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Abstract 

Membrane proteins represent ~30% of the proteome1 and more than 60% of drug targets.2 They 

play key roles in physiological functions, such as signal transduction, transport, ion regulation 

and enzymatic activities. Malfunction of these proteins result in deadly human diseases, such 

as paralysis, cancer, heart failure and Alzheimer’s diseases (AD).3 Despite the importance, the 

structural dynamics and functional mechanisms of many membrane proteins remain poorly 

understood, which has greatly hindered effective drug design. Gaussian accelerated Molecular 

Dynamics (GaMD) is a novel technique that provides simultaneous unconstrained enhanced 

sampling and free energy calculations.4,5 GaMD has been successfully applied to study physical 

pathways and mechanisms of protein folding and ligand binding of important membrane 

proteins.4,6,7 Based on the principles of GaMD, Ligand GaMD (LiGaMD) and Peptide GaMD 

(Pep-GaMD) methods were developed to efficiently simulate ligand and peptide 

binding/unbinding, respectively. Here, I have integrated GaMD, LiGaMD and Pep-GaMD with 

advanced complementary computational techniques including molecular docking, homology 

modeling and free energy calculations for accelerated simulations and computer-aided drug 

design of different membrane proteins. In Chapters 1 and 2, I focus on applying GaMD and 

Pep-GaMD to determine the mechanisms of γ-secretase activation and substrate processive 

proteolysis. In Chapters 3 and 4, I focus on investigating the dependence of GPCR-membrane 

interactions on the receptor activation state and retrospective docking of known positive 

allosteric modulators (PAMs) to GaMD simulation-derived structural ensembles of the 

adenosine A1 receptor (A1AR), respectively. Finally, in Chapter 5, I apply LiGaMD to 

understand the mechanism of ligand recognition by human Angiotensin Converting Enzyme-2 

(ACE2) receptor.  
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Abstract 

Amyloid β-peptide, the principal component of characteristic cerebral plaques of Alzheimer’s 

disease (AD), is produced through intramembrane proteolysis of the amyloid precursor protein 

(APP) by γ-secretase. Despite the importance in pathogenesis of AD, the mechanisms of 

intramembrane proteolysis and substrate processing by γ-secretase remain poorly understood.  

Here, complementary all-atom simulations using a robust Gaussian accelerated molecular 

dynamics (GaMD) method and biochemical experiments were combined to investigate substrate 

processing of wildtype and mutant APP by γ-secretase. The GaMD simulations captured 

spontaneous activation of γ-secretase, with hydrogen bonded catalytic aspartates and water 

poised for proteolysis of APP at the ε cleavage site. Furthermore, GaMD simulations revealed 

that familial AD mutations I45F and T48P enhanced the initial ε cleavage between residues 

Leu49-Val50, while M51F mutation shifted the ε cleavage site to the amide bond between 

Thr48-Leu49. Detailed analysis of the GaMD simulations allowed us to identify distinct low-

energy conformational states of γ-secretase, different secondary structures of the wildtype and 

mutant APP substrate, and important active-site sub-pockets for catalytic function of the 

enzyme. The simulation findings were highly consistent with experimental analyses of APP 

proteolytic products using mass spectrometry and western blotting. Taken together, the GaMD 

simulations and biochemical experiments have enabled us to elucidate the mechanisms of γ-

secretase activation and substrate processing, which should facilitate rational computer -aided 

drug design targeting this functionally important enzyme.   

Keywords: Alzheimer’s disease (AD), amyloid precursor protein (APP), γ-secretase, Gaussian 

accelerated molecular dynamics (GaMD), mass spectrometry (MS), western blotting.   



3 
 

Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cerebral atrophy, 

beginning with areas of the brain involved in learning and memory.  Deposition of 42-residue 

amyloid β-peptide (Aβ42) in the form of plaques is a defining pathological feature of AD and 

begins many years before onset of symptoms.9  For these reasons, Aβ42 has been a major target 

for the development of potential therapeutics10 as well as a key biomarker for AD.11  Aβ 

peptides are derived through proteolytic processing of the membrane-traversing amyloid 

precursor protein (APP), first by β-secretase outside the membrane, generating a membrane-

bound 99-residue C-terminal fragment (C99), and then by γ-secretase within the membrane.12  

γ-Secretase is a membrane-embedded aspartyl protease complex, with presenilin (PS1) as the 

catalytic component that carries out intramembrane proteolysis of >90 substrates, including 

APP and the Notch family of cell-surface receptors.13  Cleavage of the APP transmembrane 

(TM) domain by γ-secretase determines the length of Aβ peptides, the proportion of the 

hydrophobic TM domain retained in the Aβ product, and therefore the tendency of Aβ to 

aggregate into plaques. 

Proteolysis of the APP TM domain by γ-secretase is complex.14  Initial endoproteolysis 

of C99 at the ε site generates 48- or 49-residue Aβ (Aβ48 or Aβ49) and corresponding APP 

intracellular domains (AICD49-99 or AICD50-99) (Figure S1).15  These initially formed Aβ 

peptides are then trimmed every 3-4 amino acids through a carboxypeptidase activity of γ-

secretase along two pathways,  Aβ48→Aβ45→Aβ42→Aβ38 and 

Aβ49→Aβ46→Aβ43→Aβ40,16,17 and this trimming is dictated by three active-site pockets that 

recognize substrate residues P1’, P2’ and P3’ (i.e., immediately C-terminal of the scissile amide 

bond).18  Mutations in the APP TM domain associated with early-onset familial AD (FAD) can 
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skew ε cleavage in favor of Aβ48 (i.e., to the pathological Aβ42 pathway).18,19  Alternatively, 

these mutations can be “pathway switchers”, affecting carboxypeptidase activity to switch from 

the Aβ40 pathway to the Aβ42 pathway.18 

Little is known about the mechanism by which γ-secretase accomplishes intramembrane 

proteolysis. A substantial advance in understanding substrate recognition came recently with 

reports of cryo-electron microscopic (cryo-EM) structure determination of the γ-secretase 

complex bound to the Notch and APP substrates (Figure S1).20,21 The cryo-EM structures were 

consistent with expectations from previous studies using small-molecule probes and 

mutagenesis. In both structures, the substrate TM assumed a helical conformation starting from 

the extracellular side and was surrounded by TM2, TM3 and TM5 of PS1. The helix ended just 

before entry into the enzyme active site, becoming first partially unwound and then fully 

extended into a β-strand toward the intracellular side. The substrate β-strand interacted with an 

antiparallel β-strand in the intracellular side of PS1 TM7, which in turn interacted with another 

β-strand from the enzyme TM6. This β-sheet motif was suggested to be essential for substrate 

recognition by the γ-secretase.21,22 While a tour de force for the field, stabilization of the 

substrate-enzyme complex required (1) mutation of one of the catalytic aspartates (Asp385) to 

alanine in PS1 (inactivating the enzyme) and (2) double cysteine mutagenesis and disulfide 

crosslinking between substrate and presenilin (with the potential for deviation from normal 

wildtype interactions).   

Computational modeling, especially molecular dynamics (MD) simulation, has proven 

useful in understanding the structural dynamics of γ-secretase. Previous studies have provided 

valuable insights into the conformational changes23-26, enzyme allosteric modulation27, 

substrate binding23,26,28-30, water distribution23,24, lipid interactions24 and ligand binding of γ-
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secretase31-33. A putative active conformation was described for the substrate-free (apo) γ-

secretase with the two catalytic aspartates moving to close proximity in few23-25, but none has 

characterized the enzyme active state poised for proteolysis with both the water and peptide 

substrate. Hence, the dynamic mechanisms of enzyme activation and substrate processing by γ-

secretase remained poorly understood.  

Here, we present the first report of MD computational modeling of activation of APP-

bound γ-secretase using the latest cryo-EM structures of substrate-bound enzyme. The enzyme 

and substrate were computationally restored to the wildtype. Extensive all-atom simulations 

using a novel and robust Gaussian accelerated molecular dynamics (GaMD) method were 

employed to capture the extremely slow motions underlying activation of γ-secretase for 

proteolysis of substrate within the cell membrane (kcat in proteoliposomes estimated at 1.9 h-

1).34  

GaMD is an enhanced sampling computational technique that works by adding a 

harmonic boost potential to smooth the biomolecular potential energy surface.4 GaMD greatly 

reduces energy barriers and accelerates biomolecular simulations by orders of magnitude.35 

GaMD does not require pre-defined collective variables or reaction coordinates. Compared with 

the enhanced sampling methods that rely on careful selection of the collective variables, GaMD 

is of particular advantage for studying complex biological processes36 such as enzyme 

activation and substrate processing by γ-secretase. Moreover, because the boost potential 

follows a Gaussian distribution, biomolecular free energy profiles can be properly recovered 

through cumulant expansion to the second order.4 GaMD builds on the previous accelerated 

MD (aMD) method37,38, but solves its energetic reweighting problem39 for free energy 

calculations of large biomolecules. GaMD has successfully revealed physical pathways and 
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mechanisms of protein folding and ligand binding, which are consistent with experiments and 

long-timescale conventional MD simulations.4,6,7 It has also been applied to characterize 

protein-protein,40,41 protein-membrane,42 and protein-nucleic acid43,44 interactions. Therefore, 

GaMD was applied in this study for enhanced sampling of the γ-secretase complex, a well-

known slow enzyme.45,46  

Furthermore, the GaMD simulations were highly consistent with parallel mass 

spectrometry (MS) and western blotting biochemical experiments on the processing of both 

wildtype and mutant APP substrates. Remarkably, one of the mutations (M51F) in APP shifted 

the substrate  cleavage site to the amide bond between residue Thr48-Leu49, while another 

two mutations (I45F and T48P) enhanced the  cleavage between Leu49-Val50 compared with 

the wildtype. The GaMD simulations and biochemical experiments together offered a deep 

atomic-level understanding of intramembrane proteolysis by γ-secretase. 

 

Results 

Activation of computationally restored wildtype γ-secretase is captured in GaMD 

simulations.  Our initial testing GaMD simulations using the earlier published cryo-EM 

structure of Notch-bound γ-secretase (Figure S1A)—with Asp385 computationally restored—

showed that Asp257 rather than Asp385 should be protonated in the active site, as in this case 

the two aspartates were able to approach each other for catalysis (Table 1 and Figure S2). 

Further testing GaMD simulations using the cryo-EM structure of APP-bound γ-secretase 

(Figure S1B and Table 1) revealed an active conformation of the PS1 catalytic subunit with 

computationally restored Asp385 while the enzyme-substrate disulfide bond was kept (Figure 
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S3 and Movie S1). Building upon these testing results, we proceeded to remove the artificial 

enzyme-substrate disulfide bond to completely restore the wildtype γ-secretase for further 

simulations (Table 1). During three 2-µs GaMD enhanced simulations, spontaneous activation 

of APP-bound γ-secretase was observed starting from its inactive cryo-EM conformation 

(Figures 1A and S4A and Movie S2). The activation was characterized by coordinated 

hydrogen bonding interactions between the active-site aspartates, APP and a water molecule. 

Active site Asp257 and Asp385 moved closer to form a hydrogen bond between the protonated 

Asp257 and the carbonyl oxygen in Leu49 of the scissile amide bond in APP (Figure 1B). The 

two aspartates were ~7 Å apart between their Cγ atoms. Water entered the enzyme active site 

from the intracellular side and formed hydrogen bonds with the aspartates. The hydrogen bonds 

with the catalytic aspartates activated the water needed for nucleophilic attack of the carbonyl 

carbon of the scissile amide bond in APP. The distance between the carbonyl carbon of Leu49 

and water oxygen was ~3.8 Å. This active conformation is well poised for  cleavage of the 

amide bond between residues Leu49 and Val50 of APP.  

 RMSFs were calculated from GaMD simulations of the enzyme-substrate complex 

(Figure S5). In nicastrin, extracellular helices 1, 2, 4a, the C-terminal regions of 5, 12, 

17, and TM domain exhibited high fluctuations with ~3 Å RMSF (Figure S5A). The TM6 

and Helix-8 of APH1 were also flexible during the simulations. In PS1, TM2 extracellular 

domain, TM6 and TM6a were flexible with ~2.5-3 Å RMSF. Through structural clustering of 

GaMD simulation snapshots (see Methods), the top cluster was obtained as the representative 

wildtype active conformation of the enzyme. Relative to the cryo-EM structure, the 

extracellular end of TM2 moved outwards by ~2.5 Å (Figure 1C) and TM6a moved upwards 

by ~2 Å (Figure 1D). Conformational changes of these domains involved a significant number 
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of PS1 FAD mutation sites, including Gln127, Arg128, Ser132, Pro264, Pro267, Arg269, 

Leu271, Val272, Glu273 and Thr274 (www.alzforum.org). Interestingly, His131 from TM2 and 

Cys263 from TM6a flipped their side chains. The N-terminal helix region of APP moved 

outwards by ~10 Å during enzyme activation (Figure 1A), while the C-terminal -strand of 

APP moved by ~6 Å to interact with the PS1 TM6a helix.  In the process, APP residue Leu52 

made new contacts with residues Val272 and Ala275 in TM6a of PS1 (Figure 1E). The 

movement was consistent with previous finding that TM6a undergoes large conformational 

change upon substrate binding and plays a key role in activation of the enzyme.20 In addition, 

the intracellular ends of TM8 and TM1 moved by ~4.5 Å and ~3.5 Å, respectively (Figure 1F). 

Residues Ser104, Phe105 and Tyr106 in the N-terminal region of PS1 HL1 changed into a 

helical conformation during enzyme activation (Figures S6B and S6F). In summary, we have 

captured activation of computationally restored wildtype γ-secretase bound by wildtype APP in 

the GaMD simulations.  

 

GaMD simulations correlated with biochemical experiments on cleavage of wildtype and 

mutant APP. MS experiments were carried out to analyze AICD species (AICD49-99 and 

AICD50-99) generated in proteolysis of the wildtype APP and three mutants (I45F, T48P and 

M51F) by γ-secretase assay (Figures 2A-2D). For the wildtype APP, the MALDI-TOF analysis 

showed the presence of both AICD species, but the AICD50-99 species had relatively higher 

intensity than the AICD49-99 species (Figure 2A). The difference in the amount of AICD 

fragments suggested that the γ-secretase preferred  cleavage between Leu49-Val50 to the 

cleavage between Thr48-Leu49 in the wildtype APP, as has been previously reported.18 Such 

experimental data correlated well with GaMD simulations of γ-secretase with the wildtype APP 

http://www.alzforum.org/
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substrate, during which the activated enzyme was poised to cleave wildtype APP between 

Leu49-Val50 (Figure 1B).  

During activation, the wildtype APP-bound γ-secretase also sampled “inhibited’ and 

“intermediate” low-energy states as identified from the GaMD reweighted free energy profile 

(Figure 2E). In the inhibited state, the catalytic aspartates moved very close to each other, with 

only ~4 Å distance between the Cγ atoms, while the substrate was ~6 Å away from the active 

site. This conformation could not accommodate water between the aspartates to form hydrogen 

bonds. A similar inhibited state of the enzyme was also observed in the dipeptidic inhibitor N-

[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT)-bound cryo-EM 

structure (PDB: 5FN2).47 With the enzyme active site in the inhibited state, APP substrate 

moved away from the catalytic aspartates in the GaMD simulations. The carbonyl oxygen in 

Leu49 of APP was ~6 Å from the protonated oxygen of Asp257 (Figure 2E). In the intermediate 

state, the Cγ atoms of the catalytic aspartates were ~6 Å apart, while the carbonyl oxygen of 

Leu49 of the APP substrate was ~7 Å away from the Asp257 oxygen (Figure 2E). 

For the I45F and T48P mutants of APP substrate, the MS analysis showed decreased 

amount of the AICD49-99 species from proteolysis of both mutants compared with the wildtype 

substrate, and AICD50-99 was the predominant AICD product (Figures 2B and 2C). Thus  

cleavage between Leu49-Val50 was even more preferred for these two mutants than for the 

wildtype substrate. In parallel with the experiments, further GaMD simulations were performed 

on γ-secretase bound by the I45F and T48P mutant APP substrates. The I45F mutant substrate-

bound γ-secretase became activated during 1.1 µs GaMD simulations (Figure S4B). A low-

energy conformation was observed in the I45F active state for which the distance between the 

Cγ atoms of Asp257 and Asp385 was ~7 Å, while the Leu49 carbonyl oxygen and Asp257 
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protonated oxygen formed a hydrogen bond with ~3 Å distance (Figure 2F).  The boost 

potential was 10.30 ± 6.79 kcal/mol in the GaMD simulations of the I45F mutant substrate-

bound enzyme, which was comparable to that of the wildtype system (10.45 ± 6.78 kcal/mol) 

(Table 1). However, the I45F-mutant APP substrate-bound γ-secretase was activated within 

shorter simulation time compared with the wildtype APP substrate-bound enzyme, with higher 

probability of conformations for the  cleavage between Leu49-Val50 in APP (Figures S4A 

and S4B). The simulation findings agreed well with the experimental data.  Analysis of AICD 

products by MALDI mass spectrometry revealed a higher peak intensity of AICD50-99 than 

AICD49-99 for the I45F mutant APP compared with the wildtype APP (Figures 2A and 2B). 

Another low-energy conformation of I45F APP substrate-bound enzyme was observed in the 

inhibited state (Figure 2F), being similar to the inhibitor DAPT-bound structure of  γ-secretase 

(PDB: 5FN2)47.  

 For the T48P-mutant APP substrate-bound γ-secretase, activation was observed during 

one of three 1.5 µs GaMD simulations (Figure S4C). Low-energy conformations were 

identified from the free energy profile in the active, inhibited and intermediate states (Figure 

2G). In the T48P active state, the catalytic aspartates were positioned ~7 Å apart (Cγ to Cγ), 

and the substrate Leu49 carbonyl oxygen aligned with the protonated oxygen of Asp257 to form 

a hydrogen bond. The boost potential was 10.87 ± 6.87 kcal/mol, which was also comparable 

to that of wildtype APP simulations (Table 1). The T48P-mutant APP substrate-bound γ-

secretase transitioned into the active state within shorter simulation time compared to the 

wildtype system (Figure S4A and S4C). The T48P APP substrate mutant had a higher 

probability than the wildtype APP substrate of aligning the aspartates and water with the scissile 

amide bond between Leu49-Val50 in APP. This computational finding was again consistent 
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with MALDI mass spectrometric analysis of AICD products: AICD50-99 intensity is higher 

than AICD49-99 for the T48P-mutant substrate compared to that of wildtype system (Figures 

2A and 2C). The observed inhibited state (Figure 2G) was similar to that seen in the wildtype 

and I45F systems (Figures 2E and 2F) as well as the inhibitor DAPT-bound cryo-EM structure 

of γ-secretase (PDB: 5FN2).47 In the T48P intermediate state, the Cγ atoms of the catalytic 

aspartates were ~6 Å apart, while the Leu49 carbonyl oxygen of APP substrate and the 

protonated oxygen of Asp257 were ~7 Å apart (Figure 2G). The I45F and T48P-mutant APP 

substrate-bound γ-secretase showed similar structural flexibility as the wildtype system in the 

RMSFs calculated from GaMD simulations (Figures S5A). In both systems, extracellular 

helices 1, 2, 4a, the C-terminal regions of 5, 12, 17, and TM domain of nicastrin 

exhibited high fluctuations. The TM6 and Helix-8 of APH-1, and the TM2 extracellular domain, 

TM6 and TM6a of PS1 were also flexible during the GaMD simulations (Figures S5C and 

S5D).   

 

Shifted  cleavage site of APP in the M51F mutant 

MS analysis of AICD products from the M51F-mutant system revealed AICD49-99 as the major 

product, suggesting that the predominant ε cleavage site of M51F APP was between residues 

Thr48-Leu49 (Figure 2D).  A low level of AICD48-99 was also detected, revealing that the 

M51F APP substrate was cleaved to a limited degree between Ile47-Thr48 (Figure 2D). This 

was consistent with previous studies that a Phe residue is not tolerated in the P2’ position of 

substrate or transition-state analogue inhibitors of γ-secretase.18,48 Thus, M51F mutation of the 

APP substrate shifted the ε cleavage site from Leu49-Val50 to Thr48-Leu49. Such shift of  
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cleavage was consistently observed in 1.5 µs GaMD simulations of the M51F-mutant APP 

substrate bound to -secretase (Figure S4D and Movie S3). The protonated oxygen of PS1 

Asp257 was hydrogen bonded to the carbonyl oxygen of Thr48, and the activated water 

molecule targeted the scissile amide bond between Thr48 and Leu49 in the M51F APP mutant 

for  cleavage. In comparison, residue Thr48 in the wildtype APP maintained a distance of ~8-

9 Å between its carbonyl oxygen and the protonated oxygen of the PS1 Asp257 (Figure S4E). 

A distinct low-energy state was identified for the “shifted” conformation in the free energy 

profile of the M51F APP system (Figure 2H). In the shifted state, the Cγ atoms of the catalytic 

aspartates were ~7 Å apart, and the carbonyl oxygen of APP substrate Thr48 and protonated 

oxygen of PS1 Asp257 formed a hydrogen bond with ~3 Å distance. Moreover, in one of the 

three GaMD simulations, the  cleavage site of M51F-mutant APP was further shifted to the 

amide bond between Ile47-Thr48. The distance between the carbonyl oxygen of APP substrate 

residue Ile47 and the protonated oxygen of PS1 Asp257 became ~3 Å (Figure S7). The Cγ 

atoms of the catalytic aspartates were ~7 Å apart.  This observation was consistent with the low 

level of AICD48-99 fragment detected by MS of AICD products of the M51F APP mutant 

(Figure 2D). 

In addition to the MS experiments, the effect of APP mutations was investigated by 

detecting the total amount of Flag-tagged AICD species in in-vitro γ-secretase assays by 

western blotting using anti-Flag antibodies (Figure 2I). The AICD production increased 

substantially for the M51F mutant substrate compared to wildtype APP substrate. In contrast, ε 

proteolysis of the I45F and T48P mutants showed no drastic change in the total AICD level 

compared with wildtype APP substrate (Figure 2I). This was highly consistent with the GaMD 

simulations. In the systems with wildtype, I45F and T48P mutant APP substrate, the low-energy 
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inhibited state was observed in the free energy profiles of -secretase, but not for M51F-mutant 

system (Figures 2E-2H).  

Structural clustering was performed on GaMD simulations of M51F APP-bound γ-

secretase, and the top cluster was identified as the shifted conformational state of the enzyme. 

Compared with the wildtype active conformation (Figure 3A), the extracellular end of TM2 in 

PS1 moved outwards by ~2.5 Å (Figure 3B). The helix involving residues Thr124, Val125, 

Gly126 and Gln127 became disordered in this region (Figure 3B). The APP substrate moved 

downwards by ~4 Å in the substrate binding channel of the enzyme (Figures 3A and 3C). In 

comparison, the catalytic aspartates and flanking regions of TM6 and TM7 moved less than 

APP (Figures 3C and 3E). Upon shifting of the ε cleavage site, local rearrangements of APP 

residues were required to establish the coordinated hydrogen bonding interactions at the active 

site (Figure 3C and Movie S3). Sidechain flipping of the APP Thr48 residue led to formation 

of a hydrogen bond between its carbonyl oxygen and the PS1 Asp257 protonated oxygen 

(Figure S4D). Residue Leu49 initially facing the activated water between these catalytic 

aspartates flipped the sidechain and moved downwards by ~4 Å. The PS1 TM6 helix in the 

M51F shifted state moved towards the active site by ~4 Å relative to the wildtype active 

conformation (Figure 3A). Moreover, the TM6a helix tilted by ~60° relative to the wildtype 

active conformation (Figures 3A and 3D). Meanwhile, the -strand at the C-terminus of APP 

deformed to a turn as it moved away from the TM6a helix. APP Leu52, interacting with the 

non-polar residues of TM6a in the wildtype active conformation, flipped its side chain and 

moved away from these residues by ~6 Å (Figure 3E). The intracellular domains of TM1 and 

TM8 in the M51F shifted state moved by ~2.5 Å compared with the wildtype active 

conformation (Fig 3F). PS1 FAD mutation sites Ala79, Val82, Ile83, Met84, Leu85, Pro88, 
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Leu424 and Ala426 from TM1 and TM8 showed similar movements of their sidechains. In 

addition, RMSF of the M51F-mutant APP-bound γ-secretase calculated from GaMD 

simulations showed higher flexibility in TM2, TM6 and TM6a regions of PS1 (Figures S5B).  

This extra flexibility is consistent with the ability of the M51F-mutant system to readjust the 

positioning of the substrate in the active site in shifting the ε cleavage site.  

 

Changes in secondary structures of APP substrate mutants 

Changes in secondary structures of the wildtype and mutant APP substrate in -secretase were 

monitored during the GaMD simulations (Figures 4, S8 and S9). Secondary structures of APP 

substrate in the active conformations of the wildtype, I45F and T48P mutant systems and the 

shifted active conformation of the M51F mutant system were compared using their top ranked 

structural clusters obtained from the corresponding simulations (Figure S10). For wildtype 

APP substrate, residues Gly29 to Val46 formed a helical conformation throughout the 

simulations except between residues 42 and 43 (Figure 4A). Residues Asn27-Lys28 fluctuated 

between turn and coil conformations during last ~700 ns for activation whereas Ile47-Leu49 

fluctuated between helix and turn conformations throughout the simulation. The N-terminal 

region of APP substrate was very flexible and sampled turn and coil conformations. The C-

terminal residues Leu52 to Lys55 primarily maintained an antiparallel -sheet conformation. 

Residues Val50-Met51, immediately after the Leu49-Val50  cleavage site, formed a turn for a 

number of times that exposed this APP scissile amide bond to the enzyme aspartates and 

coordinated water for proteolysis.  
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The I45F and T48P mutants of APP substrate, which maintained  cleavage between 

Leu49-Val50, showed similar secondary structures as the wildtype substrate, although unique 

features were also observed in each mutant. Both mutant substrates formed turns at residues 

Val50-Met51 despite fluctuations (Figures 4B and 4C) and adopted a -sheet conformation at 

the C-terminus during simulations. However, only residues Ile31-Val46 formed a helix in the 

I45F mutant, with ~2-3 residues towards the N-terminus losing the helical conformation 

(Figure 4B). The N-terminal region of I45F-mutant APP substrate was thus more flexible than 

the wildtype substrate and bent over the HL1 loop of PS1 (Figures S6C, S6F and S11).  For 

the I45F APP mutant substrate, multiple hydrogen bonds were formed between the N-terminal 

residues of APP and PS1 HL1. Residue Gln112 in the PS1 HL1 loop—mutated to Cys112 in 

the cryo-EM structure to generate a disulfide bond and restored in our simulation—formed three 

hydrogen bonds with residues Ser26, Asn27 and Lys28 of the APP N-terminus (Figure S11A). 

Two of these hydrogen bonds involved backbone atoms. In addition, the backbone N atom of 

Ile114 in PS1 HL1 formed a hydrogen bond with the backbone O atom of Lys28 of APP. These 

hydrogen bonds contributed to a parallel -sheet between the PS1 HL1 and APP N-terminus as 

reflected in the secondary structure plots (Figures 4B, S8, S11A). In contrast, the N-terminal 

loop of wildtype APP was observed flexible without bending over the PS1 HL1 (Figures S6B 

and S6F). For the T48P-mutant APP, residues Gly29-Ala42 formed a helical conformation, 

whereas residues Thr43-Ile47 fluctuated between the -helix, 3-10 helix and turn 

conformations (Figure 4C). Residues Ser104, Phe105, Tyr106 and Thr107 of the PS1 HL1 loop 

formed a helix in the T48P active conformation, similar to what was observed in the wildtype 

active state (Figure S6D and S6F). 
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For the M51F mutant APP, residues Ala30-Val46 formed a helical conformation during 

the GaMD simulations (Figure 4D). A longer turn appeared starting from residue Leu49 to 

Leu52 in M51F APP during the simulations (Figures 4D, 3E and S10). In comparison, a turn 

was formed for only residues Val50-Met51 in the wildtype APP that exposed the Leu49-Val50 

scissile amide bond for  cleavage (Figures 4A and S10). The shift of this turn correlated with 

the shift of the  cleavage site. The C-terminal -strand became shorter in the M51F APP 

substrate mutant (Figure 4D) and even completely disappeared in the representative M51F 

shifted active conformational state (Figures S10 and 3E). As the M51F-mutant APP substrate 

moved downwards relative to PS1, its N-terminus formed more interactions with PS1 HL1 

(Figures S6E and S6F). The backbone O and N atoms of Gly111 in HL1 often formed hydrogen 

bonds with the backbone atoms N of Glu22 and O of Phe20 in the APP substrate, respectively 

(Figure S6E, S6F and S11B). These hydrogen bonds resulted in a parallel -sheet conformation 

(Figure 4D). The N-terminus of the T48P-mutant APP was also found in proximity with the 

PS1 HL1 loop (Figure S6D and S6F). The PS1 HL1 loop—with high flexibility and multiple 

interactions with APP substrate—make it one of the most important regions of PS1 in the 

context of enzymatic function and Alzheimer’s disease pathogenesis49,50. The PS1 HL1 has a 

large number of FAD mutation sites, including Phe105, Gly111, Leu113, Tyr115, and Gln127. 

Hence, our simulation findings were consistent with the literature regarding importance of the 

HL1 loop.  

The C-terminus of APP substrate-bound to the active wildtype conformation moved 

towards PS1 TM6a region by ~6 Å during enzyme activation (Figure 1E). The C-terminus of 

APP maintained -sheet conformations with the N-terminus of PS1 TM7 throughout the 

simulations. Hence, with the movement of C-terminus of APP, the N-terminus of PS1 TM7 also 
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moved along by ~6 Å (Figure S12). In contrast, I45F and T48P mutant APPs maintained the 

-sheet conformations with the N-terminus of PS1 TM7 without the movement of C-terminus. 

M51F mutant APP lost its interaction with the PS1 TM7 and hence losing the -sheet 

conformations (Figures 4D and 3E).  

 

Comparison of the S1’, S2’ and S3’ active-site subpockets in the wildtype and mutant APP 

substrate-bound γ-secretase. Representative active conformations of PS1 were identified as 

the top ranked structural clusters from the GaMD simulations of the wildtype, I45F and T48P 

mutant systems and the shifted active conformation from the M51F system simulations. These 

conformations were aligned and compared for the enzyme active-site S1’, S2’ and S3’ 

subpockets that were occupied by APP substrate residues P1’, P2’ and P3’, respectively18 

(Figure 5). In the active wildtype conformation, the S1’ subpocket occupied by P1’ residue 

(Val50) constituted residues mostly from TM6 and TM6a as listed in Table S1. The 

S3’subpocket occupied by P3’ residue (Leu52) constituted residues mostly from TM6a and the 

C-terminus of PS1-NTF. The S1’ and S3’ subpockets were located on the same side with respect 

to APP (Figures 5A). In contrast, the S2’ subpocket occupied by P2’ residue (Met51) 

constituted residues mostly from TM8, TM8-TM9 loop and the -strand region of TM7 (Table 

S3).  

In the I45F and T48P active conformations (Figures 5A, 5B and 5C), the S1’ and S3’ 

subpockets occupied by the P1’ (Val50) and P3’ (Leu52) residues, respectively, embodied the 

same S1’ and S3’ sub pockets of the wildtype active conformation. The S2’ pocket occupied by 

P2’ (Met51) of the I45F and T48P mutant APP substrate comprised residues from TM8, the 
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TM8-TM9 loop, the -strand region of TM7 and part of TM1. Notably, both the S1’ and 

S2’subpockets involved the PAL motif (P333-A434-L435) in the TM9 N-terminal region that 

is considered important for substrate binding51. This S2’ subpocket occupied by the APP 

mutants was located on the same side of substrate but ~4 Å above the extended S2’ subpocket 

in the wildtype active conformation.  

For the M51F APP mutant, the presence of a bulky residue Phe at the P2’ position 

induced local rearrangements and shifted the  cleavage site. With the shift, Leu49, Val50 and 

Phe51 became the new P1’, P2’ and P3’ residues, respectively. The new P1’ residue occupied 

a distinct subpocket near to the S1’ subpocket in the wildtype active conformation (Figures 5A, 

5D and 5E). In contrast, the new P2’ residue occupied a new subpocket in the space between 

the S1’ and S3’ subpockets of the wildtype active conformation of PS1. The new P3’ residue 

occupied the same extended pocket as S2’ subpocket in the I45F active and T48P active 

conformations (Figures 5B, 5C and 5E). Hence, the new subpocket occupied by the P3’ residue 

(F51) is termed “shifted S3’ subpocket” here and also involved the PAL motif (Figures 5D and 

5E). Moreover, the L52 (P4’) residue and K53 (P5’) residue in the M51F shifted active 

conformation occupied the S2’ and S3’ subpockets as in the wildtype active conformation of 

PS1, respectively (Figures 5D and 5E). 

The location of the S2’ subpocket differed among the active conformations of the 

wildtype active, I45F active and T48P active conformations. As the C-terminus of I45F and 

T48P mutant APP moved by ~6 Å compared with the wildtype APP (Figure S12), the P2’ 

residue (Met51) of these mutants occupied a different S2’ subpocket (Figures 5). Due to shift 

in the  cleavage site, the C-terminus of M51F mutant APP lost interactions with the N-terminus 

of PS1 TM7 and PS1 TM6a. This resulted in large conformational tilting of PS1 TM6a helix in 



19 
 

the M51F shifted conformation (Figure 3). Therefore, the conformational changes and 

molecular interactions of the APP with the γ-secretase provided important insights into the 

mechanisms of activation and substrate processing by the enzyme.  

 

Discussion 

The PS1-containing γ-secretase complex is a founding member of intramembrane-cleaving 

proteases (I-CLiPs) which carry out hydrolysis of substrate TM domains within the hydrophobic 

environment of the lipid bilayer.52 I-CLiPs also include the S2P metalloproteases, rhomboid 

serine proteases, and presenilin-like aspartyl proteases. Although microbial representatives of 

each of these other I-CLiP classes have been crystallized for high-resolution structure 

determination 53-56, visualizing the active state and elucidating the molecular mechanism of 

intramembrane proteolysis has been challenging.  Only very recently has a rhomboid protease 

been studied through time-resolved x-ray crystallography to reveal how this serine protease 

hydrolyzes transmembrane substrates.57 Most recently, structures of the -secretase complex 

bound to Notch and APP substrates have been reported, providing critical insights into substrate 

recognition of -secretase.20,58  Nevertheless, mutations in the enzyme and substrate needed for 

stabilization of the substrate-enzyme complex precluded visualization of the active protease and 

raised the possibility of unnatural substrate interactions.  

Using the latest cryo-EM structures, we have, for the first time, developed an all-atom 

MD model for activation of the APP substrate-bound γ-secretase poised for intramembrane 

proteolysis that is in excellent agreement with mass spectrometry and western blotting 

biochemical experiments.  Extensive simulations using a novel GaMD enhanced sampling 
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method have captured spontaneous activation of -secretase in the presence of APP and water 

(Figure 6). The catalytic aspartates moved into close proximity, similar to previous simulation 

findings,23-25 although, these studies were performed without the APP substrate bound to the -

secretase active site. Previous studies suggested a putative active conformation of the apo -

secretase but was unable to fully characterize the enzyme activation involving additional 

coordinated hydrogen bond interactions with the substrate. In the GaMD simulations, water 

molecules entered the active site, one of which coordinated with the two aspartates (Figure 6B 

and Movies S1 and S2).  Moreover, Asp257 formed a hydrogen bond with the carbonyl oxygen 

of the scissile amide bond between APP residues Leu49-Val50.  The activated water molecule 

was poised for nucleophilic attack on the backbone carbon atom of this activated Leu49-Val50 

amide bond.  While a number of regions of nicastrin, Aph-1, and Pen-2 displayed flexibility 

during simulations of the activated enzyme-substrate complex, the PS1 TM6a was the most 

noteworthy, as this region interacted directly with substrate near the cleavage site and appeared 

to play a role in enzyme activation.  The wildtype enzyme-substrate complex additionally 

sampled the inhibited and intermediate conformational states, the former closely resembling the 

conformation of the DAPT inhibitor-bound -secretase.47 The current ~2-µs GaMD simulation 

of γ-secretase with wildtype APP captured the enzyme activation for  cleavage of APP between 

Leu49-Val50. The  cleavage of wildtype APP between Thr48-Leu49 with lower probability, 

as detected by MS, would likely require longer simulation time and more sufficiently sampling.   

GaMD simulations on I45F and T48P APP substrate-bound -secretase revealed faster 

activation of PS1 for proteolysis at the ε cleavage site between Leu49-Val50 with these two 

FAD mutations compared to the complex with wildtype APP substrate.  These observations 

were consistent with MS analysis of AICD proteolytic products: the two FAD-mutant substrates 
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were cleaved by γ-secretase with a greater AICD50-99/AICD49-99 ratio than was the wildtype 

substrate.  Moreover, the M51F mutation resulted in dramatic conformational changes of APP 

(Figure 6C and Movie S3), setting up ε cleavage between Thr48-Leu49.  These results were 

entirely consistent with the known incompatibility of Phe in the P2’ position.18 MS 

experimental results also showed the major AICD product generated by γ-secretase from the 

M51F-mutant APP substrate was due to cleavage between Thr48-Leu49.  Little or no cleavage 

occurred between Leu49-Val50.  In addition, western blotting revealed a substantial increase in 

the total AICD production in the in-vitro γ-secretase assay for the M51F-mutant APP substrate 

compared to the wildtype APP substrate. In contrast, I45F and T48P mutant APP-bound γ-

secretase showed similar amount of AICD production as the wildtype APP bound γ-secretase. 

This was in exceptional agreement with the GaMD simulation: the low-energy inhibited state 

was observed in the free energy profiles of the wildtype, I45F and T48P mutant APP bound γ-

secretase, but absent in the M51F mutant APP system. These strong correlations between the 

GaMD simulations and biochemical experiments provided substantial validity to our dynamic 

model of γ-secretase.  

The active-site S1’, S2’ and S3’ subpockets were visualized in the wildtype active, I45F 

active, T48P active and M51F shifted active conformations of PS1 obtained from GaMD 

simulations. The protein residues (Figure 5 and Table S3) found in the S1’ and S3’ subpockets 

of the active wildtype, I45F and T48P conformations were the same as those identified in a 

recent computational study by Hitzenberger et.al.33 However, the S2’ pocket of the wildtype 

active PS1 was identified in a distinct location that shifted by ~4 Å towards the APP C-terminus 

from the previously described S2’ pocket.33 The subpocket described by Hitzenberger et.al.33, 

on the other hand, appeared to be the S2’ pocket in the I45F and T48P active conformations 
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and the shifted S3’ subpocket for the M51F APP (Figure 5E). Shift of the S2’ subpocket from 

the wildtype active conformation to the I45F and T48P active conformations resulted from the 

simultaneous movements of the APP C-terminus and PS1 TM7 N-terminus towards the PS1 

TM6a in order to maintain the -sheet structure of this domain in the GaMD simulations 

(Figure S12). Therefore, the GaMD simulations revealed a newly identified S2’ subpocket for 

wildtype APP, while the previously described S2’ subpocket33 was used as the S2’ for I45F and 

T48P APP as well as the shifted S3’ for the M51F APP (Figure 5). 

In summary, we have combined all-atom GaMD simulations with MS and western 

blotting experiments to probe the mechanisms of γ-secretase activation and its  cleavage of the 

wildtype and mutant APP substrates. Extensive GaMD simulations using the latest cryo-EM 

structures of γ-secretase have captured spontaneous activation of the enzyme, for which the 

active-site Asp385 has been restored and the artificial enzyme-substrate disulfide bond has been 

removed. The active conformation is characterized by water-bridged hydrogen bonds between 

the two catalytic aspartates, one of which formed another hydrogen bond with the carbonyl 

oxygen of the target scissile amide bond for the  cleavage of APP. Free energy calculations of 

the GaMD simulations also allowed us to identify distinct intermediate, inhibited and shifted 

active conformational states of γ-secretase. The simulations predicted  cleavage preferences of 

the wildtype and three mutants of APP that were highly consistent with MS and western blotting 

experimental findings of the AICD species. The validated GaMD simulations were then used 

to interpret the experimental data at an atomistic level. Remarkably, the M51F mutation shifted 

the  cleavage site of APP from the amide bond between Leu49-Val50 to the Thr48-Leu49 

bond, generating predominantly the AICD49-99 fragment instead of the AICD50-99 as detected 

by MS. Finally, the GaMD simulations have systematically revealed the active-site S1’, S2’ and 
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S3’ subpockets of γ-secretase that interacted with the P1’, P2’ and P3’ residues in the wildtype 

and mutant APP. This provides an in-depth picture of the  proteolytic cleavage of different 

APP substrates by γ-secretase. The GaMD method is apparently very well suited for the study 

of this extremely slow-acting membrane protease complex.  In order to fully understand the 

functional mechanisms of γ-secretase, further simulation and experimental studies have been 

planned on the tripeptidase activity of the enzyme and effects of FAD mutations in both the 

APP substrate and γ-secretase. These studies are expected to greatly facilitate rational drug 

design targeting γ-secretase for the AD therapeutic treatments.  

 

Materials and Methods  

Cloning 

All mutations in C100 FLAG were introduced by site-directed mutagenesis (QuickChange 

Lightning Site Directed Mutagenesis kit, Agilent) in pET 22b vector. All constructs were 

verified by sequencing by ACGT.  

 

C100-FLAG substrates purification 

 E. coli BL21 cells were grown in LB media until OD600 reached 0.6. Cells were induced with 

0.5 mM IPTG and were grown post induction for 4 hours. The cells were then pelleted by 

centrifugation and resuspended in 50 mM HEPES pH 8, 1% Triton X-100. The cells were lysed 

by French press and the lysate was incubated with anti-FLAG M2-agarose beads from SIGMA. 
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Bound substrates were then eluted from the beads with 100 mM Glycine pH 2.5, 0.25% NP-40 

detergent and then neutralized with Tris HCl prior to being stored at -800C.  

 

γ-secretase expression and purification 

γ-secretase was expressed in HEK 395F cells by transfection with pMLINK vector containing 

all four components (Presenilin-1, Pen-2, Aph-1, Nicastrin) of g-secretase complex (provided 

by Yigong Shi). For transfection, HEK 395F cells were grown in unsupplemented Freestyle 293 

media (Life Technologies, 12338-018) until cell density reached 2x106 cells/ml. 150 mg of 

vector was mixed with 450 mg of 25 kDa linear polyethylemimines (PEI) and incubated for 30 

minutes at room temperature. The DNA-PEI mixtures were added to HEK cells and cells were 

grown for 60 hours. The cells were harvested, and g-secretase was purified as described 

previously.18 

 

In vitro γ-secretase assay and detection of AICD species 

γ -secretase purification and assays were carried out as described previously.18  Briefly, 30 nM 

purified γ-secretase was dissolved into total brain lipid extract (Avanti) in 50 mM HEPES pH 

7.0, 150 mM NaCl, 0.25% CHAPSO. The detergent/lipid/enzyme solution was mixed with SM-

2 bio-beads (Bio-Rad) for 2 h at 4 0C to remove the detergent. After removal of the bio beads, 

the proteoliposome solution was mixed with 3 mM recombinant C100 substrates to initiate the 

cleavage reaction. The reaction was carried out for 16 h at 37 0C. After 16 h, AICD-Flag 

products were isolated by immunoprecipitation with anti-FLAG M2 beads (SIGMA) in 10 mM 
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MES pH 6.5, 10 mM NaCl, 0.05% DDM detergent overnight at 4 0C. AICD products were then 

eluted from the anti-FLAG beads with acetonitrile:water (1:1) with 0.1% trifluoroacetic acid. 

The elutes were run on a Bruker MALDI-TOF mass spectrometer.  

 

Western blotting 

Samples from γ-secretase assays were run on 4-12% bis-tris gel and transferred into PVDF 

membrane. The membrane was treated with 5% dry milk in PBS Tween-20 for 1 h at ambient 

temperature. The membrane was then incubated with the anti-Flag M2 antibodies at 4 oC 

overnight. The membrane was washed 3 times with PBS Tween-20 and was incubated with 

anti-mouse secondary antibodies for 1 h. The membrane was washed and imaged for 

chemiluminescence. 

 

Gaussian Accelerated Molecular Dynamics (GaMD) 

GaMD is an enhanced sampling technique, in which a harmonic boost potential is added to 

smooth the potential energy surface and reduce the system energy barriers.4 GaMD is able to 

accelerate biomolecular simulations by orders of magnitude.7,59 GaMD does not need 

predefined collective variables. Moreover, because GaMD boost potential follows a gaussian 

distribution, biomolecular free energy profiles can be properly recovered through cumulant 

expansion to the second order.4 GaMD has successfully overcome the energetic reweighting 

problem in free energy calculations that was encountered in the previous accelerated molecular 

dynamics (aMD)method37,39 for free energy calculations of large molecules. GaMD has been 
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implemented in widely used software packages including AMBER4,60, NAMD6 and 

GENESIS61. A brief summary of GaMD is provided here.  

Consider a system with N atoms at positions 𝑟 = {𝑟1, ⋯ , 𝑟𝑁} . When the system potential 𝑉(𝑟) is 

lower than a reference energy E, the modified potential 𝑉∗(𝑟) of the system is calculated as: 

 𝑉∗(𝑟) = 𝑉(𝑟) + ∆𝑉(𝑟),  

 ∆𝑉(𝑟) = {
1

2
𝑘(𝐸 − 𝑉(𝑟))

2
, 𝑉(𝑟) < 𝐸

0, 𝑉(𝑟) ≥ 𝐸
 (1) 

where k is the harmonic force constant. The two adjustable parameters E and k are automatically 

determined based on three enhanced sampling principles.4 The reference energy needs to be set 

in the following range: 

 𝑉𝑚𝑎𝑥 ≤ 𝐸 ≤ 𝑉𝑚𝑖𝑛 +
1

𝑘
 , (2) 

where Vmax and Vmin are the system minimum and maximum potential energies. To ensure that 

Eqn. (2) is valid, k has to satisfy: 𝑘 ≤
1

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
 Let us define ≡ 𝑘0

1

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
 , then 0 < 𝑘0 ≤ 1 

. The standard deviation of ∆𝑉 needs to be small enough (i.e., narrow distribution) to ensure 

proper energetic reweighting62: 𝜎∆𝑉 = 𝑘(𝐸 − 𝑉𝑎𝑣𝑔)𝜎𝑉 ≤ 𝜎0 where 𝑉𝑎𝑣𝑔 and 𝜎𝑉 are the average 

and standard deviation of the system potential energies, 𝜎∆𝑉 is the standard deviation of ∆𝑉 with 

𝜎0 as a user-specified upper limit (e.g., 10kBT) for proper reweighting. When E is set to the 

lower bound E=Vmax,  𝑘0 can be calculated as: 

  𝑘0 = min(1.0, 𝑘0
′ ) = min (1.0,

𝜎0

𝜎𝑉

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥−𝑉𝑎𝑣𝑔
).   (3) 
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Alternatively, when the threshold energy E is set to its upper bound  𝐸 = 𝑉𝑚𝑖𝑛 +
1

𝑘
,  𝑘0 is set to: 

 𝑘0 = 𝑘0
" ≡ (1 −

𝜎0

𝜎𝑉
)

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑎𝑣𝑔−𝑉𝑚𝑖𝑛
 , (4) 

if 𝑘0
"  is found to be between 0 and 1. Otherwise,  𝑘0 is calculated using Eqn. (3). 

Similar to aMD, GaMD provides schemes to add only the total potential boost ∆𝑉𝑃, only 

dihedral potential boost  ∆𝑉𝐷, or the dual potential boost (both ∆𝑉𝑃 and ∆𝑉𝐷). The dual-boost 

simulation generally provides higher acceleration than the other two types of simulations63. The 

simulation parameters comprise of the threshold energy E for applying boost potential and the 

effective harmonic force constants, 𝑘0𝑃 and 𝑘0𝐷 for the total and dihedral potential boost, 

respectively. 

 

Energetic Reweighting of GaMD Simulations 

To calculate potential of mean force (PMF)64 from GaMD simulations, the probability 

distribution along a reaction coordinate is written as 𝑝∗(𝐴) . Given the boost potential ∆𝑉(𝑟)
 
of 

each frame, 𝑝∗(𝐴) can be reweighted to recover the canonical ensemble distribution, 𝑝(𝐴), as: 

 𝑝(𝐴𝑗) = 𝑝∗(𝐴𝑗)
〈𝑒𝛽∆𝑉(𝑟⃑⃑⃑)〉𝑗

∑ 〈𝑝∗(𝐴𝑖)𝑒𝛽∆𝑉(𝑟⃑⃑⃑)〉𝑖
𝑀
𝑖=1

, 𝑗 = 1, … , 𝑀,  (5) 

where M is the number of bins, 𝛽 = 𝑘𝐵𝑇 and 〈𝑒𝛽∆𝑉(𝑟)〉𝑗
 
is the ensemble-averaged Boltzmann 

factor of ∆𝑉(𝑟) for simulation frames found in the jth bin. The ensemble-averaged reweighting 

factor can be approximated using cumulant expansion: 
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 〈𝑒𝛽∆𝑉(𝑟)〉 = 𝑒𝑥𝑝 {∑
𝛽𝑘

𝑘!
𝐶𝑘

∞
𝑘=1 }, (6) 

where the first two cumulants are given by 

 
𝐶1 = 〈∆𝑉〉,

𝐶2 = 〈∆𝑉2〉 − 〈∆𝑉〉2 = 𝜎𝑣
2.

 (7) 

The boost potential obtained from GaMD simulations usually follows near-Gaussian 

distribution. Cumulant expansion to the second order thus provides a good approximation for 

computing the reweighting factor4,62. The reweighted free energy 𝐹(𝐴) = −𝑘𝐵𝑇 ln 𝑝(𝐴) is 

calculated as: 

 𝐹(𝐴) = 𝐹∗(𝐴) − ∑
𝛽𝑘

𝑘!
𝐶𝑘

2
𝑘=1 + 𝐹𝑐,   (8) 

where 𝐹∗(𝐴) = −𝑘𝐵𝑇 ln 𝑝∗(𝐴) is the modified free energy obtained from GaMD simulation and 

𝐹𝑐 is a constant. 

 

System Setup 

The earlier published cryo-EM structure of  γ-secretase bound by Notch (PDB: 6IDF)58 was 

used for initial GaMD simulations. This system was used to optimize our simulation protocol, 

especially the protonation state of aspartates in the active site. Another cryo-EM structure of γ-

secretase bound by APP (PDB: 6IYC)20 was used to perform further GaMD simulations as per 

the optimized protocol. For the wildtype enzyme, residue Asp385 that was mutated to Ala at 

the active site in the cryo-EM structure was restored for setting up the simulation system. 

Similarly, the disulfide bond between Cys112 of PS1-Q112C and Cys24 of APP-V24C were 
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removed, and the wildtype residues were restored for simulation setup.  Five unresolved 

residues at the N-terminus of APP substrate C83 were added through homology modelling using 

SWISS-MODEL.65 All chain termini were capped with neutral groups, i.e. the acetyl group 

(ACE) for the N-terminus and methyl amide group (CT3) for C terminus. Protein residues were 

set to the standard CHARMM protonation states at neutral pH with the psfgen plugin in VMD.66 

Then the complex was embedded in a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(POPC) bilayer with all overlapping lipid molecules removed using the Membrane plugin in 

VMD66 (Figure S1). The system charges were then neutralized at 0.15 M NaCl using the 

Solvate plugin in VMD.66 Periodic boundary conditions were applied on the simulation systems. 

The simulation systems of γ-secretase bound by APP are summarized in Table 1. 

For APP-mutant simulations systems, isoleucine, threonine and methionine were mutated to 

phenylalanine, proline and phenylalanine computationally at the 29 th, 32nd and 35th residue of 

APP substrate, respectively. These corresponded to I45F, T48P and M51F mutations as per the  

numbering based on C99, the substrate that was cleaved to A, although the actual substrate in 

the model was C83. 

 

Simulation Protocol 

The CHARMM36 parameter set67 was used for the protein and POPC lipids. Initial energy 

minimization and thermalization of the γ-secretase complex followed the same protocol as used 

in the previous GaMD simulations of membrane proteins.7,68 The simulation proceeded with 

equilibration of lipid tails. With all the other atoms fixed, the lipid tails were energy minimized 

for 1000 steps using the conjugate gradient algorithm and melted with constant number, 
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volume, and temperature (NVT) run for 0.5 ns at 310 K. Each system was further equilibrated 

using constant number, pressure, and temperature (NPT) run at 1 atm and 310 oK for 10 ns with 

5 kcal (mol Å2)-1 harmonic position restraints applied to the protein. Further equilibration of 

the systems was performed using an NPT run at 1 atm and 310 oK for 0.5 ns with all atoms 

unrestrained. Conventional MD simulation was performed on each system for 10 ns at 1 atm 

pressure and 310 oK with a constant ratio constraint applied on the lipid bilayer in the X-Y 

plane. The GaMD simulations were carried out using AMBER 18.4,60 Dual-boost GaMD 

simulations were performed to study the substrate-bound γ-secretase complex (Table 1). In the 

GaMD simulations, the threshold energy E for adding boost potential was set to the lower 

bound, i.e. E = Vmax.
4,6 The simulations included 50 ns equilibration after adding the boost 

potential and then multiple independent production runs lasting 1-2 µs with randomized initial 

atomic velocities. GaMD production simulation frames were saved every 0.2 ps for analysis.  

 

Simulation analysis 

The VMD66 and CPPTRAJ69 tools were used for trajectory analysis. In particular, distance was 

calculated between the C atoms of catalytic aspartate residues. Hydrogen bond distance was 

calculated between donor protonated oxygen atom of PS1 Asp257 and the acceptor carbonyl 

oxygen atom of APP substrate residue Leu49, Thr48 or Ile47. Root-mean-square fluctuations 

(RMSFs) were calculated for the protein residues, averaged over three independent GaMD 

simulations and color coded for schematic representation of each complex system. The 

CPPTRAJ was used to calculate the protein secondary structure plots. The PyReweighting 

toolkit62 was applied to reweight GaMD simulations for free energy calculations by combining 



31 
 

all simulation trajectories for each system. A bin size of 1 Å was used for the PMF calculation 

of distances. The cutoff was set to 500 frames in each bin for calculating the 2D PMF profiles. 

Protein snapshots were taken every 1 ps for structural clustering. Clustering was performed on 

the GaMD simulations of wildtype, I45F, T48P and M51F-mutant APP bound γ-secretase based 

on the RMSD of PS1 using hierarchical agglomerative algorithm in CPPTRAJ69 generating ~10 

representative structural clusters for each system.  The top structural cluster was identified as 

the representative active (wildtype) and shifted active conformational states of the wildtype and 

M51F mutant APP bound γ-secretase systems, respectively. The top structural cluster was also 

identified as the active (I45F and T48P) conformational state of the I45F and T48P mutant APP 

bound γ-secretase. 

 

Restoration of wildtype γ-secretase for molecular dynamics simulations 

We performed initial GaMD simulations on the earlier published cryo-EM structure of γ-

secretase bound by the Notch substrate (PDB: 6IDF58). Residue Ala385 at the active site was 

mutated back to aspartate, whereas the disulfide bond between the N-terminus of Notch 

substrate and hydrophobic loop 1 (HL1) loop was kept intact. In aspartyl proteases, proximity 

between the two active site Asp residues necessitates protonation of one of them, preventing 

charge repulsion. Testing GaMD simulations were performed to determine which of the two 

Asp residues was protonated in γ-secretase. We performed multiple 300 ns GaMD simulations 

(Table 1) on three different systems: the original cryo-EM structure, Asp257 protonated, and 

with Asp385 protonated. The distance time course plots (Figure S2) revealed that the system 

with protonated Asp257 in the N-terminal fragment (NTF) subunit of PS1 facilitated the 



32 
 

activation of γ-secretase, as the two active-site aspartates approached each other to a distance 

of ~6-7 Å between the Cγ atoms. In contrast, simulations of the original cryo-EM structure did 

not show significant change from the starting Asp257:Cγ-Ala385:Cβ distance of ~10-11 Å. In 

the system with protonated Asp385 in the C-terminal fragment (CTF) of PS1, the two aspartates 

maintained a distance of ~10-11 Å between the Cγ atoms of the two aspartates. Therefore, 

Asp257 was protonated in subsequent GaMD simulations being similar to the setup of a 

previous computational study24. 

 Next, we proceeded to simulate γ-secretase bound by APP (PDB: 6IYC20). Residue 

Ala385 was similarly mutated back to Asp385 in the wildtype γ-secretase, which was compared 

to the original cryo-EM system in 300 ns GaMD simulations (Table 1). The disulfide bond 

between substrate and enzyme was still kept. Free energy calculations showed that the active-

site residues Asp257 and Ala385 maintained ~10 Å distance between their sidechain terminal 

C atoms in the cryo-EM system even though water molecules were observed entering the active 

site (Figure S3A). The substrate remained distant from the active site residues, with ~5-6 Å 

between the Cγ atom of protonated Asp257 and the carbonyl oxygen of Leu49 in APP. In 

contrast, activation of γ-secretase was observed during three independent 300 ns GaMD 

simulations of the computationally restored wildtype enzyme (Figure S3B, Movie S1). The 

protonated Asp257 formed a hydrogen bond with the carbonyl oxygen in Leu49 of the scissile 

amide bond in APP. Water molecules entered the PS1 active site. One water molecule was 

trapped between the two catalytic Asp residues through stable hydrogen bonds. This would 

induce nucleophilic attack of the carbonyl carbon of Leu49 by the activated water molecule, 

which is a key step for substrate proteolysis. The enzyme active site was thus well poised for 

proteolysis of APP for the ε cleavage between residues Leu49 and Val50. The two aspartates 
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were ~7 Å apart between their Cγ atoms (Figure S3B). The distance between the carbonyl 

carbon of Leu49 and the water oxygen was ~3.8 Å. Therefore, our GaMD simulations 

successfully captured activation of the APP-bound γ-secretase in the presence of the enzyme-

substrate disulfide bond. Next, the artificial disulfide bond between the N-terminus of APP 

substrate and the HL1 loop of PS1 was also removed by computationally restoring the wildtype 

residues for further simulations as summarized in Table 1.  
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Table 1: Summary of GaMD simulations performed on different systems of γ-secretase bound 

by the Notch and APP substrates. 

 

Enzyme Substrate  
aDisulfide 

Bond 
bNat om s  

Dimension 

(Å3)  

Simulation 

(ns)  

cΔV
a vg  

(kcal/mol) 

d
Δv 

(kcal/mol) 

D385A 

(Cryo-EM) 

Notch Present  

 

240,021 141 x 124 x 

146 

300 x 1 12.91 7.91 

D385-

protonated 

Notch Present  

 

240,358 141 x 124 x 

146 

300 x 3 9.97 6.76 

D257-

protonated 

Notch Present  

 

240,358 141 x 124 x 

146 

300 x 3 10.36 6.46 

D385A 

(Cryo-EM) 

APP Present  

 

253,650 141 x 124 x 

147 

300 x 1 12.53 6.58 

Wildtype APP Present  

 

253,647 141 x 124 x 

147 

300 x 3 10.46 6.91s 

Wildtype APP Absent  241,351 141 x 124 x 

147 

2000 x 3 10.45 6.78 

Wildtype I45F APP Absent  241,355 141 x 124 x 

147 

1100 x 3 10.30 6.79 

Wildtype T48P APP Absent  241,348 141 x 124 x 

147 

1400 x 3 10.87 6.87 

Wildtype M51F 

APP 

Absent  241,360 141 x 124 x 

147 

1500 x 3 10.08 7.38 

aThe artificial disulfide bond between the N-terminus of APP and PS1 HL1 loop of the γ-

secretase is kept (“Present”) or removed (“Absent”).  
bN

atoms
 is the number of atoms in the simulation systems.  

c∆Vavg and dσ∆V are the average and standard deviation of the GaMD boost potential, 

respectively. 
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Figure 1 

 

Figure 1: Conformational changes of the catalytic subunit presenilin (PS1) and APP substrate 

during activation of the computationally restored wildtype γ-secretase. (A) Comparison of the 

inactive cryo-EM structure (green) and wildtype active conformation of APP-bound PS1 (red). 

(B) The active site poised for proteolysis. Water entered the active site and formed hydrogen 

bonds with the catalytic aspartates, being ready for nucleophilic attack on the scissile amide 

bond between residues Leu49 and Val50 of APP for ε cleavage. (C-F) Conformational changes 

of (C) PS1 TM2, (D) PS1 TM6a, (E) the C-terminus of APP, (F) PS1 TM1 and PS1 TM8 during 

activation of γ-secretase. The extracellular end of TM2 moved outwards by ~2.5 Å in the active 

PS1 relative to the inactive cryo-EM structure. The PS1 TM6a moved upwards by ~2 Å 

compared to the cryo-EM structure. The C-terminal -strand region of APP moved closer to 

interact with the PS1 TM6a helix. Residue Leu52 of APP moved by ~6 Å towards non-polar 

residues Val272, Leu270 and Ala275 in the enzyme TM6a. The intracellular ends of TM8 and 

TM1 moved from the cryo-EM structure by ~4.5 Å and ~3.5 Å, respectively.  
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Figure 2 

 

Figure 2: Mass spectrometry and western blotting of the APP intracellular domain (AICD) 

fragments and GaMD free energy profiles of wildtype and mutant APP-bound γ-secretase. (A-

D) The intensity of different AICD fragments detected by mass spectrometry for (A) wildtype 

(AICD 50-99, expected mass: 6905.6 g/mol, observed mass: 6907.4 g/mol; AICD 49-99, 

expected mass: 7018.8 g/mol, observed mass: 7019.6 g/mol), (B) I45F (AICD 50-99, expected 

mass: 6905.6 g/mol, observed mass: 6905.4 g/mol; AICD 49-99, expected mass: 7018.8 g/mol, 

observed mass: 7019.8 g/mol), (C) T48P (AICD 50-99, expected mass: 6905.6 g/mol, observed 

mass: 6907.4 g/mol; AICD 49-99, expected mass: 7018.8 g/mol, observed mass: 7041.8 g/mol)  

and (D) M51F (AICD 49-99, expected mass: 7034.8 g/mol, observed mass: 7031.4 g/mol; AICD 

48-99, expected mass: 7135.8 g/mol, observed mass: 7132.2 g/mol) APP substrate as cleaved 

by γ-secretase. (E-G) 2D free energy profiles of the Asp257:C - Asp385:C and 

Asp257:protonated O - Leu49:O distances calculated from GaMD simulations of (E) wildtype, 
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(F) I45F and (G) T48P APP substrate. (H) 2D free energy profile of the Asp257:C - Asp385:C 

and Asp257:protonated O – Thr48:O distances calculated from GaMD simulations of the M51F 

APP substrate. (I) The total amount of AICD species in γ-secretase determined in vitro by 

western blotting using anti-Flag antibodies of γ-secretase.  

 

Figure 3 

 

Figure 3: Conformational changes of the catalytic subunit presenilin (PS1) and APP in the 

shifted active (M51F) states of γ-secretase compared with the active (wildtype) state. (A) 

Overview of the active (red) and shifted active (blue) conformations of APP-bound PS1. (B) 

The extracellular end of the PS1 TM2 moved outwards by ~2.5 Å in the shifted active (M51F) 

conformation relative to the active (wildtype) structure. Residues Thr124, Val125, Gly126 and 

Gln127 in this region lost the helical conformation in the shifted active state. (C) The active 

site poised to attack the scissile amide bond between residues Leu49 and Val50 in the active 

state (red) and between residues Thr48 and Leu49 in the shifted active state (blue) of APP for 

ε cleavage. Sidechain flipping of the APP Thr48 residue led to formation of a hydrogen bond 

between its carbonyl oxygen and the PS1 Asp257 protonated oxygen. Residue Leu49 initially 

facing the center of two aspartates flipped to the other side with downward movement of ~4 Å. 

(D) The N-terminus of PS1 TM6 moved towards the active site by ~4 Å and the TM6a helix 

tilted by ~60°. (E) The -strand at the C-terminus of APP substrate deformed to a turn as it 

moved away from TM6a in PS1. The APP Leu52 interacting with non-polar residues in PS1 

TM6a in the active conformation flipped its side chain and moved in the opposite direction by 

~6 Å. (F) The intracellular ends of TM1 and TM8 moved by ~2.5 Å and ~2.5 Å in PS1, 

respectively. 
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Figure 4 

 

Figure 4: Time courses of the APP secondary structures in the (A) wildtype, (B) I45F, (C) 

T48P and (D) M51F forms as bound to γ-secretase calculated from their representative GaMD 

simulations. Results of the other simulations are plotted in Figures S8 and S9.  

 

 

 

  



39 
 

Figure 5 

 

Figure 5: (A-D) Comparison of the locations of APP substrate residues P1’, P2’ and P3’ in the 

(A) wildtype active, (B) I45F active, (C) T48P active and (D) shifted active M51F APP 

substrate-bound conformations of γ-secretase. (E) Comparison of the corresponding PS1 active-

site S1’, S2’ and S3’ pockets in these different conformational states of γ-secretase. 
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Figure 6:  

  

Figure 6: Summary of the (A) inactive cryo-EM, (B) active (wildtype) and (C) shifted active 

(M51F) conformational states of the APP substrate-bound γ-secretase. Distinct AICD products 

were generated from the wildtype and M51F mutant APP. The complementary simulations and 

experiments have revealed mechanisms of the γ-secretase activation and its  cleavage of the 

APP substrate. 
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Appendix 

 

Figure S1: Ribbon representations of the (A) Notch- and (B) APP-bound γ-secretase complexes 

that include the presenilin (PS1), presenilin enhancer 2 (PEN2), anterior pharynx-defective 1 

(APH1) and Nicastrin (NCT) subunits. (C) Representation of the catalytic PS1 domain of APP-

bound γ-secretase. The transmembrane (TM) helices and active-site Asp385 and Asp257 

residues are labelled. The N-terminal fragment (NTF) is colored in cyan and C-terminal 
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fragment (CTF) is colored in purple (D) Computational model of γ-secretase complex in GaMD 

simulations. The protein was embedded into a POPC lipid bilayer and solvated in an aqueous 

medium of 0.15 M NaCl. (E) Schematic representation of APP substrate processing by γ-

secretase.

 
Figure S2: Time course of the Asp257:C - Ala385:C distance calculated from GaMD 

simulations of the cryo-EM D385A system (black) and Asp257:C - Asp385:C distance 

calculated from GaMD simulations of D385-protonated (red) and D257-protonated (blue) 

systems of Notch-bound γ-secretase complex. The disulfide bond between the N-terminus of 

Notch and PS1 HL1 loop was kept in these simulations.  
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Figure S3: (A) 2D free energy profile of the Asp257:C - Ala385:C and Asp257:sidechain O 

- Leu49:O distances calculated from GaMD simulations of the D385A cryo-EM structure of γ-

secretase bound by APP. (B) 2D free energy profile of the Asp257:C - Asp385:C and 

Asp257:O - Leu49:protonated O distances calculated from GaMD simulations of the wildtype 

γ-secretase. The disulfide bond between the N-terminus of APP and PS1 HL1 loop was kept in 

these simulations.  
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Figure S4: Time courses of the Asp257:protonated O - Leu49:O distance calculated from 

GaMD simulations of (A) wildtype, (B) I45F, and (C) T48P APP bound γ-secretase, and the 

Asp257:protonated O – Thr48:O distance calculated from GaMD simulations of the (D) M51F 

and (E) wildtype APP bound -secretase. 
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Figure S5: Comparison of structural flexibility of wildtype and mutant APP-bound γ-secretase 

calculated from GaMD simulations. (A) Root-mean-square fluctuations (RMSFs) of the 

wildtype APP-bound γ-secretase, (B) RMSF difference between the M51F and wildtype APP 

bound γ-secretase, (C) RMSFs of the I45F APP bound γ-secretase and (D) RMSFs of the T48P 

mutant APP-bound γ-secretase. 
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Figure S6: Side view of APP substrate and PS1 HL1 loop in the (A) inactive, representative 

active conformations of the (B) wildtype, (C) I45F and (D) T48P mutant APP-bound γ-secretase 

and the (E) Shifted conformation of M51F mutant APP-bound γ-secretase complex obtained 

from the GaMD simulations. (F) Comparison of APP substrate and PS1 HL1 loop in the 

different systems of APP-bound γ-secretase complex. 
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Figure S7: Time course of the Asp257:protonated O - Ile47:O distance calculated from GaMD 

simulations of the M51F APP bound -secretase.  
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Figure S8: Time courses of the APP secondary structures in the wildtype and I45F forms as 

bound to γ-secretase calculated from GaMD simulations: (A) Sim-2 and (B) and Sim-3 for the 

wildtype (Sim-1 in Figure 4A), and (C) Sim-2 and (D) Sim-3 for the I45F mutant (Sim-1 in 

Figure 4B). 
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Figure S9: Time courses of the APP secondary structures in the T48P and M51F forms as 

bound to γ-secretase calculated from GaMD simulations: (A) Sim-1 and (B) and Sim-3 for the 

T48P mutant (Sim-2 in Figure 4C), and (C) Sim-1 and (D) Sim-2 for the M51F mutant (Sim-3 

in 4D). 
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Figure S10: Secondary structures of the APP substrate in the representative active 

conformations of the wildtype, I45F and T48P mutant APP-bound γ-secretase and the shifted 

active conformation of M51F mutant APP-bound γ-secretase using the top ranked PS1-APP 

structural clusters obtained from the corresponding GaMD simulations.  

 

 

 



51 
 

 

Figure S11: Hydrogen bonds formed between residues G111, Q112 and I114 of the PS1 HL1 

loop and the N-terminus of APP substrate in the (A) Active and (B) Shifted conformations of 

γ-secretase obtained from the GaMD simulations of the I45F and M51F mutant APP systems.  
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Figure S12: Comparison of the -sheet conformational changes in the N-terminus of PS1 TM7 

and the C-terminus of APP substrate in the inactive (cryo-EM) and active conformations of the 

wildtype, I45F and T48P mutant APP-bound γ-secretase observed in the GaMD simulations. 

Relative to the wildtype active conformation, the N-terminus of PS1 TM7 and the C-terminus 

of APP substrate moved towards the PS1 TM6a by ~6 Å to maintain the -sheet structure in the 

I45F and T48P active conformations.  
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Table S1: List of amino acid residues constituting the S1’, S2’ and S3’ subpockets in the 

representative wildtype active, I45F active, T48P active and M51F shifted active conformations 

of γ-secretase obtained from the corresponding GaMD simulations. The residues that are within 

5 Å of APP substrate residues P1’, P2’ and P3’ are listed in the table.  

 
System S1’ S2’ S3’ 

Active (Wildtype) V261 

L268 

R269 

L271 

V272 

L381 

G382 

P433  

V272 

I287 

V379 

K380 

L381 

G382 

L425 

K430 

A431 

L432  

Y154 

L271 

V272 

A275 

T281 

L282 

F283 

I287 

G378 

V379 

K380 

L381 

G382 

Shifted (M51F) I143 

T147 

L150 

Y256 

D257 

A260 

V261 

L271 

V272 

A275 

E276 

P433 

D257 

V261 

R269 

V272 

E273 

Q276 

E277  

V261 

V379 

K380 

L381 

Y389 

L421 

T422 

L425 

A431 

L432 

P433 

A434 

L435 

Active (I45F/T48P) V261 

V272 

F283 

I287 

K380 

L381 

G382 

D385 

A431 

L432 

P433 

A434 

L435 

 

  

V82 

L85 

V261 

V379 

K380 

L381 

G382 

D385 

L418 

T421 

L422 

L425 

A431 

L432 

P433 

A434 

L435 

P436 

V272 

A275 

L282 

I287 

V379 

K380 

L381 

L425 

K430 

A431 

L432  
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Abstract 

The membrane-embedded γ-secretase complex processively cleaves within the transmembrane 

domain of amyloid precursor protein (APP) to produce 37-to-43-residue amyloid β-peptides 

(Aβ) of Alzheimer’s disease (AD). Despite its importance in pathogenesis, the mechanism of 

processive proteolysis by γ-secretase remains poorly understood. Here, mass spectrometry and 

western blotting were used to quantify the efficiency of the tripeptide trimming (Aβ49→Aβ46) 

of wildtype (WT) and familial AD (FAD) mutant APP substrate. In comparison to WT APP, 

the efficiency of this first trimming step was similar for the I45F, A42T and V46F APP FAD 

mutants, but substantially diminished for the I45T and T48P mutants. In parallel with 

biochemical experiments, all-atom simulations using a novel Peptide Gaussian accelerated 

molecular dynamics (Pep-GaMD) method were applied to investigate tripeptide trimming of 

Aβ49 by γ-secretase. The starting structure was active γ-secretase bound to Aβ49 and APP 

intracellular domain (AICD), as generated from our previous study that captured activation of 

γ-secretase for the initial endoproteolytic cleavage of APP (Bhattarai et al., ACS Cent Sci, 2020, 

6:969-983). Pep-GaMD simulations captured remarkable structural rearrangements of both the 

enzyme and substrate, in which hydrogen-bonded catalytic aspartates and water became poised 

for tripeptide trimming of Aβ49 to Aβ46. These structural changes required a positively charged 

N-terminus of endoproteolytic coproduct AICD, which could dissociate during conformational 

rearrangements of the protease and Aβ49. The simulation findings were highly consistent with 

biochemical experimental data. Taken together, our complementary biochemical experiments 

and Pep-GaMD simulations have enabled elucidation of the mechanism of tripeptide trimming 

of Aβ49 by γ-secretase.   
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Introduction 

Alzheimer’s disease (AD) contributes to more than 80% of all dementia cases 71. Deaths related 

to AD in the United States increased by 89% between 2000 and 2014, and more than 6.2 million 

Americans are affected with AD in 2021 (www.alz.org). AD is characterized by deposition of 

longer amyloid β-peptides (Aβ) in the form of cerebral plaques. The amyloid β-protein 

precursor (APP) is successively processed by β-secretase and γ-secretase to produce Aβ 

peptides. γ-Secretase first sheds the APP extracellular domain to produce transmembrane 

peptide C99, followed by processive proteolysis by γ-secretase to produce Aβ peptides of 

varying lengths 72. Membrane-embedded γ-secretase is a multi-domain aspartyl protease with 

presenilin as the catalytic subunit. γ-Secretase is considered “the proteasome of the membrane”, 

with more than 100 known substrates, including APP and the Notch family of cell-surface 

receptors 73,74. The location of the proteolysis and the number of cleavages within the APP 

transmembrane domain by γ-secretase determines the length of final Aβ products and the 

likelihood of forming plaques.  

Of the many transmembrane substrates, processive proteolysis of APP by γ-secretase is 

the most studied. γ-Secretase first carries out endoproteolytic (ε) cleavage of C99 peptide near 

the cytosolic end of the transmembrane domain, producing Aβ49 and Aβ48 peptides and their 

respective AICD co-products (AICD50-99 and AICD49-99, respectively)75. These initially 

formed long Aβ peptides are then cut generally every three residues from their C-termini to 

release tripeptide (and one tetrapeptide) co-products. The two general pathways of γ-secretase 

processive proteolysis are Aβ48→Aβ45→Aβ42→Aβ38 and Aβ49→Aβ46→Aβ43→Aβ40 16,17, 

producing Aβ42 and Aβ40 as their dominant products, respectively. Among these two, the 

longer Aβ42 peptide is more prone to aggregate and forms plaques 76. Moreover, early-onset 

http://www.alz.org/
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familial AD (FAD) APP mutants can bias the enzyme to produce longer Aβ peptides that are 

pathological and cause AD 77. The trimming of APP substrate by γ-secretase enzyme is dictated 

by active site S1’, S2’ and S3’subpockets that respectively bind to P1’, P2’ and P3’ substrate 

residues 78.  

Critical gaps remain in understanding the mechanism of intramembrane processive 

proteolysis by γ-secretase. Recently reported cryo-EM structures of γ-secretase bound to Notch 

and APP substrates provided valuable insights into the structural basis of substrate recognition 

of the enzyme 58,79. However, artificial structural constraints were included that could affect the 

enzyme-substrate interactions. Molecular dynamics (MD) simulations have proven useful in 

understanding the structural dynamics of γ-secretase, notably the enzyme-substrate interactions, 

including many previous studies23-33,80-84. Recently, we computationally restored the wildtype 

(WT) enzyme-substrate co-structure and applied all-atom simulations using the Gaussian 

accelerated molecular dynamics (GaMD) method to build the first dynamic model of γ-secretase 

activation 8. GaMD is an enhanced sampling technique that works by adding a harmonic boost 

potential to smooth the potential energy surface and reduce system energy barriers 4. Our GaMD 

simulations captured the extremely slow motions underlying enzyme activation, with the two 

catalytic aspartates and a coordinated water molecule poised for proteolysis of APP at the ε 

cleavage site. We showed that the I45F and T48P FAD mutations in APP enhanced the ε 

cleavage of the amide bond between Leu49-Val50 compared with the WT APP. In contrast, the 

M51F mutation in APP shifted the ε cleavage to the adjacent Thr48-Leu49 amide bond, 

changing the proteolysis from the Aβ49 to the Aβ48 pathway. Despite these advances, the 

detailed atomistic mechanism of processive proteolysis by γ-secretase remains elusive. This is 

consistent with γ-secretase being a well-known slow-acting enzyme (kcat for APP ε proteolysis 
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~ 2-6 per hour) 45,85, making it difficult to capture the dynamic transitions comprising large 

energy barriers in MD simulations. Hence, despite its importance in the pathogenesis of AD, 

the mechanism of processive proteolysis (tripeptide trimming) by γ-secretase remains poorly 

understood.  

Here, we report the first dynamic model of tripeptide trimming of Aβ49 to Aβ46 ( 

cleavage) by γ-secretase. Extensive all-atom simulations using a novel Peptide GaMD (Pep-

GaMD) method 86 captured the slow dynamic molecular transition from the  to  proteolytic 

cleavage step. In Pep-GaMD, a boost potential is applied selectively to the essential potential 

energy of the peptide to effectively model its high flexibility and accelerate its dynamic 

motions86. In addition, another boost potential is applied on the protein and solvent to enhance 

conformational sampling of the protein and facilitate peptide binding. Pep-GaMD has been 

demonstrated on binding of model peptides to the SH3 protein domains. Independent 1-μs dual-

boost Pep-GaMD simulations have captured repetitive peptide dissociation and binding events, 

which enable calculation of peptide binding thermodynamics and kinetics. The calculated 

binding free energies and kinetic rate constants agreed very well with the available experimental 

data 87.  

 In this study, we have combined biochemical experiments, including matrix-assisted 

laser desorption/ionization—time-of-flight) mass spectrometry (MALDI-TOF MS), liquid 

chromatography—tandem mass spectrometry (LC-MS/MS) and western blotting, with Pep-

GaMD enhanced sampling simulations to elucidate the mechanism of tripeptide trimming of 

Aβ49 by γ-secretase. Our findings from Pep-GaMD simulations of WT and five FAD mutants 

(I45F, A42T, V46F, I45T and T48P) of Aβ49 bound to γ-secretase were highly consistent with 
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quantitative biochemical analysis of their specific proteolytic products, providing important 

mechanistic insights into tripeptide trimming by the enzyme. 

Results 

Probing  cleavage of WT and FAD-mutant Aβ49 by γ-secretase in biochemical 

experiments. 

To compare the  cleavage of the WT and FAD mutants of APP by γ-secretase, we performed 

in vitro cleavage assay experiments using purified γ-secretase and recombinant APP-based 

substrate C100-FLAG, which contained the C99 APP C-terminal fragment with an N-terminal 

start methionine and a C-terminal FLAG epitope tag 88. Efficiency of the cleavage of substrate 

Aβ49 to products Aβ46 and tripeptide was calculated by measuring Aβ49 production and Aβ49 

degradation. To quantify Aβ49 production by ε cleavage of APP substrate, levels of co-products 

AICD 50-99 were determined using a combination of matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and quantitative 

western blotting.  

First, AICD produced in the assay was immunoprecipitated with anti-FLAG antibodies 

and detected by MALDI-TOF MS (Fig. 1A). For the WT, A42T, V46F and I45T APP substrate, 

the signal intensities corresponding to AICD 49-99 and AICD 50-99 show higher level of AICD 

49-99 than AICD 50-99. However, for mutants I45F and T48P APP substrate, signal intensities 

show higher level of AICD 50-99 than AICD 49-99. This suggests I45F and T48P favor 

production of Aβ49 rather than production of Aβ48 while A42T, V46F and I45T favor 

production of Aβ48 rather than production of Aβ49. 
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The same reaction mixtures were subjected to quantitative western blotting with anti -

FLAG antibodies (Fig. 1B), where standards of known concentrations of C100-FLAG were also 

run to make a standard curve, plotting band intensity against concentration of FLAG-tagged 

C100. From this standard curve, the concentration of total AICD-FLAG product obtained in the 

enzyme reaction was quantified (Fig. 1C). Quantification of the total AICD revealed increased 

total AICD production for V46F mutant substrate and decreased total AICD production for 

A42T, I45F, I45T, and T48P mutant substrates compared to AICD production for the WT. The 

concentration of AICD 50-99 was calculated using the total AICD level determined by 

quantitative western blot and the ratio of AICD 49-99 to AICD 50-99 determined from MALDI-

TOF MS. (Fig. 1D). The calculated concentrations of AICD 50-99 thus provided the level of 

production of co-product Aβ49. Aβ49 production was slightly increased for I45F mutant, while 

for all other mutants A42T, V46F, I45T and T48P decreased Aβ49 production was observed 

compared to Aβ49 production of the WT. 

To determine the degradation of Aβ49, we calculated and quantified trimming product 

tripeptide ITL. The mixtures from the cleavage assay were subjected to LC-MS/MS analysis to 

detect tripeptides. All substrate constructs studied produced ITL except for T48P mutant which 

produced IPL due to the replacement of T with P. For quantification of these tripeptides 

production, standard curves of each peptide were generated by plotting the concentration of 

synthetic peptide against the integrated areas of the three most abundant ion fragments from 

MS/MS (Fig. S1). The ITL and IPL peptide generated in the γ-secretase cleavage was monitored 

and quantified. (Fig. 1E). The quantification of the trimming product (ITL or IPL) or the Aβ49 

degradation reveal decrease in Aβ49 degradation for A42T, V46F, I45T and T48P. For I45F, 

Aβ49 degradation is similar to that of the WT. Concentration of both Aβ49 production as well 
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as Aβ49 degradation was used to calculate the percent efficiency (Fig. 1F). For all constructs, 

cleavage efficiency was close to 100% except that for two mutants I45T and T48P, the cleavage 

efficiencies decreased substantially to 35% and 34%, respectively.  

We selected these particular FAD mutations in APP substrate based on their different 

effects on the Aβ49→Aβ46 trimming step in our recently reported study85. In that study, we 

examined the effects of 14 different FAD mutations in APP substrate on all proteolytic steps 

carried out by γ-secretase. Moreover, we determined the Aβ42/40 ratios for these and other 

FAD mutations in APP substrate and found the relative effects of these mutations on this ratio 

compared to that seen with WT enzyme to be generally consistent with those reported from 

other groups89-91.  To the best of our knowledge, the effects of the I45F, A42T, V46F, I45T and 

T48P FAD mutations of the substrate on the Aβ49→Aβ46 trimming step have not been reported 

by any other groups. 

  

Activation of γ-secretase for tripeptide trimming of Aβ49 was captured in Pep-GaMD 

simulations. 

In parallel with the biochemical experiments, Pep-GaMD simulations were carried out on the 

γ-secretase bound by the WT and the I45F, A42T, V46F, I45T and T48P mutants of Aβ49 

(Table 1). The active WT APP-bound γ-secretase was obtained from our previous study 8, and 

the amide bond between Aβ49 and AICD50-99 was cleaved as the new simulation starting 

structure (Fig. S2, see details in Methods). We initially performed dual-boost GaMD 

simulations on the γ-secretase bound to Aβ49 with AICD50-99 removed. However, even after 

running ~6 µs GaMD simulations, we could not effectively sample conformational transitions 
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of the system for  cleavage of Aβ49 to Aβ46 (Fig. S3). The distance between the enzyme 

Asp257 catalytic residue and substrate Val46-Ile47 amide bond presented a computational 

challenge for conformational sampling, with apparently high energy barriers to overcome. To 

address the challenge, we applied our recently developed Pep-GaMD 86 method, which 

selectively boosts the essential potential energy of the peptide to effectively model the peptide 

flexibility and further improve sampling. We built four Pep-GaMD simulation systems with γ-

secretase bound to Aβ49 in the presence of AICD50-99 and a system in the absence of AICD50-

99 (Fig. S4). The C-terminus of Aβ49 and the N-terminus of AICD50-99 was either charged or 

neutral combined to form four different Pep-GaMD enzyme systems. Spontaneous activation 

of γ-secretase for  cleavage of Aβ49 was observed during 600 ns Pep-GaMD simulations with 

“charged C-terminal Aβ49 and charged N-terminal AICD50-99” (Figs. S5 and S6 and Movie 

S1 and Table S2). The enzyme activation for  cleavage was characterized by coordinated 

hydrogen bonding between the enzyme Asp257 and carbonyl oxygen of substrate Val46. The 

catalytic aspartates were at a distance of ~7-8 Å between their Cγ atoms, which could 

accommodate a water molecule for nucleophilic attack of the carbonyl carbon of the scissile 

amide bond (Fig S5). The water molecule formed hydrogen bonds with both catalytic aspartates 

and was at ~4 Å distance away from the carbonyl carbon of substrate Val46 residue. The 

activated γ-secretase conformation was well poised for cleavage of amide bond between Val46 

and Ile47 for  cleavage of the Aβ49. In the γ-secretase bound to WT charged C-terminal Aβ49 

and charged N-terminal AICD50-99system, we observed AICD50-99 dissociation in addition 

to enzyme activation for  cleavage (Fig. S7 and Movie S2). The AICD50-99, initially located 

near the Aβ49, slowly moved downwards to the intracellular PS1 pocket and then dissociated 

completely from the enzyme. Meanwhile, the AICD50-99 transitioned from β-sheet to a 
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loop/un-structured conformation during the Pep-GaMD simulations (Fig. S7).  Similarly, γ-

secretase bound to “neutral C-terminal Aβ49 and charged N-terminal AICD50-99” was also 

observed to become activated for  cleavage of Aβ49. In comparison, the γ-secretase systems 

bound to “charged C-terminal Aβ49” (in the absence of AICD50-99), “charged C-terminal 

Aβ49 and neutral N-terminal AICD50-99”, and “neutral C-terminal Aβ49 and neutral N-

terminal AICD50-99” could not sample enzyme activation for  cleavage of Aβ49 (Table S2, 

Fig. S6A-B, D and S8A-C). This showed that the presence of charged N-terminal AICD50-99 

was crucial for the enzyme activation for  cleavage of Aβ49. Therefore, systems for γ-secretase 

bound by charged C-terminal Aβ49 and charged N-terminal AICD50-99 were set up for running 

Pep-GaMD simulations of the FAD mutants of Aβ49.” 

Free energy profiles were calculated from Pep-GaMD simulations to characterize the 

activation of γ-secretase for  cleavage of the Aβ49 substrate, for which the distance between 

the enzyme catalytic aspartates and the distance between the enzyme protonated Asp257 and 

substrate residue Val46 were selected as reaction coordinates (Fig. 1G-1L, S6 and S9 and 

Table S2). In the WT Aβ49, three low-energy conformational states were identified from the 

free energy profile, including “Final”, “Intermediate” and “Initial” (Figs. 1G, S6C and S10 

and Table S2). In the “Final” conformational state, the aspartates were ~7-8 Å apart to 

accommodate the water molecule in between. The substrate Val46 maintained a distance of ~3 

Å from the active site Asp257 to form hydrogen bond in the Final active state. In the “Initial” 

state, the substrate Val46 was distant (~8-9 Å) from the active site Asp257, while the inter-

aspartate distance was ~6-7 Å. The “Initial” state represented the active state for the  cleavage 

of APP. In the “Intermediate” state, the aspartates remained ~6-7 Å apart, while the Aβ49 
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peptide (carbonyl oxygen of Val46) was at a distance of ~6 Å from the protonated Asp257 (Fig. 

1G). 

In the I45F mutant system, two low-energy conformational states, “Initial” and “Final”, 

were identified from the free energy profile of Pep-GaMD simulations (Figs. 1H, S11A and 

S12A and Movie S3). Two out of three Pep-GaMD simulations could capture the activation 

process, as the Asp257 could form stable hydrogen bond with Val46 as reflected in the distance 

time course plot (Fig. S11A). The “Final” state in the free energy profile represented the active 

conformation of the enzyme for  cleavage of the scissile amide bond between Val46 and Ile47 

APP residues. In the “Final” conformational state, the two catalytic aspartates were ~7-8 Å 

apart, and APP Val46 was ~3 Å distance away from the protonated aspartate. In the “Initial” 

state, the substrate Val46 was further away from the catalytic aspartate (~6-7 Å), and the 

aspartates were ~7-8 Å distance away from each other (Fig. 1H).  

In the A42T mutant APP system, four low-energy conformational states were identified 

from the free energy profile (Figs. 1I, S11B and S12B and Movie S4). Mutation of Ala42 to 

Thr42 caused the enzyme-substrate complex to sample a larger conformational space. In 

addition to the “Initial” and “Final” states, two new “Inhibited-1” and “Inactive” conformational 

states were identified for the A42T mutant system. The catalytic aspartates were ~4-5 Å (too 

close) apart in the “Inhibited-1” state and 13 Å away (too far) in the “Inactive” state. In the 

“Inhibited” state, the catalytic aspartates could not accommodate a water molecule between 

them and hence was inhibited from proteolytic activation. APP Val46 was ~4-5 Å from the 

protonated Asp257 in this “Inhibited-1” state. In the “Inactive” state, the aspartates were ~13 

Å apart and thus too far to form the dual hydrogen bonds with the water in between them, even 
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though the Asp257 could form a hydrogen bond with the Val46 carbonyl oxygen. This hindered 

activation required for  cleavage.  

In the V46F mutant system, two low-energy conformational states were identified, 

including “Inhibited-2” and “Final” (Figs. 1J, S11C and S12C and Movie S5).  Like other γ-

secretase systems, the “Final” state corresponded to the active conformation of the enzyme 

poised for  cleavage of Aβ49. Moreover, the “Inhibited-2” state had the two aspartates at 

proximity (~4-5 Å) between the Cγ atoms and unable to accommodate a water molecule in 

between for enzyme activation. APP substrate was ~10 Å away from active site  Asp257 in the 

“Inhibited-2” state.  

 Furthermore, Pep-GaMD simulations were carried out on I45T and T48P mutant Aβ49-

bound γ-secretase (Figs. 1K-1L, S11D-S11E and S12D-S12E). Both of these mutant systems 

were not able to activate the enzyme for  cleavage, being consistent with the experimental 

results where the  cleavage efficiency dropped to about one third compared to that of the WT. 

In the Pep-GaMD free energy profile of the I45T mutant system, only one “Intermediate” low-

energy conformational state was identified. This “Intermediate” state was the same low-energy 

conformation as the one in the WT system. For the T48P system, the hydrogen bond between 

APP Val46 and the protonated Asp257 was formed for a certain time in one of the three Pep-

GaMD production simulations (Fig. S11E). However, in the free energy profile, we could 

identify two low-energy conformational states, including “Initial” and “Inhibited-1”, but not 

the “Final” active state (Fig. 1L).  The “Inhibited-1” state resembled the one identified in the 

A42T mutant system. The “Initial” conformational state was the same as the one identified in 
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the WT, I45F and A42T systems.   These Pep-GaMD simulation findings were consistent with 

the biochemical experiments, verifying the I45T and T48P systems as negative controls.  

 

Conformational changes in activation of γ-secretase for tripeptide trimming of Aβ49 

We calculated root mean square fluctuations (RMSFs) of γ-secretase bound by the WT and 

FAD-mutant APP from Pep-GaMD simulations (Fig. S13 and Movie S6). In the WT Aβ49-

bound γ-secretase, the TM2, TM6, TM6a and C-terminus of TM9 helix were flexible in the 

catalytic PS1 subunit. The Pen-2 subunit exhibited high fluctuations with ~ 3 Å RMSF. Helices 

1, 2, 5, 12, 17, and TM domain of nicastrin were also flexible during the Pep-GaMD 

simulations. Structural clustering was performed on Pep-GaMD snapshots of the system using 

hierarchical agglomerative algorithm in CPPTRAJ 69 (see Methods). The top-ranked cluster 

was selected as the representative “Final” active conformation for the  cleavage of Aβ49. The 

starting structure from  cleavage of APP was obtained as the “Initial” active conformation. 

The catalytic PS1 of the “Final” conformation was compared to that of the “Initial” 

conformation in Fig. 2A. Relative to the “Initial” conformation, the substrate helical domain 

tilted by ~50 degrees in the “Final” conformation (Figs. 2A and 2B). Residue Leu49 in the 

substrate C-terminus moved downwards by ~5 Å (Figs. 2B, 4A and S14). The last residue in a 

helical conformation in the “Final” state of Aβ49 was Thr43 whereas it was Ile45 in the “Initial” 

state. In transition from the “Initial to the “Final” conformational state, two substrate residues, 

Val44 and Ile45 unwound their helical conformation and changed to a turn/loop conformation. 

Residues Thr43 and Ile45 were in similar positions in the “Initial” and “Final” active 

conformations relative to the membrane perpendicular axis (Fig. S14). In comparison, the 
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substrate C-terminal Leu49 moved downwards by ~5 Å while straightening the C-terminal loop 

(Figs. 2B and S14B).  

At the enzyme active site, the catalytic Asp385 did not have significant movement 

during the adjustments for substrate peptide trimming (Fig. 2C). In comparison, the protonated 

catalytic Asp257 moved by ~3 Å towards the substrate. Asp257 moved forward to form a 

hydrogen bond with the carbonyl oxygen of the scissile amide bond between the substrate 

residues Val46 and Ile47. Similarly, TM3 moved outwards by ~2 Å (Fig. 2D), and TM6a moved 

downwards by ~2 Å (Fig. 2E). Flexibility in these helices involved important FAD mutation 

sites including Tyr154, His163, Ala164, Leu166, Trp165, Ser169, Ile168, Tyr256, Ala260, 

Leu262, Cys263, Pro264, Pro267, Arg269, Val272 and Leu271 (www.alzforum.org). Trp165 

and His163 from TM3 and Arg269 from TM6a showed significant movements in their side 

chains. With a major part of C-terminus of APP absent (as AICD dissociates, see next section) 

the β2 loop at N-terminus of TM7 moved away from the APP by ~5 Å in the Final state as 

compared to the Initial state (Fig. 2F).  FAD mutation residues in the β2-TM7 region including 

Arg377, G378, L383 and G384 showed flexibility in the simulations. In particular, residue 

Arg377 reoriented its side chain in the “Final” conformational state.  

 

Changes in secondary structures of the WT and FAD-mutant Aβ49 during tripeptide 

trimming 

Secondary structures of the WT and FAD-mutant Aβ49 bound to γ-secretase were recorded 

during the Pep-GaMD simulations and plotted in Figs. 3 and S15. Changes in secondary 

structures of Aβ49 during  cleavage were compared to that of APP substrate (“Initial” active 

http://www.alzforum.org/
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conformation) during  cleavage from our previous study 8 (Fig. S16). Unwinding of the helix 

C-terminus in Aβ49 during  cleavage was observed in the secondary structure plot. During the 

 cleavage, the C-terminus of the WT APP substrate could maintain helical conformation up to 

Ile45/Val46 (Fig. S16). In comparison, WT Aβ49 was helical up to Thr43 in the C-terminal 

region (Figs. 3A and 2B). About 2-3 residues unwound near the  cleavage site to expose the 

scissile amide bond between Val46 and Ile47 to the catalytic aspartates and the coordinated 

water for activation. A new helix was formed for residues Ser26 to Ala30 in the Aβ49 during 

the transition from  to  cleavage in the WT system (Figs. 3A and S17). With the 50° tilt of 

Aβ49 peptide in the space between TM2 and TM3, the N-terminus is exposed to the 

hydrophobic lipid bilayer (Fig. S17). This helped the N-terminal loop to transition to a -helical 

conformation. The effects of the mutations on the new helical conformation is mentioned and 

explained in the next paragraph. A turn/unstructured conformation at residues Ala30-Ile31 

separated these two helices. In addition, the N-terminus of Aβ49 lost its interactions with the 

hydrophobic loop 1 (HL1) because of the tilting away from this loop.  

 Similarly, secondary structural changes were recorded for the I45F, A42T and V46F 

Aβ49 mutant systems (Figs. 3B-3D and S15). Like the WT, the I45F and A42T Aβ49 mutants 

maintained a helical conformation up to Thr43 at the N-terminus during the Pep-GaMD 

simulations. C-terminal residues after the Thr43, which included the  cleavage site bond 

between Val46 and Ile47, were observed mostly in a turn/unstructured conformation. This 

allowed the catalytic aspartates and water to approach the scissile amide bond for forming 

coordinated hydrogen bonds required for this cleavage. Likewise, bands of new helix formation 

were observed in the secondary structure plots from Asn27 to Ile31 and from Asp23 to Lys28 

for I45F- and A42T-mutant Aβ49 systems, respectively (Fig. 3B and 3C). The new helix formed 
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was due to its exposure to the hydrophobic lipid membrane. V46F Aβ49 was observed to be the 

most dynamic in terms of secondary structure changes (Fig. 3D). A band of helix was observed 

between Gly29 to Thr43, with a turn conformation formed between Leu34 – Val36. Thr43 to 

Ile47 transitioned between helix and turn conformations during the Pep-GaMD simulations of 

the V46F Aβ49. Like the WT and other mutant systems, new N-terminal helix formation was 

observed at residues Phe20 to Gly25 in the V46F mutant APP (Fig. 3D). The hydrophobic lipid 

environment helped these residues transition from turn to a helical conformation in the V46F 

mutant APP.  

 

Active-site subpockets formed in γ-secretase for tripeptide trimming. 

The “Final” active conformational state of Aβ49-bound γ-secretase was further analyzed for the 

P1’, P2’ and P3’ substrate residues at the  cleavage active site and the respective S1’, S2’ and 

S3’ subpockets in which they reside 78. The S1’ subpocket accommodating the P1’ residue in 

the WT Aβ49 was formed by residues from PS1 TM6a helix, β1 loop, TM3 helix and TM7 N-

terminal region (Figs. 2 and 4A). The residues that formed the subpockets are listed in Table 

S1. The S2’ subpocket occupied by the P2’ substrate residue consisted of residues from PS1 

TM6 helix, TM6a helix, PAL motif of TM9 helix, β1 and β2 loop region. Moreover, the S3’ 

subpocket accommodating the P3’ residue was formed by residues from PS1 TM6 helix, TM6a 

helix and β1 loop. In reference to Aβ49, S1’ and S3’ pockets were located on the same side 

(TM6a and TM3 helices) whereas the S2’ pocket was located on the opposite side (TM6 and 

TM9 helices).   
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 Similarly, the “Final” active conformational states of the I45F and A42T mutant Aβ49-

bound γ-secretase systems had the same subpockets formed at the active site during the  

cleavage as that of the WT system (Fig. 4B-4C and Table S1). In the I45F and A42T “Final” 

active conformation, the S1’ and S3’ subpockets occupied by the respective P1’ and P3’ 

substrate residues consisted of residues from PS1 TM6 helix, TM6a helix, TM7 helix, β1 and 

β2 loop region. In comparison, the S2’ subpocket was located on the opposite side of Aβ49 and 

consisted of residues from PS1 TM6 helix, TM6a helix, PAL motif of TM9 helix, β1 and β2 

loop. Furthermore, in the V46F “Final” active conformation, the locations of the S1’ and S2’ 

subpockets accommodating P1’ and P2’ Aβ49 substrate residues, respectively, were different 

as compared to that of the WT system (Fig. 4C-D). The S1’ pocket occupied by the P1’ residue 

of Aβ49 consisted of residues from TM6 helix, TM6a helix and TM2 helix (Table S1). The S2’ 

subpocket occupied by the P2’ residue of the V46F mutant in the “Final” active state was the 

same as the S1’ subpocket in the “Final” active state of the WT, I45F and A42T systems (Fig. 

4C-D). Moreover, the S3’ subpocket accommodating the P3’ substrate residue in the V46F 

mutant was the same as the one of the WT, I45F and A42T systems (Fig. 4E).  

 

Discussion 

Current AD treatments ease symptoms, but none has been clearly demonstrated to slow or halt 

disease progression. While the molecular cause of AD remains poorly understood, the hallmark 

pathological criteria for AD diagnosis is the deposition of amyloid-β (Aβ) plaques in the brain 

92. Aβ peptides are products of processive proteolysis by γ-secretase. Dominant missense 

mutations in the substrate (APP) and the enzyme (presenilin component of γ-secretase) cause 

early-onset FAD, and these mutations result in deficient carboxypeptidase trimming of initially 
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formed long Aβ peptides to shorter secreted forms 85,93,94. Yet the mechanism of processive 

proteolysis of APP by γ-secretase is unknown. Recent reports of cryo-EM structures of γ-

secretase bound to APP and Notch substrates as well as to γ-secretase inhibitors and modulators 

revealed details of the structural basis of substrate recognition as well as enzyme inhibition and 

modulation 58,79,95. Regardless, static conformations of the enzyme cannot explain the 

underlying mechanism of enzyme activation and substrate processing. Essentially nothing is 

known about the dynamic mechanism of processive proteolysis by γ-secretase.  

It would require quantum mechanics/molecular mechanics (QM/MM) calculations to 

fully understand the catalytic mechanism of proteolysis by γ-secretase. The catalytic step is 

likely the rate-limiting step of the enzyme proteolysis, being slower than the substrate-enzyme 

interaction dynamics. Nevertheless, the latter (dynamic motions of the substrate-enzyme 

interaction) has been suggested to take place over minutes45. This is still considered as slow 

dynamics and extremely long timescales that is way beyond the reach of state-of-the-art 

conventional MD simulations, but amenable to enhanced sampling simulations. We initially 

performed ~6 µs regular dual-boost GaMD simulations but could not sample stable enzyme-

substrate hydrogen bond that characterizes system conformation for  cleavage of Aβ49 (Figure 

S3). Then we turned to our recently developed Pep-GaMD method, which selectively boosts 

the essential potential energy of the peptides. Pep-GaMD has been demonstrated to greatly 

accelerate protein-peptide binding simulations by orders of magnitude86. Compared with 

previous GaMD, Pep-GaMD is a more powerful method that can be applied for further 

improved enhanced sampling of protein-peptide interactions. The new Pep-GaMD simulations 

allowed us to capture the  cleavage activation in 600 ns. In this context, novel Pep-GaMD 

simulations have, for the first time, captured slow dynamic conformational transitions in both 
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the enzyme and substrate for tripeptide trimming of the wildtype and FAD mutants of Aβ49, 

being consistent with MS and western blotting biochemical experiments. 

 Here, we have applied the combination of novel Pep-GaMD enhanced sampling 

simulations and biochemical experiments to address the issue. Different systems of γ-secretase 

bound by the WT and FAD-mutant Aβ49 substrates were investigated to understand tripeptide 

trimmin,  cleavage (Fig. 5). Five γ-secretase systems—bound to the WT, I45F, A42T and 

V46F charged C-terminal Aβ49 in presence charged N-terminal AICD50-99 and bound to WT 

neutral C-terminal Aβ49 and charged N-terminal AICD50-99— underwent activation for  

cleavage during 600 ns Pep-GaMD simulations (Fig. 5B). This was consistent with biochemical 

experiments, as these mutant systems showed similar efficiencies for the Aβ49 to Aβ46 

proteolytic step ( cleavage). In comparison, γ-secretase bound by I45T and T48P Aβ49 showed 

little or no sample activation (Fig. 5C). Furthermore, Aβ49-bound γ-secretase in the absence of 

AICD50-99 was not able to sample the “Final” active state for  cleavage of the substrate (Fig. 

S8A), similarly for γ-secretase bound to WT charged C-terminal Aβ49 and neutral N-terminal 

AICD50-99 and γ-secretase bound to WT neutral C-terminal Aβ49 and neutral N-terminal 

AICD50-99 (Fig. S8B-S8C). This highlighted the importance of AICD50-99 and its N-terminal 

charge in facilitating processive proteolysis by γ-secretase. Following  cleavage, both the C-

terminus of Aβ49 and N-terminus of AICD50-99 at the active site could be exposed to water 

molecules and thus charged at physiological pH 7 (as carboxylate and ammonium, 

respectively). The charged state likely aided movement toward the polar aqueous environment 

and away from the hydrophobic transmembrane interior of the PS1 active site. Indeed, the 

AICD50-99 with charged N-terminus could dissociate from PS1 in the Pep-GaMD simulations 

that helped prepare for the next cleavage during processive proteolysis by γ-secretase.  
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During  cleavage activation, two residues unwound from the C-terminus of the Aβ49 

helix, changing to a turn conformation (Fig. 5B). This was observed in the time courses of the 

substrate secondary structures as well. Unlike the helical conformation, the loop/turn 

conformation facilitated exposure of the scissile amide bond to the catalytic aspartates and the 

coordinated water molecule. In parallel, positions of the Thr43 and Ile45 residues in the “Initial” 

and “Final” states relative to the membrane were similar, whereas the C-terminal residue Leu49 

moved downwards by ~5 Å. Moreover, the helical domain of Aβ49 tilted by ~50 degrees (Fig. 

5B). Thus, tilting of the helical domain and unwinding of C-terminal helix in the substrate 

apparently facilitated the proteolytic progression from  to  cleavage by γ-secretase. Helix 

unwinding was accompanied by straightening of the C-terminal loop/turn and downward 

movement of the terminal residue Leu49. Similarly, the β-sheet conformation between the APP 

C-terminus and the β1 loop was broken as ε cleavage product AICD50-99 dissociates. This 

caused the β1 loop to move away from the APP C-terminus by ~5 Å. This region has been 

suggested to be important for substrate recognition and proteolytic processing 79. Similarly, γ-

secretase inhibitors (GSIs) and transition state analogs (TSAs) bind to this region 95. The present 

study also shows an important role of this region in activation of γ-secretase for  cleavage of 

Aβ49.  

Relevant to this study, Hitzenberger et. al.23 performed restraint MD simulations to 

produce γ-secretase complex structure bound to the Ab49, Ab46 and Ab43 peptides. 

Simulations on these complexes showed that both helix unwinding and sliding of active site 

aspartates towards the scissile amide bond are responsible for peptide repositioning during 

substrate processing by γ-secretase. During repositioning of the Ab peptides, the N-terminus 

was anchored to maintain its interaction with PS1 subunit. However, these enzyme-substrate 
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model complexes were generated by combining apo γ-secretase missing the Nicastrin subunit 

and C99 peptide using restrained MD. AICD50-99 peptide was not included in the γ-secretase 

study and charges on the terminal ends of the Ab49 and AICD50-99 peptide were not 

considered. In comparison, our model was based on the holo enzyme activated for e cleavage 

from our previous study8 generated using the APP bound γ-secretase cryo-EM structure. To the 

best of our knowledge, we are unaware of previous studies on the molecular dynamics of 

tripeptide trimming, in particular the first trimming step of Aβ49 to Aβ46, by the γ-secretase 

complex. 

Pep-GaMD captured the enzyme activation for  cleavage for γ-secretase systems bound 

to WT and three FAD-mutant (I45F, A42T and V46F) APP substrates. The low-energy “Final” 

active conformation was identified in the Pep-GaMD free energy profiles of all these systems. 

However, the PMF profiles representing each enzyme system was different in terms of distinct 

low-energy states and the conformational space sampled by the enzyme during  cleavage. The 

I45F and V46F mutant systems sampled two low-energy conformations with the I45F system 

being the least conformationally dynamic (Fig. 1H, J). Three and four low-energy states were 

identified from free energy profiles of the WT and the A42T mutant systems, respectively, with 

the A42T mutant system being more dynamic (Fig. 1G, I). Each system had its own set of 

conformations and a distinct activation pathway. This suggested that the enzyme is remarkably 

dynamic, consistent with its ability to cleave over 100 different substrates96. 

 In the “Final” active state of γ-secretase poised for the  cleavage, subpockets were 

formed in the active site that were different from that formed for the  cleavage (Fig. 4 and 

S20). This finding was consistent with the observation that the C-terminus of Aβ49 during  
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cleavage did not form a β-sheet conformation with the PS1 TM6a β2 region, instead adopting 

a loop conformation (Fig. 2F). The locations of the active site subpockets formed for  cleavage 

were compared to those formed for  cleavage (Fig. S20).  Moreover, the locations of S1’, S2’ 

and S3’ subpockets formed for  cleavage were the same for different γ-secretase systems bound 

to the WT and mutant Aβ49 except for the V46F mutant system. The S2’ subpocket 

accommodating the T48 P2’ residue formed for  cleavage was the same as the S1’ subpocket 

accommodating the V50 P1’ subpocket formed for  cleavage. In contrast, the  cleavage S3’ 

subpocket for the L49 P3’ residue was the same as the  cleavage S3’ subpocket for the L52 

P3’ residue. The S1’ subpocket for the I47 P1’ residue for  cleavage and the S2’ subpocket for 

the M51 P2’ residue for  cleavage had their own unique location in their respective Final active 

states. Regardless, S1’/S3’ and S2’ subpockets were located on opposite sides of the substrate 

in both of the “Initial” and “Final” active states.   

During 600 ns of Pep-GaMD simulations, we did not observe the enzyme activation at 

other cleavage sites except for  cleavage at the amide bond between Val46-Ile47 of Aβ49 

peptide. This can be observed from the time course plots of the distance between the protonated 

Asp257 and the carbonyl oxygen atoms of residues Ile47 (for cleavage at the second position) 

and Ile45 (for cleavage at the fourth position) (Figure S21). Moreover, the pathway of tripeptide 

trimming for  activation is energetically more favorable compared to that of the second or 

fourth amino acid residue cleavage. In this context, even though Pep-GaMD was able to capture 

the slow dynamic transitions of the enzyme activation for  cleavage during 600 ns simulation 

time, the simulations appeared to still suffer from insufficient sampling of the entire system 

conformational space and the calculated free energy profiles remained un-converged. Hence, 
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the free energy profiles reflect semi-quantitative picture of the tripeptide trimming process 

rather than the exact correctness of the free energy values. 

Here, we have investigated both the wildtype and 5 FAD mutants (including I45F, A42T, 

V46F, I45T and T48P) of the substrate. In a recent report85, we determined the Aβ42/40 ratios 

for these and other FAD mutations in APP substrate and found the relative effects of these 

mutations on this ratio compared to that seen with WT enzyme to be generally consistent with 

those reported from other groups89-91,97. To the best of our knowledge, there are no other studies 

comprehensively exploring APP FAD mutations and how they are processed by γ-secretase 

beyond our own85. Even with respect to Aβ42/40 ratios, a standard measure in the field, the 

only other comprehensive study of the 14 APP TMD FAD mutations was by our group78, which 

gave closely similar relative changes in Aβ42/40 ratios with all these mutations, even though 

the systems were different (cellular transfection of APP78 vs. C100Flag and purified proteins85).  

Other reports on effects of APP mutations on Aβ42/40 have studied only very selected 

mutations. Among the 5 mutations studied in the current work: (1) Aβ42 levels cannot be 

determined by ELISA for A42T, as this changes the ELISA epitope; (2) No reported data can 

be found for T48P; Similar Aβ42/40 changes are seen with I45F and I45T89-91; The only 

discrepancy is with V46F: Devkota et al.85 showed no change vs. WT, while Bolduc et. al.78, 

Lichtenthaler et. al.90, and Tamaoka et. al.97 report ~4-fold increases in Aβ42/40. The reason 

for this discrepancy is unclear, however, only Devkota et. al. 85 used purified proteins, while 

the other reports measured secreted peptides in transfected cells.  

In summary, we have presented here the first dynamic model of tripeptide trimming—

of Aβ49 to Aβ46—by γ-secretase, which was highly consistent with mass spectrometry (MS) 
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and western blotting biochemical experiments. Specifically, MS and western blotting were used 

to quantify the efficiency of tripeptide trimming (Aβ49→Aβ46) of wildtype (WT) and familial 

Alzheimer’s disease (FAD) mutant APP substrates. In comparison to WT APP, the efficiency 

of this first trimming step was similar for the I45F, A42T and V46F APP FAD mutants, but 

substantially diminished for the I45T and T48P mutants. All-atom simulations performed in 

parallel with the biochemical experiments captured remarkable structural rearrangements of 

both the enzyme and substrate, in which hydrogen-bonded catalytic aspartates and water 

became poised for tripeptide trimming of Aβ49 to Aβ46. Our complementary biochemical 

experiments and all-atom simulations have enabled elucidation of the mechanism of tripeptide 

trimming of γ-secretase. It will guide our future studies on subsequent cleavage steps of the 

APP substrate and processive cleavage of the other substrates of γ-secretase. Detailed 

mechanistic understanding of these processes is expected to greatly facilitate rational drug 

design of this critical enzyme.   
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Table 1: Summary of Pep-GaMD simulations performed on different systems of γ-secretase 

bound by Aβ49 and AICD50-99 peptides. aN
atoms

 is the total number of atoms in the simulation 

systems. b∆Vavg and cσ∆V are the average and standard deviation of the Pep-GaMD boost 

potential, respectively. 

System 
aN

atoms
 Dimension (Å3) 

Simulation 

(ns) 

bΔV
avg

 

(kcal/mol) 

cs
Δv 

(kcal/mol) 

WT Aβ49 254,233 152 x 123 x 146 600 x 3 106.9 14.0 

WT neutral 

Aβ49 - neutral 

AICD 

254,337 152 x 123 x 146 600 x 3 155.9 11.8 

WT neutral 

Aβ49 - 

charged AICD 

254,340 152 x 123 x 146 600 x 3 134.2 11.3 

WT charged 

Aβ49 - neutral 

AICD 

254,334 152 x 123 x 146 600 x 3 133.9 11.1 

WT charged 

Aβ49 - 

charged AICD 

254,377 152 x 123 x 146 600 x 3 134.0 10.9 

I45F charged 

Aβ49 - 

charged AICD 

254,335 152 x 123 x 146 600 x 3 137.5 12.1 

A42T charged 

Aβ49 - 

charged AICD 

254,341 152 x 123 x 146 600 x 3 148.9 11.4 

V46F charged 

Aβ49 - 

charged AICD 

254,329 152 x 123 x 146 600 x 3 177.9 11.9 

I45T charged 

Aβ49 - 

charged AICD 

254,323 152 x 123 x 146 600 x 3 149.2 11.4 

T48P charged 

Aβ49 - 

charged AICD 

254,328 152 x 123 x 146 600 x 3 137.9 11.2 
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Figure 1 

 

Figure 1: Tripeptide trimming of the wildtype (WT) and FAD mutants of Aβ49 γ-secretase 

characterized by MS, western blotting and Pep-GaMD simulations. (A) MALDI-TOF MS 

detection of AICD 50-99 and AICD 49-99 products, (B) Anti-FLAG immunoblot of total 

AICD-FLAG levels. Purified C100-FLAG at a range of known concentrations was used to 

generate a standard curve, (C) Quantification of total AICD-FLAG levels from immunoblot by 

densitometry, (D) Quantification of AICD 50-99 using total AICD levels determined from 

immunoblot and intensity ratios determined from MALDI-TOF MS, (E) Quantification of ITL 

tripeptides generated from the trimming of WT and FAD mutants of Aβ49, (F) Cleavage 

efficiency of the first trimming (ζ) step. Grey dotted line denotes cleavage efficiency from WT 

APP substrate. (G-L) 2D free energy profiles calculated from the Pep-GaMD simulations of (G) 

WT, (H) I45F, (I) A42T, (J) V46F, (K) I45T and (L) T48P Aβ49 bound to γ-secretase. The 

distances between the Cγ atoms of Asp257 and Asp385 in PS1 and between the hydroxyl 

oxygen of PS1 Asp257 and the carbonyl oxygen of Aβ49 Leu49 were selected as the reaction 

coordinates. 
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Figure 2 

Figure 2: Conformational changes of the PS1 catalytic subunit and substrate during 

activation of γ-secretase for tripeptide trimming of Aβ49 in Pep-GaMD simulations. (A) 

Comparison of the Initial (active for  cleavage, blue) and Final (active for  cleavage, red) 

conformations of the Aβ49-bound PS1. The enzyme activation for tripeptide trimming was 

characterized by coordinated hydrogen bonding between the enzyme Asp257, carbonyl oxygen 

of Aβ49 Val46 and a water molecule accommodated between the two aspartates poised for 

cleavage of the amide bond between Val46 and Ile47 residues. (B-F) Conformational changes 

of (B) Aβ49 substrate, (C) catalytic aspartates, (D) TM3, (E) TM6 and TM6a, and (F) β2 strand 

from the Initial to the Final conformational state. The helical domain of Aβ49 tilted by ~50º 

and residue Leu49 at the C-terminus of Aβ49 moved downwards by ~5 Å. Protonated catalytic 

Asp257 moved ~3 Å towards the Aβ49 substrate. The enzyme TM3 moved outwards by ~2 Å 

and TM6a moved downwards by ~2 Å. The enzyme β2 strand (N-terminus of TM7) moved 

away from APP and closer towards the β1 strand (C-terminus of TM6a) by ~5 Å. 
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Figure 3 

 
 

Figure 3: Time-dependent secondary structures of Aβ49 bound to γ-secretase calculated 

from the Pep-GaMD simulations. (A) WT, (B) I45F, (C) A42T and (D) V46F systems of 

Aβ49. Results from other simulations are plotted in Figs. S12 and S15. 
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Figure 4 

 

Figure 4: Active-site conformations of γ-secretase for tripeptide trimming of Aβ49 

observed in the Pep-GaMD simulations. (A-D) Conformations of the substrate P1’, P2’ and 

P3’ residues in the Final active conformations of the (A) WT (red), (B) I45F (pink), (C) A42T 

(green) and (D) V46F (cyan) Aβ49 systems. (E) Comparison of the PS1 active-site S1’, S2’ and 

S3’ pockets that accommodate the WT and mutants of Aβ49. 
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Figure 5 

 

Figure 5: Dynamic model of tripeptide trimming of Aβ49 by γ-secretase. (A) The “Initial” 

conformational state of Aβ49 bound γ-secretase. (B) The WT Aβ49 and its I45F, A42T and 

V46F mutants were able to transition to the “Final” state with ~50° tilting of the helical domain 

and unwinding of the helix C-terminus (residues V44-I45) and became poised for  cleavage of 

the V46-I47 amide bond by γ-secretase. (C) In contrast, the I45T and T48P mutant Aβ49-bound 

γ-secretase were trapped in the “Intermediate” or “Inhibited-1” state, being inactive for  

cleavage of the substrate.   
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Materials and Methods  

C100-FLAG substrates expression and purification 

C100-FLAG constructs 88 were transformed into E. coli BL21 cells. E. coli BL21 cells were 

grown in LB media at 370C in the incubator shaker until OD600 reached 0.6. Cells were induced 

with 0.5 mM IPTG and grown for 4 hours shaking at 37 oC. The cells were then pelleted and 

resuspended in lysis buffer composed of 50 mM HEPES pH 8 with 1% Triton X-100. The cells 

were lysed by French press three times and lysate was centrifuged to remove cell debris. The 

clear lysate was mixed with anti-FLAG M2-agarose beads (Sigma-Aldrich) for 16 h at 4 oC. 

Substrates were eluted from the beads with 100 mM glycine pH 2.5 with 0.25% NP-40, 

following by washing of the beads 3 times with lysis buffer. The elute was neutralized with Tris 

HCl and stored at -800C.  

 

γ-Secretase assays 

γ-Secretase purification and assays were carried out as described previously 8. Briefly, 30 nM 

γ-secretase was incubated for 30 min at 37 °C in assay buffer composed of 50 mM Hepes pH 

7.0, 150 mM NaCl, and 0.25% 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-

propanesulfonate (CHAPSO) detergent supplemented with 0.1% phosphatidylcholine (DOPC) 

and 0.025% phosphatidylethanolamine (DOPE). Reactions were initiated by addition puri fied 

C100-FLAG substrate to a final concentration of 5 µM and performed by incubating at 37 °C 

for 16 h. 
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The enzymes used for all reactions were purified wild-type γ-secretase from the same 

enzyme preparation. Essentially, all of the purified enzymes were active, as determined using a 

stoichiometric γ-secretase inhibitor. There was no loss of specific activity, and any reduction in 

endoproteolytic cleavage of APP substrate or subsequent tripeptide trimming was due to the 

mutation in the substrate. Each substrate was purified to homogeneity and analyzed for its 

integrity and identity as we have recently reported85. Moreover, all enzyme reactions were 

conducted under substrate saturation and at a time point within the linear range of product 

formation (i.e., product levels are proportional to reaction rates).  

 

Detection of AICD species 

After 16 h, AICD-FLAG produced from the enzymatic assay was isolated by 

immunoprecipitation. The assay mixture was incubated with anti-FLAG M2 beads (SIGMA) in 

10 mM MES pH 6.5, 10 mM NaCl, 0.05% DDM detergent for 16 h at 4 oC. AICD products 

were eluted from the anti-FLAG beads with acetonitrile:water (1:1) with 0.1% trifluoroacetic 

acid. The elutes were run on a Bruker autoflex MALDI-TOF mass spectrometer in linear mode. 

 

Western blotting 

Samples from γ-secretase assays and C100-FLAG standards were run on 4-12% Bis-Tris gel 

and transferred to PVDF membrane. The membrane was treated with 5% dry milk in PBS 

Tween-20 for 1 h at ambient temperature. The membrane was then incubated with anti -FLAG 

M2 antibodies at 4 oC overnight. The membrane was washed 3 times with PBS Tween-20 and 
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incubated with anti-mouse secondary antibodies for 1 h. The membrane was washed and imaged 

for chemiluminescence and band signal intensity was measured by densitometry.  

 

LC-MS/MS tandem mass spectrometry 

Small peptides were analyzed using an ESI Quadrupole Time-of-Flight (Q-TOF) mass 

spectrometer (Q-TOF Premier, Waters) by LC-MS/MS experiment, as previously described 85. 

Briefly, assay samples and standard peptides were loaded onto a C18 column and eluted with a 

step gradient of 0.08% aqueous formic acid (A), acetonitrile (B), isopropanol (C), and a 1:1 

acetone/dioxane mixture (D). The gradient well separated the lipids and detergent present in the 

buffer from the small peptides. The three most abundant collision-induced dissociation (CID) 

fragments were identified from the MS/MS for each small peptide. The peptide 

chromatographic area was obtained from the summed signals from three most abundant ions.     

 

Simulation system setup 

All-atom simulations using the Pep-GaMD method86 were performed on the -secretase 

activation for  cleavage of A49. Active APP-bound -secretase was taken from the previous 

study8 and the amide bond between A49 and AICD50-99 was cleaved as the starting structure. 

The enzyme was based on previously published cryo-EM structure79 (Fig. S1) with Asp385 

computationally restored, artificial enzyme-substrate disulfide bond removed and missing 

residues on APP N-terminus added. The Ala385 residue in the cryo-EM structure was 

computationally mutated back to Asp385. Two artificial disulfide bonds between Cys112 of 
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PS1-Q112C and Cys4 of PS1-V24C were removed as the wildtype residues were restored. 

SWISS-MODEL65 homology modeling was used to restore 5 N-terminal APP residues that were 

missing in the cryo-EM structure. The simulation systems of γ-secretase bound by wildtype 

and mutant A49 (Figure S1) were then prepared similarly as in the previous study for APP-

bound -secretase and summarized in Table 1. For APP-mutant simulations systems, 

isoleucine, alanine, valine, isoleucine and threonine residues were mutated to phenylalanine, 

threonine, phenylalanine, threonine and proline computationally at the 45 th, 42nd, 46th, 45th and 

48th residue of APP substrate, respectively. These corresponded to I45F, A42T, V46F, I45T and 

T48P mutations as per the numbering based on C99, although the actual substrate in the model 

was based on C83. 

In the Pep-GaMD simulations, boost potential was applied selectively to the essential 

potential energy of the peptide (A49 and AICD50-99) to effectively model its high flexibility 

and accelerate its dynamic motions. In addition to the -secretase systems bound by charged C-

terminal A49 and charged N-terminal AICD50-99, and neutral C-terminal A49 and charged 

N-terminal AICD50-99, we tested Pep-GaMD simulations on enzyme systems bound by A49 

in the absence and presence of charged C-terminal A49 and neutral N-terminal AICD50-99, 

and neutral C-terminal A49 and neutral N-terminal AICD50-99 (Fig. S4). The neutral and 

charged N-terminus of the AICD50-99 was characterized by the presence of -NH2 and NH3
+

 

functional groups at the N-terminal end, respectively. Similarly, the neutral and charged C-

terminus of A49 was characterized by the presence of COOH and COO- functional groups at 

the C-terminal end, respectively. Unlike the charged N-terminal AICD50-99 systems, activation 

was not observed during the 600 ns of Pep-GaMD of either of the enzyme systems bound by 
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A49 in the absence and presence of neutral N-terminal AICD50-99 (Figs. S6 and S8 and 

Table S2). Free energy profiles were plotted for the Pep-GaMD simulations of all these enzyme 

systems. Two low energy conformational states were identified in the system without the AICD 

bound including “Inhibited-2” and “Intermediate” (Fig. S8A). Similarly, “Initial” and 

“Intermediate” low energy conformational states were identified in the free energy profile of 

the enzyme system bound to charged C-terminal A49 in the presence of neutral N-terminal 

AICD50-99 (Fig. S8B). The free energy profile of -secretase system bound by neutral C-

terminal A49 in presence of neutral N-terminal AICD50-99 identified two low energy states 

including “Initial” and “Intermediate” (Fig. S8C). “Final” and “Intermediate” low energy states 

were identified in the free energy profiles of the enzyme system bound by neutral C-terminal 

A49 and charged N-terminal AICD50-99 (Fig. S8D). The “Intermediate” and the “Inhibited-

2” conformational states here were same as the one identified in the wildtype and the V46F 

mutant -secretase systems, respectively (Fig. 2A and 2D). The “Initial” conformational state 

resembled the one identified in the wildtype, I45F and A42T mutant systems (Fig. 2A-2C). In 

comparison, “Final” active conformational state was identified in the wildtype system bound to 

A49 and charged N-terminal AICD50-99 (Fig. 2A). Therefore, systems for -secretase bound 

by A49 and charged N-terminal AICD50-99 were used for final Pep-GaMD simulations. 

 

Simulation Protocol 

The CHARMM36m98 parameter set was used for the protein and POPC lipids. Initial energy 

minimization and thermalization of the γ-secretase complex followed the same protocol as used 

in the previous study8. Then dual-boost Pep-GaMD simulations were performed to investigate 
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the γ-secretase enzyme activation for  cleavage (Table 1). The threshold energy E for adding 

boost potential was set to the upper bound, i.e., E = Vmin + (1/k)4,6. The simulations included 50 

ns equilibration after adding the boost potential and then multiple independent production runs 

lasting 600 ns with randomized initial atomic velocities. Pep-GaMD production simulation 

frames were saved every 0.2 ps for analysis. 

 

Simulation analysis 

VMD66 and CPPTRAJ 69 were used to analyze the Pep-GaMD trajectories. The distance 

between the catalytic aspartates was calculated between the C atoms. Hydrogen bond distance 

was calculated between the donor protonated oxygen atom of PS1 Asp257 and the acceptor 

carbonyl oxygen atom of APP substrate residue Val46. Root-mean-square fluctuations 

(RMSFs) were calculated for the protein residues, averaged over three independent Pep-GaMD 

simulations and color coded for schematic representation of each complex system. The 

CPPTRAJ was used to calculate the protein secondary structure plots. The PyReweighting 

toolkit62 was applied to reweight Pep-GaMD simulations for free energy calculations by 

combining all simulation trajectories for each system. Bin size of 1-3 Å was used for the PMF 

calculation of distances. The cutoff was set to 500-1000 frames in each bin for calculating the 

2D PMF profiles. Protein snapshots were taken every 1 ps for structural clustering. Clustering 

was performed on the Pep-GaMD simulations of wildtype, I45F, A42T and V46F mutant A49 

bound γ-secretase based on the RMSD of PS1 using hierarchical agglomerative algorithm in 

CPPTRAJ 69 generating ~10 representative structural clusters for each system.  The top 

structural cluster was identified as the representative Final active conformational states for each 

γ-secretase system.  
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 Appendix 

 

Figure S1: LC-MS/MS of all small-peptide standards (ITL and IPL) predicted to be generated 

for C100 substrates tested after γ-secretase digestion of substrates. Chromatograms are selected 

ion plots of the three most abundant sequence-specific product ions, selected with a 0.03 unit 

window. Standard curves for all small peptides were generated by plotting of the resulting peak 

areas of ion plots against the small-peptide concentration. 
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Figure S2: (A) -secretase structure bound to Aβ49 substrate (blue) with Niscastrin (NCT, 

cyan), Presenilin-1 (PS1, pink), Anterior Pharynx-Defective 1 (APH-1, green) and Presenilin 

Enhancer-2 (PEN-2, orange) subunits. The enzyme-substrate complex is represented in ribbons. 

(B) Pep-GaMD computational model of γ-secretase complex. The protein was embedded into a 

POPC lipid bilayer and solvated in an aqueous medium of 0.15 M NaCl. (C) Schematic 

representation of  cleavage and processive proteolysis of APP substrate by γ-secretase. 
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Figure S3: Timecourse of the Asp257:protonated O - Val46:O distance calculated from GaMD 

simulations of WT -secretase system. More than 6 µs long GaMD simulations of the enzyme 

could not capture stable activation for  cleavage.  
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Figure S4: Ribbon representation of Aβ49 peptide and differently charged N-terminal AICD50-

99 after  cleavage of APP substrate by -secretase. Five different systems of -secretase bound 

to neutral and charged C-terminal Aβ49 in the absence and presence of neutral and charged N-

terminal AICD were used for Pep-GaMD simulations.  
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Figure S5: The active site poised for  cleavage proteolysis. The enzyme activation for  

cleavage was characterized by coordinated hydrogen bonding between the enzyme Asp257 and 

carbonyl oxygen of C99 Val46. The water molecule could form hydrogen bond interactions 

with both catalytic aspartates and is at ~4 Å distance away from the carbonyl carbon of Val46 

residue. The APP substrate (blue), aspartates and APP residues are shown as ribbon, stick and, 

balls and sticks, respectively.   
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Figure S6: Time courses of the Asp257:protonated O – Val46:O distances calculated from Pep-

GaMD simulations of (A) WT without AICD , (B) WT with charged Aβ49 and neutral AICD, 

(C) WT with charged Aβ49 and charged AICD, (D) WT with neutral Aβ49 and neutral AICD, 

and (E) with neutral Aβ49 and charged AICD bound -secretase systems. 
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Figure S7: AICD50-99 dissociation pathway observed in Pep-GaMD simulations of -secretase 

system bound to wildtype APP colored by simulations time in a blue-white-red (BWR) color 

scheme.  
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Figure S8: 2D free energy profiles of the Asp257:C - Asp385:C and Asp257:protonated O - 

Leu49:O distances calculated from Pep-GaMD simulations of (A) wildtype without AICD, (B) 

wildtype with charged C-terminal A49 and neutral N-terminal AICD50-99, (C) wildtype with 

neutral C-terminal A49 and neutral N-terminal AICD50-99, and (D) wildtype with neutral C-

terminal A49 and charged N-terminal AICD50-99 -secretase systems. 
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Figure S9: Time courses of the Asp257:C - Asp385:C distances calculated from Pep-GaMD 

simulations of (A) WT without AICD, (B) WT with charged Aβ49 and neutral AICD, (C) WT 

with charged Aβ49 and charged AICD, (D) WT with neutral Aβ49 and neutral AICD, and (E) 

with neutral Aβ49 and charged AICD bound -secretase systems. 
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Figure S10: Comparison of different low energy state conformations as identified from Pep-

GaMD free energy profiles of wildtype and mutant APP bound -secretase systems including 

Inhibited-1 (magenta), Inhibited-2 (gray), Intermediate (orange) and Inactive (ice blue) states. 
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Figure S11: Time courses of the Asp257:protonated O – Val46:O distances calculated from 

Pep-GaMD simulations of (A) I45F, (B) A42T, (C) V46F, (D) I45T and (E) T48P APP, all with 

C-terminally charged Aβ49 in presence of N-terminally charged AICD, bound -secretase 

systems. 
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Figure S12: Time courses of the Asp257:C - Asp385:C distances calculated from Pep-GaMD 

simulations of (A) I45F, (B) A42T, (C) V46F, (D) I45T and (E) T48P APP, all with C-

terminally charged Aβ49 in presence of N-terminally charged AICD, bound -secretase 

systems. 
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Figure S13: Root mean square fluctuation (RMSF) plots of different -secretase systems bound 

to (A) wildtype, (B) I45F mutant, (C) A42T mutant, and (D) V46F mutant APP. The RMSF is 

shown in blue-white-red color scheme for 0-3 Å of fluctuations in the enzyme-substrate 

complex.  
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Figure S14: (A) Front and (B) side view comparison of relative positions of APP residues T43, 

I45 and L49 in the Initial and Final active states of the -secretase.  
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Figure S15: Time courses of secondary structures changes in the (A) Sim 2 and (B) Sim3 Pep-

GaMD simulations of WT, (C) Sim 1 and (D) Sim 3 Pep-GaMD simulations of I45F, (E) Sim1 

and (F) Sim2 Pep-GaMD simulations of A42T, (G) Sim2 and (H) Sim3 Pep-GaMD simulations 

of V46F mutant APP bound to γ-secretase. 
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Figure S16: Time course of secondary structure changes in the GaMD simulations of WT APP 

substrate-bound γ-secretase recorded during enzyme activation for e cleavage. This plot is 

extracted from our previous study (Bhattarai, Apurba, et al. ACS central science 6.6 (2020): 

969-983.). 

 

 

Figure S17: (A) Top and (B) Side view of APP (Aβ49) bound -secretase PS1 interacting with 

the POPC lipid bilayer membrane. The N-terminus of APP substrate during the  cleavage 

activation bends and interacts with the hydrophobic lipid bilayer to form -helix conformation.  
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Figure S18: Time courses of secondary structure changes in the (A) Sim 1, (B) Sim2 and (C) 

Sim3 Pep-GaMD simulations of I45T mutant and (D) Sim 1, (E) Sim2 and (F) Sim3 Pep-GaMD 

simulations of T48P mutant APP bound to γ-secretase. 
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Figure S19: Time courses of secondary structure changes in the (A) Sim 1, (B) Sim2 and (C) 

Sim3 Pep-GaMD simulations of wildtype without AICD and (D) Sim 1, (E) Sim2 and (F) Sim3 

Pep-GaMD simulations of wildtype with neutral AICD bound to γ-secretase. 
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Figure S20: Comparison of active site subpockets of the Final active state during  cleavage to 

that of the Initial active state during  cleavage.  
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Figure S21: Time courses of the (A) Asp257:protonated O – Ile47:O and (B) 

Asp257:protonated O – Ile45:O distances calculated from Pep-GaMD simulations of WT with 

charged Aβ49 and charged AICD bound -secretase systems representing two and four amino 

acid residues shift for cleavage starting from activated enzyme for  cleavage, respectively. 
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Table S1: Residues constituting the active site subpockets S1’, S2’ and S3’ occupied by P1’, 

P2’ and P3’ A49 residues for different γ-secretase systems bound to wildtype and I45F, A42T 

and V46F FAD mutant A49. 

 

System S1’ S2’ S3’ 

Wildtype/I45F/A42T L249 

Y256 

L268 

I287 

L286 

L271 

L272 

L150 

T147 

L282 

F283 

W165 

V261 

G382 

L383 

G384 

P433 

L435 

L258 

V261 

L268 

K380 

L381 

G382 

 

L268 

L271 

V272 

A275 

L282 

F283 

I287 

L381 

G382 

L383 

I287 

V46F I253 

T147 

Y256 

L268 

L271 

M146 

L249 

Y256 

L268 

I287 

L286 

L271 

L272 

L150 

T147 

L282 

F283 

W165 

V261 

G382 

L383 

G384 

L268 

L271 

V272 

A275 

L282 

F283 

I287 

L381 

G382 

L383 

I287 
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Table S2: Summary of Pep-GaMD simulations on five different γ-secretase systems bound to 

neutral/charged C-terminal Aβ49 in the absence or presence of neutral/charged N-terminal 

AICD50-99 peptide. “Activation” denotes that the Pep-GaMD simulations could capture 

activation of γ-secretase for the  cleavage of Aβ49, and otherwise denoted “No activation”. 

 

         A49 C-terminus  
 

 

AICD N-terminus 

Neutral Charged 

Neutral No activation No activation 

Charged Activation Activation 

Absent - No activation 
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Abstract 

G-protein-coupled receptors (GPCRs) are the largest family of human membrane proteins and 

serve as primary targets of ~1/3 of currently marketed drugs. In particular, adenosine A1 

receptor (A1AR) is an important therapeutic target for treating cardiac ischemia-reperfusion 

injuries, neuropathic pain and renal diseases. As a prototypical GPCR, the A1AR is located 

within a phospholipid membrane bilayer and transmits cellular signals by changing between 

different conformational states. It is important to elucidate the lipid-protein interactions in order 

to understand the functional mechanism of GPCRs. Here, all-atom simulations using a robust 

Gaussian accelerated molecular dynamics (GaMD) method were performed on both the inactive 

(antagonist bound) and active (agonist and G protein bound) A1AR, which was embedded in a 

1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) lipid bilayer. In the GaMD 

simulations, the membrane lipids played a key role in stabilizing different conformational states 

of the A1AR. Our simulations further identified important regions of the receptor that interacted 

distinctly with the lipids in highly correlated manner. Activation of the A1AR led to differential 

dynamics in the upper and lower leaflets of the lipid bilayer. In summary, GaMD enhanced 

simulations have revealed strongly coupled dynamics of the GPCR and lipids that depend on 

the receptor activation state. 

 

Keywords: G-protein-coupled receptors, Adenosine A1 receptor, Enhanced sampling, Gaussian 

accelerated molecular dynamics, Protein-lipid interactions.  
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Introduction 

G-protein-coupled receptors (GPCRs) are primary cell surface receptors that account for vital 

physiological and pathological functions in the human body. About 1/3 of currently marketed 

drugs approved by the Food and Drug Administration (FDA) target GPCRs. Four subtypes of 

adenosine receptors (ARs), the A1AR, A2AAR, A2BAR and A3AR, mediate a broad range of 

physiological functions. Particularly, the Adenosine A1 Receptor (A1AR) has emerged as an 

important therapeutic target for treating cardiac ischemia-reperfusion injuries, neuropathic pain 

and renal diseases.99 Being a GPCR, the A1AR is embedded in cell membrane, maintaining 

close contact with lipid molecules. Lipids have been suggested to affect the receptor 

conformation and dynamics, which play an important role in transmitting cellular signals from 

extracellular environment to the cytoplasm. Similarly, lipid metabolites are also known to bind 

proteins and act as messengers100. These include lysolipids, sphingo-1-phosphate (S1P), 

diacylglycerol and fatty acyl derivates. In addition, lipids help in the partitioning of membrane 

and receptors. Membrane proteins are affected by lipid compositions and function differently 

in healthy and diseased individuals.101 Therefore, it is important to study GPCR-membrane 

interactions in order to elucidate functional mechanism of the membrane proteins.   

 Experimental techniques including fluorescence resonance energy transfer (FRET), 

fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching 

(FRAP) and fluorescence-based monitoring of solvent relaxations rates have been utilized to 

study protein-membrane biology102-105.  Experiments showed that cholesterol could affect the 

stability, oligomerization, and ligand binding properties of membrane proteins106-119. X-ray 

crystal structures identified allosteric sites for cholesterol binding to GPCRs111,113,120. 

Phospholipids were found to modulate dynamic processes of GPCRs such as G protein 
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association and ligand binding121,122. Recently, Dawaliby et. al. showed experimentally that 

lipids with different head groups favor different activation states of the 2-adrenergic receptors 

(2AR)123. Lipids with phosphatidylglycerol (PG) headgroups preferred agonist binding and 

receptor activation, whereas lipids with phosphatidylethanolamine (PE) headgroups preferred 

antagonist binding and inactive state of the 2AR. Despite these advances, there remains a 

knowledge gap in the understanding of protein-membrane interactions. From atomic motions 

of lipid molecules to curvature change across the cell membrane, protein-membrane interactions 

span a wide range of time scales124. It is often difficult to directly examine protein-membrane 

interactions in experiments due to limited time resolution. 

Molecular dynamics (MD) simulation has emerged as a powerful computational 

technique to bridge the gap of knowledge for studying membrane-protein interactions. Both 

atomistic and coarse-grained MD simulations have been applied to study the effects of lipids in 

protein dynamics and cellular signaling.101 Bruzzese et al. confirmed the above mentioned 

experimental results obtained by Dawaliby et. al. that different charges of PG and PE lipid 

headgroups affected the GPCR activation and deactivation in MD simulations125. The net 

negative charge in PG molecules favored interaction with positively-charged residues in the 

intracellular loop 3 (ICL3) and intracellular end of transmembrane helix 6 (TM6). This 

stabilized the outward movement of TM6 and hence the active state of the 2AR. Neale et. 

al.126 showed that the PG lipid blocked formation of the R1313.50-E2686.30 ionic lock by 

interacting with R1313.50 in the 2AR. Residue superscripts denote Ballesteros and Weinstein 

(BW) numbering of GPCRs127. The R3.50 and E6.30 are highly conserved residues in GPCRs 

and often form an ionic lock in inactive receptors. In contrast, net-neutral zwitterionic lipids 

such as PE with strongly favored the inactive structure of 2AR and destabilized the active  
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structure125. Salas-Estrada et. al128 showed that activation in rhodopsin induced changes in the 

membrane structure, including increase in the local order and effective length of lipid acyl 

chains in the vicinity of the protein. Dror et. al. showed that gradual inactivation of the 2AR 

occurred in the neutral lipid 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)129,130. 

This was consistent with another study favored partial deactivation of the 2AR was found in 

the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids125. In coarse-grained MD 

simulations, Song et. al. showed that PIP2 (Phosphatidylinositol 4,5-bisphosphate) stabilized 

the outward movement of TM6 by binding in the crevice between TM6 and TM7 of adenosine 

A2A receptor (A2AAR)131.  

 In addition, enhanced sampling techniques have been applied to investigate protein 

membrane interaction. Using steered MD132 and umbrella sampling133 techniques, Song et. al. 

suggested that the PIP2 facilitated recruitment of the G protein by forming bridging interactions 

with basic residues of the G subunit and hence stabilizing the active A2AAR131. However, 

these enhanced sampling techniques require predefined collective variables, which are often 

difficult to identify in the context of protein-membrane interactions. In this context, Gaussian 

accelerated MD (GaMD) is a robust technique that provides unconstrained enhanced sampling 

without the need to set predefined collective variables4,5. GaMD simulations have been 

successfully applied to investigate GPCR activation4,134,135, protein folding4,135, ligand binding 

and unbinding4,134,135, protein-protein interactions136-138 and protein-nucleic acid 

interactions139,140.  

 Here, we have applied GaMD to investigate lipid interactions with the A1AR in two 

different conformational states, the cryo-EM structure of the active adenosine ADO-bound 

A1AR coupled with the Gi protein (referred to as ADO-A1AR-Gi)141 and the X-ray 
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structure142,143 of the inactive antagonist PSB36-bound A1AR (referred to as PSB36-A1AR). 

Our simulations showed that the protein-membrane interactions depended on different 

conformational states of the A1AR. The membrane lipids played an important role in stabilizing 

different conformations of the A1AR. GaMD simulations further identified important regions 

of the receptor that interacted distinctly with the lipids. Activation of the A1AR led to 

differential dynamics in the upper and lower leaflets of the lipid bilayer.   

 

Materials and Methods  

Gaussian Accelerated Molecular Dynamics (GaMD) 

GaMD is an enhanced sampling technique, in which a harmonic boost potential is added to 

reduce the system energy barriers4. GaMD is able to accelerate biomolecular simulations by 

orders of magnitude59,135. GaMD does not need predefined collective variables. Moreover, 

because GaMD boost potential follows a gaussian distribution, biomolecular free energy 

profiles can be properly recovered through cumulant expansion to the second order4. GaMD 

has successfully overcome the energetic reweighting problem in free energy calculations that 

was encountered in the previous  aMD (accelerated molecular dynamics) method37,39 for free 

energy calculations. GaMD has been implemented in widely used software packages including 

AMBER 4,60 and NAMD6. A brief summary of GaMD is provided here.  

Consider a system with N atoms at positions 𝑟 = {𝑟1, ⋯ , 𝑟𝑁} . When the system potential 𝑉(𝑟) is 

lower than a reference energy E, the modified potential 𝑉∗(𝑟) of the system is calculated as: 

 𝑉∗(𝑟) = 𝑉(𝑟) + ∆𝑉(𝑟),  
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 ∆𝑉(𝑟) = {
1

2
𝑘(𝐸 − 𝑉(𝑟))

2
, 𝑉(𝑟) < 𝐸

0, 𝑉(𝑟) ≥ 𝐸
 (1) 

where k is the harmonic force constant. The two adjustable parameters E and k are automatically 

determined based on three enhanced sampling principles4. The reference energy needs to be set 

in the following range: 

 𝑉𝑚𝑎𝑥 ≤ 𝐸 ≤ 𝑉𝑚𝑖𝑛 +
1

𝑘
 , (2) 

where Vmax and Vmin are the system minimum and maximum potential energies. To ensure that 

Eqn. (2) is valid, k has to satisfy: 𝑘 ≤
1

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
 Let us define ≡ 𝑘0

1

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
 , then 0 < 𝑘0 ≤ 1 

. The standard deviation of ∆𝑉 needs to be small enough (i.e., narrow distribution) to ensure 

proper energetic reweighting62: 𝜎∆𝑉 = 𝑘(𝐸 − 𝑉𝑎𝑣𝑔)𝜎𝑉 ≤ 𝜎0 where 𝑉𝑎𝑣𝑔 and 𝜎𝑉 are the average 

and standard deviation of the system potential energies, 𝜎∆𝑉 is the standard deviation of ∆𝑉 with 

𝜎0 as a user-specified upper limit (e.g., 10kBT) for proper reweighting. When E is set to the 

lower bound E=Vmax,  𝑘0 can be calculated as: 

  𝑘0 = min(1.0, 𝑘0
′ ) = min (1.0,

𝜎0

𝜎𝑉

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥−𝑉𝑎𝑣𝑔
).   (3) 

Alternatively, when the threshold energy E is set to its upper bound  𝐸 = 𝑉𝑚𝑖𝑛 +
1

𝑘
,  𝑘0 is set to: 

 𝑘0 = 𝑘0
" ≡ (1 −

𝜎0

𝜎𝑉
)

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥−𝑉𝑎𝑣𝑔
 , (4) 

if 𝑘0
"  is found to be between 0 and 1. Otherwise,  𝑘0 is calculated using Eqn. (3). 

Similar to aMD, GaMD provides schemes to add only the total potential boost ∆𝑉𝑃, only 

dihedral potential boost  ∆𝑉𝐷, or the dual potential boost (both ∆𝑉𝑃 and ∆𝑉𝐷). The dual-boost 
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simulation generally provides higher acceleration than the other two types of simulations63. The 

simulation parameters comprise of the threshold energy E for applying boost potential and the 

effective harmonic force constants, 𝑘0𝑃 and 𝑘0𝐷 for the total and dihedral potential boost, 

respectively. 

 

Energetic Reweighting of GaMD Simulations 

To calculate potential of mean force (PMF)64 from GaMD simulations, the probability 

distribution along a reaction coordinate is written as 𝑝∗(𝐴) . Given the boost potential ∆𝑉(𝑟)
 
of 

each frame, 𝑝∗(𝐴) can be reweighted to recover the canonical ensemble distribution, 𝑝(𝐴), as: 

 𝑝(𝐴𝑗) = 𝑝∗(𝐴𝑗)
〈𝑒𝛽∆𝑉(𝑟⃑⃑⃑)〉𝑗

∑ 〈𝑝∗(𝐴𝑖)𝑒𝛽∆𝑉(𝑟⃑⃑⃑)〉𝑖
𝑀
𝑖=1

, 𝑗 = 1, … , 𝑀,  (5) 

where M is the number of bins, 𝛽 = 𝑘𝐵𝑇 and 〈𝑒𝛽∆𝑉(𝑟)〉𝑗
 
is the ensemble-averaged Boltzmann 

factor of ∆𝑉(𝑟) for simulation frames found in the jth bin. The ensemble-averaged reweighting 

factor can be approximated using cumulant expansion: 

 〈𝑒𝛽∆𝑉(𝑟)〉 = 𝑒𝑥𝑝 {∑
𝛽𝑘

𝑘!
𝐶𝑘

∞
𝑘=1 }, (6) 

where the first two cumulants are given by 

 
𝐶1 = 〈∆𝑉〉,

𝐶2 = 〈∆𝑉2〉 − 〈∆𝑉〉2 = 𝜎𝑣
2.

 (7) 

The boost potential obtained from GaMD simulations usually follows near-Gaussian 

distribution. Cumulant expansion to the second order thus provides a good approximation for 
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computing the reweighting factor4,62. The reweighted free energy 𝐹(𝐴) = −𝑘𝐵𝑇 ln 𝑝(𝐴) is 

calculated as: 

 𝐹(𝐴) = 𝐹∗(𝐴) − ∑
𝛽𝑘

𝑘!
𝐶𝑘

2
𝑘=1 + 𝐹𝑐,   (8) 

where 𝐹∗(𝐴) = −𝑘𝐵𝑇 ln 𝑝∗(𝐴) is the modified free energy obtained from GaMD simulation and 

𝐹𝑐 is a constant. 

 

Lipid -SCD Order Parameter 

The -SCD order parameter measures orientational anisotropy of the C-H bond in sn-2 acyl chains 

of lipids that are usually obtained from NMR experiments. It is a function of the angle between 

the C-H bond and lipid bilayer normal. It is defined by following equation:  

     SCD = 
1

2
〈3𝑐𝑜𝑠2𝜃 − 1〉,    (9) 

where θ is the angle between the bilayer normal and C-H bond and 〈… 〉 denotes an ensemble 

average. Here, the -SCD order parameter is averaged over all the lipids in the system and all the 

frames in the simulation trajectory. The -SCD order parameter calculated from GaMD 

simulations is not reweighted due to complexity of the function. However, since GaMD 

maintains the overall shape of the original potential energy surface4, the resulting order 

parameter is found to be close to the experimental values144 (see Results). The -SCD value 

usually ranges from -0.25 to 0.5, with 0.5 for the C-H bond being fully ordered along the bilayer 

normal and -0.25 being parallel to the bilayer plane. The -SCD approximates the mobility of 

each C-H bond and hence estimates the membrane fluidity. 
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System Setup 

The cryo-EM structure of the ADO-A1AR-Gi complex (PDB: 6D9H141) and X-ray structure of 

PSB36-A1AR complex (PDB: 5N2S142) were used to prepare the simulation systems. As helix 

8 region was missing in the crystal structure of PSB36-A1AR, atomic coordinates were added 

using another X-ray structure of the inactive A1AR (PDB: 5UEN143) after aligning the receptor 

TM domain. All chain termini were capped with neutral groups, i.e. the acetyl group (ACE) for 

the N-terminus and methyl amide group (CT3) for C terminus. Protein residues were set to the 

standard CHARMM protonation states at neutral pH with the psfgen plugin in VMD66. Then 

the receptor was inserted into a POPC bilayer with all overlapping lipid molecules removed 

using the Membrane plugin in VMD66. The system charges were then neutralized at 0.15 M 

NaCl using the Solvate plugin in VMD66. Periodic boundary conditions were applied on the 

simulation systems. The simulation systems of the active and inactive A1AR systems are 

summarized in Table 1.  

 

Simulation Protocol 

The CHARMM36 parameter set67 was used for the protein and POPC lipids. For agonist ADO 

and antagonist PSB36, the force field parameters were obtained from the CHARMM 

ParamChem web server145,146. Initial energy minimization and thermalization of the A1AR 

system follow the same protocol as used in the previous GPCR simulations68. The simulation 

proceeded with equilibration of lipid tails. With all the other atom fixed, the lipid tails were 

energy minimized for 1000 steps using the conjugate gradient algorithm and melted with 

constant number, volume, and temperature (NVT) run for 0.5ns at 310 K. Each system was 

further equilibrated using constant number, pressure, and temperature (NPT) run at 1 atm and 
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310 K for 10 ns with 5 kcal (mol Å2)-1 harmonic position restraints applied to the protein. 

Further equilibration of the systems was performed using an NPT run at 1 atm and 310 K for 

0.5ns with all atoms unrestrained. Conventional MD simulation was performed on each system 

for 10 ns at 1atm pressure and 310 K with a constant ratio constraint applied on the lipid bilayer 

in the X-Y plane. The GaMD simulations were carried out using NAMD2.136,147. Both dihedral 

and dual-boost GaMD simulations were then performed to study the protein-membrane 

interactions in the inactive and active A1AR systems (Table 1). In the GaMD simulations, the 

threshold energy E for adding boost potential is set to the lower bound, i.e. E = Vmax
4,6. The 

simulations included 50ns equilibration after adding the boost potential and then multiple 

independent production runs lasting 150 – 300 ns with randomized initial atomic velocities. 

GaMD production simulation frames were saved every 0.2ps for analysis. 

 

Simulation analysis 

The VMD66 and CPPTRAJ69 tools were used for trajectory analysis. In particular, distance was 

calculated between the Cα atoms residues Arg3.50 and Glu6.30. Root-mean-square fluctuations 

(RMSFs) were calculated for the protein residues and ligands, averaged over two independent 

GaMD simulations and color coded for schematic representation of each complex system. 

MEMBPLUGIN, a plugin for the VMD package was used to calculate the -SCD order parameter 

for POPC lipid tails148. The -SCD order parameters were averaged over all lipids and frames of 

the two independent GaMD simulations for each system. The CPPTRAJ tool was used to 

calculate the correlation matrices. The Cα atoms of the receptor and phosphorous atoms in the 

POPC lipid head groups were used for the calculations. In addition to the phosphorous atom, 
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the C8 and C18 atoms representing different regions of the lipids were also used to calculate 

dynamic correlations with the receptor. The PyReweighting toolkit62 was applied to reweight 

GaMD simulations for free energy calculations by combining independent trajectories for each 

system. A bin size of 1 Å was used for the Arg3.50-Glu6.30 distance and 1 for the number of 

lipids. The cutoff was set to 500 for calculating the 2D PMF profiles.  

 

Results 

Structural flexibility of the A1AR depended on the receptor conformational state 

All-atom GaMD simulations were performed on two different conformational states of the 

A1AR, active (ADO-A1AR-Gi) and inactive (PSB36-A1AR) states (Table 1). For the inactive 

A1AR system, the boost potential was 4.47±1.81 kcal/mol and 8.45±3.33 kcal/mol in dihedral 

and dual-boost GaMD simulations, respectively. For the active A1AR system, the boost 

potential was 5.04±2.22 kcal/mol and 9.94±2.57 kcal/mol in dihedral and dual-boost GaMD 

simulations, respectively (Table 1). Thus, dual-boost GaMD provided higher acceleration in 

the simulations with greater boost potential. In the dihedral GaMD simulations of the inactive 

A1AR, the TM helices of the receptor were rather rigid. Only the intracellular end of TM6, the 

terminus of helix 8 (H8), extracellular end of TM1 and extracellular loop 2 (ECL2) regions 

were flexible (Figure 1A). Similar results were obtained for the active A1AR in the dihedral 

GaMD simulations (Figure 1B).  However, the intracellular ends of TM6 and TM5 of the A1AR 

exhibited more fluctuations in the active state compared to the inactive state. The ECL2 region 

was relatively more flexible in the active A1AR than in the inactive A1AR. In both systems, the 

ligands remained stably bound at the orthosteric site throughout the simulations. In comparison, 
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the G protein coupled to the active A1AR exhibited higher fluctuations. In particular, C terminus 

of the α5 helix, α4-β5 loop and α4-β6 loop of the Gα subunit and terminal ends of the Gβγ 

subunits exhibited high fluctuations up to 3 Å. Similar results were also found in the dual-boost 

GaMD simulations of the inactive and active A1AR systems (Figure S1). 

 

Lipids in the lower leaflet of the active A1AR system showed higher fluidity than in the 

inactive-A1AR system 

The lipid -SCD order parameters were calculated for the upper (extracellular) and lower 

(cytoplasmic) leaflets from GaMD simulations of the inactive and active A1AR systems (Figure 

2). In both inactive and active A1AR systems, lower leaflet was more fluid than the upper leaflet 

with smaller -SCD order parameters. The lower leaflet exhibited significant differences between 

the inactive and active A1AR systems. In particular, the -SCD order parameter of the fifth carbon 

atom in POPC was ~0.20 in the lower leaflet in the inactive A1AR system (Figure 2A, 2C), but 

decreased to ~0.17 in the active A1AR system (Figure 2B, 2D). This indicated higher 

inclination of C-H bonds being ordered along the bilayer normal in the lower leaflet of the 

active A1AR system. This appeared to correlate with the outward movement of TM6 as the 

A1AR changed from the inactive to active state. In the inactive A1AR, the R1313.50-E2686.30 

distance at the free energy minimum was ~7 Å (Figure 3A, 3C). In comparison, this distance 

at the free energy minimum increased to ~17 Å in the active A1AR (Figure 3B, 3D). The lateral 

movement of the TM6 could push the surrounding lipids. Higher flexibility of the receptor TM6 

intracellular end was accompanied by increased fluidity of lipids in the lower leaflet of 

membrane. Similar results were found from the dihedral and dual-boost GaMD simulations 
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(Figure 3). Therefore, the structural conformation and flexibility of the GPCR are strongly 

coupled with the surrounding membrane lipids.  

 

The inactive A1AR attracted more lipids in the upper leaflet to the TM6 than the active 

A1AR  

Considering significant conformational changes (especially in the TM6) during receptor 

activation, we hypothesized that the number of lipids interacting with the active and inactive 

receptor are different. In order to identify the low-energy states of the membrane-receptor 

interactions, potential of mean force (PMF) profiles were calculated by reweighting the GaMD 

simulations (Figure 3). The R1313.50-E2686.30 distance was chosen as one reaction coordinate 

to characterize activation of the GPCR. The number of POPC phosphate head groups within 5 

Å of TM6 was calculated as the other reaction coordinate (Figures S2 and S3). In the upper 

leaflet, approximately one lipid molecule was found interacting with TM6 in the inactive A1AR 

(Figure 3A, 3C). But no lipid in the upper leaflet was found within 5 Å of TM6 in the active 

A1AR (Figure 3B, 3D). Further analysis revealed that one positively-charged residue was 

located in the receptor ECL3 (K265ECL3), being close to the extracellular end of the TM6 

(Figure 5A). In the inactive A1AR, this lysine pointed towards the lipid membrane and thus 

attracted the negatively-charged phosphate head group of a POPC molecule. Instead, the 

positively-charged side chain of K265ECL3 formed a stable salt-bridge with negatively-charged 

glutamate (E172ECL2) of ECL2 in the active A1AR (Figure S4). Residue K265ECL3 did not 

interact with the lipid in the active A1AR. Therefore, the inactive A1AR interacted with more 

phospholipids in the upper leaflet compared to the active A1AR.  
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The active A1AR attracted more lipids in the lower leaflet to the TM6 than the inactive 

A1AR 

In contrast to the upper leaflet, the lower leaflet had more lipids within 5 Å of TM6 in the active 

A1AR than in the inactive system (Figure 4). In the lowest energy state, the inactive A1AR 

interacted with approximately two lipids within 5 Å of TM6 (Figure 4A, 4C). In comparison, 

the active A1AR exhibited a relatively broader energy well. The TM6 intracellular domain 

interacted with ~2-4 lipid molecules (Figure 4B, 4D). Upon activation of the A1AR, the TM6 

moved outwards by ~10 Å and exposed its positively-charged residues to the membrane. 

Therefore, the lipids that diffused in the lower leaflet of the membrane interacted more 

frequently with the receptor. Fewer lipids interacted with the inactive A1AR because the 

receptor has a narrower curvature in the TM6 intracellular region. Moreover, the lower leaflet 

had a larger number of lipids interacting with receptor TM6 than the upper leaflet. Out of five 

positively-charged residues in TM6, four were located in the intracellular region (K2246.25, 

K2286.29, K2316.32 and K2346.35) (Figure 5B). The negatively-charged phosphate head groups 

of POPC tended to interact with these positively-charged lysine residues to stabilize the active 

receptor conformation. Therefore, the lipid-GPCR interaction should play an important role in 

the conformational changes during activation of the A1AR.  

 

GaMD simulations revealed strongly coupled dynamics between the GPCR and 

membrane lipids 

Dynamic correlations were identified between residues of the A1AR and lipids in both the upper 

and lower leaflets. The C atoms in the receptor residues and the phosphorous atoms in the 
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lipid head groups were used to calculate the correlation matrices (see details in Methods). 

Similar results were obtained using the C8 and C18 atoms in the lipid hydrophobic tails to 

calculate the dynamic correlation matrices (Figure S5). In all the simulation systems, motions 

of the receptor N-terminus, ECL1, ECL2 and ECL3 regions were positively correlated to those 

of lipids in upper leaflet (Figure 6). Similarly, motions of the receptor ICL1, ICL2 and ICL3 

were positively correlated to those of lipids in the lower leaflet (Figure 7). For the inactive 

A1AR, most TM helix residues exhibited negatively correlated motions with the lipids. In this 

regard, the TM helices appeared to move in the opposite direction relative to the lipids in the 

inactive A1AR simulation system (Figure 6A, 6C, 7A and 7A). For the active A1AR, 

correlations between TM helix residues and the lipids in both the upper and lower leaflets were 

very weak, being close to zero (Figure 6B, 6D, 7B and 7D).  However, marked positive 

correlations were identified between the intracellular region of the receptor TM6 and lipids in 

the lower leaflet (Figures 7B and 7D). Therefore, the TM6 intracellular region of the active 

A1AR appeared to move in the same direction with the surrounding lipids. This was highly 

consistent with the simulation finding that significantly more lipids were found within 5 Å of 

the TM6 intracellular domain in the active A1AR system (Figure 4) and they formed remarkably 

stronger electrostatic interactions (Figure 5) compared with the inactive A1AR system. In 

summary, the GaMD simulations revealed strongly coupled dynamics between the GPCR and 

membrane lipids.  

Discussion 

In this study, we have applied all-atom GaMD simulations to investigate GPCR-membrane 

interactions, using the A1AR as a model receptor. In the GaMD simulations, the inactive and 

active A1AR showed different structural flexibility profiles. The ECL2 region, intracellular 
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ends of TM6 and TM5 exhibited higher fluctuations in the active A1AR compared to the inactive 

A1AR. The receptor TM domain was rigid and the ligands remained tightly bound at the 

orthosteric site. However, the G protein coupled to the active A1AR exhibited high flexibility 

during the simulations, especially in the α5 helix, α4-β5 loop and α4-β6 loop of the Gα subunit 

and terminal ends of the Gβγ subunits. These results were consistent to our earlier simulation 

findings of  AR-G protein complexes149.  

 The -SCD order parameter values obtained from GaMD simulations were consistent with 

experimental data. In NMR experiments, the -SCD order parameter for the fifth carbon C-H bond 

of POPC was observed to be at ~0.18-0.20144. The -SCD order parameter of POPC’s fifth carbon 

atom was ~0.20±0.02 in the lower leaflet in the inactive A1AR system. It decreased to 

~0.17±0.02 in the active A1AR system. The -SCD order parameter of the ninth carbon C-H bond 

in POPC was measured as ~0.10 in NMR experiments144, for which the same value was obtained 

from GaMD simulations. Furthermore, the GaMD simulations showed that POPC lipids in the 

lower leaflet of the active A1AR system were more fluid than in the inactive A1AR system. The 

-SCD order parameters for the lower leaflet in the active A1AR system were smaller than those 

in the inactive A1AR system. This finding correlated with the outward movement of TM6 in the 

active A1AR, which caused higher inclination of the C-H bonds to be aligned along the bilayer 

normal. The smaller -SCD order parameters suggested higher membrane fluidity in the lower 

leaflet of the active A1AR system. 

In the GaMD simulations, the inactive A1AR attracted more lipids in the upper leaflet 

than the active A1AR. The membrane facing positively-charged lysine residue (K265ECL3) 

interacted with the negatively-charged phosphate head group of POPC. In contrast, this lysine 

pointed towards ECL2 in the active A1AR. This was consistent with our previous study150, in 
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which the positive allosteric modulator (PAM) enhanced the agonist binding at the orthosteric 

site by forming a salt-bridge between E172ECL2-K265ECL3. Moreover, the active A1AR attracted 

more lipids in the lower leaflet compared with the inactive A1AR. When exposed to the 

membrane, the positively-charged residues in intracellular region of TM6 of the A1AR 

interacted with negatively-charged head groups. This was further verified by the correlation 

matrix. The only positive correlation between the transmembrane helices and the lipids was 

observed between the intracellular region of TM6 and lipids in the lower leaflet of active A1AR. 

Four lysine residues (K2636.25, K2676.29, K2706.32 and K2736.35) present in the intracellular end 

in the 2AR of TM6 were also known to interact with negatively-charged headgroups of 1,2-

dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipid molecules and thus stabilize the 

GPCR active state125.  

 In summary, all-atom GaMD simulations have revealed strongly coupled dynamics 

between a GPCR and the membrane lipids that depend on the receptor activation state. The 

GaMD method has greatly enhanced sampling of the lipid-protein interactions, which would 

take significantly longer simulation time using cMD. Nonetheless, the activation or deactivation 

conformational transitions of the GPCR were not observed in the presented GaMD simulations. 

Longer GaMD simulations (e.g., microseconds) are expected to capture such conformational 

transitions 151 and the related effects of lipid-receptor interactions will be investigated in the 

future. Furthermore, the effects different lipid types (e.g., cholesterol, PIP2, etc.) on GPCR-

membrane interactions are subject to future studies. It is important to study specific lipid 

interactions with GPCRs during the receptor activation. Developments of enhanced sampling 

methodologies and computing power would aid to further address these challenges.  
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Table 1: Summary of GaMD simulations performed on the adenosine A1 receptor (A1AR).  

System aNatoms  Dimension 

(Å3) 

bMethod Simulation cΔV
avg 

(kcal/mol) 

d
Δv 

(kcal/mol) 

PSB36-

A
1
AR 

77,809  93x100x101  GaMD_Dih  300 ns x 2  4.47 1.81 

GaMD_Dual  300 ns x 2  8.45 3.33 

ADO-A1AR-

G i 

180,394  93x111x167  GaMD_Dih  300 ns x 2  5.04 2.22 

GaMD_Dual  150 ns x 2  9.94 2.57 

aN
atoms

 is number of atoms in the simulation systems.  

bGaMD_Dih and GaMD_Dual represent the dihedral and dual boost GaMD simulations 

respectively.  
c∆Vavg and dσ∆V are the average and standard deviation of the GaMD boost potential.  
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Figure 1: Comparison of structural flexibility of the inactive and active A1AR systems obtained 

from dihedral GaMD simulations: (A) Root-mean-square fluctuations (RMSFs) of the inactive 

PSB36-A1AR complex. (B) RMSFs of the active ADO-A1AR-Gi protein complex. A color 

scale of 0 Å (blue) to 3 Å (red) was used. 
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Figure 2: The -SCD order parameters calculated for sn-2 acyl chains of POPC lipids in different 

simulation systems: (A) Inactive A1AR using dihedral-boost GaMD, (B) Active A1AR using 

dihedral-boost GaMD, (C) Inactive A1AR using dual-boost GaMD and (D) Active A1AR using 

dual-boost GaMD. Red diamond lines represent the average -SCD order parameters for the 

cytoplasmic lower leaflet and blue diamond lines for the extracellular upper leaflet.  
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Figure 3: Free energy profiles of the extracellular upper leaflet of membrane in different 

simulation systems regarding the number of lipids within 5 Å of the receptor TM6 and the 

receptor R3.50 – E6.30 distance: (A) Inactive A1AR using dihedral-boost GaMD, (B) Active 

A1AR using dihedral-boost GaMD, (C) Inactive A1AR using dual-boost GaMD and (D) Active 

A1AR using dual-boost GaMD. The R3.50 – E6.30 distance is ~7 Å in the inactive A1AR and 

increases to ~17 Å in the active A1AR due to outward movement of TM6. 
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Figure 4: Free energy profiles of the cytoplasmic lower leaflet of membrane in different 

simulation systems regarding the number of lipids within 5 Å of the receptor TM6 and the 

receptor R3.50 – E6.30 distance: (A) Inactive A1AR using dihedral-boost GaMD, (B) Active 

A1AR using dihedral-boost GaMD, (C) Inactive A1AR using dual-boost GaMD and (D) Active 

A1AR using dual-boost GaMD. The R3.50 – E6.30 distance is ~7 Å in the inactive A1AR and 

increases to ~17 Å in the active A1AR due to outward movement of TM6. 
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Figure 5: Minimum energy states of POPC lipid interacting with the positively-charged lysine 

residues in TM6 of the receptor obtained from dihedral GaMD simulations. (A) One POPC 

molecule in the upper leaflet interacts with one lysine residue (K265ECL3) of the inactive A1AR. 

(B) Three POPC molecules (POPC1, POPC2, POPC3) in the lower leaflet interact with four 

Lysine residues (K2636.25, K2676.29, K2706.32 and K2736.35) of the active A1AR. The receptor 

TM6 is colored in gray. 
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Figure 6: Dynamic correlation matrices calculated for lipids in the extracellular upper leaflet 

with residues in the A1AR in different simulation systems: (A) Inactive A1AR using dihedral-

boost GaMD, (B) Active A1AR using dihedral-boost GaMD, (C) Inactive A1AR using dual-

boost GaMD and (D) Active A1AR using dual-boost GaMD. The C atoms of the receptor and 

phosphorous atoms in the lipid head groups were used for calculating the correlation matrices 

here. Similar results were obtained using the C8 and C18 atoms in the lipid hydrophobic tails as 

shown in Figure S5. The receptor ICL1, ICL2 and ICL3 represent intracellular loops between 

TM helices 1-2, 3-4, and 5-6 respectively. Similarly, the receptor ECL1, ECL2 and ECL3 

represent extracellular loops between TM helices 2-3, 4-5, and 6-7 respectively. 
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Figure 7: Dynamic correlation matrices calculated for lipids in the intracellular lower leaflet 

with residues in the A1AR in different simulation systems: (A) Inactive A1AR using dihedral-

boost GaMD, (B) Active A1AR using dihedral-boost GaMD, (C) Inactive A1AR using dual-

boost GaMD and (D) Active A1AR using dual-boost GaMD. The C atoms of the receptor and 

phosphorous atoms in the lipid head groups were used for calculating the correlation matrices 

here. Similar results were obtained using the C8 and C18 atoms in the lipid hydrophobic tails as 

shown in Figure S5. The receptor ICL1, ICL2 and ICL3 represent intracellular loops between 

TM helices 1-2, 3-4, and 5-6 respectively. Similarly, the receptor ECL1, ECL2 and ECL3 

represent extracellular loops between TM helices 2-3, 4-5, and 6-7 respectively. 
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Appendix 

 

 

Figure S1: Comparison of structural flexibility of the inactive and active A1AR systems 

obtained from dual-boost GaMD simulations: (A) Root-mean-square fluctuations (RMSFs) of 

the inactive PSB36-A1AR complex. (B) RMSFs of the active ADO-A1AR-Gi complex. A color 

scale of 0 Å (blue) to 3 Å (red) is used. 
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Figure S2: Time courses for number of POPC molecules within 5 Å of TM6 in the upper leaflet 

of different simulation systems. (A) Inactive A1AR using dihedral-boost GaMD, (B) Active 

A1AR using dihedral-boost GaMD, (C) Inactive A1AR using dual-boost GaMD and (D) Active 

A1AR with using dual-boost GaMD.  
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Figure S3: Time courses for number of POPC molecules within 5 Å of TM6 in the lower leaflet 

of different simulation systems. (A) Inactive A1AR using dihedral-boost GaMD, (B) Active 

A1AR using dihedral-boost GaMD, (C) Inactive A1AR using dual-boost GaMD and (D) Active 

A1AR with using dual-boost GaMD.  
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Figure S4: Free energy profile for inactive and active A1AR systems regarding E172ECL2-

K265ECL3 distance (A). Minimum energy state snapshots of inactive (C) and active (B) A1AR 

systems showing the residues E172ECL2 and K265ECL3. 
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Abstract 

Ensemble docking has proven useful in drug discovery and development. It increases the hit 

rate by incorporating receptor flexibility into molecular docking as demonstrated on important 

drug targets including G-protein-coupled receptors (GPCRs). Adenosine A1 receptor (A1AR) is 

a key GPCR that has been targeted for treating cardiac ischemia-reperfusion injuries, 

neuropathic pain and renal diseases. Development of allosteric modulators, compounds binding 

to distinct and less conserved GPCR target sites compared with agonists and antagonists, has 

attracted increasing interest for designing selective drugs of the A1AR. Despite significant 

advances, more effective approaches are needed to discover potent and selective allosteric 

modulators of the A1AR. Ensemble docking that integrates Gaussian accelerated molecular 

dynamic (GaMD) simulations and molecular docking using Autodock has been implemented 

for retrospective docking of known positive allosteric modulators (PAMs) in the A1AR. 

Ensemble docking outperforms docking of the receptor cryo-EM structure. The calculated 

docking enrichment factors (EFs) and the area under the receiver operating characteristic curves 

(AUC) are significantly increased. Receptor ensembles generated from GaMD simulations are 

able to increase the success rate of discovering PAMs of A1AR. It is important to account for 

receptor flexibility through GaMD simulations and flexible docking. 

Keywords: Adenosine A1 Receptor, Allosteric Modulators, Gaussian accelerated Molecular 

Dynamics, Ensemble Docking, G-protein-coupled receptors.  
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Introduction 

G-protein-coupled receptors (GPCRs) are the largest family of human membrane proteins. They 

mediate cellular responses to hormones, neurotransmitters, chemokines and the senses of sight, 

olfaction and taste. GPCRs have served as the primary targets for about one third of currently 

marketed drugs 153-155. Particularly, the adenosine A1 receptor (A1AR) has emerged as an 

important therapeutic target for treating cardiac ischemia-reperfusion injuries, neuropathic pain 

and renal diseases156. However, development of the A1AR agonists as effective drugs has been 

greatly hindered. Several candidates could not progress into the clinic due to low efficacy and/or 

safety issues related to off-target effects. Four receptor subtypes, the A1, A2A, A2B and A3, share 

a highly conserved endogenous agonist binding (“orthostatic”) site. It is challenging to design 

effective agonists with high selectivity.  

 It is appealing to design positive allosteric modulators (PAMs) that bind a less 

conserved, topographically distinct site and increase the responsiveness of the A1AR to 

endogenous adenosine in local regions of its production. The first selective PAM of the A 1AR, 

PD81,723, was introduced in 1990157,158. Since then, many research groups have performed 

extensive structure-activity relationship studies 158-167. Several refined compounds were 

identified. Notably, T62 evaluated by King Pharmaceuticals progressed to Phase IIB clinical 

trial but failed due to lack of potency 168,169. Overall, these compounds still suffer from major 

limitations such as low solubility and potency for pharmaceutical use. It remains difficult to 

discover PAMs of higher potency for the A1AR. 

 Virtual screening has become increasingly important in the development of therapeutic 

drugs and discovery of novel GPCR ligands, including the antagonists, agonists, and allosteric 

modulators 170,171. Molecular docking is a widely used virtual screening technique. Early 
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docking studies were performed using static crystal structures of target receptors and flexible 

ligands, which were successful in certain cases 172. However, proteins have been often 

considered rigid, largely limiting the successful rate of docking. In fact, proteins are usually 

flexible and involve conformational changes upon ligand binding 173. Therefore, computational 

approaches are needed to deal with the flexibility of proteins.  

 Ensemble docking of small probe molecules for flexible pharmacophore modeling was 

first introduced in 1999 173. Since then, ensemble-based 174 methods has been implemented to 

identify novel ligands of different proteins 175, including the immunophilin FKBP 176, HIV-1 

integrase 177, RNA-editing ligase 178, membrane fusion protein 179, prothrombinase enzyme 180 

and fibroblast growth factor 23 181. Additionally,  ensemble docking  has been applied to applied 

interactions between the drug and off-target proteins 182 and identify protein targets of natural 

products 183,184.  

 Furthermore, ensemble docking has been applied to discover novel allosteric modulators 

of GPCRs. Huang et al.185 discovered a unique PAM ogerin of GPR68 and allosteric modulators 

of GPR65 by docking to receptor ensembles generated from homology modeling. Long-

timescale accelerated molecular dynamics (aMD) simulations were incorporated into ensemble 

docking to design allosteric modulators of the M2 muscarinic GPCR 186. A number of 12 

compounds with affinities ≤30 µM was identified, four of which were confirmed as new 

negative allosteric modulators (NAMs) and one as a PAM of the M2 receptor.  

 For the A1AR, X-ray structures have been determined in the inactive antagonist-bound 

form 143 and a cryo-EM structure in the active agonist-Gi-bound complex 141. However, there is 

still no published structure of the A1AR bound by allosteric modulators. This has greatly 
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hindered structure-based design of potent and selective PAMs of the A1AR 187. Nevertheless, 

mutagenesis and molecular modeling studies have suggested that the A1AR allosteric site may 

reside within the second extracellular loop (ECL2) 188,189. We previously applied Gaussian 

accelerated molecular dynamics (GaMD) simulations to determine binding modes of two 

prototypical A1AR PAMs, PD81723 and VCP171190. The GaMD simulations allowed us to 

identify low-energy binding modes of the PAMs at an allosteric site formed by the receptor 

ECL2, being highly consistent with the experimental data 188,189. Additionally, we performed 

GaMD simulations on both the inactive antagonist-bound and active agonist-Gi-bound A1AR 

191,192. The GPCR-membrane interactions were found to highly depend on the receptor 

activation state and motions in the GPCR and membrane lipids are strongly coupled 191. These 

studies provided an excellent starting point for ensemble docking and rational drug design of 

the A1AR. In this study, structural ensembles were generated from GaMD simulations of the 

A1AR and used for retrospective docking of allosteric modulators (Fig. 1 and 2A). Receptor 

snapshots were taken every 0.2 ps from the GaMD simulations and clustered for the ECL2 

target site. Ten representative structural clusters were obtained for molecular docking. We 

performed retrospective docking of 25 known PAMs of the A1AR 167,193-196 and 2475 drug-like 

decoys generated from the Directory of Useful Decoys, Enhanced (DUD-E) 197. AutoDock was 

applied for both rigid-body and flexible docking 198-200. Enrichment factors (EFs) 201 and area 

under the receiver operating characteristic curve (AUC) were calculated to evaluate the docking 

performances. Retrospective docking of the PAMs allowed us to validate structural ensembles 

of the A1AR and optimize our molecular docking protocol for future virtual screening. 
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Materials and Methods  

Gaussian accelerated Molecular Dynamics (GaMD) 

GaMD is an enhanced sampling technique, in which a harmonic boost potential is added to 

reduce the system energy barriers202. GaMD is able to accelerate biomolecular simulations by 

orders of magnitude203,204. GaMD does not need predefined collective variables. Moreover, 

because GaMD boost potential follows a Gaussian distribution, biomolecular free energy 

profiles can be properly recovered through cumulant expansion to the second order202. GaMD 

has successfully overcome the energetic reweighting problem in free energy calculations that 

was encountered in the previous accelerated molecular dynamics (aMD) method205,206 for free 

energy calculations. GaMD has been implemented in widely used software packages including 

AMBER 202,207 and NAMD208. A brief summary of GaMD is provided here.  

Consider a system with N atoms at positions 𝑟 = {𝑟1, ⋯ , 𝑟𝑁} . When the system potential 𝑉(𝑟) is 

lower than a reference energy E, the modified potential 𝑉∗(𝑟) of the system is calculated as: 

 𝑉∗(𝑟) = 𝑉(𝑟) + ∆𝑉(𝑟),  

 ∆𝑉(𝑟) = {
1

2
𝑘(𝐸 − 𝑉(𝑟))

2
, 𝑉(𝑟) < 𝐸

0, 𝑉(𝑟) ≥ 𝐸
 (1) 

where k is the harmonic force constant. The two adjustable parameters E and k are automatically 

determined based on three enhanced sampling principles202. The reference energy needs to be 

set in the following range: 

              𝑉𝑚𝑎𝑥 ≤ 𝐸 ≤ 𝑉𝑚𝑖𝑛 +
1

𝑘
 ,                        (2) 
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Where Vmax and Vmin are system minimum and maximum potential energies. To ensure that Eqn. 

(2) is valid, k has to satisfy: 𝑘 ≤
1

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
 Let us define 𝑘 ≡ 𝑘0

1

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛
 , then 0 < 𝑘0 ≤ 1 . 

The standard deviation of ∆𝑉 needs to be small enough (i.e., narrow distribution) to ensure 

proper energetic reweighting209: 𝜎∆𝑉 = 𝑘(𝐸 − 𝑉𝑎𝑣𝑔)𝜎𝑉 ≤ 𝜎0 where 𝑉𝑎𝑣𝑔 and 𝜎𝑉 are the average 

and standard deviation of the system potential energies, 𝜎∆𝑉 is the standard deviation of ∆𝑉 with 

𝜎0 as a user-specified upper limit (e.g., 10kBT) for proper reweighting. When E is set to the 

lower bound E=Vmax,  𝑘0 can be calculated as: 

  𝑘0 = min(1.0, 𝑘0
′ ) = min (1.0,

𝜎0

𝜎𝑉

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥−𝑉𝑎𝑣𝑔
).   (3) 

Alternatively, when the threshold energy E is set to its upper bound  𝐸 = 𝑉𝑚𝑖𝑛 +
1

𝑘
,  𝑘0 is set to: 

                  𝑘0 = 𝑘0
" ≡ (1 −

𝜎0

𝜎𝑉
)

𝑉𝑚𝑎𝑥−𝑉𝑚𝑖𝑛

𝑉𝑎𝑣𝑔−𝑉𝑚𝑖𝑛
 ,                                                                       (4) 

if 𝑘0
"  is found to be between 0 and 1. Otherwise,  𝑘0 is calculated using Eqn. (3). 

Similar to aMD, GaMD provides schemes to add only the total potential boost ∆𝑉𝑃, only 

dihedral potential boost  ∆𝑉𝐷, or the dual potential boost (both ∆𝑉𝑃 and ∆𝑉𝐷). The dual-boost 

simulation generally provides higher acceleration than the other two types of simulations 210. 

The simulation parameters comprise of the threshold energy E for applying boost potential and 

the effective harmonic force constants, 𝑘0𝑃 and 𝑘0𝐷 for the total and dihedral potential boost, 

respectively. 

 

Energetic reweighting of GaMD simulations 
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To calculate potential of mean force (PMF)211 from GaMD simulations, the probability 

distribution along a reaction coordinate is written as 𝑝∗(𝐴) . Given the boost potential ∆𝑉(𝑟)
 
of 

each frame, 𝑝∗(𝐴) can be reweighted to recover the canonical ensemble distribution, 𝑝(𝐴), as: 

 𝑝(𝐴𝑗) = 𝑝∗(𝐴𝑗)
〈𝑒𝛽∆𝑉(𝑟⃑⃑⃑)〉𝑗

∑ 〈𝑝∗(𝐴𝑖)𝑒𝛽∆𝑉(𝑟⃑⃑⃑)〉𝑖
𝑀
𝑖=1

, 𝑗 = 1, … , 𝑀,  (5) 

where M is the number of bins, 𝛽 = 𝑘𝐵𝑇 and 〈𝑒𝛽∆𝑉(𝑟)〉𝑗
 
is the ensemble-averaged Boltzmann 

factor of ∆𝑉(𝑟) for simulation frames found in the jth bin. The ensemble-averaged reweighting 

factor can be approximated using cumulant expansion: 

            〈𝑒𝛽∆𝑉(𝑟)〉 = 𝑒𝑥𝑝 {∑
𝛽𝑘

𝑘!
𝐶𝑘

∞
𝑘=1 },                                                                               

(6) 

where the first two cumulants are given by 

             
𝐶1 = 〈∆𝑉〉,

𝐶2 = 〈∆𝑉2〉 − 〈∆𝑉〉2 = 𝜎𝑣
2.

 (7) 

The boost potential obtained from GaMD simulations usually follows near-Gaussian 

distribution. Cumulant expansion to the second order thus provides a good approximation for 

computing the reweighting factor202,209. The reweighted free energy 𝐹(𝐴) = −𝑘𝐵𝑇 ln 𝑝(𝐴) is 

calculated as: 

             𝐹(𝐴) = 𝐹∗(𝐴) − ∑
𝛽𝑘

𝑘!
𝐶𝑘

2
𝑘=1 + 𝐹𝑐,   (8) 

where 𝐹∗(𝐴) = −𝑘𝐵𝑇 ln 𝑝∗(𝐴) is the modified free energy obtained from GaMD simulation and 

𝐹𝑐 is a constant. 
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System setup 

The cryo-EM structure of the ADO-A1AR-Gi complex (PDB: 6D9H141) were used to prepare 

the simulation systems. In order to prepare PAM-bound structures of the active A1AR for 

docking, the VCP171 was docked with Autodock to the ECL2 allosteric site of the A1AR 188-

190. Then the binding conformation of VCP171 with the highest docking score was chosen as 

initial structure of the PAM-bound A1AR. For both PAM-free (apo) and PAM-bound (holo) 

structures of the A1AR, all chain termini were capped with neutral groups, i.e. the acetyl group 

(ACE) for the N-terminus and methyl amide group (CT3) for C terminus. Protein residues were 

set to the standard CHARMM protonation states at neutral pH with the psfgen plugin in 

VMD212. Then the receptor was inserted into a POPC bilayer with all overlapping lipid 

molecules removed using the Membrane plugin in VMD212. The system charges were then 

neutralized at 0.15 M NaCl using the Solvate plugin in VMD212. Periodic boundary conditions 

were applied on the simulation systems.  

 The CHARMM36 parameter set 213 was used for the protein and POPC lipids. For 

agonist ADO and PAM VCP171, the force field parameters were obtained from the CHARMM 

ParamChem web server188,214. Initial energy minimization and thermalization of the A1AR 

system follow the same protocol as used in the previous GPCR simulations215. The simulation 

proceeded with equilibration of lipid tails. With all the other atom fixed, the lipid tails were 

energy minimized for 1000 steps using the conjugate gradient algorithm and melted with 

constant number, volume, and temperature (NVT) run for 0.5ns at 310 K. Each system was 

further equilibrated using constant number, pressure, and temperature (NPT) run at 1 atm and 
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310 K for 10 ns with 5 kcal (mol Å2)-1 harmonic position restraints applied to the protein. 

Further equilibration of the systems was performed using an NPT run at 1 atm and 310 K for 

0.5ns with all atoms unrestrained. Conventional MD simulation was performed on each system 

for 10 ns at 1atm pressure and 310 K with a constant ratio constraint applied on the lipid bilayer 

in the X-Y plane. Both dihedral and dual-boost GaMD simulations (GaMD_Dih and 

GaMD_dual respectively) were then performed using NAMD2.13208,216 and AMBER 18 202 to 

generate receptor ensembles for docking. Simulations of the A1AR were summarized in Table 

1. In the GaMD simulations, the threshold energy E for adding boost potential is set to the lower 

bound, i.e. E = Vmax
202,208. The simulations included 50ns equilibration after adding the boost 

potential and then three independent production runs lasting 300 ns with randomized initial 

atomic velocities. GaMD production simulation frames were saved every 0.2ps. Snapshots of 

all three GaMD production simulations were combined for clustering to identify representative 

structures for docking using the hierarchical agglomerative algorithm in CPPTRAJ217. The 

PyReweighting toolkit209 was applied to reweight GaMD simulations by combining independent 

trajectories for each system. Free energy values were calculated for the top-ranked structural 

clusters of the receptor.  

 

Retrospective docking of known allosteric ligands to the A1AR 

A number of 25 known PAMs of the A1AR were collected from literature 167,193-196 (Fig. 2B)  

and 2475 decoys were obtained from the DUD-E database 197. This compound library served as 

a dataset to validate the receptor ensembles constructed from GaMD simulations of the A1AR. 

Docking was performed on these compounds to the receptor ECL2 site using Autodock198. 
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Default parameters (number of individuals in population (ga_pop_size), 1,500; maximum 

number of generations (ga_num_generations), 27,000 and number of genetic algorithms run 

(ga_run), 10) were used for the Autodock docking calculations unless described otherwise. A 

set of docking algorithms were extensively tested, including the flexible docking and rigid-body 

docking at different levels (the long level with ga_num_evals of 25,000,000, medium level with 

ga_num_evals of 2,500,000 and short level with ga_num_evals of 250,000).  For the flexible 

docking, residues within 5 Å of VCP171 in the docking pose were selected as flexible residues. 

The representative structures obtained from GaMD simulations and the cryo-EM structure of 

the A1AR (PDB ID: 6D9H) were used for the receptor. The ADO agonist was kept in all the 

docking calculations. Firstly, all polar hydrogens were added and Gasteiger charges were 

assigned to atoms in the receptor. Secondly, a 3D search grid was created with the AutoGrid 

algorithm218 to calculate binding energies of the ligands and decoys in the A1AR. The center of 

mass of the receptor ECL2 was chosen as the grid center and a box size of 60*60*60 Å3 was 

applied for docking. The Lamarckian genetic algorithm218 was applied to model protein-ligand 

interactions.   

For docking of GaMD simulation structural clusters, the predicted binding energy for each 

conformation was calculated by its raw docking score and reweighted according to the 

following: 

                                             𝐵𝐸𝑖 = 𝐸𝑑𝑜𝑐𝑘 + 𝑃𝑀𝐹𝑖                                                                      (9) 

where PMFi is the reweighted free energy of the ith receptor structural cluster and 𝐸𝑑𝑜𝑐𝑘 is the 

corresponding raw docking score. Ranking of the docked compounds was examined in terms of 

both the minimum predicted binding energy obtained for each compound against any of the 
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given receptor structures (“BEmin”) and the average of predicted binding energies (“BEavg”) 186. 

The average binding energy is calculated as: 

                                                  𝐵𝐸𝑎𝑣𝑔 =
1

𝑁𝑐
∑ 𝐵𝐸𝑖

𝑁𝑐
𝑖=1                                                             (10) 

where Nc is the total number of receptor structural clusters, 𝐵𝐸𝑖 is the binding energy of a 

compound to the ith cluster. The minimum predicted binding energy is given by: 

                                            𝐵𝐸𝑚𝑖𝑛 = 𝑀𝑖𝑛(𝐵𝐸1, 𝐵𝐸1, ⋯ 𝐵𝐸𝑁𝐶
)                                              (11) 

Enrichment factor (EF) is calculated by: 

                           𝐸𝐹 =
𝐻𝑖𝑡𝑠_𝑠𝑎𝑚𝑝𝑙𝑒𝑑/𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝐻𝑖𝑡𝑠_𝑡𝑜𝑡𝑎𝑙 /𝑁𝑡𝑜𝑡𝑎𝑙
=

𝑁𝑡𝑜𝑡𝑎𝑙

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑑
∙

𝐻𝑖𝑡𝑠_𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝐻𝑖𝑡𝑠_𝑡𝑜𝑡𝑎𝑙
                                      (12) 

where the Ntotal, Nsampled, Hits_total and Hits_sampled are the number of total compounds in the 

database, number of compounds for ranking, number of total hits in the database and number 

of hits found among the ranked compounds, respectively. The “early” enrichment factor (EF’) 

that accounts for the rank of each of the Hits_sampled known actives is calculated by: 

                                       𝐸𝐹′ =
50%

𝐴𝑃𝑅𝑠𝑎𝑚𝑝𝑙𝑒𝑑
∙

𝐻𝑖𝑡𝑠_𝑠𝑎𝑚𝑝𝑙𝑒𝑑

𝐻𝑖𝑡𝑠_𝑡𝑜𝑡𝑎𝑙
                                                             (13) 

Where the 𝐴𝑃𝑅𝑠𝑎𝑚𝑝𝑙𝑒𝑑 is the average percentile rank of the Hits_sampled known actives. 

 

Results 

Construction of receptor ensembles through structural clustering of GaMD simulations  

All-atom GaMD simulations were performed on different systems of the active A1AR with 

varied levels of acceleration, i.e. the dihedral and dual boost (see Methods and Table 1). Two 
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different software packages, NAMD2.13208,216 and AMBER 18202,207 were used for the 

simulations. Six sets of GaMD simulations, including the ADO-A1AR-Gi (NAMD, 

GaMD_Dih), ADO-A1AR-Gi (NAMD, GaMD_Dual), ADO-A1AR-Gi (AMBER, GaMD_Dih), 

ADO-A1AR-Gi (AMBER, GaMD_Dual), ADO-A1AR-Gi-VCP171 (AMBER, GaMD_Dih) and 

ADO-A1AR-Gi-VCP171 (AMBER, GaMD_Dual) were obtained to generate receptor 

ensembles. Overall, GaMD_Dual provided higher boost potential than the GaMD_Dih. 

AMBER provided higher boost potential than NAMD in the GaMD simulations due to different 

algorithms used to calculate the potential average and standard deviation190. The GaMD_Dual 

simulations of ADO-A1AR-Gi with AMBER recorded an average boost potential of 21.43 

kcal/mol and 6.50 kcal/mol standard deviation compared with 10.14 kcal/mol average and 2.59 

kcal/mol standard deviation in the GaMD_Dual simulations with NAMD. The GaMD_Dih 

simulations of ADO-A1AR-Gi using AMBER also exhibited higher average boost potential of 

6.89 kcal/mol and 4.06 kcal/mol standard deviation compared with 5.04 kcal/mol average and 

2.22 kcal/mol standard deviation in the GaMD_Dih simulations using NAMD. For the VCP171 

bound A1AR system, the GaMD_Dual simulations with AMBER recorded a 24.80 kcal/mol 

average boost potential and 6.61 kcal/mol standard deviation compared with the average of 6.80 

kcal/mol and of 2.47 kcal/mol standard deviation in the GaMD_Dih simulations with AMBER.  

Ten representative structures of the receptor ECL2 allosteric site were obtained by root-

mean-square deviation (RMSD)-based structural clustering of the receptor snapshots for each 

set of the GaMD simulations. The representative structural clusters were characterized by the 

fraction of simulation frames in the cluster, the GaMD reweighted PMF free energy values of 

each cluster, and their sampled conformational space (Table 2). Overall, the top clusters in each 

receptor ensemble contributed to significantly higher fractions of simulation frames than the 



157 
 

lower ranked clusters. However, the free energy values were ordered differently for most of the 

structural clusters with GaMD reweighting. It was thus important to take GaMD reweighted 

free energies into account in the ensemble docking. Notably, structural clusters obtained from 

AMBER GaMD_Dual simulations of ADO-A1AR-Gi-VCP171 system sampled the largest 

conformational space, as characterized by ~4.5-5.9 Å average distance between the cluster 

centroids (AvgCDist) and 2.31 Å average distance between simulation frames (AvgDist) of the 

lowest free energy/top-ranked cluster (Table 2). In comparison, clusters from AMBER 

GaMD_Dih simulations of the VCP171-bound A1AR sampled the smallest conformational 

space with ~2.1-2.4 Å average cluster centroid distance and 1.78 Å average distance between 

simulation fames in the top cluster. Clusters obtained from GaMD simulations of the ADO-

A1AR-Gi system sampled conformational space in the medium range (Table 2). These receptor 

structural ensembles were subsequently used for retrospective docking of PAMs in the A1AR.  

 

Correction with GaMD reweighting improved retrospective docking performances   

The GaMD receptor ensembles were used for docking of the compound library consisting of 25 

known PAMs and 2475 decoys of the A1AR. The EF and EF’ enrichment factors and AUC 

values were calculated to evaluate the ensemble docking performances 201. The EF and EF’ 

were calculated for top 5% and 10% of total sampled compounds (Table 3). For the ten 

representative conformations obtained from each set of GaMD simulations, both the minimum 

binding energy (𝐵𝐸𝑚𝑖𝑛) and the average binding energy (𝐵𝐸𝑎𝑣𝑔) were used to assess the docking 

performances. To evaluate the effects of GaMD reweighting, we compared the binding energies 

using both the raw scores obtained from docking calculations (“raw” in Table 3) and the 
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reweighted scores corrected with cluster free energy values calculated by GaMD reweighting 

(“reweighted” in Table 3). For a total of 60 calculated docking metrics regarding the AUC, 

EF (5%), EF (10%), EF’ (5%) and EF’ (10%) as listed in Table 3, 32 (53.3%) of them showed 

better performance using the GaMD-reweighted scores than using the raw scores. While only 

10 (16.7%) of them showed decreased performance and 18 (30%) with the same performance 

(Table 3).  

With GaMD reweighting, the calculated AUC using ranking by the minimum binding 

energy (𝐵𝐸𝑚𝑖𝑛) increased by ~10-14% for receptor ensembles obtained from NAMD 

GaMD_Dih, NAMD GaMD_Dual and AMBER GaMD_Dih simulations of the ADO-A1AR-Gi 

system. The AUC using ranking by the average binding energy (𝐵𝐸𝑎𝑣𝑔) increased from 0.44 to 

0.61 for receptor ensemble from AMBER GaMD_Dih of the ADO-A1AR-Gi system.  More 

importantly, while the EF and EF’ values for 5% of sampled compounds were generally small 

for both raw and reweighted docking scores, the EF and EF’ for 10% of sampled compound 

increased significantly with reweighted scores for receptor ensembles of all the simulations 

(Table 3). This would be more relevant for drug design projects since only top ranked 

compounds could often be tested in experiments. Therefore, binding energies corrected by 

GaMD reweighting improved the docking performances. 

Furthermore, we compared the calculated AUC, EF and EF’ in terms of ranking using 

the minimum binding energy (𝐵𝐸𝑚𝑖𝑛) and average binding energies (𝐵𝐸𝑎𝑣𝑔). Although with 

exceptions, the usage of 𝐵𝐸𝑎𝑣𝑔 mostly outperformed that of 𝐵𝐸𝑚𝑖𝑛, especially in the calculated 

EF’ (5%) and EF’ (10%) (Table 3). Notably, the EF’(5%) increased by ~70% to 7 times using 

𝐵𝐸𝑎𝑣𝑔 in ensemble docking of the ADO-A1AR-Gi system from the NAMD GaMD_Dih, NAMD 



159 
 

GaMD_Dual and AMBER GaMD_Dih simulations than using the 𝐵𝐸𝑚𝑖𝑛, and ~2-5 times for 

the EF’(10%) (Table 3). The average predicted binding energy (𝐵𝐸𝑎𝑣𝑔) was thus applied for 

further parameter testing of the docking calculations.  

 

Flexible docking performed better than different levels of rigid-body docking  

Next, we compared the performances of flexible docking and different levels of rigid-body 

docking with Autodock (Table 4). In a total of 30 calculated docking metrics regarding the 

AUC, EF(5%), EF(10%), EF’(5%) and EF’(10%), 22 (73.3%) of them showed improved 

performance with flexible docking compared with rigid-body docking at the short, medium and 

long levels, while only 2 (6.7%) showed the same performance and 6 (20%) with decreased 

performance. Among the 22 metrics that showed improved performance with flexible docking, 

17 of these values increased by more than 2 times compared with rigid-body docking (Table 

4).  

The AUC increased with flexible docking of all the receptor ensembles except the ADO-A1AR-

Gi ensemble from the AMBER GaMD_Dih and GaMD_Dual simulations (Table 4). The EF 

(5%) increased from 0.0 with different levels of rigid-body docking to 0.8 with flexible docking 

for all the receptor ensembles except the ADO-A1AR-Gi ensemble from the AMBER 

GaMD_Dih simulations. Similar significant increase was observed for the EF’ (5%) values with 

flexible docking of these receptor ensembles. Notably, AMBER GaMD_Dual simulations of 

the PAM VCP171-bound ADO-A1AR-Gi and PAM-free ADO-A1AR-Gi systems combined 

with flexible docking provided the highest EF’ (5%) for, i.e., 8.33 and 6.58, respectively. For 

the EF (10%) and EF’(10%), flexible docking led to significantly higher performance values 
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for most of the simulations receptor ensembles than the rigid-body docking (Table 4).In 

summary, flexible docking provided significantly improved performances than rigid-body 

docking, suggesting that the flexibility of protein side chains played an important role even in 

the ensemble docking calculations.    

 

Optimized ensemble docking protocol and comparison with docking using cryo-EM 

structure   

Comparing flexible docking of all six receptor ensembles with ranking by the GaMD 

reweighted the average binding energy (𝐵𝐸𝑎𝑣𝑔), we found that the AMBER GaMD_Dual 

simulations of the PAM VCP171 bound ADO-A1AR-Gi system provided the best docking 

performance (Table 4). The GaMD simulations of VCP171-bound A1AR sampled more 

relevant receptor conformations that favored binding of the PAMs, although the ECL2 allosteric 

site was highly flexible 191,192 and the VCP171 PAM exhibited high fluctuations.  Such 

conformations were not well sampled in GaMD simulations of the PAM-free (apo) A1AR 

started from the cryo-EM structure of ADO-A1AR-Gi.  

For comparison, we performed flexible docking using Autodock with only the cryo-EM 

structure of the active ADO-A1AR-Gi (PDB: 6D9H). While the EF(5%) and EF(10%) of 

flexible docking of the cryo-EM structure exhibited the same values as ensemble docking of 

the PAM-bound A1AR, the AUC, EF’(5%) and EF’(10%) values decreased significantly to 

0.53, 2.88 and 3.47, respectively, compared to the latter (Table 5). It is worth noting that the 

performance of docking the PAMs in the current study was relatively lower than that of the 

orthosteric ligands that bind inside class A GPCRs with generally higher affinities 186. 

Nonetheless, with GaMD simulations and flexible docking, we have optimized our ensemble 
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docking protocol to effectively account for the receptor flexibility, which will facili tate virtual 

screening of PAMs for the A1AR.  

 

Discussion  

In this study, we have carried out extensive retrospective docking calculations of PAM binding 

to the A1AR using GaMD enhanced simulations and AutoDock. The GaMD simulations have 

been performed using the AMBER and NAMD simulation packages at different acceleration 

levels (dihedral and dual boost). The rigid-body docking at different short, medium and long 

levels and flexible docking have been all evaluated in our ensemble docking protocol.  

Overall, flexible docking performed significantly better than the rigid-body docking at 

different levels with AutoDock. This suggested that the flexibility of protein side chains in 

ensemble docking is also important. The side chains of representative receptor structures 

obtained from GaMD simulations might be still in unfavored conformations for PAM binding. 

Flexible docking of protein side chains could then alleviate this problem to achieve better 

performance. The Glide induced fit docking was also found to outperform rigid-body docking 

in a previous study to identify allosteric modulators of the M2 muscarinic GPCR 186. Generally 

speaking, flexible docking greatly helps accounting for protein flexibility in the side chains and 

improves docking performances219. 

To fully account for the protein flexibility, especially the backbone, we further 

incorporated GaMD enhanced sampling simulations in an ensemble docking protocol (Fig. 1). 

In the GaMD simulations, the boost potential obtained for one system with AMBER was greater 

than with NAMD due to different algorithms used to calculate the system potential statistics190. 
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Accordingly, larger conformation space of the receptor was sampled in the AMBER 

simulations, which resulted in improved docking performance. Correction of binding energy by 

the GaMD reweighted free energy of the receptor structural cluster improved the docking 

performances. With GaMD reweighted scores, ranking by the average binding energy (𝐵𝐸𝑎𝑣𝑔) 

performed better than by the minimum binding energy (𝐵𝐸𝑚𝑖𝑛) in terms of the AUC, EF and 

EF’ docking metrics.  

Receptor ensemble obtained from AMBER GaMD_Dual simulations of the VCP171 

PAM-bound ADO-A1AR-Gi outperformed other receptor ensembles for docking. This 

ensemble consists of snapshots of the holo A1AR with PAM bound at the ECL2 allosteric site. 

Interactions between the PAM and receptor ECL2 could induce more suitable conformations 

for PAM binding, which were otherwise difficult to sample in the simulations of PAM-free 

(apo) A1AR. Dual-boost GaMD was observed to perform better than the dihedral-boost GaMD 

for ensemble docking, suggesting that GaMD at the higher dual-boost acceleration level was 

needed to sufficiently sample conformational space of the GPCR PAM binding site. This 

finding is in contrast to the previous docking study of allosteric modulators to the M 2 receptor 

that showed dihedral-boost aMD outperformed dual-boost aMD for ensemble docking 186. Such 

discrepancy likely resulted from the relatively lower boost potential with a new formula applied 

in the GaMD simulations compared with the previous aMD method 202,208. The aMD simulations 

especially with dual boost appeared to provide too high acceleration and sample receptor 

conformations that did not facilitate compound docking. In comparison, dual-boost GaMD 

generated more appropriate receptor ensembles for docking. GaMD also solved the energetic 

noise problem of aMD in the protein simulations. The reweighted free energies of receptor 
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structural clusters obtained from GaMD simulations have been shown to further improve 

ranking of the compounds and ensemble docking performance as demonstrated here.  

In summary, we have optimized the protocol for ensemble docking of allosteric 

modulators to the A1AR, a prototypical GPCR. The ensemble docking integrates all-atom dual-

boost GaMD simulations of the PAM-bound (holo) agonist-A1AR-Gi complex, flexible docking 

with AutoDock and compound scoring with the GaMD reweighted average binding energy. 

Enhanced sampling simulations and flexible docking have greatly improved the docking 

performance by effectively accounting for the protein flexibility in both the backbone and side 

chains. Such an ensemble docking protocol will greatly facilitate future allosteric drug design 

of the A1AR and other GPCRs.  

 

Acknowledgements 

We would like to dedicate this manuscript to the 60 th birthday of Prof. Jeremy Smith. We 

appreciate the preliminary docking work of Shulammite Lim and thank Prof. Arthur 

Christopoulos, Dr. Lauren May, Dr. Anh Nguyen and Prof. Jens Carlsson for valuable 

discussions. This work used supercomputing resources with allocation award TG-MCB180049 

through the Extreme Science and Engineering Discovery Environment (XSEDE), which is 

supported by National Science Foundation grant number ACI-1548562, and project M2874 

through the National Energy Research Scientific Computing Center (NERSC), which is a U.S. 

Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-

05CH11231, and the Research Computing Cluster at the University of Kansas.  This work was 

supported by the American Heart Association (Award 17SDG33370094), the National Institutes 



164 
 

of Health (R01GM132572) and the startup funding in the College of Liberal Arts and Sciences 

at the University of Kansas.  

 

Table 1: Summary of GaMD simulations performed on the adenosine A1 receptor (A1AR). 

System aNat om s  Dimension(Å3)  Program  bMethod Simulation 
cΔVa vg  

(kcal/mol) 

dσΔv 

(kcal/mol) 

ADO-

A1AR-

Gi 

180,394 93x111x167 NAMD 

GaMD_Dih 300 ns x 2 5.04 2.22 

GaMD_Dual  300 ns x 2 10.14 2.59 

ADO-

A1AR-

Gi 

180,394 93x111x167 AMBER 

GaMD_Dih 300 ns x 3 6.89 4.06 

GaMD_Dual  300 ns x 3 21.43 6.50 

ADO-

A1AR-

Gi-

VCP171 

180,403 93x111x167 AMBER 

GaMD_Dih 300 ns x 3 6.80 2.74 

GaMD_Dual  300 ns x 3 24.80 6.61 

aN
atoms

 is number of atoms in the simulation systems.  

bGaMD_Dih and GaMD_Dual represent the dihedral and dual boost GaMD simulations 

respectively.  
c∆Vavg and dσ∆V are the average and standard deviation of the GaMD boost potential.  

 

 

Table 2: Summary of receptor structural clusters obtained from different GaMD simulations of 

the A1AR. Ten representative structural clusters are listed with their fraction of simulation 

frames, the GaMD reweighted PMF free energy values (kcal/mol), the average distance of each 

cluster centroid to every other cluster centroid (AvgCDist) and the average distance between 

frames in the cluster (AvgDist). 

 

Cluster  

ID 

Cluster  

Proper t ies  

ADO-A 1 AR-

Gi (NAMD, 

GaMD_Dih)  

ADO-A 1 AR-

Gi (NAMD, 

GaMD_Dual )  

ADO-A 1 AR-

Gi 

(AMBER,  

GaMD_Dih)  

ADO-A 1 AR-

Gi (AMBER,  

GaMD_Dual )  

ADO-A 1 AR-

Gi-VCP171 

(AMBER,  

GaMD_Dih)  

ADO-A 1 AR-

Gi-VCP171 

(AMBER,  

GaMD_Dual )  

Cluster  

1  

Fract ion  0 .22  0 .18  0 .50  0 .78  0 .73  0 .56  

Reweigh ted 

PM F 

(kca l /mol)  

0 .19  1 .78  0 .00  1 .64  0 .00  0 .00  

AvgCDis t  (Å)  3 .01  3 .50  4 .18  2 .76  2 .10  4 .62  

AvgDis t  (Å)  2 .40  2 .29  2 .28  1 .82  1 .78  2 .31  

Cluster  

2  

Fract ion  0 .16  0 .16  0 .16  0 .09  0 .15  0 .16  

Reweigh ted 

PM F 

(kca l /mol)  

0 .40  1 .27  0 .84  2 .83  0 .97  1 .40  

AvgCDis t  (Å)  3 .26  3 .04  4 .51  3 .02  2 .37  4 .51  

AvgDis t  (Å)  2 .30  2 .40  1 .99  1 .69  1 .64  2 .62  

Cluster  

3  

Fract ion  0 .15  0 .14  0 .14  0 .04  0 .07  0 .14  

Reweigh ted 

PM F 

(kca l /mol)  

1 .11  0 .00  0 .61  3 .52  1 .45  0 .35  

AvgCDis t  (Å)  3 .05  3 .12  3 .75  2 .97  2 .24  5 .41  

AvgDis t  (Å)  2 .35  2 .31  2 .60  1 .88  1 .62  2 .73  

Frac t ion  0 .14  0 .13  0 .11  0 .04  0 .02  0 .05  
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Cluster  

4  

Reweigh ted 

PM F 

(kca l /mol)  

1 .14  1 .41  1 .19  3 .70  1 .60  2 .93  

AvgCDis t  (Å)  3 .03  3 .57  3 .94  3 .42  2 .33  4 .80  

AvgDis t  (Å)  2 .38  2 .20  2 .25  1 .74  1 .57  2 .65  

Cluster  

5  

Fract ion  0 .10  0 .12  0 .04  0 .03  0 .02  0 .03  

Reweigh ted 

PM F 

(kca l /mol)  

1 .38  1 .25  1 .99  3 .41  1 .83  2 .09  

AvgCDis t  (Å)  2 .98  3 .10  3 .77  3 .11  2 .34  4 .60  

AvgDis t  (Å)  2 .23  2 .25  2 .00  1 .66  1 .35  2 .78  

Cluster  

6  

Fract ion  0 .07  0 .06  0 .03  0 .01  0 .004  0.02  

Reweigh ted 

PM F 

(kca l /mol)  

2 .75  0 .85  1 .54  4 .15  2 .93  2 .79  

AvgCDis t  (Å)  2 .95  3 .31  4 .62  3 .06  2 .22  4 .76  

AvgDis t  (Å)  2 .14  2 .19  2 .47  1 .69  1 .49  2 .30  

Cluster  

7  

Fract ion  0 .06  0 .06  0 .01  0 .001  0.004  0.02  

Reweigh ted 

PM F 

(kca l /mol)  

2 .23  0 .71  1 .82  4 .86  3 .41  1 .17  

AvgCDis t  (Å)  3 .12  3 .51  4 .34  3 .07  2 .22  5 .42  

AvgDis t  (Å)  2 .33  2 .35  2 .23  1 .74  1 .71  2 .45  

Cluster  

8  

Fract ion  0 .06  0 .06  0 .004  0.00  0 .00  0 .01  

Reweigh ted 

PM F 

(kca l /mol)  

2 .18  2 .32  2 .38  5 .69  3 .36  1 .86  

AvgCDis t  (Å)  3 .13  3 .40  4 .01  2 .73  2 .22  5 .33  

AvgDis t  (Å)  2 .28  2 .16  1 .63  1 .41  1 .42  1 .88  

Cluster  

9  

Fract ion  0 .03  0 .05  0 .003  0.001  0.001  0.01  

Reweigh ted 

PM F 

(kca l /mol)  

2 .28  1 .02  3 .43  0 .73  4 .01  4 .10  

AvgCDis t  (Å)  3 .03  3 .38  3 .83  3 .36  2 .24  4 .78  

AvgDis t  (Å)  2 .11  2 .10  1 .60  0 .00  1 .19  1 .73  

Cluster  

10  

Fract ion  0 .02  0 .03  0 .002  0.001  0.001  0.00  

Reweigh ted 

PM F 

(kca l /mol)  

0 .00  1 .07  4 .77  0 .00  2 .86  5 .78  

AvgCDis t  (Å)  3 .90  3 .09  3 .77  3 .57  2 .22  5 .87  

AvgDis t  (Å)  2 .22  2 .14  1 .65  0 .00  1 .35  0 .00  

 

 

Table 3: Summary of docking results for the AUC and the EF and EF’ values with 5% and 10% 

of sampled compounds calculated using different GaMD simulation ensembles of the A1AR. 

Among the listed 60 docking performances metrics, 32 of them (highlighted in bold) showed 

better performance using the GaMD-reweighted scores than using the raw scores, while only 

18 and 10 of them showed the same and decreased performance values, respectively.  

 

Sys tem  
Rankin

g 

AUC EF (5%)  EF’ (5%)  EF (10%)  EF’ (10%)  

raw  
reweighte

d  
raw 

reweighte

d  
raw  

reweighte

d  
raw 

reweighte

d  
raw 

reweighte

d  

ADO-A 1 AR-

Gi (NAMD, 

GaMD_Dih)  

𝐵𝐸𝑎𝑣𝑔 
0 .4

8 
0 .45  

0 .0

0 
0 .00  

0 .5

1 
0 .78  

0 .0

0 
0 .92  

0 .0

0 
0 .96  

𝐵𝐸𝑚𝑖𝑛 
0 .4

6 
0 .51  

0 .0

0 
0 .00  

0 .7

7 
0 .46  

0 .0

0 
1 .09  

0 .4

0 
0 .48  

ADO-A 1 AR-

Gi (NAMD, 

GaMD_Dual

)  

𝐵𝐸𝑎𝑣𝑔 
0 .4

5 
0 .45  

0 .0

0 
0 .00  

0 .7

8 
0 .78  

0 .0

0 
0 .96  

0 .7

8 
0 .96  

𝐵𝐸𝑚𝑖𝑛 
0 .4

6 
0 .51  

0 .0

0 
0 .00  

1 .4

7 
0 .46  

0 .8

0 
2 .47  

0 .4

6 
0 .48  

ADO-A 1 AR-

Gi 

(AMBER,  

GaMD_Dih)  

𝐵𝐸𝑎𝑣𝑔 
0 .4

4 
0 .61  

0 .0

0 
0 .00  

0 .3

6 
3 .73  

0 .0

0 
0 .71  

1 .2

0 
5 .03  

𝐵𝐸𝑚𝑖𝑛 
0 .4

3 
0 .49  

0 .0

0 
0 .00  

0 .4

2 
0 .53  

0 .0

0 
0 .76  

0 .0

0 
0 .97  

ADO-A 1 AR-

Gi 
𝐵𝐸𝑎𝑣𝑔 

0 .4

3 
0 .43  

0 .0

0 
0 .00  

0 .4

8 
0 .47  

0 .0

0 
0 .71  

0 .0

0 
0 .71  



166 
 

(AMBER,  

GaMD_Dih)  
𝐵𝐸𝑚𝑖𝑛 

0 .4

2 
0 .35  

0 .0

0 
0 .00  

0 .9

1 
0 .42  

0 .0

0 
1 .10  

0 .0

0 
0 .67  

ADO-A 1 AR-

Gi-VCP171 

(AMBER,  

GaMD_Dih)  

𝐵𝐸𝑎𝑣𝑔 
0 .4

7 
0 .47  

0 .0

0 
0 .00  

0 .4

2 
0 .42  

0 .0

0 
0 .77  

0 .0

0 
0 .77  

𝐵𝐸𝑚𝑖𝑛 
0 .4

9 
0 .50  

0 .0

0 
0 .00  

1 .4

8 
0 .60  

0 .4

0 
1 .53  

0 .0

0 
1 .10  

ADO-A 1 AR-

Gi-VCP171 

(AMBER,  

GaMD_Dual

)  

𝐵𝐸𝑎𝑣𝑔 
0 .4

7 
0 .44  

0 .0

0 
0 .00  

0 .3

7 
0 .37  

0 .0

0 
0 .67  

0 .0

0 
0 .66  

𝐵𝐸𝑚𝑖𝑛 
0 .4

9 
0 .46  

0 .0

0 
0 .00  

0 .7

3 
0 .38  

0 .0

0 
1 .10  

0 .0

0 
0 .73  
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Table 4:  Summary of docking results for the flexible and rigid-body docking at the “short”, 

“medium” and “long” levels using Autodock regarding the AUC, EF and EF’ values with 5% 

and 10% of sampled compounds calculated using different GaMD simulation ensembles of the 

A1AR. Among the listed 30 docking performance metrics, 22 of them (highlighted in bold) 

showed better performance using flexible docking than using rigid docking, while only 2 and 6 

of them showed the same and decreased performance values, respectively.  

 

System 

Levels 

of 

Docking 

ADO-

A1AR-Gi 

(NAMD, 

GaMD_Dih)  

ADO-A1AR-

Gi (NAMD, 

GaMD_Dual) 

ADO-

A1AR-Gi 

(AMBER, 

GaMD_Dih)  

ADO-A1AR-

Gi (AMBER, 

GaMD_Dual) 

ADO-

A1AR-Gi-

VCP171 

(AMBER, 

GaMD_Dih)  

ADO-A1AR-

Gi-VCP171 

(AMBER, 

GaMD_Dual) 

AUC 

Short  0.45 0.45 0.61 0.43 0.47 0.44 

Medium 0.49 0.49 0.67 0.50 0.50 0.48 

Long 0.50 0.50 0.23 0.54 0.50 0.52 

Flexible 0.53 0.53 0.53 0.51 0.54 0.60 

EF 

(5%) 

Short  0.00 0.00 0.80 0.00 0.00 0.00 

Medium 0.00 0.00 3.20 0.00 0.00 0.00 

Long 0.00 0.00 0.80 0.00 0.00 0.00 

Flexible 0.80 0.80 0.00 0.80 0.80 0.80 

EF’ 

(5%) 

Short  0.78 0.78 3.73 0.47 0.42 0.37 

Medium 0.95 0.95 4.81 0.89 1.11 1.14 

Long 0.10 0.10 3.52 1.36 0.87 0.88 

Flexible 5.00 5.00 1.41 6.58 3.97 8.33 

EF 

(10%) 

Short  0.00 0.00 1.20 0.00 0.00 0.00 

Medium 0.00 0.00 0.40 0.00 0.40 0.40 

Long 0.00 0.00 2.00 0.40 0.00 0.00 

Flexible 0.40 0.40 0.40 0.40 0.40 0.80 

EF’ 

(10%) 

Short  0.96 0.96 5.03 0.71 0.77 0.66 

Medium 1.12 1.12 7.41 1.06 1.16 1.13 

Long 0.20 0.20 2.72 1.69 1.11 1.03 

Flexible 3.05 3.05 1.42 2.46 2.32 4.98 

 

 

Table 5: Summary of docking results for the AUC and the EF and EF’ values in 5% and 10% 

of sampled compounds calculated using the finally selected ensemble docking model and cryo-

EM structure of the A1AR. 

 
System AUC EF (5%) EF’ (5%) EF (10%) EF’ (10%) 

ADO-A1AR-Gi-

VCP171 

(AMBER, 

GaMD_Dual) 0.60 0.80 8.33 0.80 4.98 

ADO-A1AR-Gi 

(Cryo-EM, 

PDB:6D9H) 0.53 0.80 2.88 0.80 3.47 
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Fig. 1: Overview flowchart for retrospective docking of positive allosteric modulators (PAMs) 

in the A1AR. Starting from the cryo-EM structure of the active ADO-Gi-bound A1AR (6D9H) 

and docking model of PAM VCP171-bound A1AR (ADO-A1AR-Gi-VCP171), GaMD 

simulations were carried out to construct structural ensembles to account for the receptor 

flexibility. Meanwhile, a compound library was prepared for 25 known PAMs of the A1AR and 

2450 decoys obtained from the DUD-E with openbabel 2.4.1. Ensemble docking was then 

performed to identify the PAMs, for which the AUC and enrichment factors were calculated to 

evaluate docking performance. Both rigid-body and flexible docking were tested using 

Autodock.  
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Fig. 2: (A) Structural ensembles of the target allosteric site located in extracellular loop 2 

(ECL2) generated for the A1AR. (B) Example PAMs of the A1AR used for retrospective 

docking of the receptor ensembles. 
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Abstract 

Angiotensin converting enzyme 2 (ACE2) plays a key role in renin-angiotensin system 

regulation and amino acid homeostasis. Human ACE2 acts as the receptor for severe acute 

respiratory syndrome coronaviruses SARS-CoV and SARS-CoV-2. ACE2 is also widely 

expressed in epithelial cells of lungs, heart, kidney and pancreas. It is considered an important 

drug target for treating SARS-CoV-2, as well as pulmonary diseases, heart failure, 

hypertension, renal diseases and diabetes. Despite the critical importance, the mechanism of 

ligand binding to the human ACE2 receptor remains unknown. Here, we have addressed this 

challenge through all-atom simulations using a novel Ligand Gaussian accelerated molecular 

dynamics (LiGaMD) method. Microsecond-timescale LiGaMD simulations have 

unprecedentedly captured multiple times of spontaneous binding and unbinding of a potent 

inhibitor MLN-4760 in the ACE2 receptor. With ligand far away in the unbound state, the ACE2 

receptor samples distinct Open, Partially Open, Closed and Fully Closed conformations. Upon 

ligand binding to the active site, conformational ensemble of the ACE2 receptor is biased 

towards the Closed state as observed in the X-ray experimental structure. The LiGaMD 

simulations thus suggest a conformational selection mechanism for ligand recognition by the 

highly flexible ACE2 receptor, which is expected to facilitate rational drug design targeting 

human ACE2 against coronaviruses and other related human diseases. 

 

Keywords: Angiotensin converting enzyme 2 (ACE2), coronaviruses, ligand binding, Ligand 

Gaussian accelerated molecular dynamics (LiGaMD), conformational selection.  
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Introduction  

Angiotensin converting enzyme 2 (ACE2) plays a key role in renin-angiotensin system 

regulation and amino acid homeostasis221,222. Human ACE2 acts as the receptor for severe acute 

respiratory syndrome coronaviruses SARS-CoV and SARS-CoV-2. ACE2 plays a vital role as 

a catalytic protease converting angiotensin II to angiotensin 1-7 and angiotensin I to angiotensin 

1-9. Proteolytic reactions of these peptide hormones aid in the conversion of vasoconstrictors 

to vasodilators and thus help to maintain blood pressure221. Likewise, ACE2 is widely expressed 

in epithelial cells of lungs, heart, kidney, and pancreas. It is an important drug target for treating 

pulmonary diseases, heart failure, hypertension, renal diseases and diabetes223,224. ACE2 also 

stabilizes amino acid transporter B°AT1 to regulate the gut microbiome and amino acid 

homeostasis225.  

 Human ACE2 has been identified as the functional receptor for severe acute respiratory 

syndrome coronaviruses including SARS-CoV and SARS-CoV-2226. SARS-CoV-2 is 

responsible for 2019 coronavirus pandemic (COVID-19). By April 2021, ~154 million people 

have been infected by COVID-19 with ~3.22 million deaths around the world. With the 

unprecedented pandemic, it is of paramount importance to investigate virus infection and 

develop effective treatments of SARS-CoV-2. The entry of SARS-CoV-2 is mediated by 

interaction of the receptor binding domain (RBD) in the virus spike protein S1 subunit with the 

host ACE2 receptor. The transmembrane protease serine 2 (TMPRSS2) promotes priming of 

the spike protein and facilitates its S2 subunit to initiate the viral-cell membrane fusion. Hence, 

inhibiting the interaction between the viral RBD and host ACE2 presents a promising strategy 

for blocking SAR-COV-2 entry to the human cells. 
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 ACE2 consists of the N-terminal catalytic peptidase domain (PD) on the extracellular 

side and the C-terminal transmembrane collectrin-like domain (CLD) with a cytoplasmic tail 

on the intracellular side. The enzyme PD domain can be inhibited by compounds like MLN-

4760227, which bind to the protein active site and prevent substrate binding. MLN-4760 binding 

biases the receptor to adopt a “Closed” conformation, in which the protein active site formed 

by two subdomains of the PD is closed from the external environment (Figure S1A). 

Furthermore, the receptor undergoes conformational changes with hinge-bending movement of 

the dynamic N-terminal subdomain I relative to the stable subdomain II, e.g., ~16° bending 

upon inhibitor binding227. In the absence of ligand binding, the two subdomains move apart 

from each other and the protein active site becomes exposed to solvent in an “Open” 

conformation. In complex with RBD of the SARS-CoV or SARS-CoV-2, the ACE2 receptor 

also adopts a “Partially Open” conformation, in which the subdomain I lies between the “Open” 

and “Closed” conformations221 (Figure S1A). Among over 20 experimental structures of the 

ACE2 receptor present in Protein Data Bank (PDB), most of them exhibit “Open” and “Partially 

Open” conformations but only one structure has been identified in the “Closed” conformation 

(PDB: 1R4L)227. Despite tremendous efforts to determine these experimental structures223,227-

233, the dynamics and functional mechanism of the ACE receptor are still poorly understood234.  

 MLN-4760 is a highly selective and potent (IC50: 0.44 nM) small-molecule inhibitor of 

the ACE2 receptor235. The inhibitor has two carboxylate groups contributing to -2 net charge of 

the molecule (Figure S1B). One of the negatively charged carboxylate groups interacts with 

the positively charged zinc ion, by which the ACE2 receptor functions as a metallopeptidase 

enzyme. Depending on ligand or viral RBD binding, the receptor adopts different 

conformations, but the pathways and mechanism of ligand binding in the ACE2 receptor remain 
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unknown. In the context of SARS-CoV-2 and many other medical implications, it is important 

to understand the mechanism of ligand recognition by the ACE2 receptor in order to design 

effective drugs against the virus.  

 

Materials and Methods 

Ligand Gaussian accelerated molecular dynamics (LiGaMD)236 is an enhanced sampling 

computational technique for efficient simulations of both dissociation and binding of ligand 

molecules. It is developed based on Gaussian accelerated molecular dynamics (GaMD), which 

works by adding a harmonic boost potential to smooth the biomolecular potential energy 

surface4. GaMD greatly reduces energy barriers and accelerates biomolecular simulations by 

orders of magnitude35. GaMD provides unconstrained enhanced sampling without the 

requirement of pre-defined collective variables or reaction coordinates. Moreover, because the 

boost potential exhibits a Gaussian distribution, biomolecular free energy profiles can be 

properly recovered through cumulant expansion to the second order4. In LiGaMD236, the ligand 

non-bonded interaction potential energy is selectively boosted to enable ligand dissociation . 

Another boost potential is applied to the remaining potential energy of the entire system in a 

dual-boost algorithm to facilitate ligand rebinding. LiGaMD has been demonstrated on host-

guest and protein-ligand binding model systems. LiGaMD allows us to capture repetitive ligand 

binding and unbinding, and thus characterize both ligand thermodynamics and kinetics 

simultaneously. The calculated ligand binding free energy and kinetic rate constants compared 

very well with experimental data236.  
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Here, we have applied all-atom LiGaMD simulations to investigate binding and 

unbinding of the MLN-4760 inhibitor and associated conformational changes of the ACE2 

receptor. The MLN-4760 inhibitor-bound ACE2 receptor structure (PDB: 1R4L)227 was used 

to set up the simulation system (Figure S1C, see detail in the Supporting Information). A total 

of 10 ligand molecules (one in the X-ray bound conformation and another nine placed randomly 

in the solvent) were included in the system. This resulted in ~14 mM ligand concentration, 

being close to the ligand solubility of >5mg/ml or ~12 mM in aqueous solution. The simulation 

system was prepared as such since the simulation time needed to observe ligand binding would 

be inversely proportional to the ligand concentration in the solvent. During the LiGaMD 

equlibration, the bound ligand dissociated from the active site to the bulk solvent, accompanied 

by large conformational changes of the protein subdomain I (Figure S2). Upon ligand 

dissociation, subdomain I of the receptor changed from the “Closed” to “Open” conformation. 

After the equilibration simulation, ten independent 700 – 2000 ns LiGaMD production 

simulations (“Sim1” – “Sim10”) were further performed with randomized intitial atomic 

velocities (Table S1). 

 

Results  

Both binding and unbinding of MLN-4760 inhibitor to the active site of the ACE2 receptor was 

observed in three of the ten LiGaMD simulations (“Sim1”, “Sim2” and “Sim3” in Table S1), 

during which RMSD of the ligand relative to the 1R4L X-ray structure reached a minimum of 

~0.99 Å. During “Sim1” LiGaMD simulation, the MLN-4760 inhibitor bound to the active site 

of the ACE2 receptor during ~500-1400 ns and then dissociated into the bulk solvent (Figure 

1A). The inhibitor then bound to the receptor active site and dissociated quickly in two different 
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events at ~1500ns and ~1800ns time, respectively.  During “Sim2” LiGaMD simulation, the 

MLN-4760 inhibitor bound to the active site of the ACE2 receptor during ~100-500 ns (Figure 

1B) and then dissociated at ~500 ns into the bulk solvent. The inhibitor then bound to the 

receptor active site and disscoiated quickly at ~700ns. It bound to the receptor active site again 

at ~1000ns for ~80ns and dissociated at ~1080 ns. Similarly, during “Sim3” LiGaMD 

simulation, the MLN-4760 inhibitor bound to the active site of the ACE2 receptor during 

~1780-1800 ns and then dissociated into bulk solvent (Figure S3A).  Meanwhile, the receptor 

underwent large-scale conformational changes with fluctuations in the interdomain distance 

(Figure S4) and sampled different conformations inlcuding the “Open”, “Partially Open”, 

“Closed” and “Fully Closed”, out of which three states (“Open”, “Partially Open” and 

“Closed”) were consistent with the receptor experimental structures and “Fully Closed” was a 

new low-energy conformational state discovered in the LiGaMD simulations. In the other seven 

LiGaMD production simulations (“Sim4” to “Sim10” in Table S1), no complete, stable ligand 

binding was observed (Figure S3). The three LiGaMD simulations that successfully captured 

ligand binding and dissociation (“Sim1” to “Sim3”) were used for further analysis of ligand 

binding pathways. 

During the “Sim2” LiGaMD trajectory, starting from the bulk solvent, one of the MLN-

4760 inhibitor molecules first attached to the interface between the receptor 310 H4 and 5 

helices within ~100 ns, moved up into the space between the two protein subdomains and 

entered the active site of the ACE2 receptor between ~100-160 ns (Figures 1B and 1C). The 

ligand bound at the active site of the receptor during ~100-500 ns. At ~500 ns, the ligand 

dissociated from the active site to bulk solvent (Figure 1D). The dissociation pathway was 

observed to be different from that of binding. Ligand dissociated from the opening between the 
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receptor α2 and α4 helices as the subdomain I transitioned from “Closed” to “Open” 

conformation (Figure 1D). In contrast, the ligand bound through the space just above the 310 

H4 and 5 helices (Figure 1C). However, during multiple binding events in “Sim1” and 

“Sim3”, the inhibitor bound and dissociated from the active site through the space between the 

receptor α2 and α4 helices. The inhibitor dissociated through the same pathway in the LiGaMD 

equilibration as well (Figure S2A). This showed that the inhibitor can take either of these 

pathways (between the receptor α2 and α4 helices or through the interface between the receptor 

310 H4 and 5 helices) for binding to the active site and just one pathway (between the receptor 

α2 and α4 helices) for dissociation. During the ligand binding and dissociation in “Sim1” - 

“Sim3” LiGaMD trajectories, subdomain I of the receptor sampled different conformations. 

However, such conformational changes were also observed in other seven simulations (“Sim4” 

- “Sim10”) regardless of ligand binding/dissociation. 

A 2D potential of mean force (PMF) free energy profile was calculated with the ligand 

root-mean-square deviation (RMSD) relative to X-ray conformation and the interdomain 

distance by combining the 10 independent LiGaMD production trajectories (Figures 2A, S4 

and S5). The protein interdomain distance was calculated between the C atoms of residues 

Glu56 and Ser128, which were located at the tip of the 2 and 4 helices, respectively. Nine 

low-energy conformational states of the receptor were identified from the PMF profile, 

including the “Bound (B)”, “Intermediate-1 (I-1)”, “Intermediate-2 (I-2)”, “Intermediate-3 (I-

3)”, “Intermediate-4 (I-4)”,  “Unbound-1 (U-1)”, “Unbound-2 (U-2)”, “Unbound-3 (U-3)”  and 

“Ubound-4 (U-4)”. Particularly, the system adopted the “Bound” state with ligand RMSD < 5 

Å, the “Unbound” state with ligand RMSD > 35 Å and intermediate states with 5 – 35 Å ligand 

RMSD relative to the 1R4L X-ray structure. The PMF free energy profiles were calculated 
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through reweighting of the LiGaMD simulations with trajectories of all ten ligands considered. 

The PMF minima indeed highlight the lowest energy states of ligand binding to the ACE2 

receptor. 

In the “Bound” state, the ligand bound at the protein active site and the protein 

interdomain distance was ~12-14 Å. The ligand exhibited a minimum RMSD of 0.99 Å 

compared with the X-ray structure (Figures 2A and 2B). The system sampled four different 

intermediate states during ligand binding, i.e., “Intermediate-1 (I-1)”, “Intermediate-2 (I-2)”, 

“Intermediate-3 (I-3)”  and “Intermediate-4 (I-4)”. In the “I-1” state, the ligand RMSD was ~9.8 

Å and the interdomain distance was ~18-22 Å (Figures 2A and 2C). The ligand was located 

near the active site making interactions with residues of the 5 helix, 11 helix, 14 helix, 14 

helix and 310H4 helix in the two protein subdomains. In the “I-2” state, the ligand RMSD was 

~25.6 Å and the interdomain distance was ~5-7 Å (Figures 2A and 2C).  The ligand interacted 

with the 17 helix, 18 helix and 19 helix of the subdomain II in the receptor. In the “I-3” 

state, the ligand RMSD was ~30.4 Å and the interdomain distance was ~13-20 Å (Figures 2A 

and 2C). The ligand interacted with the 2 helix of subdomain I and the 4 helix of subdomain 

II in the receptor. In the “I-4” state, the ligand RMSD was ~ 31.7 Å and the interdomain distance 

was ~25-26 Å (Figures 2A and 2C). The ligand interacted with the 8 helix, 14 helix, and 

310H4 in the protein subdomain II (Figure 2C). The system sampled four “Unbound-1 (U-1)”, 

“Unbound-2 (U-2)”, “Unbound-3 (U-3)”  and  “Unbound-4 (U-4)” states, where the ligand 

RMSD was ~80 Å and the interdomain distances were ~5-7 Å, 10-12 Å, ~20-21 Å and ~25 Å, 

respectively. In these states, the ligand was found far away from the receptor in the bulk solvent 

and the receptor could change among the “Fully Closed”, “Closed”, “Partially Open” and 

“Open” conformations (Figures 2A and 2D). 
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Low-energy intermediate conformational states “I-1”, “I-2”, “I-3” and “I-4” of the 

MLN-4760 inhibitor binding to the human ACE2 receptor identified from the LiGaMD 

simulation free energy profiles are shown in Figures 3A, 3B, 3C and 3D, respectively.  Polar 

and charged groups present in different parts of the receptor made favorable interactions with 

the charged carboxylate groups and the polar chloride and nitrogen atoms in the ligand 

molecule. These interactions played important role in recognition and binding of the MLN-4760 

inhibitor to the receptor. In the intermediate “I-1” state, the receptor adopted a “Partially Open” 

conformation with ~18-22 Å interdomain distance. The ligand molecule was located near the 

receptor active site with ~9.8 Å RMSD relative to the X-ray structure and formed interactions 

with residues from both subdomains of ACE2.  One of the ligand carboxylate groups formed 

ionic interaction with the positively charged protein residue Arg273 (Figure 3A). Another 

carboxylate group formed ionic interaction with Asn149 postively charged nitrogen group. 

Similary, the ligand’s central ring formed π-π interaction with the aromatic protein residue 

Phe274. The ligand chloride group formed polar interactions with protein residues Thr371, 

S409 and Thr445. In the intermediate “I-2” state, the receptor adopted a “Fully Closed” 

conformation and the ligand formed polar and hydropobic interactions with the residues of 

receptor subdomin II. One of the chloride atoms formed polar interactions with residue Glu552. 

One of the ligand’s negatively charged carboxylate groups formed ionic interactions with the 

protein positively charged groups of residue Arg559 and Asn572.  The ligand also formed 

hydrophobic interactions with protein residue Leu568.  

In the intermediate “I-3” state, the receptor adopted the “Partially Open” conformation 

and the ligand interacted with the 2 helix of subdomain I and the 4 helix of subdomain II in 

the receptor (Figure 3C). One of the ligand chloride atoms formed polar interactions with 
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protein residues Ser70 and Asn117, while the other chloride atom formed polar interactions 

with protein residue Ser113. One of the ligand’s negatively charged carboxylate groups formed 

ionic interactions with the protein postively charged groups of residues Lys114 and Asn64, 

while the other carboxylate group formed ionic interactions with positively charged nitrogen of 

Gln60. The ligand central ring’s nitrogen atom formed ionic interactions with negatively 

charged oxygen group of protein residue Thr118 (Figure 3C). In the intermediate “I-4” state, 

one of the ligand chloride atoms formed polar interactions with protein residues Ser280 of 

subdomain II (Figure 3D). One of the ligand charged carobxylate groups formed polar 

interactions with positively charged protein residue Lys247. One of the nitrogen atoms in the 

ligand’s central ring formed ionic interactions with negatively charged oxygen of Pro284 and 

Gln287 in the receptor. In addition to free energy profiles calculated by combining all the 10 

LiGaMD simulations (“Sim1” to “Sim10”), we calculated PMF profiles for each of the ten 

independent LiGaMD production simulations as shown in Figure S5. These free energy profiles 

showed clear differences, in terms of positions and free energy values of the PMF minima and 

energy barrier heights, suggesting that the LiGaMD simulations were still not converged.  

During the LiGaMD simulations, Zn2+ was stabilized by ionic interactions with the 

Glu375 and Glu402 residues near the active site of human ACE2 receptor. The distances 

between the positively charged zinc and the C atoms of Glu375 and Glu402 were maintained 

at ~2-3 Å. This was observed consistently in all the 10 LiGaMD independent simulations 

(Figure S6). 

In the LiGaMD simulations, while the protein subdomain II was stable maintaining the 

1R4L X-ray conformation with ~2-4 Å RMSD (Figure 4B), subdomain I in the human ACE2 

receptor exhibited high flexibility and underwent large conformational changes with ~3-10 Å 
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RMSD compared with the X-ray conformation (Figure 4A). We calculated 2D PMF regarding 

the interdomain distance and subdomain I RMSD relative to the 1R4L X-ray conformation. 

Four low-energy conformational states were identified in the PMF profile, including the 

“Open”, “Partially Open”, “Closed” and “Fully Closed” (Figure 4C).  

In the “Closed” conformation, subdomain I moved near subdomain II closing the active 

site.  The receptor interdomain distance was ~14-15 Å and RMSD of subdomain I was ~5 Å 

compared with the 1R4L X-ray structure (Figures 4C and 4D). In the “Fully Closed” 

conformation, the subdomain I can further move towards the subdomain II with interdomain 

distance ~12-13 Å. The subdomain I RMSD was ~4.5 Å. In the “Partially Open” conformation, 

the receptor interdomain distance increased to ~17-18 Å and RMSD of subdomain I RMSD was 

~6 Å compared with the 1R4L X-ray structure (Figures 4C and 4D). Finally, the receptor 

interdomain distance could increase further to ~19-20 Å and the subdomain I RMSD relative to 

the 1R4L X-ray structure increased to ~7 Å in the “Open” conformation. Notably, 

conformations of the ACE2 receptor in the “Partially Open” and “Open” low-energy states were 

closely similar to the experimental 6ACK cryo-EM and 6LZG X-ray structures, respectively 

(Figures 4C and 4D). Therefore, the different low-energy states of ACE2 receptor revealed 

from our LiGaMD simulations highlighted the receptor conformational plasticity during its 

function for ligand binding and interactions with other proteins (e.g., the coronavirus spike 

protein). 
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Discussion 

Since its discovery in 2000237, the ACE2 receptor has been recognized as a critical protease 

enzyme with multiple physiological roles in renin-angiotensin system, amino acid transport, gut 

microbiome ecology and innate immunity. The ACE2 receptor has also been identified as the 

functional receptor for SARS-CoV and SARS-CoV-2. The COVID-19 pandemic caused by 

SARS-CoV-2 has been recognized as a serious global health threat as it has no proper treatment 

and continues to spread across the world. With the infection cases rising daily, it is critical to 

develop therapeutics against SARS-CoV-2. Here, we have applied all-atom simulations using 

a novel LiGaMD method to investigate the mechanism of ligand binding to the human ACE2 

receptor. 

Through LiGaMD enhanced sampling simulations, we have, for the first time, 

successfully captured both binding and dissociation of a ligand in the human ACE2 receptor. 

During the simulations, the receptor could sample distinct conformational states, revealing 

remarkable conformational plasticity of the receptor. When the ligand binds to the active site 

of the receptor in the Bound state with the ligand RMSD <5 Å, the interdomain distance was 

confined to be small at ~14 Å, being closed.  This suggested that the ligand binding biased the 

receptor conformational ensemble to the Closed state, suggesting a conformational selection 

mechanism rather than induced fit. Furthermore, the MLN-4760 ligand has two carboxylate 

groups contributing to net -2 charge of the molecule. Hence, ligands repelled each other with 

no significant ligand-ligand interactions observed in the simulations. This finding suggested 

that electrostatic interactions played an important role in the recognition and 

binding/dissociation of the MLN-4760 inhibitor to the ACE2 receptor, being consistent with 

previous findings of “electrostatic steering” in recognition of charged ligands by proteins236,238.   
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Despite our encouraging simulation findings, it is important to note that we sampled 

ligand dissociation and binding events in 3 out of 10 LiGaMD simulations. The free energy 

profiles calculated for each of the ten individual simulations (Fig. S5) and all ten simulations 

combined (Fig. 5A and 4C) showed clear differences, in terms of the positions and free energy 

values of the PMF minima and energy barrier heights. This suggested that the LiGaMD 

simulations were still not converged and the calculated free energy profiles were not accurate 

for direct comparison with experimental ligand binding free energy. It remained challenging to 

sample enough events of repetitive ligand binding and unbinding along with the large protein 

conformational changes. More sufficient sampling would be needed in order to obtain 

converged simulations and calculate accurate ligand binding free energies and kinetic rates. 

This can be potentially achieved through additional and longer simulations, as well as further 

method developments combining LiGaMD with other enhanced sampling algorithms such as 

replica exchange239,240 and Markov state models241.  

In this context, the MLN-4760 inhibitor binds to the human ACE2 receptor with high 

affinity (IC50: 0.44 nM)227. It is extremely difficult to simulate the ligand dissociation and 

binding with long-timescale conventional MD (cMD) and even the enhanced sampling methods. 

A recent study234 showed that the MLN-4760 ligand could dissociate from the ACE2 receptor 

upon binding of the viral RBD. However, this study was not able to characterize ligand binding 

to the ACE2 receptor. In comparison, our LiGaMD simulations could capture both ligand 

binding and dissociation in the human ACE2 receptor.  

 We further highlighted the dynamic nature of the ACE2 receptor in terms of the large-

scale movement of subdomain I upon ligand binding. Furthermore, since the human ACE2 
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receptor shows conformational selection for ligand binding as revealed from the LiGaMD 

simulations, virtual screening using ensemble docking242-244 with receptor structural ensembles 

generated from the LiGaMD simulations will be a promising approach to designing potent drug 

molecules of the ACE2 receptor.  

In summary, we have successfully simulated both ligand binding and dissociation in the 

human ACE2 receptor using the novel LiGaMD enhanced sampling method. During the 

LiGaMD simulations, the receptor could sample distinct Closed, Partially Open and Open 

conformational states, being consistent with previous experimental structures. Ligand binding 

could bias the receptor conformational ensemble towards the Closed state, suggesting a 

conformational selection mechanism. Therefore, the LiGaMD simulations have allowed us to 

understand the mechanism of ligand recognition by the ACE2 receptor, which is  expected to 

facilitate rational drug design targeting ACE2 for the therapeutic treatments of COVID-19 and 

other related human diseases. 
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Figure 1. Root-mean-square deviations (RMSDs) of ten MLN-4760 inhibitor molecules 

relative to the bound X-ray conformation (PDB: 1R4L) are calculated from the 2000 ns (A) 

“Sim1” and (B) “Sim2” LiGaMD trajectories, in which ligand RMSD reached a minimum of 

~0.99 Å. (C) Two views of the ligand binding pathway observed in “Sim2”, for which the center 

ring of MLN-4760 is represented by lines and colored by simulation time in a blue-white-red 

(BWR) color scale. (D) Two views of the ligand dissociation pathway observed in “Sim2”, for 

which the center ring of MLN-4760 is represented by lines and colored by simulation time in a 

blue-white-red (BWR) color scale.  
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Figure 2. (A) The 2D potential of mean force (PMF) free energy profile of the ligand RMSD 

and interdomain distance calculated by combining the 10 independent LiGaMD production 

simulations of human ACE2 receptor. Nine low energy conformational states were identified,  

including the “Bound (B)”, “Intermediate-1 (I-1)”, “Intermediate-2 (I-2)”, “Intermediate-3 (I-

3)”, “Intermediate-4 (I-4)”, “Unbound-1 (U-1)”, “Unbound-2 (U-2)”, “Unbound-3 (U-3)” and 

“Unbound-4 (U-4)”. (B) Conformations of the ACE2 receptor and MLN-4760 ligand in the 

“Bound (B)” state (green) compared with the X-ray conformation (Orange, PDB: 1R4L). (C) 

Conformations of the ACE2 receptor during binding of MLN-4760 in the “Intermediate-1 (I-

1)” (blue), “Intermediate-2 (I-2)” (red), “Intermediate-3 (I-3)” (yellow) and “Intermediate-4 (I-

4)” (pink) states. (D) Conformations of the ACE2 receptor in the “Ubound-1 (U-1)” (brown), 

“Unbound-2 (U-2)” (rose), “Ubound-3 (U-3)” (voilet), and “Unbound-4 (U-4)” (cyan) states. 

The protein is shown as ribbons and ligand as sticks.  



187 
 

 

Figure 3. (A) The “Intermediate-1 (I-1)” conformational state of the MLN-4760 ligand (blue 

balls and sticks) bound to the ACE2 receptor (ribbons). Residues of subdomain I (blue) and 

subdomain II (white) including N149, R273, F274, T445, T371 and S409 formed interactions 

with the ligand. (B) The “Intermediate-2 (I-2)” conformational state of MLN-4760 (red) bound 

to the ACE2 receptor (ribbons). Residues of subdomain II (white) including Q552, R559, N572 

and L568 formed interactions with the ligand. (C) ”The “Intermediate-3 (I-3)” conformational 

state of MLN-4760 (yellow) bound to the ACE2 receptor (ribbons). Residues of subdomain I 

(yellow) and subdomain II (white) including K114, T118, Q60, N64, N117, S113 and S70 

formed polar interactions with the ligand. (C) The “Intermediate-4 (I-4)” conformational state 

of MLN-4760 (pink) bound to the ACE2 receptor (ribbons). Residues of subdomain II (gray) 

including L247, S280, P284 and Q287 formed polar interactions with the ligand.  
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Figure 4. RMSDs of (A) subdomain I and (B) subdomain II of the ACE2 receptor relative to 

the closed X-ray conformation (PDB:1R4L) are calculated from three independent LiGaMD 

production simulations. (C) 2D potential of mean force (PMF) of the subdomain I RMSD and 

interdomain distance calculated by combining the ten LiGaMD simulations. Four low energy 

conformational states of the receptor are identified in the PMF profile, including the “Fully 

Closed”, “Closed”, “Partially Open” and “Open”.  “Closed”, “Partially Open” and “Open” low 

energy conformational states are similar to the 6LZG, 6ACK and 1R4L PDB structures, 

respectively. (D) Low-energy conformations of the ACE2 receptor with subdomain I found in 

the “Open” (red), “Partially Open” (blue) “Closed” (green),  and “Fully Closed” (brown) states 

in the LiGaMD simulations. Subdomain II is stable and colored in white.  
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Appendix 

Table S1: Summary of LiGaMD simulations performed on the ACE2 receptor in the presence 

of the MLN-4760 inhibitor. 

 

aN
atoms

 is the number of atoms in the simulation system.  

b∆Vavg and cσ∆V are the average and standard deviation of the LiGaMD boost potential, 

respectively. 
 

 

 

Simulation aNatoms  Dimension (Å3) Simulation 

(ns) 

bΔVavg 

(kcal/mol) 

cΔv 

(kcal/mol) 

Sim1 100,449 129 x 93 x 93 2000  126.8 9.76 

Sim2 100,449 129 x 93 x 93 2000 127.6 9.62 

Sim3 100,449 129 x 93 x 93 2000  127.2 9.14 

Sim4 100,449 129 x 93 x 93 1600 129.2 10.3 

Sim5 100,449 129 x 93 x 93 1600 129.5 10.5 

Sim6 100,449 129 x 93 x 93 1000 129.3 10.4 

Sim7 100,449 129 x 93 x 93 1000 129.5 10.5 

Sim8 100,449 129 x 93 x 93 700 129.4 10.4 

Sim9 100,449 129 x 93 x 93 700 129.4 10.4 

Sim10 100,449 129 x 93 x 93 700 129.4 10.4 
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Figure S1: (A) X-ray and cryo-EM strucutres of the ACE2 receptor with subdomain I in the 

“Open” (cyan, PDB: 6LZG), “Partially Open” (magenta, PDB: 6ACK) and “Closed” (orange, 

PDB: 1R4L) conformations. Subdomain II is stable and colored in gray. In the “Closed” 

conformation, the receptor is bound by the MLN-4760 inhibitor. The protein is shown as 

ribbons and the ligand as sticks (orange). (B) Structure of the MLN-4760 inhibitor molecule. 

(C) Computational model of the ACE2 receptor (blue ribbons) with 10 MLN-4760 ligand 

molecules (red sticks) (one in the X-ray bound conformation and another nine placed randomly 

in the solvent) used in LiGaMD simulations. The system was neutralized by adding counter 

ions and immersed in a cubic TIP3P water box, which was extended 10 Å from the receptor 

surface.   
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Figure S2: (A) Two views of the ligand dissociation pathway observed in LiGaMD 

equilibration, for which the center ring of MLN-4760 is represented by lines and colored by 

simulation time in a blue-white-red (BWR) color scale. (B) Time course of the MLN-4760 

ligand RMSD (blue), sub domain I RMSD (red) and sub domain II RMSD (black) calculated 

from LiGaMD equilibration trajectory, in which the MLN-4760 ligand dissociated from the 

active site of the receptor. (C) Time course of the interdomain distance (Glu56:CA – 

Ser128:CA) calculated from LiGaMD equilibration trajectory.  
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Figure S3: Time courses of the MLN-4760 ligand RMSD relative to the bound X-ray 

conformation (PDB: 1R4L) calculated from (A) “Sim3”, (B) “Sim4”, (C) “Sim5”, (D) 

“Sim6”, (E) “Sim7”, (F) “Sim8”, (G) “Sim9” and (H) “Sim10” LiGaMD trajectories of varying 

lengths ranging ~700-1600 ns, in which the MLN-4760 ligand did not bind to the active site of 

the receptor.  
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Figure S4: Time course of the interdomain distance (Glu56:CA – Ser128:CA) calculated from 

three independent LiGaMD trajectories including “Sim 1” (black), “Sim 2” (red) and “Sim 3” 

(blue).  
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Figure S5: The 2D potential of mean force (PMF) free energy profile of the ligand RMSD and 

interdomain distance calculated for individual (A) “Sim1”, (B) “Sim2”, (C) “Sim3” (D) “Sim4”, 

(E) “Sim5”, (F) “Sim6”, (G) “Sim7”, (H) “Sim8”, (I) “Sim9” and (J) “Sim10” LiGaMD 

productio simulations of human ACE2 receptor. 
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Figure S6: Time course of the distance between Zn2+ and Glu402:C (black) and Glu375:C 

(red) calculated from (A) “Sim1”, (B) “Sim2”, (C) “Sim3”, (D) “Sim4”, (E) “Sim5”, (F) 

“Sim6”, (G) “Sim7”, (H) “Sim8”, (I) “Sim9”, (J) “Sim10” LiGaMD trajectories of varying 

lengths ranging ~700-2000 ns. (K) Zinc (orange ball) near the active site of the ACE2 receptor 

stabilized by ionic interactions with the Glu375 and Glu402 residues (cyan sticks). The receptor 

is shown in white ribbons.   
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Conclusions 

Membrane proteins are essential to human cell physiology and are medically important. 

However, little is often known about the structural dynamic mechanisms of membrane proteins, 

which has impeded drug design against many deadly human diseases including Alzheimer’s 

disease, heart failure, neuropathic pain, and SARS-COV-1/2. Here, in my dissertation, I have 

implemented GaMD, LiGaMD and Pep-GaMD enhanced sampling methods in combination 

with complementary advanced computational techniques including molecular docking, 

homology modeling and free energy calculations for accelerated simulations and drug design 

of different membrane proteins including γ-secretase, GPCR and human ACE2 receptor.  

Using GaMD simulations, as mentioned in Chapter 1, I was able to capture spontaneous 

activation of the γ-secretase enzyme for the  cleavage of the wildtype and FAD mutant APP 

substrates (ACS Central Science, 2020)8. Detailed analysis of the GaMD simulations allowed 

us to identify distinct low-energy conformational states of γ-secretase, different secondary 

structures of the wildtype and mutant APP substrate, and important active-site sub-pockets for 

catalytic function of the enzyme. In Chapter 2, Pep-GaMD simulations captured remarkable 

structural rearrangements of both the γ-secretase and substrate, in which hydrogen-bonded 

catalytic aspartates and water became poised for tripeptide trimming of Aβ49 to Aβ46 (Journal 

of American Chemical Society, 2022)70. These structural changes required a positively charged 

N-terminus of endoproteolytic coproduct AICD, which could dissociate during conformational 

rearrangements of the protease and Aβ49. The simulation findings were highly consistent with 

experimental analyses of APP proteolytic products using mass spectrometry and western 

blotting. Detailed mechanistic understanding of the proteolytic processes of γ-secretase is 

expected to greatly facilitate rational drug design of this critical enzyme.  
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In Chapter 3, I was able to discover that interactions between GPCR and lipid membrane 

depend on the receptor activation state (Journal of Computational Chemistry, 2020)42. GPCRs 

are the largest family of human membrane proteins and represent the primary targets for ~1/3 

of currently marketed drugs. I performed all-atom GaMD simulations on a membrane-

embedded A1AR in the inactive antagonist bound and active agonist-G protein-bound states. 

The GaMD simulations have revealed distinct patterns of GPCR-membrane interactions of the 

inactive and active GPCR. The dynamics of GPCR and lipids are strongly coupled. This study 

provides important mechanistic insights into the effects of membrane in GPCR function. In 

Chapter 4, I optimized a computational protocol termed “ensemble docking” for allosteric 

modulator design of GPCRs, in which GaMD simulations and flexible molecular docking are 

combined to effectively account for the receptor flexibility (BBA-General Subjects, 2020)152. I 

demonstrated improved performance of this protocol in retrospective docking of known 

allosteric modulators in the A1AR. This optimized protocol will facilitate future drug design of 

other GPCRs and receptors.  

In Chapter 5, I performed LiGaMD simulations on human ACE2, the receptor hijacked 

by SARS-CoV-2 (COVID-19 corona virus) for viral infection (Journal of Physical Chemistry 

Letters, 2021)220. The simulations, for the first time, revealed both dissociation and binding of 

an inhibitor drug in human ACE2 receptor. The receptor with remarkable flexibility changes its 

structure into Closed conformation upon inhibitor binding. Overall, the receptor could sample 

distinct Closed, Partially Open and Open conformational states, being consistent with previous 

experimental structures. Ligand binding could bias the receptor conformational ensemble 

towards the Closed state, suggesting a conformational selection mechanism. The LiGaMD 

simulations thus helped us to understand the functional mechanism of human ACE2, with 
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implications in developing treatments against the SARS-CoV-2 and other related human 

diseases. 
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Outlook 

Membrane proteins are common but critical biological components. Membrane proteins remain 

one of the most studied biomolecules in the pharmaceutical and biomedical industry as they 

represent more than 60% of drug targets. Both experimentally and computationally, studying 

the structure and functional mechanism of membrane proteins remains a challenge. During my 

Ph.D., I tried to bridge gaps of knowledge in understanding of structural dynamics and 

functional mechanisms of a few critical membrane proteins. In the future, there are several other 

interesting and important questions that need to be addressed in follow-up studies.  

 With the knowledge of molecular mechanisms of γ-secretase activation for the  and  

cleavage of the APP substrate and the more powerful Pep-GaMD sampling method, the next 

obvious question in the field could be “What is the mechanism of the next γ cleavage 

(Aβ46→Aβ43) and subsequent cleavage steps?”. Likewise, new cryo-EM structures bound to 

small molecule inhibitors and γ-secretase modulators (GSMs) were released recently. They 

provided new insights into structural recognition of the enzyme by small molecules. However, 

the dynamic mechanisms of inhibition and modulation by these small molecules remain elusive. 

Current AD treatments ease symptoms, but none has been clearly demonstrated to slow or halt 

disease progression. Therefore, designing new GSM drugs is imperative to the field. One good 

strategy is using virtual screening and retrospective docking protocol that combines MD 

simulations and molecular docking calculations. 

 GPCR drug design is a very active research area. A new paradigm that is relevant and 

exciting is the use of allosteric drug leads in combination with endogenous ligands rather than 

just using the orthosteric ligand. This provides potential selectivity and eliminates drug side 

effects. That being said, using the optimized ensemble docking protocol followed by virtual 
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screening to design new allosteric drugs of the A1AR and other GPCRs would be a relevant 

direction. In fact, this has been applied in our ongoing research and we already have some 

preliminary results that is not included in this dissertation. Similarly, with the first cryo-EM 

structure of allosteric modulator bound A1AR245, one can study the drug binding and unbinding 

mechanisms as well as explore related GPCR-G-protein interactions. With the advancement of 

new methods like LiGaMD, one can compute binding affinities of allosteric modulators at 

different subtypes of adenosine receptors (e. g. A2AAR) to understand the mechanism of GPCR 

ligand selectivity. 

 Another important membrane protein enzyme I studied during my Ph.D. is ACE2 

receptor, the functional receptor for SARS-COV-1/2. ACE2 is a protease that is inhibited by 

drug binding to the active site of the enzyme. The SARS-COV-2 receptor binding domain 

(RBD) binds to a different site of the receptor as compared to the active site. In my dissertation, 

I was able to elucidate the inhibitor drug binding pathways to ACE2 and the receptor dynamics 

during the process using LiGaMD simulations. However, I was always curious about the effects 

of active site inhibitor to the SARS-COV-2 (COVID-19) binding and functioning. This is 

because, there has been evidence of allosteric network between the active site and SARS-COV-

1 RBD binding site. Hence, new drug development is important, especially those that can bind 

to the receptor and inhibit the coronavirus binding. Virtual screening in combination with 

retrospective docking is a good approach for computer aided drug design of the human ACE2 

receptor. Another exciting direction in the project is using the complete structure of ACE2 for 

accelerated simulations and drug design. ACE2 is a transmembrane receptor with extracellular 

carboxy peptidase domain. During my Ph.D., I have only worked with the globular side of the 

receptor present in the extracellular environment and that has the catalytic site. The 
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transmembrane domain that is embedded in the lipid bilayer would provide stability to the 

receptor. Studying the ligand binding thermodynamics and kinetics, and protein structural 

dynamics with the complete structure of ACE2 receptor would be important in the field.  
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