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Abstract

The measurement of optical rotation (OR) is a long standing approach for characterizing chiral

systems. The ability to predict optical rotation theoretically without resorting to expensive ab

initio simulations would greatly aid in absolute configuration assignment of chiral species and

would help develop a more chemically intuitive sense of the physical processes that drive this

phenomenon. However, it has proven challenging to develop predictive models for OR, not only

due to the difficulty of computing the intrinsic OR arising from the structure of a molecule, but also

the need to disentangle it from optical activity induced by the surrounding environment. We have

worked to unravel these competing effects by developing models to decompose the intrinsic OR

into more interpretable structural contributions and by extending quantum mechanical methods to

compute OR to solid state systems, allowing for a more thorough analysis of environmental effects.

We have worked to extend the S̃ analysis framework, which decomposes the OR into occupied-

virtual orbital pair contributions, to make it more generally applicable. We calculated OR for a

small test of molecules in both the modified velocity gauge (MVG) and length gauge (LG) in order

to determine how the physical interpretation provided by S̃ analysis is affected by the gauge. We

found that the distribution of S̃ contributions was consistent across different gauges. The S̃ values

from different gauges also converged at a similar rate to the total OR when summing contributions

from largest in magnitude to smallest. Examining the electric and magnetic vectors associated with

the largest magnitude transitions, we found that each gauge gave a consistent interpretation of the

dominant physical processes driving the OR.

We have also worked to remove the unphysical origin dependence from computed S̃ values.

To this end, we derived two origin invariant MVG formulations of S̃: S̃Avg, which averages S̃

computed with an electric (MVG-E) and magnetic (MVG-M) perturbation S̃ to cancel out their

opposite sign, equal magnitude origin dependence, and S̃Hemi, which eliminates the origin depen-

iii



dence by contracting together "hemi-perturbed" densities formed via a Cholesky decomposition

of the response matrix. We tested these methods on two small organic molecules and confirmed

that S̃ remained unchanged at a displaced origin. While further work is needed to develop associ-

ated electric and magnetic vectors for these origin invariant S̃, they can already be used to detect

significant deviation due to the chosen origin.

As a first step towards developing quantum mechanical methods to compute the OR of solids,

we have created a benchmark set of helical chains of diatomic molecules, for which the OR can be

computed using existing molecular methods. We probed the effect of cell size, cell spacing, and

helical orientation on the computed OR. We found that even for these simple models, convergence

to the macroscopic limit was slow with system size and the effect of helical orientation could not be

readily reproduced using the semi-empirical Kirkwood model. Our results made clear the need for

a periodic, quantum mechanical methods to compute the full OR tensor, including both the electric

dipole-magnetic dipole and electric dipole-electric quadrupole polarizability contributions.

To aid in the development of highly accurate methods for computing solid state OR, we com-

pared MVG and origin invariant length gauge [LG(OI)] calculations of the full OR tensor using

coupled cluster with single and double excitations (CCSD) and Density Functional Theory (DFT)

methods. We found that DFT and CCSD components of the OR tensor were well correlated,

though DFT could significantly overestimate these values depending on the chosen functional.

CCSD MVG and LG(OI) tensor components were highly correlated, but the extent of correlation

showed a high dependence on the inclusion/exclusion of outliers. Our results suggest that some

care must still be taken with the choice of gauge, as for some cases CCSD may not provide a

sufficient treatment of electron correlation to achieve gauge invariance.

We have derived translation invariant forms for the magnetic dipole and electric quadrupole

in order to implement the periodic, full OR tensor into Gaussian. While a periodic form of the

magnetic dipole has recently been published, a derivation of the periodic electric quadrupole is

reported for the first time in this work. Once the implementation is complete, we aim to distinguish

intrinsic and environmental influences on the OR via simulations of molecular crystals.
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3.3 Ŝia values for the 15 highest occupied and 15 lowest virtual MOs for molecules 1-3

computed with (from left to right) the LG-M, MVG-M, and MVG-E definitions of S̃. 30
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Chapter 1

Introduction

The ability to detect and control the chirality of molecules has a wide array of applications across

chemical and biological disciplines, most notably drug design/analysis,1–3 asymmetric cataly-

sis,4–8 and chiral supramolecular self-assembly.9–12 The chiral absolute configuration or “hand-

edness” of a molecule has a substantial effect on how it interacts with other chiral molecules and,

more generally, how it behaves in a chiral environment. Various forms of chromatography ex-

ploit these chiral interactions in order to separate mixtures and quantify the enantiomeric excess

in a sample.13 The earliest attempt at separating chiral species by Louis Pasteur in 1848 relied

on visual inspection to distinguish crystal polymorphs preferentially formed by a specific enan-

tiomer.14, 15 Optical techniques for probing chirality have advanced considerably since then: X-ray

crystallography can provide high resolution structures of crystallizable chiral molecules,16, 17 while

vibrational/electronic circular dichroism (VCD/ECD) allow for in situ spectroscopic analysis of

the nuclear/electronic structure.18–20 Characterizing enantiomers experimentally requires a care-

ful separation, typically either by chiral chromatography or chiral controlled crystallization.21, 22

However, crystallization can be a laborious and cost-intensive process, and many molecules can

not be reliably crystallized. While chromatographic separation and subsequent characterization

using chiroptical spectroscopy is generally possible, theoretical calculations are required to assign

the absolute configuration of each species without a crystal structure.

The measurement of optical rotation (OR), the change in polarization of light as it passes

through a chiral medium, was one of the first techniques developed to spectroscopically character-

ize chiral systems.23–25 This change in polarization can be ascribed to differential refraction of left

and right circularly polarized light, as the chiral arrangement of the molecule causes it to interact
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differently with the chiral components of the electromagnetic field, see Figure 1.1. Despite the

long-standing use of OR measurements and the conceptual simplicity of this phenomenon, it has

proven challenging to formulate a general, chemically intuitive model of how molecular structure

affects the observed OR. Given a pair of enantiomers, it is not obvious from their structure what

the magnitude of the OR will be, or even which direction each enantiomer will rotate impinging

light. Probing this relationship is further complicated by the fact that the observed OR does not

typically arise from a single, isolated molecule. Most OR measurements are performed in solution

phase, where the observed effect is not just the result of the minimum energy structure, but a con-

formational average of thermally excited structures, along with the solvent-specific chiral solvation

shells that form around them. More generally, any condensed phase measurement of the OR (or

VCD/ECD) of a compound is a result of a nonadditive combination of its intrinsic OR and OR

induced through intermolecular interactions with the surrounding chiral environment. The diffi-

culty of disentangling these effects experimentally has spurred efforts to computationally model

chiroptical spectroscopy.26–32

To better understand the underlying, intrinsic OR of a molecule, methods have been developed

to decompose molecular optical rotation into more interpretable contributions arising from struc-

tural features. Polavarapu et al. tested the applicability of the semi-empirical Kirkwood model,

which expresses the OR in terms of bond polarizabilities and anisotropies.33, 34 A similar effort

was made by Beratan et al., which split the OR tensor into atomic and bond contributions.35 Kahr

et al. showed that the optical activity of conjugated hydrocarbons could be rationalized using semi-

empirical Huckel theory.36 Several schemes have been developed to assign OR contributions to

individual orbitals or orbital pairs. Grimme et al.’s approach generates so called natural response

orbitals using a transformation derived from the Singular Value Decomposition (SVD) of the per-

turbed density.37 Autschbach et al. developed a method which localizes the orbitals onto lone pairs

and bonds, expressing the OR as a sum of individual orbital contributions.38 Our group’s S̃ analysis

is a similar approach to Autschbach, but expresses the OR in terms of occupied-virtual ia orbital

pair contributions, S̃ia.39 While the initial implementation of S̃ analysis employed the canonical
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Figure 1.1: Schematic representation of an optical rotation measurement. On the left, incident
plane polarized light ELin is formed from a combination of clockwise ECW and counterclockwise
ECCW polarized light. After passing through a chiral sample, the plane of polarization of the exiting
light is rotated by θ degrees due to differential refraction of the circularly polarized components.
The direction of rotation is determined by which enantiomer is present in the sample while the
magnitude depends on the sample concentration and the path length through which the light travels.

MOs, the method is also applicable with orbital localization or any other unitary transformation

within the occupied or virtual MO subspaces.40

A number of different attempts have been made to characterize how the environment influ-

ences the OR. The Vaccaro group has used cavity ring-down polarimetry (CRPD) to measure OR

in the gas phase, removing solvent effects from the measurements.30 A combined experimental

and computational study found that the shift in OR due to solvation was substantial, regardless

of the type of solvent (e.g. polar/nonpolar), and that an implicit solvation model could not quan-

titatively reproduce the experimental shifts.41 However, with currently feasible combinations of

model chemistry and system size, even incorporating explicit solvation has proven insufficient to

reproduce experimental OR.42–44 The Kahr group has experimentally studied the optical activity

of chiral crystals.45 Unlike in solution, the orientation of a chiral molecule in a solid is fixed, al-

lowing measurements of the whole OR tensor. The rigidity of a solid also fixes the environment

around a molecule, simplifying the process of replicating it in a simulation. Computational results
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for the OR of solids have been limited to a small number of semi-empirical calculations based

on classical polarizability theory.46–48 In first-principles calculation, optical rotation is derived by

computing the Buckingham-Dunn OR tensor, which is formed via a combination of the electric

dipole-magnetic dipole and electric dipole-electric quadrupole polarizabilities of the molecule.49

While standard methods are available to compute these quantities for molecules, only recently

have periodic, first-principles calculations of OR been implemented and thus far only the electric

dipole-magnetic dipole component is included.50

Our goals with this work are (1) to refine existing computational tools for structural interpreta-

tion of the intrinsic OR and (2) to develop methods for fully first-principles, periodic calculations

of OR to enable further characterization of the influence of environmental effects. This work is

organized as follows. Before delving into each project, in Chapter 2 we first briefly review the

requisite theory underpinning OR (i.e. the choice of electromagnetic gauge and the linear response

formalism for evaluating polarizabilities), as well as periodic boundary condition (PBC) electronic

structure theory. We then present our research in two parts: In Part I, we describe our efforts to

extend and refine the existing S̃ analysis framework, while in Part II, we recount our progress to-

wards an implementation of the full OR tensor for general periodic systems. We conclude with a

brief summary of our results and a discussion of how we expect chiroptical research to progress in

the years to come.

Part I begins with a discussion of our new implementations of the S̃ method using the modified

velocity gauge for both electric and magnetic perturbations, in Chapter 3. The S̃ analysis approach

was initial developed using the length gauge, but it is not immediately obvious if the interpreta-

tion provided by this framework is dependent on the choice of gauge. We constructed a test set

of molecules previously analyzed with the length gauge (magnetic perturbation) implementation

of S̃ and compared each method to determine whether they provided the same picture of what

underlying physical processes are inducing OR.

A potential problem with the S̃ framework is that the computed values have an unphysical

dependence on the coordinate origin, potentially distorting the physical interpretation. Chapter
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4 presents two different approaches for removing this origin dependence: one which averages

the MVG S̃ computed with an electric and a magnetic perturbation and one which forms the S̃

values using “hemi-perturbed densities” obtained by splitting the response matrix with a Cholesky

decomposition. We test these methods using calculations at a displaced origin and discuss their

relative benefits and drawbacks as a means of analyzing the OR.

In Part II, Chapter 5 showcases a benchmark set of long helical chains of diatomic molecules

that we use as a model to study solid state optical rotation using existing molecular electronic

structure methods. We tested the convergence of the OR towards the macroscopic limit with system

size and assessed whether a semi-empirical method could adequately describe the dependence of

the OR on the helical orientation. For each of these models, we examined the contribution of both

the electric dipole-magnetic dipole and the electric dipole-electric quadrupole polarizability to

the full OR tensor. The electric dipole-electric quadrupole polarizability is typically not computed

when simulating isotropic systems, but may have a significant impact on the OR tensor components

of an oriented system.

In Chapter 6, we compare MVG and LG(OI) methods for computing an origin independent,

full optical rotation tensor using coupled cluster with single and double excitations (CCSD) and

density functional theory (DFT) methods. Since the full OR tensor is not typically computed for

isotropic systems, it is unclear how the level of theory and chosen gauge affect these calculations.

We computed OR for a test set of 22 small/medium sized organic molecules and assessed the

correlation of OR tensor elements between CCSD and DFT methods, as well as between MVG

and LG(OI) CCSD calculations.

In Chapter 7, we derive expressions for a translation invariant magnetic dipole and electric

quadrupole in order to compute OR for periodic systems. We found that our derivation of the

periodic magnetic dipole agrees with the recently published derivation by Rerát and Kirtman.50

Our derivation of the periodic electric quadrupole is, to the best of our knowledge, the first for this

property. We discuss details of the implementation in GAUSSIAN and review the results of OR

calculations on a simple 1D hydrogen peroxide chain.
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Chapter 2

Theory

Optical rotation is the differential refraction of plane polarized light by a chiral sample. Formally,

OR is a result of the Buckingham/Dunn optical activity tensor B, which is defined as:49, 51, 52

Bαβ =
1
2

⎡⎢⎢⎢⎢⎣
βαβ +ββα +

1
3
∑
δ ,γ

(εαγδ Aγ,δβ +εβγδ Aγ,δα)
⎤⎥⎥⎥⎥⎦

(2.1)

where εεε is the Levi-Civita operator, βββ is the electric dipole-magnetic dipole polarizability tensor,

and A is the electric dipole-electric quadrupole polarizability tensor. In the length gauge,

β
L
αβ
= 2∑

j≠0
Im
⟨ψ0∣µL

α ∣ψ j⟩⟨ψ j∣mβ ∣ψ0⟩
ω2

j −ω2
= Im⟪µ

L
α ;mβ⟫ω (2.2)

AL
α,βγ
= 2∑

j≠0
ω jRe

⟨ψ0∣µL
α ∣ψ j⟩⟨ψ j∣ΘL

βγ
∣ψ0⟩

ω2
j −ω2

=Re⟪µ
L
α ;ΘL

βγ
⟫ω (2.3)

while in the velocity gauge

β
V
αβ
= 2

ω
∑
j≠0

Re
⟨ψ0∣µV

α ∣ψ j⟩⟨ψ j∣mβ ∣ψ0⟩
ω2

j −ω2
=Re⟪µ

V
α ;mβ⟫ω (2.4)

AV
α,βγ
= 2

ω
∑
j≠0

ω jIm
⟨ψ0∣µV

α ∣ψ j⟩⟨ψ j∣ΘV
βγ
∣ψ0⟩

ω2
j −ω2

= Im⟪µ
V
α ;ΘV

βγ
⟫ω (2.5)

where ⟪⋅; ⋅⟫ is the response function of the enclosed operators. The distinction between the length

and velocity gauges will be discussed in more detail below.

Throughout this thesis, we use atomic units unless otherwise specified and denote tensors over
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Cartesian indices using bold font and matrices over an orbital basis with an underline. Since

there has been some confusion in the literature regarding the use of the G′ symbol to indicate the

electric dipole-magnetic dipole polarizability with or without the ω−1 factor, we use the notation

βββ = −ω−1G′.51 Greek indices denote Cartesian coordinates, ω is the frequency of the incident

electromagnetic radiation while ∣ψ j⟩ and ω j are the jth excited state wave function and excitation

frequency, respectively. These definitions for βββ and A are valid for non-resonant optical activity

(ω j /≈ω) calculations; resonant optical activity is discussed in greater detail elsewhere.29, 49, 53, 54

For isotropic media, the observed optical rotation is commonly reported as a normalized quan-

tity in units of deg [dm (g/mL)]−1, known as specific rotation:

[α]ω =
(72×106)h̵2NAω2

3c2m2
eM

Tr(B) (2.6)

where h̵ is the reduced Planck’s constant (J s), NA is Avogadro’s number, c is the speed of light

(m/s), me is the electron rest mass (kg), and M is the molecular mass (amu). Note that Eq. 2.6

depends on ω both through the constant prefactor on the right hand side as well through B. For an

oriented system, the 1
3Tr(B) factor should be replaced by βn, the average of the components of the

B tensor that are perpendicular to the direction of the beam.53 By defining a chiroptical response

tensor B:51

Bαβ =
1
2
[Tr(B)δαβ −Bαβ ] (2.7)

the OR parameter for a light beam in the direction of the unit vector n is:

βn = n†Bn (2.8)

By defining this alternative chiroptical response tensor, one can easily compute the specific rotation

for light traveling in an arbitrary direction relative to the oriented material.51, 53
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2.1 Gauge Theory

In order to simulate optical rotation, one must, at least implicitly, define a representation for light

in the calculation. Maxwell’s equations allow one to represent light as an electric field E and

magnetic field B.55, 56 Alternatively, Maxwell’s equations can be expressed in terms of a scalar

potential φ and a vector potential A (not to be confused with the dipole-quadrupole polarizability

in Eq. 2.3). However, there is some amount of ambiguity in the choice of φ and A; given any twice

differentiable function of time and position f (r,t), we can define

φ
′ = φ − ∂ f

∂ t

A′ =A+∇ f
(2.9)

such that φ ′ and A′ produce the same observable electromagnetic field.57, 58 Different choices of

the function f are referred to as gauges. Gauges are typically defined either by imposing constraints

on φ and/or A or by directly specifying a gauge transformation function f (r,t) from a known

gauge. For example, the so-called velocity dipole gauge is defined by the condition

∇⋅AV = − 1
v2

∂φV

∂ t
(2.10)

where v is the velocity and the V superscript denotes the velocity gauge.56, 59 The length dipole

gauge can then be defined using the gauge transformation

f (r,t)V→L = −r ⋅AV (2.11)

where the superscript V → L labels this as the transformation from the velocity to the length

gauge.56, 59

Both the length and velocity gauges are used extensively in OR calculations. The multipole

operators in Eqs. 2.2-2.3 are expressed in the length (superscript L) and velocity (superscript V )
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dipole gauges as:

µµµ
L = −rrr

mmmL = i
2
(rrr×∇)

Θ
L
βγ
= −1

2
(3rβ rγ −δβγr2)

(2.12)

µµµ
V = −ppp

mmmV = i
2
(rrr×∇)

Θ
V
βγ
= −1

2
[(3rβ pγ +3pβ rγ)−δβγ(rrr ⋅ ppp+ rrr ⋅ ppp)]

(2.13)

which are respectively the electric dipole, the magnetic dipole, and the traceless electric quadrupole

operators, with the position rrr, momentum ppp, and gradient ∇ operators implicitly summed over all

the electrons of the molecule.

It is not immediately obvious why the length and velocity forms of these operators should

produce the same optical rotation. The equivalence of these approaches can be more readily seen

using the response function identity29, 60

ω⟪R;S⟫ω = ⟪[R,H];S⟫ω + ⟨[R,S]⟩ (2.14)

By taking R = rrr, S = mmm and noting that [rrr,H] = ippp and [rrr,mmm] = 0, we see that βββ computed in the

length and velocity gauge should be equivalent. The same identity can be used to show that A is

equivalent in the velocity and length gauges.

This response function relationship will hold for an exact calculation, but also for a variational

electronic structure method (e.g. Hartree-Fock, DFT) in a complete basis.29, 58, 60 However, not

only will OR computed in the length and velocity gauges generally differ when using a finite

basis or a nonvariational method (e.g. coupled cluster), but each gauge also introduces unphysical

computational artifacts that must be corrected to obtain reasonable results. OR computed in the

length gauge has an unphysical dependence on the coordinate origin arising from the magnetic

dipole. This is typically corrected by using gauge including atomic orbitals (also referred to as
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London orbitals), which include a magnetic field dependent phase factor for each basis function

that exactly counteracts the origin dependent term.61 More recently, the origin independent length

gauge [LG(OI)] was developed, which transforms the OR tensor to an orientation where it is origin

invariant.62 This method is described in more detail in Chapter 6. The velocity gauge, while origin

invariant even for approximate electronic structure calculations, exhibits nonzero OR for a static

perturbation. The so called modified velocity gauge (MVG) corrects for this by simply subtracting

this static OR from that computed at the desired frequency.60

2.2 Linear Response Formalism

While the electric dipole-magnetic dipole and electric dipole-electric quadrupole polarizabilities,

βββ and A, are formally defined using the sum-over-states (SOS) expressions in Eqs. 2.2-2.5, these

are rarely used in practice, as the sums converge very slowly and non-monotonically.63 A much

more computationally efficient route to computing these tensors is to employ linear response. Lin-

ear response allows us to determine a variationally optimal set of wavefunction parameters upon

applying a perturbation to some initial wavefunction. From these wavefunction parameters, we

can calculate the frequency dependent polarizability of any given property in response to a linear

perturbation. The following derivation closely follows that given by McWeeny.64 To determine

these parameters, one starts from the Frenkel variational principle65

⟨δΨ∣P(H − ih̵
∂

∂ t
)∣Ψ⟩+complex conjugate = 0 (2.15)

where Ψ is a normalized self-consistent field (SCF) wavefunction, δΨ is some arbitrary variation

of that wavefunction, and P is a projector onto the orthogonal complement of Ψ

P = 1− ∣Ψ⟩⟨Ψ∣ (2.16)
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which allows us to consider only variations that are orthogonal to Ψ. The time dependent Hamil-

tonian can be partitioned as

H(t) =H0+H′(t) =H0+F(t)R (2.17)

where H0 is time independent and H′(t) is a time dependent perturbation, expressed as field

strength F(t) times a perturbation operator R. Ψ depends on a vector of parameters ρ , which

in turn can be partitioned as

ρ(t) = ρ0+d(t) (2.18)

where ρ0 are the optimal parameters in the absence of the perturbation and d is the time dependent

deviation in response to the perturbation. Using this partitioning, we can expand Ψ and δΨ to first

order in d as64

∣Ψ⟩ = ∣Ψ0⟩+ ∣(∇Ψ)0⟩d

∣δΨ⟩ = [∣(∇Ψ)0⟩+ ∣(∇∇Ψ)0⟩d]δρ

(2.19)

Where ∇ is the gradient with respect to the parameters. Substituting these expressions into Eq.

2.15 and keeping only the terms linear in the perturbation, the variational condition can now be

expressed as

∇H′+Md+Qd∗ = ih̵ḋ (2.20)

where we have collected several terms into matrices as shown

H′ = ⟨(Ψ∇)∣PH′∣Ψ⟩

M = ⟨(Ψ∇)∣PH ∣(∇Ψ)⟩

Q = ⟨(Ψ∇∇)∣PH ∣Ψ⟩

(2.21)

Converting Eq. 2.20 to the frequency domain, we can rewrite the deviation vector for a particular

perturbation frequency ω as

d = Xe−iωt +Y∗eiωt (2.22)
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where X and Y are amplitude vectors, each multiplied by a phase factor. Inserting this into Eq.

2.20 and rearranging gives

⎡⎢⎢⎢⎢⎣

⎛
⎝

M Q

Q∗ M∗
⎞
⎠
−ω (

1 0
0 −1

)
⎤⎥⎥⎥⎥⎦
(

X
Y
) =Ω(

X
Y
) = (

∇R
R∇) (2.23)

where 1 and 0 are identity and zero matrices, respectively and ∗ denotes the complex conjugate.

After solving this system of equations for X and Y , which we can think of as perturbed densities

with respect to the perturbation R, we can form the frequency dependent polarizability ΠRS of the

property S perturbed by R via the contraction

ΠRS = (
∇S
S∇)

†⎛
⎝

XR

Y R

⎞
⎠

(2.24)

Letting R = µ , we can compute βββ by letting S =m and A by letting S =Θ.

For a general SCF wavefunction, we can write the matrix elements more explicitly as

Qia, jb = (a j∣ib)−cHF(ab∣i j)−(a j∣w∣ib) (2.25)

Mia, jb = δi jδab(εa−εi)+Qia, jb (2.26)

Ria = (i∣R∣a) (2.27)

with i, j denoting occupied orbitals and a,b denoting virtual orbitals, w the exchange-correlation

kernel (0 in the case of HF), and cHF the percentage of Hartree-Fock exchange.64, 66–68 Practically,

it is generally too cost-intensive to form the entire matrix Ω and invert it to solve for X and Y .

Instead, we can iteratively form the inverse using the direct inversion in the iterative subspace

(DIIS) procedure.68, 69 We can write Eq. 2.23 more compactly as ΩX̃ = R̃. Inverting and expressing

Ω
−1 as a series expansion

X̃ = (1+(1−Ω)+(1−Ω)2+ ...)R̃ (2.28)

This suggests that by forming affordable matrix-vector products X̃n = (1−Ω)X̃n−1 with X̃0 = R̃ and
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orthogonalizing X̃n to the set of previous vectors {X̃0, X̃1, ..., X̃n−1} until the norm of X̃n converges

to zero, we can obtain X̃ via a rapidly convergent sum

X̃ =
n−1
∑
i=0

αiX̃ i (2.29)

where the αi can be determined from a simple n×n system of equations.

While we have only described how to evaluate the response functions for SCF methods, re-

sponse theory is also used for coupled cluster calculations, which we perform in Chapter 6.70, 71

The derivation of coupled cluster linear response equations is described in more detail elsewhere.72, 73

2.3 Periodic Electronic Structure Theory

In order to practically model crystalline systems, we must efficiently incorporate information about

periodicity into electronic structure methods. We can represent a crystalline system in real space

as a unit cell repeated along as many as three periodic axes, which we can collect as columns of

a matrix DDD. We can assign a set of atomic basis functions {χν ∣ν = 1, ...,Ω} to each cell and label

the basis functions of different cells with a vector lll, denoting the number of increments along each

periodic axis up to LLL = (L1,L2,L3). We can obtain a more convenient representation by converting

to so called crystal orbitals

∣qkkk⟩ =
L1

∑
l1=−L1

L2

∑
l2=−L2

L3

∑
l3=−L3

eikkk⋅(DDDlll) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (2.30)

where ∣qkkk⟩ is the qth Bloch function at the point kkk in reciprocal space and C is the matrix of

molecular orbital coefficients for that point.68, 74 To simplify the notation, we will write the triple

sum over cell indices as a single sum over the multi-index lll

LLL
∑

lll=−LLL
=

L1

∑
l1=−L1

L2

∑
l2=−L2

L3

∑
l3=−L3

(2.31)

Working in reciprocal space allows us to more naturally treat the periodicity of the system.
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Instead of solving the SCF equation over a large supercell in real-space, we can instead separately

solve much smaller SCF equations for each k-point68, 75, 76

F(kkk)C(kkk) = S(kkk)C(kkk)ε(kkk) (2.32)

where the Fock matrix F and overlap matrix S in reciprocal space are obtained via Fourier trans-

forms

Fµν(kkk) =
LLL
∑

lll=−LLL
eikkk⋅(DDDlll)F000lll

µν (2.33)

Sµν(kkk) =
LLL
∑

lll=−LLL
eikkk⋅(DDDlll)S000lll

µν (2.34)

A complication arises when trying to model properties that depend on the position operator rrr,

specifically the electric dipole and electric dipole-electric dipole polarizability, as this operator

is not translation invariant. For weakly conducting systems under the influence of weak electric

fields, we can represent rrr in a translation invariant form77

rrr ≃ iexp(ikkk ⋅ rrr)∇kkk exp(−ikkk ⋅ rrr) (2.35)

The matrix elements of the electric dipole using this transformed operator take the form

µ̂µµ pkkk,qkkk = i⟨pkkk∣eikkk⋅rrr∇kkke−ikkk⋅rrr∣qkkk⟩

= i⟨upkkk∣∇kkk∣uqkkk⟩
(2.36)

where

uqkkk(rrr) = e−ikkk⋅rrr∣qkkk⟩ (2.37)

is the cell periodic part of the Bloch function and µ̂µµ is the periodic dipole matrix. To express

this periodic matrix in terms of atomic orbital matrix elements so it can be evaluated, we start by
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applying the operator in Eq. 2.36 to the ket to obtain

i∇kkk∣uqkkk⟩ = [rrr
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (2.38a)

−
LLL
∑

lll=−LLL
(DDDlll)eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (2.38b)

i
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

∂Cqν(kkk)
∂kkk

χ
lll
ν(rrr)] (2.38c)

We can now express the periodic electric dipole as

µ̂µµ =[C†
µµµC (2.39a)

+ iC†(∇kkkS)C (2.39b)

+ iC†∇kkkC] (2.39c)

where Eq. 2.39a-c result from applying the bra to the terms Eq. 2.38a-c respectively. To explicitly

evaluate the term 2.39c, we define ∇kkkC =CUUU , i.e. UUU is the matrix that transforms the molecular

orbital coefficients to their gradient with respect to kkk. We can obtain an explicit form for UUU by

applying ∇kkk to the SCF equation (Eq. 2.32) and the orthonormality condition for the molecular

orbital coefficients,66, 68 which results in

UUU pp = −
1
2
∇kkkSpp

UUU pq =
(∇kkkF)pq−(∇kkkS)pqεq

εq−εp

(2.40)

An undesirable trait of Eq. 2.39 is that neither µµµ nor iUUU are Hermitian, as this would allow us

to only store symmetry inequivalent matrix elements rather than the whole matrices. Inspecting a

matrix element of µµµ , we can see that
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µµµ
000lll
µν = ⟨µ000∣rrre−iDDDlll⋅ppp∣ν000⟩

= ⟨µ−lll ∣rrr∣ν000⟩+ ⟨µ000∣[rrr,e−iDDDlll⋅ppp]∣ν000⟩

= ⟨µ−lll ∣rrr∣ν000⟩+DDDlll⟨µ−lll ∣ν000⟩

= µµµ
000−lll
νµ +DDDlllS000−lll

νµ

(2.41)

The second step is the result of rrre−iDDDlll⋅ppp = e−iDDDlll⋅ppprrr+ [rrr,e−iDDDlll⋅ppp] where [⋅, ⋅] is the commutator. The

third step evaluates the commutator in the second term using the relationship [rrr, f (ppp)] = i f ′(ppp),

which holds for any function of momentum f (ppp) expressed in atomic units.78 We can form a

Hermitian matrix by averaging each matrix element with its corresponding adjoint element

µ̃µµ
000lll
µν =

1
2
(µµµ000lll

µν +µµµ
000−lll
νµ
) = µµµ

000lll
µν +

1
2

DDDlllS000−lll
νµ = (µ̃µµ

000−lll
νµ )∗ (2.42)

Note that

i∇kkkSµν =∇kkk

LLL
∑

lll=−LLL
eikkk⋅DDDlllS000lll

µν =
LLL
∑

lll=−LLL
eikkk⋅DDDlll(DDDlll)S000lll

µν (2.43)

so we can combine the term 2.39a and half of the term 2.39b to form µ̃µµ . We can then add the

remaining half of the term 2.39b to the term 2.39c to form the Hermitian matrix iŨUU . Altogether,

this allows us to rewrite Eq. 2.39 more simply in terms of these Hermitian matrices

µ̂µµ =C†
µ̃µµC+ iŨUU (2.44)

Using this periodic form of the dipole operator, it is possible to compute a periodic electric dipole

polarizability using the linear response techniques described in section 2.2.68 Evaluating other

periodic polarizabilities, such as βββ and A, requires the additional step of converting the magnetic

dipole and electric quadrupole to a translation invariant form. This process is described in more

detail in Chapter 7.
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Part I

Optical Rotation Analysis Methods
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Chapter 3

Gauge Dependence of the S̃ Molecular Orbital Space

Decomposition of Optical Rotation

(This work taken with the permission of Ty Balduf and Marco Caricato from J. Phys. Chem. A

2021, 125, 4976-4985.79 Supporting information is available online.)

3.1 Introduction

Detecting and controlling molecular and supra-molecular chirality is an active area of research

with applications ranging from pharmaceutical development2 and organic chiral catalysis7, 8, 80 to

nanostructure assembly81, 82 and chiral light generation.83, 84 The measurement of optical rota-

tion (OR), the change in orientation of plane polarized light impinging on a chiral sample, is a

foundational technique for absolute configuration assignment and chiral sensing.6, 26, 85, 86 Despite

the long standing use of OR measurements, the relationship between the structural features of a

compound and its observed OR remains unclear.

In recent years, a number of theoretical schemes have been developed to decompose the OR

into electronic contributions in an effort to understand how the molecular shape affects the OR.

Wiberg et al. have used the sum-over-states formulation to describe OR contributions in terms of

movement of charge density in excited state transitions.31 Polavarapu et al. used modern electronic

structure methods to test the semiempirical Kirkwood model, which expresses the OR as a sum of

bond polarizabilities and anisotropies.33, 34 Beratan et al. developed a Mulliken-like partitioning

to assign OR contributions to individual atoms and functional groups of a molecule.35 Autschbach

et al. studied how OR could be split into molecular orbital (MO) contributions.38
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We previously proposed a similar method to Autschbach et al. where instead of assigning

contributions to individual MOs, we instead decompose the OR into contributions from occupied

to virtual MO transitions.39 We refer to these contributions as S̃ia values, where i/a is the index

of an occupied/virtual MO pair. While a molecule can have many possible transitions, the OR can

often be described qualitatively using just the transitions with the largest S̃ia values. In this way,

the induced OR can be ascribed to the movement of electronic density during these transitions.

These shifts in the density can be tied to particular functional groups of the molecule, offering

chemical intuition that can be applied more generally to other systems. We have used this approach

to explain differences in OR between molecular conformers,87 as well to determine the effect of

functionalization.40

In these prior studies, S̃ia was expressed in the length gauge (LG), which is a commonly used

form for OR calculations. In principle, the choice of gauge should not affect the OR, but this

is only true for variational electronic structure methods using an infinite basis; thus, practical

calculations of OR exhibit gauge dependence.72 Even ignoring these differences in the total OR,

there is no guarantee that S̃ia contributions and their corresponding physical interpretations remain

the same if a different gauge is used to define S̃. To address this ambiguity, here we develop two

new definitions of S̃ia with the modified velocity gauge (MVG) and apply them to a subset of

the molecules from these prior studies. By comparing among these different definitions, we can

determine if they produce consistent physical interpretations of the OR.

This chapter is organized as follows. Section 3.2 gives a brief description of the various defini-

tions that can be used to calculate optical rotation and its MO space decomposition, S̃. Section 3.3

defines Ŝ values, a normalized version of S̃, and describes the model chemistry used in our elec-

tronic structure calculations. In Section 3.4, we compute Ŝ values for a small test set of molecules

and analyze how the values change with the choice of gauge/perturbation. We conclude with a dis-

cussion of the use of S̃ as an interpretive tool and whether insights from this method are dependent

on the choice of definition in Section 3.5.
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3.2 Theory

The specific rotation [α]ω (deg dm−1 (g/mL)−1) induced by light of frequency ω impinging on an

isotropically dispersed chiral sample can be calculated as shown in Eq. 2.6, where βββ is defined by

the sum over states expression in Eq. 2.2. Eq. 2.2 is not used in practice, as the sum over excited

states is slow to converge.63 Instead, βββ is typically evaluated via linear response (LR) theory,

which for self consistent field (SCF) methods takes the form:28, 64, 88

βαβ =
1

cω

Nocc

∑
i

Nvirt

∑
a
⟨φi∣µα ∣φa⟩⟨φa∣X+mβ

∣φi⟩

= 1
cω

Nocc

∑
i

Nvirt

∑
a
⟨φi∣X−µα

∣φa⟩⟨φa∣mβ ∣φi⟩
(3.1)

where ⟨φa∣X±yα
∣φi⟩ represents the density perturbed by the y field (either electric or magnetic) ex-

pressed in the MO basis, and cω = ω for LG or cω = ω2 for MVG (see below). Typically, the

expressions in Eq. 3.1 are actually calculated in atomic orbital basis (AO), but the MO basis is

more convenient here for clarity’s sake. The perturbed density is computed by solving Eqs. 2.23

and 2.29. This changes the problem from determining a large number of excited states to finding

a self-consistent response of the density to the applied perturbation. Either type of perturbed den-

sity can be determined iteratively by solving the LR-SCF equations starting from the ground state

wavefunction; as shown in Eq. 3.1, the electric and magnetic perturbations are equivalent and will

result in the same values for βββ .

Electric dipole matrix elements in principle satisfy the hypervirial relationship (in a.u.):89

⟨φa∣µα ∣φi⟩ =
i

ωia
⟨φa∣pα ∣φi⟩ (3.2)

where ppp is the momentum operator. However, this relationship does not hold for approximate

electronic structure methods with finite basis sets and βββ will differ depending on the gauge used to

model the perturbation.58 Optical rotation calculations are generally done in the length gauge (LG),

which uses the form of the dipoles on the left-hand side of Eq. 3.2, or the modified velocity gauge
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(MVG), which uses the form on the right-hand side. Length gauge calculations of OR are not

origin invariant, which is typically corrected by using gauge-including atomic orbitals (GIAOs)

for SCF methods.61 However, using GIAOs introduces extra terms into the expression for βββ in

Eqs. 3.1-2.23. These terms can be incorporated into the magnetic perturbed density via the LR

equations in Eq. 2.23, while they remain separate for the electric perturbed density, thus breaking

the symmetry between the two sides of Eq. 3.1.90 On the other hand, the OR in the velocity gauge

is origin independent for any electronic structure method, but it contains a spurious static field

contribution that needs to be evaluated and subtracted out explicitly (hence the name “modified”

velocity gauge).60

Recently, we developed a configuration space analysis of the βββ tensor as a tool to determine the

underlying electronic processes that induce optical rotation in chiral molecules.39, 87 We defined a

rotatory strength in molecular orbital space, S̃ia, resulting from an occupied to virtual (iÐ→ a) MO

transition, which can be written in the length gauge as:

S̃LG−M
ia = Im[⟨i∣µµµ ∣a⟩ ⋅ ⟨a∣XXX+mmm ∣i⟩] (3.3)

such that:

∑
ia

S̃LG−M
ia =ωTr(βββ LG) (3.4)

The insight behind this approach is that it allows the optical rotation to be expressed as a sum of

contributions from individual transitions: By determining which transitions make a large contribu-

tion to the OR, one can make qualitative predictions about how particular changes to the molecular

geometry or the electronic density will affect the total OR. The S̃ values in the LG are defined in

terms of the magnetic perturbed density in Eq. 3.3 because GIAOs will introduce additional terms

for the electric perturbation, as was the case for βββ . Incorporating these terms into an S̃ia definition

is nontrivial, so we forgo consideration of the LG-electric perturbed density for the remainder of

this paper.

In this work, we propose two new definitions of the S̃ rotatory strength using the modified
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velocity gauge:

S̃MV G−M
ia = 1

ω
Re[⟨i∣ppp∣a⟩ ⋅ ⟨a∣XXX+mmm ∣i⟩] (3.5a)

S̃MV G−E
ia = 1

ω
Re[⟨i∣XXX−ppp ∣a⟩ ⋅ ⟨a∣mmm∣i⟩] (3.5b)

such that:

∑
ia

S̃MV G−M
ia =∑

ia
S̃MV G−E

ia =ωTr(βββ MV G) (3.6)

The unphysical static term is already subtracted out in the expressions in Eq. 3.5. These two defi-

nitions provide the same MVG OR once all contributions are included, but each individual value is

different. We can define two separate expressions for S̃ with this choice of gauge because there is

no complication due to GIAOs. As for the original S̃ definition in Eq. 3.3, the computational cost

to evaluate all S̃ia values in Eq. 3.5 is negligible compared to that of the SCF and LR equations. In

fact, evaluating S̃ costs 6N3 for the AO→MO transformation of the Cartesian components of the

dipole integrals and of the perturbed density matrices.

The main goal of this work is to test whether these three S̃ definitions (LG-M in Eq. 3.3, and

MVG-M/MVG-E in Eq. 3.5) provide a similar qualitative picture of the OR for chiral molecules in

terms of constituent one-electron transitions or whether one definition is preferable to the others.

We also test the quantitative convergence of each definition, as we have previously shown that

small fractions of the total number of transitions can be used to approximate the specific rotation.

Demonstrating this for other definitions of S̃ would aid in the development of reduced cost methods

to compute OR.91

3.3 Computational Procedure

To analyze how the choice of gauge and perturbed density affects the S̃ values, we compiled a

test set of molecules from previous studies based on the length gauge with the magnetic-perturbed

density (LG-M) definition of S̃ in Eq. 3.3, depicted in Figure 3.1. The optimized geometries were
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taken as-is from these prior studies (or references therein) and are recorded here in Tables S1-

S9 of the Supporting Information (SI).30, 31, 40, 92 For each of these molecules, we calculated the

total optical rotation and S̃ using the MVG-M and MVG-E definitions in Eq. 3.5 and compared

them with previous LG-M results. Calculations were performed with the B3LYP/aug-cc-pVDZ

model chemistry93, 94 with a 589.3nm perturbation wavelength in a development version of the

GAUSSIAN suite of programs.95 Note that while this model chemistry has been shown to be

reasonable for calculating OR, we make no effort here to assess its accuracy. Rather, we seek to

compare the physical interpretation of S̃ with each perturbed density, regardless of how accurately

the OR is described using this method.

Figure 3.1: Structure of the molecules in the test set: (1) (1S,4S)-norbornenone, (2) P-
(2,3)-pentadiene, (3a,3b) axial and equatorial (R)-(+)-3-methycyclopentanone, (4a,4b) A and
B conformers of (S)-(+)-2-carene, (5) [6]helicene, (6) dithiol[5]helicene, (7) benzothiadia-
zole[6]helicene. Atoms are colored as follows: C (gray), H (white), O (red), N (blue), S (yellow).

The overall OR does not change much for different perturbations, see Table S10 in the SI.

However, to ensure that differences in the total OR are not influencing comparisons of S̃, we define
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a normalized configuration rotatory strength, Ŝ:

Ŝia =
S̃ia

∑ jb S̃ jb
= S̃ia

ωTr(βββ)
(3.7)

where the second equality comes from Eqs. 3.4 or 3.6. Since by definition ∑ia Ŝia = 1 for each

molecule and perturbation type, each Ŝia value gives the relative contribution of that transition to

the total OR. The sign of Ŝia is positive if S̃ia has the same sign as Tr(βββ) and negative if S̃ia has the

opposite sign.

3.4 Results

In this section, we compare Ŝ values computed with the various perturbed densities for the molecules

in Figure 3.1. To make a comprehensive comparison, we analyze the Ŝ values of each molecule

with increasing level of detail. In Section 3.4.1, we compare the cumulative contribution to the

OR of different sets of Ŝ values, separated according to their magnitude. In Section 3.4.2, we use

heat maps of Ŝia to visualize how these contributions are distributed among the frontier orbital

transitions. From these transitions, we plot the perturbation vectors for the largest contributors in

Section 3.4.3 to determine whether these transitions are consistent across the choice of gauge and

perturbed density.

Before delving into these comparisons, we briefly summarize the prior S̃ studies of these

molecules. For molecules 1 and 2, it has been shown that the OR can be qualitatively described

by a small fraction of the total number of transitions, coming within an order of magnitude of the

total OR with only 3 out of 6583 and 4 out of 3192 S̃ia values, respectively.39 The S̃ia value for

the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO)

transition of molecule 1 is considerably larger than the other transitions and has the same sign as

the overall Tr(βββ). This transition involves partial charge transfer between the two double bond

groups, and the favorable interaction of the magnetic and electric transition vectors is possible

because of the rigid cage structure of the molecule. This large S̃ia element helps to explain the
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large OR observed for this molecule. For molecule 2, the four largest magnitude transitions are

comparable in size to the largest transitions of molecule 1, and also correspond to charge transfer

excitations between the double bond groups. However, in this case the S̃ia values come in opposite

signed pairs because of the molecule’s symmetry, so their combined contribution is small. This

near cancellation provides an explanation for why the observed OR for molecule 2 ([α]exp
355 = +408

deg dm−1 (g/mL)−1) is significantly smaller than that of molecule 1 ([α]exp
355 = −6310 deg dm−1

(g/mL)−1).

For molecules 3 and 4, S̃ analysis was used to determine the origin of OR differences between

conformers.87 The conformers of 3 each had their largest contribution from the (HOMOÐ→LUMO)

transition, but these contributions were opposite in sign, as was the total OR for each conformer.

This change in sign was attributed to the electric vector being nearly parallel with the magnetic

vector in the axial conformer (3a), but nearly antiparallel in the equatorial conformer (3b) due to

the change in orientation of the methyl. The difference in OR between the conformers of 4 mainly

stemmed from differences between HOMO transitions, specifically the (HOMOÐ→LUMO+2) tran-

sition. The electric and magnetic vectors for this transition had an angle less than 90° for conformer

4a, but greater than 90° for conformer 4b, resulting in a different sign for the S̃ia of this transition.

For each set of conformers, including transitions within a factor of 10−3 of the total sum (30-40%

of the transitions) captures 97% of the total OR.

Molecules 5-7 are helicenes, which exhibit a strong chiroptical response due to their axial

chirality. S̃ was applied to these molecules and other functionalized helicenes to determine the

effect of length and withdrawing/donating character of functional groups on the observed OR.40

While these molecules have many S̃ contributions, the dominant transitions were characterized by

magnetic vectors pointed parallel to the helical axis, which corresponds to electron density moving

along the helix body. The magnitude of the magnetic vector for these types of transitions was found

to increase with the length of the helix and with delocalization of charge density. Also of note was

the number of transitions needed for a quantitative description of the OR. The helicenes have on

the order of 105 transitions in the aug-cc-pVDZ basis set, but a large portion of the total OR can be
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recovered with only 103−4 transitions.40 If these significant transitions could be determined a priori,

one could greatly reduce the cost of an OR calculation. Aharon and Caricato proposed truncating

the MO space based on the S̃ia values computed using the initial guess perturbed density.91 Using

this criterion for a set of 51 organic molecules (including molecules 1-5), they estimated a speedup

of 2-8x depending on the size of the basis, with a mean unsigned error of < 1% for the computed

OR.

3.4.1 Cumulative Optical Rotation Contributions

In Figure 3.2, we plot the cumulative Ŝ for each molecule. On the left hand side of each plot, only

the largest contributors are included. Moving to the right, progressively smaller contributions are

added until all contributions are included and∑ Ŝia = 1 for each perturbed density. Scanning across

each plot, we can see that the contributions to the OR for each Ŝ definition become more similar as

more transitions are included. The only notable dissimilarity is found in the first set of transitions,

where the contribution for the MVG-E definition is half as large as the others. Using molecule 1

as an example, all Ŝ definitions require the same number of relevant transitions (2 out of 6583)

to provide a qualitative understanding of the OR for this molecule.87 Once Ŝia values larger in

magnitude than 10−2 are included in the sum, each Ŝ definition is no farther than 0.09 from the

others. Not only are all the definitions similar at this point in the summation, but they are also

within 0.07 of their total sums. Therefore, these results suggest that this MO decomposition of the

OR may not be very sensitive to the choice of Ŝ definition.

Molecules 2-7 also show similarity between the Ŝ definitions, as depicted in Figure 3.2. There

is some significant variation when only large values are included in the sum, as can be seen for

molecule 2. For the largest magnitude transitions, ∣Ŝia∣ ≥ 1, the LG-M and MVG-M definitions

actually have opposite signs compared to their total sums, while the MVG-E definition has the

same sign as its total. Note that the four largest transitions do give the correct sign for all the

definitions of S̃, consistent with our prior study, but here we have chosen a smaller cutoff for

significant contributions and these additional transitions change the sign for the LG-M and MVG-
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Figure 3.2: Cumulative Ŝia for molecules 1-7 computed with LG-M, MVG-M, and MVG-E defini-
tions of S̃. The transitions selected are those for which the LG-M ∣Ŝia∣ is greater than the specified
value. The height of each bar is the sum of these transitions, while the number of transitions is
listed above the bars. The total sum is marked with a dashed line.
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M definitions. For these definitions, there are 7 transitions with 1.0 > ∣Ŝia∣ ≥ 0.95, so the choice of

cutoff can greatly influence the value and even the sign of this partial sum. While in this paper

we choose consistent cutoffs in order to facilitate comparisons across molecules and S̃ definitions,

in practice, the cutoffs used to define significant transitions should be tailored to each molecule.

This is clearly exemplified in the case of molecule 2: the ∣Ŝia∣ values for the 4 largest transitions

are around an order of magnitude larger than any of the other transitions, which suggests that they

should considered separately from the other ∣Ŝia∣ ≥ 1 transitions.

For the molecules tested, the different S̃ definitions are generally indistinguishable once contri-

butions with ∣Ŝia∣≥10−3 are included. Even with just Ŝia contributions larger than 10−2, the different

definitions are qualitatively consistent. However, including just contributions with ∣Ŝia∣ ≥ 10−1 is

sometimes insufficient for even qualitative agreement; for instance the MVG-M partial sum for

4b is the wrong sign. As previously mentioned, these qualitative inconsistencies can be remedied

using a tailored selection of transitions in the partial sum, rather than a preselected cutoff.

It is noteworthy that where there are differences between the Ŝ definitions, the LG-M and

MVG-M choices tend to be very similar while MVG-E differs. This is somewhat surprising since

the MVG-M and MVG-E definitions are based on the same choice of gauge and produce identical

overall OR values. In the next section, we explore whether this trend extends to the level of

individual transitions.

3.4.2 Distribution of Contributions

We have seen up to this point that by summing the same set of transitions, we can obtain a similar

proportion of the total OR for each Ŝ definition. However, the cumulative summation does not

show how much individual transitions contribute. To give a more detailed representation of how

the OR is distributed among the transitions, we present heat maps of Ŝia in Figures 3.3 and 3.4. As

most of the sizable transitions are between frontier orbitals, the heat maps only display transitions

among the 15 highest occupied and 15 lowest virtual orbitals. Full maps are reported in Figures

S1-S9 of the SI.
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Focusing first on 1, the first row of Figure 3.3 plots its frontier transitions using the LG-M,

MVG-M, and MVG-E definitions. The largest two ∣Ŝia∣ values for each definition correspond to

the (HOMOÐ→LUMO) and (HOMO-1Ð→LUMO) transitions, which are the same ∣Ŝia∣≥ 1 transitions

plotted in Figure 3.2. However, while these transitions have similar Ŝia for LG-M and MVG-M,

they are much smaller for the MVG-E definition (e.g. Ŝ29,1=4.65, 5.12, and 1.84 for the LG-

M, MVG-M, and MVG-E definitions respectively). This pattern seems to hold across frontier

transitions of 1, with a consistent distribution of Ŝia for each choice of perturbed density, but with

smaller magnitudes with the MVG-E choice. For the rest of the test set, the distribution of Ŝ among

the frontier transitions remains largely unchanged with different Ŝ definitions. While some of the

molecules, such as 2 and 3a, exhibit consistently smaller Ŝ values with MVG-E than with the other

definitions, this is not the case in general. For example, Ŝia values for 4a are similar in magnitude

for each definition and the MVG-E choice for 5 actually has some larger transitions than the other

definitions, e.g. (HOMO-1Ð→LUMO).

The similarity in the distribution of values for each definition would suggest that S̃ is largely

invariant to the choice of gauge and perturbed density. However, the differences in magnitude seen

for MVG-E could be a sign that it is producing different representations of the transitions when

compared to the magnetic perturbed density definitions.

3.4.3 Major Optical Rotation Contributions

To address whether S̃ia has the same physical interpretation with different definitions, we super-

impose the electric and magnetic dipole/perturbed density vectors of the largest transitions onto

the molecules using the PyMOL program.96 These vectors describe how the electronic density

rearranges itself to induce OR; similar vectors for a given occupied-virtual transition indicate a

similar underlying physical process. Note that we are considering the unnormalized S̃ in this sec-

tion; this allows us to account for the slight differences in total OR when comparing between the

length gauge and modified velocity gauge. The magnitude of the vectors for each transition and

the angles between them are reported in Table S11 of the SI. For the MVG definitions, each vector
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Figure 3.3: Ŝia values for the 15 highest occupied and 15 lowest virtual MOs for molecules 1-3
computed with (from left to right) the LG-M, MVG-M, and MVG-E definitions of S̃.
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Figure 3.4: Ŝia values for the 15 highest occupied and 15 lowest virtual MOs for molecules 4-7
computed with (from left to right) the LG-M, MVG-M, and MVG-E definitions of S̃.
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is multiplied by ω
− 1

2 , evenly splitting the factor of ω−1 in Eq. 3.5. This factor arises from a general

response function relationship rather than a specific transformation of an operator, so the choice of

how it is partitioned between the two vectors is somewhat arbitrary.60

Figure 3.5 depicts these vectors for each molecule, calculated with each S̃ definition. Focusing

first on molecule 1, it is clear from the figure that the vectors for all types of S̃ have the same

orientation and involve the same occupied-virtual MO pair, indicating that the process is indeed

the same. While the S̃ values for LG-M and MVG-M values are very similar in magnitude, the

lengths of their vectors differ, see the left and center columns of Figure 3.5. This is due to the

differences in length nearly canceling in the product (i.e. the electric vector is 1.84 times larger for

LG-M than MVG-M, but the magnetic vector is 1.94 times smaller). On the other hand, the MVG-

E S̃ value is smaller because its shorter magnetic vector length (1.24 times smaller than LG-M,

2.41 times smaller than MVG-M) is not compensated for by the electric vector length (1.93 times

smaller than LG-M, 1.05 times smaller than MVG-M).

The other molecules exhibit the same qualitative behavior, where the largest S̃ia contributions

come from the same transitions independently of the S̃ definition. Nonetheless, there are still

some noteworthy differences between the S̃ definitions. Comparing LG-M and MVG-M (same

perturbation, different gauge), these produce similar S̃ia values for a given molecule. However, the

electric and magnetic vectors of these transitions differ in magnitude, with LG-M having consis-

tently longer magnetic vectors and MVG-M having consistently longer electric vectors. For the

electric vectors, LG-M and MVG-M “electric dipoles” are not exactly equivalent, as Eq. 3.2 is only

an approximation in an incomplete basis. For the magnetic vectors, while they are both ostensibly

the magnetic perturbed density for a 589.3 nm perturbation, LG-M incorporates additional terms

due to the use of GIAOs and MVG-M subtracts out the spurious zero-frequency perturbed density,

likely resulting in different magnitudes. This suggests the magnitude of the LG-M and MVG-M

vectors can only be roughly compared.

Comparing MVG-M and MVG-E (same gauge, different perturbation), the S̃ia values differ

mostly because of the different magnitude of the corresponding transition vectors, as shown in
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Figure 3.5: Electric (red) and magnetic (blue) dipole or perturbed density vectors for the largest
transition of molecules 1-3, computed with (from left to right) the LG-M, MVG-M, and MVG-
E definitions of S̃. The transitions depicted are: 1 (HOMOÐ→LUMO), 2 (HOMOÐ→LUMO+4),
3a (HOMOÐ→LUMO), 3b (HOMOÐ→LUMO). For visibility, the length of the largest electric and
magnetic vectors for each molecule or conformer are fixed at an arbitrary value and the other
vectors are scaled relative to this length.
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Figure 3.6: Electric (red) and magnetic (blue) dipole or perturbed density vectors for the largest
transition of molecules 4-7, computed with (from left to right) the LG-M, MVG-M, and MVG-E
definitions of S̃. The transitions depicted are: 4a (HOMO-5Ð→LUMO), 4b (HOMOÐ→LUMO+2),
5 (HOMOÐ→LUMO+1), 6 (HOMOÐ→LUMO), and 7 (HOMOÐ→LUMO). For visibility, the length
of the largest electric and magnetic vectors for each molecule or conformer are fixed at an arbitrary
value and the other vectors are scaled relative to this length.
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Table S11 of the SI. This is due to how the perturbed density is computed. The main difference can

be explained by looking at the form of the initial guess for the perturbed density at the beginning

of the iterative solution of the LR equations:

⟨φa∣X±yα
∣φi⟩(0) =

⟨φa∣yα ∣φi⟩
∆εia∓ω

(3.8)

where ∆εia is the orbital energy difference and the 0 superscript denotes the initial guess. For this

initial guess, the MVG-M and MVG-E S̃ia values are identical, but the vectors differ in length,

as the factor of ∆εia ∓ω is incorporated into the magnetic vector for MVG-M and the electric

vector for MVG-E. Furthermore, in solving the LR-SCF equations to obtain a converged perturbed

density, these initial guess terms become intermixed, changing the value of the perturbed density

and consequently S̃ia. This intermixing is responsible for the slight difference in angles between

MVG-E and MVG-M S̃ia values, see Table S11 of the SI. However, this effect is small and the

MVG-M and MVG-E vectors essentially have the same orientation for all the molecules tested,

as shown in Figures 3.5-3.6. It is also apparent from Section 3.4.2 that while the MVG-M and

MVG-E have different S̃ia values, the distribution of S̃ is the same (e.g. the same transitions

are the largest contributors for each definition). Since the different definitions agree as to which

transitions are most important (as shown by the matching distribution of Ŝ) and these transitions

describe qualitatively the same movement of charge (as shown by the matching vector orientation

for each definition), we can say that each definition gives a consistent picture of the underlying

cause of OR for a given molecule.

3.5 Discussion and Conclusions

We have investigated whether different definitions of the S̃ rotatory strength, based on different

choices of gauge and perturbed density, provide the same or different pictures for the qualitative

description of the optical rotation of chiral molecules. We used a sample of chiral molecules

previously studied using the LG-M definition. We find that these different S̃ definitions produce
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consistent pictures of what physical processes contribute to the optical rotation. This is true at mul-

tiple levels of detail. As shown in Section 3.4.1, partial sums of Ŝ over selected sets of transitions

give similar convergence to the total OR. Going one level deeper, the distribution of Ŝ within these

sets is mostly the same for each perturbation, as shown in Section 3.4.2 for the frontier orbital tran-

sitions. Finally, at the level of individual transitions, Section 3.4.3 shows that the largest transitions

correspond to the same physical process even though the relative magnitude of the transition vec-

tors changes with different S̃ definition. The difference in vector magnitudes is due to the choice

of dipole representation (LG-M vs MVG-M) or to the choice of perturbation density (MVG-M

vs MVG-E), but it has no bearing on the qualitative interpretation of the electron transition for a

particular ia orbital pair. Therefore, we posit that S̃ analysis is largely independent of the choice of

gauge, at least in so far as the different definitions produce similar total OR, and in the choice of

perturbation.
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Chapter 4

Exploration of Methods for Origin Invariant Decomposition of

Optical Rotation

4.1 Introduction

Optical rotation (OR) measurements are a common method to characterize chiral systems, but it

has proven challenging to establish a chemically intuitive connection between the structure of a

molecule and the direction or magnitude of OR it induces. With the advent of quantum mechanical

simulations of OR, significant efforts have been made to clarify this structure-property relationship.

One avenue of research has focused on developing methods to decompose the OR into contribu-

tions from functional groups, bonds, or even individual atoms within the molecule.31, 33–35, 38, 39

We have recently developed a scheme, referred to as S̃ analysis, whereby the OR is expressed

as a sum of contributions S̃ia from occupied i to virtual a molecular orbital transitions.39 We can

determine what physically is driving OR and what parts of the molecule are involved by analyzing

the movement of charge density described by these transitions. Using this framework, we have

investigated the influence of molecular conformation and functionalization on the OR induced

by rigid organic molecules.40, 87 As we showed in Chapter 3, the method is robust, providing a

consistent physical interpretation of the OR provided in both modified velocity gauge (MVG) and

length gauge (LG) calculations, regardless of the choice of perturbation used in solving the linear

response equations.79

However, while both MVG and LG calculations of the total OR are (or can be made)60, 62

origin invariant, this does not necessarily ensure that individual S̃ia values will be origin invariant.
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The total OR is in general made origin invariant via cancellation, rather than elimination, of the

origin dependent terms from each S̃ia value. It is possible that choosing a physically meaningful

origin like the center of mass may produce reasonable S̃ia values, though this is not guaranteed;

e.g. typical LG CCSD calculations of the total OR are origin dependent and using the center of

mass as the origin does not consistently lead to high accuracy in comparison with experiment.97

In any case, the reliability of the physical interpretations provided by S̃ analysis would be greatly

improved by removing this origin dependence.

In this chapter, we discuss two possible approaches to compute origin invariant S̃ values in

the modified velocity gauge. The chapter is organized as follows. Section 4.2 contains a brief

review of the theory behind S̃ analysis and then the derivation of two origin invariant formulations.

The first of these procedures uses an average of the S̃ia values obtained from MVG electric and

magnetic perturbation calculations. The second approach involves splitting the response matrix in

order to form “hemi-perturbed densities” that are then contracted to form S̃ia values. In Section

4.3, we demonstrate both approaches by performing calculations on two small organic molecules,

P-(2,3)-pentadiene and (R)-3-chloro-1-butene. We conclude with a discussion of the relative merits

of these two approaches Section 4.4.

4.2 Theory

We begin by briefly reviewing the methodology for S̃ analysis. In the modified velocity gauge, the

electric dipole-magnetic dipole polarizability tensor βββ can be computed through linear response

theory as28, 64, 88

βαβ =
1

ω2 [µ
V †
α Dωmβ −µ

V †
α D0mβ] (4.1)

where Dω =Ω
−1 is the linear response matrix (explicitly defined in Eq. 2.23) for the perturbation

frequency ω , D0 is the zero frequency response matrix, and µV
α and mβ are respectively the α

and β Cartesian components of the velocity gauge electric and magnetic dipoles, represented as

vectors over all orbital pairs in the given basis. For experiments in isotropic media, the observed
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optical rotation is proportional to the trace of βββ . We can gain insight into what underlying physical

processes are contributing to this trace by splitting it into contributions from orbital pairs, referred

to as S̃ values

Tr(βββ) = 1
ω
∑
ia

S̃ω
ia− S̃0

ia =
1
ω
∑
ia

S̃MVG
ia (4.2)

In MO basis, we can express these contributions as

S̃M,ω
ia = 1

ω
∑
α

∑
jb
⟨φi∣µV

α ∣φa⟩(Dω

ia, jb⟨φb∣mα ∣φ j⟩) (4.3a)

S̃E,ω
ia =

1
ω
∑
α

∑
jb
⟨φi∣mα ∣φa⟩(Dω

ia, jb⟨φb∣µV
α ∣φ j⟩) (4.3b)

where in 4.3a, the response matrix is contracted with the magnetic dipole (MVG-M) and in 4.3b,

the response matrix is contracted with the electric dipole (MVG-E). The expressions for the static

frequency S̃0
ia are the same, but with Dω replaced by D0 (the leading factor of ω is retained).

Note Eqs. 4.3a-b are equivalent to the expressions for MVG-M and MVG-E in Eqs. 3.5a-b;

we write them here in terms of the response matrix as this makes it easier to present how the

origin dependence emerges (and can be removed). We have previously shown that, in general,

S̃MVG-M
ia ≠ S̃MVG-E

ia ; however, the S̃ia values for each choice of perturbation are associated with the

same physical process and the relative contribution of this process to the observed OR is roughly

the same.79

While the total OR computed in the modified velocity gauge is origin invariant regardless of

the perturbation used, this is not the case for the individual S̃ia values, even in the limit of an exact

calculation using a complete basis set. The origin dependence of S̃ia for each choice of perturbation
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can be expressed as

S̃M,ω
ia (OOO

′) = 1
ω
∑
α

∑
jb
⟨φi∣µV

α ∣φa⟩Dω

ia, jb(⟨φb∣mα ∣φ j⟩−∑
βγ

εαβγ⟨φb∣µV
β
∣φ j⟩dγ)

= S̃M,ω
ia (OOO)−

ω

2
∑
αβγ

εαβγα
V,ω
αβ ,iadγ (4.4a)

S̃E,ω
ia (OOO

′) = 1
ω
∑
α

∑
jb
(⟨φi∣mα ∣φa⟩−∑

βγ

εαβγ⟨φi∣µV
β
∣φa⟩dγ)Dω

ia, jb⟨φb∣µV
α ∣φ j⟩

= S̃E,ω
ia (OOO)+

ω

2
∑
αβγ

εαβγα
V,ω
αβ ,iadγ (4.4b)

where εεε is the Levi-Civita symbol, αααVVV is the modified velocity gauge polarizability, and OOO′ =OOO+ddd

is a shifted origin, displaced by a vector ddd. The origin dependence for each choice of perturbation

comes from differences between off-diagonal elements of αααV
ia; the total MVG ααα is symmetric, so

these terms cancel out when summing over all occupied-virtual orbital pairs, but each αααV
ia is in

general not symmetric.

The form of Eqs. 4.4a and 4.4b suggests a simple approach for eliminating origin dependence

from S̃ia:

S̃Avg
ia =

1
2
(S̃MVG-M

ia + S̃MVG-E
ia ) (4.5)

Since the origin dependent terms for S̃MVG-M
ia and S̃MVG-E

ia are equal in magnitude but opposite in

sign, they cancel in the average, leaving S̃Avg
ia origin invariant. S̃Avg

ia still satisfies Eq. 4.2, which

means it can still be used as an interpretive tool to understand which occupied to virtual orbital

transitions are driving OR. However, while S̃MVG-M
ia and S̃MVG-E

ia each have associated electric/-

magnetic dipole and perturbed density vectors describing the flow of charge during the i→ a tran-

sition, S̃Avg
ia does not have an associated set of vectors. Simply averaging the MVG-M and MVG-E

electric/magnetic vectors and taking their dot product is not equivalent to averaging the MVG-M

and MVG-E dot products from Eqs. 4.3a-b, as is done in Eq. 4.5.

An alternative approach to removing the origin dependence involves mixing the electric and

magnetic response prior to forming S̃ia. The origin dependence stems from the asymmetry of αααV
ia,
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so an alternative method to remove the origin dependence is to simultaneously symmetrize αααV
ia

for every occupied-virtual orbital pair. This can be achieved via Cholesky decomposition98 of the

response matrix

Dω = LωLω† (4.6)

where Lω is a lower triangular square matrix with all positive real values along its diagonal. By

splitting the response matrix, we can apply Lω to both the electric dipole and magnetic dipole to

obtain “hemi-perturbed” densities and contract these to form

S̃Hemi,ω
ia = 1

ω
∑
α

∑
jb
(Lω

ia, jb⟨φ j∣µV
α ∣φb⟩)(Lω

ia, jb⟨φb∣mα ∣φ j⟩) (4.7)

To see that this formulation of S̃ia is origin invariant, we simply need to show that the corresponding

electric dipole polarizability

α
Hemi,ω
αβ ,ia =

1
ω
∑
jb
(Lω

ia, jb⟨φ j∣µV
α ∣φb⟩)(Lω

ia, jb⟨φb∣µV
β
∣φ j⟩) (4.8)

is symmetric, which is apparent since it is formed from the contraction of a vector with itself. This

method also does not allow us to assign unique electric and magnetic vectors to each transition.

The reason is that for MVG, this approach leads to an electric and magnetic hemi-density both for

the applied perturbation frequency and the static frequency. Simply taking the difference of both

perturbed and static electric/magnetic hemi-densities and contracting them does not produce the

same product as Eq. 4.8. For the standard S̃MVG-M
ia , only the magnetic vector is a density and for

S̃MVG-E
ia , only the electric vector is a density; the other vector remains the same in the static and

perturbed cases. This allows us to only take the difference of the densities to produce a vector that

can be used in the contractions of Eq. 4.3a-b.

Another potential obstacle to this hemi-density approach is that the Cholesky decomposition is

only possible for Hermitian, positive-semidefinite matrices (i.e. matrices with only real eigenvalues

greater than or equal to 0). While the response matrix is always Hermitian, it is only required to be
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positive-definite in the static limit.64, 99 This method would also require extensive updates to the

typical linear response implementation, as generally the response matrix is not formed explicitly

and instead the perturbed density is formed through an iterative process (see section 2.2).

The goal of this chapter is to assess the applicability of these approaches to remove the origin

dependence of S̃ia. We perform Hartree-Fock/aug-cc-pVDZ calculations with a 589.3nm pertur-

bation wavelength on two small molecules, P-(2,3)-pentadiene (hereafter pentadiene) and (R)-3-

chloro-1-butene (hereafter chlorobutene), to compare S̃Avg
ia and S̃Hemi

ia with the origin dependent

S̃MVG-M
ia and S̃MVG-E

ia . This comparison will help to determine if there are any differences in the

physical interpretation of the OR suggested by each method. The electronic structure calculations

are performed in a development version of GAUSSIAN.95 While S̃MVG-M
ia and S̃MVG-E

ia (and con-

sequently S̃Avg
ia ) can be directly computed using modified GAUSSIAN routines, S̃Hemi

ia is currently

only available through an external Python script, which reads in one- and two-electron integrals

from GAUSSIAN output files in order to explicitly form the response matrix.

It is not our intention in this chapter to compute experimentally accurate OR for these molecules,

but rather simply to demonstrate the origin invariance of these S̃Avg
ia and S̃Hemi

ia . Consequently,

Hartree-Fock, rather than DFT, calculations are performed to avoid the need to also read in 4-

center, 1-electron exchange-correlation integrals when computing S̃Hemi
ia . While this can be done

using the external Python script and further modifications to the GAUSSIAN code, the prototype

code for forming and reading in these integrals, in addition to the two-electron integrals, is very

time and memory intensive.

4.3 Results

Figures 4.1 and 4.2 plot S̃ia values for the 20 highest occupied and 20 lowest virtual MOs of

pentadiene and chlorobutene computed with each of the definitions of S̃ discussed in 4.2. To

demonstrate the origin independence of the S̃Avg
ia and S̃Hemi

ia approaches, we plot the results of

calculations with the origin at the center of mass of the molecule and with the origin shifted by

-100Å in each Cartesian direction. Starting first with the center of mass plots, we can see that
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for each molecule, the distribution of contributions is very similar for each of the definitions of

S̃ia. For pentadiene, the largest negative contribution is from the (HOMO-1, LUMO+12) transition

and the largest positive contribution is from the (HOMO, LUMO+14) transition for each of the

definitions. Chlorobutene has a larger number of significant contributions that maintain the same

sign across definitions and the largest magnitude contributions are consistently from a small band

of 3 transitions from (HOMO, LUMO+7) to (HOMO, LUMO+9). That the S̃MVG-M
ia and S̃MVG-E

ia

distributions closely match the origin invariant S̃Avg
ia and S̃Hemi

ia distributions suggests that the center

of mass is a reasonable choice of origin, though there is no guarantee that this holds beyond this

set of molecules or for calculations employing a different model chemistry.

Moving to the shifted origin plots for each molecule, while the shifted S̃Avg
ia and S̃Hemi

ia are

identical to their center of mass values (within numerical accuracy), the origin dependent terms of

S̃MVG-M
ia and S̃MVG-E

ia dominate the shifted origin plots. Due to the large shift in origin (and sub-

sequently large origin dependent contribution), the difference in sign between the origin depen-

dent terms of S̃MVG-M
ia and S̃MVG-E

ia is clearly visible in the plots. For pentadiene, the (HOMO-1,

LUMO+12) and (HOMO, LUMO+14) MVG-M transitions both changed sign relative to the cen-

ter of mass calculation, while also increasing in magnitude by a factor of 3, exceeding the range

of the center of mass origin color map. S̃MVG-M
ia for the (HOMO-1, LUMO+10) and (HOMO,

LUMO+11) transitions increased in size by more than an order of magnitude. For chlorobutene,

many transitions increased in magnitude enough to exceed the range of the center of mass ori-

gin color map. The (HOMO, LUMO+7), the largest magnitude S̃MVG-M
ia of the center of mass

calculations, remains the largest transition in the shifted calculations, but increases in size from

7.82×10−3 to 2.78×10−1.

4.4 Conclusions

In this chapter, we have introduced two new methods for decomposing the OR into origin invariant

S̃ia values. The S̃Avg approach exploits the equal magnitude, opposite sign origin dependence of

S̃MVG-M and S̃MVG-E to cancel out the origin dependence. For S̃Hemi, we contract hemi-perturbed
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Figure 4.1: S̃ia values for the 20 highest occupied and 20 lowest virtual MOs of P-(2,3)-pentadiene
computed with (from top to bottom) the MVG-M, MVG-E, average, and hemi-density definitions
of S̃. Results with the origin at the center of mass and shifted by -100Å in the x, y, and z directions
are plotted the in the left and right columns. The heat maps color range is from −M to M where M =
max(∣S̃X

ia∣),X = {MVG-M, MVG-E, Avg, Hemi} for the center of mass calculations. The shifted
origin heat maps use the same color range, but some S̃ia exceed this range and are simply colored
the same as −M/M.
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Figure 4.2: S̃ia values for the 20 highest occupied and 20 lowest virtual MOs of (R)-3-chloro-
1-butene computed with (from top to bottom) the MVG-M, MVG-E, average, and hemi-density
definitions of S̃. Results with the origin at the center of mass and shifted by -100Å in the x, y, and
z directions are plotted the in the left and right columns. The heat maps color range is from −M to
M where M =max(∣S̃X

ia∣),X = {MVG-M, MVG-E, Avg, Hemi} for the center of mass calculations.
The shifted origin heat maps use the same color range, but some S̃ia exceed this range and are
simply colored the same as −M/M. 45



densities formed by splitting the linear response matrix evenly between the electric and magnetic

dipoles. The MVG hemi-density electric-electric polarizability for each transition ααα
Avg
ia is inher-

ently symmetric, which eliminates the asymmetric, origin dependent contribution to S̃ia. From

testing on two small molecules, we found that these approaches produce similar distributions of

S̃ia, regardless of the choice of coordinate origin.

Further development and research is still needed to ensure these methodology can be applied

in general. While S̃Avg
ia is simple to compute, its lack of a unique set of associated electric and

magnetic vectors limits its use for determining the physical process associated with a particular

transition. Since S̃Avg
ia is simply an average of MVG-M/MVG-E, it may be possible to obtain a set

of vectors from some linear combination of the S̃MVG-M
ia /S̃MVG-E

ia vectors, but thus far it is only clear

that an average of the MVG-M/MVG-E vectors will not suffice for this purpose. The hemi-density

approach is also promising, producing a similar distribution to the average MVG S̃ia. However,

explicitly forming the response matrix as we have done here is prohibitively slow and memory

intensive, so we will need to determine how to best incorporate the Cholesky decomposition into

the iterative matrix-vector product routines that are typically used to solve the coupled perturbed-

self consistent field (CP-SCF) equations. The Cholesky decomposition is also only possible when

the response matrix is positive-semidefinite, which is not guaranteed outside the static limit.64

In fact, we attempted calculations on (1S,4S)-norbornenone using the same model chemistry, but

these failed due to negative eigenvalues in the response matrix. We could approximate the response

matrix by removing these negative eigenvalues, but this would only be reasonable if they were very

small in magnitude and determining the eigenvalues would also likely be prohibitively costly. We

will need to determine if an alternative decomposition could be used in these cases or if a simpler,

less approximate procedure can be developed to “cure” the response matrix.

Even with these caveats, these approaches offer promising avenues towards the development

of a fully origin invariant S̃ analysis framework. At the moment, these approaches already allow

for the detection of severe origin dependence in the computed S̃ia values, helping us to avoid

drawing faulty physical interpretations from computational artifacts. Using the distribution of
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origin invariant S̃ as a reference, we can tune the origin of MVG-M or MVG-E calculations to

minimize the effect of origin dependence. Going forward, we will work to extend these methods

to allow for the computation of origin invariant electric and magnetic vectors associated with each

transition. We will also explore if these schemes, or some variation, can be applied when using the

length gauge with GIAOs61 or LG(OI).62
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Part II

Optical Rotation of Periodic Systems
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Chapter 5

Helical Chains of Diatomic Molecules as a Model for Solid State

Optical Rotation

(This work taken with the permission of Ty Balduf and Marco Caricato from J. Phys. Chem. C

2019, 123, 4329-4430.52 Supporting information is available online.)

5.1 Introduction

Controlling supramolecular chirality is an active area of research with applications in nanostructure

assembly,81, 100, 101 drug design,2 and enzymatic/bio-inspired catalysis.8, 80 Optical activity mea-

surements are commonly used to distinguish the chiral species generated in these experiments, but

it remains poorly understood how the structure of a molecule and intermolecular interactions relate

to the observed optical rotation (OR, referred to as specific rotation when it is normalized with re-

spect to concentration and path length). Comparisons between computation and experiment could

clarify this structure-property relationship, but such comparisons are hampered by limitations of

existing theoretical methods. Most experimental measurements of optical activity are carried out in

solution, but theoretical methods to account for solvent effects are either highly costly or unable to

account for specific solvent-solute interactions, making comparison with experiment challenging.

Calculations of OR in isotropic media are also highly sensitive to cancellation effects: elements of

the OR tensor can vary in sign and magnitude, so the calculated specific rotation, proportional to

the trace of the OR tensor,49, 51 can be greatly influenced by small errors in OR tensor components.

In experiment, one only obtains the isotropic specific rotation, not the OR tensor components, so

comparison can show that a calculation is incorrect, but not what is causing the error.
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Some experimental work has sought to address these limitations by making measurements in

different phases. Vaccaro et al. have used cavity ring-down polarimetry to study optical rotation

in the gas phase.102, 103 Gas phase measurements and calculations do not need to take into account

intermolecular interactions, but they still need to deal with spatial averaging of the observable.

Kahr and coworkers have enhanced techniques for isolating the OR of crystals from the typically

much larger linear birefringence signal.104–106 These solid state measurements represent valuable

benchmark data for theoretical comparison. While it is in principle possible to calculate the OR of

solids and extended systems, one issue that remains is the development of a general computational

procedure to do so. Perhaps due to the lack of experimental data available, neither classical nor first

principles techniques for calculating the OR of solids have been thoroughly pursued. To the best of

our knowledge, the works of Zhong et al.,47, 48 using a combination of local density approximation

density functional theory (DFT) and Green’s functions, and Devarajan and Glazer,46 utilizing the

classical polarizability theory of optical rotation, have been the only attempts at developing such

methods. However, both approaches rely on ad hoc assumptions and parametrizations, thus lacking

a truly general applicability.

In this chapter, we calculate the OR tensor of long helical chains of diatomic molecules (using

the well established procedure for isolated molecules) as a simple model for the behavior of ex-

tended systems. These calculations test the specifications, e.g. cell size and basis set requirements,

needed to accurately calculate the OR of infinite systems with the goal of using this information to

develop and benchmark an efficient, general-purpose procedure to compute the optical activity of

solids, in particular molecular crystals.

The chapter is organized as follows. In section 5.2, we describe our computational procedures

for constructing the model helices and calculating their OR tensors. In section 5.3, we present how

the OR is influenced by the length and orientation of the helices, as well as the basis set used. We

conclude the paper with a discussion of these results and their implications in section 5.4.
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5.2 Computational Procedure

In this chapter, we consider helices formed from five diatomic molecules: H2, N2, F2, HF, and LiH.

Note that the optical activity in these model systems is solely generated by the supramolecular

structure of the helices, as the individual molecular units are achiral. To generate the helices,

we first orient a single diatomic molecule along the y-axis, with the origin centered either on

one of its atoms (CA) or its center of mass (COM). We then add more units with coordinates

determined by translating a distance R along the z-axis and rotating θ degrees counterclockwise

in the xy plane. For each diatomic molecule, helices were generated with 15○ increments up to

165○. Helices with 0○ or 180○ rotation have a plane of symmetry and so they do not exhibit

isotropic specific rotation; for these helices, this is not due to cancellation in the trace of the OR

tensor, but rather from each diagonal component individually being zero. For this reason, we do

not perform any further analysis of the OR tensor for these helix conformations. The distance R

varies for the different molecules, with H2 units separated by 2.0Å; N2, F2, and HF units separated

by 3.5Å; and LiH units separated by 5.0Å. These distances were chosen so that the molecular

units would be close enough to retain significant intermolecular interactions while avoiding large

electron density overlap between neighboring units. Experimental bond lengths from the NIST

CCCBDB database107 were used for each molecule: RH2 = 0.741 Å, RN2 = 1.098 Å, RF2 = 1.412 Å,

RHF = 0.917 Å, RLiH = 1.595 Å.

To compute the full, oriented OR of Eq. 2.7, denoted here as B̃, we employ the linear response

formalism described in section 2.2. All calculations were carried out using a development version

of the GAUSSIAN suite of programs,95 with the CAM-B3LYP functional108 and aug-cc-pVDZ

basis93 in the length gauge representation, using gauge including atomic orbitals (GIAOs)61 to en-

sure origin independence and 589.3nm perturbation wavelength. Origin independence could also

be achieved using the modified-velocity gauge without GIAOs, but this leads to slower conver-

gence of the OR with basis set size.88 This choice of functional and basis set has been shown to

accurately reproduce the OR obtained from experiment51, 109 and higher levels of theory.110

Since these helical systems cannot be experimentally realized nor have they been studied com-
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putationally, it is useful to have a model that can be related qualitatively to the calculated results.

We compare these computed values with predictions based on the semi-empirical Kirkwood po-

larizability model,33, 34, 53, 111 which expresses the optical rotation in terms of the mean polariz-

ability and anisotropy of interacting groups. This model suggests that two interacting groups with

Cnv(n > 2) symmetry will contribute to the optical rotation in proportion to sin(2θ), where θ is the

dihedral angle between the groups.53 This model can offer insight into the locality of interactions

within the helices, since interactions beyond those of nearest neighbors should introduce sin(2kθ)

contributions (k = 2,3, ...).

5.3 Results

To analyze the OR tensor, we plot the Cartesian components of B̃, the contributions of β and A to

these components, and Tr(B̃). All component contributions/values are scaled by the inverse of the

number of units in the helix so that they can be directly related to the specific rotation. Since the

helix is not periodic in the x or y direction, the XX and YY component contributions are combined

to reflect the averaged value that would be observed in a hypothetical experimental measurement.

We include plots of the trace of the OR tensor for completeness and clarity of certain comparisons;

we emphasize that for solid state calculations, the specific rotation in each direction is given by Eq.

2.8, rather than the trace of B̃, as there is no isotropic averaging.

In section 5.3.1, we discuss the dependence of the OR tensor components (in particular, how

quickly they converge) on the length of the helix considered. In section 5.3.2, we discuss how the

dihedral angle between each molecular unit influences the OR and utilize the Kirkwood model to

probe interaction distances within the helices. In section 5.3.3, we examine the basis set depen-

dence of the results obtained for H2.
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5.3.1 Length Dependence

To model the calculation size necessary to converge the OR tensor components, we created helices

of various lengths for each of the diatomic molecules. For H2, we constructed all helices with

up to 300 molecules for each dihedral angle and rotation axis considered, while for the other four

molecules we obtained all lengths up to 100 molecules. We plot the diagonal Cartesian components

of B̃, as well as the contributions to these components from β and A, with respect to the number

of molecular units for representative helices with θ = 45○ in Figures 5.1-5.4.

Figure 5.1: Plots of contributions to/components of B̃ (a.u) for an H2 helix with 45○ rotation about
the COM and H atom axes. The separation between hydrogen molecules is 2.0 Å. Each value is
scaled by the inverse of the number of units in the helix.

As expected based on the sum-over-states formula, the contribution of A to Tr(B̃) is zero (i.e.

XX+YY=-ZZ) and this is the case for all the types of diatomic helices tested. However, the A
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Figure 5.2: Plots of contributions to/components of B̃ (a.u) for an N2 helix with 45○ rotation about
the COM axis and N atom axes. The separation between nitrogen molecules is 3.5 Å. Each value
is scaled by the inverse of the number of units in the helix.
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Figure 5.3: Plots of contributions to/components of B̃ (a.u) for an F2 helix with 45○ rotation about
the COM and F atom axes. The separation between fluorine molecules is 3.5 Å. Each value is
scaled by the inverse of the number of units in the helix.
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Figure 5.4: Plots of contributions to/components of B̃ (a.u) for an HF helix with 45○ rotation about
the COM, H atom, and F atom axes. The separation between HF molecules is 3.5 Å. Each value is
scaled by the inverse of the number of units in the helix.
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tensor does influence the relative and absolute magnitude of the directional components of B̃. For

the COM helix described in Figure 5.1, had we assumed that β on its own represented the OR,

the XX+YY and ZZ components would be predicted to have nearly equal magnitude, but with

the contribution from A included, the ZZ component is actually about three times larger than the

XX+YY. For the H axis helix, A contributions essentially invert the ratio between the Cartesian

components. These examples illustrate that including the electric dipole-electric quadrupole con-

tribution is crucial to obtain the correct qualitative relationship between the Cartesian components

of the OR tensor.

The homonuclear molecules exhibit remarkably similar variation of the OR tensor with respect

to length, as can be seen by comparing Figures 5.1-5.3. This similarity holds across the whole

range of dihedral angles, which implies that the qualitative OR behavior of these homonuclear

systems is largely governed by the helix geometry rather than by the nature of the substituents.

For H2, the Cartesian components of B̃ are typically 95% of their converged value within ∼ 25−35

molecules for all dihedral angles. For N2,F2, and HF, around 20 molecules are needed to reach

95% of the converged value for every dihedral angle (LiH exhibited markedly different conver-

gence behavior than the other molecules, thus it will be treated separately below).

For small clusters (∼ 2−7 molecules), the OR tensor components do not agree with their con-

verged values. The OR components of the small helices vary inconsistently with increased length,

unlike the monotonic convergence seen for larger helices, making it impossible to extrapolate to the

large helix limit. In fact, the components for the small helices can even have the wrong sign com-

pared to their converged values. Interestingly, this poor agreement for small helices, and the rate

of convergence in general, seem to be independent of unit cell size. The latter depends on the in-

termolecular relative orientation, determined by the angle θ , and varies between 2(COM homonu-

clear)/3(CA or heteronuclear) molecular units for θ = 90○ and 12(COM homonuclear)/24(CA or

heteronuclear) molecular units for θ = 15○,75○,105○,165○. One might have expected that helices

with a smaller unit cell would have required fewer units to converge their OR tensors, as the struc-

ture is in some sense more complete for a given number of molecules. Furthermore, molecular
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crystals that are periodic in 2 or 3 dimensions will likely require many more molecules to converge

the OR tensor than these simple models. Based on the deviation from the converged OR tensor

values for these small helices, we expect that calculations on just the unit cell will not be sufficient

to obtain accurate results. This indicates that calculations on finite clusters are likely not practical

for more realistic systems, and periodic boundary conditions (PBC) may be necessary.68, 75

Changing the separation distance between molecules does not qualitatively alter β and A, but

it does affect their relative contributions to B̃, as shown in Figure 5.5 for H2. These plots are

for helices with the same dihedral angle as Figure 5.1, but with the separation distance between

units increased from 2.0Å to 3.0Å (the latter plots only extend to helices 100 molecules in length,

as the tensor components were sufficiently converged by this point). The β contribution to each

component decreases in magnitude, while the A contributions increase in magnitude. Since the

ZZ contribution from each tensor is negative, B̃ZZ remains negative and essentially of the same

magnitude, but the XX+YY contributions have different signs and the shift in magnitude causes

this component of B̃ to become positive. This again highlights the importance of the A tensor

contributions: not only are the components of β and B̃ qualitatively different for a given separation

distance, but they also do not respond in the same manner to a change in separation distance.

In the prior analysis, we have not discussed LiH helices; unlike the other molecules, the B̃

tensor components for many of the LiH helices do not converge with the length of the helix, as

shown in Figure 5.6 by the plots of the H axis rotated helix. The slow convergence of the OR

tensor is particularly noticeable in the plot of Tr(B̃). Even considering helices of length up to

250 units, Tr(B̃) continues to change significantly when additional units are added. Changing the

separation distance between LiH units from 5.0Å to 7.5Å or 10.0Å (reported in Figures S1-S2 of

the supporting information, SI) did not make the Tr(B̃) curves smoother, although it did improve

the rate of convergence for the 10.0Å separation. That the error persists at different separation

distances shows that it is not simply a consequence of the chosen geometry. Hartree-Fock calcu-

lations of the trace (see Figure S3 in the SI) seem to converge, albeit with oscillations about the

converged value. To test whether the error is due to basis set incompleteness, Figure S4 in the SI
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Figure 5.5: Plots of contributions to/components of B̃ (a.u) for an H2 helix with 45○ rotation about
the COM axis. The separation between hydrogen molecules is 3.0 Å. Each value is scaled by the
inverse of the number of units in the helix.
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reports Tr(B̃) calculated with the aug-cc-pVTZ basis, which shows that the OR tensor still fails to

converge for some orientations and exhibits small oscillations throughout. These oscillations and

jagged appearance of the Tr(B̃) curve occur in both DFT and Hartree-Fock calculations, suggest-

ing they may be caused by edge effects from our finite model. Such edge effects may be present

also in cluster models of realistic chiral crystals, further highlighting potential pitfalls of using

finite models to describe solid crystals.

Figure 5.6: Plots of contributions to/components of B̃ (a.u) for an LiH helix with 30○ rotation about
the COM, Li atom, and H atom axes. The separation between LiH molecules is 5.0 Å. Each value
is scaled by the inverse of the number of units in the helix.

5.3.2 Angle Dependence

To study the influence of the helix geometry on the OR, we consider how the converged values of

the OR tensor and its contributions vary as functions of the dihedral angle between units. In Figure
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5.7, we plot the Tr(B̃) values for a series of H2 helices with different dihedral angles θ for rotations

around the COM and H atom axis. The plots for the individual components of the B̃ tensor are

reported for all molecules (but LiH) in Figures S5-S13 of the SI. The plots in Figure 5.7 seem

to have a sinusoidal dependence on the angle that can be rationalized through the semiempirical

Kirkwood polarizability model, as mentioned in section 5.2.33, 111 Since the units of the helices

have D∞h or C∞v symmetry depending on whether the molecule is homonuclear or heteronuclear,

the Kirkwood model predicts interacting molecules will contribute to the optical rotation as ∼

sin(2θ ′) with respect to the angle θ ′ between them. For a given helix, θ ′ = kθ , k = 1,2, ....

Figure 5.7: Converged Tr(B̃) (a.u.) for H2 helices with θ ○ rotation about the H atom and COM
axes. Points are the calculated values and solid lines are single sin fits to the same colored calcu-
lated values. The separation between hydrogen molecules is 2.0 Å.

To see how well this model describes the results, we fit Tr(B̃) for each type of helix (excluding

LiH, as its Tr(B̃) did not converge for many different dihedral angles and rotation axes) to the

functional form C sin(νθ), using a nonlinear regression where C and ν are varied to minimize the
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sum of the mean-squared error with respect to the computed values. Figure 5.7 reports the fitted

line for the H2 helices (similar plots for N2, F2, and HF are given in Figures S14-S16 of the SI),

while Tables 5.1 and 5.2 report the fitted C and ν parameters for all molecules. The fits for each

axis are approximately sin(2θ), which suggests that the largest contribution to the OR comes from

nearest neighbor interactions. Interestingly, the individual components of the (B̃) tensor show a

sinusoidal behavior only for helices with the COM axis, while for the helices with the axis on one

of the atoms, only Tr(B̃) has a sinusoidal shape, see Figures S5-S13 in the SI.

Fitting the data to a function of the form C sin(νθ)+Dsin(ηθ) reduces the sum of the mean-

square error by a factor of 2-4. These values are also reported in Tables 5.1-5.2 for all molecules

(except LiH). For the homonuclear molecules, the refitting only marginally changes the values of

C and ν (typically resulting in ν being closer to 2); D is anywhere from 4 to 10 times smaller

than C, and η ≈ 3.95 for each molecule. These η and D values are consistent with the Kirkwood

term arising from 2nd nearest neighbor interactions, which we would expect to be the next largest

contribution to the OR. For HF, while the error is reduced by the double sin fit, the ν and η

parameters obtained for COM and F axis rotation clearly do not align with the Kirkwood model

prediction. Different initial guesses for the HF double sin fit parameters did not decrease the mean

squared error, nor they significantly improve agreement with the Kirkwood model relative to the

double sin fit in Tables 5.1 and 5.2. It is noteworthy that homonuclear H2 and F2 are described

quite well with the Kirkwood model, but a heteronuclear combination of these elements generally

does not agree with the model.

While the Kirkwood model provides a reasonable first-pass description of the OR, it is not

a complete model even for homonuclear molecular units. In particular, angles close to 0○ and

180○ deviate from the fit, and the extrema of the fits (45○ and 135○) do not match the extrema of

the data (30○ and 150○). While closer, the double sin fits’ extrema also fail to match the data in

the same regions. Since Kirkwood contributions all have the form sin(2kθ), the model predicts

that interacting groups rotated by 90○ cannot contribute to the optical rotation, however, the atom

axis helices for all molecules have a nonzero trace at 90○. Unlike rotation through the COM,
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Table 5.1: Fitting parameters for single and double sin fits of Tr(B̃) for COM axis rotations. Pa-
rameters were determined via nonlinear regression to minimize the sum of the mean-squared errors
with respect to the calculated values of Tr(B̃) for each helix.

COM Axis Helices Single sin fit Double sin fit
Fitting Parameters C×102 ν C×102 ν D×102 η

H2 −9.69 1.951 −9.81 1.992 −2.38 3.924

N2 −21.9 1.980 −22.0 1.998 −2.35 3.943

F2 −26.6 1.963 −26.8 1.996 −5.33 3.946

HF −0.932 1.743 −0.935 1.346 −0.601 2.338

Table 5.2: Fitting parameters for single and double sin fits of Tr(B̃) for atom axis rotations. Param-
eters were determined via nonlinear regression to minimize the sum of the mean-squared errors
with respect to the calculated values of Tr(B̃) for each helix.

Atom Axis Helices Single sin fit Double sin fit
Fitting Parameters C×102 ν C×102 ν D×102 η

H2 −10.0 2.001 −10.3 2.034 −1.91 3.853

N2 −17.9 1.946 −18.3 1.979 −2.67 3.706

F2 −21.2 1.921 −21.8 1.979 −5.35 3.774

HF(H) −1.45 1.885 −1.43 1.902 −0.296 4.140

HF(F) −0.940 1.721 −0.932 1.341 −0.597 2.337
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90○ atom axis rotations leave the helix chiral, thus Tr(B̃) can only be zero accidentally in this

case. Moreover, a description of the OR in terms of solely local (kth nearest neighbor for small

k) interactions would not be consistent with the results in Figures 5.1-5.4, as this would cause the

OR tensor components to reach their converged values sooner. The fact that the OR tensor takes

around 25 units to converge suggests there must be some longer range effects at play that are not

properly described by the Kirkwood model, and might be teased out from PBC calculations.

5.3.3 Basis sets

The aug-cc-pVDZ basis set is generally a good compromise between computational cost and ac-

curacy, however, in developing a solid state OR procedure, it is important to verify that the con-

clusions we have drawn with this basis set are qualitatively consistent with the results of more

complete basis sets. To this end, we compare aug-cc-pVDZ results for H2 with calculations us-

ing aug-cc-pVTZ. In Figure 5.8, we plot the tensor contributions to/components of B̃ using the

aug-cc-pVTZ basis set, along with Tr(B̃) for the same H2 helix as in Figure 5.1. Due to the cost

associated with increasing the size of the basis set, results were only obtained for helices up to

100 molecules in length, which is sufficient to observe convergence of the tensor components. The

tensor components obtained using the triple-ζ basis set exhibit similar qualitative behavior with

respect to convergence as their double–ζ counterparts. The only noteworthy difference is that the

B̃ components shift to decrease their magnitude, leading to reduced optical response. This effect

is essentially absent for the 90○ helices, but increases as θ goes towards 0○ or 180○.

One exception to the qualitative similarity of the OR tensors in each basis set is the 15○ helix,

which shows an unusual stair-step pattern in the OR tensor and its trace, see Figure 5.9. These sharp

jumps seem to be an unphysical artifact of the basis set, as evidenced by the incongruity between

the periodicity of the steps and any geometric feature of the helix. To probe what part of the basis

set causes this behavior, we repeated the calculations by systematically removing diffuse functions

from the aug-cc-pVTZ basis. We focused on diffuse functions because they have been shown to be

more important for accurately computing the OR than other elements of the basis set.112 We find
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Figure 5.8: Plots of contributions to/components of B̃ (a.u.) for an H2 helix with 45○ rotation
about the H atom and COM axes. Calculations were carried out using aug-cc-pVTZ basis set. The
separation between hydrogen molecules is 2.0 Å. Each value is scaled by the inverse of the number
of units in the helix.
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that removing the s-type diffuse functions from the basis eliminates the sharp jumps and changes

the values of the tensor components. On the other hand, removing d-type diffuse functions has

little effect on the component values, while removing the p-functions substantially alters the OR

tensor, leading to poor agreement with larger basis set results (vide infra).

Figure 5.9: Plots of contributions to/components of B̃ (a.u.) for an H2 helix with 15○ rotation
about the H atom and COM axes. Calculations were carried out using aug-cc-pVTZ basis set. The
separation between hydrogen molecules is 2.0 Å. Each value is scaled by the inverse of the number
of units in the helix.

To see whether this unphysical effect is present for larger bases and to test the accuracy of

these diffuse-removed basis sets, we recalculated the OR using aug-cc-pVQZ and aug-cc-pV5Z,

along with their variants where some of the diffuse functions were removed. Figure 5.10 plots

the trace of the OR tensor for a selection of these basis sets. We use the aug-cc-pV5Z results as

the standard for accuracy, given that this is the largest basis set considered, although we note that
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p-pV5Z (the same basis set, but with only the p-type diffuse functions) gives very similar results.

There are still jumps in B̃ for the aug-cc-pVQZ basis, however, they do not occur in the same

locations as they did for the aug-cc-pVTZ basis, supporting their unphysical nature. Comparing

the fully augmented basis functions to those with just p-type diffuse functions, the results show that

not only does removing the s-type functions smooth out the curves of Trace(B̃), but it also brings

their values closer in line with those of the aug-cc-pV5Z basis set. This is a promising result, as it

suggests that the accuracy of a large basis set can be achieved using a smaller cc-pVXZ basis with

fewer diffuse functions.

Figure 5.10: Plots of Trace(B̃) (a.u.) for an H2 helix with 15○ rotation about the COM axis. The
separation between hydrogen molecules is 2.0 Å. Calculations were carried out with the aug-cc-
pVXZ basis sets, X=T,Q,5, and with the corresponding p-cc-pVXZ basis sets containing only the
p-type diffuse functions.
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5.4 Discussion and Conclusions

This work provides benchmark data on a set of helical chains of diatomic molecules as a first step

towards developing a general purpose electronic structure method to compute the OR of solids.

We study the rate and extent of convergence of the OR tensor, B̃, with respect to the length of the

helix, and find that the values for unit cell sized clusters do not agree with the converged values

for these helices. This lack of dependence on the unit cell size holds across different molecules

and helix conformations, suggesting larger calculation cells may be needed, particularly for the

more relevant 3D periodic compounds that we intend to study. The OR behavior of the helices of

homonuclear molecular units with respect to the dihedral angle θ is in good agreement with the

semiempirical Kirkwood polarizability model, indicating that nearest-neighbor interactions are the

strongest contributions to the OR. At the same time, this simple model is not able to account for

important long-range, cumulative interactions, and it does not describe heteronuclear helices very

well. The difficulties of the Kirkwood model in describing even such simple systems reveal that

approaches based on local polarizability may be insufficient to characterize chiral supramolecu-

lar assemblies. A comparison of the results for H2 helices with different basis sets shows that

the aug-cc-pVDZ results qualitatively agree with the results of the larger aug-cc-pVTZ basis set.

Reasonable results are also obtained using basis sets with a reduced number of diffuse functions,

allowing for more efficient computation of the OR.

The outcomes of this study suggest that the implementation of periodic boundary condition

methods for the evaluation of the OR seems the best approach to study the optical activity of

solids, and this work is currently under way in our group. Furthermore, the insight gained from

these helix models will help us to tune various parameters of the PBC procedure to strike the right

balance between accuracy and feasibility.

68



Chapter 6

Effect of Gauge on Computations of the Origin Invariant, Full

Optical Rotation Tensor

(This work was adapted from Chirality 2021, 33, 303-31470 and J. Chem. Phys. 2021,155

02411871 with permission from the authors. Supporting information is available online.)

6.1 Introduction

Although most measurements and simulations of optical rotation focus on isotropic systems, e.g.

in solution and in gas phase, it is also interesting to investigate oriented systems. In fact, for

the latter it is possible to measure each individual element of the tensor, which can provide more

information about the properties of the system.113, 114 From the experimental point of view, such

measurements can only be performed on crystals because of the limited intensity of the signal.

These solid-state measurements are still difficult because they require a very smooth surface to

distinguish the optical rotation signal (circular birefringence) from more intense signals (linear

birefringence), and only a limited amount of experimental data is available.113, 114

Theoretical simulations are of paramount importance for the correct assignment of the absolute

configuration of chiral molecules, and many methods have been developed mostly based on density

functional theory (DFT) and coupled cluster (CC) theory.26, 60, 72, 90, 97, 109, 111, 115–123 However,

the majority of these studies focus on the isotropic OR because these methods were developed

for molecules, not solid materials, and because of the predominance of experimental data in gas

and solution phase. Thus, few studies report the full OR tensor.36, 51, 52, 54, 124 In Chapter 5, we

presented results for calculations of the full OR tensor at the DFT level for models of solid state
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systems. There, we noted the importance of both the electric dipole-magnetic dipole and electric

dipole-electric quadrupole polarizability contributions to the individual components of the full OR

tensor.

While isotropic OR is simpler to compute, computing the full OR tensor can reduce numerical

error, allowing for clearer comparisons with experiment. This is because the isotropic specific

rotation, as shown in Eq. 2.6, is computed as the trace of the full OR tensor, which is equal to

the trace of the electric dipole-magnetic dipole polarizability tensor. In other words, the electric

dipole-electric quadrupole polarizability tensor contribution to the full OR tensor is traceless and

does not need to be evaluated. Since the diagonal elements of the OR tensor are signed quantities,

their sum is consistently one or two orders of magnitude smaller than their individual values. This

means that a relatively small error in each element may lead to a significantly larger error in the

trace and thus in the isotropic OR. Therefore, it is desirable to be able to evaluate the full OR tensor

using highly accurate levels of theory despite the extra computational effort.

Since practical electronic QM calculations only provide an approximate solution to the Schrödinger

equation, using an incomplete basis expansion for the electron density, the numerical results de-

pend on the choice of gauge for the electric dipole and quadrupole operators.72, 89, 125, 126 As we

noted in section 2.1, length gauge (LG) calculations using variational methods such as Hartree-

Fock (HF) and DFT, the origin-dependence issue is resolved using London orbitals, also known as

gauge including atomic orbitals (GIAOs).61, 90, 115, 127, 128 However, GIAOs cannot be utilized with

standard CC methods, where the reference orbitals are not reoptimized, because orbital relaxation

is neglected in the linear response (LR) equations to avoid unphysical poles in the LR function

due to the reference wave function.73, 129 Alternative formulations of CC methods with orbital

optimization have been proposed,130, 131 but they are not commonly used because they are compu-

tationally intensive and often have convergence issues. On the other hand, the modified velocity

(MVG)60, 70 recipe requires the explicit evaluation and removal of the unphysical static limit, and

so far it has been the preferred approach for OR calculations at CC level.72, 97, 132, 133

Caricato recently proposed the so called LG(OI) method to overcome the origin-dependence
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issue of LG calculations of specific rotation without the complication of London orbitals.62 This is

based on a transformation of the electric dipole-magnetic dipole polarizability tensor using the sin-

gular value decomposition (SVD) eigenvectors of the mixed-gauge electric dipole-electric dipole

polarizability tensor. The LG(OI) approach is simpler than the LG-GIAOs approach and faster than

the MVG approach, but it shares with the latter the applicability to any approximate method. This

allows for the first origin-invariant LG simulations of specific rotation with standard CC methods.

In this chapter, we compare the calculation of the full, origin independent Buckingham/Dunn

tensor at single and double excitation level (CCSD) using both the MVG and LG(OI) approaches

to determine the effect of the gauge on the computed OR. Although coupled cluster calculations of

OR are only reasonable for individual molecules at this point, this is an important step towards the

development of the corresponding method for solids using periodic boundary conditions, which

in turn can be compared directly to experimental measurements. Here, we compare the CCSD-

LG(OI) and MVG approaches on a test set of 22 organic molecules to assess whether they provide

physically equivalent results. We also compute the MVG B tensor from Eq. 2.7 for these molecules

using two common DFT functionals for OR calculations (B3LYP and CAM-B3LYP) in order to

assess how the treatment of electron correlation affects the OR. The chapter is organized as fol-

lows: a brief review of the LG(OI) approach is presented in section 6.2, details of the calculations

are reported in section 6.3, the results of numerical simulations are discussed in section 6.4, and

concluding remarks are summarized in section 6.5.

6.2 Theory

In this section, we present the theory for the evaluation of the full OR tensor with the LG(OI)

approach.62 Throughout, we reference the equations for the Buckingham/Dunn optical activity

tensor B given in Chapter 2. The tensors βββ
L and AL in Eqs. 2.2-2.3 are both origin dependent

according to:

β
L
αβ
(OOO′) = β

L
αβ
(OOO)+ 1

2
εβγδ α

(R,P)
αγ dδ (6.1)
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AL
α,βγ
(OOO′) =AL

α,βγ
(OOO)− 3

2
α
(R,R)
αγ dβ

− 3
2

α
(R,R)
αβ

dγ +α
(R,R)
αδ

dδ δβγ

(6.2)

where a sum over common indices is implied in the last term on the right-hand side of both equa-

tions, OOO is a particular choice of origin of the coordinate system and

OOO′ =OOO+ddd (6.3)

is a displaced origin, δδδ is the Kronecker delta tensor, and α is the electric dipole-electric dipole po-

larizability tensor expressed with two gauge representations for the dipole operator: the superscript

(R,R) in Eq. 6.2 indicates the length gauge representation for both occurrences of the dipole oper-

ator (shown in Eq. 2.12), while the superscript (R,P) in Eq. 6.1 indicates a mixed representation

with the length gauge for one occurrence of the dipole operator and the velocity gauge for the other

one (note that a factor of ω−1 is to be included in the mixed-gauge LR function to account for the

change in representation of the electric dipole operator).60 In an exact calculation, the individual

origin dependent terms of βββ
L and AL perfectly cancel out when they are combined to form B in

Eq. 2.7, such that the latter is origin invariant. However, this is no longer the case in approximate

calculations and the individual elements of B as well as its trace are origin dependent.

In the velocity gauge, B is inherently origin independent because the origin dependent terms

for both βββ
V and AV are related to ααα(R,R). Since ααα(R,R) is symmetric even in an approximate

calculation, these terms cancel when the two tensors are added together. We can use this same

idea to construct an origin-invariant B tensor in the length gauge for any approximate method.

The approach is based on the same transformation we suggested for the specific rotation in Ref.

62, which we called LG(OI). First, we need a form of the A tensor that has a qualitatively similar

origin dependence as the βββ vector in Eq. 6.1, i.e. dependent on the mixed-gauge electric dipole-

electric dipole polarizability α(R,P). This is accomplished by contracting the length electric dipole

operator with the velocity quadrupole operator:
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A(R,P)
α,βγ

= 2
ω
∑
j≠0

Im
⟨ψ0∣µL

α ∣ψ j⟩⟨ψ j∣ΘV
βγ
∣ψ0⟩

ω2
j −ω2

(6.4)

such that the A tensor uses a mixed-gauge representation: length for the dipole operator and veloc-

ity for the quadrupole operator. This form of the A tensor preserves the expression of the B tensor

in Eq. 2.1, but leads to the following expression of its origin dependence:

A(R,P)
α,βγ
(OOO′) =A(R,P)

α,βγ
(OOO)− 3

2
α
(R,P)
αγ dβ

− 3
2

α
(R,P)
αβ

dγ +α
(R,P)
αδ

dδ δβγ

(6.5)

which is now compatible with that of the βββ tensor in Eq. 6.1. However, the use of the mixed-gauge

form of the A tensor is not sufficient to lead to an origin-invariant B tensor because the α(R,P)

tensor is not symmetric. Therefore, the contributions of the βββ and A(R,P) tensors to the B tensor

do not perfectly cancel out. To achieve that, we diagonalize α(R,P) tensor with a singular value

decomposition (SVD):

α(R,P) =UUUα
(R,P)
D VVV † (6.6)

where α
(R,P)
D is diagonal, and UUU and VVV † are unitary transformations. We then apply the inverse

transformation to the βββ and A(R,P) tensors:

β̃αβ = βα ′β ′Uα ′αVβ ′β (6.7)

Ã(R,P)
α,βγ

= A(R,P)
α ′,β ′γ ′

Uα ′αVβ ′βVγ ′γ (6.8)

Using the β̃ββ and Ã(R,P) tensors in Eq. 2.1 makes the B tensor fully origin invariant without recourse

to GIAOs. The transformations in Eqs. 6.7-6.8 are sensitive to the phase of the eigenvectors and

their order in the unitary matrices. Therefore, it is important to avoid inadvertently changing the

handedness of the coordinate system with the transformation.

A legitimate question about the LG(OI) B tensor is what orientation of the molecule corre-

sponds to this tensor values. In an exact calculation, α(R,P) is symmetric and UUU ≡VVV in Eq. 6.6.
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Therefore, the transformed B tensor corresponds to an orientation where the α(R,P) tensor is diag-

onal. For approximate calculations, the closest we can get to this orientation is to use the eigen-

vectors that diagonalize the symmetric part of the α(R,P) tensor, which we collect in the unitary

matrix WWW . As we approach the exact solution UUU ,VVV →WWW . When comparing LG(OI) results with

other gauges, the orientation defined by WWW should be used so that the B tensor components of all

calculations are aligned properly.

6.3 Computational Details

3
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Figure 6.1: Structures of the molecules in the test set.

The molecules used in the test set are reported in Figure 6.1. The geometries were taken from

Stephens et al.112 for molecules 1 and 2, from Srebro et al.134 for molecules 3-7, 12, 13, 15, and 18-

20, from Aharon and Caricato41 for molecules 8-11, 16, and 17, and from Ref. 62 for molecules

14, 21, and 22. The B calculations were performed as discussed in the previous section at the
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sodium D line (589.3 nm) because this is a typical wavelength used in experiment and it is far from

resonance for all molecules. The OR calculations were performed with three methods: CCSD,

B3LYP,94, 135 and CAM-B3LYP.108 The former functional was chosen as the most popular choice

in quantum chemistry, and the latter because it showed very good performance in specific rotation

calculations.134 The aug-cc-pVDZ93 basis set was used for the OR calculations with all methods

because it represents a reasonable cost-accuracy compromise. All calculations were performed

with a development version of the GAUSSIAN suite of programs.95 The CCSD tensors were

computed using standard LR theory, with frozen core orbitals for the correlation energy evaluation

and frozen orbitals for the LR function.

In comparing the CCSD and DFT MVG calculations, we assume that the CCSD results can

be used as reference, and errors are defined with respect to this reference. Obviously, there is no

guarantee that CCSD provides the results most in agreement with hypothetical experimental mea-

surements. However, since CC theory provides a systematically improvable hierarchy of methods

and CCSD is the best we can do at the moment, we consider it the “theoretical reference”. Further-

more, in order to simplify the comparison between methods, the molecules were oriented along

the principal axes of their CCSD-MVG B tensor, and the rotated structures are reported in Tables

S1-S22 of the supporting information (SI).70 In this way, the off-diagonal elements of the B tensor

are zero and the corresponding values for the DFT-MVG tensor should be rather small. This al-

lows us to concentrate our analysis on the diagonal elements of the B tensor and evaluate absolute

errors for the off-diagonal elements. Further analysis of the off-diagonal elements of B, as well

the individual components of the βββ and A tensors, is described elsewhere.70 For the MVG and

LG(OI) comparisons, we retained the geometries from the original references and simply rotated

the MVG B tensor directly using the WWW rotation matrix.

All of these tensors are extensive quantities, but it is better to compare intensive quantities like

the specific rotation in Eq. 2.6. Therefore, the correlation plots in section 6.4 use mass-scaled

tensor values:

T M
αβ
=

Tαβ

M
×103 (6.9)
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where Tαβ is an element of tensor T in a.u., M is the molar mass of the molecule in amu, and

103 is a scaling factor used for clarity. The Tαβ and M values, together with the isotropic specific

rotation of all molecules, are reported in Tables S23-S32 of the SI.70 The correlation plots also

include linear fits of the data with a zero-intercept constraint (an achiral molecule has zero trace

with all methods). The fits are evaluated with and without molecule 14, (1S,4S)-(–)-norbornenone,

because this is a notoriously difficult molecule for optical rotation calculations.31, 136, 137

6.4 Results

Figure 6.2: B3LYP vs CCSD correlation plots for the mass-normalized diagonal elements and
trace (a.u. ×103) of the MVG B tensor, see Eq. 6.9. The linear fit was performed with (cyan) and
without (yellow) molecule 14.

We start by comparing MVG CCSD and DFT calculations on the test set in Figure 6.1 in

order to determine the effect of electron correlation on OR. For this comparison, the molecules are
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Figure 6.3: CAM-B3LYP vs CCSD correlation plots for the mass-normalized elements and trace
(a.u.×103) of the B tensor computed at the CCSD/aug-cc-pVDZ level for the molecules in Figure
6.1. The linear fit was performed with (cyan) and without (yellow) molecule 14.
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oriented such that the CCSD B tensor is diagonal so that we can directly assess the correlation

of the diagonal elements, as shown in Figures 6.2 and 6.3. In these plots, the tensor elements

and the trace are divided by the molecular mass to produce an intensive quantity, which allows

us to compare molecules of various sizes on equal footing. Linear fits on the whole test set were

noticeably affected by molecule 14 (i.e., the notorious (S)-(–)-norbornenone), so we also present

fits that exclude this molecule.

Figure 6.4: Slope and R2 correlation parameters of the linear fits for the diagonal elements of the
B tensor including (left-hand side plots) and excluding (right-hand side plots) molecule 14.

Starting with the B3LYP data in Figures 6.2 and 6.4, while this functional consistently overesti-

mates the magnitude of the B components and trace compared to CCSD (slopes greater than 1.2),

the correlation between the two methods is strong (R2 ≥ 0.90 for all components and the trace).

As previously mentioned, molecule 14 has an outsized influence on the fit. Removing this point

improves the correlation, particularly for the YY component, but still results in a roughly 20%

overestimation of CCSD results. The individual tensor elements (T M
αβ

in Eq. 6.9) are spread out

over a large range of positive and negative values, but the spread of their sum (the Trace plot) is

significantly smaller, which confirms the notion that in general the isotropic OR is considerably

smaller than what could be measured for an oriented system. The reduced magnitude of the trace
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makes it susceptible to significant error propagation stemming from (relatively) small errors in the

diagonal components. This error propagation is clearly visible when comparing the fits with and

without molecule 14; removing this outlier reduces the average overestimation of the trace from

60% to 20% while the overestimation of the individual tensor elements is reduced from roughly

30% down to 20%.

The results for CAM-B3LYP are qualitatively the same as those for B3LYP, but the agreement

with the CCSD results is better for the former functional, with a slope smaller than 1.2 for all

components and the trace. Excluding molecule 14, the overestimation of the trace is reduced

considerably, with a slope approaching 1. The R2 of the trace remains lower than that of the

components whether or not molecule 14 is included, again reflecting the significant effect of error

propagation.

The LG(OI) and MVG B tensor elements and trace for the entire set of 22 molecules are com-

pared in the correlation plots in Figure 6.5. As with the DFT/CCSD comparison, we performed

linear fits on the data both with and without molecule 14, and the slope and R2 parameters for these

fits are plotted in Figure 6.6. Since the molecules are oriented according to the LG(OI) rotation

matrix W for this comparison, rather than the principal axes of the MVG B tensor, we also consider

the correlation of off-diagonal elements of the tensor. It is clear from these figures that there is a

strong linear correlation between the MVG and LG(OI) B tensor components, with the R2 of each

fit approaching 1.0. This strong correlation persists regardless of whether molecule 14 is included

in the fit; however, this molecule has an outsized influence on the predicted slope. While the fit

with molecule 14 suggests that MVG B components consistently underestimate the correspond-

ing LG(OI) tensor elements by 10-20%, the fit excluding 14 predicts a consistent overestimation

relative to LG(OI) for all components. In this case, the overestimation is smaller in magnitude

(< 5%) except for the yy (∼ 10%) and yz (15%) elements. The MVG trace is consistently smaller

than that with LG(OI), but again removing molecule 14 from the fit reduces this underestimation

to only about 5%. The R2 parameters are all > 0.95 and all but the yy component increase when

molecule 14 is excluded from the fitting. The MVG yy elements for molecules 21 and 22 signif-
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Figure 6.5: MVG vs LG(OI) correlation plots for the mass-normalized elements and trace
(a.u.×103) of the B tensor computed at the CCSD/aug-cc-pVDZ level for the molecules in Fig-
ure 6.1. The linear fits were performed with (cyan) and without (yellow) molecule 14. Molecule
14 is denoted by the unfilled marker in each of the plots.
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Figure 6.6: Slope and R2 correlation parameters of the MVG vs LG(OI) linear fits of B components
including (left) and excluding (right) molecule 14.

icantly underestimate their LG(OI) counterparts, with the component for 22 even changing sign.

This underestimation leads to a slightly larger R2 in the fit with 14, since the slope is < 1.0 in this

case. The large effect of including/excluding molecule 14 suggests that this level of theory and

basis set are somewhat far from convergence for this compound, as MVG and LG(OI) should be

equivalent for an exact, complete basis calculation.

Despite the general accuracy of the fits, there are still individual cases for which the MVG and

LG(OI) CCSD B tensor elements differ qualitatively: molecules 7 (xx), 8 (yz), 14 (xy), 15 (xz),

and 21 (yy) all have one MVG B element that differs in sign from the LG(OI) B tensor. These sign

changes are not specific to any particular Cartesian component and tend to occur in cases where

the absolute value of the LG(OI) B elements are small (< 0.10 a.u.). These small values lead to

relatively small squared errors, so the R2 parameters of the fits remain close to 1.0. Nevertheless,

it is not obvious whether these deviations stem from incompleteness of the basis or insufficient

treatment of correlation.
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6.5 Discussion and Conclusions

In this work, we assess the influence of gauge and level of theory on computations of the full

OR tensor B. We found that MVG DFT calculations of the OR tensor B were well correlated

with MVG CCSD calculations, though they consistently overestimate individual components of

the tensor, as well its trace. Depending on the chosen functional, the extent of overestimation can

vary greatly; excluding molecule 14, traces computed with CAM-B3LYP results are in remarkable

agreement with CCSD, while even without this problematic molecule, B3LYP overestimates the

trace by an average of 30%. The outsized influence of molecule 14 on fits of the trace demonstrates

the impact that error propagation from the (typically much larger) tensor components can have on

this property.

Figures 6.5 and 6.6 show a clear linear correlation between the mass-scaled MVG and LG(OI)

CCSD tensor elements for a wider range of molecules. However, there remain unexplained discrep-

ancies between the two gauges. Large component differences, like those seen for the yy element of

molecule 14 in Figure 6.5, can have a pronounced effect on the obtained linear fits for these com-

ponents, even when the sign is consistent. It is unclear whether the deviations of these components

are solely due to the small basis set used for these calculations (aug-cc-pVDZ) or if the level of

theory plays a role.

A recent study by our group analyzed the effect of increasing basis set size on the computed

specific rotation and found that MVG and LG(OI) CCSD did not converge to the same complete

basis limit.138 This discrepancy would suggest that the treatment of electron correlation in CCSD

is insufficient, as the OR tensor should be invariant to the choice of gauge for an exact calculation.

Including triple excitation contributions using CCSDT is cost-prohibitive even for small molecules

and may still be insufficiently converged. Consequently, some care must taken with the choice of

gauge in practical, approximate calculations. LG(OI) OR may be the more cost-effective choice,

as it seems to converge more quickly to the complete basis set limit than MVG.138

In summary, we assessed various approaches to express the Buckingham/Dunn tensor in an

origin-invariant formulation. We found that the B tensor computed with DFT methods was gen-

82



erally well correlated with that of CCSD, but that it typically overestimated the components by

20-30% and could deviate substantially for challenging cases like molecule 14. B computed with

the CCSD LG(OI) and MVG approaches were highly correlated, with only a few noticeable dis-

crepancies in individual tensor components. While we have only analyzed molecular systems here,

insight into different methods of computing the full B tensor will aid in the evaluation of optical

rotation in oriented systems such as chiral crystals.
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Chapter 7

Full Optical Rotation Tensor for Periodic Systems

7.1 Introduction

Measurements of optical rotation (OR) have long been used to characterize chiral systems, but it

was only relatively recently that the first Hartree-Fock level simulations were performed to com-

pute this property.26 Great strides have been made towards more accurate, efficient, and inter-

pretable OR simulations since these initial calculations: extensions to post-Hartree-Fock levels of

theory,62, 111, 112 development of OR-optimized basis sets,91, 132, 139, 140 improved understanding of

the role of solvation,41–44, 141 and approaches for decomposing the OR into more chemically intu-

itive contributions.31, 34, 35, 38, 39 In spite of these efforts, OR remains a very challenging property

to compute accurately and a clear structure-property relationship remains unknown.

Many of the current difficulties related to computing OR stem from comparisons made with

solution phase experiments. Accurately replicating the experimental OR in solution is not as sim-

ple as just determining the OR for the minimum energy structure; multiple configurations of the

molecule can exist in solution, requiring a conformational search and subsequent Boltzmann av-

eraging of the OR from each conformer. Not only does this require an extensive, costly search

to ensure that all relevant conformers are found, but the energies of each conformer must also be

determined to a high accuracy, as any errors in the exponential energy-weighting could greatly

distort the conformer populations and thus the average OR. Compounding these issues is the need

to model the surrounding solvent, which can influence the conformer populations and contribute

to the OR itself through the formation of a chiral shell around a given conformer. Implicit elec-

trostatic models of solvation account for some of these effects, but neglect specific solvent-solute
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interactions and the induced chirality of the solvation shell. Incorporating some explicit solvent

molecules has mixed results, as the decision of how many solvent molecules to include and where

to place them is typically made in an ad hoc fashion. Including a full solvation shell would be less

arbitrary, but would require MD simulations to determine reasonable solvation shell configurations

and the levels of theory that can be used for these system sizes may not be sufficiently accurate.42–44

Larger extents of solvation currently preclude the use of QM calculations altogether.

Comparisons with crystalline solids, particularly molecular crystals, would eliminate or greatly

simplify a number of these issues. The rigidity and regularity of a crystal would not only limit the

number of conformations, but would also simplify the “solvent” environment. The extended struc-

ture around a molecule can be determined from the crystal structure and can be readily simulated

through the use of periodic boundary conditions (PBC). Additionally, solid state experiments allow

the entire OR tensor to be resolved, unlike solution or gas phase where only the isotropic OR can be

measured. However, general, first-principles methods to compute optical activity of periodic sys-

tems had not been developed until very recently.46–48, 142–145 Scuseria et al. laid the groundwork by

deriving an approach to compute the PBC electric dipole polarizability tensor using an AO basis.68

Rerát and Kirtman recently implemented the PBC electric dipole-magnetic dipole polarizability,

which together with contributions from the electric dipole-electric quadrupole polarizability forms

the full OR tensor, into the CRYSTAL electronic structure platform.50

In this chapter, we derive equations for the PBC electric dipole-magnetic dipole polarizability,

as well as the electric dipole-electric quadrupole polarizability, and describe our work implement-

ing these tensors into Gaussian in order to build the full periodic OR tensor. In section 7.2, we

derive expressions for the electric dipole-magnetic dipole and electric dipole-electric quadrupole

polarizabilities that satisfy periodic boundary conditions (PBC). In section 7.3, we discuss some

details of how these OR polarizabilities are implemented in GAUSSIAN. Section 7.4 presents pre-

liminary calculations on simple model systems using our current implementation of the PBC OR

tensor. We conclude the chapter with a discussion of these results and their implications in section

7.5.
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7.2 Theory

Optical activity is governed by the rank-2 Buckingham/Dunn B tensor, which in turn has contri-

butions from βββ and A, respectively the frequency dependent electric dipole-magnetic dipole and

electric dipole-electric quadrupole polarizability tensors as detailed in Chapter 2. Extending these

tensors to periodic systems reduces to the problem of defining µµµ , mmm, and ΘΘΘ operators that are trans-

lation invariant (i.e. consistent with periodic boundary conditions) that can be evaluated over an

AO basis. For the electric dipole, this has already been derived and we reproduce the key steps of

the derivation in section 2.3.68, 77 We can proceed in a similar fashion to derive the PBC magnetic

dipole and electric quadrupole operators.

7.2.1 Periodic Magnetic Dipole

In real space, the matrix elements of the magnetic dipole for a periodic system can be written as

mmm000lll
µν = −⟨µ000∣rrr× ppp∣νlll⟩ = −⟨µ000∣(rrr× ppp)e−iDDDlll⋅ppp∣ν000⟩ (7.1)

where, as in section 2.3, µ,ν are atomic orbitals indices, DDD is a matrix with (in general) three

translation vectors as columns, lll is a vector of indexing the cells the along each translation vector,

with 000 the center cell, and e−iDDDlll⋅ppp is the translation operator. Due to the presence of the translation

operator, the magnetic dipole matrix is not Hermitian, i.e. mmm000lll
µν ≠mmm000−lll

νµ :

mmm000lll
µν = −⟨µ000∣(rrr× ppp)e−iDDDlll⋅ppp∣ν000⟩

= −⟨µ−lll ∣rrr× ppp∣ν000⟩− ⟨µ000∣[rrr,e−iDDDlll⋅ppp]× ppp∣ν000⟩

= −⟨µ−lll ∣rrr× ppp∣ν000⟩−DDDlll× ⟨µ−lll ∣ppp∣ν000⟩

= −mmm000−lll
νµ +DDDlll× ppp000−lll

νµ

(7.2)

The second step is the result of rrre−iDDDlll⋅ppp = e−iDDDlll⋅ppprrr+ [rrr,e−iDDDlll⋅ppp] where [⋅, ⋅] is the commutator. The

third step evaluates the commutator in the second term using the relationship [rrr, f (ppp)] = i f ′(ppp)
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which holds for any function of momentum f (ppp) expressed in atomic units.78 The last step uses

that the magnetic dipole and momentum matrix elements are pure imaginary, so taking their com-

plex conjugates is equivalent to negating them.

Expressing the magnetic dipole matrix in a Hermitian form will help us to collect terms that

arise during the derivation and is convenient for storing/manipulating the matrix in our implemen-

tation. Defining

m̃mm000lll
µν =

1
2
(mmm000lll

µν −mmm000−lll
νµ ) =mmm000lll

µν +
1
2

DDDlll× ppp000lll
µν = (m̃mm000−lll

νµ )∗ (7.3)

produces a Hermitian matrix by splitting the origin dependent momentum term between the given

matrix element and the corresponding adjoint matrix element. This is equivalent to the procedure

used to make the electric dipole Hermitian in Eq. 2.42.

We can now proceed to transforming the magnetic dipole operator to a translation invariant

form. As with the PBC electric dipole derivation shown in section 2.3, this involves substituting

the length operator rrr with a translation invariant form as shown in Eq. 2.35.68, 75, 77 Applying this

transformation to the magnetic dipole operator yields

−rrr× ppp ≃(−ieikkk⋅rrr∇kkke−ikkk⋅rrr)× ppp

=eikkk⋅rrr(−i∇kkk× ppp)e−ikkk⋅rrr +eikkk⋅rrr(−i∇kkk× [e−ikkk⋅rrr, ppp])

=eikkk⋅rrr(−i∇kkk× ppp)e−ikkk⋅rrr +eikkk⋅rrr(−i∇kkk×kkk)e−ikkk⋅rrr

=− ieikkk⋅rrr[(∇kkk× ppp)+(∇kkk×kkk)]e−ikkk⋅rrr

(7.4)

The second step uses the identity exp(ikkk ⋅ rrr)ppp = pppexp(ikkk ⋅ rrr)+ [exp(ikkk ⋅ rrr), ppp]. The commutator is

then evaluated in the third step using [ f (rrr), ppp,] = i f ′(rrr).78

Using the transformed operator, we can now derive magnetic dipole matrix elements between

Bloch functions
m̂mmpkkk,qkkk = −i⟨pkkk∣eikkk⋅rrr((∇kkk× ppp)+(∇kkk×kkk))e−ikkk⋅rrr∣qkkk⟩

= −i⟨upkkk∣∇kkk× ppp∣uqkkk⟩− i⟨upkkk∣∇kkk×kkk∣uqkkk⟩
(7.5)

where the Bloch functions ∣qkkk⟩ and their cell periodic part uqkkk(rrr) are defined in Eqs. 2.30 and 2.37
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respectively. We write the crystal orbital PBC magnetic dipole matrix as m̂mm to distinguish it with

from the AO matrix mmm and the Hermitian AO matrix m̃mm. We now must express these reciprocal-

space, crystal orbital matrix elements in terms of real-space, atomic orbital matrix elements so they

can be evaluated.

We can start to evaluate the first term on the right hand side Eq. 7.5 by applying the operators

sequentially to the cell periodic ket

−ippp∣uqkkk⟩ = [−
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)
∂ χ lll

ν(rrr)
∂ rrr

+ ikkk
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr)]

=ΞΞΞ

(7.6)

where ΞΞΞ is simply a collection of the terms produced by applying the momentum operator to the

ket. Continuing to apply ∇kkk× yields

∇kkk×ΞΞΞ = [irrr×
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)
∂ χ lll

ν(rrr)
∂ rrr

(7.7a)

− i
LLL
∑

lll=−LLL
DDDlll×eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)
∂ χ lll

ν(rrr)
∂ rrr

(7.7b)

−
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

∂Cqν

∂kkk
× ∂ χ lll

ν(rrr)
∂ rrr

(7.7c)

+ rrr×kkk
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (7.7d)

−
LLL
∑

lll=−LLL
(DDDlll)×kkkeikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (7.7e)

+ ikkk×
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

∂Cqν(kkk)
∂kkk

χ
lll
ν(rrr)] (7.7f)
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We can evaluate the ket of the second term of Eq 7.5 in the same way

−i∇kkk×kkk∣uqkkk⟩ = [− rrr×kkk
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (7.8d)

+
LLL
∑

lll=−LLL
(DDDlll)×kkkeikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (7.8e)

− ikkk
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

∂Cqν(kkk)
∂kkk

χ
lll
ν(rrr)] (7.8f)

Notice, Eqs. 7.7d-f and 7.8d-f are identical except for their sign, so these contributions will cancel

out. Acting the cell periodic bra from the right on the remaining terms in Eq. 7.7, we obtain an

expression for the periodic magnetic dipole matrix

m̂mm =[C†mmmC (7.9a)

− iC†(∇kkk× ppp)C (7.9b)

− iC† pppC×UUU] (7.9c)

where 7.9a-c are the terms that result from applying the bra to corresponding term of 7.7a-c. UUU is

a vector of matrices that transforms the MO coefficients C to their gradient with respect to kkk, as

defined in 2.3. We can make one further simplification by noting that

− i∇kkk× pppµν = −i∇kkk×
LLL
∑

lll=−LLL
eikkk⋅DDDlll ppp000lll

µν =
LLL
∑

lll=−LLL
eikkk⋅DDDlll(DDDlll)× ppp000lll

µν (7.10)

which we can utilize to transform the real-space magnetic dipole matrix mmm to the Hermitian matrix

m̃mm in Eq. 7.3. The resulting final expression for the periodic magnetic dipole is

m̂mm =C†m̃mmC− i
2

C†(∇kkk× ppp)C− iC† pppC×UUU (7.11)

Recently, Rerát and Kirtman independently published a derivation of the PBC magnetic dipole,

along with some proof of concept calculations of the βββ tensor.50 While their derivation takes
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different steps to the final expression and uses slightly different notation, the resulting expressions

for the PBC magnetic dipole are equivalent. As Rerát and Kirtman note, ensuring that βββ has all

real elements is equivalent to the constraint that m̂mm is Hermitian. However, the second term in Eq.

7.11 is anti-Hermitian and the third term in neither Hermitian nor anti-Hermitian. To ensure that

the OR tensor is real, we explicitly symmetrize the magnetic dipole matrix. In practice, we only

need to symmetrize the third term of Eq. 7.11, as the first term is already Hermitian and the second

term, being anti-Hermitian, is canceled out by the symmetrization.

7.2.2 Periodic Electric Quadrupole

The derivation of electric quadrupole for a periodic system proceeds in much the same way as for

the electric and magnetic dipoles. The following will focus on the velocity form of the electric

quadrupole operator, as this is the form used in both the modified velocity gauge (MVG) and

origin-independent length gauge [LG(OI)]. In the velocity gauge, the real space matrix elements

of the electric quadrupole are written as

QQQ000lll
µν = ⟨µ000∣

1
2
(rrr⊗ ppp+ ppp⊗ rrr)∣νlll⟩ = ⟨µ000∣rrr⊙ ppp∣νlll⟩ = ⟨µ000∣rrr⊙ pppe−iDDDlll⋅ppp∣ν000⟩ (7.12)

where ⊗ is the outer product and ⊙ is the symmetric outer product. Again, the presence of the

translation operator leads to a non-Hermitian matrix, which we can correct by reallocating the

deviation from Hermiticity for a given matrix element evenly between itself and its corresponding

adjoint element. We first determine the form of this deviation by moving the translation operator

from the ket to the bra

QQQ000lll
µν = ⟨µ000∣rrr⊙ pppe−iDDDlll⋅ppp∣ν000⟩

= ⟨µ−lll ∣rrr⊙ ppp∣ν000⟩+ ⟨µ000∣[rrr,e−iDDDlll⋅ppp]⊙ ppp∣ν000⟩

= ⟨µ−lll ∣rrr⊙ ppp∣ν000⟩+DDDlll⊙ ⟨µ−lll ∣ppp∣ν000⟩

= −QQQ000−lll
νµ −DDDlll⊙ ppp000−lll

νµ

(7.13)
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Knowing the form of the deviation, we can define a Hermitian quadrupole in the same manner as

for the magnetic and electric dipoles

Q̃QQ
000lll
µν =

1
2
(QQQ000lll

µν −QQQ000−lll
νµ ) =QQQ000lll

µν −
1
2

DDDlll⊙ ppp000lll
µν = (Q̃QQ

000−lll
νµ )∗ (7.14)

We can now proceed to apply the transformation of Eq. 2.35 to the quadrupole operator in

order to make it translation invariant.

rrr⊙ ppp ≃(ieikkk⋅rrr∇kkke−ikkk⋅rrr)⊙ ppp

=eikkk⋅rrr(i∇kkk⊙ ppp)e−ikkk⋅rrr +eikkk⋅rrr(i∇kkk⊙ [e−ikkk⋅rrr, ppp])

=eikkk⋅rrr(−i∇kkk× ppp)eikkk⋅rrr +eikkk⋅rrr(i∇kkk⊙kkk)e−ikkk⋅rrr

=ieikkk⋅rrr((∇kkk⊙ ppp)+(∇kkk⊙kkk))e−ikkk⋅rrr

(7.15)

The expression for the PBC quadrupole operator in Eq. 7.4 is very similar in form to that of

the PBC magnetic dipole in Eq. 7.4, with the only difference being a change of sign and the

substitution × → ⊙. Consequently, applying the PBC quadrupole operator to the cell periodic

ket leads to similar contributions. Applying the first term of the transformed operator to the cell

periodic ket, we obtain

ippp∣uqkkk⟩ = [
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)
∂ χ lll

ν(rrr)
∂ rrr

− ikkk
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr)]

= ΓΓΓ

(7.16)

where ΓΓΓ just collects the intermediate terms produced by applying the momentum operator. Con-
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tinuing to apply ∇kkk⊙ yields

∇kkk⊙ΓΓΓ = [− irrr⊙
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)
∂ χ lll

ν(rrr)
∂ rrr

(7.17a)

+ i
LLL
∑

lll=−LLL
DDDlll⊙eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)
∂ χ lll

ν(rrr)
∂ rrr

(7.17b)

+
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

∂Cqν

∂kkk
⊙ ∂ χ lll

ν(rrr)
∂ rrr

(7.17c)

− rrr⊙kkk
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (7.17d)

+
LLL
∑

lll=−LLL
(DDDlll)⊙kkkeikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (7.17e)

− ikkk⊙
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

∂Cqν(kkk)
∂kkk

χ
lll
ν(rrr) (7.17f)

− iδδδ ⊙
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr)] (7.17g)

where δ is the Kronecker delta. The “extra” term 7.17g (compare to Eq. 7.7) appears since the

outer product allows ∇kkk to act on the kkk in the second term of Eq. 7.16.

Applying to the ket of the second term proceeds similarly

i∇kkk×kkk = [rrr×kkk
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (7.18d)

−
LLL
∑

lll=−LLL
(DDDlll)×kkkeikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr) (7.18e)

+ ikkk
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

∂Cqν(kkk)
∂kkk

χ
lll
ν(rrr) (7.18f)

+ iδδδ
LLL
∑

lll=−LLL
eikkk⋅(DDDlll−rrr) Ω

∑
ν=1

Cqν(kkk)χ lll
ν(rrr)] (7.18g)

where these terms are equal and opposite in sign to Eq. 7.17d-g and thus cancel out of the final
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expression. After applying the bra, the remaining terms simplify to

Q̂QQ =[C†QQQC (7.19a)

+ iC†(∇kkk⊙ ppp)C (7.19b)

+ iC† pppC⊙UUU] (7.19c)

It is convenient to re-express the AO basis quadrupole QQQ as the Hermitian matrix Q̃QQ. Noting

that

i∇kkk⊙ pppµν = i∇kkk⊙
LLL
∑

lll=−LLL
eikkk⋅DDDlll ppp000lll

µν = −
LLL
∑

lll=−LLL
eikkk⋅DDDlll(DDDlll)⊙ ppp000lll

µν (7.20)

the PBC electric quadrupole can be rewritten as

Q̂QQ =C†Q̃QQC+ i
2

C†(∇kkk⊙ ppp)C+ iC† pppC⊙UUU (7.21)

to incorporate Q̃QQ. To the best of our knowledge, this is the first derivation of the PBC electric

quadrupole. Notice the resemblance in form with Eq. 7.11, where the main difference is the use

of a symmetric direct product rather than a cross product, along with a change of sign in each

term. As was the case with the Eq. 7.11, we need to ensure that Q̂QQ is Hermitian and we again

achieve this via explicit symmetrization, with the second term in Eq. 7.21 canceling out due to

being anti-Hermitian.

7.3 Implementation Details

With expressions derived for the PBC magnetic dipole and electric quadrupole, there remain sev-

eral challenges in order to incorporate them into an electronic structure program (in this case, a

development version of Gaussian95) in order to compute the full OR tensor. The main obstacles

are updating the existing coupled perturbed self-consistent field (CP-SCF) routines to accept mul-

tipoles defined in reciprocal, rather than real space and modifying the integral engine to produce
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Hermitian matrices for the supercell. While the OR tensor is formally defined by the sum over

states expressions of Eqs. 2.2 and 2.3, in practice it is much more efficient to evaluate these tensors

using linear response CP-SCF, as described in section 2.2.

Scuseria et al. provided the initial framework for these changes to the integral engine and

CP-SCF procedure during their implementation of the PBC electric dipole and the corresponding

dipole-dipole polarizability.68, 75 However, this existing code was not actively maintained and

could only be applied to the length gauge electric dipole, so extensive updates were made in order

to make it compatible with more recent versions of Gaussian and to extend its functionality to

the PBC magnetic dipole and velocity gauge electric quadrupole. We also implemented the PBC

velocity gauge electric dipole, but since this operator is translation invariant, it does not require

any correction terms.

With these PBC operators at our disposal, we can implement MVG and LG(OI) βββ and A ten-

sors. For each choice of gauge, βββ can be computed using either an electric or magnetic dipole

perturbation when solving the linear response CP-SCF equations. In principle, we could also com-

pute A with an electric dipole or electric quadrupole perturbation, but since using an electric dipole

perturbation allows us to compute βββ and A simultaneously, we have not attempted to implement

the quadrupole perturbation.

As part of the testing/validation process for our implementation, we separately compute the

contributions to βββ and A from each term of Eqs. 7.11 and 7.21, respectively. The contribution from

the first term of each of these equations corresponds to an uncorrected polarizability computed on

the supercell, while the latter two terms are corrections that incorporate the effect of periodically

extending the system. By separating out these contributions, it is easier to diagnose what is causing

any errors in the computed OR tensor. Once the implementation is fully functioning, this separation

can also provide a quantitative measure of the relative importance of the PBC corrections to the

overall OR.
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7.4 Results

To test our implementation, we calculate the βββ and A tensors for a 1D chain of H2O2 molecules

repeated along the x-axis, the same simple model used by Rerát and Kirtman.50 Since this is only

meant as a proof of concept, we performed the calculation in the modified velocity gauge using

the BLYP functional135, 146 and the modest 3-21G basis set.66 As an initial test run, we performed

a "pseudo-molecular" calculation where we extended the translation vector of the H2O2 chain to

105Å so it could not interact with its periodic images. We found that βββ and A computed for this

pseudo-molecule matched the results of a molecular calculation of H2O2 using the same level of

theory and basis set.

To make an assessment of our implementation for a true periodic system, we computed the OR

tensors at the same level of theory for two large, but finite chains with 121 and 119 H2O2 units.

Taking the difference of the OR tensors from these calculations and dividing by two gives a very

good approximation of the OR tensor per unit cell for the infinitely extended periodic system. We

confirmed that the OR tensor values per unit cell were sufficiently converged by carrying out the

same procedure with chains of 151 and 149 H2O2 units, for which we saw no deviation of the OR

tensor components.

The results of these calculations for the βββ tensor are reported in Table 7.1. We can see that

while the supercell and PBC tensor components mostly agree, the yy, zz, and xz show significant

deviation. Checking the decomposed PBC βββ tensor, we can see that the components with errors

are those with nonzero correction terms. The xx, yx, and zx components should trivially have zero

correction: since the system is periodic along the x-axis, there are no corrections to the PBC mag-

netic dipole along the x-axis, since all correction terms involve a cross product with the translation

vector. However, it is noteworthy that the xy, yz, and zy components also have zero correction,

despite the PBC magnetic dipole having corrections along the y and z axes. While this may just

be due to a fortuitous choice for an example system, it does demonstrate that our implementa-

tion of the uncorrected βββ accurately calculates the total βββ when the corrections are zero, whether

incidentally or due to symmetry.
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The deviation of yy, zz, and xz, however, suggest that our implementation of the correction

terms is faulty. While the uncorrected βββ components are relatively close to the values from the

supercell calculations, adding in the correction does not improve the agreement. The error in

these components is not a consistent over/underestimation that could be resolved by rescaling or

shifting the correction; while the correction to the PBC zz component is in the right direction, but

overshoots the true value, the xz component correction shifts it even farther from the true value

and the yy component correction is negligible. Further testing will need to be done to isolate the

error in the implementation of the PBC magnetic dipole correction terms.

Table 7.1: Modified velocity gauge βββ tensor elements (a.u.) per unit cell for an H2O2 chain
computed at the BLYP/3-21G level. The first column reports a finite supercell calculation, while
the second column shows the results of a PBC calculation. The third and fourth columns split the
PBC tensor into uncorrected and correction terms.

βββ (super) βββ (PBC total) βββ (PBC uncorrected) βββ (PBC corrections)
xx 1.571 1.571 1.571 0.000
yy 4.054 9.278 3.481 5.797
zz -5.716 -10.856 -4.760 -6.086
xy 1.114 1.114 1.114 0.000
yx 0.000 0.000 0.000 0.000
xz -5.163 -21.972 -6.696 -15.276
zx -2.438 -2.438 -2.438 0.000
yz -4.541 -4.541 -4.541 0.000
zy 3.671 3.671 3.671 0.000

Since the implementation of the βββ tensor is still incomplete, we forego discussion of the A

tensor until we can make an adequate comparison based on its contribution to the full OR tensor.

7.5 Conclusion

In this chapter, we have derived expressions for the PBC magnetic dipole and PBC velocity gauge

electric quadrupole operators. While an alternative derivation of the PBC magnetic dipole has been

recently reported elsewhere and applied to compute the periodic electric dipole-magnetic dipole

polarizability tensor β, to our knowledge, this work is the first to report an expression for the PBC

96



electric quadrupole. With these operators, along with the previously derived PBC length gauge

electric dipole and the inherently translation invariant velocity gauge electric dipole, it should be

possible to compute both the β and A contributions to the full optical rotation tensor in both the

modified velocity gauge and origin independent length gauge.
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Chapter 8

Concluding Remarks

Optical rotation has proven to be a challenging property to predict; chemical intuition linking

the structure of a molecule and its OR is limited and this intrinsic OR can often be masked by

optical activity induced by the surrounding environment. In this thesis, we have tried to address

this challenge on two fronts. We have improved upon the S̃ analysis framework, which offers

an interpretation of the OR in terms of occupied-virtual orbital pair transitions. Our efforts have

helped to make this model applicable for a wider range of molecular systems and computational

protocols, allowing for more robust predictions of the physical processes underlying OR. We have

also worked to develop methods for computing OR of periodic systems in order to provide greater

insight into the effect of the environment.

In Chapter 3, in our effort to better characterize intrinsic OR, we compared the results of S̃

analysis in the modified velocity gauge to prior results computed with the length gauge to de-

termine if the physical interpretations produced in each gauge were consistent. We found that

different choices of gauge and perturbation provided a consistent physical description at various

levels of detail. The distribution of S̃ia contributions, including the largest magnitude contribution,

was identical for any choice of gauge or perturbation. Summing the contributions from largest to

smallest in magnitude, each gauge approached the total OR at the same rate. Most importantly, at

the level of individual transitions, the S̃ia vectors in different gauges provided the same physical

description of how charge was flowing within the molecule to induce OR.

We also examined approaches for removing the arbitrary dependence of S̃ia values on the cho-

sen coordinate origin in Chapter 4. We derived two different origin invariant formulations of MVG

S̃ analysis: S̃Avg, which averages the result of S̃MVG-M and S̃MVG-E, and S̃Hemi, which contracts
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together Hemi-perturbed electric and magnetic densities formed via a Cholesky decomposition of

the response matrix. The origin invariance of both approaches was confirmed by comparing test

molecule calculations performed at the center of mass and at a displaced origin. Comparisons with

S̃Avg or S̃Hemi provide a simple test for detecting significant effects from the choice of origin in

MVG-M/MVG-M calculations. While still requiring further development to ensure general appli-

cability, these approaches offer a promising step towards an entirely origin invariant formulation

of S̃ analysis.

To study the effect of environmental interactions on the OR, in Chapter 5 we constructed a test

set of helical chains of diatomic molecules. These helical chains serve as a simple model of peri-

odic solids for which the OR can be computed using existing molecular methods. Using this model

we found that, even for simple 1D systems with fairly small unit cell sizes, convergence of the OR

to the macroscopic limit was slow with increasing system size. The semiempirical Kirkwood polar-

izability model was found to provide a reasonable description of the OR for homonuclear helices,

but could not achieve even qualitative agreement for a heteronuclear helix. We demonstrated that

the electric dipole-electric quadrupole tensor, which is not needed to model solution phase OR,

has a significant contribution to the solid OR tensor. Calculations on these models offered clear

evidence that a quantum mechanical approach implementing periodic boundary conditions (PBC)

would be needed to accurately compute the OR for solid systems. The results gathered for these

helical models offers a convenient test-bed to validate the results of our PBC implementation.

In Chapter 6, recognizing the need for highly accurate computational procedures to compute

solid state OR, we assessed the effect of gauge when computing the full OR tensor with newly

available CCSD methods and compared these with the results from two commonly used DFT

functionals. We found that while the tensor components and traces computed with MVG DFT and

CCSD were highly correlated, DFT consistently overestimated the CCSD results. The choice of

functional had an effect on the extent of overestimation, as B3LYP overestimated by 20-30%, while

the range-separated CAM-B3LYP functional was closer to 5% overestimation. MVG and LG(OI)

CCSD calculations were in very close agreement. However, for comparisons between DFT and
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CCSD and comparisons between different gauges at the CCSD level, even individual outliers have

a substantial effect on the correlation for a given component or the trace.

In Chapter 7, we have developed an approach to compute the full OR tensor for periodic sys-

tems by deriving translation invariant expressions for the magnetic dipole and electric quadrupole.

The magnetic dipole derivation matches that of the recently published work by Rerát and Kirt-

man.50 To the best of our knowledge, ours is the first published derivation of a translation invariant

electric quadrupole. We are in the process of implementing these multipoles into GAUSSIAN.

Once the implementation is complete, we will be able to compute the full PBC OR tensor with

LG(OI) or the MVG using either an electric or a magnetic perturbation.

Efforts to characterize chiral mixtures, identify new chiral species, and design molecular/-

supramolecular structures with specially tuned optical properties would all benefit from an im-

proved understanding of how OR relates to molecular structure. Integrating this knowledge into

computational models could greatly expedite, or possibly even circumvent, the often laborious and

cost-intensive process of experimentally assigning absolute configurations. Our work on develop-

ing S̃ analysis and methods for solid state optical rotation should aid in future efforts to computa-

tionally disentangle structural, intrinsic OR from that induced via the influence of the surrounding

environment.

There are a number of pathways along which our development work could be extended in

order to provide more accurate, intuitive, and general methods for assessing chiroptical response.

An immediate goal of our research group is to combining the S̃ framework with our PBC OR

implementation. S̃ analysis of solids, in particular molecular crystals, would be an invaluable tool

for interrogating to what extent the OR arise from point centered molecular chirality versus bulk

environmental chirality. Our use of atomic centered basis functions, rather than the plane waves

more commonly used to study solid state systems, will provide fine-grained detail into both the

local and bulk interactions leading to OR.

We would also like to extend both S̃ analysis and PBC OR to other post Hartree-Fock methods,

specifically coupled cluster. DFT methods offer a cost-effective way to probe chiroptical response,
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but if a functional provides an insufficient treatment of electron correlation for a given molecule,

there is not a systematic path to improvement. CCSD calculations already provide reasonable

agreement with experiment and this will only improve as higher excitations levels become feasible

through algorithm development and improvement of computing resources.

An interesting application of S̃ analysis that we have yet to explore is its use in molecular

design. S̃ provides a physical picture of how charge moving within a molecule enhances or detracts

from its chiroptical response. Using this physical interpretation, it should be possible to predict

how structural changes and functionalization within a family of molecules would influence their

OR. If accurate predictions of the effect of substitution can be made, S̃ia analysis can be used to

develop design criteria for tuning the OR of a template molecule.

While optical rotation has been the focus of our work thus far, many of these developments are

likely applicable to circular dichroism (CD) with slight modification. Both vibrational and elec-

tronic CD have increasingly become standard tools for studying chiral biological systems.20, 147–150

While OR arises from the imaginary part of the electric dipole-magnetic dipole polarizability, CD

comes from the real part, so the S̃ framework that decomposes this tensor in orbital pair contribu-

tions should be equally applicable to CD. Recently, a procedure has been published for computing

vibrational CD for periodic systems using ab initio molecular dynamics.151 Their approach uses

symmetry properties of the time correlation function to resolve the issue of translation dependence

of the magnetic dipole, but it would be interesting to see if the VCD could also be determined

using static electronic structure calculations with the newly derived translation-invariant magnetic

dipole.

Looking toward the future, a number of challenges still remain to develop a comprehensive,

chemically intuitive understanding of the physical processes underlying optical rotation and chi-

roptical response more generally. While gas and solid phase simulations will hopefully provide

insight into how to disentangle intrinsic and environmentally induced OR, accurate simulations

of solution phase systems would be highly desirable, but seem out of reach with current com-

putational resources and methodologies. Coupled cluster methods of sufficient accuracy are too
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expensive to explicitly model enough of the solvent environment; DFT methods allow for much

larger simulations, but are unable to consistently compute even the intrinsic OR and lack a means

of systematic improvement. Since OR stems from a nonadditive combination of a molecule and its

environment, it is not easily amenable to multiscale methods where different parts of the system

are treated at different levels of theory.

Machine learning has recently emerged as a possible route to overcoming this obstacle.152, 153

Using a sufficiently accurate quantum mechanical method to simulate the OR of an isolated molecule,

it may be possible to construct a machine learning model for the solvent shift to match experiment.

This is similar to the ∆-machine learning approach that has been applied to compute experimen-

tally accurate thermochemical properties.154 While an entirely black-box approach would do little

to provide insight in OR, recent work has focused on making chemical machine learning models

more interpretable.155, 156 Such a model may even be able to incorporate information from exist-

ing OR frameworks, using the outputs of an OR decomposition method like S̃ as the inputs for its

predictions.

In general, chiroptical research will need to focus on cost-reduction of OR simulations. There

are now a number of usable computational models for interpreting OR, but these are only use-

ful insofar as the underlying calculations accurately models experiment and sufficiently accurate

methods seem to be currently out of reach for even modest system sizes. By speeding up accurate

OR calculations, whether through new hardware, algorithmic improvements, or machine learning

supplementation, we can more confidently apply the results of OR interpretive models and delve

into what physical processes are actually inducing optical rotation.
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