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Abstract

The overarching, foundational theory of our universe, the Standard Model, is a power-

ful predictor of known physics. However, there are still open questions in this model of

physics that are currently being explored, such as the nature of dark matter, the origin

of matter/anti-matter asymmetry, and the potential unification of fundamental forces.

One theory that could prove to be an answer to some of these questions is supersymme-

try (SUSY), an extension of the Standard Model. This analysis searches for evidence

of electroweak SUSY in compressed scenarios, where the mass of the parent sparticle

is close to that of its invisible child. This paper describes an analysis with leptonic

final states from proton-proton collisions at the Large Hadron Collider (LHC) with the

Compact Muon Solenoid detector. In addition to analyzing events with the Recursive

Jigsaw Reconstruction method, the analysis also presents a novel, shape-based method

for estimating the fake leptonic background. Preliminary exclusion limits show sensi-

tivity to higher parent sparticle masses and smaller, more compressed mass splittings

than previously probed at the LHC.
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Introduction

For the last half century, the Standard Model (SM) has been the prevailing theory of our universe,

from Newtonian physics to the quantum realm [1]. Particle physicists have used this model to pre-

dict new particles and their interactions, which have been subsequently confirmed by experiment

to stunning precision [2]. This theory is able to describe and predict how atoms are held together,

the radioactive decays that power nuclear reactors, and the way that sunlight interacts with our

eyes. With the confirmation of the existence of the Higgs boson in 2012 [3, 4], the Standard Model

may seem complete.

However, this is not the case. There are instances where the Standard Model is lacking. For

example, there is a mathematical divergence predicted in the squared mass of the Higgs boson.

Experimentalists know that this divergence is not observed, and as such is tenuously resolved

through fine-tuning. Searching for a more fundamental, satisfying answer to this problem is one

open question in the Standard Model. Another example of the Standard Model’s insufficiency is

that everyday, baryonic matter is only 5% of the known universe. Dark matter is theorized to make

up 25% of our universe, and there is no evidence yet of dark matter directly interacting with SM

particles.

Clearly, the Standard Model does not provide a complete picture of our universe. This has

encouraged physicists over the past several decades to search for evidence of physics beyond the

Standard Model (BSM). There have been a plethora of frameworks to address the open questions in

the Standard Model, but few have been as well-motivated as the theory of supersymmetry (SUSY),
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which puts forth a relatively intuitive attempt to create a more complete understanding of the

universe. While some theories tackle only one of the open questions in the Standard Model, SUSY

provides solutions to many. Formulated to address the quantum loop corrections of the Higgs

boson mass, SUSY also provides a stable dark matter candidate [5]. Particles within the SUSY

framework (known as sparticles) should theoretically be able to be detected at current or near-

future energies at the LHC. Specifically, the nature of SUSY suggests that these sparticles should

have masses close to that of the electroweak scale.

Even though the masses of the SUSY particles should be the same as their SM counterparts, we

have yet to observe SUSY particles at SM scales. This has lead particle physicists to believe that

SUSY exists in our universe as a broken symmetry, with the masses of the sparticles hypothesized

to exist at the TeV scale [5]. This energy scale is able to be probed with particle colliders like the

Large Hadron Collider (LHC) [6].

However, searching for SUSY is not without its challenges. At the LHC, many Standard Model

processes produce finals states similar to those of SUSY production and decays, making it difficult

to discern between signal and background processes. Additionally, there are areas of experimental

phase space that are difficult to probe because the mass of the parent sparticle is so close to that of

its invisible child sparticle. When these masses are close to each other, it is known as compression.

In the compressed regime, most of the energy from the parent sparticle goes to producing an on-

shell child sparticle, leaving little energy left over for the momentum of this child. Thus, these

events results in soft decay products, with most of the parent sparticle energy going towards the

invisible child’s mass. These low momenta particles can difficult to accurately reconstruct in the

Compact Muon Solenoid (CMS) detector [7], whose technology will be discussed in greater detail

in Section 1.2.

Despite the challenges of these compressed scenarios, this analysis is specifically designed

to target this area of phase space. The Recursive Jigsaw Reconstruction (RJR) method [8, 9] is

the main analysis strategy. This method algorithmically extracts information from events at the

LHC and is especially useful for events with missing energy from supersymmetric decays. One of
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the signatures we look for in this analysis is the presence of missing transverse energy, or MET

(~��ET ). More accurately, this quantity is the negative vector sum of the transverse momentum of the

reconstructed particles in an event. MET could be due to neutrinos, or a BSM particle that is stable

and does not interact with SM matter, which is why we want to focus on events with MET in this

analysis.

The underlying idea of RJR is to use the various rest frames and the associated boosts within

an event to focus in on the missing energy, information that escapes the CMS experiment without

detection. The mechanics of this method are explored in more depth in Section 2.1. The analysis

uses two main RJR kinematic variables, RISR and M⊥, with some auxiliary variables and physics

object categorization as well.

While we have to account for the Standard Model background in our analysis, we also have

to estimate how much of the overall background comes from particles that the detector either

mismeasured or misfired on, leading to “fake" physics objects in our reconstruction. One such

source of fake background comes in the form of fake leptons. In this analysis, fake leptons are

defined as “non-prompt" electrons or muons, not originating from the decay of a W /Z boson,

photon, or heavy SUSY particle, and other physics objects that were misidentified as leptons. The

nature of fake leptons is examined in more detail in Section 3.

Because the physics of this background is different from other, “prompt" SM processes, fake

backgrounds must be accounted for separately from dominant SM backgrounds. Traditionally,

a “fake rate," which is the probability of a fake lepton to pass the prompt lepton selection, is

measured in a fake enriched region of phase space, which is a region where we expect to see lots of

non-prompt and misidentified leptons. This fake rate is then extrapolated from this control region

to the region of interest, where the signal would appear. Despite the ubiquitous use of this method

in high energy physics analyses, this fake rate method typically does not take into account how

the physics behind these fake processes could potentially alter the “shape" of the data, or how the

events are distributed. By imposing simulated variations on template shapes, our analysis is able

to account for changes in the shape of the data due to fake leptons. The traditional fake lepton

3



estimation method and our novel shape-based method are both elaborated on in Sections 3.2 and

3.3 respectively. Finally, preliminary results for the overall analysis as well as the results of the

additional fit systematics are presented in Section 4. Before continuing into the details of this

particular analysis, we begin with some theoretical motivations for SUSY.

1.1 Supersymmetry and its motivation

Part of what makes SUSY such an attractive theory is that it resolves to many of the Standard

Model’s open questions, like a candidate for the mystery of dark matter. One of the insufficiencies

of the SM that SUSY resolves is the quantum loop corrections to the squared mass of the Higgs

boson. Because the Higgs boson couples to all SM particles to provide them with mass, these

particles appear virtually in Higgs self-couplings. Examples of these couplings can be seen in

Figure 1.1, where the right figure shows a Higgs coupling to a fermion and the left shows the same

for a superpartner of an SM fermion.

Each of the terms contributing to the quadratic divergence of the Higgs mass is proportional to

the squared coupling constant, λ
2, and the ultraviolet momentum cutoff, ΛUV. This cutoff, used to

regulate the loop integral of Feynman diagrams (such as those in Figure 1.1) as an upper bound, can

be interpreted as the lowest energy scale at which new physics would enter. There are contributions

from bosons as well as fermions to the Higgs squared mass. Both of these types of terms are shown

in Equation 1.1.1, with the λ f terms corresponding to the fermionic contribution (Figure 1.1 left)

and the λS terms corresponding to the bosonic contributions (Figure 1.1 right). These contributions

Figure 1.1: Quantum loop corrections to the Higgs boson with a fermion f (right) and scalar
sparticle S (left). [5]
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are proportional to the squared masses of their corresponding particle mass, m2. Since the top quark

is the heaviest SM particle, its squared mass provides the largest contribution to these corrections.

∆m2
H =−

|λ f |
2

8π
2 Λ

2
UV + · · ·+ λS

16π
2

[
Λ

2
UV−2m2

Sln(ΛUVmS)+ . . .
]

(1.1.1)

If ΛUV is around the scale of the Planck mass, MP = (8πGNewton)
−1/2 = 2.4×1018 GeV, that

means that these corrections are more than 30 orders of magnitude larger than the squared mass

value given from the experimentally obtained value of mH =
√

2λv2 = 125 GeV. Known as the

hierarchy problem, this discrepancy in scale between the Higgs mass and Planck mass is tenuously

resolved through fine-tuning in the Standard Model. This fine-tuning is the process through which

the parameters in the Standard Model are adjusted to match to observation [5]. Still, particle

physicists have been striving for a more satisfying explanation for this discrepancy.

Figure 1.2: Standard Model particles with their supersymmetric counterparts. Credit: Barbara
Aulicino

Supersymmetry (SUSY) [5] offers a potential solution to the hierarchy problem. This theory
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relates the two types of particles in the Standard Model, fermions and bosons, through superpart-

ners of the opposite type. A supersymmetric transformation turns an integer spin boson into a

half-integer spin fermion, and vice versa. The naming convention is that a SM fermion’s ( f ) super-

partner is a sfermion ( f̃ ), and the superpartner of a gauge boson (V ) is a gaugino (Ṽ ). The Minimal

Supersymmetric Standard Model (MSSM) consists of the same SU(3)×SU(2)×SU(1) symmetry

of the Standard Model, in addition to its eponynous supersymmetry, the transformation that takes

fermions to bosons and vice versa. This theory also features a Higgs doublet to ensure the can-

cellation of the quadratic divergent terms and to provide mass to both kinds of charged fermions

within a generation [1]. The supersymmetric particles can be seen with their SM counterparts in

Figure 1.2.

Extending the symmetries of the SM in this way would predict the MSSM superpartners to

have the same masses as their SM counterparts, if SUSY was an unbroken symmetry. This means

that evidence for SUSY would have been found long ago with masses as light as mẽ = me =

0.511 MeV. This mass inconsistency suggests that SUSY is a broken symmetry at the scale we

are currently able to probe. Even if the masses between superpartners are not degenerate, the

dimensionless coupling constants between scalar and fermionic particles must still be related to

avoid the quadratic divergences that we are trying to cancel. Thus, the supersymmetric Lagrangian

can be written as the linear combination of two terms: LSUSY, a supersymmetrically invariant term

which carries all of the gauge and Yukawa interactions, and Lsoft, which violates supersymmetry

with nondegenerate mass terms and coupling constants with a positive mass dimension [5].

The terms in the SUSY Lagrangian that contribute to the breaking of this symmetry become

negligible at energy scales higher than those of the SUSY particle masses. It follows to assume that

the scale of SUSY breaking is tied to the scale of electroweak symmetry breaking, stabilizing the

gauge hierarchy and providing a coherent interpretation for why the electroweak energy scale is so

much lower than the Planck scale [1]. This soft supersymmetry breaking implies that masses of

superpartners should exist at around the TeV energy scale to avoid the fine tuning currently in the

SM to bring these energy scales into agreement. In other words, SUSY at the electroweak scale
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is well motivated because the terms that contribute the most to the Higgs corrections are due to

heavier fermions, whose superpartners’ masses should be close to their SM counterparts (around

the TeV level).

In addition to addressing the Higgs quantum corrections, SUSY also provides a candidate for

dark matter, which comprises 25% of the known universe and remains unaccounted for in the

Standard Model [1]. In R-parity conserving SUSY, the lightest supersymmetric particle (LSP)

must be stable. The R-parity of a particle is defined as (−1)3(B−L)+2s, where B is the baryon

number, L is the lepton number, and s is the spin. Supersymmetric particles have an R-parity value

of -1, which means that in R-parity conserving models, each sparticle must decay into a final state

that contains an odd number of LSPs, with the LSP being a stable SUSY particle that does not

decay [5]. In line with cosmological constraints, the LSP must be electrically and color neutral—

and weakly interacting with SM matter—potentially showing up in detectors in the form of missing

momenta [1]. These features make the LSP a promising candidate for dark matter.

Another SM discrepancy that the MSSM addresses is force unification. Already within the SM,

two of the fundamental forces, the electromagnetic and the weak force, are unified at probeable

energy scales. Extending the SM into the MSSM allows for the unification of the three gauge

couplings at an energy scale of around MU ≈ 3×1016 GeV [10].

This analysis specifically targets a wide range of R-parity conserving MSSM models, which

provide a stable dark matter candidate in the form of the lightest supersymmetric particle (LSP).

These types of models also enforce pair production of sparticles. For the scope of this paper, we

will focus on interpretations in the form of electroweakino pair production (the TChiWZ model,

Figure 1.3).

Clearly, supersymmetry is a highly motivated theory with potentially paradigm-shifting im-

plications. However, searching for SUSY in the electroweak sector, while well motivated by SM

masses, is difficult in part due to the fact that sparticles have small production cross-sections mean-

ing that if they are produced at the LHC, they are not produced very often. Additionally, the phase

space to search within is quite large, with many combinations of superpartner masses, decays, and
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couplings available to be experimentally tested. One area of this phase space that has been noto-

riously difficult to probe is the compressed sector, where the mass of the parent sparticle is very

close to that of the LSP. For example a compressed electroweakino pair production, demonstrated

in in Figure 1.3, would mean that the mass of the intermediate (parent) stop particle, m
χ̃

0
1
, is close

to that of the LSP, m
χ̃

0
1
, such that the visible decay products (any leptons or b-jets originating from

the top quark) would have little to no momentum. Compression could also occur in certain signal

processes that include top quarks where the mass splitting is close to that of the top mass. These

compressed decays can lead to off-shell bosons and tops, and ultimately soft final state particles,

which are challenging to reconstruct in detectors at the LHC.

p

p χ̃
0

2

χ̃
±

1

W±

χ̃
0

1

χ̃
0

1

Z

Figure 1.3: The Feynman diagram for the electroweakino pair production (TChiWZ) process
considered in this paper.

1.2 The Large Hadron Collider and Compact Muon Solenoid Detector

The Large Hadron Collider (LHC) is a 27 kilometer circumference ring located in Geneva, Switzer-

land. Within this ring, packets of protons are accelerated to nearly the speed of light, controlled

by magnets and radiofrequency cavities, with a current collision center of mass energy of 13 TeV

[6]. These packets of protons collide at certain points around the accelerator within experiments

known as detectors. Currently, the collision rate at the LHC is 40 MHz, or proton collisions every

25 nanoseconds. Only a fraction of this data is actually recorded though. Since there is so much

data produced at the collider, we employ a system of triggers to only record certain, interesting

8



Figure 1.4: Sliced view of the CMS detector.

events. At the Level-1 trigger, data are recorded at a rate of 100 KHz. This rate is further reduced

with the High Level Trigger to 1 KHz.

There are several experiments at the LHC, and one of the general purpose detectors is the

Compact Muon Solenoid (CMS) detector. This detector is comprised of five main layers, each

with a specific technology to measure different aspects of a collider event [7]. The different layers

of the CMS detector can be seen in Figure 1.4.

The innermost part of the CMS detector is the tracking layer. The CMS tracker is comprised of

silicon pixel detectors closest to the collision, or interaction point, and silicon strip trackers further

away. The particles that come from the collision, or from decays of heavier particles produced in

the collision, leave tracks in this layer. The next layer is the electromagnetic calorimeter (ECAL),

which measures energy deposits from charged particles. This is a hermetic calorimeter, meaning

it covers the entire range of the azimuthal angle, −π ≤ φ ≤ π , and the pseudorapidity up to 3

(|η |< 3) [7]. It is also homogenous, which means it is made of one solid material, lead tungstate,
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that is separated into about 70,000 crystals. Generally, electromagnetic particles like electrons

and photons are stopped by this layer. The hadron calorimeter, surrounding the ECAL, measures

energy deposits from hadrons. Unlike the ECAL, the hadron calorimeter is a sampling calorimeter.

It has alternating layers of copper absorber plates and plastic scintillator tiles [11].

Surrounding the hadronic calorimeter is the CMS’s eponymous solenoid, a superconducting

magnet with a field strength of about 3.8 Tesla. A charged particle’s path curves in a magnetic

field, and the amount of curvature is proportional to the magnetic field strength and to the particle’s

momentum. Since particles produced at the LHC have relatively high momentum, we need a strong

magnetic field to curve their trajectory enough to be measurable. Since this curvature depends on

the particle’s momentum and electric charge, we can use the curvature under the solenoid to help

identify particles and measure their momenta. The momentum component of particles produced

at the LHC that we are often interested in is the transverse momenta, pT . Following the beam

line down the orange tube in Figure 1.4, pT is the momentum component transverse to this axis.

This quantity is longitudinally invariant, and therefore conserved in the proton collisions that CMS

measures, which means that from this quantity, we are able to calculate missing transverse energy.

Finally, the outermost layer of the CMS detector is the muon chambers. Muons are similar

to electrons, except that they are about 200 times heavier and are only stable for a fraction of a

second. They are generally not stopped by the previous layers of the detector, so in order to gain

more information about these particles there is a specialized detector subsystem for them at the

edge of CMS. The muon chambers are comprised of drift chambers in the central, barrel area of

the detector and cathode strip chambers in the endcap sections [12]. Both technologies in the muon

chamber are electronics in a gas, such that when muons pass through, they ionize the gas and this

interaction can be read out as an electrical signal.

Particle physicists combine the information, read out as electrical signals as particles pass

through the detector, from all of the CMS layers to reconstruct the particles produced in collisions.

Since supersymmetric particles do not interact with the detector material, like SM particles do, we

need to consider additional techniques for these sparticles. One way to increase our probability
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of observing sparticles is to increase the energy of the collisions to potentially produce heavier

sparticles.

With recent advancements in technology at the Large Hadron Collider, we have been able

to achieve center-of-mass collision energies of 13 TeV for proton-proton collisions, which has

brought us closer to potentially observing sparticles at the TeV scale. For this analysis, we are

working with data from Run II of the LHC with an integrated luminosity of 137 fb−1. For the scope

of this paper we analyze the three years of Run II (2016-2018) separately, each year comprising

about a third of the total integrated luminosity.

If we wanted to increase our chances of observing new physics, increasing the collision energy

would give us insight into higher particle masses and shorter length scales. Alternatively, we can

crank up the instantaneous luminosity of the LHC to increase the probability of observing these

rare supersymmetric processes. Such an increase in the collision rate is exactly what physicists are

currently working towards to achieve approximately 5 to 7 times more instantaneous luminosity.

Upgrades to bring the LHC into its high luminosity (HL) era are currently underway, with the first

HL-LHC run tentatively scheduled for the mid-2020’s. While we work towards the HL-LHC, we

can look at data from previous runs and events simulated from Monte Carlo (MC) methods. In

the MC simulations, events are simulated with the event generator, then run through a detector

simulator to approximate the reconstruction effects we expect to see. These simulated events are

used as central, or expected, values for event yields. MC events are used to design the analysis,

specifically in defining the analysis regions, which are described in Section 2.
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Analysis Strategy

2.1 Recursive Jigsaw Reconstruction

We reconstruct events in the analysis described in this paper using Recursive Jigsaw Reconstruc-

tion (RJR) [8, 9]. This method exploits the compression between the masses of the parent and

child sparticles to discriminate signal SUSY processes with massive sparticles from background

SM processes. RJR iterates through approximations of the rest frames of the event by making

algorithmic choices at each step. An example of a set of these rest frames can be seen in Figure

2.1. Here, we can start in the lab frame, where the particles’ 4-vectors are measured, at the top of

the diagram and apply choices to approximate the boost to the center-of-mass (CM) frame, then

to the sparticle (S) rest frame, finally decomposing that into visible (V) and invisible (I) decay

products. In this particular analysis, we also account for the presence of an initial state radiation

(ISR) system, which will be elaborated on later in this section.

These algorithmic choices are known as the jigsaw rules, because they are factorizable, cus-

tomizable, and interchangeable, and they are recursively applied on the event to reconstruct observ-

ables. From the application of these jigsaw rules, RJR produces a basis of kinematic observables to

study, that all provide largely independent information. These observables are specifically formu-

lated to be sensitive to a massive invisible particle, separating these events from SM background,

which could potentially contain missing energy in the form of the virtually massless neutrino.

These RJR rules are enforced to minimize a kinematic quantity of interest such that we can
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Figure 2.1: A generic RJR decay tree for analyzing compressed signal events, where each vertical
level is a different reference frame [9].

constrain a degree of freedom for the invisible particle. The choice to minimize, rather than maxi-

mize, a certain kinematic quantity (usually masses or energies) comes from the error in our choice

of boost ~β lab
CM from the lab frame to the center-of-mass frame for the system. Both over-boosting

(~β >~β lab
CM ) and under-boosting (~β <~β lab

CM ) can overestimate the mass/energy describing the center-

of-mass system. For example, incorrectly assuming the invisible particle(s) in the decay are mass-

less could lead to an overboost of the sparticle system. Thus, minimizing the chosen kinematic

quantity for the center-of-mass frame will get the boost as close as possible to its true value, allow-

ing for an approximate transfer to the center-of-mass frame from the lab frame.

RJR is especially helpful in the compressed regime this analysis is targeting. In compressed

scenarios, the final state particles would receive little to no momentum from their parent decays,

barely being produced on-shell. In order to more accurately reconstruct these final states and

maximally obtain information from the event, we would like the system with the supersymmetric

particles to recoil against a system of jets from ISR. This recoil gives the soft decay products some

momentum, providing a boost from the lab frame where the proton-proton collision happens, to the

center-of-mass frame, where the momenta of the ISR system and the sparticle system are balanced.
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Here, the sparticle system decays to a final state with a visible system (i.e. leptons or jets) and an

invisible system (i.e. neutrinos or LSPs). As we will see in section 2.2, we can derive kinematic

variables from this method of analyzing events that strongly discriminate between signal processes

with massive invisible particles and background with massless ones.

The principle discriminating variables are RISR and M⊥, which are sensitive to orthogonal re-

lationships of sparticle masses. Qualitative derivations of these observables, as well as intuition

behind the discriminating power of these variables, are given in Section 2.2. Because of the general

nature of these observables, a variety of supersymmetric models are considered as viable interpre-

tations in this analysis, specifically within the simplified model spectra (SMS). For the scope of this

paper, we focus on electroweak pair production, whose Feynman diagram can be seen in Figure

1.3.

2.2 Kinematic observables

The observables in this analysis are designed to be sensitive to a massive LSP, which would show

up in the CMS as missing transverse momentum (~��ET ), which is the negative vector sum of the

momentum transverse to the beam line. In the CMS detector, we are not able to obtain informa-

tion about the masses from ~��ET , since it only represents the sum of the momenta of undetected

particles. For SM backgrounds, this is not an issue because physical missing energy is largely due

to neutrinos, which have negligible masses. However, for massive supersymmetric particles, this

is not the case. If we are able to boost from the observed lab frame to an approximation of the

production frame of the final state (rest frame of the intermediate sparticle), this boost would give

us information about the mass of the LSP. In the limit of compressed scenarios, the missing energy

of an event can be approximated as

~��ET ∼−~p
ISR

T ×
m

χ̃
0
1

mP̃
, (2.2.1)

where
m

χ̃
0
1

mP̃
is the ratio of the LSP mass to its parent mass. With the RJR technique, we are able
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to assign physics objects in the event to the branches in the Figure 2.1 decay tree and, as such,

extract the relevant kinematic quantities for each system.

To be sensitive to the mass ratio with the sparticle system, we can use the kinematic variable

RISR, defined below, to approximate the ratio of the LSP mass to the parent mass.

RISR =
|~p CM

I,T · p̂
CM

ISR,T |
~p CM

ISR,T
. (2.2.2)

We expect this kinematic quantity to peak around the ratio of the child and parent sparticle

masses. This peak can be seen in the right plot of 2.2, which demonstrates 2D distributions of

RISR vs. p ISR
T for signal (with background to the left for comparison). It should be noted that

p̂ CM
ISR,T (the direction of the ISR transverse momentum in the center-of-mass frame) is actually the

direction of the boost ~β lab
CM that takes us from the lab frame to the center-of-mass frame. In this

convention, transverse means transverse to the direction of boost axis from the lab frame to our

current frame.

This observable is a powerful discriminator between signal and background because it depends

on the boost axis direction. Thus, it contains information about any correlations in the decay angle

induced by incorrect boosts, where the decay angle is the angle between the visible system and

the boost. Since the magnitude of the boost is inversely proportional to the energy of the spar-

ticle system, incorrectly assuming a massless invisible sparticle in the reconstruction will result

in an over-boost, and therefore introduces a correlation in our basis of observables for SM back-

grounds with massless invisible particles. So, not only do we expect the RISR resolution to improve

for smaller mass splittings, there should also be a correlation in the background for this variable

and p ISR
T , or the magnitude of the boost. This is exactly what we see for the background distri-

bution (Figure 2.2a). A similar correlation is present in the slightly compressed signal distribution

(Figure 2.2b), but is not as strong as it is in the background case. There also is a slight peak where

we expect for this mass splitting,
m

χ̃
0
1

mt̃
= 400

350 = 0.875. In more compressed scenarios, this peak

becomes more defined and moves closer to 1 in RISR.
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(b) TChiWZ signal with ∆m = 50 GeV.

Figure 2.2: 2 dimensional RISR vs. p ISR
T distribution for example background (left) and signal

(right) in the 2 lepton channel for 2017 Monte Carlo scaled to 137 fb−1.

The other main kinematic variable in this analysis is a mass-dependent variable that is derived

specifically for events with pair produced sparticles, which are a feature of R-parity conserving

SUSY. Following similar RJR rules, we would want to minimize a kinematic quantity to approx-

imate the boosts between rest frames. In the case of pair production, the kinematic quantity we

would want to minimize is not the invariant mass of the intermediate particle (which is not reso-

nant), but rather the sum of masses squared for the pair produced particles. An example of this

pair production RJR decay tree can be seen in Figure 2.3. This quantity in question depends on the

momenta of the invisible decay particles, which cannot be resolved into the individual particles.

Choosing these momenta is another example of a jigsaw rule. In this case, instead of choosing

a rule to get us from the lab to the rest frame of an intermediate particle, we are boosting to the

production frame of the two pair produced particles. For this jigsaw rule, we want to minimize the

total energy of the visible system (the W and Z boson final decay products in Figure 2.3) in the

pair production frame with respect to the boost that got us there. Essentially, this is like ignoring

our incorrect boost to get us to a frame where the momenta of the visible objects (in this case re-

constructed leptons) are balanced. We call this process of projecting out the momenta components

parallel to the boost perpendicularizing.
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Figure 2.3: An RJR decay tree of the TChiWZ model, demonstrating hemispheres a and b [8].

Once in this frame, we can calculate the sum of the squared masses of the intermediate decay

particles to create our second main kinematic variable, M⊥, defined below. In Figure 2.3, the two

electroweakinos are the pair produced particles Sa and Sb in Equation 2.2.3.

M⊥ =

√
m2

Sa⊥+m2
Sb⊥

2
, (2.2.3)

where the squared masses of either sparticle in hemisphere a or b is from a perpendicularized 4-

vector. Similar to RISR, this kinematic variable is sensitive to the absolute mass of the invisible

sparticles. However, instead of being sensitive to a ratio of masses, this variable is sensitive to the

mass difference between the parent and child particles, such that M⊥ ∼ m
χ̃

0
1
−mP̃. This additional

variable, which is linearly independent from RISR for signal approximation, provides another han-

dle on the discrimination between signal and background processes. 2D plots for M⊥ vs. γ⊥ (or

γT , an auxiliary variable which will be described later) for background (top) and signal (bottom)

can be seen in Figure 2.4.
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Figure 2.4: 2 dimensional M⊥ vs. γT distribution for example background (left) and signal (right)
in the 2 lepton channel for 2017 Monte Carlo scaled to 137 fb−1.

While these two main kinematic quantities provide a strong basis to analyze events, we intro-

duce complementary variables to further refine the discrimination between signal and background.

Each of these complementary variables can be thought of as paired with a main discriminating

variable. For RISR, this variable is nicely complemented by the transverse momentum of the ISR

system that gives the sparticle system a kick, pISR
T . The resolution of RISR improves with an in-

crease in boost magnitude, pISR
T , for signal but not for background, as shown in Figure 2.2 for the

signal processes. The rates for signal events also drop off more slowly with a pISR
T cut than for

background. Doing a coarse cut on the complementary variable can help us zero in on areas of

phase space that have a high signal to background ratio.

A variable that is complementary to the second main variable, M⊥, is

γT = 2
M⊥
mS⊥

, (2.2.4)

which can be interpreted as the approximate inverse Lorentz factor associated with the boost from

the pair production frame to individual sparticle frames. Here, mS⊥ corresponds to the perpendic-

ularized mass of the pair produced electroweakino system in Figure 2.3. This kinematic quantity
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probes the ratio of the reconstructed invisible child sparticle masses relative to the invariant mass

of the pair produced, parent sparticle system. This ratio increases as the invariant mass for the

sparticle frame, mS, decreases, meaning that the visible particles are flying closer together. Con-

sequently, if the visible particles are back to back in the sparticle frame, γT is at a minimum. For

background processes, this variable peaks in a strongly correlated way at low M⊥ values, seen in

Figure 2.4a. The discriminatory power of this variable, like for pISR
T , is not as great as for our

main kinematic variables. From Figure 2.4, we see that the rate of background events falls off

more quickly with higher γT than it does for the signal distributions. Thus, a coarse cut on γT can

separate background events at low M⊥, paving the way to see compressed signals more clearly,

and to define strong control regions.
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Figure 2.5: RISR vs. M⊥ 2D distribution for all backgrounds and a single signal process mass
point with 1 gold lepton and 2 jets in the sparticle system.

This analysis is binned in RISR vs. M⊥, creating two dimensional distributions of events, as

seen in Figure 2.5, with bins in the discriminating variables shown with the dotted lines. These 2D

histograms can be “unrolled" into one dimensional histograms to better view the actual shape of

the distributions. Figure 2.6 shows an example of these 1D distributions, with the bracketed bins
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showing the RISR bins, the vertical black lines separating the M⊥ bins and further physics object

categorizations labeled at the top of the bins (including number of b-jets and secondary vertices in

the sparticle (S) and ISR (I) systems.
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Figure 2.6: RISR and M⊥ 1D control region distributions for all backgrounds, data, and one
TChiWZ mass point with 1 gold lepton and 0 jets in the sparticle system in 2017.

2.3 Lepton categorization

Because this analysis targets a variety of signal models with different final states, this analysis

also separates events by object count, quality, and combinatoric decay tree assignment. Despite

the main SM backgrounds decaying to final states that are similar to those of our signal processes

(Table 2.1), we can exploit the discriminating power of our main kinematic variables and physics

object categorization to separate background and signal events.
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Background process Possible final state

tt̄ b-jets, leptons, missing energy

W+jets jets, leptons, missing energy

Z/Drell-Yan jets, leptons or missing energy

Table 2.1: How final states for main background processes could imitate signal final states.

The channels of this analysis are 0, 1, 2, and 3 leptons. Reconstructed leptons are qualified

by a mutually exclusive analysis-specific ID: “gold," “silver," and “bronze". The analysis-specific

ID requirements are enumerated in Table 2.2 and Table 2.3, where the Tight and Medium IDs are

CMS specific definitions for electrons [13] and muons [14].

Gold Silver Bronze

Tight ID pass pass fail

IP3D/σIP3D
< 2 ≥ 2 ≥ 2

PFIsoabs or MiniIsoabs < 4 GeV < 4 GeV ≥ 4 GeV

Table 2.2: ID requirements for electrons.

Gold Silver Bronze

Medium ID pass pass fail

IP3D/σIP3D
< 2 ≥ 2 ≥ 2

PFIsoabs or MiniIsoabs < 4 GeV < 4 GeV ≥ 4 GeV

Table 2.3: ID requirements for muons.

These IDs are representative of three kinds of leptons we expect to see in this analysis. The

gold ID is reserved for the highest quality leptons; these are the most signal-like, most likely

to be a direct product of a SM boson or BSM particle by the cut on the 3D impact parameter

(IP3D), significance of this parameter IP3D/σIP3D
, and its isolation, which is a measure of detector

activity in a given area around the particle. The silver ID, orthogonal to gold and bronze IDs, is for
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recovering efficiency from leptons in semi-leptonic b decays or tau decays. These are considered

isolated, but not prompt. Finally, the rest of the leptons in this analysis are categorized within the

bronze ID, the so-called “fakable object" ID. We expect this category to catch a majority of our

fake leptons.

In addition to considering lepton quality and multiplicity, this analysis is also categorized by the

number of reconstructed jets, b-jets, and secondary vertices (SVs) in the event. B-jets are identified

by two neural networks: the standard CMS DeepJet algorithm [15] and a new tagger, specifically

designed to tag soft b-jets using secondary vertices as inputs [16]. Furthermore, the categories are

expanded upon by where each of the objects in the event are assigned in the RJR decay tree, either

within the sparticle system (further separated into the a and b hemispheres for pair production) or

the ISR system. An overview of the variables used in this analysis is shown in Table 2.4

Physics Object/Observable Categorizations

RISR distribution binning

M⊥ distribution binning

pISR
T coarse binning

γT coarse binning

Lepton multiplicity 0, 1, 2, 3

Sparticle jet multiplicity 0, 1, 2, 3, 4, 5+

B-jet or SV multiplicity 0, ≥ 1, ≥ 2

Lepton flavor µ , e

Lepton quality bronze, silver, gold

Table 2.4: Analysis binnings and categorizations.
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Fake Leptonic Background

3.1 Fake leptonic background processes

Detectors at the LHC are able to identify, or reconstruct, particles that fly out of the collisions to

extraordinary precision, especially given the sheer volume of data that is read out every second.

However, these detectors are not perfect, and sometimes particles are mis-measured. These par-

ticles are known as “fakes." Specifically, fake leptons are a source of background in our analysis.

These fake leptons, also known as “non-prompt" leptons, are leptons that are not an immediate

decay product of a W/Z boson or a heavy sparticle (such as a slepton, the supersymmetric part-

ner of a lepton). Rather, these non-prompt leptons come from semi-leptonic heavy or light flavor

decays. Other types of fake leptons may arise from mis-measurement of charged hadrons, jet

punch-through, or misidentified photon conversions. In the CMS detector, these kinds of leptons

may appear as muon chamber punch-through, for example. This is where jet activity extends be-

yond the hadron calorimeter into the muon chambers, thus mimicking the muon signature. At

generator level, a fake may also arise from an “unmatched" reconstructed lepton, that is, a recon-

structed lepton that could not be matched to a true lepton. Background contributions due to fake

leptons are non-negligible in the main analysis backgrounds, including tt̄, W+jets, and Drell-Yan

processes, across the 1+ lepton categories due to the focus in the analysis on low pT leptons.
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3.2 The tight-to-loose method

The usual method of estimating the background contribution from fake leptons is called the “tight-

to-loose," or “fake factor," method. The “tight" selection is the signal lepton definition and the

“loose” selection is similar, with some looser requirement to ensure that the selection is dominated

by fake leptons (so-called “fakable object" selection). This looser requirement is typically on

isolation, which is a measure of how many other particles are in a conical area surrounding the

lepton in question by calculating the sum of the energy in the cone. This requirement ensures that

the tight selection is a subset of the loose selection. The “fake rate" εT L is then defined as
N NP

tight

N NP
loose

,

which can be interpreted as the probability of a fake lepton to pass the tight identification, given that

it has passed the loose selection. This fake rate is measured in some sideband, or “measurement

region," which is a region in the analysis that is designed to be dominated by fake leptons. The

rate is then applied to the “application region." This region is kinematically similar to the signal

region (SR), apart from the leptonic cuts, which satisfy the loose ID. Because it is orthogonal to

the SR, the application region is considered a loose-not-tight (L!T ) selection, usually with a looser

isolation selection. The estimated number of fake lepton events in the SR can be extrapolated from

the application region via the fake rate,

NSR
f ake =

εT L

1− εT L
·(NL!T

data−NL!T
prompt) , (3.2.1)

where NL!T
data is the data yield in the L!T application region and NL!T

prompt is the prompt Monte-

Carlo yield in the L!T application region.

This tight-to-loose method, in data driven and semi-data driven cases, does not take into ac-

count shape variations due to fake leptons, only the overall normalization change. The shape of the

kinematic distributions could potentially change from fake lepton mis-modeling and we aim to ac-

count for this variation in our analysis. The shape for the fake leptonic background is extrapolated

from other bins of the signal region. Further, the shape within the discriminating variables could

also vary due to lepton flavor, fake source, or other characteristics. The relative normalization of
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these discrepancies is taken into account with the fake factor method. For example, to separate the

fakes from heavy or light flavor hadron decays, fake factors will be measured separately in b-jet

enriched and b-jet depleted regions. However, variations due to these discrepancies are still not

accounted for with shape variations, leading us to develop our own fake lepton estimation method

that does account for these discrepancies for this analysis.

3.3 A novel shape-based method

The motivation behind this method is that we are trying to capture shape variations in the data

due to mis-modeling of fake leptons in simulation. It could be possible that the admixture of fake

leptons for a given source is not exactly like that in data, and we would like our fit to be able to

potentially resolve this using “sidebands" as control regions. If left unaccounted for, these shape

differences could be potentially misinterpreted as signal. Introducing systematic variations into

our fit as nuisance parameters allows variations to be constrained directly from data.

From first principles, we expect the yields in adjacent bins in RISR and M⊥ to vary in related

ways due to fake leptonic background contributions. We also expect some analysis categories

(such as different lepton IDs) to have similar shapes and also behave similarly with fake leptonic

background variations. So, for this analysis, we employ a novel shape-based semi-data driven

fake estimation method. In this method, we simulate ad-hoc shape variations on top of nominal

predictions from simulation. These predicted, central values are one dimensional distributions,

like the one previously shown in Figure 2.6. An example of these variations at a maximum of 20%

can be seen in Figure 3.1, with the nominal shape (black) corresponding to the normalized 1D

histogram. Variations are imposed on top of the unnormalized distribution with the “up" or +1σ

normalized variations in red and the “down" or −1σ normalized variations in blue.
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Figure 3.1: Shape variations imposed on a 1D histogram for Z/Drell-Yan process with one
electron that is a heavy flavor fake with 20% maximum variations.

To simulate the variations for the fake lepton shape method, we set a maximum allowed vari-

ation for the edge bins in either variable and symmetrically distribute the variations in the inter-

mediate bins such that the middle bin (if it exists) has no relative variation. These variations that

are simulated are certain percentages of the normalized histograms, such that the shapes are var-

ied, not the event counts. We simulate variations in shape for each of our discriminating variables,

RISR and M⊥, separately such that trends in these observables can be modeled independently. Since

the RISR bins do not repeat (unlike the M⊥ bins, which repeat for every RISR bin), the RISR vari-

ations more clearly demonstrate the pattern we impose on both RISR and M⊥. In Figure 3.1a, the

maximum variations are seen on the edge bins (bins 0 and 8) and 20% of the normalized bin value.

The variations are then distributed evenly among the remaining bins, such that bins 1 and 7 have a

15% variation, bins 2 and 6 have a 10% variation, bins 3 and 5 have a 5% variation and bin 4 has no

variation. The same pattern is applied to the variations in M⊥. The maximum a priori uncertainty,

or variation from the central value, for the fake lepton shape variations in the analysis is 5%.

These variations in RISR and M⊥ will act as ±1σ deviations from the central value shape of

the distribution and can be incorporated into our maximum likelihood fit to data as systematic

uncertainties in the shape of fake lepton processes [17]. The uncertainties, or model nuisance pa-

rameters (NPs), act as extra knobs or degrees of freedom in our fit to better capture any differences
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in shape for fake leptons between data and simulation. Rather than attempting to constrain all of

the NPs in our model, the addition of these shape uncertainties gives our model this extra “wiggle

room" that otherwise wouldn’t exist. These NPs are able to capture shape differences between the

reconstructed distributions and the true ones due to fake lepton mis-modeling that either would

be potentially mistaken for signal and/or would result in overly-inflated systematic uncertainties,

as is the case for the standard tight-to-loose method. The goal of this method is not to constrain

every possible NP in our fit, but rather to provide it with informative, physics-motivated degrees of

freedom that capture expected systematic effects.

These additional shape systematics, connected across kinematically similar analysis regions,

give the fit the freedom to account for these shape differences. The shape comparison studies

in Section 3.3.1 detail the quantitative method behind the decision to connect NPs across certain

regions. Specifically, the systematics are connected across background processes, lepton IDs, and

p ISR
T and γ⊥ regions. The systematics are separate for different lepton multiplicities, sparticle

system jet multiplicities, fake lepton flavors, and fake lepton sources. Even though some analysis

regions are inclusive for lepton flavor, any fake leptons in those regions are still tagged as fake

electrons or fake muons, which could enact different mismodeling effects. So, the fake lepton

shape systematics are separated out by fake lepton flavor, even in these flavor-integrated regions.

A similar shape parameter treatment is also used to help constrain the QCD background in this

analysis.

3.3.1 Shape comparison studies

In order to determine which analysis categories should be grouped together for the fake lepton

shape systematics described in Section 3.3, quantitative shape comparison studies were performed.

These studies used a likelihood test to determine the similarity in shape between two distributions,

inspired by the method in a lecture from the 2008 BaBar Analysis School [18]. Usually, the distri-

butions in comparison were the original distribution and a consolidated distribution which includes

the original distribution and others that are kinematically similar in the same categorization. We
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create consolidated histograms, summing over analysis categories that should behave similarly in

terms of fake variations, to serve as the central value on which to impose simulated variations.

Ideally, this consolidation procedure will connect the variations of categories that should behave

similarly in terms of variations due to fake leptons. This method will also substitute average values

for empty bins due to limited Monte Carlo statistics, which is described in Section 3.3.2.

Kinematically, events with a low jet multiplicity in the sparticle system (0 or 1 jets), should

behave similarly to each other and different from events with high jet multiplicity (2 or more jets).

In the ISR system though, shapes are combined over jet multiplicity for a given sparticle system.

Real leptons that are poorly reconstructed or non-prompt will behave differently in the analysis

and therefore are separated into the analysis specific IDs (gold, silver, and bronze). Fake leptons,

however, should not discriminate between these IDs because they are not produced the same way

as real leptons. Therefore, we expect that the shapes between the lepton ID categories for fake

leptons should be reasonably similar.

We can calculate the agreement between a histogram and its corresponding consolidated his-

togram with two metrics: the ratio of the individual histogram to its consolidated counterpart, and

the likelihood ratio between these shapes [19]. For the ratio, the histograms in question are nor-

malized independently such that only the differences in shape are studied. In a particular bin, any

deviation from 1 (whether greater than or less than) is indicative of a deviation in shape between

the original and consolidated histogram. The ratio test gives a qualitative approach to assessing the

similarity between shapes. It also provides a method for assessing trends in deviations according

to our discriminating variables. However, to quantitatively determine which shapes are in better

agreement, a more rigorous approach is necessary.

The likelihood ratio is the universally most powerful metric for discriminating between two

hypotheses, according to the Neyman-Pearson lemma [20]. In our likelihood ratio test, the null

hypothesis assumes that the two histograms in the comparison, each with k bins, are sampled from

the joint Poisson distribution
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P(u,v) =
k

∏
i=1

µ
ui
i

ui!
e−µi

ν
vi
i

vi!
e−νi, (3.3.1)

where νi and µi are the mean bin contents (or Poisson rate) for bin i for histograms v and u re-

spectively. The probability of getting the shape of histogram v can be modeled as the multinomial

below, with our two options being that a bin value came from histogram u or v,

P(v|u+ v = t) =
k

∏
i=1

ti

vi

( νi

νi +µi

)vi
(

µi

νi +µi

)ti−vi

. (3.3.2)

Here, ti = ui + vi is fixed to be the observed total bin content.

To model our null hypothesis, we choose νi = aµi for i = 1,2, . . . ,k. The value of a is taken

to be the value of the maximum likelihood estimator (MLE), â =
Nv
Nu

, where Nv and Nu are the

integrals of histograms v and u. This assumption ensures that, even if the individual contents of

the histogram bins differ, their overall shapes will be the same. For our alternative hypothesis, our

MLE is âi =
vi
ui

, which allows for each bin to have a different scaling factor, giving rise to different

shapes. The null hypothesis asserts that the histograms differ only by a constant normalization

factor, but otherwise have the same shape, while for the alternative hypothesis, this normalization

factor can differ bin by bin to create different shapes.

The comparison between our two hypotheses can be expressed as

λ =
maxH0

L (a|v)
maxH1

L (ai|v)
=

k

∏
i=1

( â
1+â

)vi
( 1

a+â

)ti−vi(
âi

1+âi

)vi
(

1
a+âi

)ti−vi
(3.3.3)

Here, the likelihood is derived from our multinomial probability and is a function of our estimators,

a and ai, which are set to the MLEs of their respective hypotheses. The likelihood ratio, our test

statistic, is compared to a chi-squared distribution, which is how it should behave asymptotically.

From this distribution, we can obtain a p-value, which can be interpreted as the probability of

obtaining this value of the likelihood ratio (or larger) under the null hypothesis. If this p-value

is very small, we can assume that it is unlikely to obtain this value under H0, and we can reject
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the null hypothesis (that the shapes are similar). If this p-value is large, we fail to reject the null

hypothesis and can conclude that the shapes are sufficiently similar.

We can use this p-value as a quantitative measure of similarity when making different shape

comparisons for potential consolidations. In Figure 3.2 both measures of shape similarity are

presented, with the direct ratio in the top plot and the results of the likelihood ratio in the bottom

plot. Here, instead of presenting p-values for the individual bins, the results are displayed in terms

of the number of standard deviations, σ , from the central value of the chi-squared distribution. To

calculate σ , the square root of the likelihood is used to calculate the tail integral of the chi-squared

distribution. The p-value on the right of the bottom plot is for the likelihood of all bins.

In the direct ratio, deviations from 1 in the top plot are deviations in shape from the consolidated

histogram for a particular bin. For the likelihood ratio, a large σ value indicates a larger deviation

from the central value of the test statistic, translating to larger deviations in shape. These two

metrics are in good agreement, with bins that have larger discrepancies in the direct ratio also

having relatively large σ values.

Figure 3.2: Example of a shape comparison between lepton IDs for heavy-flavor tt̄ decays in the
one lepton channel with 2 jets in the sparticle system and at least 1 jet in the ISR system.
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According to these shape similarity studies, it is reasonable to combine the events with a light-

flavor fake with those that have an unmatched fake. The shapes between these sources agree more

than the light-flavor and heavy-flavor fake shapes, and this combination boosts the statistics of the

light-flavor fake events. Shapes are further combined according to background process and other

categories listed in Table 2.4. These shape combinations drive the groups of categories whose fake

lepton shape variations are connected with a common nuisance parameter. The combinations also

inform histogram consolidations, which forms the basis of our smoothing procedure, outlined in

Section 3.3.2

3.3.2 Histogram smoothing procedure

Separate from our fake treatment, we employ a smoothing procedure to create consolidated his-

tograms, summing over analysis categories that should behave similarly, as determined by the

procedure in Section 3.3.1, to serve as the central value on which to impose simulated variations.

The goal for this method is to create a more robust and computationally tractable fit by replacing

low statistic bins with statistically consistent yields. Some histogram bins may have few or no sim-

ulated events. However, this may not be the case in data. To more accurately reflect the statistics

in data, we can systematically replace bins in the original simulated histogram for bins with higher

event counts from the consolidated template.

We create consolidated histograms, summing over histograms in analysis categories that should

behave similarly in terms of shape for fake lepton events. The comparison studies outlined in

Section 3.3.1 determined which categories to combine. Other categories are consolidated due to

limited statistics. For example, our consolidated shapes and systematic variations are separated

according to fake source (how the fake originated in the event). The two physical sources of fakes

that we consider are the decays of heavy-flavor quarks and light-flavor quarks. In Monte Carlo sim-

ulation, a fake may also arise from an “unmatched" reconstructed lepton, that is, a reconstructed

lepton that could not be matched to a true, generator-level lepton. For example, in the CMS detec-

tor, these kinds of leptons may result from hadronic jet punch-throughs into the muon chambers,.
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In our simulated samples, the number of events with light-flavor fakes is low relative to the two

other sources of fake leptons.

Shape templates are separated by the decay channel, and for events with more than one lepton,

the shapes are combined over the combinatoric assignment in the sparticle system. In other words,

the shape for events with two leptons in the a hemisphere is combined with that of two leptons in

the b hemisphere, and with that of one lepton in either hemisphere. This consolidation procedure

connects the variations of categories that should behave similarly in terms of variations due to fake

leptons. This method will also fill in empty bins due to limited Monte Carlo statistics. We create

separate, central value histograms for different lepton IDs, lepton flavors, and fake sources. All

other analysis categories listed in Table 2.4 are summed over.

Once we have adequately combined analysis categories for consolidated histograms, we can

use these newly formed templates to fill in gaps in the original histograms. The replacement

procedure is as follows: An individual histogram h with n bins is first unweighted (such that we

are only dealing with the effective event counts that follow a Poisson distribution) and normalized

to unity. Then, we iterate through each unweighted, normalized bin b and compare this value to

a minimum required bin count. For this analysis, that minimum value is 10 events to potentially

avoid the computationally expensive method of modeling per-process uncertainties. The method

used to compute statistical uncertainties is called the Barlow-Beeston-lite method [21] and it is

used in the statistical analysis package HiggsCombine. Using this method the uncertainties are

modeled by a single Gaussian for all processes that contribute to bin b for bins in this “high-event"

regime (defaulting to at least 10 events/bin). Bins with effective event counts below this threshold

cannot have their per-process uncertainties approximated by Gaussians, so they are separately

parameterized by Poisson distributions. If bin b falls below this threshold of minimum event

count, its replaced value is the minimum of the remaining normalized integral and the value for the

consolidated histogram at bin b, renormalized to the remaining integral of the individual histogram.

Assigning new bin values in this manner maintains shape consistency and provides plausible new

event counts. This replacement scheme will provide better results for fitting the likelihood model

32

https://cms-analysis.github.io/HiggsAnalysis-CombinedLimit/


to data, due to increased statistics.

We can check the agreement between the shapes of the individual histogram and its recreated

version using the likelihood ratio test in the same manner described above. We can set the er-

rors in the recreated histograms to systematically cover any extreme changes in bin values. With

these recreated histograms, we impose variations in our discriminating variables to simulate shape

changes due to fake leptonic backgrounds, as described in Section 3.3.

33



Control Region Fit Results

The aim of our shape-based fake estimation method is to give our fit to data degrees of freedom it

otherwise wouldn’t have. By allowing the shape to change (within some given 1σ variation, seen

in Figure 3.1), the fit can better discern between changes in shape due to fake lepton mis-modeling

or an alternative hypothesis (i.e. signal). In Section 3.3, we described the general procedure for our

shape-based fake estimation method, which currently includes a maximum deviation of 5% from

the nominal value. To evaluate the effectiveness of this method, we can look at the differences

in the pre- and post-fit results for the central values and errors on the parameters. We expect the

pre-fit value of the NP (θpre) to be similar to its post-fit value (θpost), quantified by the pull of this

parameter,
θpost−θpre

σpre
=

∆x
σin

, (4.0.1)

where σpre is the pre-fit uncertainty. The uncertainty on this value should become “constrained"

or “profiled," meaning that the fit was able to provide a smaller uncertainty than the pre-fit value.

This profiling can be quantified by looking at the ratio of pre- to post-fit uncertainties,

σpost/σpre = σout/σin , (4.0.2)

which should be less than 1 if this NP was able to be constrained. If this value is equal to 1, this

means that the fit was not able to provide any more information about this NP than what we gave

it.
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As for the overall sensitivity of the analysis, we can calculate exclusion limits to predict where

points for a grid of mass splittings (mP̃ vs. ∆M = mP̃−m
χ̃

0
1
) would be excluded by a 95% confi-

dence level. We would like the excluded parent masses, mP̃, to be as high as possible in order to

set stringent limits. Because this analysis is specifically designed to target compressed scenarios,

we also expect to be able to exclude very small mass splittings between the parent and child mass,

∆M. Ideally, this fake estimation method would not significantly degrade these exclusion limits,

potentially improving them. For the scope of this paper, we are interpreting results in the frame-

work of electroweakino pair production, or the TChiWZ model (Figure 1.3), such that mP̃ =m
χ̃
±
1

is the chargino mass and m
χ̃

0
1

is the LSP mass.

Because the analysis has not yet been approved to unblind our data, to reduce bias the results

including data presented here are for control regions (CRs). This means that regions where we

expect to see the most signal events are not included. These signal regions in particular are the

high RISR bins (typically [0.85,1]) and the corresponding M⊥ values. To further reduce our signal

bias, these fits shown are for the background-only (null) hypothesis, which means that the signal

cross-section is fixed to zero.

As such, these results are not as sensitive to any of our signals as we fully expect them to be,

but can still give us a good estimate of how effective the fake lepton estimation method is. There

are also more systematics (such as jet energy scale corrections and PDF normalizations) that still

need to be added to the fit.

The fake lepton shape systematics are the parameters that follow a naming convention of

[leptonFlavor][ f akeSource]_Fake_[#leptons]_[#sJets]_[type] (4.0.3)

A fake source of 0 indicates a light-flavor or unmatched fake lepton while a fake source of 1 is

a fake lepton originating from a heavy-flavor decay. “Type” refers to whether this systematic is

due to an RISR or M⊥ variation. From the naming convention above, one can see that these shape

nuisance parameters are connected across background processes and analysis categories including
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lepton quality, ISR jet multiplicity, and b-tag counting in the sparticle system.

b-only fit
name ∆x/σin, σout/σin
muf0_Fake_3L_inclJS_RISR -0.04, 1.00
muf0_Fake_3L_0J_RISR +0.39, 0.95
muf0_Fake_2L_2J_RISR +1.13, 0.77
muf0_Fake_2L_2J_Mperp -2.10, 0.80
muf0_Fake_2L_1J_RISR +0.35, 0.81
muf0_Fake_2L_1J_Mperp -0.57, 0.88
muf0_Fake_2L_0J_RISR -0.01, 0.88
muf0_Fake_2L_0J_Mperp +0.58, 0.90
muf0_Fake_1L_ge4J_RISR +0.18, 0.97
muf0_Fake_1L_ge4J_Mperp -0.22, 0.97
muf0_Fake_1L_3J_RISR +0.17, 0.97
muf0_Fake_1L_3J_Mperp -0.07, 0.98
muf0_Fake_1L_2J_RISR +0.51, 0.98
muf0_Fake_1L_2J_Mperp +0.26, 0.97
muf0_Fake_1L_1J_RISR -0.03, 0.98
muf0_Fake_1L_1J_Mperp -0.03, 0.99
muf0_Fake_1L_0J_RISR +0.07, 0.99
muf0_Fake_1L_0J_Mperp -0.21, 0.99

Table 4.1: Pulls for heavy flavor fake muon shape nuisance parameters for fit to 2016 data.

Background-only fits were done across all lepton channels for individual years to the designated

control regions of the Run II dataset. Tables 4.1, 4.2, and 4.3 show the pulls for background-only

fits to control regions for all lepton channels and categorizations for, respectively 2016, 2017, and

2018 Run II data with a compressed electroweakino pair production scenario (m
χ̃
±
1
= 400 GeV,

m
χ̃

0
1
= 390 GeV). This signal point was produced from the inclusive TChiWZ sample for each

year, which only covers mass splittings up to 50 GeV 1. These tables show the pulls for the fake

lepton shape systematics corresponding to at least one heavy flavor fake muon. Pulls for the rest of

the nuisance parameters in the fits can be found in the tables in Appendix A. It should be noted that

the systematic configuration is slightly different in 2016 than the ones in 2017 and 2018. Because

we expect to have fewer issues with W+ jets mis-modeling for 2016, the W+ jets normalizations

12016 sample: TChiWZ_genHT-160_genMET-80_TuneCUETP8M1_13TeV-madgraphMLM-pythia8_Summer16_102X.root,
2017 sample: TChiWZ_genHT-160_genMET-80_TuneCP2_13TeV-madgraphMLM-pythia8_Fall17_102X.root,
2018 sample: TChiWZ_genHT-160_genMET-80_TuneCP2_13TeV-madgraphMLM-pythia8_Autumn18_102X.root
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for different sparticle jet regions are included with the other backgrounds in the “norm_bkgs"

factors. This set of normalizations (“norm_Wjets") is separate from “norm_bkgs" for 2017 and

2018 fits.

b-only fit
name ∆x/σin, σout/σin
muf0_Fake_3L_inclJS_RISR +0.05, 1.00
muf0_Fake_3L_0J_RISR +0.46, 0.95
muf0_Fake_2L_2J_RISR +0.70, 0.70
muf0_Fake_2L_2J_Mperp +0.73, 0.69
muf0_Fake_2L_1J_RISR +0.05, 0.74
muf0_Fake_2L_1J_Mperp +0.86, 0.79
muf0_Fake_2L_0J_RISR +1.27, 0.83
muf0_Fake_2L_0J_Mperp +0.17, 0.89
muf0_Fake_1L_ge4J_RISR -1.09, 0.97
muf0_Fake_1L_ge4J_Mperp -0.99, 0.98
muf0_Fake_1L_3J_RISR -0.17, 0.95
muf0_Fake_1L_3J_Mperp +0.12, 0.95
muf0_Fake_1L_2J_RISR -0.08, 0.97
muf0_Fake_1L_2J_Mperp +0.28, 0.96
muf0_Fake_1L_1J_RISR -0.07, 0.98
muf0_Fake_1L_1J_Mperp -0.11, 0.97
muf0_Fake_1L_0J_RISR -0.34, 0.99
muf0_Fake_1L_0J_Mperp +0.32, 0.99

Table 4.2: Pulls for heavy flavor fake muon shape nuisance parameters for fit to 2017 data.

Most of the fake lepton shape systematics have pulls (∆x/σin) near zero, which means that

the central value shape moves around slightly within the given ±1σ variation, but not signifi-

cantly. For these fits, the given ±1σ variation, or a priori uncertainty, for the fake lepton shape

systematics is 5%. Without these important systematics, these slight variations in shape could be

incorrectly attributed to signal processes affect the shape of our distribution. However, there are

certain systematics whose pulls vary significantly from zero. For example, in 2018, the parameter

muf0_Fake_1L_0J_Mperp has a pull of -2.41, which means that the value of the parameter after

the fit decreased by about 10%. This change can be interpreted as a 10% change in shape for the

heavy flavor fake muon M⊥ distributions that have a reconstructed lepton and no jets in the spar-

ticle system. It is promising that a change in shape like this can be captured by these particular
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parameters, instead of being incorrectly attributed to the presence of a potential signal.

b-only fit
name ∆x/σin, σout/σin
muf0_Fake_3L_inclJS_RISR -0.04, 0.99
muf0_Fake_3L_0J_RISR -0.11, 0.90
muf0_Fake_2L_2J_RISR -0.23, 0.49
muf0_Fake_2L_2J_Mperp +0.10, 0.48
muf0_Fake_2L_1J_RISR +0.61, 0.55
muf0_Fake_2L_1J_Mperp -0.38, 0.66
muf0_Fake_2L_0J_RISR +0.08, 0.65
muf0_Fake_2L_0J_Mperp -1.30, 0.75
muf0_Fake_1L_ge4J_RISR -2.37, 0.85
muf0_Fake_1L_ge4J_Mperp -1.90, 0.90
muf0_Fake_1L_3J_RISR +0.68, 0.87
muf0_Fake_1L_3J_Mperp -0.40, 0.89
muf0_Fake_1L_2J_RISR +1.27, 0.90
muf0_Fake_1L_2J_Mperp +0.68, 0.87
muf0_Fake_1L_1J_RISR +1.15, 0.94
muf0_Fake_1L_1J_Mperp +0.42, 0.93
muf0_Fake_1L_0J_RISR +1.14, 0.96
muf0_Fake_1L_0J_Mperp -2.41, 0.98

Table 4.3: Pulls for heavy flavor fake muon shape nuisance parameters for fit to 2018 data.

These shape NPs also have error bars (σout/σin) of width approximately one, which means that

the prior±1σ variation also does not change compared to the post-fit value. The smaller error bars

indicate that the fit was able to evaluate the size of these shape variations more precisely than the a

priori uncertainty. It is good that these post-fit uncertainties are slightly smaller than we originally

gave the fit so we can more precisely capture the effect of these parameters. However, none of

the fake shape systematics are overly constrained–with error bars much less than 1. This indicates

that even with all of the extra degrees of freedom, or variance, that we gave the model, it is not

overfitting to the data.

In terms of other systematics, the fits shown here also included floating scale factors as a data-

driven method for measuring the cross-sections of more dominant SM backgrounds (like W+ jets

and tt). These NPs do not show up in the tables because there is no prior uncertainty on them, so

there is no θpre to calculate ∆x. The tables in Appendix A show the pulls for the other nuisance
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parameters, including systematics that account for the W+ jets mis-modelling effects in 2017 and

2018. These W+ jets specific parameters are separated by lepton and sparticle jet multiplicities to

account for this mis-modelling that increases with jet count. As such, we expect an increase in the

pulls in these W+ jets systematics as the sparticle jet count increases. While the shape systematics

for the fake lepton estimation method are finalized in the fit, other systematics in the fit are still

under development. Specifically for W + jets, any particularly high pulls in these control regions

fits will be studied in further detail.

Another way to evaluate the effectiveness of the additional fake lepton shape parameters is to

analyze how the shape of the RISR-M⊥ distribution changes before and after the fit was performed.

As stated in Section 3, the reason we introduce these additional shape parameters into the fit is to

capture mismodeling effects from fake leptons that could affect the shape of the RISR-M⊥ distribu-

tion. So, if the fit uses these degrees of freedom to adjust the background model to better describe

our data, we can conclude that these parameters were a successful addition to the fit. Examples

of these pre- and post-fit RISR-M⊥ distributions can be seen in Figures 4.1, 4.2, and 4.3 for 2016,

2017, and 2018 data respectively. The top plot in both of these figures is the distribution before

(pre) the fit and the one on bottom is the distribution after (post) the fit. In this case, like the fits

for the pull tables, this fit is a background-only fit, meaning that the value of the signal strength is

fixed to zero.

Since the yields between data and Monte Carlo are both fairly high, it is difficult to see the dis-

crepancies in the absolute number of events. However, the ratio between data and the background

model (below the histogram) clarifies these discrepancies, and the trends in these discrepancies

among the RISR-M⊥ bins. From these ratio plots, we can see that any trends in the discrepancies

(i.e. increasing or decreasing) across the RISR or M⊥ bins are flattened out due to the addition of

these shape parameters, since they allow the distribution to move bin-by-bin rather than cohesively

It also is apparent that the fit is able to adjust the parameter values to better describe our data in

these control regions, since across the distribution, the ratio of data to MC becomes closer to 1 in

each bin. The errors, represented by the shade regions in each bin, are also profiled down. This
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effect echos what was observed in the fake lepton shape parameter pulls, where the errors on these

NPs become smaller after the fit, meaning that the fit was able to more provide a more precise

value for the systematics compared to what it was initially given.
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Figure 4.1: RISR and M⊥ pre- and post-fit distributions. Top: Pre-fit to the 1 bronze lepton 4 S jet
control region in 2016. Bottom: Background only fit to the 1 bronze lepton 4 S jet control region

in 2016.
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Figure 4.2: RISR and M⊥ pre- and post-fit distributions. Top: Pre-fit to the 1 bronze leptons 2 S jet
control region in 2017. Bottom: Background only fit to the 1 bronze leptons 2 S jet control region

in 2017.
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Figure 4.3: RISR and M⊥ pre- and post-fit distributions.Top: Pre-fit to the 1 bronze leptons 3 S jet
control region in 2018. Bottom: Background only fit to the 1 bronze leptons 3 S jet control region

in 2018.
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Expected Sensitivity

Now that we are confident that the addition of the fake shape parameters did not negatively affect

or over-constrain the fit, we can calculate exclusion limits for the TChiWZ grid. Here we focus

on the extremely compressed regime with only inclusive TChiWZ samples. Figure 5.1 shows the

expected exclusion limits for 2017 Monte Carlo, scaled up to 137.2 fb−1. This plot shows the

limits in the 2D plane of the mass difference between the chargino and LSP, and the LSP mass.

The color axis corresponds to the cross section at that area of phase space at 95% confidence level.

The limits in Figure 5.1 were produced by fits to only simulated MC events with the signal regions

included. This plot focuses on the limits in the compressed region of this signal grid and were

produced with the same inclusive TChiWZ sample as the fits in Section 4.

This analysis was designed to target highly compressed scenarios and we can begin to see this

pay off in Figure 5.1. These expected limits show a slight increase in sensitivity at lower mass

splittings, even for high parent sparticle masses, compared to current limits. The limits in the

compressed region are largely independent of the LSP mass, demonstrated by a mostly vertical

line in the compressed region plot. This indicates that our sensitivity in compressed regions is not

dependent on this parameter.

The fits for the limits shown here are the same as those in Section 4, just over multiple mass

points for the TChiWZ signal. These preliminary limits could potentially set the most stringent

limits on this particular signal for CMS. We expect our analysis to also have sensitivity other

signal processes, especially in this compressed regime. Current limits for the pair production of a
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chargino-neutralino pair for CMS only extend up to a chargino mass of below 280 GeV at a mass

difference of 10-20 GeV [22, 23, 24]. Our preliminary expected limits show our analysis to be

sensitive to a chargino with a mass of 350 GeV at a very compressed mass splitting of 10 GeV, far

surpassing current exclusion limits.

Figure 5.1: Expected limits for TChiWZ cross-section at 95% CL. The limits are computed using
the TChiWZ and background MC from 2017 scaled to 137.2 fb−1and include the signal sensitive

regions.
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Conclusion

While the Standard Model may still pose unanswered questions, the theory of SUSY aims to

complete this picture in a relatively simple and intuitive manner by extending the symmetry already

present in the SM. Experimentalists at colliders, such as the LHC, are currently searching for

evidence of SUSY with detectors like the CMS detector. The analysis presented here searches for

SUSY using the Recursive Jigsaw Reconstruction method and features a new, shape-based method

of estimating the background contribution due to fake leptons. This shape-based method allows

for a more general fit than is typically used that can account for variations in the data which could

otherwise be potentially interpreted as signal. The extra systematics do not over-constrain our fit to

data, but rather, provide it with extra degrees of freedom to fit the background more precisely than

the traditional fake-to-loose method. While this analysis is still in progress, preliminary results

demonstrate the potential to probe smaller mass splittings with higher parent sparticle masses than

previously explored at the LHC.
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Pulls of Nuisance Parameters in Background-

only Fits to Control Regions

A.1 2016 Pulls

b-only fit
name ∆x/σin, σout/σin
muf0_Fake_3L_inclJS_RISR -0.04, 1.00
muf0_Fake_3L_0J_RISR +0.39, 0.95
muf0_Fake_2L_2J_RISR +1.13, 0.77
muf0_Fake_2L_2J_Mperp -2.10, 0.80
muf0_Fake_2L_1J_RISR +0.35, 0.81
muf0_Fake_2L_1J_Mperp -0.57, 0.88
muf0_Fake_2L_0J_RISR -0.01, 0.88
muf0_Fake_2L_0J_Mperp +0.58, 0.90
muf0_Fake_1L_ge4J_RISR +0.18, 0.97
muf0_Fake_1L_ge4J_Mperp -0.22, 0.97
muf0_Fake_1L_3J_RISR +0.17, 0.97
muf0_Fake_1L_3J_Mperp -0.07, 0.98
muf0_Fake_1L_2J_RISR +0.51, 0.98
muf0_Fake_1L_2J_Mperp +0.26, 0.97
muf0_Fake_1L_1J_RISR -0.03, 0.98
muf0_Fake_1L_1J_Mperp -0.03, 0.99
muf0_Fake_1L_0J_RISR +0.07, 0.99
muf0_Fake_1L_0J_Mperp -0.21, 0.99

Table A.1: Pulls for heavy flavor fake muon shape nuisance parameters for fit to 2016 data.
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b-only fit
name ∆x/σin, σout/σin
muf1_Fake_3L_inclJS_RISR -0.14, 0.97
muf1_Fake_3L_0J_RISR +0.36, 0.96
muf1_Fake_2L_2J_RISR +0.70, 0.55
muf1_Fake_2L_2J_Mperp -0.90, 0.56
muf1_Fake_2L_1J_RISR +0.23, 0.55
muf1_Fake_2L_1J_Mperp -0.38, 0.65
muf1_Fake_2L_0J_RISR +0.17, 0.58
muf1_Fake_2L_0J_Mperp +0.41, 0.72
muf1_Fake_1L_ge4J_RISR -0.17, 0.85
muf1_Fake_1L_ge4J_Mperp -0.87, 0.88
muf1_Fake_1L_3J_RISR +0.61, 0.80
muf1_Fake_1L_3J_Mperp -0.73, 0.87
muf1_Fake_1L_2J_RISR +1.08, 0.77
muf1_Fake_1L_2J_Mperp -0.67, 0.85
muf1_Fake_1L_1J_RISR -0.39, 0.78
muf1_Fake_1L_1J_Mperp -1.11, 0.81
muf1_Fake_1L_0J_RISR +0.11, 0.98
muf1_Fake_1L_0J_Mperp -0.27, 0.99

Table A.2: Pulls for light flavor/unmatched fake muon shape nuisance parameters for fit to 2016
data.
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b-only fit
name ∆x/σin, σout/σin
elf1_Fake_3L_inclJS_RISR -0.01, 1.00
elf1_Fake_3L_0J_RISR +0.08, 0.99
elf1_Fake_2L_2J_RISR +0.30, 0.64
elf1_Fake_2L_2J_Mperp +0.01, 0.63
elf1_Fake_2L_1J_RISR +0.65, 0.62
elf1_Fake_2L_1J_Mperp -0.42, 0.68
elf1_Fake_2L_0J_RISR +1.23, 0.69
elf1_Fake_2L_0J_Mperp +1.50, 0.74
elf1_Fake_1L_ge4J_RISR +0.00, 0.89
elf1_Fake_1L_ge4J_Mperp -0.41, 0.91
elf1_Fake_1L_3J_RISR -0.33, 0.85
elf1_Fake_1L_3J_Mperp -0.96, 0.87
elf1_Fake_1L_2J_RISR -0.69, 0.77
elf1_Fake_1L_2J_Mperp -0.89, 0.82
elf1_Fake_1L_1J_RISR +0.60, 0.79
elf1_Fake_1L_1J_Mperp +0.22, 0.80
elf1_Fake_1L_0J_RISR +0.18, 0.90
elf1_Fake_1L_0J_Mperp +0.28, 0.94

Table A.3: Pulls for light flavor/unmatched fake electron shape nuisance parameters for fit to
2016 data.

53



b-only fit
name ∆x/σin, σout/σin
elf0_Fake_3L_inclJS_RISR -0.02, 1.00
elf0_Fake_3L_0J_RISR +0.14, 0.99
elf0_Fake_2L_2J_RISR +0.39, 0.92
elf0_Fake_2L_2J_Mperp -0.14, 0.92
elf0_Fake_2L_1J_RISR +0.24, 0.93
elf0_Fake_2L_1J_Mperp -0.02, 0.96
elf0_Fake_2L_0J_RISR +0.64, 0.96
elf0_Fake_2L_0J_Mperp +0.68, 0.95
elf0_Fake_1L_ge4J_RISR +0.00, 0.99
elf0_Fake_1L_ge4J_Mperp -0.10, 0.99
elf0_Fake_1L_3J_RISR +0.02, 0.99
elf0_Fake_1L_3J_Mperp -0.31, 1.00
elf0_Fake_1L_2J_RISR -0.13, 0.99
elf0_Fake_1L_2J_Mperp -0.15, 0.99
elf0_Fake_1L_1J_RISR +0.11, 1.00
elf0_Fake_1L_1J_Mperp +0.05, 1.00
elf0_Fake_1L_0J_RISR -0.02, 1.00
elf0_Fake_1L_0J_Mperp +0.02, 1.00

Table A.4: Pulls for heavy flavor fake electron shape nuisance parameters for fit to 2016 data.

b-only fit
name ∆x/σin, σout/σin
norm_bkgs_3L_1jS +0.25, 0.33
norm_bkgs_3L_0jS +0.85, 0.31
norm_bkgs_2L_2jS -0.02, 0.09
norm_bkgs_2L_1jS +0.28, 0.26
norm_bkgs_2L_0jS +0.26, 0.13
norm_bkgs_1L_4jS -0.03, 0.12
norm_bkgs_1L_3jS -0.03, 0.09
norm_bkgs_1L_2jS -0.04, 0.07
norm_bkgs_1L_1jS +0.77, 0.25
norm_bkgs_1L_0jS +0.08, 0.07
norm_bkgs_0L_5jS +0.10, 0.23
norm_bkgs_0L_4jS +0.52, 0.16
norm_bkgs_0L_3jS +0.37, 0.14
norm_bkgs_0L_2jS +0.32, 0.10
norm_bkgs_0L_1jS +0.63, 0.24
norm_bkgs_0L_0jS -0.14, 0.57

Table A.5: Pulls for by process normalization nuisance parameters for fit to 2016 data.
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b-only fit
name ∆x/σin, σout/σin
norm_QCD_2L_2jS -0.01, 0.98
norm_QCD_2L_1jS -1.43, 0.78
norm_QCD_2L_0jS +0.06, 1.00
norm_QCD_1L_4jS +0.28, 0.62
norm_QCD_1L_3jS -0.25, 0.52
norm_QCD_1L_2jS +0.34, 0.48
norm_QCD_1L_1jS +0.29, 0.66
norm_QCD_0L_5jS -0.03, 0.64
norm_QCD_0L_4jS -0.18, 0.60
norm_QCD_0L_3jS -0.02, 0.53
norm_QCD_0L_2jS +0.30, 0.54
norm_QCD_0L_1jS +1.14, 0.48
QCD_5J_RISR -0.88, 0.75
QCD_5J_Mperp -0.91, 0.94
QCD_4J_RISR -0.03, 0.68
QCD_4J_Mperp -1.39, 0.53
QCD_3J_RISR -0.33, 0.31
QCD_3J_Mperp -0.99, 0.41
QCD_2J_RISR +0.85, 0.36
QCD_2J_Mperp -1.62, 0.61
QCD_1J_RISR -0.38, 0.76
QCD_1J_Mperp -0.20, 0.79

Table A.6: Pulls for QCD normalization and shape nuisance parameters for fit to 2016 data.
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b-only fit
name ∆x/σin, σout/σin
sig_xsec +0.00, 1.00
scale_TB +0.34, 1.03
scale_ST +1.59, 0.52
lumi_2016 +0.23, 0.99
gamT_2L_23jS -0.24, 0.52
gamT_2L_01jS +1.20, 0.40
gamT_1L_234jS -0.23, 0.23
gamT_1L_01jS -0.21, 0.20
gamT_0L_2345jS -0.38, 0.75
gamT_0L_01jS -0.38, 0.75
SV_eta_top +0.22, 0.97
SV_eta_other -0.16, 0.86
SV_eff -1.20, 0.37
PTISR_1L_4jS +0.22, 0.33
PTISR_1L_3jS +0.22, 0.29
PTISR_1L_2jS +0.04, 0.23
PTISR_1L_1jS -1.97, 0.16
PTISR_1L_0jS -0.31, 0.28
PTISR_0L_5jS +0.79, 0.44
PTISR_0L_4jS -0.24, 0.36
PTISR_0L_3jS +0.44, 0.27
PTISR_0L_2jS +0.03, 0.26
PTISR_0L_1jS -1.59, 0.21
Fakes_muf1 +1.14, 0.12
Fakes_muf0 +0.53, 0.26
Fakes_elf1 +0.80, 0.15
Fakes_elf0 -0.62, 0.45

Table A.7: Pulls for other normalization nuisance parameters for fit to 2016 data.
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A.2 2017 Pulls

b-only fit
name ∆x/σin, σout/σin
muf0_Fake_3L_inclJS_RISR +0.05, 1.00
muf0_Fake_3L_0J_RISR +0.46, 0.95
muf0_Fake_2L_2J_RISR +0.70, 0.70
muf0_Fake_2L_2J_Mperp +0.73, 0.69
muf0_Fake_2L_1J_RISR +0.05, 0.74
muf0_Fake_2L_1J_Mperp +0.86, 0.79
muf0_Fake_2L_0J_RISR +1.27, 0.83
muf0_Fake_2L_0J_Mperp +0.17, 0.89
muf0_Fake_1L_ge4J_RISR -1.09, 0.97
muf0_Fake_1L_ge4J_Mperp -0.99, 0.98
muf0_Fake_1L_3J_RISR -0.17, 0.95
muf0_Fake_1L_3J_Mperp +0.12, 0.95
muf0_Fake_1L_2J_RISR -0.08, 0.97
muf0_Fake_1L_2J_Mperp +0.28, 0.96
muf0_Fake_1L_1J_RISR -0.07, 0.98
muf0_Fake_1L_1J_Mperp -0.11, 0.97
muf0_Fake_1L_0J_RISR -0.34, 0.99
muf0_Fake_1L_0J_Mperp +0.32, 0.99

Table A.8: Pulls for heavy flavor fake muon shape nuisance parameters for fit to 2017 data.
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b-only fit
name ∆x/σin, σout/σin
muf1_Fake_3L_inclJS_RISR +0.32, 0.96
muf1_Fake_3L_0J_RISR +0.46, 0.96
muf1_Fake_2L_2J_RISR +1.47, 0.60
muf1_Fake_2L_2J_Mperp -0.08, 0.60
muf1_Fake_2L_1J_RISR +0.42, 0.60
muf1_Fake_2L_1J_Mperp +1.03, 0.69
muf1_Fake_2L_0J_RISR -0.05, 0.62
muf1_Fake_2L_0J_Mperp +0.57, 0.82
muf1_Fake_1L_ge4J_RISR -2.49, 0.75
muf1_Fake_1L_ge4J_Mperp -1.62, 0.80
muf1_Fake_1L_3J_RISR -0.79, 0.81
muf1_Fake_1L_3J_Mperp +0.30, 0.79
muf1_Fake_1L_2J_RISR -0.32, 0.84
muf1_Fake_1L_2J_Mperp +0.56, 0.82
muf1_Fake_1L_1J_RISR -0.53, 0.84
muf1_Fake_1L_1J_Mperp -0.49, 0.86
muf1_Fake_1L_0J_RISR -0.50, 0.98
muf1_Fake_1L_0J_Mperp +0.47, 0.98

Table A.9: Pulls for light flavor/unmatched fake muon shape nuisance parameters for fit to 2017
data.
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b-only fit
name ∆x/σin, σout/σin
elf1_Fake_3L_inclJS_RISR +0.04, 1.00
elf1_Fake_3L_0J_RISR +0.04, 1.00
elf1_Fake_2L_2J_RISR +0.67, 0.77
elf1_Fake_2L_2J_Mperp +0.28, 0.79
elf1_Fake_2L_1J_RISR +0.75, 0.79
elf1_Fake_2L_1J_Mperp +0.97, 0.81
elf1_Fake_2L_0J_RISR +0.89, 0.83
elf1_Fake_2L_0J_Mperp +1.51, 0.82
elf1_Fake_1L_ge4J_RISR +0.19, 0.95
elf1_Fake_1L_ge4J_Mperp -0.13, 0.95
elf1_Fake_1L_3J_RISR -0.10, 0.91
elf1_Fake_1L_3J_Mperp +0.20, 0.92
elf1_Fake_1L_2J_RISR -0.58, 0.87
elf1_Fake_1L_2J_Mperp -0.22, 0.89
elf1_Fake_1L_1J_RISR +0.32, 0.88
elf1_Fake_1L_1J_Mperp +0.86, 0.86
elf1_Fake_1L_0J_RISR -0.49, 0.97
elf1_Fake_1L_0J_Mperp +0.37, 0.99

Table A.10: Pulls for light flavor/unmatched fake electron shape nuisance parameters for fit to
2017 data.
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b-only fit
name ∆x/σin, σout/σin
elf0_Fake_3L_inclJS_RISR +0.04, 1.00
elf0_Fake_3L_0J_RISR +0.10, 0.99
elf0_Fake_2L_2J_RISR +0.91, 0.85
elf0_Fake_2L_2J_Mperp +0.31, 0.87
elf0_Fake_2L_1J_RISR +0.67, 0.90
elf0_Fake_2L_1J_Mperp +0.90, 0.93
elf0_Fake_2L_0J_RISR +0.60, 0.96
elf0_Fake_2L_0J_Mperp +0.90, 0.93
elf0_Fake_1L_ge4J_RISR +0.07, 0.99
elf0_Fake_1L_ge4J_Mperp +0.01, 0.99
elf0_Fake_1L_3J_RISR +0.05, 0.98
elf0_Fake_1L_3J_Mperp +0.06, 0.98
elf0_Fake_1L_2J_RISR -0.20, 0.99
elf0_Fake_1L_2J_Mperp -0.15, 0.98
elf0_Fake_1L_1J_RISR +0.08, 0.99
elf0_Fake_1L_1J_Mperp +0.15, 1.00
elf0_Fake_1L_0J_RISR -0.11, 1.00
elf0_Fake_1L_0J_Mperp +0.08, 1.00

Table A.11: Pulls for heavy flavor fake electron shape nuisance parameters for fit to 2017 data.

b-only fit
name ∆x/σin, σout/σin
norm_bkgs_3L_1jS +1.30, 0.54
norm_bkgs_3L_0jS -0.90, 0.37
norm_bkgs_2L_2jS +0.46, 0.15
norm_bkgs_2L_1jS +1.08, 0.51
norm_bkgs_2L_0jS -0.78, 0.23
norm_bkgs_1L_4jS +1.43, 0.17
norm_bkgs_1L_3jS +0.99, 0.14
norm_bkgs_1L_2jS +0.43, 0.12
norm_bkgs_1L_1jS +1.07, 0.50
norm_bkgs_1L_0jS -0.32, 0.45
norm_bkgs_0L_5jS +1.70, 0.31
norm_bkgs_0L_4jS +1.17, 0.28
norm_bkgs_0L_3jS +0.98, 0.25
norm_bkgs_0L_2jS +0.98, 0.23
norm_bkgs_0L_1jS +0.67, 0.52
norm_bkgs_0L_0jS +0.35, 0.65

Table A.12: Pulls for by process normalization nuisance parameters for fit to 2017 data.
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b-only fit
name ∆x/σin, σout/σin
norm_QCD_2L_2jS +1.14, 0.77
norm_QCD_2L_1jS -0.01, 0.78
norm_QCD_2L_0jS -2.03, 0.80
norm_QCD_1L_4jS -0.51, 0.48
norm_QCD_1L_3jS -0.35, 0.45
norm_QCD_1L_2jS -0.42, 0.42
norm_QCD_1L_1jS -0.33, 0.67
norm_QCD_1L_0jS -0.25, 0.93
norm_QCD_0L_5jS -0.07, 0.53
norm_QCD_0L_4jS +0.41, 0.53
norm_QCD_0L_3jS +0.18, 0.40
norm_QCD_0L_2jS +0.01, 0.40
norm_QCD_0L_1jS +0.34, 0.65
QCD_5J_RISR -0.50, 0.76
QCD_5J_Mperp -1.05, 0.50
QCD_4J_RISR -0.93, 0.78
QCD_4J_Mperp -0.97, 0.31
QCD_3J_RISR -1.59, 0.30
QCD_3J_Mperp -0.41, 0.25
QCD_2J_RISR -1.13, 0.33
QCD_2J_Mperp -1.18, 0.32
QCD_1J_RISR -1.24, 0.55
QCD_1J_Mperp -0.38, 0.80
QCD_0J_RISR -0.22, 0.98
QCD_0J_Mperp +0.19, 1.01

Table A.13: Pulls for QCD normalization and shape nuisance parameters for fit to 2017 data.
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b-only fit
name ∆x/σin, σout/σin
norm_Wjets_3L_1jS +1.09, 0.95
norm_Wjets_3L_0jS -0.20, 0.94
norm_Wjets_2L_2jS +0.91, 0.54
norm_Wjets_2L_1jS -1.08, 0.66
norm_Wjets_2L_0jS +0.47, 0.44
norm_Wjets_1L_4jS +3.01, 0.21
norm_Wjets_1L_3jS +1.42, 0.14
norm_Wjets_1L_2jS +0.69, 0.09
norm_Wjets_1L_1jS +0.14, 0.60
norm_Wjets_1L_0jS +0.37, 0.09
norm_Wjets_0L_5jS +6.49, 0.38
norm_Wjets_0L_4jS +3.52, 0.35
norm_Wjets_0L_3jS +2.64, 0.32
norm_Wjets_0L_2jS +0.12, 0.32
norm_Wjets_0L_1jS -0.15, 0.63
norm_Wjets_0L_0jS +0.25, 0.94

Table A.14: Pulls for W+ jets normalization nuisance parameters for fit to 2017 data.
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b-only fit
name ∆x/σin, σout/σin
sig_xsec -0.00, 1.00
scale_TB +1.89, 1.24
scale_ST +2.23, 0.56
lumi_2017 +0.49, 1.00
gamT_2L_23jS +0.05, 0.54
gamT_2L_01jS +0.16, 0.42
gamT_1L_234jS +0.50, 0.22
gamT_1L_01jS -0.67, 0.19
gamT_0L_2345jS +0.05, 0.71
gamT_0L_01jS +0.05, 0.71
SV_eta_top -0.42, 0.94
SV_eta_other -2.82, 0.72
SV_eff -1.77, 0.28
PTISR_1L_4jS +0.02, 0.30
PTISR_1L_3jS +0.03, 0.26
PTISR_1L_2jS +0.33, 0.21
PTISR_1L_1jS -0.25, 0.15
PTISR_1L_0jS -0.08, 0.27
PTISR_0L_5jS +0.53, 0.39
PTISR_0L_4jS +0.20, 0.33
PTISR_0L_3jS -0.14, 0.27
PTISR_0L_2jS -0.16, 0.26
PTISR_0L_1jS -0.54, 0.21
Fakes_muf1 +1.20, 0.15
Fakes_muf0 +2.22, 0.23
Fakes_elf1 +0.28, 0.25
Fakes_elf0 -0.28, 0.44

Table A.15: Pulls for other normalization nuisance parameters for fit to 2017 data.

A.3 2018 Pulls
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b-only fit
name ∆x/σin, σout/σin
muf0_Fake_3L_inclJS_RISR -0.04, 0.99
muf0_Fake_3L_0J_RISR -0.11, 0.90
muf0_Fake_2L_2J_RISR -0.23, 0.49
muf0_Fake_2L_2J_Mperp +0.10, 0.48
muf0_Fake_2L_1J_RISR +0.61, 0.55
muf0_Fake_2L_1J_Mperp -0.38, 0.66
muf0_Fake_2L_0J_RISR +0.08, 0.65
muf0_Fake_2L_0J_Mperp -1.30, 0.75
muf0_Fake_1L_ge4J_RISR -2.37, 0.85
muf0_Fake_1L_ge4J_Mperp -1.90, 0.90
muf0_Fake_1L_3J_RISR +0.68, 0.87
muf0_Fake_1L_3J_Mperp -0.40, 0.89
muf0_Fake_1L_2J_RISR +1.27, 0.90
muf0_Fake_1L_2J_Mperp +0.68, 0.87
muf0_Fake_1L_1J_RISR +1.15, 0.94
muf0_Fake_1L_1J_Mperp +0.42, 0.93
muf0_Fake_1L_0J_RISR +1.14, 0.96
muf0_Fake_1L_0J_Mperp -2.41, 0.98

Table A.16: Pulls for heavy flavor fake muon shape nuisance parameters for fit to 2018 data.
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b-only fit
name ∆x/σin, σout/σin
muf1_Fake_3L_inclJS_RISR +0.08, 0.96
muf1_Fake_3L_0J_RISR +0.02, 0.97
muf1_Fake_2L_2J_RISR +1.51, 0.79
muf1_Fake_2L_2J_Mperp -1.31, 0.80
muf1_Fake_2L_1J_RISR -0.43, 0.75
muf1_Fake_2L_1J_Mperp -3.29, 0.83
muf1_Fake_2L_0J_RISR +0.13, 0.79
muf1_Fake_2L_0J_Mperp -3.87, 0.88
muf1_Fake_1L_ge4J_RISR -2.54, 0.82
muf1_Fake_1L_ge4J_Mperp -1.60, 0.87
muf1_Fake_1L_3J_RISR +0.82, 0.82
muf1_Fake_1L_3J_Mperp -0.12, 0.81
muf1_Fake_1L_2J_RISR +1.65, 0.79
muf1_Fake_1L_2J_Mperp +0.77, 0.75
muf1_Fake_1L_1J_RISR +1.77, 0.83
muf1_Fake_1L_1J_Mperp +0.04, 0.89
muf1_Fake_1L_0J_RISR +0.81, 0.98
muf1_Fake_1L_0J_Mperp -1.28, 1.00

Table A.17: Pulls for light flavor/unmatched fake muon shape nuisance parameters for fit to 2018
data.
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b-only fit
name ∆x/σin, σout/σin
elf1_Fake_3L_inclJS_RISR -0.01, 0.99
elf1_Fake_3L_0J_RISR -0.04, 0.97
elf1_Fake_2L_2J_RISR +4.40, 0.43
elf1_Fake_2L_2J_Mperp -0.91, 0.37
elf1_Fake_2L_1J_RISR +1.19, 0.41
elf1_Fake_2L_1J_Mperp +3.30, 0.48
elf1_Fake_2L_0J_RISR -0.88, 0.46
elf1_Fake_2L_0J_Mperp +1.12, 0.57
elf1_Fake_1L_ge4J_RISR -1.94, 0.57
elf1_Fake_1L_ge4J_Mperp -0.18, 0.60
elf1_Fake_1L_3J_RISR -2.14, 0.51
elf1_Fake_1L_3J_Mperp -0.54, 0.53
elf1_Fake_1L_2J_RISR -3.49, 0.37
elf1_Fake_1L_2J_Mperp -2.94, 0.38
elf1_Fake_1L_1J_RISR -4.58, 0.34
elf1_Fake_1L_1J_Mperp -5.56, 0.33
elf1_Fake_1L_0J_RISR -1.57, 0.61
elf1_Fake_1L_0J_Mperp +5.92, 0.80

Table A.18: Pulls for light flavor/unmatched fake electron shape nuisance parameters for fit to
2018 data.
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b-only fit
name ∆x/σin, σout/σin
elf0_Fake_3L_inclJS_RISR -0.00, 1.00
elf0_Fake_3L_0J_RISR -0.00, 1.00
elf0_Fake_2L_2J_RISR -0.13, 0.99
elf0_Fake_2L_2J_Mperp +0.01, 1.00
elf0_Fake_2L_1J_RISR +0.09, 1.00
elf0_Fake_2L_1J_Mperp +0.23, 1.00
elf0_Fake_2L_0J_RISR -0.01, 1.00
elf0_Fake_2L_0J_Mperp +0.20, 1.00
elf0_Fake_1L_ge4J_RISR -0.05, 1.00
elf0_Fake_1L_ge4J_Mperp -0.02, 1.00
elf0_Fake_1L_3J_RISR -0.06, 1.00
elf0_Fake_1L_3J_Mperp +0.02, 1.00
elf0_Fake_1L_2J_RISR -0.03, 1.00
elf0_Fake_1L_2J_Mperp -0.12, 1.00
elf0_Fake_1L_1J_RISR -0.05, 1.00
elf0_Fake_1L_1J_Mperp -0.07, 1.00
elf0_Fake_1L_0J_RISR -0.04, 1.00
elf0_Fake_1L_0J_Mperp +0.05, 1.00

Table A.19: Pulls for heavy flavor fake electron shape nuisance parameters for fit to 2018 data.

b-only fit
name ∆x/σin, σout/σin
norm_bkgs_3L_1jS -1.27, 0.49
norm_bkgs_3L_0jS -0.19, 0.30
norm_bkgs_2L_2jS +0.22, 0.10
norm_bkgs_2L_1jS +0.41, 0.47
norm_bkgs_2L_0jS -0.39, 0.19
norm_bkgs_1L_4jS +1.06, 0.14
norm_bkgs_1L_3jS +0.39, 0.12
norm_bkgs_1L_2jS +0.14, 0.10
norm_bkgs_1L_1jS +2.18, 0.47
norm_bkgs_1L_0jS -0.56, 0.31
norm_bkgs_0L_5jS +1.15, 0.25
norm_bkgs_0L_4jS -1.00, 0.25
norm_bkgs_0L_3jS -0.88, 0.20
norm_bkgs_0L_2jS -0.62, 0.16
norm_bkgs_0L_1jS +2.97, 0.49
norm_bkgs_0L_0jS -0.18, 0.39

Table A.20: Pulls for by process normalization nuisance parameters for fit to 2018 data.
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b-only fit
name ∆x/σin, σout/σin
norm_QCD_3L_1jS -1.05, 0.82
norm_QCD_2L_2jS +2.29, 0.63
norm_QCD_2L_1jS -1.99, 0.64
norm_QCD_2L_0jS +0.35, 1.07
norm_QCD_1L_4jS -1.08, 0.39
norm_QCD_1L_3jS -0.92, 0.38
norm_QCD_1L_2jS -0.74, 0.37
norm_QCD_1L_1jS +0.35, 0.60
norm_QCD_1L_0jS +0.45, 0.63
norm_QCD_0L_5jS -2.25, 0.41
norm_QCD_0L_4jS -4.30, 0.21
norm_QCD_0L_3jS -1.96, 0.20
norm_QCD_0L_2jS -1.13, 0.18
norm_QCD_0L_1jS +2.68, 0.58
QCD_5J_RISR -1.85, 0.75
QCD_5J_Mperp -2.28, 0.23
QCD_4J_RISR -1.90, 0.19
QCD_4J_Mperp -1.64, 0.19
QCD_3J_RISR -1.26, 0.16
QCD_3J_Mperp -0.24, 0.16
QCD_2J_RISR -0.26, 0.13
QCD_2J_Mperp -0.32, 0.15
QCD_1J_RISR -0.16, 0.28
QCD_1J_Mperp +0.20, 0.66
QCD_0J_RISR -0.28, 0.89
QCD_0J_Mperp +0.05, 0.99

Table A.21: Pulls for QCD normalization and shape nuisance parameters for fit to 2018 data.
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b-only fit
name ∆x/σin, σout/σin
norm_Wjets_3L_1jS +0.86, 1.00
norm_Wjets_3L_0jS +0.18, 1.00
norm_Wjets_2L_2jS -3.63, 0.79
norm_Wjets_2L_1jS -4.41, 0.69
norm_Wjets_2L_0jS +5.33, 0.55
norm_Wjets_1L_4jS +2.48, 0.21
norm_Wjets_1L_3jS +0.82, 0.15
norm_Wjets_1L_2jS +0.53, 0.09
norm_Wjets_1L_1jS +5.74, 0.61
norm_Wjets_1L_0jS +0.46, 0.08
norm_Wjets_0L_5jS +15.68, 0.37
norm_Wjets_0L_4jS +15.67, 0.29
norm_Wjets_0L_3jS +13.56, 0.30
norm_Wjets_0L_2jS +9.37, 0.33
norm_Wjets_0L_1jS -2.20, 0.63
norm_Wjets_0L_0jS +0.11, 1.01

Table A.22: Pulls for W+ jets normalization nuisance parameters for fit to 2018 data.
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b-only fit
name ∆x/σin, σout/σin
sig_xsec +0.00, 1.00
scale_TB +1.44, 1.15
scale_ST +2.85, 0.52
lumi_2018 +0.51, 1.00
gamT_2L_23jS +0.99, 0.49
gamT_2L_01jS +0.76, 0.38
gamT_1L_234jS -0.34, 0.19
gamT_1L_01jS -1.02, 0.17
gamT_0L_2345jS -0.50, 0.71
gamT_0L_01jS -0.50, 0.71
SV_eta_top +0.09, 0.93
SV_eta_other -2.68, 0.70
SV_eff -0.15, 0.23
PTISR_1L_4jS -0.53, 0.24
PTISR_1L_3jS +0.32, 0.22
PTISR_1L_2jS +0.14, 0.17
PTISR_1L_1jS -2.13, 0.12
PTISR_1L_0jS +0.55, 0.24
PTISR_0L_5jS -1.72, 0.31
PTISR_0L_4jS -0.18, 0.26
PTISR_0L_3jS -0.64, 0.21
PTISR_0L_2jS -0.59, 0.20
PTISR_0L_1jS -0.87, 0.18
Fakes_muf1 +1.17, 0.12
Fakes_muf0 +4.38, 0.13
Fakes_elf1 +6.43, 0.06
Fakes_elf0 -5.06, 0.62

Table A.23: Pulls for other normalization nuisance parameters for fit to 2018 data.
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