Set tεα := t− εα . Using this estimate, we get

P
(
DvR,t FR,t < ε

)
≤ P

(
1

σ2
R,t

∫
Q2

R

∫ t

tεα

∫
R

pt−r(x1− z)g(u(r,z))Dr,zu(t,x2)dzdrdx1dx2 < ε

)
.

With the notation (6.1), using (5.24) we obtain

1
σ2

R,t

∫
Q2

R

∫ t

tεα

∫
R

pt−r(x1− z)g(u(r,z))Dr,zu(t,x2)dzdrdx1dx2

=
∫ t

tεα

∫
R

φ
2
R,t(r,z)g

2(u(r,z))dzdr

+
∫ t

tεα

∫
R

(∫
[r,t]×R

φR,t(s,y)φR,t(r,z)g′(u(s,y))Dr,zu(s,y)W (ds,dy)
)

g(u(r,z)dzdr

=: I1 + I2.

From

P(I1 + I2 < ε)≤ P(I1 < 2ε)+P(I1 + I2 < ε, I1 ≥ 2ε) (6.20)

≤ P(I1 < 2ε)+P(|I2|> ε) ,

we have

P
(

1
σ2

R

∫
Q2

R

∫ t

tεα

∫
R

pt−r(x1− z)g(u(r,z))Dr,zu(t,x2)dzdrdx1dx2 < ε

)
≤ P(I1 < 2ε)+P(|I2|> ε) .

We shall next estimate these probabilities, starting with the first one:

P(I1 < 2ε) = P
(∫ t

tεα

∫
R

φ
2
R,t(r,z)g

2(u(r,z))dzdr < ε

)
= P

(∫ t

tεα

∫
R

φ
2
R,t(r,z)

(
g(u(r,z))−g(u(t,z))+g(u(t,z))

)2

dzdr < 2ε

)
.
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Using the inequality (a+b)2 ≥ a2/2−b2 for a,b ∈ R, and an estimate similar to (6.20), we get

P
(∫ t

tεα

∫
R

φ
2
R,t(r,z)(g(u(r,z))−g(u(t,z)+g(u(t,z)))2 dzdr < 2ε

)
≤ P

(∫ t

tεα

∫
R

φ
2
R,t(r,z)(g(u(t,z)))

2 dzdr < 6ε

)
+P
(∫ t

tεα

∫
R

φ
2
R,t(r,z)(g(u(r,z))−g(u(t,z)))2 dzdr > ε

)
=: K1 +K2. (6.21)

For the term K1 in (6.21), by Chebyshev’s inequality, for q > 5p we obtain

K1 = P

([∫ t

tεα

∫
R

φ
2
R,t(r,z)g

2(u(t,z))dzdr
]−1

>
1

6ε

)

≤ (6ε)qE

[(∫ t

tεα

∫
R

φ
2
R,t(r,z)g

2(u(t,z))dzdr
)−q

]
. (6.22)

Set

m(ε,R) :=
∫ t

tεα

∫
R

φ
2
R,t(r,z)dzdr.

Then, taking into account that the function x→ x−q is convex and applying Jensen’s inequality, we

can write

E

[(∫ t

tεα

∫
R

φ
2
R,t(r,z)g

2(u(t,z))dzdr
)−q

]

= m(ε,R)−qE

[(
1

m(ε,R)

∫ t

tεα

∫
R

φ
2
R,t(r,z)g

2(u(t,z))dzdr
)−q

]

≤ m(ε,R)−q−1
∫ t

tεα

∫
R

φ
2
R,t(r,z)E

[
|g(u(t,z))|−2q]drdz. (6.23)

Since the solution is stationary in space, the factor Ct := E
[
|g(u(t,z))|−2q] does not depend on z

and we assume it is finite. Therefore, from (6.22) and (6.23), we get

K1 ≤Ct(6ε)qm(ε,R)−q (6.24)
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for some constant Ct > 0. Moreover,

m(ε,R) =
1

σ2
R,t

∫
εα

0

∫ R

−R

∫ R

−R
p2s(x1− x2)dx1dx2ds

≥
√

2R
σ2

R,t

∫
εα

0

∫ R/
√

2

−R/
√

2
p2s(y)dyds.

Then, assuming ε ≤ 1 and R≥ R0, we obtain

m(ε,R)≥
√

2R
σ2

R,t

∫
εα

0

∫ 1/
√

2

−1/
√

2
p2(y)dyds≥Ctε

α , (6.25)

where in the last inequality we have used Lemma 6.1. Hence, from (6.24) and (6.25), we have

K1 ≤Ctε
q(1−α). (6.26)

In order to estimate the term K2 in (6.21), we use Chebyschev’s inequality followed by Minkowski’s

inequality, as follows:

K2 ≤ ε
−qE

[(∫ t

tεα

∫
R

φ
2
R,t(r,z)(g(u(r,z))−g(u(t,z)))2dzdr

)q]
≤ ε

−q
(∫ t

tεα

∫
R

φ
2
R,t(r,z)

(
E
[
|g(u(r,z))−g(u(t,z))|2q

])1/q
dzdr

)q

. (6.27)

The Lipschitz continuity of g and the 1/4-Hölder continuity of the solution u(t,x) in L2q(Ω) allow

us to write for any r ∈ [tα , t]

‖g(u(r,z))−g(u(t,z))‖2q ≤ Lipg‖u(r,z)−u(t,z)‖2q

≤CtLipg|t− r|1/4 ≤CtLipgε
α/4. (6.28)
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On the other hand, from (6.25) we have, for R≥ R0,

∫ t

tεα

∫
R

φ
2
R,t(r,z)dzdr =

1
σ2

R,t

∫
εα

0

∫
Q2

R

∫
R

pr(x1− z)pr(z− x2)dzdx1dx2dr

≤ 1
σ2

R,t

∫
εα

0

∫
Q2

R

∫
R

p2r(x1− x2)dx1dx2dr ≤ 2R
σ2

R,t
ε

α ≤Ctε
α . (6.29)

Substituting (6.28) and (6.29) into (6.27), yields

K2 ≤Ctε
( 3α

2 −1)q. (6.30)

We are left to estimate the following probability:

K3 :=P(|I2|> ε) .

Using Fubini’s theorem and Chebyschev’s inequality, we have

K3 ≤
1
εq E

[∣∣∣∣∫
[tεα ,t]×R

∫
R

∫ s

tεα

φR,t(r,z)φR,t(s,y)g′s,yDr,zu(s,y)gr,zdrdzW (ds,dy)
∣∣∣∣q] .

Then, applying Burkholder-Davis-Gundy inequality in Theorem 4.10, followed by Minkowski’s

inequality, we get

81



K3 ≤
Cq

εq E

∣∣∣∣∣
∫ t

tεα

∫
R

(∫
R

∫ s

tεα

φR,t(r,z)φR,t(s,y)g′s,yDr,zu(s,y)gr,zdrdz
)2

dsdy

∣∣∣∣∣
q
2


=
Cq

εq E

[∣∣∣∣∣
∫ t

tεα

∫ s

tεα

∫ s

tεα

∫
R3

φR,t(r1,z1)φR,t(r2,z2)φ
2
R,t(s,y)

×Xr1,z1,r2,z2(s,y)dz1dz2dydr1dr2ds

∣∣∣∣∣
q
2
]

≤
Cq

εq

(∫ t

tεα

∫ s

tεα

∫ s

tεα

∫
R3

φR,t(r1,z1)φR,t(r2,z2)φ
2
R,t(s,y)

×‖Xr1,z1,r2,z2(s,y)‖q/2 dz1dz2dydr1dr2ds

) q
2

, (6.31)

where

Xr1,z1,r2,z2(s,y) :=
(
g′s,y
)2 Dr1,z1u(s,y)Dr2,z2u(s,y)gr1,z1gr2,z2.

Using Hölder’s inequality, the Lipschitz property of g, the estimate (5.25) for all p≥ 2, we have

‖Xr1,z1,r2,z2(s,y)‖q/2 ≤Ct ps−r1(y− z1)ps−r2(y− z2).

Plugging this bound in the estimate (6.31), we see that

K3 ≤
Ct

εq

(∫ t

tεα

∫ s

tεα

∫ s

tεα

∫
R3

φR,t(r1,z1)φR,t(r2,z2)φ
2
R,t(s,y)

× ps−r1(y− z1)ps−r2(y− z2)dz1dz2dydr1dr2ds
) q

2
. (6.32)
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Integrating in z1 and z2, and using the semigroup property, we have for tα < s < t and for R≥ R0,

∫
R3

(
∏

i=1,2
φR,t(ri,zi)φR,t(s,y)ps−ri(y− zi)

)
dz1dz2dy

=
1

σ2
R,t

∫
R

∫
Q2

R
∏

i=1,2
φR,t(s,y)pt+s−2ri(y− xi)dx1dx2dy

≤ 1
σ2

R,t

∫
R

φ
2
R,t(s,y)

(
∏

i=1,2

∫
R

pt+s−2ri(y− x)dx

)
dy

=
1

σ2
R,t

∫
R

φ
2
R,t(s,y)dy≤ Ct

σ2
R,t
≤Ct ,

where we use Lemma A.9 part (a) of the Appendix. Now, plugging this estimate in (6.32), we get

K3 ≤
CT

εq

(∫ t

tεα

∫ s

tεα

∫ s

tεα

dr1dr2ds
) q

2

=CT ε
( 3

2 α−1)q. (6.33)

Now, choosing α = 4/5, we get from (6.32), (6.30) and (6.33),

sup
R≥R0

P
(
DvR,t FR,t)< ε

)
≤CT ε

q/5.

Finally, using this estimate we get

sup
R≥R0

E
[(

DvR,t FR,t
)−p
]
= sup

R≥R0

p
∫

∞

0
ε
−p−1P

(
DvR,t FR,t < ε

)
dε

≤ 1+ sup
R≥R0

p
∫ 1

0
ε
−p−1P

(
DvR,t FR,t < ε

)
dε

≤ 1+CT p
∫ 1

0
ε
−p−1+q/5dε < ∞

for q > 5p, which completes our proof.

Theorem 6.4. Let u= {u(t,x) : (t,x) ∈ R+×R} be the mild solution to the stochastic heat equation

(5.1). Assume that g satisfies hypothesis in Proposition 5.22. Suppose also that for some q > 10,
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E [|g(u(t,0))|−q]< ∞. Fix t > 0 and let FR,t be defined as in (6.2). Then, for all R > 0,

sup
x∈R
| fFR,t (x)−φ(x)| ≤ Ct√

R
,

where fFR,t and φ are the densities of FR,t and N(0,1), respectively.

Proof of Theorem 6.4. We will apply Theorem 3.13 to the random variable FR,t = δ (vR,t). Fix

t > 0. From Theorem 6.2, we have

∥∥∥∥√Var
[
DvR,t FR,t

]∥∥∥∥
2
≤ Ct√

R
. (6.34)

We are only left to estimate the term
∥∥DvR,t

(
DvR,t FR,t

)∥∥
2. Recall that

DvR,t FR,t =
1

σR,t

∫ t

0

∫
R

∫
QR

φR,t(s,y)g(u(s,y))Ds,yu(t,x)dxdyds.

Taking the Malliavin derivative, we get

Dr,z
(
DvR,t FR,t

)
=

1
σR,t

∫ t

r

∫
R

∫
QR

φR,t(s,y)g′(u(s,y))Dr,zu(s,y)Ds,yu(t,x)dxdyds

+
1

σR,t

∫ t

0

∫
R

∫
QR

φR,t(s,y)g(u(s,y))Dr,zDs,yu(t,x)dxdyds,

and, using the notation (5.31), we get

DvR,t

(
DvR,t FR,t

)
=

1
σR,t

∫ t

0

∫ t

r

∫
R2

∫
QR

φR,t(r,z)φR,t(s,y)gr,zg′s,yDr,zu(s,y)Ds,yu(t,x)dxdydzdsdr

+
2

σR,t

∫ t

0

∫ t

r

∫
R2

∫
QR

φR,t(r,z)φR,t(s,y)gr,zgs,yDr,zDs,yu(t,x)dxdydzdsdr.

Now using (5.24) and (5.26) for Ds,yu(t,x) and Dr,zDs,yu(t,x), respectively, we have
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DvR,t

(
DvR,t FR,t

)
= 2Y 1

R,t +Y 2
R,t +2Y 3

R,t +2Y 4
R,t ,

where:

Y 1
R,t =

∫ t

0

∫ t

r

∫
R2

dydzdsdrφ
2
R,t(s,y)φR,t(r,z)gr,zgs,yg′s,yDr,zu(s,y),

Y 2
R,t =

∫ t

0

∫ t

r

∫
R2

dydzdsdrφR,t(s,y)φR,t(r,z)gr,zg′s,yDr,zu(s,y)

×
∫
[s,t]×R

φR,t(τ,ξ )g′τ,ξ Ds,yu(τ,ξ )W (dτ,dξ ),

Y 3
R,t =

∫ t

0

∫ t

r

∫
R2

dydzdsdrφR,t(s,y)φR,t(r,z)gr,zgs,y

×
∫
[s,t]×R

φR,t(τ,ξ )g′′τ,ξ Dr,zu(τ,ξ )Ds,yu(τ,ξ )W (dτ,dξ ),

Y 4
R,t =

∫ t

0

∫ t

r

∫
R2

dydzdsdrφR,t(s,y)φR,t(r,z)gr,zgs,y

×
∫
[s,t]×R

φR,t(τ,ξ )g′τ,ξ Dr,zDs,yu(τ,ξ )W (dτ,dξ ).

Putting together the terms Y i
R,t for i = 2,3,4, we can write

DvR,t

(
DvR,t FR,t

)
= 2Y 1

R,t +Y 5
R,t ,

where

Y 5
R,t =

∫ t

0

∫
R

(∫
τ

0

∫
τ

r

∫
R2

φR,t(s,y)φR,t(r,z)Zr,z,s,y(τ,ξ )dsdrdydz
)

φR,t(τ,ξ )W (dτ,dξ ),
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and we are using the notation

Zr,z,s,y(τ,ξ ) =: gr,zg′s,yg′
τ,ξ Dr,zu(s,y)Ds,yu(τ,ξ )

+2gr,zgs,yg′′
τ,ξ Dr,zu(τ,ξ )Ds,yu(τ,ξ )

+2gr,zgs,yg′
τ,ξ Dr,zDs,yu(τ,ξ ). (6.35)

Therefore,

‖DvR,t

(
DvR,t FR,t

)
‖2 ≤ 2‖Y 1

R,t‖2 +‖Y 5
R,t‖2.

Estimation of
∥∥∥Y 1

R,t

∥∥∥
2
: Note that using the estimate (5.25) and Hölder’s inequality we have, for

r < s, ∥∥gr,zgs,yg′s,yDr,zu(s,y)
∥∥

2 ≤Ct ps−r(z− y).

As a consequence,

∥∥Y 1
R,t
∥∥

2 ≤Ct

∫ t

0

∫ t

r

∫
R2

φ
2
R,t(s,y)φR,t(r,z)ps−r(z− y)dydzdsdr.

Integrating in z and using the semigroup property, we have

∫
R

φR,t(r,z)ps−r(z− y)dz =
1

σR,t

∫
QR

∫
R

pt−r(x− z)ps−r(z− y)dzdx

=
1

σR,t

∫
QR

pt+s−2r(x− y)dx≤ 1
σR,t

.

Using the above estimate, and Lemma A.9 part (a), Lemma 6.1 and we get, for R≥ R0,

∥∥Y 1
R,t
∥∥

2 ≤
Ct

σR,t

∫ t

0

∫ t

r

∫
R

φ
2
R,t(s,y)dydsdr ≤ Ct

σR,t
≤ Ct√

R
.

Estimation of
∥∥∥Y 5

R,t

∥∥∥
2
: Using the Itô-Walsh isometry of the stochastic integral in Proposition 4.8
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and Cauchy-Schwarz inequality, we obtain

∥∥∥Y 5
R,t

∥∥∥2

2
=
∫ t

0

∫
R

E

[(∫
τ

0

∫
τ

r

∫
R2

φR,t(s,y)φR,t(r,z)Zr,z,s,y(τ,ξ )dsdrdydz
)2
]

φ
2
R,t(τ,ξ )dξ dτ

=
∫ t

0

∫
R

∫
0≤r1≤s1≤τ

0≤r2≤s2≤τ

∫
R4

∏
i=1,2

dyidzidridsiφR,t(si,yi)φR,t(ri,zi)

×‖Zri,zi,si,yi(τ,ξ )‖2φ
2
R,t(τ,ξ )dξ dτ.

From the decomposition (6.35), using Hölder’s inequality and the estimates (5.25) and (5.27), we

can write

∥∥∥Y 5
R,t

∥∥∥2

2
≤Ct

∫ t

0

∫
R

dξ dτφ
2
R,t(τ,ξ )

∫
0≤r1≤s1≤τ

0≤r2≤s2≤τ

∫
R4

∏
i=1,2

dyidzidridsiφR,t(si,yi)φR,t(ri,zi)

× [psi−ri(yi− zi)pτ−si(ξ − yi)+ pτ−ri(ξ − zi)pτ−si(ξ − yi)+Φri,zi,si,yi(τ,ξ )] .

The estimates φR,t(ri,zi),φR,t(ri,zi)≤ 1
σR,t

imply

∥∥∥Y 5
R,t

∥∥∥2

2
≤ Ct

σ2
R,t

∫ t

0

∫
R

dξ dτφ
2
R,t(τ,ξ )

∫
0≤r1≤s1≤τ

0≤r2≤s2≤τ

∫
R4

∏
i=1,2

dyidzidridsi

× [psi−ri(yi− zi)pτ−si(ξ − yi)+ pτ−ri(ξ − zi)pτ−si(ξ − yi)+Φri,zi,si,yi(τ,ξ )] .

Integrating the variables zi and yi for i = 1,2 and using Lemma A.7, we have

∥∥∥Y 5
R,t

∥∥∥2

2
≤ C

σ2
R,t

∫ t

0

∫
R

φ
2
R,t(τ,ξ )

(∫
0<r<s<τ

(
1+(s− r)−1/4

)
drds

)2

dξ dτ.

Using the above estimate, Lemma A.9 part (a), and Lemma 6.1, we finally have for R≥ R0

∥∥∥Y 5
R,t

∥∥∥
2
≤ Ct√

R
. (6.36)

Finally, plugging the estimates (6.17), (6.34) and (6.36) into (3.6) we complete the proof.
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6.2 Dirac delta initial condition in PAM

Let u = {u(t,x) : (t,x) ∈ R+×R} be the solution to equation (5.9) in dimension 1 with the initial

condition u0 ≡ δ0. The process u is no longer stationary in the space variable, but if we define U

as

U(t,x) :=
u(t,x)
pt(x)

for (t,x) ∈ (0,∞)×R, then for any t > 0, the process {U(t,x) : x ∈ R} is stationary, see [1]. More-

over, limt↓0U(t,x) = 1 in Lp(Ω) for all x ∈ R and p ≥ 2 and the mild form (5.6) of the equation

can be reformulated in terms of U as follows

U(t,x) = 1+
∫
[0,t]×R

p τ(t−τ)
t

(ξ − τ

t
x)U(s,y)W (dτ,dξ ). (6.37)

Let

ϕR,t(s,y) :=
1

ΣR,t

∫
QR

ps(t−s)/t(y−
s
t
x)dx. (6.38)

GR,t :=
1

ΣR,t

(∫ R

−R
U(t,x)dx−2R

)
, where Σ

2
R,t := Var

[∫ R

−R
U(t,x)dx

]
(6.39)

According to Chen, Hu and Nualart [14, Proposition 5.1], for any t > 0 and any x ∈ R, the ran-

dom variable u(t,x) belongs to the Sobolev space Dk,p for any k≥ 1 and p≥ 2. As a consequence,

for all t > 0 and x ∈ R, U(t,x) ∈ ∩k≥1 ∩p≥2 Dk,p. Furthermore, for almost all (s,y) ∈ (0, t)×R,

using (4.9) and (6.37), we have,

Ds,yU(t,x) = p s(t−s)
t

(y− s
t
x)U(s,y)+

∫
[s,t]×R

p τ(t−τ)
t

(ξ − τ

t
x)Ds,yU(τ,ξ )W (dτ,dξ ), (6.40)
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and for almost all r ≤ s≤ t and y,z ∈ R,

Dr,zDs,yU(t,x) =p s(t−s)
t

(y− s
t
x)Dr,zU(s,y)

+
∫
[s,t]×R

p τ(t−τ)
t

(ξ − τ

t
x)Dr,zDs,yU(τ,ξ )W (dτ,dξ ). (6.41)

Let GR,t and ΣR,t be as defined in (6.39). Then, for any fixed t > 0, GR,t = δ (wR,t), where

wR,t(s,y) = 111[0,t](s)
1

ΣR,t

∫
QR

p s(t−s)
t

(y− s
t
x)U(s,y)dx

= 111[0,t](s)ϕR,t(s,y)U(s,y), (6.42)

and ϕR,t(s,y) has been defined in (6.38). Finally, we also note that

Ds,yGR,t =
1

ΣR,t

∫
QR

Ds,yU(t,x),

and using (6.42)

DwR,t GR,t =
1

ΣR,t

∫ t

0

∫
R

∫
QR

ϕR,t(s,y)U(s,y)Ds,yU(t,x)dxdyds. (6.43)

Dividing by the factor pt(x) and using the identity (A.6) we derive the corresponding estimates

for the process U(t,x):

sup
(t,x)∈[0,T ]×R

‖U(t,x)‖p ≤ cT,p, (6.44)

∥∥Ds,yU(t,x)
∥∥

p ≤ cT,p p s(t−s)
t

(y− s
t
x). (6.45)

and ∥∥Dr,zDs,yu(t,x)
∥∥

p ≤ cT,p p s(t−s)
t

(y− s
t
x)p r(s−r)

s
(z− r

s
y). (6.46)

The next proposition ensures the existence of negative moments required in the application of

Theorem 3.13.
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Proposition 6.5. Fix t ∈ (0,T ], p ≥ 2 and γ > 5. Then, there exist R0 > 1 and a constant ct,p,γ ,

depending on t, p and γ , such that

∥∥∥(DwR,t GR,t
)−1
∥∥∥

p
≤ ct,p,γ(logR)γ

for all R≥ R0.

Proof. Using (6.43) and (6.40), we have

DwR,t GR,t =
1

ΣR,t

∫ t

0

∫
R

∫
QR

ϕR,t(s,y)U(s,y)Ds,yU(t,x)dxdyds

=
∫ t

0

∫
R

ϕ
2
R,t(s,y)U

2(s,y)dyds

+
∫ t

0

∫
R

ϕR,t(s,y)U(s,y)
(∫

[s,t]×R
ϕR,t(τ,ξ )Ds,yU(τ,ξ )W (dτ,dξ )

)
dyds.

Since U and DU are non-negative, DwR,t GR,t ≥ 0 and we have

DwR,t GR,t ≥
∫ t

tεα

∫
R

ϕ
2
R,t(s,y)U

2(s,y)dyds

+
∫ t

tεα

∫
R

ϕR,t(s,y)U(s,y)
(∫

[s,t]×R
ϕR,t(τ,ξ )Ds,yU(τ,ξ )W (dτ,dξ )

)
dyds

=: I1 + I2,

where tεα = t−εα , with ε ∈ (0, t
2 ] and α ∈ (0,1]. As in the proof of Proposition 6.3, we can write

P
(
DwR,tGR,t < ε

)
≤ P(I1 < 2ε)+P(|I2|> ε) . (6.47)

We now estimate these probabilities in two steps.

Step 1: By Chebyshev inequality, for any q≥ 2,

P(I1 < 2ε)≤ P
(

I−1
1 >

1
2ε

)
≤ (2ε)qE

[(∫ t

tεα

∫
R

ϕ
2
t,R(s,y)U

2(s,y)dyds
)−q

]
. (6.48)
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Set

m(ε,R) =
∫ t

tεα

∫
R

ϕ
2
t,R(s,y)dyds.

Using Lemma A.9 part (b), taking into account that s > t
2 , for all R≥ R0, we have

m(ε,R)≥ ctε
α

logR
. (6.49)

Then, because the function x→ x−q is convex, applying Jensen’s inequality, we can write

E

[(∫ t

tεα

∫
R

ϕ
2
t,R(s,y)U

2(s,y)dyds
)−q

]

≤ m(ε,R)−q−1
∫ t

tεα

∫
R

ϕ
2
R,t(s,y)E

[
U−2q(s,y)

]
dyds. (6.50)

Since {U(s,y) : y ∈ R} is stationary, we have for all s ∈ [ t
2 ,2]

E
[
(U(s,y))−2q

]
= E

[
(U(s,0))−2q

]
= (ps(0))2qE

[
(u(s,0))−2q

]
≤ (πt)−qE

( inf
s∈[ t

2 ,t]
u(s,0)

)−2q
= ct,q < ∞, (6.51)

where ct,q is a constant depending on q and t and the last equality follows from [13, Theorem 1.4].

In what follows, ct,q will denote a generic constant depending on q and t. Substituting (6.51) into

(6.50) and using Lemma A.9 part (b) and (6.49) yields

E

[(∫ t

tεα

∫
R

ϕ
2
t,R(s,y)U

2(s,y)dyds
)−q

]
≤ ct,qm(ε,R)−q−1

∫ t

tεα

∫
R

ϕ
2
R,t(s,y)dyds

≤ ct,qm(ε,R)−q−1
∫ t

tεα

1
s logR

ds

≤ ct,qε
−αq(logR)q, (6.52)
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for R≥ R0. Finally, from (6.48) and (6.52), we get

P(I1 < 2ε)≤ ct,q (logR)q
ε

q(1−α). (6.53)

Step 2: Set Π = P(|I2|> ε). Using Fubini’s theorem and Chebyschev’s inequality for any q ≥ 2,

we have

Π≤ 1
εq E

[∣∣∣∣∫
[tεα ,t]×R

(∫
R

∫
τ

tεα

ϕR,t(τ,ξ )ϕR,t(s,y)U(s,y)Ds,yU(τ,ξ )dsdy
)

W (dτ,dξ )

∣∣∣∣q] .
Then, applying Burkholder-Davis-Gundy inequality, followed by Minkowski’s inequality, we get

for any q≥ 2

Π≤
cq

εq E

(∫ t

tεα

∫
R

(∫
τ

tεα

∫
R

ϕR,t(τ,ξ )ϕR,t(s,y)U(s,y)Ds,yU(τ,ξ )dyds
)2

dξ dτ

) q
2


=
cq

εq E

[(∫ t

tεα

∫
τ

tεα

∫
τ

tεα

∫
R3

ϕ
2
R,t(τ,ξ )ϕR,t(s1,y1)ϕR,t(s2,y2)

×Ys1,y1,s2,y2(τ,ξ )dy1dy2dξ ds1ds2dτ

) q
2
]

≤
cq

εq

(∫ t

tεα

∫
τ

tεα

∫
τ

tεα

∫
R3

ϕ
2
R,t(τ,ξ )ϕR,t(s1,y1)ϕR,t(s2,y2)

×‖Ys1,y1,s2,y2(τ,ξ )‖q/2dy1dy2dξ ds1ds2dτ

) q
2

, (6.54)

where

Ys1,y1,s2,y2(τ,ξ ) :=U(s1,y1)Ds1,y1U(τ,ξ )U(s2,y2)Ds2,y2U(τ,ξ ).

Note that using the estimates (6.44) and (6.45) and Hölder’s inequality, we can write

∥∥Ys1,y1,s2,y2(τ,ξ )
∥∥

q/2 ≤ ct,q p s1(τ−s1)
τ

(y1−
s1

τ
ξ )p s2(τ−s2)

τ

(y2−
s2

τ
ξ ). (6.55)
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Substituting the estimate (6.55) into (6.54), we obtain

Π≤
ct,q

εq

(∫ t

tεα

∫
R

ϕ
2
R,t(τ,ξ )

(∫
τ

tεα

∫
R

ϕR,t(s,y)p s(τ−s)
τ

(y− s
τ

ξ )dyds
)2

dξ dτ

)q/2

. (6.56)

Using the semigroup property, we have

∫
R

ϕR,t(s,y)p s(τ−s)
τ

(y− s
τ

ξ )dy≤ 1
ΣR,t

∫
R2

p s(t−s)
t

(y− s
t
x)p s(τ−s)

τ

(y− s
τ

ξ )dydx

=
1

ΣR,t

∫
R

p s(t−s)
t +

s(τ−s)
τ

(
s
t
x− s

τ
ξ )dx =

t
sΣR,t

∫
R

p t(t−s)
s +

t2(τ−s)
sτ

(x− t
τ

ξ )dx =
t

sΣR,t
,

where we used the identity pt(ax) = 1
a pt/a2(x). Hence, taking into account that tα > t

2 , we can

write ∫
τ

tεα

∫
R

ϕR,t(s,y)p s(τ−s)
τ

(y− s
τ

ξ )dyds≤ 1
ΣR,t

∫
τ

tεα

t
s
ds≤ 2εα

ΣR,t
. (6.57)

Finally, plugging the estimate (6.57) into (6.56), and using Lemma 6.6 and Lemma A.9 part (b),

we get for R≥ R0,

Π≤ ct,qε
q(α−1)(R logR)−q/2

(∫ t

tεα

∫
R

ϕ
2
R,t(τ,ξ )dξ dτ

)q/2

≤ ct,qR−q/2
ε
( 3α

2 −1)q. (6.58)

Now, choosing α = 4/5, we get, substituting (6.58) and (6.53) into (6.47),

P
(
DwR,t GR,t < ε

)
≤ ct,q(logR)q

ε
q/5.
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Using this estimate, we get

E
[(

DwR,t GR,t
)−p
]
= p

∫
∞

0
ε
−p−1P

(
DwR,t GR,t < ε

)
dε

≤ 1+ p
∫ 1

0
ε
−p−1P

(
DwR,t GR,t < ε

)
dε

≤ 1+ ct,q(logR)q p
∫ 1

0
ε
−p−1+q/5dε.

Finally, for q = γ p > 5p, and for R≥ R0, we obtain

∥∥∥(DwR,t GR,t
)−1
∥∥∥

p
≤ ct,p,γ(logR)γ ,

which completes our proof.

Lemma 6.6. Let Σ2
R,t be as defined in (6.39). Then

lim
R→∞

Σ2
R,t

R logR
= 2t.

Theorem 6.7. For every t > 0, there exist Ct = C(t) > 0 and R0 = R0(t) > e such that for all

R≥ R0,

dTV (GR,t ,N)≤Ct

√
logR

R
(6.59)

Theorem 6.8. Assume that the random field u = {u(t,x) : (t,x) ∈ R+×R} solves the parabolic

Anderson model (5.9) in dimension 1 with the initial condition u0(x) = δ0. Let GR,t be defined as

in (6.39). Fix γ > 19
2 . Then, there exists an R0 ≥ 1 such that for all R≥ R0

sup
x∈R
| fGR,t (x)−φ(x)| ≤ Ct(logR)γ

√
R

,

where fGR,t and φ are the densities of GR,t and N(0,1), respectively.
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Proof of Theorem 6.8. We will apply Theorem 3.13 to the random variable GR,t = δ (wR,t). Propo-

sition 6.5 provides the estimate

∥∥∥(DwR,t GR,t
)−1
∥∥∥

4
≤ ct,4,γ(logR)γ , (6.60)

for any γ > 5, and for R large enough. Moreover, from the proof of Theorem 6.7, we have

∥∥∥∥√Var
[
DwR,t GR,t

]∥∥∥∥
2
≤ Ct
√

logR√
R

. (6.61)

We are only left to estimate the term
∥∥DwR,t

(
DwR,t GR,t

)∥∥
2. Recall that from (6.43) we have

DwR,t GR,t =
1

ΣR,t

∫ t

0

∫
R

∫
QR

ϕR,t(s,y)U(s,y)Ds,yU(t,x)dxdyds.

Applying again the derivative operator, we obtain

Dr,z
(
DwR,t GR,t

)
=

1
ΣR,t

∫ t

0

∫
R

∫
QR

ϕR,t(s,y)
(

Dr,zU(s,y)Ds,yU(t,x)

+U(s,y)Ds,yDr,zU(t,x)
)

dxdyds,

so that,

DwR,t

(
DwR,t GR,t

)
=

1
ΣR,t

∫
0<r<s<t

∫
R2

∫
QR

dxdydzdsdrϕR,t(s,y)ϕR,t(r,z)U(r,z)

× (Dr,zU(s,y)Ds,yU(t,x)+2U(s,y)Dr,zDs,yU(t,x)) .

Now using (6.40) and (6.41) for Ds,yU(t,x) and Dr,zDs,yU(t,x), we get

DwR,t

(
DwR,t GR,t

)
= 2X 1

R,t +X 2
R,t +2X 3

R,t ,

95



where:

X 1
R,t =

∫ t

0

∫ t

r

∫
R2

dzdydsdrϕ
2
R,t(s,y)ϕR,t(r,z)U(r,z)U(s,y)Dr,zU(s,y),

X 2
R,t =

∫ t

0

∫ t

r

∫
R2

dzdydsdrϕR,t(s,y)ϕR,t(r,z)U(r,z)Dr,zU(s,y)

×
∫
(s,t)×R

ϕR,t(τ,ξ )Ds,yU(τ,ξ )W (dτ,dξ ),

X 3
R,t =

∫ t

0

∫ t

r

∫
R2

dzdydsdrϕR,t(s,y)ϕR,t(r,z)U(r,z)U(s,y)

×
∫
(s,t)×R

ϕR,t(τ,ξ )Dr,zDs,yU(τ,ξ )W (dτ,dξ ).

As a consequence, we have

∥∥DwR,t

(
DwR,t GR,t

)∥∥
2 ≤ 2

∥∥X 1
R,t
∥∥

2 +
∥∥X 2

R,t +2X 3
R,t
∥∥

2 . (6.62)

We will further estimate the two terms in the right-hand side of the previous display.

Estimation of
∥∥∥X 1

R,t

∥∥∥
2
: Using the estimates (6.44) and (6.45) and applying Hölder’s inequality,

we can write

‖U(s,y)U(r,z)Dr,zU(s,y)‖2 ≤Ct p r(s−r)
s

(z− r
s

y).

Therefore,

∥∥X 1
R,t
∥∥

2 ≤
∫ t

0

∫ t

r

∫
R2

dzdydsdrϕ
2
R,t(s,y)ϕR,t(r,z)‖U(s,y)U(r,z)Dr,zU(s,y)‖2

≤Ct

∫ t

0

∫ t

r

∫
R2

ϕ
2
R,t(s,y)ϕR,t(r,z)p r(s−r)

s
(z− r

s
y)dzdydsdr =: I1. (6.63)
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To estimate I1, we first integrate in z and use the semigroup property, to obtain

∫
R

ϕR,t(r,z)p r(s−r)
s

(z− r
s

y)dz =
1

ΣR,t

∫
QR

∫
R

p r(t−r)
t

(z− r
t
x)p r(s−r)

s
(z− r

s
y)dzdx

=
1

ΣR,t

∫
QR

p r(t−r)
t +

r(s−r)
s

(
r
s

y− r
t
x)dx

=
s

rΣR,t

∫
QR

p s2(t−r)
tr +

s(s−r)
r

(y− s
t
x)dx. (6.64)

Now using the estimate ϕR,t(s,y)≤ t
ΣR,ts

for one of the factors together with (6.64) and then apply-

ing the semigroup property in y, we get

∫
R2

ϕ
2
R,t(s,y)ϕR,t(r,z)p r(s−r)

s
(z− r

s
y)dzdy

≤ t
rΣ3

R

∫
Q2

R

∫
R

p s(t−s)
t

(y− s
t
x1)p s2(t−r)

tr +
s(s−r)

r
(y− s

t
x2)dydx1dx2

=
t

rΣ3
R

∫
Q2

R

p s(t−s)
t +

s2(t−r)
tr +

s(s−r)
r

(
s
t
(x1− x2))dx1dx2

=
t2

srΣ3
R

∫
Q2

R

p t(t−s)
s +

t(t−r)
r +

t2(s−r)
sr

(x1− x2)dx1dx2

=
t2

srΣ3
R

∫
Q2

R

p 2t(t−r)
r

(x1− x2)dx1dx2

=
4Rt2

πsrΣ3
R

∫
R

ϕ(ξ )e−
2t(t−r)

rR2 ξ 2
dξ , (6.65)

where the last equality follows from Lemma A.10. So, substituting (6.65) into (6.63), we get

I1 ≤Ct
R

Σ3
R,t

∫
R

ϕ(ξ )
∫ t

0

1
s

∫ s

0

1
r

e−
2s(s−r)

r
ξ 2

R2 drdsdξ .

By Lemma A.11, we can write

I1 ≤Ct
R logR

Σ3
R

(∫
R

ϕ(ξ ) log(e+
1√
2|ξ |

)dξ

)(∫ t

0
log(e+

1
s
)ds
)
.

Finally Lemma 6.6 yields

I1 ≤Ct(R logR)−1/2. (6.66)
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Estimation of
∥∥∥X 2

R,t +2X 3
R,t

∥∥∥
2
: Define

Vr,z,s,y(τ,ξ ) =U(r,z)Dr,zU(s,y)Ds,yu(τ,ξ )+2U(r,z)U(r,z)Dr,zDs,yU(τ,ξ ).

With this notation in mind, we can write

X 2
R,t +2X 3

R,t =
∫
[0,t]×R

(∫
τ

0

∫
τ

r

∫
R2

ϕR,t(s,y)ϕR,t(r,z)Vr,z,s,y(τ,ξ )dsdrdydz
)

ϕR,t(τ,ξ )W (dτ,dξ ).

Using the Itô-Walsh isometry of the stochastic integral and Cauchy-Schwarz inequality, we obtain

I2 =: ‖X 2
R,t +2X 3

R,t‖2
2

=
∫ t

0

∫
R

E

[(∫
τ

0

∫
τ

r

∫
R2

ϕR,t(s,y)ϕR,t(r,z)Vr,z,s,y(τ,ξ )dsdrdydz
)2
]

×ϕ
2
R,t(τ,ξ )dξ dτ

=
∫ t

0

∫
R

∫
0≤r1≤s1≤τ

0≤r2≤s2≤τ

∫
R4

∏
i=1,2

dyidzidridsiϕR,t(si,yi)ϕR,t(ri,zi)

×‖Vri,zi,si,yi(τ,ξ )‖2ϕ
2
R,t(τ,ξ )dξ dτ.

Using (6.44) (6.45) and (6.46), we see that, for i = 1,2,

‖Vri,zi,si,yi(τ,ξ )‖2 ≤Ct p si(τ−si)
τ

(yi−
si

τ
ξ )p ri(si−ri)

si

(zi−
ri

si
yi)

and hence

I2 ≤Ct

∫ t

0

∫ t

0

∫ s1

0

∫ s2

0

∫ t

s1∨s2

∫
R

dξ dτdr1dr2ds1ds2ϕ
2
R,t(τ,ξ )

× ∏
i=1,2

∫
R2

ϕR,t(si,yi)ϕR,t(ri,zi)p si(τ−si)
τ

(yi−
si

τ
ξ )p ri(si−ri)

si

(zi−
ri

si
yi)dzidyi. (6.67)
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Integrating in the variable zi and using the semigroup property, we have

∫
R

ϕR,t(ri,zi)p ri(si−ri)
si

(zi−
ri

si
yi)dzi

=
1

ΣR,t

∫
QR

∫
R

p ri(t−ri)
t

(zi−
ri

t
xi)p ri(si−ri)

si

(zi−
ri

si
yi)dzidxi

=
1

ΣR,t

∫
QR

p ri(t−ri)
t +

ri(si−ri)
si

(
ri

t
xi−

ri

si
yi)dxi

=
si

riΣR,t

∫
QR

p s2
i (t−ri)

rit
+

si(si−ri)
ri

(
si

t
xi− yi)dxi. (6.68)

From (6.68), using the estimate ϕR,t(si,yi) ≤ t
siΣR,t

, and applying the semigroup property, we see

that

∫
R2

ϕR,t(si,yi)ϕR,t(ri,zi)p si(τ−si)
τ

(yi−
si

τ
ξ )p ri(si−ri)

si

(zi−
ri

si
yi)dzidyi

≤ t
Σ2

R,tri

∫
QR

∫
R

p s2
i (t−ri)

rit
+

si(si−ri)
ri

(
si

t
xi− yi)p si(τ−si)

τ

(yi−
si

τ
ξ )dyidxi

=
t

Σ2
R,tri

∫
QR

p s2
i (t−ri)

rit
+

si(si−ri)
ri

+
si(τ−si)

τ

(
si

t
xi−

si

τ
ξ )dxi

=
tτ

Σ2
R,trisi

∫
QR

p τ2(t−ri)
rit

+
τ2(si−ri)

risi
+

τ(τ−si)
si

(
τ

t
xi−ξ )dxi. (6.69)

Substituting the estimate (6.69) into (6.67), together with bound ϕR,t(τ,ξ ) ≤ t
τΣR,t

, and then inte-
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grating in ξ this time, we get

∫
R

ϕ
2
R,t(τ,ξ ) ∏

i=1,2

∫
R2

ϕR,t(si,yi)ϕR,t(ri,zi)p si(τ−si)
τ

(yi−
si

τ
ξ )p ri(si−ri)

si

(zi−
ri

si
yi)dzidyidξ

≤ t4

Σ6
R,tr1r2s1s2

∫
Q2

R

∫
R

∏
i=1,2

p τ2(t−ri)
rit

+
τ2(si−ri)

risi
+

τ(τ−si)
si

(
τ

t
xi−ξ )dxidξ

=
t4

Σ6
R,tr1r2s1s2

∫
Q2

R

p τ2(t−r1)
r1t +

τ2(s1−r1)
r1s1

+
τ(τ−s1)

s1
+

τ2(t−r2)
r2t +

τ2(s2−r2)
r2s2

+
τ(τ−s2)

s2

(
τ

t
(x1− x2))dx1dx2

=
t5

Σ6
R,tτr1r2s1s2

∫
Q2

R

p t(t−r1)
r1

+
t2(s1−r1)

r1s1
+

t2(τ−s1)
τs1

+
t(t−r2)

r2
+

t2(s2−r2)
r2s2

+
t2(τ−s2)

τs2

(x1− x2)dx1dx2

=
t5

Σ6
R,tτr1r2s1s2

∫
Q2

R

p2t( t
r1
+ t

r2
− t

τ
−1)(x1− x2)dx1dx2

=
4t5R

πΣ6
R,tτr1r2s1s2

∫
R

ϕ(ξ )e−2t( t
r1
+ t

r2
− t

τ
−1) ξ 2

R2 dξ , (6.70)

where in the last inequality we have used Lemma (A.10). Moreover, using the bound

t
r1

+
t
r2
− t

τ
−1≥ t− r1

2r1
+

t− r2

2r2
,

and substituting (6.70) into (6.67), we obtain

I2 ≤
Ctt5R
Σ6

R,t

∫
R

∫ t

0

∫ t

0

∫ t

r1

∫ t

r2

∫
τ

s1∨s2

ϕ(ξ )

τr1r2s1s2
e−t( t−r1

r1
+

t−r2
r2

) ξ 2

R2 dτds1ds2dr1dr2dξ

≤ Ctt5R
Σ6

R,t

∫
R

ϕ(ξ )dξ

∫ t

0

dτ

τ

(∫
τ

0

1
s

∫ s

0

1
r

e−s( s−r
r ) ξ 2

R2 drds
)2

.

By Lemma A.11, we get

I2 ≤
Ctt5R(logR)2

Σ6
R,t

∫
R

ϕ(ξ )
∫ t

0

dτ

τ

(∫
τ

0
log(e+

1
s
) log(e+

1
|ξ |

)ds,
)2

.

which implies, in view of Lemma 6.6 part (b),

I2 ≤Ct
1

R2 logR
(6.71)
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for all R≥ R0. Plugging (6.66) and (6.71) into (6.62), yields, for all R≥ R0,

‖DwR,t

(
DwR,t GR,t

)
‖2 ≤Ct(R logR)−1/2. (6.72)

Finally, from (6.60), (6.61) and (6.72), applying Theorem 3.13 we get

sup
x∈R
| fGR(t)(x)−φ(x)| ≤

Ct,γ(logR)2γ− 1
2

√
R

,

for all R≥ R0, which yields the desired estimate.
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Chapter 7

Rate of Convergence in Breuer-Major Theorem

Breuer and Major established a normal approximation result in [8] which can be seen as a general-

ization of central limit theorem and usually referred to as Breuer-Major theorem, see Theorem 7.3.

In this chapter we investigate the rate of convergence in total variation and Wasserstein distances

associated to this normal approximation. We first introduce Breuer-Major theorem in section 7.1.

We refer to the book Nourdin and Peccati [38] for the general treatment of the subject. Then we

recall some estimates on the rate of convergence in a fixed Wiener chaos in section 7.2, based

on Biermé, Bonami, Nourdin, and Peccati [6], Nourdin and Peccati [39]. In section 7.3 and sec-

tion 7.4, we present the results in Kuzgun and Nualart [30] with their proofs. In the last part of the

section 7.3, we include more results in the literature on the same problem, see Nualart and Zhou

[46], Nourdin, Peccati, and Yang [40], Nourdin, Nualart, and Peccati [41]. Finally, section 7.5 is

devoted to recall some technical results which are used in the proofs of the estimates given in this

chapter.

7.1 Breuer-Major theorem

Definition 7.1. X = {Xn}n∈N is called centered stationary Gaussian sequence with unit variance if

X is a centered, unit variance Gaussian family of random variables defined on a probability space

(Ω,F,P) where the covariance function E [XkXl] of X depends on k, l only through a function of

|k− l|.

Throughout, let ρ(k) := E [X0Xk] for k ∈ N and set ρ(k) := ρ(−k) for k ∈ Z<0.
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Proposition 7.2. There exists a real separable Hilbert space H, and an isonormal Gaussian process

over H, written (X(h))h∈H, with the property that there exists a set E = {ek}k∈Z ⊂ H such that

(i) E is a basis for H,

(ii) 〈ek,el〉H = ρ(k− l) for every k, l ∈ Z,

(iii) Xk = X(ek) for every k ∈ Z.

Let f ∈ L2(R,B(R),φ(x)dx) has mean zero. Recall from Corollary 2.14 that f has an Hermite

expansion

f (x) =
∞

∑
q=d

cqHq(x)

where cd 6= 0 and d ∈ N is called the Hermite rank. Consider the sequence of normalized partial

sums associated with the Gaussian subordinated process { f (Xn)}n∈N:

Fn :=
1√
n

n

∑
k=1

f (Xk),n≥ 1 (7.1)

Further let, for n ∈ N, σ2
n = Var [Fn] and define

Yn :=
Fn

σn
(7.2)

Theorem 7.3 (Breuer-Major Theorem). Let {Fn}n∈N be as defined in (7.1). Assume that

∑
k∈Z

|ρ(k)|d < ∞, (7.3)

and set

σ
2 =

∞

∑
q=d

q!c2
q

q

∑
k∈Z

∈ [0,∞). (7.4)

103



Then,

Fn→ σZ in distribution as n→ ∞

where Z is a standard normal random variable.

Proof of Breuer-Major theorem first given in the seminar paper [8] by Breuer and Major. Their

proof relied on the combinatorial cumulants/diagrams computations.

Now, we study convergence in total variation and wasserstein distances and in particular to

obtain rate of convergence results associated to these distances in Breuer-Major theorem.

7.2 Fixed Wiener chaos

In this section we will consider the case where f = Hd for some d ≥ 2. See the following conver-

gence in total variation result in [6].

Theorem 7.4. Let f = Hd and ρ ∈ ld for a fixed d ≥ 2. Then

lim
n→∞

dTV (Yn,Z) = 0.

Also, computing the third and fourth cumulants for the case f = Hd in [6] using the optimal

fourth moment result in [39] leads to the following optimal rate for fixed Wiener chaos.

Theorem 7.5. Let f (x) = Hd(x). Then, for all n≥ 1,

dTV (Yn,Z)≤
C
n

(
∑
|k|≤n
|ρ(k)|d−1

)2

∑
|k|≤n
|ρ(k)|2 + C√

n

(
∑
|k|≤n
|ρ(k)|3d/4

)2

111{d even } (7.5)

with a matching lower bound. In particular, if d = 2, and f (x) = H2(x) = x2−1, then

c√
n

(
∑
|k|≤n
|ρ(k)|3/2

)2

dTV (Yn,Z)≤
C√

n

(
∑
|k|≤n
|ρ(k)|3/2

)2

. (7.6)
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7.3 Total variation distance

The estimate (7.6) f = H2 in [39], with a matching lower bound, was extended to f ∈ D6,8(R,γ)

in [46]. This upper bound, however, cannot be obtained as a consequence of Theorem 3.10 and

requires a more intensive application of Stein’s method (see [39, 46]). In this section we present

the results in [30] with their proofs, and then recall recent results on the very some problem. In

order to state the main theorems and give a proof, we will set up some notation and recall some

preliminary results.

7.3.1 Some preliminaries

Define the shift operator Tk by

Tk(g)(x) =
∞

∑
m=d

cmHm−k(x) . (7.7)

To simplify the notation we will write Tk(g) = gk.

Suppose that F is a random variable in the first Wiener chaos of W of the form F = I1(ϕ),

where ϕ ∈ H has norm one. Then gk(F) has the representation

g(F) = δ
k(gk(F)ϕ⊗k) . (7.8)

Moreover, if g(F) ∈ D j,p for some j ≥ 0 and p > 1, then gk(F) ∈ D j+k,p. We refer to [46] for the

proof of these results.

Consider the isonormal Gaussian process in the proof of Corollary 2.14. That is, H = R, the

probability space (Ω,F,P) = (R,B(R),φ(x)dx) W (h) = h. For any k ≥ 0 and p ≥ 1, denote by

Dk,p(R,φ(x)dx) the corresponding Sobolev spaces of functions. Notice that if F = I1(ϕ) is an

element in the first Wiener chaos with ‖ϕ‖H = 1, then g ∈Dk,p(φ(x)dx) if and only if g(F) ∈Dk,p.

Given a function g ∈ L2(R,B(R),φ(x)dx) with expansion (Corollary 2.14), we denote by A(g)

the function in L2(R,B(R),φ(x)dx), whose Hermite coefficients are the absolute values of the
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coefficients of g, that is,

A(g)(x) =
∞

∑
q=d
|cq|Hq(x). (7.9)

The operator A is acting on L2(R,B(R),φ(x)dx) which replace the Hermite coefficients by its

absolute values. Clearly, for any integer k ≥ 0, and for any g ∈ Dk,2(φ(x)dx), we have

‖A(g)‖k,2 = ‖g‖k,2 .

Therefore, g belongs to Dk,2(φ(x)dx) if and only if A(g) ∈ Dk,2(φ(x)dx). If we consider functions

in Lp(R,B(R)φ(x)dx) for some real number p> 2, we do not know whether g∈Lp(R,B(R)φ(x)dx)

implies A(g) ∈ Lp(R,B(R),φ(x)dx). However, the following result holds.

Lemma 7.6. Suppose that A(g) ∈ Dk,2M(φ(x)dx) for some integers M ≥ 2 and k ≥ 0. Then g ∈

Dk,2M(φ(x)dx).

Proof. We will show the result only for k = 0, the case k≥ 1 being similar. Let g = ∑
∞
q=d cqHq and

define g+ = ∑
∞
q=d cq111{q:cq>0}Hq and g− = ∑

∞
q=d cq111{q:cq<0}Hq. Then g = g++g−. We will show

that g+ ∈L2M(R,B(R),φ(x)dx), and in the same way one can prove that g− ∈L2M(R,B(R),φ(x)dx).

Using Proposition 2.42, we can write

E
[
g2M
+

]
= lim

N→∞
E
[
(g(N)

+ )2M
]

=
∞

∑
q1,...,q2M=0

(
2M

∏
i=1

cqi111{q:cq>0}

)
∑

β∈Dq

∏
2M
i=1 qi!

∏1≤ j<k≤2M β jk!
,

where Dq is the set of nonnegative integers β jk, 1 ≤ j < k ≤ 2M, satisfying qi = ∑ j ork=i β jk,

i = 1, . . . ,2M. Clearly, this implies that E
[
g2M
+

]
≤ E

[
A(g)2M]< ∞.

The next lemma provides a criterion for a function g to satisfy A(g)∈D`,M(φ(x)dx) for integers

`≥ 0, M ≥ 3.

Lemma 7.7. Fix integers `≥ 0 and M ≥ 3. Let g be a function in g ∈ D`,2(φ(x)dx), with Hermite

106



expansion g = ∑
∞
k=0 cqHq. Then, A(g) ∈ D`,M(φ(x)dx) if

∞

∑
q=0
|cq|q

`
2−

1
4
√

q!(M−1)
q
2 < ∞. (7.10)

Proof. We have

D`A(N)(g) =
N

∑
q=`

|cq|q(q−1) · · ·(q− `+1)Hq−`.

Applying the estimate (see, for instance, [33])

‖Hq‖LM(R,B(R),φ(x)dx) = c(M)q−
1
4
√

q!(M−1)
q
2 (1+O(q−1)),

we obtain

‖D`A(N)(g)‖LM(R,φ(x)dx) ≤ c(M)

(
|c`|

N

∑
q=`

|cq|q(q−1) · · ·(q− `+1)(q− `)−
1
4

×
√
(q− `)!(M−1)

q−`
2 (1+O(q−1))

)

≤ c(M, `)

(
|c`|+

N

∑
q=`

|cq|q
`
2−

1
4
√

q!(M−1)
q−`

2 (1+O(q−1))

)
.

Therefore, taking into account that A(N)(g) converges in L2(Ω) to A(g) as N tends to infinity, we

conclude that E
[
(|D`A(g)|M)

]
< ∞ if (7.10) holds.

7.3.2 Main result

Theorem 7.8. Assume that f ∈L2(R,φ(x)dx) has Hermite rank d≥ 2 and satisfies A(g)∈D1,4(R,φ(x)dx).

Suppose that (7.3) holds true and let Yn be the random variable defined in (7.2). Then we have the

following estimates:
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(i) If d = 2, then

dTV(Yn,Z)≤Cn−
1
2

(
∑
|k|≤n
|ρ(k)|

) 1
2

+Cn−
1
2

(
∑
|k|≤n
|ρ(k)|

4
3

) 3
2

. (7.11)

(ii) If d ≥ 3, we have

dTV(Yn,Z)≤Cn−
1
2 ∑
|k|≤n
|ρ(k)|d−1

(
∑
|k|≤n
|ρ(k)|2

) 1
2

+Cn−
1
2

(
∑
|k|≤n
|ρ(k)|2

) 1
2
(

∑
|k|≤n
|ρ(k)|

) 1
2

. (7.12)

Proof. Consider a centered stationary Gaussian family of random variables X = {Xn,n≥ 0} with

unit variance and covariance ρ(k) = E [X0Xk] for k ≥ 0. We put ρ(−k) = ρ(k) for k < 0. Suppose

that H is a Hilbert space and ei ∈ H, i ≥ 0, are elements such that, for each i, j ≥ 0, we have

〈ei,e j〉H = ρ(i− j). In this situation, if {W (φ) : φ ∈H} is an isonormal Gaussian process, then the

sequence X = {Xn,n ≥ 0} has the same law as {W (en),n ≥ 0} and we can assume, without any

loss of generality, that Xn =W (en).

Consider the sequence fn and Yn introduced in (7.1), where g ∈ L2(R,B(R),φ(x)dx) has Her-

mite rank d ≥ 2 and let σ2
n = E

[
f 2
n
]
. Under condition (7.3), it is well known that as n→ ∞,

σ2
n → σ2, where σ2 has been defined in (7.4). . Notice that σ > 0 implies that σn is bounded

below for n large enough. Taking into account (7.8), we have the representation Yn = δ ( 1
σn

un),

where

un =
1√
n

n

∑
j=1

g1(X j)e j, (7.13)

and g1 is the shifted function introduced in (7.7).
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As a consequence of Proposition 3.10, we have the estimate

dTV (Yn,N)≤ 2
√

Var(〈DYn,
1

σn
un〉H)

≤C
√

Var(〈DYn,un〉H). (7.14)

Then, we can write

〈DYn,un〉H =
1
n

n

∑
i, j=1

g′(Xi)g1(X j)ρ(i− j).

The random variable g′(Xi)g1(X j) belongs to L2(Ω,F,Ω), but we do not know its chaos expansion.

For this reason, we need to use a limit argument. We have

〈DYn,un〉H = lim
N→∞

Φn,N ,

where the convergence holds in L1(Ω,F,P) and

Φn,N =
1
n

n

∑
i, j=1

N

∑
q1,q2=d

cq1cq2q1Hq1−1(Xi)Hq2−1(X j)ρ(i− j).

Therefore, by Fatou’s lemma

Var [〈DYn,un〉H] = E
[
〈DYn,un〉2H

]
− (E [〈DYn,un〉H])2

≤ liminf
N→∞

(
E
[
Φ

2
n,N
]
− (E [Φn,N)]

2
)

= liminf
N→∞

Var [Φn,N ] .
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We can write

Var [Φn,N ] =
1
n2

n

∑
i1,i2,i3,i4=1

N

∑
q1,q2,q3,q4=d

q1q3cq1cq2cq3cq4ρ(i1− i2)ρ(i3− i4)

×Cov(Hq1−1(Xi1)Hq2−1(Xi2),Hq3−1(Xi3)Hq4−1(Xi4)). (7.15)

The next step is to compute the covariance appearing in the previous formula. To do this we will

write the Hermite polynomials in terms of stochastic integrals and apply Lemma 7.17. That is,

Cov
[
Hq1−1(Xi1)Hq2−1(Xi2),Hq3−1(Xi3)Hq4−1(Xi4

]
= Cov

[
Iq1−1(e

⊗(q1−1)
i1 )Iq2−1(e

⊗(q2−1)
i2 ), Iq3−1(e

⊗(q3−1)
i3 )Iq4−1(e

⊗(q4−1)
i4

]
= E

[
Iq1−1(e

⊗(q1−1)
i1 )Iq2−1(e

⊗(q2−1)
i2 )Iq3−1(e

⊗(q3−1)
i3 )Iq4−1(e

⊗(q4−1)
i4 )

]
−E

[
Iq1−1(e

⊗(q1−1)
i1 )Iq2−1(e

⊗(q2−1)
i2 )

]
E
[
Iq3−1(e

⊗(q3−1)
i3 )Iq4−1(e

⊗(q4−1)
i4 )

]

and using Lemma 7.17,

E
[
Iq1−1(e

⊗(q1−1)
i1 )Iq2−1(e

⊗(q2−1)
i2 )Iq3−1(e

⊗(q3−1)
i3 )Iq4−1(e

⊗(q4−1)
i4 )

]
= ∑

β∈Dq

Cq,β ∏
1≤ j<k≤4

ρ(i j− ik)β jk , (7.16)

where

Cq,β =
∏

4
j=1(q j−1)!

∏1≤ j<k≤4 β jk!

and Dq is the set of nonnegative integers β jk, satisfying

q`−1 = ∑
j ork=`

β jk, for 1≤ `≤ 4. (7.17)
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On the other hand,

E
[
Iq1−1(e

⊗(q1−1)
i1 )Iq2−1(e

⊗(q2−1)
i2 )

]
E
[
Iq3−1(e

⊗(q3−1)
i3 )Iq4−1(e

⊗(q4−1)
i4 )

]
= (q1−1)!(q3−1)!ρq1−1(i1− i2)ρq3−1(i3− i4), (7.18)

if q1 = q2 and q3 = q4, and zero otherwise. Notice that (7.18) is precisely the term in the sum

(7.16) with β12 = q1− 1, β34 = q3− 1 and β13 = β14 = β23 = β24 = 0. As a consequence, we

obtain

Cov
[
Hq1−1(Xi1)Hq2−1(Xi2),Hq3−1(Xi3)Hq4−1(Xi4)

]
= ∑

β∈D ′q
Cq,β ∏

1≤ j<k≤4
ρ(i j− ik)β jk , (7.19)

where D ′q is the set of elements (β1, . . . ,β6), where the βk’s are nonnegative integers satisfying

(7.17) and

β13 +β14 +β23 +β24 ≥ 1.

Substituting (7.19) into (7.15) yields

Var [Φn,N ] =
1
n2

n

∑
i1,i2,i3,i4=1

N

∑
q1,q2,q3,q4=d

∑
β∈D ′q

Cq,β q1q3cq1cq2cq3cq4

×ρ
β12+1(i1− i2)ρβ13(i1− i3)ρβ14(i1− i4)ρβ23(i2− i3)ρβ24(i2− i4)ρβ34+1(i3− i4).

Replacing β12 +1 and β34 +1 by β12 and β34, the above equality can be rewritten as

Var [Φn,N ] =
1
n2

n

∑
i1,i2,i3,i4=1

N

∑
q1,q2,q3,q4=d

∑
β∈Eq

Kq,β cq1cq2cq3cq4 ∏
1≤ j<k≤4

ρ(i j− ik)β jk ,

where

Kq,β =
q1!(q2−1)!q3!(q4−1)!

(β12−1)!β13!β14!β23!β24!(β34−1)!

and Eq is the set of nonnegative integers β jk, 1 ≤ j < k ≤ 4, satisfying β13 +β14 +β23 +β24 ≥ 1,
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β12 ≥ 1, β34 ≥ 1 and

q` = ∑
j ork=`

β jk, for 1≤ `≤ 4.

This leads to the estimate

Var [Φn,N ]≤ sup
β

An,β

N

∑
q1,q2,q3,q4=d

∑
β∈Eq

Kq,β |cq1cq2cq3cq4|,

where

An,β =
1
n2

n

∑
i1,i2,i3,i4=1

∏
1≤ j<k≤4

|ρ(i j− ik)|β jk ,

and the supremum is taken over all sets of nonnegative integers β jk, 1 ≤ j < k ≤ 4, satisfying

β13 +β14 +β23 +β24 ≥ 1, β12 ≥ 1, β34 ≥ 1, β jk ≤ d for 1≤ j < k ≤ 4 and

d ≤ ∑
j ork=`

β jk, for 1≤ `≤ 4.

To complete the proof we need to show the following claims:

(a) We have
∞

∑
q1,q2,q3,q4=d

∑
β∈Eq

Kq,β |cq1cq2cq3cq4|< ∞. (7.20)

(b) If d = 2, then supβ An,β is bounded by a constant times the right-hand side of (7.11).

(c) If d ≥ 3, then supβ An,β is bounded by a constant times the right-hand side of (7.12).

Proof of (7.20): The main idea here is to identify the sum in (7.20) as the variance of a truncated

function composed with a fixed random variable X1. From our previous computations it follows
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that

N

∑
q1,q2,q3,q4=d

∑
β∈Eq

Kq,β |cq1cq2cq3cq4|=
N

∑
q1,q2,q3,q4=d

q1q3|cq1cq2cq3cq4|

×Cov(Hq1−1(X1)Hq2−1(X1),Hq3−1(X1)Hq4−1(X1))

= Var
[
A(g′)(N)(X1)A(g1)

(N)(X1)
]
,

where for each integer N≥ d, we denote by A(g′)(N) and A(g1)
(N) the truncated expansions of A(g′)

and A(g1), respectively, introduced in (7.44). By Proposition 7.18, (A(g′)(N))2 and (A(g1)
(N))2 are

convergent in L2(R,B(R),φ(x)dx) to A(g′)2 and A(g1)
2, respectively. Therefore,

∞

∑
q1,q2,q3,q4=d

∑
β∈Eq

Kq,β |cq1cq2cq3cq4|= Var
[
A(g′)(X1)A(g1)(X1)

]
< ∞.

Proof of (b): We will use ideas from graph theory to show the bound in the first part of Theorem

1. Recall the supremum is taken over all sets of nonnegative integers β jk, 1≤ j < k≤ 4, satisfying

β13 +β14 +β23 +β24 ≥ 1, β12 ≥ 1, β34 ≥ 1, β jk ≤ 2 for 1≤ j < k ≤ 4 and

2≤ ∑
j ork=`

β jk, for 1≤ `≤ 4. (7.21)

The exponents β jk induce an unordered simple graph on the set of vertices V = {1,2,3,4} by

putting an edge between j and k if β jk 6= 0. There are edges connecting the pairs of vertices (1,2)

and (3,4) and condition β13 + β14 + β23 + β24 ≥ 1 means that the graph is connected. Without

any loss of generality, we can assume that there is an edge between the vertices 2 and 3. Then,

condition (7.21) implies that the degree of each vertex is at least two. The worse case is when the

number of edges is minimal and the corresponding nonzero coefficients β jk are equal to one. So

far we have edges in (1,2), (3,4) and (2,3). There must be more edges because each vertex must

have at least degree two. There are two possible cases:
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(i) β14 = 1. In this case we have

An,β ≤
1
n2

n

∑
i1,i2,i3,i4=1

|ρ(i1− i2)ρ(i2− i3)ρ(i3− i4)ρ(i1− i4)| .

After making the change of variables i1 = i1, k1 = i1− i2, k2 = i2− i3 and k3 = i3− i4 and

using the inequality (A.1) with M = 3 and v = (1,1,1), we obtain

An,β ≤
1
n ∑
|ki|≤n,i=1,2,3

|ρ(k1)ρ(k2)ρ(k3)ρ(k1 + k2 + k3)| ≤
C
n

(
∑
|k|≤n
|ρ(k)|

4
3

)3

.

(ii) Suppose that we add two more edges to the graph formed by the edges (1,2), (2,3) and

(3,4). In this case, we obtain

An,β ≤
1
n2

n

∑
i1,i2,i3,i4=1

∣∣ρ(i1− i2)ρ(i2− i3)ρ(i3− i4)ρ(iα1− iβ1)ρ(iα2− iβ2)
∣∣ .

Making the change of variables i1 = i1, k1 = i1− i2, k2 = i2− i3 and k3 = i3− i4, we obtain

An,β ≤
1
n ∑
|ki|≤n,i=1,2,3

|ρ(k1)ρ(k2)ρ(k3)ρ(k ·v)ρ(k ·w)| ,

where v and w are two linearly independent vectors in Z3 and k = (k1,k2,k3). Using (A.3),

we obtain

An,β ≤
C
n ∑
|k|≤n
|ρ(k)| ,

which completes the proof of (b).

Proof of (c): This estimate can be obtained by exactly the same arguments as in the proof of

Theorem 4.5 in [46]. We omit the details.

Remark 7.9. We can show that both bounds in (7.11) are not comparable. In the particular case
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|ρ(k)| ∼ |k|−α as |k| → ∞, with α > 1
2 , we obtain:

dTV(Yn,Z)≤



Cn1−2α if 1
2 < α < 2

3 ,

Cn−
α

2 if 2
3 ≤ α < 1,

Cn−
1
2 (logn)

1
2 if α = 1,

Cn−
1
2 if α > 1.

Theorem 7.10. Assume that g ∈ L2(R,B(R),φ(x)dx) has Hermite rank d = 2 and satisfies A(g)∈

D3,8(R,B(R),φ(x)dx). Suppose that (7.3) holds true and let Yn be the random variable defined in

(7.2). Then the estimate (7.5) holds true.

Proof. With the notation used in the proof of Theorem 7.8 and using Proposition 3.11, we can

write

dTV (Yn,N)≤ (8+
√

32π)Var [〈DYn,un/σn〉H]+
√

2π|E
[
(Y 3

n )
]
|+
√

32πE
[
(|D2

un/σn
Yn|2)

]
+4πE

[
|D3

un/σn
Yn|
]

≤C
(

Var [〈DFn,un〉H]+ |E
[
F3

n
]
|+E

[
|D2

un
Fn|2

]
+
√

E
[
|D3

un
Fn|2)

])
.

Now, we want to estimate each of these terms separately.

Step 1. From Theorem 7.8 we know that

Var(〈DFn,un〉H ≤Cn−1
∑
|k|≤n
|ρ(k)|+Cn−1

(
∑
|k|≤n
|ρ(k)|

4
3

)3

. (7.22)

Step 2. We claim that

|E
[
(F3

n )
]
| ≤ C√

n

(
∑
|k|≤n
|ρ(k)|

3
2

)2

. (7.23)

115



We can write

F3
n =

1
n3/2

n

∑
i, j,k=1

g(Xi)g(X j)g(Xk).

Truncating the Wiener chaos expansion of the random variables g(Xi), as in the proof of Theo-

rem 7.8, we obtain

F3
n = lim

N→∞
Ψ

3
n,N := lim

N→∞

1√
n

n

∑
i=1

N

∑
q=2

cqHq(Xi),

where the convergence holds in L2(Ω,F,P) due to Proposition 7.18 because g ∈ L6(R,φ(x)dx).

Therefore,

E
[
(F3

n )
]
= lim

N→∞
E
[
(Ψ3

n,N)
]
.

We can write

E
[
(Ψ3

n,N)
]
=

1
n3/2

n

∑
i1,i2,i3=1

N

∑
q1,q2,q3=2

cq1cq2cq3E
[
(Hq1(Xi1)Hq2(Xi2)Hq3(Xi3)

]
=

1
n3/2

n

∑
i1,i2,i3=1

N

∑
q1,q2,q3=2

cq1cq2cq3E
[(

Iq1(e
⊗q1
i1 )Iq2(e

⊗q2
i2 )Iq3(e

⊗q3
i3 )

)]
. (7.24)

Using Lemma 7.17, we obtain

E
(

Iq1(e
⊗q1
i1 )Iq2(e

⊗q2
i2 )Iq3(e

⊗q3
i3 )

)
= ∑

β∈Dq

Cq,β ∏
1≤ j<k≤3

ρ(i j− ik)β jk , (7.25)

where

Cq,β =
∏

3
j=1 q j!

∏1≤ j<k≤3 β jk!

and Dq is the set of nonnegative integers β jk, 1≤ j < k ≤ 3, satisfying

q` = ∑
j ork=`

β jk, for 1≤ `≤ 3. (7.26)
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Then,

|E
[
(Ψ3

n,N)|
]
≤ sup

β

An,β

N

∑
q1,q2,q3=2

∑
β∈Eq

Cq,β |cq1cq2cq3|,

where

An,β =
1

n3/2

n

∑
i1,i2,i3=1

∏
1≤ j<k≤3

|ρ(i j− ik)|β jk ,

and the supremum is taken over all sets of nonnegative integers β jk, 1 ≤ j < k ≤ 3, satisfying

β jk ≤ 2 for 1≤ j < k ≤ 3 and

2≤ ∑
j ork=`

β jk, for 1≤ `≤ 3.

It is easy to see that to satisfy the above conditions, β jk ≥ 1 for all 1≤ j < k ≤ 3. Hence, we have

An,β ≤
1

n3/2

n

∑
i1,i2,i3=1

|ρ(i1− i2)ρ(i1− i3)ρ(i2− i3)|.

After making the change of variables i1 = i1, k1 = i1− i2, k2 = i1− i3 and using the inequality

(A.1) with M = 2 and v = (−1,1), we obtain

An,β ≤
1

n1/2 ∑
|k1|,|k2|≤n

|ρ(k1)ρ(k2)ρ(k2− k1)| ≤
C√

n

(
∑
|k|≤n
|ρ(k)|

3
2

)2

.

To complete the proof of (7.23), we need to show that:

∞

∑
q1,q2,q3=2

∑
β∈Dq

Cq,β |cq1cq2cq3|< ∞.

In fact,

lim
N→∞

N

∑
q1,q2,q3=2

∑
β∈Dq

Cq,β |cq1cq2cq3|= lim
N→∞

E
[(

A(g)N)3)]= E
[(
(A(g))3)]< ∞,

taking into account Proposition 7.18 and the fact that A(g) ∈ L6(R,φ(x)dx).
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Step 3. We proceed now with the estimation of E
[
(|D2

un
Fn|2)

]
. We can write

DunFn = 〈DFn,un〉H =
1
n

n

∑
i, j=1

g′(Xi)g1(X j)ρ(i− j)

and

D(〈DFn,un〉H) =
1
n

n

∑
i, j=1

(g′′(Xi)g1(X j)ei +g′(Xi)g′1(X j)e j)ρ(i− j).

Therefore,

D2
un

Fn = 〈un,D(〈DFn,un〉H)〉H

=
1

n3/2

n

∑
i, j,k=1

(g′′(Xi)g1(X j)g1(Xk)ρ(i− k)+g′(Xi)g′1(X j)g1(Xk)ρ( j− k))ρ(i− j). (7.27)

Because the random variables g′′(Xi), g1(X j), g1(Xk), g′(Xi) and g′1(X j) appearing in the above

expression belong to L2(Ω), their truncated Wiener chaos expansions convergence in L2(Ω), and,

as a consequence, D2
un

Fn = lim
N→∞

Φn,N in probability, where

Φn,N =
1

n3/2

n

∑
i1,i2,i3=1

N

∑
q1,q2,q3=2

cq1cq2cq3q1(q1−1)Hq1−2(Xi1)Hq2−1(Xi2)Hq3−1(Xi3)

×ρ(i1− i2)ρ(i1− i3)

+ cq1cq2cq3q1(q2−1)Hq1−1(Xi1)Hq2−2(Xi2)Hq3−1(Xi3)ρ(i1− i2)ρ(i2− i3).

Making the change of variables (q1,q2)→ (q2,q1) and (i1, i2)→ (i2, i1) in the second sum allows

us to put the two terms together, and we obtain

Φn,N =
1

n3/2

n

∑
i1,i2,i3=1

N

∑
q1,q2,q3=2

cq1cq2cq3(q1 +q2)(q1−1)Hq1−2(Xi1)Hq2−1(Xi2)Hq3−1(Xi3)

×ρ(i1− i2)ρ(i1− i3).
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Therefore, by Fatou’s lemma,

E
[
|D2

un
Fn|2

]
≤ liminf

N→∞
E
[
|Φ2

n,N |
]
.

Then,

|Φn,N |2 =
1
n3

n

∑
i1,...,i6=1

N

∑
q1,...,q6=2

CqHq1−2(Xi1)Hq2−1(Xi2)Hq3−1(Xi3)

×Hq4−2(Xi4)Hq5−1(Xi5)Hq6−1(Xi6)ρ(i1− i2)ρ(i1− i3)ρ(i4− i5)ρ(i4− i6),

where

Cq = cq1cq2cq3cq4cq5cq6(q1 +q2)(q1−1)(q4 +q5)(q4−1).

Using the product formula for multiple integrals (see Lemma 7.17), we get

E
[(
|Φn,N |2

)]
=

1
n3

n

∑
i1,...,i6=1

N

∑
q1,...,q6=2

∑
β∈Dq

Kq,β

(
∏

1≤k<l≤6
ρ(ik− il)βkl

)

×ρ(i1− i2)ρ(i1− i3)ρ(i4− i5)ρ(i4− i6),

where

Kq,β =
(q1 +q2)(q4 +q5)∏

6
j=1 cq j(q j−1)!

∏1≤k<l≤6 βkl!

and

Dq = {(βkl)1≤k<l≤6 : ∑
k or l= j

βkl = q j−1 for j = 2,3,5,6 and ∑
k or l= j

βkl = q j−2 for j = 1,4}.

Replacing β jk +1 by β jk for ( j,k) ∈ {(1,2),(1,3),(4,5),(4,6)}, yields

E
[(
|ψn,N |2

)]
=

1
n3

n

∑
i1,...,i6=1

N

∑
q1,...,q6=2

∑
β∈Cq

Lq,β

(
∏

1≤k<l≤6
ρ(ik− il)βkl

)
,
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where

Lq,β =
(q1 +q2)(q4 +q5)∏

6
i=1 cqi(qi−1)!

(β12 +1)!(β13 +1)!β14!β15!β16!β23!β24!β25!β26!β34!β35!β36!(β45 +1)!(β46 +1)!β56!

and

Cq = {(βkl)1≤k<l≤6 : ∑
k or l= j

βkl = q j for j = 1, . . . ,6 and β12, β13, β45.β46 ≥ 1}.

Then, we can write

E
[(
|ψn,N)|2

)]
≤ sup

β∈Cq

An,β

N

∑
q1,...,q6=2

∑
β∈Cq

|Lq,β |,

where

An,β =
1
n3

n

∑
i1,i2,i3,i4=1

∏
1≤ j<k≤6

|ρ(ii− ik)|β jk

and the supremum is taken over all sets of nonnegative integers β jk, 1 ≤ j < k ≤ 6, satisfying

β12, β13, β45, β46 ≥ 1, β jk ≤ 2 for 1≤ j < k ≤ 6 and

2≤ ∑
j ork=`

β jk, for 1≤ `≤ 6.

Then, the estimation follows as in the proof of the last part of Theorem 7.15.

Now, we need to show that

∞

∑
q1,...,q6=2

∑
β∈Cq

|Lq,β |< ∞. (7.28)

In fact,

N

∑
q1,...,q6=2

∑
β∈Cq

|Lq,β |=
N

∑
q1,...,q6=2

(
6

∏
i=1
|cqi|

)
(q1 +q2)(q1−1)(q3 +q4)(q4−1)

×E
[(

Hq1−2(X1)Hq2−1(X1)Hq3−1(X1)Hq4−2(X1)Hq5−1(X1)Hq6−1(X1)
)]

= E
[(

A(g′′)(N))2(A(g1)
(N))4

)]
≤ ‖A(g′′)(N)‖

1
3
L6(R,φ(x)dx)‖A(g1)

(N)‖
2
3
L6(R,φ(x)dx).
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Since A(g) ∈ D3,6, (A(g′′)(N))3 and (A(g1)
(N))3 converge to A(g′′) and A(g1), respectively, in

L2(R,φ(x)dx) by Proposition 7.18. Then, (7.28) is true.

Step 4. We proceed to the estimation of
√

E
[
(|D3

un
Fn|2)

]
. Taking the derivative in (7.27), yields

D(D2
un

Fn) =
1

n3/2

n

∑
i, j,k=1

g′′′(Xi)g1(X j)g1(Xk)ρ(i− j)ρ(i− k)ei

+g′′(Xi)g′1(X j)g1(Xk)ρ(i− j)ρ(i− k)e j +g′′(Xi)g1(X j)g′1(Xk)ρ(i− j)ρ(i− k)ek

+g′′(Xi)g′1(X j)g1(Xk)ρ(i− j)ρ( j− k)ei +g′(Xi)g′′1(X j)g1(Xk)ρ(i− j)ρ( j− k)e j

+g′(Xi)g′1(X j)g′1(Xk)ρ(i− j)ρ( j− k)ek.

This implies

〈un,D(D2
un

Fn〉H =
1
n2

n

∑
i1,i2,i3,i4=1

g′′′(Xi1)g1(Xi2)g1(Xi3)g1(Xi4)ρ(i1− i2)ρ(i1− i3)ρ(i1− i4)

+g′′(Xi1)g
′
1(Xi2)g1(Xi3)g1(Xi4)ρ(i1− i2)ρ(i1− i3)ρ(i2− i4)

+g′′(Xi1)g1(Xi2)g
′
1(Xi3)g1(Xi4)ρ(i1− i2)ρ(i1− i3)ρ(i3− i4)

+g′′(Xi1)g
′
1(Xi2)g1(Xi3)g1(Xi4)ρ(i1− i2)ρ(i2− i3)ρ(i1− i4)

+g′(Xi1)g
′′
1(Xi2)g1(Xi3)g1(Xi4)ρ(i1− i2)ρ(i2− i3)ρ(i2− i4)

+g′(Xi1)g
′
1(Xi2)g

′
1(Xi3)g1(Xi4)ρ(i1− i2)ρ(i2− i3)ρ(i3− i4).

Notice that the second, third and fourth terms are identical. This allows us to write

D3
un

Fn =
1
n2

n

∑
i1,i2,i3,i4=1

g′′′(Xi1)g1(Xi2)g1(Xi3)g1(Xi4)ρ(i1− i2)ρ(i1− i3)ρ(i1− i4)

+3g′′(Xi1)g
′
1(Xi2)g1(Xi3)g1(Xi4)ρ(i1− i2)ρ(i1− i3)ρ(i2− i4)

+g′(Xi1)g
′′
1(Xi2)g1(Xi3)g1(Xi4)ρ(i1− i2)ρ(i2− i3)ρ(i2− i4)

+g′(Xi1)g
′
1(Xi2)g

′
1(Xi3)g1(Xi4)ρ(i1− i2)ρ(i2− i3)ρ(i3− i4).

121



Then, we have

D3
un

Vn = lim
N→∞

Φn,N ,

where the convergence holds in probability and

Φn,N =
1
n2

n

∑
i1,i2,i3,i4=1

N

∑
q1,q2,q3,q4=2

C(1)
q Hq1−3(Xi1)Hq2−1(Xi2)Hq3−1(Xi3)Hq4−1(Xi4)

×ρ(i1− i2)ρ(i1− i3)ρ(i1− i4)

+C(2)
q Hq1−2(Xi1)Hq2−2(Xi2)Hq3−1(Xi3)Hq4−1(Xi4)ρ(i1− i2)ρ(i1− i3)ρ(i2− i4)

+C(3)
q Hq1−1(Xi1)Hq2−3(Xi2)Hq3−1(Xi3)Hq4−1(Xi4)ρ(i1− i2)ρ(i2− i3)ρ(i2− i4)

+C(4)
q Hq1−1(Xi1)Hq2−2(Xi2)Hq3−2(Xi3)Hq4−1(Xi4)ρ(i1− i2)ρ(i2− i3)ρ(i1− i4)

with

C(1)
q = cq1cq2cq3cq4q1(q1−1)(q1−2),

C(2)
q = 3cq1cq2cq3cq4q1(q1−1)(q2−1),

C(3)
q = cq1cq2cq3cq4q1(q2−1)(q2−2),

C(4)
q = cq1cq2cq3cq4q1(q2−1)(q3−1).

We can combine the first and third terms with the change of variables (q1,q2)→ (q2,q1) and

(i1, i2)→ (i2, i1). In this way we obtain

Φn,N =
1
n2

n

∑
i1,i2,i3,i4=1

N

∑
q1,q2,q3,q4=2

C̃(1)
q Hq1−3(Xi1)Hq2−1(Xi2)Hq3−1(Xi3)Hq4−1(Xi4)

×ρ(i1− i2)ρ(i1− i3)ρ(i1− i4)

+C̃(2)
q Hq1−2(Xi1)Hq2−2(Xi2)Hq3−1(Xi3)Hq4−1(Xi4)ρ(i1− i2)ρ(i1− i3)ρ(i2− i4)

+C̃(3)
q Hq1−1(Xi1)Hq2−2(Xi2)Hq3−2(Xi3)Hq4−1(Xi4)ρ(i1− i2)ρ(i2− i3)ρ(i1− i4)

=: Φ
(1)
n,N +Φ

(2)
n.N +Φ

(3)
n.N
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with

C̃(1)
q = cq1cq2cq3cq4(q1 +q2)(q1−1)(q1−2),

C̃(2)
q = cq1cq2cq3cq43q1(q1−1)(q2−1),

C̃(3)
q = cq1cq2cq3cq4q1(q2−1)(q3−1).

Then, by Fatou’s lemma,

E
[(
|D3

un
Vn|2

)]
≤ liminf

N→∞
E
[(
|Φn,N |2

)]
.

We are going to treat each term Φ
(i)
n,N , i = 1,2,3, separately.

Case i = 1. Let us first estimate E
[(
|Φ(1)

n,N |2
)]

. We have

E
(
(Φ

(1)
n,N)

2
)
=

1
n4

n

∑
i1,...,i8=1

N

∑
q1,...,q8=2

M(1)
q E

(
Hq1−3(Xi1)Hq2−1(Xi2)Hq3−1(Xi3)Hq4−1(Xi4)

×Hq5−3(Xi5)Hq6−1(Xi6)Hq7−1(Xi7)Hq8−1(Xi8)
)

×ρ(i1− i2)ρ(i1− i3)ρ(i1− i4)ρ(i5− i6)ρ(i5− i7)ρ(i5− i8),

where

M(1)
q =

(
8

∏
j=1

cq j

)
(q1 +q2)(q1−1)(q1−2)(q5 +q6)(q5−1)(q5−2).

This yields

E
[
Φ

(1)
n,N)

2
]
≤ 1

n4

n

∑
i1,...,i8=1

N

∑
q1,...q8=2

∑
β∈D (1)

q

K(1)
q,β

(
∏

1≤k<l≤8
|ρ(ik− il)|βkl

)

×|ρ(i1− i2)ρ(i1− i3)ρ(i1− i4)ρ(i5− i6)ρ(i5− i7)ρ(i5− i8)|,

where

K(1)
q,β =

(q1 +q2)(q5 +q6)∏
8
j=1 |cq j |(q j−1)!

∏1≤k<l≤8 βkl!
,
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and

D
(1)
q = {(βkl)1≤k<l≤8 : ∑

k or l= j
βkl = q j−1 for j = 2,3,4,6,7,8

and ∑
k or l= j

βkl = q j−3 for j = 1,5}.

Changing the exponents β jk + 1 in to β jk for ( j,k) ∈ {(1,2),(1,3),(1,4),(5,6),(5,7),(5,8)}, we

can write

E
[
](Φ

(1)
n,N)

2
]
≤ 1

n4

n

∑
i1,...,i8=1

N

∑
q1,...q8=2

∑
β∈C (1)

q

L(1)
q,β

(
∏

1≤k<l≤8
|ρ(ik− il)|βkl

)
,

where

L(1)
q,β =

(q1 +q)(q5 +q6)∏
8
j=1 |cq j |(q j−1)!

(β12−1)!(β13−1)!(β14−1)!(β56−1)!(β57−1)(β58−1)!∏(k,l)∈E βkl!
,

with E = {(k, l) : 1≤ k < l ≤ 8,(k, l) 6= (1,2),(1,3),(1,4),(5,6),(5,7),(5,8)} and

C
(1)
q = {(βkl)1≤k<l≤8 : ∑

k or l= j
βkl = q j for j = 1, . . . ,8 and β12, β13, β14,β56,β57,β58 ≥ 1}.

Then, we obtain

E
[
](Φ

(1)
n,N)

2
]
≤ sup

β∈C (11)
q

A(1)
n,β

N

∑
q1,...,q8=2

∑
β∈C (1)

q

|L(1)
q,β |,

where

A(1)
n,β =

1
n4

n

∑
i1,...,i8=1

∏
1≤ j≤k≤8

|ρ(ii− ik)|β jk

and the supremum is taken over all sets of nonnegative integers β jk, 1 ≤ j < k ≤ 8, satisfying

β12, β13, β14,β56,β57,β58 ≥ 1, β jk ≤ 2 for 1≤ j < k ≤ 8 and

2≤ ∑
j ork=`

β jk, for 1≤ `≤ 8.
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We need to estimate A(1)
n,β and to show that

∞

∑
q1,...,q8=2

∑
β∈C (1)

q

L(1)
q,β < ∞. (7.29)

Estimation of A(1)
n,β : We claim that

sup
β

A(1)
n,β ≤Cn−1

(
∑
|k|≤n
|ρ(k)|

3
2

)4

. (7.30)

As in the proof of Theorem 7.15, we will make use of ideas from graph theory. The exponents

β jk induce an unordered simple graph on the set of vertices V = {1,2,3,4,5,8} by putting an

edge between j and k whenever β jk 6= 0. Because β12,β13 ≥ 1, β14 ≥ 1, β56 ≥ 1,β57 ≥ 1 and

β58 ≥ 1, there are edges connecting the pairs of vertices (1,2), (1,3), (1,4), (5,6), (5,7) and

(5,8). Condition (7.41) means that the degree of each vertex is at least 2. Then we consider two

cases, depending whether graph is connected or not.

Case 1: Suppose that the graph is not connected. This means that β jk = 0 if j ∈ {1,2,3,4}

and k ∈ {5,6,7,8} and there is no edge between the sets V1 = {1,2,3,4} and V2 = {5,6,7,8}.

Therefore,

A(1)
n,β ≤ (A(0)

n,β )
2,

where

A(0)
n,β =

1
n2

n

∑
i1,...,i4=1

∏
1≤ j≤k≤4

|ρ(ii− ik)|β jk

and the nonnegative integers β jk, 1≤ j < k≤ 4, satisfy β12, β13, β14 ≥ 1, β jk ≤ 2 for 1≤ j < k≤ 4

and

2≤ ∑
j ork=`

β jk, for 1≤ `≤ 4.

As a consequence, β23 +β24 ≥ 1, β23 +β34 ≥ 1 and β24 +β34 ≥ 1. This means that at least two of

the indices β23, β24 and β34 is larger or equal to 1. Considering the worst case, we can assume that
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β23 = 1 and β34 = 1. This leads to

A(0)
n,β ≤ n−1

∑
|k1|,|k2|,|k3|≤n

|ρ(k1)ρ(k2)ρ(k3)ρ(k2− k1)ρ(k3− k2)|. (7.31)

Using (A.3) and Hölder’s inequality we obtain

A(0)
n,β ≤Cn−1

∑
|k|≤n
|ρ(k)| ≤Cn−

2
3

(
∑
|k|≤n
|ρ(k)|

3
2

) 2
3

.

Case 2: Suppose that the graph is connected. This means that there is an edge connecting the sets

V1 and V2. Suppose that βα0δ0 ≥ 1, where α0 ∈ {1,2,3,4} and δ0 ∈ {5,6,7,8}. We have then 7

nonzero coefficients β : β13, β13, β14, β56, β57, β58 and βα0δ0 . Because all the edges have at least

degree 2, there must be another nonzero coefficient β . Assume it is βα1δ1 . Then, the worse case

will be when β12 = β13 = β14 = β56 = β57 = β58 = βα0δ0 = βα1δ1 = 1 and all the other coefficients

are zero. Consider the change of variables i1− i2 = k1, i1− i3 = k2, i1− i4 = k3, i5− i6 = k4,

i5− i7 = k5, i5− i8 = k6, iα0 − iδ0 = k7. Then, it is easy to show that iα1 − iδ1 = k · v, where

k = (k1, . . . ,k5) and v is a 7-dimensional vector whose components are 0, 1 or−1. Applying (A.2)

and Hölder’s inequality yields

A(1)
n,β ≤Cn−2

(
∑
|k|≤n
|ρ(k)|

)6

≤Cn−2

(
∑
|k|≤n
|ρ(k)|

3
2

)4

.

This completes the proof of (7.30).

Proof of (7.29): We have

∞

∑
q1,...,q8=2

∑
β∈C (1)

q

L(1)
q,β = E

(∣∣∣(A(g′′′)(N))(X1)(A(g1)
(N)(X1))

3

+(A(g′)(N))(X1)(A(g′′)(N))(X1)(A(g1)
(N)(X1))

2
∣∣∣2) .
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Applying Hölder’s inequality, yields

∞

∑
q1,...,q8=2

∑
β∈C (1)

q

L(1)
q,β ≤ 2‖A(g′′′)(N)‖2

L8(R,φ(x)dx)‖A(g1)
(N)‖6

L8(R,φ(x)dx)

+2‖A(g′)(N)‖2
L8(R,φ(x)dx)‖A(g

′′)(N)‖2
L8(R,φ(x)dx)‖A(g1)

(N)‖4
L8(R,φ(x)dx).

By Equation 7.44 and our hypothesis, taking the limit as N tends to infinity, it follows that

∞

∑
q1,...,q8=2

∑
β∈C (1)

q

L(1)
q,β ≤ 2‖A(g′′′)‖2

L8(R,φ(x)dx)‖A(g1)‖6
L8(R,φ(x)dx)

+2‖A(g′)‖2
L8(R,φ(x)dx)‖A(g

′′)‖2
L8(R,φ(x)dx)‖A(g1)‖4

L8(R,φ(x)dx) < ∞.

Case i = 2. For E
[
[|Φ(2)

n,N |2]
]

we have

E
(
(Φ

(2)
n,N)

2
)
=

1
n4

n

∑
i1,...,i8=1

N

∑
q1,...,q8=2

M(2)
q E

(
Hq1−2(Xi1)Hq2−2(Xi2)Hq3−1(Xi3)Hq4−1(Xi4)

×Hq5−2(Xi5)Hq6−2(Xi6)Hq7−1(Xi7)Hq8−1(Xi8)
)

×ρ(i1− i2)ρ(i1− i3)ρ(i2− i4)ρ(i5− i6)ρ(i5− i7)ρ(i6− i8),

where

M(2)
q =

(
8

∏
j=1

cq j

)
9q1(q1−1)(q2−1)q5(q5−1)(q6−1)).

This yields

E
(
(Φ

(2)
n,N)

2
)
≤ 1

n4

n

∑
i1,...,i8=1

N

∑
q1,...q8=2

∑
β∈D (2)

q

K(2)
q,β

(
∏

1≤k<l≤8
|ρ(ik− il)|βkl

)

×|ρ(i1− i2)ρ(i1− i3)ρ(i2− i4)ρ(i5− i6)ρ(i5− i7)ρ(i6− i8)|,

where

K(2)
q,β =

9q1q5 ∏
8
j=1 |cq j |(q j−1)!

∏1≤k<l≤8 βkl!
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and

D
(2)
q = {(βkl)1≤k<l≤8 : ∑

k or l= j
βkl = q j−1 for j = 3,4,7,8

and ∑
k or l= j

βkl = q j−2 for j = 1,2,5,6}.

Changing the exponents β jk + 1 in to β jk for ( j,k) ∈ {(1,2),(1,3),(2,4),(5,6),(5,7),(6,8)}, we

can write

E
(
(Φ

(2)
n,N)

2
)
≤ 1

n4

n

∑
i1,...,i8=1

N

∑
q1,...q8=2

∑
β∈C (2)

q

L(2)
q,β

(
∏

1≤k<l≤8
|ρ(ik− il)|βkl

)
,

where

L(2)
q,β =

9q1q5 ∏
8
j=1 |cq j |(q j−1)!

(β12−1)!(β13−1)!(β24−1)!(β56−1)!(β57−1)(β68−1)!∏(k,l)∈E βkl!
,

with E = {(k, l) : 1≤ k < l ≤ 8,(k, l) 6= (1,2),(1,3),(2,4),(5,6),(5,7),(6,8)} and

C
(2)
q = {(βkl)1≤k<l≤8 : ∑

k or l= j
βkl = q j for j = 1, . . . ,8 and β12, β13, β24,β56,β57,β6,8 ≥ 1}.

Then, we have

E
(

Φ
(2)
n,N)

2
)
≤ sup

β∈C (12)
q

A(2)
n,β

N

∑
q1,...,q8=2

∑
β∈C (2)

q

|L(2)
q,β |,

where

A(2)
n,β =

1
n4

n

∑
i1,...,i8=1

∏
1≤ j≤k≤8

|ρ(ii− ik)|β jk

and the supremum is taken over all sets of nonnegative integers β jk, 1 ≤ j < k ≤ 8, satisfying

β12, β13, β24,β56,β57,β68 ≥ 1, β jk ≤ 2 for 1≤ j < k ≤ 8 and

2≤ ∑
j ork=`

β jk, for 1≤ `≤ 8.
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We need to estimate A(2)
n,β and to show that

∞

∑
q1,...,q8=2

∑
β∈C (2)

q

L(2)
q,β < ∞. (7.32)

Estimation of A(2)
n,β : We claim that

sup
β

A(2)
n,β ≤Cn−1

(
∑
|k|≤n
|ρ(k)|

3
2

)4

.

As in the proof of Theorem 7.15, we will make use of ideas from graph theory. The exponents

β jk induce an unordered simple graph on the set of vertices V = {1,2,3,4,5,8} by putting an edge

between j and k whenever β jk 6= 0. Because β12 ≥ 1, β13 ≥ 1, β24 ≥ 1, β56 ≥ 1,β57 ≥ 1 and

β68 ≥ 1, there are edges connecting the pairs of vertices (1,2), (1,3), (2,4), (5,6) (5,7) and (6,8).

Condition (7.41) means that the degree of each vertex is at least 2. Then we consider two cases,

depending whether graph is connected or not.

Case 1: Suppose that the graph is not connected. This means that β jk = 0 if j ∈ {1,2,3,4}

and k ∈ {5,6,7,8} and there is no edge between the sets V1 = {1,2,3,4} and V2 = {5,6,7,8}.

Therefore,

A(2)
n,β ≤ (A(0)

n,β )
2,

where

A(0)
n,β =

1
n2

n

∑
i1,...,i4=1

∏
1≤ j≤k≤4

|ρ(ii− ik)|β jk

and the nonnegative integers β jk, 1≤ j < k≤ 4, satisfy β12, β13, β24 ≥ 1, β jk ≤ 2 for 1≤ j < k≤ 4

and

2≤ ∑
j ork=`

β jk, for 1≤ `≤ 4.

As a consequence, β23 +β34 ≥ 1 and β14 +β34 ≥ 1. This means β34 ≥ 1 or both β23 and β14 are

larger or equal than one. There are two possible cases:
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(i) Suppose β34 ≥ 1, Considering the worst case, we can assume that β34 = 1. Then, applying

(A.1) and Hölder’s inequality, we obtain

A(0)
n,β ≤ n−1

∑
|k1|,|k2|,|k3|≤n

|ρ(k1)ρ(k2)ρ(k3)ρ(k1 + k3− k2)| ≤ n−1

(
∑
|k|≤n
|ρ(k)|

4
3

)3

.

By Hölder’s inequality, we can show that

(A(0)
n,β )

2 ≤Cn−1

(
∑
|k|≤n
|ρ(k)|

3
2

)4

.

(ii) Suppose β23 ≥ 1 and β14 ≥ 1. Then,

A(0)
n,β ≤ n−1

∑
|k1|,|k2|,|k3|≤n

|ρ(k1)ρ(k2)ρ(k3)ρ(k1 + k3)ρ(k1− k2)|,

and this case can be treated as (7.31).

Case 2: Suppose that the graph is connected. This means that there is an edge connecting the sets

V1 and V2. Suppose that βα0δ0 ≥ 1, where α0 ∈ {1,2,3,4} and δ0 ∈ {5,6,7,8}. We have then 7

nonzero coefficients β : β12, β13, β24, β56, β57, β68 and βα0δ0 . Because all the edges have at least

degree 2, there must be another nonzero coefficient β . Assume it is βα1δ1 . Then, the worse case

will be when β12 = β13 = β24 = β56 = β57 = β68 = βα0δ0 = βα1δ1 = 1 and all the other coefficients

are zero. Consider the change of variables i1− i2 = k1, i1− i3 = k2, i2− i4 = k3, i5− i6 = k4,

i5− i7 = k5, i6− i8 = k6, iα0 − iδ0 = k7. Then, it is easy to show that iα1 − iδ1 = k · v, where

k = (k1, . . . ,k5) and v is a 7-dimensional vector whose components are 0, 1 or −1. Then, using

(A.2) and Hölder’s inequality, we obtain

A(1)
n,β ≤Cn−2

(
∑
|k|≤n
|ρ(k)|

)6

≤Cn−2

(
∑
|k|≤n
|ρ(k)|

3
2

)4

.
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Proof of (7.32): We have

∞

∑
q1,...,q8=2

∑
β∈C (2)

q

L(2)
q,β = 9E

(∣∣∣A(g′′)(N)(X1)A(g′1)(X1)A(g1)(X1)
2
∣∣∣2)

≤ 9‖A(g′′)(N)‖2
L8(R,φ(x)dx)‖A(g

′
1)

(N)‖2
L8(R,φ(x)dx)‖A(g1)

(N)‖4
L8(R,φ(x)dx),

which converges as N→ ∞ to

9‖A(g′′)‖2
L8(R,φ(x)dx)‖A(g

′
1)‖2

L8(R,φ(x)dx)‖A(g1)‖4
L8(R,φ(x)dx) < ∞.

Case i = 3. The term E
[
[|Φ(3)

n,N |2]
]

can be handled in a similar way and we omit the details.

7.3.3 Some other results

In [46] this estimate is obtained applying Poincare inequality to estimate the variance plus twice

the integration-by-parts formula and for this reason one requires the function f to be four times

differentiable.

Theorem 7.11.

(i) For functions f ∈ D4,4(R,φ(x)dx) with Hermite rank d = 2, then (7.11).

(ii) For functions f ∈ D3d−2,4(R,φ(x)dx) with Hermite rank d ≥ 3, then (7.12).

In [41] assuming only f ∈ D1,4(R,φ(x)dx) and applying Gebelein’s inequality, instead of

Poincare’s inequality to estimate the variance of 〈DFn,un〉H the authors have obtained the fol-

lowing weaker bound. This result applies to the case where f (x) = |x|−E [|Z|].

Theorem 7.12.

(i) For functions f ∈ D1,4(R,φ(x)dx) with Hermite rank d = 2,

dTV(Yn,Z)≤
C√

n
.
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(ii) For even functions f ∈ D1,4(R,φ(x)dx),

dTV(Yn,Z)≤
C√

n

(
∑
|k|≤n
|ρ(k)|

)
.

In [41], using a non-trivial combination of Gabelein’s inequality and some new estimates in-

volving Malliavin operators, authors obtained following result under minimal regularity assump-

tions. In particular, this result applies to the functions f (x) = |x|p−E [|Z|p] for any p≥ 1.

Theorem 7.13.

(i) For functions f ∈ L2(R,φ(x)dx)∩D1,4(R,φ(x)dx) with Hermite rank d = 2,

dTV(Yn,Z)≤
C√

n

(
∑
|k|≤n
|ρ(k)|

)1/2

+
C√

n

(
∑
|k|≤n
|ρ(k)|4/3

)3/2

.

It is also important to note the following lemma from [41] to conclude that under the assump-

tions Theorem 7.13 convergence in total variation holds if ‖ρ‖l2 < ∞.

Lemma 7.14. Let {ρ(k)}k∈Z ∈ l2, and 0 < α < 2 and β ,γ > 0 be such that

2−α

2
≤ γ

β
.

Then,

lim
n→∞

1
nγ

(
∑
|k|≤n
|ρ(k)|α

)β

.
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7.4 Wasserstein distance

Theorem 7.15. For functions f ∈ L2(R,φ(x)dx) with Hermite rank d = 2,

dW(Yn,Z)≤
C√

n

(
∑
|k|≤n
|ρ(k)|

)1/2

+
C√

n

(
∑
|k|≤n
|ρ(k)|3/2

)2

provided A( f ) = ∑
∞
q=d |aq|Hq(x) ∈ D2,6(R,φ(x)dx).

Proof. Using the same ideas, we have the estimate

dW (Yn,Z)≤C
√

Var
[
〈D2Vn,vn〉H⊗2

]
+CE

[
(|〈DVn⊗DVn,Fn〉H⊗2|

]
. (7.33)

Therefore, we need to estimate the quantities

Var
[
〈D2Fn,vn〉H⊗2

]
and E

[
|〈DFn⊗DFn,vn〉H⊗2|

]
.

(i) Estimation of Var
[
〈D2Fn,vn〉H⊗2

]
. We will follow similar arguments as in the proof of Theo-

rem 7.8. First, we write

〈D2Fn,vn〉H⊗2 =
1
n

n

∑
i, j=1

g′′(Xi)g2(X j)ρ
2(i− j).

Using a limit argument, we obtain

〈D2Fn,vn〉H⊗2 = lim
N→∞

Φn,N ,

where the convergence holds in L1(Ω) and

Φn,N =
1
n

n

∑
i, j=1

N

∑
q1,q2=2

cq1cq2q1(q1−1)Hq1−2(Xi)Hq2−2(X j)ρ
2(i− j).
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Therefore, by Fatou’s lemma

Var
[
〈D2Fn,vn〉H⊗2

]
≤ liminf

N→∞
Var [Φn,N ] .

We can write

Var [Φn,N ] =
1
n2

n

∑
i1,i2,i3,i4=1

N

∑
q1,q2,q3,q4=2

q1(q1−1)q3(q3−1)cq1cq2cq3cq4ρ
2(i1− i2)ρ2(i3− i4)

×Cov(Hq1−2(Xi1)Hq2−2(Xi2),Hq3−2(Xi3)Hq4−2(Xi4)). (7.34)

With a very similar calculation as in the proof of Theorem 7.8, we have

Cov
[
Hq1−1(Xi1)Hq2−1(Xi2),Hq3−1(Xi3)Hq4−1(Xi4)

]
= ∑

β∈D ′q
Cq,β ∏

1≤ j<k≤4
ρ(i j− ik)β jk , (7.35)

where D ′q is the set of nonnegative integers β jk, 1≤ j < k ≤ 4, satisfying

q`−2 = ∑
j ork=`

β jk, for 1≤ `≤ 4 (7.36)

and

β13 +β14 +β23 +β24 ≥ 1.

Substituting (7.35) into (7.34) yields

Var [Φn,N ] =
1
n2

n

∑
i1,i2,i3,i4=1

N

∑
q1,q2,q3,q4=2

∑
β∈D ′q

Cq,β q1(q1−1)q3(q3−1)cq1cq2cq3cq4

×ρ
β12+2(i1− i2)ρβ13(i1− i3)ρβ14(i1− i4)ρβ23(i2− i3)ρβ24(i2− i4)ρβ34+2(i3− i4).
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Replacing β12 +2 and β34 +2 by β12 and β34, the above equality can be rewritten as

Var [Φn,N ] =
1
n2

n

∑
i1,i2,i3,i4=1

N

∑
q1,q2,q3,q4=2

∑
β∈Eq

Kq,β cq1cq2cq3cq4 ∏
1≤ j<k≤4

ρ(i j− ik)β jk ,

where

Kq,β =
q1!(q2−2)!q3!(q4−2)!

(β12−2)!β13!β14!β23!β24!(β34−2)!

and Eq is the set of nonnegative integers β jk, 1 ≤ j < k ≤ 4, satisfying β13 +β14 +β23 +β24 ≥ 1,

β12 ≥ 2, β34 ≥ 2 and

q` = ∑
j ork=`

β jk, for 1≤ `≤ 4.

We can write

Var [Φn,N ]≤ sup
β

An,β

N

∑
q1,q2,q3,q4=2

∑
β∈Eq

Kq,β |cq1cq2cq3cq4|,

where

An,β =
1
n2

n

∑
i1,i2,i3,i4=1

∏
1≤ j<k≤4

|ρ(i j− ik)|β jk ,

and the supremum is taken over all sets of nonnegative integers β jk, 1 ≤ j < k ≤ 4, satisfying

β13 +β14 +β23 +β24 ≥ 1, β12 ≥ 2, β34 ≥ 2, for 1≤ j < k ≤ 4 and

2≤ ∑
j ork=`

β jk, for 1≤ `≤ 4.

Then, in this case we have

An,β ≤
1
n2

n

∑
i1,i2,i3,i4=1

∣∣ρ(i1− i2)2
ρ(iα1− iα2)ρ(i3− i4)2∣∣

where α1 ∈ {1,2} and α2 ∈ {3,4}. After making the change i1 = i1, k1 = i1− i2, k2 = iα1− iα2 and

k3 = i3− i4, we obtain

An,β ≤
1
n ∑
|ki|≤n,i=1,2,3

∣∣ρ(k1)
2
ρ(k2)ρ(k3)

2∣∣≤ C
n ∑
|k|≤n
|ρ(k)| .

135



Now, it is left to show that

N

∑
q1,q2,q3,q4=2

∑
β∈Eq

Kq,β |cq1cq2cq3cq4|< ∞. (7.37)

We have

N

∑
q1,q2,q3,q4=2

∑
β∈Eq

Kq,β |cq1cq2cq3cq4|=
N

∑
q1,q2,q3,q4=2

q1(q1−1)q3(q3−1)|cq1cq2cq3cq4 |

×E
[
Hq1−2(X1)Hq2−2(X1)Hq3−2(X1)Hq4−2(X1)

]
= E

[
(A(g′′)(N))2(A(g2)

(N))2
]
.

By Hölder’s inequality, we obtain

N

∑
q1,q2,q3,q4=2

∑
β∈Eq

Kq,β |cq1cq2cq3cq4| ≤ ‖A(g
′′)(N)‖1/2

L4(R,γ)
‖A(g2)

(N)‖1/2
L4(R,γ)

.

From the hypothesis and the Proposition 7.18, (A(g′′)(N))2 and (A(g2)
(N))2 converge to A(g′′)2 and

A(g2)
2 in L2(R,γ) respectively. Hence, (7.37) holds.

(ii) Estimation of E
[
|〈DFn⊗DFn,vn〉H⊗2|

]
. We can write

〈DFn⊗DFn,vn〉H⊗2 = n−
3
2

n

∑
i, j,k=1

g′(Xi)g′(X j)g2(Xk)ρ(i− k)ρ( j− k).

We have, in the L1(Ω) sense,

〈DFn,un〉H = lim
N→∞

Ψn,N ,

where

Ψn,N = n−
3
2

n

∑
i, j,k=1

N

∑
q1,q2,q3=2

cq1cq2cq3q1q2Hq1−1(Xi)Hq2−1(X j)Hq3−2(Xk)ρ(i− k)ρ( j− k).
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Therefore, by Fatou’s lemma

E
[
〈DF⊗DF,v〉2H⊗2

]
≤ liminf

N→∞
E
[
Ψ

2
n,N
]
.

We can write

E
[
Ψ

2
n,N
]
= n−3

n

∑
i1,...,i6=1

N

∑
q1,...,q6=2

(
6

∏
i=1

cqi

)
q1q2q4q5

×E
[
Hq1−1(Xi1)Hq2−1(Xi2)Hq3−2(Xi3)Hq4−1(Xi4)Hq5−1(Xi5)Hq6−2(Xi6)

]
×ρ(i1− i3)ρ(i2− i3)ρ(i4− i6)ρ(i5− i6). (7.38)

Using Lemma 7.17, we obtain

E
[
Hq1−1(Xi1)Hq2−1(Xi2)Hq3−2(Xi3)Hq4−1(Xi4)Hq5−1(Xi5)Hq6−2(Xi6)

]
= ∑

β∈Dq

Cq,β ∏
1≤ j<k≤6

ρ(i j− ik)β jk , (7.39)

where

Cq,β =
(q3−2)!(q6−2)!∏

4
j=1,2,4,5(q j−1)!

∏1≤ j<k≤6 β jk!

and Dq is the set of nonnegative integers β jk, 1≤ j < k ≤ 6, satisfying

q`−1 = ∑
j ork=`

β jk, for `= 1,2,4,5 ,

q3−2 = ∑
j ork=3

β jk,

q6−2 = ∑
j ork=6

β jk. (7.40)
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Replacing (7.39) into (7.38) yields

E(Ψ2
n,N) = n−3

n

∑
i1,...,i6=1

N

∑
q1,...,q6=2

∑
β∈Dq

Cq,β

(
6

∏
i=1

cqi

)
q1q2q4q5

×ρ(i1− i3)ρ(i2− i3)ρ(i4− i6)ρ(i5− i6)
6

∏
j,k=1, j<k

ρ(i j− ik)β jk .

Substituting β13 + 1, β23 + 1, β46 + 1 and β56 + 1 by β13, β23, β46 and β56, respectively, we can

write

E(Ψ2
n,N) = n−3

n

∑
i1,...,i6=1

N

∑
q1,...,q6=2

∑
β∈Eq

Kq,β

(
6

∏
i=1

cqi

)
q1q2q4q5

6

∏
j,k=1, j<k

ρ(i j− ik)β jk ,

where

Kq,β =
β13β23β46β56(q3−2)!(q6−2)!∏

4
j=1,2,4,5(q j−1)!

∏
6
j,k=1, j<k β jk!

and Eq is the set of nonnegative integers β jk, 1≤ j < k ≤ 6, satisfying

q` = ∑
j ork=`

β jk, for `= 1, . . . ,6.

Hence

E(Ψ2
n,N)≤ sup

β

An,β

N

∑
q1,...,q6=2

∑
β∈Eq

Kq,β

(
6

∏
i=1
|cqi|

)
q1q2q4q5,

where

An,β = n−3
n

∑
i1,...,i6=1

∏
1≤ j<k≤6

|ρ(i j− ik)|β jk

and the supremum is taken over all sets of nonnegative integers β jk, j,k = 1, . . . ,6, j < k, satisfying

β13 ≥ 1, β23 ≥ 1, β46 ≥ 1, β56 ≥ 1 and

2≤ ∑
j ork=`

β jk, for `= 1, . . . ,6. (7.41)
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As in the proof of Theorem 7.8, we can show that

∞

∑
q1,...,q6=2

∑
β∈Eq

Kq,β

(
6

∏
i=1
|cqi|

)
q1q2q4q5 < ∞. (7.42)

In fact,

N

∑
q1,...,q6=2

∑
β∈Eq

Kq,β

(
6

∏
i=1
|cqi|

)
q1q2q4q5 =

N

∑
q1,...,q6=2

(
6

∏
i=1
|cqi|

)
q1q2q4q5

×E
[
Hq1−1(X1)Hq2−1(X1)Hq3−2(X1)Hq4−1(X1)Hq5−1(X1)Hq6−2(X1)

]
= E[(A(g′)(N))4(X1)(A(g2)

(N))2(X1)],

where, as before, A(g′)(N) and A(g2)
(N) are the truncated expansions of A(g′) and A(g2), respec-

tively. By Hölder’s inequality, we can write

N

∑
q1,...,q6=2

∑
β∈Eq

Kq,β

(
6

∏
i=1
|cqi|

)
q1q2q4q5 ≤ ‖A(g′)(N)‖

2
3
L6(R,γ)

‖A(g2)
(N)‖

1
3
L6(R,γ)

.

From our hypothesis and in view of Proposition 7.18, (A(g′)(N))3 and (A(g2)
(N))3 converge in

L2(R,γ) to A(g′) and A(g2), respectively. Thus, (7.42) holds true.

To complete the proof, it remains to show that,

sup
β

An,β ≤Cn−1

(
∑
|k|≤n
|ρ(k)|

3
2

)4

.

As in the proof of Theorem 7.8, in order to show this estimate we will make use of some ideas

from graph theory. The exponents β jk induce an unordered simple graph on the set of vertices

V = {1,2,3,4,5,6} by putting an edge between j and k whenever β jk 6= 0. Because β13 ≥ 1,

β23 ≥ 1, β46 ≥ 1 and β56 ≥ 1, there are edges connecting the pairs of vertices (1,3), (2,3), (4,6)

and (5,6). Condition (7.41) means that the degree of each vertex is at least 2. Then we consider

two cases, depending whether graph is connected or not.
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Case 1: Suppose that the graph is not connected. This implies that β12 ≥ 1, β45 ≥ 1 and there is

no edge between the sets V1 = {1,2,3} and V2 = {4,5,6}. The worse case is when β12 = β13 =

β23 = β45 = β46 = β56 = 1 and all the other exponents are zero. In this case we have the estimate

An,β ≤ n−1

(
∑

|k1|,|k2|≤n
|ρ(k1)ρ(k2)ρ(k1− k2)|

)2

.

Using (A.1), we obtain

An,β ≤Cn−1

(
∑
|k|≤n
|ρ(k)|

3
2

)4

.

Case 2: Suppose that the graph is connected. This means that there is an edge connecting the sets

V1 and V2. Suppose that βα0δ0 ≥ 1, where α0 ∈ {1,2,3} and δ0 ∈ {4,5,6}. We have then 5 nonzero

coefficients β : β13, β23, β46, β56 and βα0δ0 . Because all the edges have at least degree 2, there must

be at least two more nonzero coefficients β . Let us denote them by βα1δ1 and βα2δ2 .

Then, the worse case will be when β13 = β23 = β46 = β56 = βα0δ0 = βα1δ1 = βα2δ2 = 1 and all

the other coefficients are zero. Consider the change of variables i1− i3 = k1, i2− i3 = k2, i4− i6 =

k3, i5− i6 = k4, iα0 − iδ0 = k5. Then, iα1 − iδ1 = k · v and iα2 − iδ2 = k ·w, where k = (k1, . . . ,k5)

and v, w are 5-dimensional linearly independent vectors whose components are 0, 1 or −1. Then,

we can write, using (A.3) and Hölder’s inequality,

An,β ≤ n−2
∑

|ki|≤n,2≤i≤5

5

∏
i=2
|ρ(ki)||ρ(k ·v)ρ(k ·w)| ≤Cn−2

(
∑
|k|≤n
|ρ(k)|

)3

≤Cn−1

(
∑
|k|≤n
|ρ(k)|

3
2

)4

.

Remark 7.16. In the case g(x) = x2−1, the term Var
[
〈D2Fn,vn〉H⊗2

]
is zero because 〈D2Fn,vn〉H⊗2

is deterministic, and for the second term we get the estimate (7.6).
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7.5 Technical results

Following we present some technical results with their proofs which are used in the previous

sections. We first recall a formula for the expectation of the product of multiple stochastic integrals.

Lemma 7.17. Let qi ≥ 1 be integers, and consider functions fi ∈ H�qi , i = 1, . . . ,M. Then,

E

[
M

∏
i=1

Iqi( fi)

]
= ∑

β∈Dq

Cq,β
(
⊗M

i=1 fi
)

β
,

where

Cq,β =
∏

M
i=1 qi!

∏1≤ j<k≤M β jk!
,

Dq is the set of nonnegative integers β jk, 1≤ j < k ≤M satisfying

qi = ∑
j ork=i

β jk, i = 1 . . . ,M ,

and
(
⊗M

i=1 fi
)

β
denotes the contraction of β jk indexes between f j and fk, for all 1≤ j < k ≤M.

Proof. The product formula for multiple stochastic integrals (see, for instance, [49, Theorem

6.1.1], or formula (2.1) in [5] for M = 2) says that

M

∏
i=1

Iqi( fi) = ∑
P,ψ

Iγ1+···+γM

((
⊗M

i=1 fi
)
P,ψ

)
, (7.43)

where P denotes the set of all partitions {1, . . . ,qi} = Ji∪
(
∪k=1,...,M,k 6=iIik

)
, where for any i,k =

1, . . . ,M, Iik and Iki have the same cardinality, ψik is a bijection between Iik and Iki and γi = |Ji|.

Moreover,
(
⊗M

i=1 fi
)
P,ψ

denotes the contraction of the indexes ` and ψik(`) for any ` ∈ Iik and

any i,k = 1 . . . ,M. Then, the expectation E
(
∏

M
i=1 Iqi( fi)

)
corresponds to the case γ1 = · · ·= γM =

0, and, if we specify the number of partitions for fixed cardinalities β jk, we obtain the desired

formula.
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In general, given a random variable F ∈ L2(Ω,F,P) with chaos expansion (Theorem 2.13),

the fact that E [|F |p] < ∞ for some p > 2 does not imply that the chaos expansion converges in

Lp(Ω,F,P). The next proposition provides a partial result in this direction for p = 2M and in the

one-dimensional case, assuming that all the coefficients are nonnegative.

Proposition 7.18. Consider a function g ∈ L2(R,B(R)φ(x)dx), with an expansion of the form

g(x) = ∑
∞
q=0 cqHq(x). Suppose that cq ≥ 0 for each q ≥ 0 and g ∈ L2M(R,B(R)φ(x)dx) for some

M ≥ 1. Consider the truncated sequence

g(N) :=
N

∑
q=0

cqHq. (7.44)

Then (g(N))M converges in L2(R,B(R)φ(x)dx) to gM.

Proof. The proof will be done by induction on M. The result is clearly true for M = 1. Suppose

that M ≥ 2 and the result holds for M− 1. Using the product formula for Hermite polynomials,

which is a particular case of (7.43), we can write

(g(N))M =
N

∑
q1,...,qM=0

M

∏
i=1

cqiHqi

=
N

∑
q1,...,qM=0

(
M

∏
i=1

cqi

)
∑

(β ,γ)∈D̂q

Cq,β ,γHγ1+···+γM ,

where

Cq,β ,γ =
∏

M
i=1 qi!

∏
M
i=1 γi!∏1≤ j<k≤M β jk!

,

and D̂q is the set of nonnegative integers β jk, 1≤ j < k ≤M and γi, 1≤ i≤M, satisfying

qi = γi + ∑
j ork=i

β jk, i = 1, . . . ,M . (7.45)

As a consequence, we obtain

(g(N))M =
∞

∑
m=0

dm,NHm ,
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where

dm,N =
N

∑
q1,...,qM=0

(
M

∏
i=1

cqi

)
∑

(β ,γ)∈D̂q,γ1+···+γM=m

Cq,β ,γ .

The function gM belongs to L2(R,B(R)φ(x)dx). Therefore, it will have an expansion of the form

gM =
∞

∑
m=0

dmHm .

In order to compute the coefficients dm, taking into account that gHm ∈ L2(R,B(R)φ(x)dx) and,

by the induction hypothesis, (g(N))M−1 converges to gM−1 in L2(R,B(R)φ(x)dx) as N → ∞, we

can write

dm =
1

m!
E
[
gMHm

]
= lim

N→∞

1
m!

E
[
g(g(N))M−1Hm

]
.

To compute the expectation E
[
g(g(N))M−1Hm

]
we need the chaos expansion of (g(N))M−1Hm:

(g(N))M−1Hm =
N

∑
q1,...,qM−1=0

M−1

∏
i=1

cqi ∑
(β ′,γ ′)∈D̂ ′q

Cq,β ′,γ ′Hγ ′1+···+γ ′M
,

where

Cq,β ′,γ ′ =
m!∏

M−1
i=1 qi!

∏
M
i=1 γ ′i !∏1≤ j<k≤M β ′jk!

,

and D̂ ′q is the set of β ’s and γ’s such that (7.45) holds for i = 1, . . . ,M−1 and

m = γM + ∑
j ork=M

β
′
jk .

As a consequence,

E
[
(g(g(N))M−1Hm

]
=

∞

∑
q=0

q!cq

N

∑
q1,...,qM−1=0

M−1

∏
i=1

cqi ∑
(β ′γ ′)∈D̂ ′q,γ ′1+···+γ ′M=q

Cq,β ′,γ ′
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and, taking into account that the coefficients cq are nonnegative and putting q = qM,

dm =
∞

∑
q1,...,qM=0

M

∏
i=1

cqi ∑
(β ′,γ ′)∈D̂ ′q,γ ′1+···+γ ′M=qM

∏
M
i=1 qi!

∏
M
i=1 γ ′i !∏1≤ j<k≤M β ′jk!

.

We claim that for any (β ′,γ ′) ∈ D̂ ′q there exist a unique element (β ,γ) ∈ D̂q such that

M

∏
i=1

γi! ∏
1≤ j<k≤M

β jk! =
M

∏
i=1

γ
′
i ! ∏

1≤ j<k≤M
β
′
jk! .

Indeed, it suffices to take β jk = β ′jk if 1 ≤ j < k ≤M−1, γi = β ′iM for i = 1, . . . ,M−1, γM = γ ′M,

and β jM = γ ′j for 1 ≤ j ≤ M− 1. It follows that limN→∞ dm,N = dm. This implies that (g(N))M

converges in L2(R,B(R),φ(x)dx) to gM and allows us to complete the proof.
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Appendix A

Appendix

A.1 Some inequalities

We will give some particular versions of Brascamp-Lieb inequality in the following lemma which

is obtained in the paper [46] using Brascamp-Lieb inequality. For the general inequality, one can

consult the original paper by Brascamp-Lieb in [7].

Lemma A.1. Fix an integer M ≥ 2. Let f be a non-negative function on the integers and set

k = (k1, . . . ,kM). Then, we have:

(i) For any vector v ∈ RM whose components are 1 or −1

∑
k∈ZM

f (k ·v)
M

∏
j=1

f (k j)≤C

(
∑
k∈Z

f (k)1+ 1
M

)M

. (A.1)

(ii) For any vector v ∈ RM whose components are 0, 1 or −1, assuming ∑k∈Z f (k)2 < ∞,

∑
k∈ZM

f (k ·v)
M

∏
j=1

f (k j)≤C

(
∑
k∈Z

f (k)

)M−1

. (A.2)

(iii) Suppose M ≥ 3. Let v,w ∈ RM be linearly independent vectors, whose components are 0, 1

or −1. Suppose ∑k∈Z f (k)2 < ∞. Then,

∑
k∈ZM

f (k ·v) f (k ·w)
M

∏
j=1

f (k j)≤C

(
∑
k∈Z

f (k)

)M−2

. (A.3)
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See [20] for the proof of following extension of the Gronwall’s lemma.

Lemma A.2. Let fn : [0,T ]→ R+ be a function such that

fn+1(t)≤
∫ t

0
fn(s)g(t− s)ds

for all t ∈ [0,T ] and n ∈ N0, for a nonnegative function g which is integrable on [0,T ]. Suppose

that f0(t)≤M for all t ∈ [0,T ]. Then for all n ∈ N0 and t ∈ [0,T ],

fn(t)≤Man,

where (an)n∈N0 is a sequence of positive numbers with the property that ∑n a1/p
n < ∞ for all p≥ 1.

In particular, ∑n fn(t)1/p converges uniformly on [0,T ].

Remark A.3. Note that an’s only depends on g not fn’s. More precisely, an = G(T )nP(Sn ≤ T )

where G(T ) =
∫ T

0 g(s)ds and Sn = ∑
n
i=1 Xi where (Xi)i∈N are i.i.d. random variables on [0,T ] with

density g(s)/G(T ).

A.2 Brownian bridge

{B̂x,y
[a,b](s);s ∈ [a,b]} denote a d-dimensional Brownian bridge in the time interval [a,b] that goes

from the starting point x at time a to the end point y at time b. We also set B̂[a,b] := B̂0,0
[a,b]. We recall

that the Brownian bridge B̂x,y
[a,b] can be expressed as

B̂x,y
[a,b](s) = B̂[a,b](s)+

s−a
b−a

y+
b− s
b−a

x, x,y ∈ Rd. (A.4)

Proposition A.4. Fix an integer k ≥ 2. Let B j
[a,b], j = 1, . . . ,k be independent d-dimensional

Brownian bridges in [a,b] from 0 to 0, where [a,b] ⊂ [0, t]. Consider a measurable function α =
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(
α j,l)

1≤ j<l≤k : [a,b]→ Rk(k−1)/2. For each 1≤ j < l ≤ k we set

G j,l
ε :=

∫ b

a
Λε(B

j
[a,b](s)−Bl

[a,b](s)+α
j,l(s))ds.

Then the following results hold true:

(i) For each κ ∈ R,

sup
ε∈(0,1]

sup
α

E

[
exp

(
κ ∑

1≤ j<l≤k
G j,l

ε

)]
= Kt,κ < ∞, (A.5)

where the constant Kt,κ only depends on t and κ .

(ii) For each 1≤ j < l ≤ k, the random variables G j,l
ε converge in Lp(Ω) for all p≥ 2, as ε ↓ 0, to

a limit denoted by G j,l :=
∫ b

a Λ(B j
[a,b](s)−Bl

[a,b](s)+α j,l(s))ds.

(iii) We have, for all κ ∈ R,

lim
ε↓0

E

(
exp

(
κ ∑

1≤ j<l≤k
G j,l

ε

))
= E

(
exp

(
κ ∑

1≤ j<l≤k
G j,l

))
,

where the convergence is uniform in α and in a,b.

Proof. Property (A.5) has been proved in [26] (see Lemma 4.1 and the proof of (4.3) in Proposition

4.2 for details). For property (ii), in view of (A.5) it suffices to show that the convergence holds in

L2(Ω) as ε tends to zero. This is done by first showing that for any sequence εk ↓ 0, the sequence

of random variables G j.l
εk is Cauchy in L2(Ω). This Cauchy property is established in proof of

Proposition 4.2 in [26] for the case α j,l(x) = x j− xl and the case of a general α can be done in

a similar way. Finally, the convergence in (iii) is obtained by using properties (i) and (ii) and the

elementary inequality ea− eb ≤ 1
2(e

a + eb)(a−b) for a > b.
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A.3 Some elementary computations

Lemma A.5. For 0 < s < t, a,b ∈ Rd ,

pppt−s(a)ppps(b) = pppt(a+b)ppp s(t−s)
t

(b− s
t
(a+b)). (A.6)

Lemma A.6. For 0 < r < s < t and y,z,x ∈ R, we have

Kr,z,s,y(t,x)≤CtΦr,z,s,y(t,x),

where Φ and K are defined in (5.28) and (5.35) respectively.

Proof. Using the identity p2
t (a) =

1√
2πt

pt/2(a), we see that the first term in Kr,z,s,y(t,x) is bounded

by a constant depending on t times the first term in Φr,z,s,y(t,x). So, we estimate the integral term

in Kr,z,s,y(t,x) that we denote by I. Using the above identity for the square of the Gaussian together

with the identity (A.6) we get

I =
∫ t

s

∫
R

p2
t−θ (x−w)p2

θ−s(w− y)p2
θ−r(w− z)dwdθ

=
∫ t

s

∫
R

1√
(2π)3(t−θ)(θ − s)(θ − r)

p t−θ

2
(x−w)p θ−s

2
(w− y)p θ−r

2
(w− z)dwdθ

= p t−s
2
(x− y)

∫ t

s

∫
R

1√
(2π)3(t−θ)(θ − s)(θ − r)

p (t−θ)(θ−s)
2(t−s)

(w− y− θ − s
t− s

(x− y))

× p θ−r
2
(w− z)dwdθ .

Now, applying the semigroup property,

I =
p t−s

2
(x− y)

(2π)3/2

∫ t

s

1√
(t−θ)(θ − s)(θ − r)

p (t−θ)(θ−s)
2(t−s) + θ−r

2
(z− y− θ − s

t− s
(x− y))dθ .

Since for r < s < θ < t
θ − r

2
≤ (t−θ)(θ − s)

2(t− s)
+

θ − r
2
≤ t− r

2
,
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we have

p (t−θ)(θ−s)
2(t−s) + θ−r

2
(z− y− θ − s

t− s
(x− y))≤

√
t− r√
θ − r

p t−r
2
(z− y− θ − s

t− s
(x− y))

and

I ≤
p t−s

2
(x− y)

(2π)3/2

∫ t

s

√
t− r√

(t−θ)(θ − r)2(θ − s)
p t−r

2
(z− y− θ − s

t− s
(x− y))dθ

≤
√

t− rp t−s
2
(x− y)

(2π)3/2 J,

where

J =
∫ t

s

√
t− r

(θ − r)
√

(t−θ)(θ − s)
p t−r

2
(z− y− θ − s

t− s
(x− y))dθ .

Making the change of variables θ−s
t−s = γ and putting β = s−r

t−s > 0 yields θ − r = θ − s+ s− r =

(t− s)(γ +β ) and

J =
1

t− s

∫ 1

0
(1− γ)−

1
2 γ
− 1

2 (γ +β )−1 p t−r
2
(z− y+ γ(y− x))dγ.

We consider two cases:

Case 1: If z− y and z− x have same sign, then

p t−r
2
(z− y+ γ(y− x))≤ p t−r

2
(z− y)+ p t−r

2
(z− x).

Case 2: If z−y and z−x have different sign, suppose firstly that z−y> 0 and z−x= z−y+y−x<

0. Then, 0 < z− y <−(y− x); so |z− y|< |y− x| and

p t−r
2
(z− y+ γ(y− x))≤ 1√

π(t− r)
1{|y−x|>|z−y|}.
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Similarly, if z− y < 0 and z− x = z− y+ y− x > 0, then 0 > z− y > −(y− x), which implies

|z− y|< |y− x| and we end up with the same inequality.

Finally, noting that for β = s−r
t−s > 0

∫ 1

0
(1− γ)−1/2

γ
−1/2(γ +β )−1dγ =

1√
β (β +1)

=
t− s√

(t− r)(s− r)
,

we get

I ≤
√

t− rp t−s
2
(x− y)

(2π)3/2 J

≤CT
p t−s

2
(x− y)
√

s− r

(
p t−r

2
(z− y)+ p t−r

2
(z− x)+1{|y−x|>|z−y|}

)
≤C′T

p2
t−s(x− y)√

s− r

(
p2

t−r(z− y)+ p2
t−r(z− x)+1{|y−x|>|z−y|}

)
,

which then completes our proof by taking the square roots on both sides.

Lemma A.7. Let Φ be as in (5.28) and (t,x) ∈ R+×R . Then,

(a) For fixed 0 < r < s < t,

∫
R2

Φr,z,s,y(t,x)dydz≤Ct

(
1+

1
(s− r)1/4

)
.

(b) For fixed 0 < r < s < t,

∫
R2

Φ
2
r,z,s,y(t,x)dydz≤ Ct

(s− r)1/2(t− s)1/2

(
1+

1
(t− r)1/2

)
,

and

∫ t

0

∫ t

r

∫
R2

Φ
2
r,z,s,y(t,x)dydzdsdr ≤Ct ,

Proof. Fix 0 < r < s < t and x ∈ R. (a) Using the semigroup property and Gaussian integrals, we
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have

∫
R2

pt−s(x− y)
(

ps−r(y− z)+
pt−r(z− y)+ pt−r(z− x)+1{|y−x|>|z−y|}

(s− r)1/4

)
dydz

= 1+
1

(s− r)1/4 +
1

(s− r)1/4

∫
R2

pt−s(x− y)1{|y−x|>|z−y|}dydz

≤Ct

(
1+

1
(s− r)1/4

)
.

(b) Using (a+b)2 ≤ 2(a2 +b2),and p2
t (a) =

1
2πt pt/2(x) we have

∫
R2

p2
t−s(x− y)

(
p2

s−r(y− z)+
p2

t−r(z− y)+ p2
t−r(z− x)+1{|y−x|>|z−y|}

(s− r)1/2

)
dydz

=
Ct

(s− r)1/2(t− s)1/2

(
1+

1
(t− s)1/2

)∫
R2

dydzp(t−s)/2(x− y)

×
(

p(s−r)/2(y− z)+ p(t−r)/2(z− y)+ p(t−r)/2(z− x)+1{|y−x|>|z−y|}
)
.

Now, using semigroup property and integrating the last two term by elementary means, we obtain

∫
R2

Φ
2
r,z,s,y(t,x)dydz≤ Ct

(s− r)1/2(t− s)1/2

(
1+

1
(t− r)1/2

)
.

Finally, after the change of variables u = s−r
t−r , the inner time integral becomes

∫ t

r

ds
(s− r)1/2(t− s)1/2 =

∫ 1

0

du√
u(1−u)

du = π

and hence

∫ t

0

∫ t

r

∫
R2

Φ
2
r,z,s,y(t,x)dydzdsdr ≤Ct

∫ t

0

(
1+

1
(t− r)1/2

)
dr ≤Ct

which completes the proof.

Lemma A.8. Let F be a nonnegative random variable. Then E [F−p]< ∞ for all p≥ 2 if and only

if for all q ≥ 2, there exists C = C(q) > 0 and ε0 = ε0(q) > 0 such that P(F < ε) ≤ Cεq for all
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ε ≤ ε0.

Lemma A.9. Fix t > 0. Let φR,t and ϕR,t be defined as in (6.1) and (6.38). Then, there exists

R0 ≥ 1, depending on t, such that for all 0 < s < t and R≥ R0:

(a) ct ≤
∫

R
φ

2
R,t(s,y)dy≤Ct , where the lower bound holds for t/2 < s < t.

(b)
ct

s logR
≤
∫

R
ϕ

2
R,t(s,y)dy≤ Ct

s logR
where the lower bound holds for t/2 < s < t.

Proof. (a) We start with the upper bound. Using the semigroup property, we see that

∫
R

φ
2
R,t(s,y)dy =

1
σ2

R,t

∫
Q2

R

∫
R

pt−s(y− x1)pt−s(x2− y)dydx1dx2

=
1

σ2
R,t

∫
Q2

R

p2(t−s)(x1− x2)dx1dx2

≤ 1
σ2

R,t

∫
QR

∫
R

p2(t−s)(x1− x2)dx1dx2 =
2R
σ2

R,t
≤Ct ,

where the last bound follows from Lemma 6.1. To see the lower bound, let R≥ 1, and t/2 < s < t.

Then,

∫
R

φ
2
R,t(s,y)dy =

1
σ2

R,t

∫
Q2

R

p2(t−s)(x1− x2)dx1dx2 ≥
1

2σ2
R,t

∫
Q2

R/
√

2

p2(t−s)(y1)dy1dy2

≥ R√
2σ2

R,t

∫ 1/
√

2

−1/
√

2
p2(t−s)(y)dy≥ ct ,

where the last bound follows from Lemma 6.1.
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(b) Similarly, using the semigroup property, we see that

∫
R

ϕ
2
R,t(s,y)dy =

1
Σ2

R,t

∫
Q2

R

∫
R

p s(t−s)
t

(y− s
t
x1)p s(t−s)

t
(y− s

t
x2)dydx1dx2

=
1

Σ2
R,t

∫
Q2

R

p 2s(t−s)
t

(
s
t
(x1− x2))dx1dx2

=
t2

s2Σ2
R,t

∫
Q2

sR/t

p 2s(t−s)
t

(y1− y2)dy1dy2

≤ 2Rt
sΣ2

R,t
≤ Ct

s logR
,

for all R ≥ R0, where the last bound follows from Lemma 6.6. To see the lower bound, let t/2 <

s < t. Then, assuming R≥ 1,

∫
R

ϕ
2
R,t(s,y)dy =

t2

s2Σ2
R,t

∫
Q2

sR/t

p 2s(t−s)
t

(y1− y2)dy1dy2

≥
√

2tR
sΣ2

R,t

∫
Q sR

t
√

2

p 2s(t−s)
t

(z)dz

≥
√

2tR
sΣ2

R,t
P
(
|N| ≤ R

2

√
s

t(t− s)

)
≥
√

2tR
sΣ2

R,t
P
(
|N| ≤ 1

2
√

t

)
≥ ct

s logR
,

where the last bound follows from Lemma 6.6 and N denotes a N(0,1) random variable.

Lemma A.10. For all R, t > 0,

∫
Q2

R

pt(x1− x2)dx1dx2 =
4R
π

∫
R

ϕ(ξ )e−t ξ 2

R2 dξ ,

where

ϕ(ξ ) =
1− cosξ

ξ 2 .

Proof. See Appendix in [16].
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Lemma A.11. For all R≥ e and all s > 0,

1
s

∫ s

0

1
r

e−s( s−r
r ) ξ 2

R2 dr ≤ 7logR log(e+
1
s
) log(e+

1
|ξ |

).

Proof. See [16, Lemma A.1].

Lemma A.12. Let {Xs : s ∈ [0, t]} be a process such that
√

Var [Xs] is integrable on [0, t]. Then

√
Var
[∫ t

0
Xsds

]
≤
∫ t

0

√
Var [Xs]ds.
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