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Abstract

Tests of fundamental theory are sensitive to the values of the fundamental (phys-

ical) constants. These values are determined by a global fit to experimental data

and depend on the data, theory, and theory uncertainties that enter the fit. Tests

of fundamental theory are thus sensitive, to a greater or lesser extent, to procedural

decisions. We label the set of choices that comprise a given global fit procedure

as a scheme. No single, best scheme exists. For example, a scheme optimized to

give values for the fundamental constants with the smallest possible uncertainties

might omit anomalous data, while a scheme optimized to test fundamental theory

might include anomalous data. Historically, values for the fundamental constants

have been determined by the National Institute of Science and Technology (NIST)

by an elaborate fit to world data— i.e. by reference to a single scheme. The result

is that the scheme dependence of the fundamental constants has effectively been

removed from phenomenological consideration. Unfortunately the precision of mod-

ern experiments is such that the scheme dependence of tests of fundamental theory

(occurring through the scheme dependence of the fundamental constants) can no

longer be safely ignored. We argue that any test of fundamental theory should be

evaluated using values for the fundamental constants determined via a scheme that

includes all data and theory relevant to that test. The alternative— namely, evaluat-

ing a given test of fundamental theory using fundamental constants determined via

a scheme omitting relevant data or relevant theory or both— has potentially serious

consequences for the phenomenology that are difficult to predict from pure thought
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alone. We find that an omission of relevant data from the NIST determination of

the fundamental constants is responsible for the proton size puzzle, with the puz-

zle disappearing under a scheme that includes all relevant data. We also find that

schemes omitting a relevant theory alternative generally lead to falsely-restrictive

exclusion limits— a result that has implications for many proposed solutions to the

muon g − 2 anomaly. We have created an online interface called CONSTANT FINDER

(www.www.constantfinder.org/home.jsp) to enable the community-wide inves-

tigation of the scheme dependence of the fundamental constants. With CONSTANT

FINDER, anyone interested can adjust experimental and theoretical values and uncer-

tainties, and pose theory alternatives within several global data-fitting frameworks.
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Chapter 1

Introduction

1 A problem hidden in plainsight

The values of the constants appearing in precision QED theory are determined up-

stream of the theory itself by a U.S.-government-funded, least-squares fit to experi-

mental data. Theorists and experimentalists then feed the values of these constants

into tests of fundamental theory. The effect is: the determination of the values of

these constants falls outside the scope of precision QED theory as it is convention-

ally practiced by theorists. We will refer to these constants (for now loosely and

later more precisely) as the fundamental constants.

On its face, the situation described does not seem especially objectionable. Hav-

ing standardized values for the fundamental constants, apart from being convenient,

seems to provide a common baseline on which to conduct tests of fundamental

theory. However, this common baseline has a problem related to a lack of self-

consistency, which can be seen as follows.

Tests of fundamental theory depend on the values of the fundamental constants.

The values of the fundamental constants depend on the least squares fit procedure

used to determine them. Hence changing the fit procedure— e.g., by changing the

data or theory included in the fit— in general changes the result of any test of
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fundamental theory occurring downstream of the fit. No single fit procedure is ap-

propriate for all circumstances. As an example, if we wanted to test a particular

new physics scenario by comparing theory to experiment and to do it in a truly

self-consistent way, we would need to evaluate the relevant theory using fundamen-

tal constants determined by a least squares fit that included the effects of the new

physics scenario. The ideal, then, is not a common baseline but a self-consistent

baseline. To ensure self-consistency, any test of fundamental theory should be con-

ducted using fundamental constants determined by a least squares fit that confronts

all relevant theory and all relevant experiments.

The importance of self-consistency in tests of fundamental theory is the central

topic of this dissertation. We use the muon experimental anomalies— the proton

size puzzle and the muon (g − 2) anomaly— throughout for illustration. In Ch. 7,

for example, the proton size puzzle is shown to be a consequence of a determina-

tion of the fundamental constants lacking self-consistency. However the need for

self-consistency is not confined to the muon experimental anomalies. In principle,

all tests of fundamental theory should be evaluated using fundamental constants

determined on a self-consistent basis, but historically such an aim has been imprac-

tical due to the computational overhead of refitting the constants. We created a

website called CONSTANT FINDER as a means of lowering the barrier to refitting the

constants. With CONSTANT FINDER, users can fit the fundamental constants on a

self-consistent basis according to their own assumptions, often in a matter of min-

utes. The exploratory analyses of Ch. 7 can all be carried out using CONSTANT

FINDER and give a general sense of how the site is intended to be used.

The remainder of this chapter gives a more detailed introduction to the material

above. A description of subsequent chapters is postponed to the end of this chapter.
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2 The fundamental constants of the Rydberg sector

The Standard Model Lagrangian has 26 free parameters, one free parameter for

every term not predicted by a symmetry. There are 20 quark and lepton masses and

mixing angles,1 three gauge coupling constants, two parameters of the Higgs sector,

and the speed of light. The strong CP violating parameter θQCD, observationally

consistent with zero, if counted, would make 27 free parameters.

In precision QED, of these 26 free parameters, only the electric charge e, the

electron mass me, the muon mass mµ, and the speed of light c are relevant. These

parameters appear variously in the theory expressions of precision QED in the com-

binations me/h, me/mµ, α = e2/2ε0hc, and R∞ = α2h/2mec. α is the fine-structure

constant, R∞ is the Rydberg constant, ε0 is the vacuum permittivity, and h is

Planck’s constant.

Several remarks are in order at this point.

• The speed of light c is fixed at 299 792 458 m/s due to the SI definition of the

meter as the distance travelled by light in a vacuum in 1/299 792 458 seconds.

• The vacuum permittivity ε0 = 1/µ0c
2 is also fixed at a reference value due to

the SI definition of the ampere, which fixes the vacuum permeability µ0 at a

reference value.

• me/h is a physical observable with dimensions of frequency. me and h are not

separately observable. Their individual values must be determined, one way

or another, from the value of me/h. The closely-related Compton wavelength

of the electron λe (= h/mec) sets the fundamental scale of QED. 2

• The value of me/mµ is fixed at a reference value in the analyses of Ch. 7. The

decision is discussed in Appendix A, and subject to the caveat that future
1including neutrino masses and mixing angles
2An electron confined to within a radius of λe/2 will have an uncertainty in its momentum large

enough that pair creation becomes possible. Pair creation requires QED for its proper description.
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decrements in various experimental uncertainties, particularly in the measure-

ment of muon g − 2, may necessitate treating me/mµ as a free parameter.

Precision QED also has an additional four free parameters that arise within the

phenomenology. They are the proton mass and charge radius, mp and rp, and the

deuteron mass and charge radius, md and rd. rp and rd are defined in Sec. 5.4

and parameterize quantities about which the theory is ignorant. Their interpreta-

tions as charge radii come from physical arguments. Values of mp [12] and md [13]

are determined via Penning trap experiments and are functionally independent of

the other free parameters under discussion. Consequently mp and md are fixed at

reference values in the analyses of Ch. 7.

Hereafter the collection of free parameters (α, R∞, λe, rp, rd) is referred to as

the fundamental physical constants of the Rydberg sector, or simply the fundamental

constants. The fundamental constants, as free parameters, must be determined by

fitting precision QED theory to experimental data. In that sense, precision QED

theory is not predictive, while precision QED theory plus five experiments is.

The relationships between the fundamental constants are superintended by a

diverse set of experiments.

• Muonic hydrogen (muonic deuterium) spectroscopy experiments constrain the

values of rp (rd).

• Electronic hydrogen (electronic deuterium) spectroscopy experiments constrain

the values of rp and R∞ (rd and R∞).3

• Electron and muon anomalous moments experiments constrain the value of α.

• Atomic interferometry experiments constrain the value of λe.

Figure 1.1 gives a schematic representation of these dependencies.

Tensions exist where the experiments overlap. The value of rp determined from

electronic hydrogen spectroscopy differs by 4−7σ [5] from the value of rp determined
3Atomic spectroscopy experiments depend on the value of α but do not heavily constrain it.
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Figure 1.1: Schematic of the dependencies between experimental data and the fundamental
physical constants of the Rydberg sector.

from muonic hydrogen spectroscopy, a discrepancy referred to as the proton size

puzzle. The value of α determined from the measurement of the electron anomalous

moment, when plugged into the muon anomalous moment’s theory, gives a 3 −

4σ discrepancy [2] between the theoretical and experimental values of the muon

anomalous moment, a discrepancy referred to as the muon g − 2 anomaly. The

value of α determined from the definition of λe = α2/2R∞, with λe fixed by atomic

interferometry experiments and R∞ fixed by electronic hydrogen and deuterium

spectroscopy experiments, differs by 2.4σ from the value of α determined from the

electron anomalous moment [3].

These tensions are not dispositive of an inconsistency in QED theory or the

existence of new physics beyond the Standard Model, though both eventualities are

possible. What they do demonstrate conclusively is the need for a global, viz. self-

consistent, determination of the fundamental constants. Piecemeal determinations

are inappropriate in the current era of high-precision experiments, and have led to
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the piecemeal inconsistencies above.

Ironically these piecemeal inconsistencies have entered the literature stream as

a consequence of a putatively global determination of the fundamental constants.

3 The CODATA adjustments

The Committee on Data for Science and Technology (CODATA) was established

in 1966 as an interdisciplinary committee of the International Council for Scientific

Unions. The task group on fundamental constants was created in 1969 to provide

a self-consistent set of recommended values for the fundamental physical constants,

including those of the Rydberg sector. CODATA has since periodically published

[14, 15, 16, 17, 18, 19, 5, 20] recommended values for the fundamental constants,

most recently in 2016.

The CODATA recommended values for the fundamental constants are deter-

mined via an elaborate least-squares fit that assumes QED (and weak) theory is

exact. The 2010 CODATA adjustment (C10)4 [5] states: ”our main purpose here

is not to test physical theory critically but to obtain ’best’ values of the fundamen-

tal constants.” Standardization is the aim, specifically, standardized values for the

fundamental constants with the smallest possible error bars. When a discrepant

experimental datum would degrade the precision of one or more of the fundamental

constants, CODATA has historically omitted the discrepant datum from the fit. To

limit the size of the error bars on R∞, the 2010 and 2014 CODATA adjustments

omitted muonic charge radius data. Similarly, to limit the size of the error bars on

α, the 2006, 2010, and 2014 CODATA adjustments omitted the measurement [2] of

the muon anomalous magnetic moment.5

Savely Karshenboim, a theorist and member of the CODATA fundamental con-
4The 2010 CODATA adjustment used the most precise data available on December 31, 2010 and

was published in 2012.
5Muonic charge radius data was not available prior to the 2010 adjustment. The muon anomalous

magnetic moment measurement was not available prior to the 2006 adjustment.

6



stants task group, notes [21],”The SI system has been created for legal use and trade

rather than for scientific applications. We [physicists] do not care about actual SI

definitions because we do not consider seriously the legal side of SI.” Physicists

wanting to test fundamental QED theory, however, no longer have the luxury of ne-

glecting the legal side of SI. In the current era of high-precision experiments, tests of

fundamental QED theory are sensitive to the ”legal” procedures used to determine

the fundamental constants and their uncertainties.

Consider Adjustment 3 of Table XXXVII of C10, which furnishes the C10 recom-

mended values for the fundamental constants. Adjustment 3 has 149 input data and

82 adjustable constants. Table XVIII of C10 lists the 50 principal input data that

go into the determination of the C10 recommended value for the Rydberg constant.

Of these 50 input data, 25 are experimental data. The other 25 are initial values for

additive corrections to theoretical frequency predictions. The additive corrections

parameterize systematic uncertainties associated with the theory.6 These 50 input

data determine 28 adjustable constants: rp, rd, R∞, and 25 additive corrections.

(A recommended value for α is determined in a separate sector of the Adjustment

3 fit.) The reason fitting 28 adjusted constants to 25 experimental data does not

result in a perfect fit is discussed in Sec. 1.

The C10 recommended values are self-consistent given the inputs to Adjustment

3. The Adjustment 3 inputs include electronic hydrogen spectroscopy data but omit

muonic hydrogen spectroscopy data and include the electron anomalous magnetic

moment measurement but omit the muon anomalous magnetic moment measure-

ment. Adjustment 3 is thus a piecemeal fit. The C10 recommended value for rp is

the value of rp determined from electronic hydrogen. A separate value for rp can be

determined from muonic hydrogen. Likewise, the recommended value for α is the

value of α determined from the electron anomalous moment. A separate value for
6The additive corrections are nominally associated with theoretical uncertainties but ultimately

cannot be disambiguated from possible systematic experimental uncertainties added to the experi-
mental frequency measurements.
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α can be determined from the muon anomalous moment.

The C14 recommended values for rp and α, which go into the current definition

of the muon experimental anomalies, were determined on the basis of only three

of the boxed sectors of Fig. 1.1: eH, eD, and ae. One can ask whether the muon

anomalies would persist if rp and α were determined via a global fit procedure that

included all the boxed sectors of Fig. 1.1.

Also not clear is whether the muon experimental anomalies are even related to

muons. Consider first the proton size puzzle. rp appears at leading order in the

perturbation theory for the muonic hydrogen energy levels and at next-to-next-to

leading order in the perturbation theory for the electronic hydrogen energy levels

(see Sec. 6.1). Consequently the value of rp determined from electronic hydrogen

data is less precise than the value determined from muonic hydrogen data, and also

enormously more sensitive to small effects from higher-order corrections and possible

new physics. This line of argument suggests, with appropriate hedging on all sides,

the proton size puzzle may have its origins in the electronic hydrogen sector.

The muon g − 2 anomaly can be similarly deconstructed. The most precise

measurement of the electron anomalous magnetic moment is due to Gabrielse [22].

Matching this measurement to the 10th-order (in e) perturbative calculation of

Kinoshita [23] yields a determination of α that is a full order of magnitude better

than the second-most precise determination of α available to C14, which is due to

Bouchendira [24].7 The C14 determination of α, which includes the measurements

of Refs. [22] and [24], is nevertheless dominated by the more precise Ref. [22]

datum. The result is: the C14 determination of α effectively fits one parameter to

one data point and does not meaningfully test QED theory. If, as happened in 2007

[25], an error or errors were found in the electron anomalous moment calculation

of Kinoshita, the value of α would be shifted in the next CODATA adjustment,

possibly dramatically, if the error were large enough. The correction of the 2007
7A recent determination of α by Parker [3], using an atomic interferometry technique similar to

that of Bouchendira, has precision comparable to the Gabrielse determination. See Sec. 1.
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error, for instance, shifted α by 6.5σ [5]. Thus, though perhaps not likely, an

undiscovered error relating to the theoretical or experimental value of the electron

anomalous magnetic moment could be responsible for the muon g−2 anomaly. The

time-evolution of the CODATA recommmended values for α is shown in Fig. 1.2.

1980 1990 2000 2010
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8

Figure 1.2: Time-dependence of determinations of the fine-structure constant [1]. For each
jth determination in the year shown, the y-axis shows the subsequent difference (αj+1 −
αj)/∆̄αj , where the reported uncertainties are σj , with the average ∆̄aj = (σαj +σαj+1)/2.
Error bars are 103∆̄αj .

We maintain a global approach to fitting the fundamental constants, compassing

all relevant data and all relevant theory, is necessary in any of the following circum-

stances: 1) when determining how robust a precision QED experimental anomaly

is; 2) when attempting to isolate the cause of an anomaly; or 3) when proposing a

solution to an anomaly that involves a modification of existing theory.

This last point is important and largely ignored in the literature, whether out of

practicality or carelessness. Take the muon g− 2 anomaly as an example. Adding a

new particle that, for simplicity, couples only to muons gives a contribution ∆aµ to

the muon anomalous magnetic moment via the QED vertex correction diagram, with

the photon in the loop replaced by the new particle; see Fig. 6.1. The temptation
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is to tune the mass and coupling of the new particle to account for the discrepancy

between aµ(experiment) and aµ(theory) and be done.8 The issue is the value of α

used to determine the value of aµ(theory) was determined without accounting for

the effects of the new particle. Accounting for the effects of the new particle will in

general shift the value of α, and self-consistency requires (re-)determining α with the

new physics included in the fit. Testing QED entails testing alternatives to QED,

and testing alternatives to QED self-consistently entails performing bespoke global

fits to world data that include the proposed theory alternative in the fit.

We reiterate: CODATA serves a vital need in providing values for the funda-

mental constants for legal use and trade. However that need is at odds with the

equally vital need to test QED theory. A separate program is needed to test QED

theory. The Particle Data Group (PDG) publishes values for the fundamental con-

stants in an annual review, which is year in and year out the top-cited reference in

high-energy physics. The PDG has a manifestly scientific (rather than legal) bent.

For example a recent annual review [26] cites 22 limits on the photon mass from

22 sources spanning 40 years. However culling globally self-consistent values for the

fundamental constants, which include the effects of any relevant theory alternatives,

from the PDG reviews is not possible.

The situation is problematic. Phenomenologists currently assess a theory al-

ternative, putatively solving one or the other of the muon experimental anomalies,

on the basis of values of rp and α coming out of an inconsistent, piecemeal fit

procedure that omits both muon experimental data and the effects of the theory

alternative. In other words, electron, muon, and beyond-Standard-Model theory

are being assessed using values for the fundamental constants determined from elec-

tron data and Standard Model theory alone. We have created a website called

CONSTANT FINDER ( www.www.constantfinder.org/home.jsp) to remedy the situ-

ation. CONSTANT FINDER enables users to fit the fundamental constants according
8Any exclusion limits relevant to the proposed new particle should also be considered.
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to their own assumptions. Users have control over all aspects of the fit via an intu-

itive interface, including the method of fitting, the input data, the experimental and

theoretical uncertainties, and any theory alternatives. The site makes self-consistent

likelihood-ratio tests between the Standard Model and an arbitrary theory alterna-

tive possible. CONSTANT FINDER is discussed in Ch. 7.

4 Scheme dependence

We put a name to the dependence of the fundamental constants on the experi-

ments and theory used to define them, namely, scheme dependence.9 To belabor

the point, a given fit to the fundamental constants can be optimized for the pur-

pose of standardization or for the purpose of testing the underlying theory. It can

include this datum and omit that datum or include that datum and omit this da-

tum. It can countentance this new-physics scenario or that new-physics scenario or

no new-physics scenario at all, and on and on. The fitted values of the fundamen-

tal constants depend sensitively— pathologically, sometimes— on the procedural

conventions used to make the fit. We emphasize: a scheme is appropriate or in-

appropriate according to context. To specify the scheme for a fit is to specify the

Bayesian priors for that fit.

A well-defined scheme specifies the following:

• the method of fitting,

• the input data,

• the underlying theory, and

• values for experimental and theoretical uncertainties.

There is no consistent convention in the literature for how to report, and how much

to report about, the scheme dependence of a fit. We suggest a minimum standard is
9Scheme dependence as defined here is distinct from the scheme dependence of quantum field

theory, associated with renormalizing ultraviolet divergences.
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that the fit be reproducible by an interested reader, which is wholly different from

reporting how a fitted parameter gets ’renormalized’ under a change of scheme.

Notably: CODATA does report some information on the scheme dependence of

its fits. Table XIX of C14 lists the values of rp and R∞ determined on the basis

of different sets of input data. For example Adjustment 3 omits muonic hydrogen,

finding rp = 0.8751(61) fm, while Adjustment 11, otherwise identical to Adjustment

3, includes muonic hydrogen, finding rp = 0.84100(39) fm. C14 reports a compara-

tively low probability of chi-squared for Adjustment 11, with the adjustment yielding

72.8 units of chi-squared for 55 degrees of freedom, corresponding to a probability

of 0.0054 by Wilks’ Theorem. The corresponding Birge ratio10 of 1.15, reported in

C14 without errors, is indicative of underfitting. Adjustment 11 suggests the muonic

hydrogen data is inconsistent with the electronic hydrogen data.

However the Table XIX adjustments, taken together, account for only part of

the total scheme dependence implicit in the C14 fit procedure, the part relating to

the selection of data, and even that part not in full. We substantively reproduced

Adjustment 11 in Ch. 7 and arrived at a starkly different conclusion, finding the

proton size puzzle can be solved by a global fit, like Adjustment 11, that includes

all relevant data. One scheme, Adjustment 3, creates the puzzle. Another scheme,

Adjustment 11, affirms it. And a third scheme, which is a reasonable facsimile of

Adjustment 11, solves it. Where is the truth? Is it behind door number one? door

number three? Whatever the case, the discrepancy defining the proton size puzzle

is not robust against the choice of scheme. The lack of robustness of the proton size

puzzle is discussed in Ch. 7.

CONSTANT FINDER was created out of a recognition of the need for phenomenolo-

gists to be able to raise and address questions like these. This point is separate from

the point— also central to our program— that self-consistent Rydberg-sector phe-

nomenology requires re-fitting the fundamental constants subject to any proposed
10The Birge ratio RB =

√
χ2/ν, where ν := degrees of freedom.
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theory alternatives.

Our analyses, which can be reproduced using CONSTANT FINDER, have led to a

variety of interesting results.

• The proton size puzzle is an artifact of a piecemeal determination of the fun-

damental constants. A global fit to all relevant data solves the proton size

puzzle.

• The same global fit that solves the proton size puzzle also shifts the best-

fit value for the Rydberg constant by 4.6σ relative to the C14 recommended

value.

• The new-physics parameter values that solve the muon g − 2 anomaly differ

depending on whether the fundamental constants are fixed at CODATA ref-

erence values or allowed to float to best-fit values along with the new-physics

parameters.

• The recent Parker, et al. [3] determination of the fine-structure constant

complicates the analysis. Absent the Parker result, the muon g−2 anomaly and

the proton size puzzle can be solved simultaneously with a 10−50MeV boson,

without sacrificing lepton universality and while evading current exclusion

limits.

• The complications brought about by the Parker result can be overcome. How-

ever, the solutions are conditioned on essentially speculative (though well-

motivated) assumptions.

The dissertation is organized as follows. Chapter 2 describes the global fit pro-

cedure. Chs. 3-6 describe the theory relevant to the global fits, while Chs. 7

and 8 provide global fit results and a CONSTANT FINDER user guide, respectively.

Ch. 9 contains concluding remarks and functions as a kind of prospectus for the

fundamental constants program outlined in this dissertation.
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Chapter 2

Global fits to the fundamental

constants

1 The method of fitting

CONSTANT FINDER determines values for the fundamental constants on the basis of

scheme-dependent maximum likelihood fits. Users specify a scheme of their choice,

including the type of fit to be made, and CONSTANT FINDER makes the fit: see Ch. 7.

The fit-types available to users are: chi-squared, chi-squared with pull, chi-squared

marginalized over nuisance parameters, and chi-squared with correlations. We derive

equations for each of these fit-types below, starting from first principles— although

with no attempt at rigor. The goal here, as with CONSTANT FINDER generally, is

transparency.

1.1 Chi-squared

The frequentist notion of probability is defined with respect to an ensemble of

identically-prepared experiments measuring an observable x ∈ X, where X is a

random variable defining the space spanned by x. The ensemble, on normaliza-
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tion1, defines a probability density function (pdf) f(x), with f(x) the single-event

probability of observing x.

f(x|θ) defines a family of pdf’s parametric in θ, representing (probability) models,

where θ is a list of model parameters containing parameters of interest, a, and

nuisance parameters, b. Parameters of interest are free parameters of the physical

theory— which we identify throughout with the fundamental constants. Nuisance

parameters are related to systematic uncertainties. The two model parameter types

are discussed in more detail below. f(x|θ) can be interpreted as the single-event

probablity of observing x given fixed values of model parameters θ. The shift from

consideration of a pdf f(x) to a pdf f(x|θ), conditioned on θ, forces a Bayesian

perspective on us since the model parameters θ lack a frequentist interpretation.

We extend the single-event probability f(x|θ) to capture the probability of a

dataset D consisting of a set of measurements {xj}, j = 1...n

F (D|θ) =
n∏
j

f(xj |θ). (2.1)

We can turn the discussion of probability models on its ear and consider F (D∗|θ)

for fixed D = D∗, such that F becomes an explicit function of model parameters θ.

F (D∗|θ) ≡ L(θ) defines a likelihood function2, and logL(θ) defines a log-likelihood

function.

For datasets containing multiple observables— height and weight, for instance—

Eq. 2.1 can be generalized to

L(θ) =
∏
k

nk∏
j

f(xkj |θ), (2.2)

where xkj denotes the result of the jth measurement of observable k.

For datasets in which each data point corresponds to a distinct observable k, the
1∫
X
f(x)dx = 1

2L(θ) is not a pdf since
∫
dθL(θ) 6= 1.
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likelihood function (Eq. 2.2) takes the simplified form

L(θ) =
∏
k

f(xk|θ). (2.3)

For concreteness, let us limit the discussion of Eq. 2.3 to the observables xk → xexpk

of Table 2.1. Inspection of Table 2.1 shows the xexpk have symmetric uncertainties

σexpk , where σexpk is conventionally interpreted3 as defining a one-sigma confidence

interval— that is, if xexpk were measured many, many times, 68% of the values of

xexpk would be within σk of the true value µk of observable xk. Accordingly, the

distribution of xexpk can be approximated by a Gaussian

f(xexpk ) = exp[−
(xexpk − µk)

2

2(σexpk )2
]. (2.4)

The Gaussian normalization has been suppressed here and elsewhere. Equation 2.4

could also have been obtained by application of the Central Limit Theorem. Let

xexpk be the sample average of a large number of measurements n of observable xk,

and let σk be the uncertainty in a single measurement of xk, where σk is related to

σexpk as σk/
√
n.4 Then, by the Central Limit Theorem,

√
n(xexpk − µk) converges in

distribution to N(0, σk) as n → ∞. We make the statement, relevant for Sec. 2.2,

that each xexpk of Table 2.1 is consistent with a sample average taken over a large

number of observations n.

To take f(xexpk ) into f(xexpk |θ), we can, by fiat, replace µk with a model for

xk parameterized in terms of θ, which we denote xthk (θ). The replacement µk →

xthk (θ) amounts to a hypothesis that the data point xexpk was drawn from a Gaussian

distribution centered at xthk (θ). Hypothesis tests, discussed in Sec. 2.4, are a natural
3The ’uncertainty’ σk refers to the combined standard uncertainty of the measurement xexpk ,

representing the combined uncertainty due to random and systematic effects. The uncertainty due
to random effects is captured by the estimated standard deviation from xexpk . The uncertainty due
to systematic effects is the combined uncertainty due to corrections for systematic effects. NIST
has codified a set of best practices relating to standard uncertainties: see [18].

4neglecting any uncertainties due to systematic effects
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extension of this procedure. A hypothesis test determines the relative truth of two

competing hypotheses or, more precisely, the relative likelihood of the data given

two competing models.5

With the considerations above in mind, we rewrite Eq. 2.3 as

L(θ) =
∏
k

exp[−
(xexpk − xthk (θ))2

2(σexpk )2
] (2.5)

for k running over the Table 2.1 data.

Equation 2.5 is frequently recast as a chi-squared function

χ2(θ) ≡ −2logL(θ) =
∑
k

(xexpk − xthk (θ))2

(σexpk )2
. (2.6)

When Eq. 2.5 applies, minimizing chi-squared is equivalent to maximizing the

likelihood.

1.2 Chi-squared with pull

Maximizing the likelihood function can be interpreted one of two ways: as finding

the values for the model parameters that maximize the probability of the data given

the model; or as finding the values for the model parameters that maximize the

probability of the model given the data. The latter perspective is the more natural

one in view of our aim: we want best values for the fundamental constants given

the data. This perspective implicitly makes use of Bayes’ Theorem

P (θ|x) = P (x|θ)P (θ)
P (x)

(Bayes’ Thm.), (2.7)

where P (θ|x) is the posterior probability, P (x|θ) is the likelihood function, P (θ)

is the prior probability, and P (x) is the evidence, which functions as an overall

normalization.
5Bayes’ Theorem provides a means of determining the relative likelihood of two competing

models given the data. See Sec. 1.2.
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Interpreting the likelihood function of Eq. 2.2 as the likelihood of the model

given the data is equivalent to inserting the likelihood function into Eq. 2.7 with a

uniform prior (P (θ) = 1). We can generalize Eq. 2.2 to allow for non-uniform priors

L(θ = a, b) =
∏
k

f(xk|a, b)η(b). (2.8)

Despite the misleading label L, L(a, b) can be interpreted only as a posterior proba-

bility. The prior η(b) quantifies the degree of belief in the model. The values of the

nuisance parameters b are pegged to systematic uncertainties associated with xk. If

the systematic uncertainties are systematic experimental uncertainties, Eq. 2.8 has

a frequentist, in addition to the more obvious Bayesian, interpretation since η(b) can

be defined in a frequentist way— which is to say, on the basis of relative freqencies

determined from an ensemble of experiments. However if the systematic uncertain-

ties are theoretical uncertainties, Eq. 2.8 is expressly and exclusively Bayesian since

η(b) has no possible frequentist definition.

The chi-squared function defined from Eq. 2.8 is

χ2(a, b) = −2logL(a, b) =
∑
k

(xexpk − xthk (a)− bk)
2

(σexpk )2
+

b2k
∆2

k

, (2.9)

which is referred to as chi-squared with pull. Equation 2.9 restricts the form of

η(b) such that η(b) = exp[− b2k
2∆2

k
], up to an overall normalization. ∆k represents an

estimate of the theoretical or systematic experimental uncertainty of xk, and the bk

are assumed to be Gaussian-distributed with mean zero and variance ∆2
k.

Equation 2.9 explains how a fit containing more fitted parameters than data

points could result in something other than a trivial fit. A fit to Eq. 2.9 is trivial

when the number of parameters of interest a exceeds the number of data points

and non-trivial otherwise, irrespective of the number of nuisance parameters in the

fit. The exception to this rule is for ∆k → ∞, in which case nuisance parameter bk

should be counted as a parameter of interest.
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1.3 Chi-squared marginalized over nuisance parameters

Marginalization of Eq. 2.9 over the nuisance parameters takes chi-squared into a

particularly simple form

χ2(a) =

∫
db χ2(a, b) =

∑
k

(xexpk − xthk (a))2

(σexpk )2 +∆2
k

, (2.10)

in which the experimental and theoretical uncertainties for a given datum are added

in quadrature. Equation 2.10 is due to Cousins and Highland [27] and often referred

to as a Bayesian-averaged model.

1.4 Chi-squared with correlations

Equations 2.6-2.10 do not account for correlations between the data points xexpk .6

Chi-squared, including the effects of correlations between data points, is given by

χ2(a) = (xexpk − xthk (a))C−1
kk′(x

exp
k′ − xthk′ (a)), (2.11)

where repeated indices are summed over. The matrix C−1 is the inverse covariance

matrix, which is related to the correlation matrix c as

C−1
kk′ =

ckk′

σexpk · σexpk′
. (2.12)

ckk′ represents the correlation between data points xexpk and xexpk′ . Equation 2.11

reduces to Eq. 2.6 when C−1 is diagonal. The definitions of Eqs. 2.9 and 2.10 can

be similarly extended to include the effects of non-trivial correlations. The default

correlations used by CONSTANT FINDER when fit-type ”chi-squared with correlations”

is selected are given in Table XV II of C14.
6Data points of the same k but differing j are in principle uncorrelated, having ostensibly been

pulled at random from the same underlying distribution.
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2 The global fit procedure

With the fit-types defined as above, the task remaining is to estimate the model

parameters θ. We denote estimates of model parameters with a circumflex (θ̂) to

distinguish them from the true values of the model parameters, written without a

circumflex. An estimate of a model parameter— also called an estimator— has

properties of bias, variance, consistency, and robustness, with the properties of bias

and variance closely linked. We discuss these properties below in the context of es-

timators and then maximum likelihood estimators (since the estimators θ appearing

in the chi-squared functions of Sec. 1.1 are maximum likelihood estimators). Again,

transparency is the goal.

2.1 Properties of estimators

Bias and variance

The bias of an estimator is defined as the difference between the expected value of

the estimator θ̂j and the true value of the parameter θj

B(θ̂j) = E[θ̂j ]− θj , (2.13)

where the expected value E[θ̂j ] =
∫
dx θ̂j(x)f(x). Non-zero bias, when it exists,

results from the simplifying assumptions of the model.

The variance of an estimator measures the spread of the estimates from one data

sample to another

var(θ̂j) = E[(θ̂j − E[θ̂j ])
2] = E[θ̂2j ]− E[θ̂j ]

2. (2.14)

Bias relates to the accuracy of an estimate; variance, to its precision. In principle,

we want to minimize both bias and variance. However there is a well-known tradeoff

between the two, which can be seen from the mean squared error between θj and
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θ̂j :

mse(θ̂j) = E[(θj − θ̂j)
2] = B(θ̂j)

2 + var(θ̂j). (2.15)

The first equality is a definition, while the second equality hides half a page of

algebra. For fixed mse(θ̂j), the second equality makes the bias-variance tradeoff

apparent. For an unbiased estimator, Eq. 2.15 reduces to mse(θ̂j) = var(θ̂j).

The Cramer-Rao bound places a bound on the minimum variance of an unbiased

estimator. An unbiased estimator is not guaranteed to achieve the Cramer-Rao

bound. However, when it does, it is called efficient. Efficient estimators are always

unbiased.

We derive the Cramer-Rao bound below for a one-dimensional (’scalar’) estima-

tor θ and then generalize it to multi-dimensional θ.

The derivation is as follows. An unbiased estimator has

E[θ̂(x)− θ] =

∫
dx (θ̂(x)− θ)f(x|θ) = 0, (2.16)

with f(x|θ) a likelihood function.

Differentiating Eq. 2.16 with respect to θ gives

0 =
∂

∂θ

∫
(θ̂(x)− θ)f(x|θ) dx =

∫
dx (θ̂(x)− θ)

∂f(x|θ)
∂θ

dx−
∫

f(x|θ) dx

=

∫
(θ̂(x)− θ)f(x|θ)∂logf(x|θ)

∂θ
dx− 1,

(2.17)

where on the second line we have used ∂logf(x|θ)
∂θ = 1

f(x|θ)
∂f(x|θ)

∂θ and
∫
dx f(x) = 1.
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Applying the Cauchy-Schwarz inequality7 to Eq. 2.17 finds

1 = {
∫
dx [(θ̂(x)− θ)

√
f(x|θ)] · [

√
f(x|θ)∂logf(x|θ)

∂θ
] }2

≤ [

∫
dx (θ̂(x)− θ)2f(x|θ)] · [

∫
dx f(x|θ)(∂logf(x|θ)

∂θ
)2]

≡ var(θ̂) · I(θ),

(2.18)

where on the third line we have defined the quantity I(θ) ≡ E[(∂logf(x|θ)/∂θ)2] =

−E[∂2logf(x|θ)/∂θ2], known as the Fisher information, and used the fact that for

an unbiased estimator mse(θ̂) = var(θ̂).

Equation 2.18 gives the Cramer-Rao bound for an unbiased scalar estimator

var(θ̂) ≥ I(θ)−1. (2.19)

The generalization of the Cramer-Rao bound to a multi-dimensional collection

of unbiased estimators is

cov(θ̂i, θ̂j) ≥ Iij(θ)
−1. (2.20)

The single-number variance of Eq. 2.19 has been replaced in Eq. 2.20 by a covariance

matrix. Likewise I(θ)−1 has been updated to a square matrix of the same dimen-

sion as θ. Equation 2.20 implies the diagonal element I(θ)−1
jj defines the minimum

variance of estimator θ̂j .

The elements of the Fisher information matrix are

Iij(θ) = −E[
∂2logf(x|θ)
∂θi∂θj

] → Iij(θ) ≈
1

2

∂2

∂θi∂θj
χ2(θ). (2.21)

To the right of the arrow, we have substituted −1
2χ

2(θ) for logf(x|θ), pursuant to

Eq. 2.6, and removed the expected value, which is in general difficult to compute.
7The Cauchy-Schwarz inequality in probability theory is

var(X) · var(Y ) ≥ [cov(X,Y )]2

for random variablesX and Y. Insertion ofX = θ̂(x)−θ and Y = ∂logf(x|θ)/∂θ, with [cov(X,Y )]2 =
[E[(X − µ) · (Y − ν)]]2 = [E[X · Y ]]2 = 1, into the expression above gives Eq. 2.18.
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Equations 2.20 and 2.21 can be combined to obtain minimum uncertainty esti-

mates for unbiased parameters of interest a :

• Compute the elements of the Fisher information matrix, Iij ≡ 1
2

∂2

∂ai∂aj
χ2(θ =

(a, b));

• Evaluate I at the best-fit values for θ = (a, b);

• Invert I;

• Compute the uncertainty of aj , u(aj) ≡
√
I−1
jj .

Consistency

A consistent estimator converges to its true value as the number of data points n

goes to infinity— that is, a consistent estimator is unbiased in the limit n → ∞.

When a consistent estimator achieves the Cramer-Rao bound in the limit n → ∞,

it is called asymptotically efficient.

Robustness

As the name suggests, robustness refers to the robustness of an estimator against

outliers in the data. The median of a dataset, for example, is considered robust while

the mean is not. Quantitative measures of robustness vary: see [28]. Operationally,

estimators should also be robust against deviations from the assumptions entering

the fit.

2.2 Properties of maximum likelihood estimators

For a given likelihood function (Eq. 2.2), the maximum likelihood occurs at the

model parameter values that give the data the largest probability. By applying

Bayes’ Theorem, we can reinterpret the maximum likelihood as occurring at the

model parameter values that give the model the largest probability given the data—

assuming a uniform prior. Equation 2.8 extends Eq. 2.2 to general priors and as
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such can be interpreted only as the likelihood of the model given the data. The

model parameter values that maximize the likelihood are referred to as maximum

likelihood estimates, while the model parameters themselves are maximum likeli-

hood estimators.8

Maximum likelihood estimators (MLE’s) are consistent and asymptotically effi-

cient. For finite n, the bias of an MLE is zero up to order 1/
√
n.9 For large enough n,

MLE’s are effectively unbiased with uncertainties well-approximated by the Fisher

information matrix.

Bias and variance, revisited

The reference dataset for CONSTANT FINDER, which is shown in Table 2.1, contains 21

experimental data xexpk corresponding to 21 distinct observables xk. In the language

of MLE’s, Table 2.1 consists of n = 1 measurement of each of 21 distinct observables.

Large values of n are nowhere to be found. However each xexpk is consistent with—

wholly independent of any experimental reality— a sample average over a large

number of measurements n of observable xk. See the discussion below Eq. 2.3.

Therefore maximum likelihood fits to Table 2.1 data should be reliable, provided the

maximum likelihood estimators (viz. the fundamental constants) are consistently

defined across all 21 terms of chi-squared.

The procedural decision to fit the 21 experimental data of Table 2.1 via a maxi-

mum likelihood fit was initially made in order to reproduce the least-squares adjust-

ments of CODATA. From a purely Bayesian perspective, the procedure represents

a set of prior assumptions and needs no justification.

The procedure is:
8The estimates obtained from Eq. 2.8 are technically maximum a posteriori (MAP) estimates,

not maximum likelihood (ML) estimates. The important distinctions between ML estimates and
MAP estimates have already been made in the text. Further distinctions are largely semantic.

9With a second-order bias correction, the bias of an MLE is zero up to order 1/n. The second-
order bias of a scalar MLE can be obtained by expanding L′(θ̂) = 0 to second-order in (θ̂ − θ):

L′(θ) + (θ̂ − θ)L′′(θ) + 1/2(θ̂ − θ)2L′′′(θ) = 0.
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• Minimize a chi-squared function to obtain best-fit values for the fundamental

constants;

• Then compute the inverse Fisher information matrix to obtain uncertainties

for the fundamental constants.

Robustness, revisited

As discussed in Sec. 2.1, estimators should be robust against deviations from the

assumptions entering the fit. One of the assumptions of primary concern to us in the

context of the fits of Ch. 7, is that the errors between xexpk and xthk (θ) are normally

distributed with mean zero, else the mapping −2logL → χ2 is inappropriate.

For instance, theoretical uncertainties not accounted for in the Ch. 7 fits, of com-

parable size to or larger than the corresponding experimental uncertainties, could

lead to estimators lacking robustness. The 1S2S transition in electronic hydrogen,

which has an experimental uncertainty of 10 Hz with a theoretical uncertainty of

order 103 times larger, is an extreme example of mismatched theoretical and ex-

perimental uncertainties leading to estimators lacking robustness. The effect of the

1S2S transition on fits to the fundamental constants is discussed in App. B. Adding

nuisance parameters to the fit is an obvious workaround, and the one employed by

CODATA. We opt against adding nuisance parameters to the Ch. 7 fits for reasons

discussed in Sec. 3 and simply exclude the 1S2S from the Ch. 7 fits.

2.3 Chi-squared minimization with FindMinimum

CONSTANT FINDER uses the Mathematica function FindMinimum to minimize the

chi-squared functions of Sec. 1.1. FindMinimum defaults to the Levenberg-Marquardt

method when the function to be minimized is a sum of squares:

S(~θ) =
∑
j

(yj − fj(~θ))
2. (2.22)
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Here ~θ can be regarded as consisting of the fundamental constants plus any nuisance

parameters.

The Levenberg-Marquardt method is as follows.

• An initial guess is made for ~θ. CONSTANT FINDER fixes the initial values for

the fundamental constants at C14 reference values and the initial values for

nuisance parameters at zero.

• A step ~δ is determined according to the Levenberg-Marquardt method such

that ~θ → ~θ + ~δ.

• ~θ is updated until |~δ| falls below a predefined threshold.

The minimum value of S(~θ) obtained in this way is a local minimum and thus sensi-

tive to the initial guess for ~θ. False minima however are not a concern when fitting

the fundamental constants provided the initial guess assigned to the fundamental

constants is not unreasonable— within a handful of sigma, say, of the C14 reference

values.

In the procedure above the steps ~δ are determined by iteratively computing

∂S(~θ + ~δ)

∂~δ
= 0, (2.23)

where fj(~θ+ ~δ) is approximated within ~S(~θ+ ~δ) as fj(~θ) + ∂fj(~θ)

∂~θ
· ~δ ≡ fj(~θ) + ~Jj · ~δ.

Upon differentiation, Eq. 2.23 becomes

(JTJ)~δ = JT (~y − ~f(~θ)), (2.24)

where J is a matrix whose ith row corresponds to ~Ji. Likewise ~y and ~f(~θ) are

column vectors whose ith rows correspond to yi and fi(~θ), respectively. Equation

2.24 can be solved for ~δ. However the Levenberg-Marquardt method adds a so-called
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damping term to Eq. 2.24

(JTJ + λI)~δ = JT (~y − ~f(~θ)). (2.25)

where I is the identity and λ is a non-negative damping factor. The value of the

damping factor is adjusted at each step to control the rate of convergence of the

fit. When λ is large, ~δ is roughly in the direction of the gradient and the step-wise

decrease in S(~θ) is also large.

Anecdotally, FindMinimum performs as well as MINUIT [29] and in one case,

unrelated to fitting the fundamental constants, outperformed it, when MINUIT got

hung up on a local minimum.

2.4 Hypothesis tests

The viability of a given alternative is formulated in terms of a hypothesis test,

where one scheme, Scheme − 1, is compared to a second scheme, Scheme − 2.

Scheme− 1 represents the null hypothesis, which for our purposes is the Standard

Model. Scheme − 2 represents the Standard Model plus a theory alternative. The

statment that an alternative is viable is equivalent to the statement— which we will

make more precise— that the data are incompatible with the null.

We start with the notion of a test statistic t which maps a dataset D into the

real line. We want a test statistic that allows us to reject Scheme− 1 (i.e. the null)

if the probability of Scheme − 1 to produce data at least as extreme as the data

in D is too low, where ”too low” is defined by reference to a parameter α, called

the size of the test. The size of the test corresponds to the probability that the

null is rejected when the null is true. This type of error is referred to as Type-I

error. Type-II error refers to the probability β that the null is accepted when the

alternative hypothesis (i.e. Scheme− 2) is true. The parameter 1− β is called the

power of the test. Formally, the goal is to define the test statistic t in such a way

that it maximizes 1 − β for fixed α. For two simple hypotheses— that is, models
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without any free parameters— the likelihood ratio does exactly this: it maximizes

1− β for fixed α. The likelihood ratio is encoded as

t =
L(D|Scheme− 2)

L(D|Scheme− 1)
(2.26)

and compared to a parameter k(α) defining the boundary of the acceptance region,

where k(α) depends on the size of the test. For t < k(α) (t > k(α)), we accept

(reject) the null. The result, which is due to Neyman and Pearson, is called the

Neyman-Pearson lemma [30].

The Neyman-Peason lemma however cannot be extended to models with multiple

free parameters. In that case, the likelihood ratio statistic is no longer guaranteed

to maximize 1 − β for fixed α. For models with multiple free parameters, the

workaround is to work with the distribution of the test statistic t. The general

procedure is as follows.

We define a log-likelihood ratio t̃

t̃ = −2ln(
L(D|µ̂Scheme−1)

L(D|µ̂Scheme−2)
), (2.27)

where t̃ updates the test statistic t of Eq. 2.26 and µ̂Scheme−2 contains the maximum-

likelihood (ML) estimators of µ̂Scheme−1 plus additional ML estimators parameter-

izing the alternative to the null. We maximize t̃ using the Mathematica function

FindMinimum (see Sec. 2.3) and denote the maximum value of t̃ as t̃0 and the corre-

sponding ML estimates as (µ̂Scheme−1)∗ and (µ̂Scheme−2)∗.10 For −2lnL(D|µ̂) → χ2

of Eq. 2.6, t̃ corresponds to the difference in chi-squared between Scheme − 2 and

Scheme− 1.

According to Wilks’ Theorem, under broad conditions, as the sample size (i.e.

the number of datasets D) approaches infinity, the distribution of t̃ converges to

a chi-squared distribution with N −M degrees of freedom, where N −M is the
10The maximum-likelihood estimators common to µ̂Scheme−1 and µ̂Scheme−2 take the same value

in (µ̂Scheme−1)∗ as in (µ̂Scheme−2)∗.
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difference in dimensionality between the ML estimators of Scheme−2 and Scheme−

1.

Wilks’ Theorem allows us to compute a so-called p-value, where

p =

∫ ∞

t̃0

f(t̃|(µ̂Scheme−1)∗, (µ̂Scheme−2)∗)dt̃

=

∫ ∞

t̃0

χ2
N−M (t̃|(µ̂Scheme−1)∗, (µ̂Scheme−2)∗)dt̃.

(2.28)

p defines the probability of drawing a test statistic t̃ larger than t̃0 from the dis-

tribution f(t̃|(µ̂Scheme−1)∗, (µ̂Scheme−2)∗). p can thus be compared to the size of

the test α. For p < α, we reject the null (Scheme − 1) in favor of the alterna-

tive (Scheme − 2). The conventional, 5σ threshold for discovery corresponds to

α = 2.87× 10−7. (p < 2.87× 10−7 corresponds to a very low Type-I-error probabil-

ity.) Discovery is a charged term and frankly misleading if applied to the results of

the Ch. 7 analyses.

We speak instead of a given alternative being favored over the null at the level

of 2σ (5σ) if p < 0.05 (p < 2.87 × 10−7). 2σ (i.e. 95%) confidence intervals

are a natural extension of this kind of language. For example, take µ̂Scheme−1 to

be the set of fundamental constants and µ̂Scheme−2 to be the set of fundamental

constants plus two additional parameters ξ̂1 and ξ̂2 used to parameterize scheme

two. ξ̂1 and ξ̂2 could be the mass and coupling of a new particle, e.g. Then, we

can define by brute force a region in (ξ̂1, ξ̂2)-space where p(ξ̂1, ξ̂2|(µ̂Scheme−1)∗) <

0.05, which corresponds to a 2σ confidence interval. Here ((µ̂Scheme−1)∗, ξ∗1 , ξ
∗
2) are

the values of (µ̂Scheme−1, ξ̂1, ξ̂2) that maximize t̃, and p is an explicit function of

ξ̂1 and ξ̂2. Nuisance parameters do not present an additional complication. They

can be optimized along with(µ̂Scheme−1, ξ̂1, ξ̂2) and lumped in with (µ̂Scheme−1)∗ as

conditions on p.
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3 A reference scheme

The hypothesis testing described above requires a well-specified null hypothesis. As

a practical matter, the null is encoded in the analyses of Ch. 7 via a reference scheme

that is, one, consistent with Standard Model theory, two, includes all relevant data,

and, three, is as simple as possible but no simpler. Details are below.

The data used in the reference scheme are shown in Table 2.1 and populate the

boxes of Fig. 1.1. The Table 2.1 data, referred to in subsequent chapters as the

’reference set’, can be divided into sectors: a spectroscopy sector, a moments sector,

and a Compton sector, where the spectroscopy sector can be further subdivided

with respect to measurements of eH, eD, µH, and µD transition frequencies and the

moments sector with respect to measurements of the electron and muon anomalous

moments. Table 2.1 includes the muonic data omitted from the ”final adjustment”

(Adjustment 3) of C14, which furnishes the current CODATA reference values for

the fundamental constants.

The muonic data are: aµ, the measured value of the muon anomalous magnetic

moment; ∆ELS(µH), a measurement of the Lamb shift in muonic hydrogen; and

∆ELS(µD), a measurement of the the Lamb shift in muonic deuterium. The mea-

sured value of aµ was included in the final adjustment of C14. However the theory

expression for aµ was not, because of ”concerns about the theory”.11

Notable omissions from Table 2.1 are the 1S2S transition in electronic hydrogen,

spectroscopic transitions involving n = 3 states, determinations of the fine-structure

constant from quantum Hall experiments, determinations of the proton charge radius

from electron scattering experiments, and results from muonic helium spectroscopy

experiments. The decisions to omit these data are discussed below. The measure-

ment of h/mCs, due to Parker, et al. [3], is also not included in Table 2.1. However
11The concerns relate to the > 3σ discrepancy between the experimental and theoretical values

of aµ and disagreement between calculations of aLO,V Pµ (had) and a`×`µ (had), where aLO,V Pµ (had)
and a`×`µ (had) are, respectively, the leading hadronic vacuum polarization and the hadronic light-
by-light contributions to aµ.
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its effects on the global fit are explored extensively in Ch. 7.12 The Parker, et al.

experiment is discussed in Sec. 1.

• The 1S2S transition in electronic hydrogen. Including the 1S2S transition

in the global fit generates untenable results. Adjustments can be made to

the global fit to correct the underlying issue (which is related to a mismatch

between experimental and theoretical uncertainties), but once those adjust-

ments are made, there is little to be gained by including the 1S2S in the fit.

Omitting the 1S2S from the reference scheme is a simpler alternative, and our

preference. The 1S2S is discussed in Appendix B.

• Transitions involving n = 3 states. Table 4 of Ref. [31] contains theory pre-

dictions for 56 electronic hydrogen energy levels. Of the 56 predictions, eleven

disagree with experiment at the 2σ level. Ten of those are associated with

n = 3 or n = 6 energy levels. The n = 3 and n = 6 levels are determined from

transition frequency measurements involving n = 3 states due to Zhao, et al.

[32]. Ref. [31] makes a convincing circumstantial case the Zhao measurements

have an uncorrected systematic shift, a conclusion which our own analyses

support. Consequently we omit them from the reference scheme.

• Determinations of the fine-structure constant from quantum Hall experiments.

The determinations of the fine-structure constant from quantum Hall experi-

ments [20] have relative precision & 2×10−8, which is not competitive with the

relative precision of the determinations of Refs. [22] and [3] (. few× 10−10).

• Proton charge radius determinations from electron scattering experiments. The

determinations of the proton charge radius from electron scattering (relative

precision ∼ 10−2) have precision comparable to the proton charge radius deter-

minations from electronic hydrogen spectroscopy (relative precision . 10−2).
12The Parker measurement yields a prediction for the value of the fine-structure constant with

comparable precision to the most-precise prediction for α, coming out of the measurement of the
electron anomalous moment by Gabrielse, et al. The Parker prediction for α differs from the
Gabrielse prediction by 2.4σ.
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However the charge radius determinations from electron scattering data are

sensitive to procedure. According to Ref. [33], variations in procedure can

yield charge radius values anywhere from 0.84 to 0.89 fm. A recent prelimi-

nary determination of the proton charge radius from electron scattering, due

to the PRad collaboration at Jefferson Lab [34], has relative precision compa-

rable to the charge radius measurements from muonic hydrogen spectroscopy.

The PRad result is still sensitive to the procedural-dependence noted by Ref.

[33], but that sensitivity is largely blunted by the high precision of the exper-

iment. A second electron scattering experiment, due to the A1 collaboration,

is underway at MAMI in Mainz [35]. The A1 experiment should yield a value

for the proton charge radius competitive with those from muonic hydrogen

spectroscopy. Additionally, the MUSE (MUon proton Scattering Experiment)

collaboration at Paul Scherrer Institute is, as the name of the collaboration

suggests, conducting a muon scattering experiment (µ− on p and µ+ on p̄)

[36].

• Muonic helium spectroscopy measurements. The CREMA collaboration has

successfully measured the 2S2P Lamb shift in muonic helium-3 and -4 [37].

However the theory for muonic helium-3 and -4 is still somewhat unsettled.

The CREMA collaboration in a final report summary to CORDIS writes, ”As

the theory is being actively developed, the numbers have become a moving

target, but the results seem to be stabilizing now.” Ref. [38] gives a review of

muonic helium-3 theory; Ref. [39], of muonic-helium-4 theory.

The experimental uncertainties for the Table 2.1 data, which are shown in the

third column of the Table, are taken as given in the literature. The theory we choose

for our reference scheme is nominally the Standard Model. The spectroscopic theory

is defined in C14. The theory for the electron and muon anomalous moments is

defined in [23] and [40], respectively. The moments theory is reviewed in Ch. 3; the

spectroscopic theory, in Ch. 4.
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Experimental datum [units] Experimental value σexpt

νH(2S1/2− 8S1/2) [Hz] 7.70649350012000× 1014 8600
νH(2S1/2− 8D3/2) [Hz] 7.70649504450000× 1014 8300
νH(2S1/2− 8D5/2) [Hz] 7.70649561584200× 1014 6400
νH(2S1/2− 12D3/2) [Hz] 7.99191710472700× 1014 9400
νH(2S1/2− 12D5/2) [Hz] 7.99191727403700× 1014 7000
νH(2P1/2− 2S1/2) [Hz] 1.05784500000000× 109 9000
νH(2S1/2− 2P3/2) [Hz] 9911200000 12000
νH(2P1/2− 2S1/2) [Hz] 1057862000 20000
νD(2S1/2− 8S1/2) [Hz] 7.708590412457× 1014 6900
νD(2S1/2− 8D3/2) [Hz] 7.708591957018× 1014 6300
νD(2S1/2− 8D5/2) [Hz] 7.708592528495× 1014 5900
νD(2S1/2− 12D3/2) [Hz] 7.99409168038× 1014 8600
νD(2S1/2− 12D5/2) [Hz] 7.994091849668× 1014 6800
νD(2P1/2− 2S1/2) [Hz] 1059280000 60000
νD(2S1/2− 2P3/2) [Hz] 9912610000 300000
νD(2P1/2− 2S1/2) [Hz] 1059280000 60000
ae 0.00115965218072 2.8× 10−13

aµ 0.00116592089 6.3× 10−10

∆ELS(µH) [meV] 202.3706 0.0023
∆ELS(µD) [meV] 202.8785 20.0034
λe [m]/10−12 2.4263102367 1.1× 10−9

Table 2.1: Experimental data used in the reference scheme defined in the text. Data is
from Refs. [6, 7, 8, 9, 2, 10, 11, 20].

The reference scheme is almost completely specified. All that remains is to

specify a fit-type. We choose a chi-squared function without correlations or nuisance

parameters (Eq. 2.6). The choice has the benefit of allowing us to monitor outputs

of the global fit in relation to inputs, and very few drawbacks. For the data and

theory of the reference scheme, including correlations in the global fit has a negligible

effect. Likewise, adding nuisance parameters to the fit does not substantively change

the fit results.13

13Adding nuisance parameters to the global fit would have been necessary had we included the
1S2S in the reference scheme.
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Chapter 3

The moments sector

As discussed in Ch. 2, the global fit of Eq. 2.6 is divided notionally into vari-

ous sectors: a moments sector, which includes measurements of the electron and

muon anomalous moments; a spectroscopy sector, which includes measurements of

transition frequencies in hydrogenlike atoms; and a Compton sector, which includes

measurements of the Compton wavelength of the electron.

The theory relevant to these sectors is reviewed in Chs. 3-6: the moments

sector in this chapter, the spectroscopy sector in Ch. 4, the Compton sector in Ch.

5, and new physics contributions to the moments and spectroscopy sectors in Ch.

6. The emphasis throughout is on developing an intuition and an appropriately

global framework for the theory entering the Ch. 7 analysis. Leading and next-to-

leading results are emphasized. Higher-order results are discussed in the context of

theoretical uncertainties, and to give an accounting of the current state of the art.

Important experiments are also described and discussed.
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1 The magnetic moment and orbital and spin angular

momentum

The magnetic moment is well-defined in classical electrodynamics. Consider the

vector potential ~A at ~x due to a current distribution spread over a region in 3-space

defined pointwise by a set of coordinates {~x′} :

~A(~x) =
µ0
4π

∫
d~x′

~J(~x′)

|~x− ~x′|
, (3.1)

where ~J(~x′) denotes the current at ~x′ and µ0 is the permeability of free space.1

Expanding 1/|~x− ~x′| in powers of |~x′| in the limit |~x| >> |~x′| finds

~A(~x) =
µ0
4π

∫
d~x′ ~J(~x′)[

1

|~x|
+
~x · ~x′

|~x|3
+ ...]. (3.2)

With the help of a vector calculus integral identity, the first term— the monopole

term— integrates to zero, while the second term— the dipole term, which we denote

~Adip— gives
~Adip =

µ0
4π

1

|~x|3
[−1

2
~x×

∫
d~x′(~x′ × ~J(~x′))]

≡ µ0
4π

~m× ~x

|~x|3
.

(3.3)

Here ~m is the magnetic (dipole) moment, equal to 1
2

∫
d~x′(~x′ × ~J(~x′)).

For a current distribution arising from a distribution of charged particles of mass

M , charge e, and velocity ~vi, ~m becomes

~m =
1

2

∑
i

~xi × ~vi =
e

2M

∑
i

~Li ≡
e

2M
~L, (3.4)

where ~L =
∑

i
~Li is the total orbital angular momentum.

1Equation 3.1 is derived in Jackson [41]. The derivation, in outline, is as follows. ~∇· ~B = 0 implies
~B = ~∇× ~A. An expression for ~B— ~B = µ0

4π
~∇×

∫
d~x′

~J(~x′)
|~x−~x′|— can be obtained by consideration of

the magnetic induction d ~B due to a current element Id~̀. Equation 3.1 follows immediately.
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An expression for the intrinsic spin magnetic dipole moment can be obtained by

replacing ~L with g~S, where ~S corresponds to the intrinsic spin angular momentum

and a constant factor g has been inserted in anticipation of future developments.

Both the intinsic spin and orbital magnetic moments appear in the non-relativistic

Dirac Hamiltonian HD,NR in the presence of a magnetic field:

HD,NR =
~p2

2M
+

e

2M
~B · (~L+ g~S), (3.5)

where ~S = ~σ/2. The meaning of g is apparent in Eq. 3.5. g specifies the coupling

strength of ~B · ~S relative to the coupling strength of ~B · ~L. A derivation of Eq. 3.5

starting from Eq. 4.3 can be found in Ref. [42].2 We will return to Eq. 3.5 shortly.

Let us first develop some intuition surrounding the intrinsic spin magnetic mo-

ment of an electron. We start by writing down the (relativistic) Dirac Hamiltonian

for a free electron: HD = ~α ·~p+βM, where αk = γ0γk and β = γ0. According to the

Heisenberg picture, the equation of motion for the kth component of the electron’s

position operator ~x is
ẋk = i[H,xk]

= i[βM, xk] + i[αjpj , xk]

= αk.

(3.6)

Similarly,

α̇k = i[H,αk] = 2i(pk − αkH). (3.7)

Integrating the right-hand side of Eq. 3.7 twice with respect to time finds

xk(t) = xk(0) + pkH
−1t+

i

2
H−1(αk(0)− pkH

−1) · (e−2iHt − 1). (3.8)

Equation 3.8 was obtained assuming pk and H are time-independent and αk(t) =

2The derivation stops short of deriving the term ∼ ~B · ~L in Eq. 3.5. That term can be shown to
fall out of the term (~p+ e ~A)2/2M of Hitoshi Eq. 50. In particular, in Coulomb gauge (~∇ · ~A = 0),
(~p + e ~A)2/2M contains a term e~p · ~A/M . For a homogeneous magnetic field in the ẑ-direction, ~A
can be written as B/2(ẑ × r̂). Algebra then finds e~p · ~A/M = eBẑ · ~L/2M → e ~B · ~L/2M.
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eiHtαk(0)e
−iHt. The important term in Eq. 3.8 for our purposes is the third term,

which oscillates with amplitude ∼ 1
2H

−1αk(0) ∼ 1
2M ∼ λe

2 . (We have taken αk(0) =

c = 1 for simplicity.) The oscillatory motion is called zitterbewegung or ’jitter

motion’. The cartoon is of a point electron creating Compton-wavelength-sized

current loops as it moves through free space. The parallel with the orbital magnetic

moment we derived from classical arguments is obvious. (Note: no forces are acting

on the electron. The electron’s jitter motion is due to its intrinsic spin, which— at

the risk of being too didactic— bears no relation to a spinning beach ball.)

Zitterbewegung is not a classical phenomenon. The electron’s jitter motion dis-

appears upon taking the expectation value of xk between Schrodinger wave func-

tions. The angular frequency of the jitter also has a deep quantum origin. The

electron’s energy has characteristic angular frequency H, while the jitter has charac-

teristic angular frequency 2H. A 2π oscillation associated with the electron’s energy

thus corresponds to a 4π oscillation associated with the electron’s jitter. Here we

get a glimpse of the physical manifestation of the 4π-periodicity of SU(2). (Note:

the spin-1/2 of the electron is responsible for zitterbewegung and not the other way

around.)

2 The g-factor and the electron anomalous magnetic

moment

Let us finally make the leap into quantum field theory. The Dirac equation in the

presence of an electromagnetic field is (i /D −m)ψ = 0, where /D = γµ(∂µ + ieAµ).

Multiplying on the left by (i /D +m) finds

( /D
2
+m2)ψ = 0, (3.9)

where /D
2
= D2

µ + Fµνσµν and σµν = i
2 [γµ, γν ].
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Equation 3.9 can be rearranged to yield

(H − eA0)
2

2M
ψ =

1

2M
[(~p− e ~A)2 +

e

2
Fµνσµν +m2]ψ, (3.10)

where Re[Fµνσµν ] = iFij [γi, γj ], which reduces to −2 ~B · σ = −4 ~B · ~S in the Weyl

basis.

Then, Re[ e
4MFµνσµν ] = − e

M
~B · ~S of Eq. 3.10 can be compared directly to

ge
2M

~B · ~S of Eq. 3.5. The Dirac equation thus predicts g = 2. As a sidenote, Eq. 3.9

resembles the Klein-Gordon equation for a scalar φ, plus a term ∼ Fµνσµν , which is

proportional to the intrinsic spin magnetic moment of the electron. Here we see once

again: the electron’s intrinsic spin magnetic moment is a spin-1/2 phenomenon.

If additional terms in the Hamiltonian ∼ Fµνσµν exist, they will necessarily

correct the value of g. Loop corrections in perturbation theory provide such terms.

These terms can be organized as an expansion in �/M2 and lumped into a form

factor that gets updated at each order in perturbation theory. That is, the loops

take

g = 2 → g = 2 + 2F2(�/M
2), (3.11)

where F2 is the Pauli form factor.

Let us see how g gets updated more explicitly. The most general possible parity-

and gauge-invariant Lorentz structure for the three-point vertex diagram shown in

Fig. 3.1 is

Γµ = F1(p
2/M2)γµ + F2(p

2/M2)
iσµν
2M

pν , (3.12)

where pµ = qµ2 − qµ1 is the four-momentum of the (off-shell) photon in Fig. 3.1 and

F1 and F2 are the Dirac and Pauli form factors.

The matrix element for Fig. 3.1 is

iM = iMµε
∗
µ;

Mµ = ieū(q2)Γµu(q1).
(3.13)
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q1 q2
Γµ

p

Figure 3.1: Three-point vertex diagram, where Γµ (Eq. 3.12) represents the most general
possible Lorentz structure.

Application of the Gordon identity3 to Eq. 3.13 finds

iM = [ieū(q2)(q
µ
1 + qµ2 )F1u(q1) + ieū(q2)

iσµν

2M
pν(F1 + F2)u(q1)]ε

∗
µ. (3.14)

With the replacement ε∗µ → Aµ, the second term of Eq. 3.14 becomes

ieū(q2)
iσµν
2M

pνAµ(F1 + F2)u(q1)

= −ieū(q2)
σµν
4M

2∂νAµ(F1 + F2)u(q1)

=
ie

4M
ū(q2)σµνFµν(F1 + F2)u(q1),

(3.15)

where the third line uses 2∂µAν = Fµν + (∂µAν + ∂νAµ) and the anti-symmetry of

σµν .

The second term of Eq. 3.14 can be used to determine g. As discussed above,

Re[ e
4MFµνσµν ] = − e

M
~B · ~S implies g = 2. Likewise, Eqs. 3.14-3.15 allow us to

read off g = 2(F1 + F2). The form factors F1 and F2 in the expression for g are

evaluated at p2 = 0 by convention. F1 renormalizes the electric charge by modifying

the coupling eψ̄γµψAµ, with F1(0) = 1 to all orders in perturbation theory. Thus

we are left with g = 2 + 2F2(0), in agreement with Eq. 3.11

At leading order, the Fig. 3.1 amplitude reduces to

iM = ieū(q2)γµu(q1)

= ieū(q2)[(F1 = 1) · γµ + (F2 = 0) · iσµν
2M

pν ]u(q1).
(3.16)

3ū(q2)γ
µu(q1) = ū(q2)(q

µ
1 + qµ2 )u(q1) + ū(q2)

iσµν

2M
pνu(q1)
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F2 = 0 implies g = 2. The first correction to g = 2 occurs at next-to-leading order

and shifts g by α
2π . The next-to-leading-order calculation is substantively carried

out in Sec. 1 and amounts to calculating the part of the vertex-correction diagram

of Fig. 3.2 proportional to F2.

` `

γ∗

γ∗

Figure 3.2: Leading contribution to the electron and muon anomalous magnetic moments.

At leading order, the electron interacts directly with the magnetic field. At next-

to-leading order, the electron emits a virtual photon and then, off its mass shell,

interacts with the magnetic field before reabsorbing the virtual photon.

3 Calculation of the electron anomalous magnetic mo-

ment beyond NLO

For many years, Kinoshita, et al. [23] have had and extended on the most complete

calculation of the electron anomalous moment, ae = (g − 2)/2. The calculation

now includes diagrams through 10th order in e. We sketch the basic details of the

calculation. The calculation splits ae(theory) into three parts:

ae(theory) = ae(QED) + ae(hadron) + ae(weak). (3.17)

The three parts are defined and discussed below.

α is a free parameter of ae(theory). Setting α equal to its CODATA recommended

value finds

ae(theory) = 1159652182.032(13)(12)(720)× 10−12, (3.18)
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where ae(QED) is of order 10−3, while ae(hadron) and ae(weak) are of order 10−12.

The third uncertainty in ae(theory), which is the dominant source of uncertainty, is

due to the uncertainty in the value of α. The first and second uncertainties are due

to the uncertainties in ae(QED) and ae(hadron), respectively. The uncertainty in

ae(weak) is negligible.

ae(QED) represents the total QED contribution to ae(theory), where

ae(QED) = A1 +A2(me/mµ) +A2(me/mτ ) +A3(me/mµ,me/mτ ) (3.19)

and An =
∑

i(
α
π )

iA
(2i)
n .

The measurement of ae, due to Gabrielse, et al. [22], which is discussed below,

has 0.24 ppt precision. For ae(theory) to have comparable precision, A1 must be

calculated through O[(απ )
5] since (απ )

5 ∼ 0.07× 10−12. The mass dependences of A2

and A3 enter through lepton loops.4 A2 and A3 have been calculated [23] through

O[(απ )
4] and are tiny compared to A1 due to the smallness of me/mµ and me/mτ :

ae(QED;mass− dependent) = 2.7475719(13)× 10−12 <<
α

2π
. (3.20)

ae(hadron) receives contributions from leading, next-to-leading, and next-to-

next-to-leading hadron vacuum polarization (HVP) diagrams, as well as a hadronic

light-by-light scattering diagram. The leading HVP diagram is shown in Fig. 3.3.

The total contribution due to hadronic interactions is ae(hadron) = 1.6927(120) ×

10−12, with the uncertainty dominated by the leading HVP diagram.

ae(weak) includes the leading and next-to-leading electroweak contributions to

ae. The leading diagrams are shown in Fig. 3.4. The total contribution due to

electroweak interactions is ae(weak) = 0.03053(23)× 10−12.

4Mass ratios appear in the expressions for A2 and A3 in place of masses for the simple reason
ae is dimensionless.
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γ had. γ

γ

Figure 3.3: Leading hadronic vacuum polarization contribution to the electron and muon
anomalous magnetic moments.
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Figure 3.4: Leading electroweak contributions to ae and aµ.

4 Measurement of the electron anomalous magnetic mo-

ment

The most precise measurement of the electron anomalous magnetic moment ae is

due to Gabrielse, et al. [22]. The experiments, which continue pioneering work by
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Dehmelt [43], use Penning traps to isolate a single electron in an electromagnetic

cage. A magnetic field in the ẑ direction confined the electron to a circular orbit

in the x − y plane, while a quadrupole electric field confined the electron in the ẑ

direction.

The experiments use a radio frequency field to induce particular transitions be-

tween the energy levels of the trapped electron. The induced transitions enable

measurement of the electron’s cyclotron frequency ωc and a so-called anomaly fre-

quency ωa = ωs−ωc, where ωs is the spin precession frequency of the electron. The

electron anomalous magnetic moment ae is simply the ratio of ωa to ωc :

ωs =
g

2

e| ~B|
me

, ωc =
e| ~B|
me

→ ωs − ωc

ωc
=
g − 2

2
≡ ae. (3.21)

The expression for ωc can be obtained by balancing the centripetal and Lorentz

forces on an electron in a homogeneous magnetic field. The expression for ωs can

be obtained by solving the Schrodinger equation

iψ̇ = Hψ → i

ċ+
ċ−

 = − ge

4me
Bzσz

c+
c−

 (3.22)

for c± and computing < Sx > and < Sy >, where < Sx > and < Sy > can be seen

to precess with frequency ωs =
g
2
e| ~B|
me

.

The result of the measurement is

ae(exp) = 1159652180.73(28)× 10−12. (3.23)

Equating ae(exp) with ae(theory) of Kinoshita [23], which is an explicit function

of the fine-structure constant α, furnishes a value for α−1, namely,

α−1 = 137.035999084(33)(39). (3.24)
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The first (second) number in parentheses gives the experimental (theoretical) un-

certainty. The value of Eq. 3.24 can be compared to

α−1 = 137.035999046(27), (3.25)

which is the determination of Parker, et al. [3], based on an atomic interferometry

experiment discussed in Sec. 1. The two predictions, which only together comprise

a test of QED, differ by 2.4σ.

4.1 Measurement of the electron anomalous magnetic moment: ex-

perimental details

The experimental details of the Gabrielse result are relevant to our program, for

reasons that will become clear. We review the experimental details here.

Magnetron motion

We start from the beginning, with an electron in a Penning trap subject to a ho-

mogeneous magnetic field and a quadrupole electric field. The classical equations of

motion for the electron are

ẍ− 1

2
ω2
zx+ ωcy = 0;

ÿ − 1

2
ω2
zy − ωcx = 0;

z̈ +
1

2
ω2
zz = 0.

(3.26)

With the substitution ξ = x + iy, the first two lines of Eq. 3.26 can be combined

into a single equation:

ξ̈ − iωcξ̇ −
1

2
ω2
zξ = 0, (3.27)

which reduces to

ω(ω − ωc) =
1

2
ω2
z (3.28)
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for ξ = eiωt. Solutions to Eq. 3.28 are, by inspection, ω = ω′
c and ω = ωc − ω′

c,

where ω′
c is the cyclotron frequency after accounting for the effects of the quadrupole

electric field and ωc − ω′
c = ωm is the frequency of the magnetron motion of the

electron.

The electron’s motion— neglecting the smearing effects of thermal noise— con-

sists of fast cyclotron motion about a guiding center that is simultaneously precessing

in a circular orbit in the x− y plane at magnetron frequency ωm and oscillating in

the ẑ direction at axial frequency ωz. The frequencies are well-separated and or-

dered such that ωc >> ωz >> ωm. However the classical equations of motion are

insufficient by themselves; ae 6= 0 is after all a purely quantum effect.

The Schrodinger equation for the trapped electron is

[
π2

2me
+ U +

1

2
ωcσz]ψ = ESψ, (3.29)

where ~π = ~p + e ~A is the electron’s (kinetic) momentum, U is the electrostatic

potential energy associated with the electron having axial frequency ωz, and ES is

an energy eigenvalue:

ES = msωc + (n+ 1/2)ω′
c + (k + 1/2)ωz − (q + 1/2)ωm, (3.30)

where ms = ±1/2 and n, k, q = 0, 1, 2.... Wave function ψ of Eq. 3.29 is the result

of projecting state |nmskq > onto a basis.

Spin and relativistic effects

The precision of the Gabrielse measurement requires consideration of relativistic

effects, which are not captured in Eqs. 3.29-3.30.

The energy eigenvalue associated with the Dirac Hamiltonian for an electron
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moving in a plane perpendicular to a magnetic field ~B = Bz ẑ is

ED = msωa +
√
m2

e + 2me(n+ms + 1/2)ωc. (3.31)

ωc falls under the square root, while ωa does not. Hence the relativistic effects

inherent in the Dirac Hamiltonian shift ωc (and ωs) but not ωa.

For non-vanishing axial motion, ED → E′
D takes the form

ED → E′
D =

√
[msωa +

√
m2

e + 2me(n+ms + 1/2)ωc]2 + π2z . (3.32)

ωa is now under a square root and so receives a relativistic correction. The square

roots of Eq. 3.32 have the effect of coupling the modes of the electron’s motion,

with relativistic effects cropping up in every mode.

Equation 3.32 can be expanded as

E′
D −me ≈ (n+ms + 1/2)ωc − (n+ms + 1/2)2ω2

c/2me + π2z/2me

− π4z/8m
3
e − (n+ms + 1/2)π2z/2m

2
e +msωa −msωzπ

2
z/2me,

(3.33)

where terms through order (kinetic energy)2/me have been kept. The terms can be

interpreted as follows. The second term of Eq. 3.32 gives the first-order relativistic

shift in ωc due to the electron’s spin and cyclotron motions. The fourth term gives

the first-order relativistic shift in the axial kinetic energy, while the fifth and seventh

terms couple ωc and ωa to πz.

The relativistic contributions to E′
D (Eq. 3.33) can be added to ES (Eq. 3.30)

to obtain a relativistic expression for the energy EP of an electron subject to trap

conditions. (Note: ES contains terms proportional to ωm and ωz arising as a conse-

quence of the quadrupole electric field. However EP neglects the relativistic effects

of the quadrupole electric field.) Formally, this addition is carried out through the

Pauli approximation. The Pauli approximation reduces the 4 × 4 Dirac Hamilto-

nian for an electron in a homogeneous magnetic field and quadrupole electric field—
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which is analytically intractable— to an exactly solvable 2× 2 ’Pauli’ Hamiltonian.

Regardless of methodology,

EP −me = ES+ < E′
D,rel >

= (n+ms + 1/2)ωc − (n+ms + 1/2)2ω2
c/2me + (k + 1/2)ωz

− 3/16(k + 1/2)2ω2
z/me − (n+ms + 1/2)ωc(k + 1/2)ωz/2me

+msωa −msωa(k + 1/2)ωz/2me − (q + 1/2)ωm.

(3.34)

Equation 3.34 can be used to compute transition frequencies. In the limit

kωz, qωm → 0,

E(n+ 1,ms)− E(n,ms) = ωc − (n+ms + 1)ω2
c/me;

E(n, 1/2)− E(n+ 1,−1/2) = ωa.
(3.35)

Then,
E(n, 1/2)− E(n+ 1,−1/2)

E(n+ 1, 1/2)− E(n, 1/2)
=

ωa

ωc − (n+ 3/2)ω2
c/me

≈ ae + (n+ 3/2)
aeωc

me
.

(3.36)

Equation 3.36 is the one used by Gabrielse, et al. in Ref. [22] to determine ae.

Unaccounted-for relativistic effects

We suggest the limits kωz, qωm → 0 that led to Eq. 3.36 were hasty, with the result

that relativistic corrections of roughly the same order of magnitude as u(ae) were

omitted from the Gabrielse determination of ae.

The argument is as follows. According to the equipartition theorem, at thermal

equilibrium the electron’s energy should be distributed evenly between its modes,

such that nωc ≈ kωz ≈ qωm. For ωc/2π = 149.0 GHz and ωz = 199.9 MHz [44],

we expect k ∼ ωc
ωz
n ∼ 103n. Recomputing Eq. 3.36 for non-zero k, while retaining
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the limit qωm → 0 for simplicity, finds

E(0, 1/2, kn +∆kn)− E(1,−1/2, kn)

E(1, 1/2, kd +∆kd)− E(0, 1/2, kd)

= ae +
3aeωc

m
+

ωz

2ωc
(∆kn − ae∆kd)

+
ωz

4m
(∆kn + 2ae(kd − kn)− ae(∆kn + 2∆kd) + a2e∆kd),

(3.37)

where the term aeωz/2m(kd−kn) in Eq. 3.37 is of size ∼ 7×10−13 for (kd−kn) = 102,

which is slightly larger than the total experimental uncertainty of 2.8× 10−13.

In Sec. 4 we explore the effects of adding such a correction to ae(exp). Taken with

a positive (negative) sign, the correction decreases (increases) the tension between

Eqs. 3.24 and 3.25, with important consequences for the disposition of the muon

(g − 2) anomaly.

5 Theory of the muon anomalous magnetic moment

The leading non-zero contribution to the muon anomalous moment is the same

as the leading non-zero contribution to the electron anomalous moment, which is

clear from the fact that aLOe = α
2π is independent of the mass of the electron. The

discussion above, about the Dirac Hamiltonian and so on, applies to electons and

muons alike. The differences between ae and aµ emerge only at higher-orders in

perturbation theory.

As with ae, the most complete calculation of aµ is due to Kinoshita, et al. [40].

The calculation is organized in the same way as the calculation of ae, with

aµ(theory) = aµ(QED) + aµ(hadron) + aµ(weak). (3.38)

aµ(theory) differs from aµ(exp) by∼ 2.1−3.9σ, with the size of the discrepancy—

larger or smaller— determined by the value assigned to aµ(hadron), which has a

theoretical uncertainty of the same magnitude as the total experimental uncertainty
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(see Sec. 5.2).

A judicious choice of aµ(hadron) cannot resolve the discrepancy. The discrep-

ancy, referred to as the muon g − 2 anomaly, is presumed to be a consequence of

an experimental error or new physics. A new measurement of aµ(exp) is underway

at Fermilab [45]. aµ(exp) is discussed in Sec. 6. The new physics, if it exists, is

expected to scale like m2
µ/Λ

2 for Λ >> mµ, with Λ the scale of the new physics.

Under the assumption of lepton universality, the new physics contribution to ae

would be (mµ/me)
2 ∼ 40, 000-times smaller, and negligible.5 Possible new physics

contributions are discussed in Sec. 1.

Similar to ae(QED),

aµ(QED) = A1 +A2(
mµ

me
) +A2(

mµ

mτ
) +A3(

mµ

me
,
mµ

mτ
), (3.39)

where An =
∑

i(
α
π )

iA2i
n .

The leading contribution to A1 is the leading contribution to aµ, namely, α
2π .

The leading contributions to the mass-dependent terms A2(
mµ

me
) and A2(

mµ

mτ
) are

due to photon vacuum polarization insertions in the leading vertex correction loop

and are discussed below.

5.1 Mass-dependent contributions to aµ(QED)

The photon propagator is perturbatively corrected by vacuum polarization inser-

tions. The insertions take the general form of one-particle irreducible (1PI) bub-

bles. A 1PI bubble, by definition, cannot be cut into two pieces by cutting one of

the bubble’s internal lines.

Each insertion of a 1PI bubble into the photon propagator corresponds to the

insertion of a polarization tensor Πµν = (q2gµν − qµqν)Π(q2). The factor of (q2gµν −
5In the analyses of Ch. 7, me << mµ ∼ Λ. The fact mµ and Λ are of the same magnitude

complicates the scaling of the new physics contribution to aµ. Thus, in the context of the analyses
of Ch. 7, the factor of 40,000 is merely indicative of the relative suppression of the new physics
contribution to ae. It should not be taken literally.
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qµqν) inΠµν , constructed from the available tensors— where qµ is the four-momentum

of the incoming photon— ensures Πµν satisifies the Ward identity (i.e., qµΠµν = 0).

The photon propagator at nth order contains n insertions of Πµν . Summing the

vacuum polarization contributions to the photon propagator to all orders— often

referred to as ’summing the bubbles’— gives the full photon propagator. The result

of the all-orders calculation is a shift in the photon propagator:

−igµν
q2

→ −igµν
q2(1−Π(q2))

. (3.40)

Gauge terms proportional to qµqν , which give zero when contracted with an external

current, have been omitted from Eq. 3.40. The factor of 1
1−Π(q2)

to the right of the

arrow is the net result of summing the bubbles and is responsible for renormalizing

the electric charge.

The full photon propagator retains the pole at q2 = 0, and the photon remains

massless. Π(q2) must be regular at q2 = 0 since (according to the conventional

textbook argument) a pole at q2 = 0 would require a massless single-particle inter-

mediate state, not describable by a 1PI bubble.

The analyticity of Π(q2) implies the following dispersion relation holds

Π̂(q2)

q2
≡ Π(q2)−Π(0)

q2
=

1

π

∫
ds

s
ImΠ̂(s)

1

s− q2
, (3.41)

where Π̂(q2) ≡ Π(q2) − Π(0) and ImΠ(0) = 0. The left-hand side of Eq. 3.41

is obtained by contracting I =
∫
dsΠ(s) 1

s(s−q2)
around the poles at s = 0 and

s = q2, while the right-hand side is obtained by evaluating I around a closed circular

contour, pinched along the Re[s] > 0 axis to avoid the branch cut in Π(s).

At lowest order, Π̂(s) → Π̂2(s) corresponds to the insertion of a fermion loop in

the photon propagator. We take the fermion loop to be an electron loop for the time

being. The branch cut in Π2(s) is then associated with the threshold for producing

an e+e− pair.
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The right-hand side of Eq. 3.41 contains a factor of 1/(s − q2), which is the

propagator for a photon of mass-squared q2. Accordingly, the contribution to aµ

due to the insertion of an electron loop in the leading vertex correction loop is

aµ(e loop) =
1

π

∫
4m2

e

ds

s
ImΠ̂2(s) a

V
µ (s), (3.42)

where aVµ (s) is the contribution to aµ due to the leading vertex correction loop,

with a massive vector particle in place of the massless photon. See Fig. 6.1. An

expression for aVµ (s) (Eq. 6.6) is derived in Sec. 1. The expression takes the form

of α
π times a kernel K(s).

An expression for ImΠ̂2(s) for s > 4m2
e can be obtained by computing the

electron loop. The calculation is done, for example, in Chapter 7.5 of Peskin and

Schroeder [46]. The result is

ImΠ̂2(s) = −α/3 ·
√
1− 4m2

2/s · (1 + 2m2
e/s). (3.43)

Then,

aµ(e loop) = −(
αmµ

3π
)2
∫
4m2

e

ds

s2
·
√

1− 4m2
2/s · (1 + 2m2

e/s) · K̂(s), (3.44)

where K̂(s) = 3s
m2
µ
K(s) is slowly varying over the integration region.

The leading contribution to A2(mµ/me) is

A
(4)
2 (mµ/me) = aµ(e loop)/(

α

π
)2, (3.45)

where the superscript on the left-hand side denotes the 4th-order in e. The expres-

sion for A(4)
2 (mµ/mτ ), the vacuum polarization contribution due to a τ loop, is

identical to Eq. 3.45, except with me → mτ . A
(4)
2 (mµ/me) is dominated by a term

∼ ln(mµ/me), while A(4)
2 (mµ/mτ ) is dominated by a term ∼ (mµ/mτ )

2.

The muon-loop vacuum polarization contribution to aµ follows from Eq. 3.45,
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as well— this time, with me → mµ. The result however is mass-independent and is

included in A(4)
1 .

Contributions to A3(mµ/me, mµ/mτ ) start at three-loops (6th order in e). The

leading contribution is due to the vertex-correction diagram with two lepton-loop

insertions, one an electron loop and the other a τ loop.

5.2 Hadronic vacuum polarization contribution to aµ

The leading hadronic vacuum polarization to aµ replaces Π̂2(q
2) in Eq. 3.42 with

a hadronic contribution Π̂had. However the hadronic contribution to the vacuum

polarization— which at leading order entails the insertion of a quark loop into the

leading vertex correction diagram— cannot be computed perturbatively due to the

breakdown of pQCD at low energies. The difficulty of defining quark masses is a

related complication.

The workaround is to apply the optical theorem to ImΠ̂had(q
2), which has

ImΠ̂had(q
2) =

s

4πα
σtot(e

+e− → hadrons), (3.46)

where σtot(e+e− → hadrons) can be determined from experiment [47]. At low

energies, the cross section is dominated by σtot(e
+e− → π+π−) ∼ (1 − 4m2

π
s )3/2 ·

|Fπ(s)|2. Fπ(s) is the electromagnetic form factor of the pion, and σtot(e
+e− →

π+π−) goes like (
√

1− 4m2
π

s )3 rather than
√
1− 4m2

π
s due to spin suppression at the

γπ+π− vertex.

The convention is to split the leading hadronic vacuum polarization contibution

a
(4)
µ (HV P ) into two parts

a(4)µ (HV P ) = (
αmµ

3π
)2[

∫ E2
0

m2
π0

ds
Rexp

hadK̂(s)

s2
+

∫ ∞

E2
0

ds
RpQCD

had K̂(s)

s2
], (3.47)

where R = σtot(e
+e− → hadrons) · (3s/4πα2) and the superscripts on R refer to the

way in which σtot(e+e− → hadrons) is determined.
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The theoretical value for a(4)µ (HV P ) is 6931(33)(7) × 10−11. The first number

in parentheses is due to the uncertainty in Rexp
had; the second number, to the un-

certainty in RpQCD
had . For comparison, the total experimental uncertainty of aµ is√

542 (stat.) + 332 (syst.)× 10−11 ≈ 63× 10−11.

5.3 Electroweak contribution to aµ

The leading electroweak contributions to aµ are shown in Fig. 3.4. The correspond-

ing contributions to ae are much smaller due to the smaller mass of the electron.

The total electroweak contibution to aµ, up to two-loop order, is

aµ(weak) = 153.6(1.0)× 10−11. (3.48)

6 Measurement of the muon anomalous magnetic mo-

ment

The muon anomalous magnetic moment aµ was measured by the E821 experiment

at Brookhaven [2]. The experiment measured the anomaly frequency ωa of muons

trapped in a storage ring and the magnitude of the trapping magnetic field B = | ~B|.

The experimental values for ωa and B were then fed into the equation ωa = aµ
eB
emµ

(cf. Eq. 3.21), and a value for aµ was extracted, where:

aµ(exp) = 11659208.0(5.4)(3.3)× 10−10. (3.49)

The numbers in parentheses represent statistical and systematic uncertainties, re-

spectively. aµ(exp) differs from aµ(theory) by 2− 4σ. The discrepancy is discussed

in Sec. 5.

The measurement of ωa proceeded as follows. 2.4GeV protons from a proton

storage ring were directed onto a fixed target, producing pions, which subsequently

decayed into muons and neutrinos. The muons, with spin vectors nominally pointing

53



in the direction of their momentum due to the details of the pion decay6, were then

injected into a storage ring, where they were confined radially by a homogeneous

magnetic field and axially by a quadrupole electric field. Once injected into the

storage ring, the muons traversed a circular orbit at cyclotron frequency ωc for the

duration of their lifetime, their spin vectors precessing at frequency ωs 6= ωc.

The expression for the anomaly frequency ωa = ωs −ωc of the trapped muons is

derived and discussed in App. H, and shown below:

~ωa =
e

mµ
(aµ ~B − (aµ − 1

γ2 − 1
)~v × ~E). (3.50)

γ = 1/
√
1− v2/c2 is a Lorentz factor. The experiment was run at the ’magic’ γ of

29.3, ensuring that the second term of Eq. 3.50 was small and ~ωa reduced to aµ e ~B
mµ
.

After repeatedly orbiting the storage ring, the muons decayed7 via µ+ → e+νeν̄µ,
8

with the direction of positron emission strongly correlated with the direction of the

muon spin vector. The details of the correlation are specified by the muon decay

rate

dΓ(µ+ → e+νeν̄µ) = N(Ee)(1 +
1− 2xe
3− 2xe

cosθ)dΩ, (3.51)

where cosθ defines the angle between the direction of the positron in the muon rest

frame and the direction of the muon spin vector, N(Ee) is an overall normalization

which is an explicit function of positron energy Ee, and xe = 2Ee/mµ, with mµ/2

representing the maximum positron energy.
6π− is a pseudoscalar, ūγ5d. The matrix element for the decay π− → µ−ν̄µ, which proceeds via

the weak interaction, contains a factor of (1− γ5). The factor of (1− γ5) projects out only chirally
left-handed (right-handed) particle (anti-particle) states. Consequently ν̄µ is in a right-handed
chiral state, which, due to the near masslessness of ν̄µ, is also a right-handed helicity state. By
spin conservation at the effective interaction vertex, the µ− is also in a right-handed helicity state,
with its spin vector in the direction of its three-momentum. Note: the µ− must be in a left-handed
chiral state due to the factor of (1− γ5) in the matrix element. The decay π− → µ−ν̄µ is helicity
suppressed and only possible because of the finite mass of the muon.

7The average muon lifetime was 64.435µs in the laboratory frame and 2.19711µs in the muon
rest frame.

8The decay µ− → e−ν̄eνµ was also considered, but separately. The E821 experiment obtained
two values for aµ(exp), one from µ+ decays and the other from µ− decays. The two values for
aµ(exp) were then combined, subject to the assumption of CPT symmetry, to give the value for
aµ(exp) of Eq. 3.49.
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The decay positrons were detected by a calorimeter, with the expected number of

decay positrons with energy greater than E9 at time t after the muons were injected

into the storage ring given by

N(t) = N0(t)exp(−t/γτrest)(1 +A(E)sin(ωat+ φ(E))), (3.52)

where τrest is the muon lifetime in the muon rest frame and φ is a positron-energy-

dependent phase. Equation 3.52 corresponds to exponential decay modulated by

the anomaly frequency ωa. The experimental data (see Fig. 5.1) was fitted to Eq.

3.52, with the fit yielding an experimental value for ωa.

Figure 3.5: Number of muon decays N versus time as measured by the E821 experiment
at Brookhaven National Lab. The data of the figure was used to determine a value for the
muon anomaly frequency ωa. See discussion in text. The figure is reprinted from [2].

The magnitude of the trapping magnetic field B was determined separately from

ωa. The Larmor spin precession frequency ωp of a proton in water was measured

and related to B via the expression ωp = (1 + ap)
eB
2mp

.

9The criterion Ee > E selected preferentially for positrons emitted in the forward direction.
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The final step in obtaining a value for aµ was algebra:

ωa = aµ
eB

mµ
→ aµ =

2mµµp
e

ωa

ωp
= (1 + aµ)

µp
µµ

ωa

ωp
→ aµ =

R

λ−R
, (3.53)

where µµ = (1 + aµ)
e

2mµ
, µp = (1 + ap)

e
2mp

, λ =
µµ
µp
, and R = ωa/ωp. The experi-

mental value for λ came from spectroscopy measurements of ground-state muonium

performed at LAMPF at Los Alamos [48]. The gymnastics of Eq. 3.53 were done

to minimize the effect of the uncertainty of mµ on the total uncertainty of aµ.

A new measurement of aµ, using the same muon storage ring as the E821 exper-

iment, is underway at Fermilab [45]. The experiment (E989) is expected to improve

on the precision of the E821 experiment by a factor of three, with the improvement

coming from upgrades to ”outdated or underperforming components from E821”.
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Chapter 4

The spectroscopy sector

The spectroscopy data of the reference dataset (Table 2.1) consist of transition fre-

quencies from electronic hydrogen (ep), muonic hydrogen (µp), electronic deuterium

(ed), and muonic deuterium (µd) experiments. The bound states ep, µp, ed, µd are

called hydrogenlike, having in common a single, bound lepton and a nuclear charge

Z = 1.

The theory for electronic hydrogen has a history going back more than a century,

which has led to perturbative expressions for the electronic hydrogen energy levels,

organized in small parameters Zα, α/π, and me/mp. The theory for the other

hydrogenlike bound states is identical, up to appropriate mass substitutions and the

following qualifications:

• Replacement of the spin-1/2, strongly-bound proton with the spin-1, weakly-

bound deuteron requires modification of nuclear structure and hyperfine cor-

rections to the energy levels.

• Replacement of the electron with the 200-times heavier muon dramatically

changes the weight with which certain diagrams, particularly those involving

closed electron loops, contribute to the energy levels.

Schrodinger theory predicts that hydrogenlike states with the same principal
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quantum number n but different total angular momentum j and orbital angular

momentum ` will have the same energy, En. Dirac theory lifts the degeneracy with

respect to j while keeping the degeneracy with respect to ` intact.1 Lifting the

degeneracy with respect to j splits the lines of the Schrodinger spectrum, and the

Dirac spectrum is said to acquire a fine structure: En → Enj . The degeneracy of

the Dirac spectrum with respect to ` is lifted by radiative, recoil, nuclear structure,

and hyperfine splitting corrections to Dirac theory. The resulting spectrum is said

to acquire a hyperfine structure: Enj → Enj`.

The hyperfine structure was first observed by Lamb and Retherford [49] in 1947,

who measured a non-zero value for the 2S1/2−2P1/2 transition frequency in electronic

hydrogen, in contradiction of Dirac theory.2 The 2S1/2 − 2P1/2 energy difference in

electronic hydrogen became known as the Lamb shift. Over time the Lamb shift

has acquired a broader meaning and now refers, except in historical contexts, to any

energy difference between hydrogenlike bound-states not captured by Dirac theory.

The spectroscopic theory of hydrogenlike atoms is discussed below, starting with

Schrodinger theory and extending to the modern formalism. Bound-state physics is

a rich subject, both broad and deep. References have been provided in those places

where depth or breadth is perceived to be especially lacking. Complete formulas can

be found in Ref. [20], which allow for computation of theoretical values for arbitrary

hydrogenlike bound-state transition frequencies.
1 ~J = ~L+ ~S commutes with the Dirac Hamiltonian. ~L and ~S do not.
2Twenty years prior to Lamb and Retherford’s measurement, Uehling predicted ν2S1/2−2P1/2

∼
−30MHz on the basis of a vacuum polarization calculation. Lamb and Retherford however found
ν2S1/2−2P1/2

∼ 1000MHz. The discrepancy (sign and magnitude!) was subsequently explained by
Bethe via a calculation of the leading self-energy correction to the electronic hydrogen energy levels.
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1 Schrodinger theory

The energy levels for a hydrogenlike atom, obtained by solving the Schrodinger

equation for a lepton (e or µ) in a Coulomb potential, are

En = −α
2mc2

2n2
, (4.1)

which has units of energy, eV . m is the mass of the lepton. The levels are anhar-

monic (i.e. not equally spaced) due to the n−2-dependence of Eq. 4.1. Equation

4.1 is derived in Appendix D using group theoretic arguments relating to the SO(4)

symmetry of the Schrodinger equation. n2 in this context represents the dimension

of the irreducible representations of SO(4) (see App. D). The spherical symmetry

in the problem (V = V (r)) implies only rotational invariance under SO(3). The ad-

ditional symmetry is dynamical in origin and partially broken in the Dirac equation:

see Sec 2.1.

The binding energy of a hydrogenlike atom is

α2mc2/2 = hc ˙R∞(m/me) = 13.6(m/me) [eV ],

where the first equality defines the Rydberg constant, R∞ = α2mec/2h [m−1]. The

muon in muonic hydrogen is accordingly (mµ/me) ∼ 200 times more deeply bound

than the electron in electronic hydrogen. Background thermal fluctuations enter

at the level of 10−4 · T [eV ] for background temperature T [K]. Sub-Kelvin back-

ground temperatures are consequently the norm in modern precision spectroscopy

experiments.

In units of freqency, Eq. 4.1 becomes

νn = −α
2mc2/h

2n2
= −R∞c

n2
[s−1]. (4.2)
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The full, modern theory for hydrogenlike bound-states perturbatively corrects Schrodinger

theory. The perturbative expansion of the energy levels for the full theory starts

at order α2mc2/2h = R∞c, with the higher-order terms all containing a factor of

R∞c, which allows the energy levels for the full theory to be written in the (now-

conventional) factorized form νn`j = R∞c · ν̂n`j , where ν̂n`j is an explicit function

of α and the nuclear charge radius rN (N = p or d). The dependence of ν̂n`j on α

is due to radiative corrections to the energy levels; the dependence on rN , to finite

nuclear-size corrections.

The relevant energy scales are well-separated

m(Zα)2 << mZα << m << M,

withM the mass of the nucleus. mZα gives the scale of the lepton momentum3 and

can also be identified with the inverse Bohr radius of the hydrogenlike atom a−1
0 .

2 Dirac theory

2.1 The Dirac equation

Typical derivations of the Dirac Hamiltonian take a ”square root” of the Klein-

Gordon equation. The result is a Hamiltonian with first-order derivatives in time and

space and Lorentz-covariant equations of motion (Hψ = i∂tψ), known collectively

as the Dirac equation. The Dirac algebra follows from self-consistency arguments.

The Dirac eigenvalue equation is

iγ0 · [~γ · ~∇+m+ ie /A]uN = ENuN (~x),

iγ0 · [~γ · ~∇+m+ ie /A]vN = −ENvN (~x),
(4.3)

where uN (vN ) is a four-component particle (antiparticle) Dirac wave function for
3< n|~p2|n >= (mZα/n)2 for stationary states |n > .
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continuum-state or bound-state N .4 Negative-energy solutions are evident on the

right-hand side of the second line.

The ansatz

uN =
1√
2

fN + igN

fN − igN

 , vN =
1√
2

gN − ifN

gN + ifN

 , (4.4)

preserves normalization conditions arising from the orthogonality of Dirac wave

functions of different energy.5 fN and gN are by inspection two-component wave

functions. Under this ansatz and for an electrostatic external field with ~A = 0, Eq.

4.36 reduces to
(~σ · ~∇)fN = (EN + eA0 +m)gN ,

(~σ · ~∇)gN = −(EN + eA0 −m)fN .
(4.5)

2.2 The non-relativistic limit of the Dirac equation

The non-relativistic limit of Eq. 4.5 is instructive. For a bound-state EN + m ≈

2m >> |eA0|. Insertion of this approximation into Eq. 4.5 immediately implies the

following:

• gN ≈ (~σ · ~∇/2m)fN ∼ (mZα/2m)fN << fN for lepton momentum of the

order of the inverse Bohr radius of the atom.

• (EN −m)fN ≈ [−eA0 − ~∇2/2m]fN , which is the Schrodinger equation. Since

spin and orbital degrees of freedom are not coupled in the equation, fN can be

decomposed into the simple product fN = χN · ψN , where χN is a constant,
4uN (~x) =< 0|ψ(~x)|N >, where ψ(~x) is the electron or muon field, |0 > is the vacuum, and |N >

is one of a complete set of orthonormal state vectors.
5The orthogonality of Dirac wave functions of different energy can be shown as follows:

0 =

∫
d3x ~∇(u†

N iγ
0~γuM ) =

∫
d3x u†

N (γ0i~∇ · ~γ − ~γ · i~∇γ0)uM ) = (EM − E∗
N )

∫
d3x u†

NuM ,

where Eq. 4.3 has been applied to obtain the third equality. Hence
∫
d3x u†

NuM = 0 for M 6= N.

More generally,
∫
d3x u†

NuM ∼ δNM , up to a normalization. Likewise,
∫
d3x v†NvM ∼ δNM .

6in the Weyl basis
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two-component spinor and ψN is a one-component Schrodinger wave function.

Index N labels the quantum numbers n, `, j of the bound-state.

• uN ≈ 1√
2

1 + i(~σ · ~∇)/2m

1− i(~σ · ~∇)/2m

 fn. Non-relativistic approximations for ūMuN ,

ūMγ
0uN , etc. can be calculated from this expression for uN and will be used

in Sec. 4.1 to compute expectation values of operators contributing to the

Lamb shift.

2.3 The Dirac spectrum

Solving Eq. 4.5 for EN— in the presence of a Coulomb potential, eA0 = Zα/r—

solves the Dirac spectrum for a hydrogenlike bound-state. A solution requires pa-

rameterizing fN and gN , which is done in textbooks by now-standard physical ar-

guments; see App. E The solution is

EN → Enj = m[1 + (
Zα

n− j − 1/2 +
√
(κ(j + 1/2))2 − (Zα)2

)2]−1/2, (4.6)

where κ = ±1 is a quantum number related to parity as ηN = (−1)` = (−1)j−1/2·κ.

ηN is the intrinsic parity of state vector |N >= |nj >. The Dirac spectrum is by

inspection degenerate with respect to ` and κ. The degeneracy with respect to `

is due to the SO(3) symmetry of the Dirac equation, while the degeneracy with

respect to κ is due to its parity symmetry and can be regarded, as with the SO(3)

symmetry, as a residue of the SO(4) symmetry of the Schrodinger equation.7

For hydrogenlike atoms, Enj can be expanded in powers of Zα = α << 1

Enj = m[1− 1

2
(
Zα

n
)2 +

Zα

n

4

(
3

8
− n

2j + 1
) + ...]. (4.7)

The second term is the binding energy from non-relativistic Schrodinger theory. The
7Since `max = j− 1/2, η = (−1)`

max

implies κ must be positive, and the symmetry of the Dirac
equation under κ disappears.
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third term is the first relativistic correction to the Schrodinger-theory binding en-

ergy. Equation 4.7 can be improved trivially by replacing the lepton mass coefficient

m with the reduced mass of the bound-state µ where appropriate

Enj = m− µ[
1

2
(
Zα

n
)2 − Zα

n

4

(
3

8
− n

2j + 1
) + ...]. (4.8)

The relativistic corrections are ordered in powers of (Zα)2, which is a consequence

of the relativistic energy being ordered in powers of p2/m2 ∼ (mZα)2/m2 = (Zα)2 :

E =
√
p2 +m2 = m[1 +

1

2

p2

m2
− 1

8
(
p2

m2
)2 + ...]. (4.9)

Corrections to the energy relating to the spin-1/2 of the lepton only modify the

coefficients of (Zα)2n in the expansion, which can be seen, at least superficially, by

comparing Eq. 4.9 to Eq. 4.7.

2.4 The exact mass dependence of the Dirac spectrum

Equation 4.8 is ultimately a stopgap. The exact mass-dependence at order (Zα)4

and beyond requires careful consideration of the relativistic two-body problem, with

a lepton of mass m and a nucleus of mass M. The non-relativistic Hamiltonian for

the two-particle system in the center-of-mass frame is

H =
~p2

2m
+

~p2

2M
− Zα

r
. (4.10)

First-order relativistic corrections to the nonrelativistic energy are of order v2/c2 ∼

(Zα)2 and appear at order (Zα)4 of the expansion in Zα. These corrections can

be obtained from the sum of the relativistic free-particle Hamiltonians for m and

M and the relativistic one-photon exchange. Additional exchange photons bring in

at least one additional factor of Zα, pushing diagrams with two or more exchange

photons to order (Zα)5 and higher. The first-order relativistic corrections to Eq.
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4.10 make up what is called the Breit potential. The Breit potential, due to Gregory

Breit, is discussed and partially derived in App. F. Ultimately it corrects Eq. 4.7

by terms depending on the mass M of the nucleus such that

Enj` = m+M − µ
1

2
(
Zα

n
)2 + µ

Zα

n

4

(
3

8
− n

2j + 1
+

µ

4n(m+M)
)

+
(Zα)4µ3

2n3M2
(

1

j + 1/2
− 1

`+ 1/2
)(1− δ`0),

(4.11)

where µ is the reduced mass. The fourth term breaks the degeneracy of the Dirac

spectrum with respect to ` and gives a non-zero contribution to the Lamb shift.

The contribution is small compared to the total Lamb shift due to the suppression

induced by the factor of (µ/M)2. The part of the fourth term proportional to

δ`0 is called the Darwin-Foldy term and is non-zero only for spin-1/2 nuclei. As a

consequence, Eq. 4.11 contributes to the Lamb shift in hydrogen but not deuterium.8

The dominant contributions to the Lamb shift for any hydrogenlike bound-state

come from one-loop radiative corrections, which require quantum field theory—

more particularly, bound-state quantum field theory— for their complete descrip-

tion.

3 Bound-state quantum field theory

The existence of a hydrogenlike bound-state— consisting of a lepton of mass m

bound to a Z = 1 nucleus of mass M >> m— implies the existence of a pole at

E = M + m − 13.6(m/me) eV. However no single diagram contains such a pole.

Instead the pole is a divergence arising from the sum of all diagrams at center-

of-mass energies near M + m. The divergence is associated with the breakdown

of the perturbation theory, occurring when the nucleus and lepton momenta are

. mZα ∼ [size of atom]−1.

Hydrogenlike bound-states are held together by the Coulomb interaction between
8The deuteron has spin-1.
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lepton and nucleus. We follow Weinberg [50] and introduce the Coulomb interaction

at the level of the Lagrangian by replacing the vector potential Aµ in the Lagrangian

with Aµ +Aµ, where Aµ(x) is an external vector potential due to an infinite-mass

point source identified with the nucleus. This replacement— of Aµ +Aµ for Aµ or,

equivalently, the nucleus for an external field— and the formalism that follows it, is

known as the external field approximation.

The external field modifies the propagator S of the lepton field such that S → SA,

where

− iSA(x, y) = −iS(x− y) + (−i)2
∫
d4z1S(x− z1)eγ

µAµ(z1)S(z1 − y)

+ (−i3)
∫
d4z1

∫
d4z2S(x− z1)eγ

µAµ(z1)S(z1 − z2)eγ
νAν(z2)S(z2 − y)... .

(4.12)

The terms of Eq. 4.12 correspond to Feynman diagrams with a variable number of

insertions of the external field in the lepton line. The photons attached to the lepton

line are attached to the nucleus line in all possible orders. Only in the non-relativistic

limit do the uncrossed ”ladder” diagrams dominate the sum.

SA can alternatively be written as a time-ordered two-point correlation function

− iSA =< 0|Tψ(x)ψ̄(y)|0 >A, (4.13)

where |0 >A represents the vacuum for the free-field Hamiltonian plus interactions

with the external field. For x0 > y0 and after the insertion of a complete set of

states, Eq. 4.13 becomes

− iSA =< 0|ψ(x)|0 >< 0|ψ̄(y)|0 >A +
∑
N

< 0|ψ(x)|N >< N |ψ̄(y)|0 >A

=
∑
N

< 0|ψ(x)|N >< N |ψ̄(y)|0 >A .

(4.14)

As before, the sum over N runs over bound states and continuum states. We ignore

the continuum states in what follows. On the second line the vacuum expectation
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value of the field ψ(x) is taken to be zero. By construction ψ(x) annihilates a

positive-energy lepton for x0 > y0 and creates a negative-energy antilepton for

x0 < y0. Hence for x0 > y0, < 0|ψ(x)|N >= uN and< N |ψ̄(x)|0 >= ūN . (We ignore

the antilepton wave functions which are irrelevant to the phenomenology.) With

these substitutions for uN and ūN , Eq. 4.14 becomes −iSA =
∑

N uN (x)ūN (y).

The vacuum for the full Hamiltonian H is related to |0 >A as9

|Ω >= limt→∞(1−iε)
e−iHt

< Ω|0 >A
|0 >A . (4.15)

Replacing |0 >A≡ |0 > in SA with the full interacting vacuum |Ω > and again

taking x0 > y0 finds

− iSA → −iS′
A =< Ω|ψ(x)ψ̄(y)|Ω >

= lim
t→∞(1−iε)

1

| < Ω|0 > |2

×
∑
N

< 0|eiHtψ(x)|N >< N |ψ̄(y)e−iHt|0 >

=
∑
N

e−iE′
N (x0−y0)UN (x)ŪN (y),

(4.16)

where UN = uN/ < Ω|0 > . Equation 4.16 can be Fourier transformed to give S′
A

as a function of energy E

S′
A(~x, ~y;E) =

∫ ∞

∞
dx0eiE(x0−y0)S′

A(x, y) =
∑
N

UN (~x)ŪN (~y)

E′
N − E − iε

. (4.17)

S′
A has poles at bound-state energies E′

N . SA, likewise, has poles at bound-state

energies EN . The free10 and interacting quantities under consideration are related
9This relation can be established by time-evolving |0 > by the full Hamiltonian H:

e−iHt|0 >=
∑
N

e−iEN t|N >< N |0 >= e−iE0t|Ω >< Ω|0 > +
∑
N 6=0

e−iEN t|N >< N |0 > .

Since EN > E0, in the limit t → ∞(1 − iε), the sum over N 6= 0 vanishes. What remains can be
solved for |Ω > to obtain Eq. 4.15, which takes E0 =< Ω|H|Ω > to be zero. < Ω|0 > must be
non-zero. Otherwise H would in no way consitute a small perturbation of the free Hamiltonian.

10Here, the free quantities under consideration are free up to the interaction of the external field.
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by trivial ansatz by S′
A = SA + δSA, E

′
N = EN + δEN , and UN = uN + δuN , where

δSA, δEN , and δuN are defined order-by-order in perturbation theory.

With these identifications, Eq. 4.16 becomes

S′
A(~x, ~y;E) =

∑
N

(uN + δuN )(ūN + δūN )

EN + δEN − E − iε

= SA...−
∑
N

uN ūN
(EN − E)2

δEN .

(4.18)

The last term on the second line is the only term containing a factor of δEN . Solving

for δEN (i.e. the shift in the pole energy associated with swapping SA for S′
A) is

then a matter of identifying the term in δSA ∼ uN ūN/(EN − E)2.

The lowest-order radiative corrections to SA can be accounted for perturbatively

by summing all one-loop diagrams with one incoming and one outgoing lepton (de-

noted ΣA) between external-field-dressed lepton propagators

δSA =

∫
d4z

∫
d4wSA(x, z)ΣA(z, w)SA(w, y). (4.19)

The diagrams associated with ΣA are shown in Fig. 4.1 and consist of tadpole

and self-energy diagrams plus counterterms, which reduce, respectively, to vacuum

polarization and vertex-correction diagrams for a single insertion of the external

field.

With appropriate substitutions for SA and a transformation to energy variables,

Eq. 4.19 becomes

δSA =
∑
N,M

uN (~x)ūM (~y)

(EN − E)(EM − E)

∫
d3z

∫
d3w ūN (~z)Σ̃A(~z, ~w)uM (~w), (4.20)

where Σ̃A is ΣA recast in terms of energy. Comparing Eq. 4.20 to Eq. 4.18 finds

δEN =

∫
d3z

∫
d3w ūN (~z)Σ̃A(~z, ~w;EN )uN (~w), (4.21)
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SA

(a)

(b)

SA

(c)

(d)

Figure 4.1: Diagrams for the one-loop radiative corrections to the hydrogenlike bound-state
energy levels, and their counterterms. Double fermion lines correspond to SA (Eq. 4.14),
the fermion propagator in the presence of external field A. Diagram (a) gives the dominant
contribution to the Lamb shift for electron hydrogen. Diagram (c) gives the dominant
contribution to the Lamb shift for muonic hydrogen.

or, equivalently,

δEN = −
∫
d3p′

∫
d3p ūN (~p′)Σ̃A(~p

′, ~p;EN )uN (~p). (4.22)

Equations 4.21 and 4.22 give the lowest-order radiative corrections to the energy pole

of bound-state N . The equations are very general and can be used to compute the

leading radiative corrections to the energy— which are also the leading contributions

to the Lamb shift— for all hydrogenlike bound-states. δEN is complex for unstable

bound-states, with its real part corresponding to the energy shift and its imaginary

part corresponding to −Γ/2, where Γ is the bound-state decay rate. For muonic

hydrogen, for example, Γ is given by the muon decay rate. For positronium, Γ must

be determined from the various e+e− annihilation channels.

The matrix elements contributing to δEN at any order of perturbation theory

are— out of practicality and with minimal loss of precision— typically evaluated
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using the non-relativistic approximation for uN developed in Sec. 2.2:

uN ≈ 1√
2

1 + i(~σ · ~∇)/2m

1− i(~σ · ~∇)/2m

 fN . (4.23)

fN again is composed of the product of a one-component, Schrodinger-Coulomb

wave function and a constant, two-component, free-particle Dirac spinor. The terms

∼ i(~σ·~∇)/2m can often be neglected in Eq. 4.23. Higher-order terms can be included

in Eq. 4.23 as well, if the calculation warrants.

4 Leading contributions to the Lamb shift

The leading radiative corrections come from the one-loop tadpole and self-energy

diagrams. The self-energy diagram (Fig. 4.1(a)) contains a naive infrared divergence

that is cut off by the virtuality of the lepton, which is of the order of the binding

energy. The diagram is typically evaluated by splitting the integral over the virtual

photon energy into a high-energy region and a low-energy region. In the low-energy

region the lepton can be treated non-relativistically, while the effects of the external

field must be treated to all orders. In the high-energy region the lepton must be

treated relativistically, while the effects of the external field can be treated to lowest-

order. We take a slightly different tack, again following Weinberg [50], and split the

photon propagator into nominally high- and low-energy parts

1

k2
= [

1

k2 + µ2
] + [

1

k2
− 1

k2 + µ2
]. (4.24)

The propagator 1
k2+µ2 corresponds to a fictitious photon with mass taken to be in

the range mZα2 (binding energy) << µ << mZα (electron momentum). The first

term of Eq. 4.24 is the high-energy part; the second, the low-energy part.

The tadpole diagram (Fig. 4.1(c)) is not infrared divergent and requires no

special care. Its contribution to the energy will be considered alongside the high-
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energy part of the self-energy correction.

4.1 The high-energy part of the one-loop energy shift

Because m(Zα)2 << µ, the high-energy part of the self-energy correction needs to

be computed only to first-order in the external field:

Σ̃A(~p
′, ~p;EN ) → Σ̃A(1)(~p

′, ~p;EN ) = −ieAµ(~p
′ − ~p)Γµ

1 (~p
′, EN , ~p, EN ), (4.25)

where Γµ
1 is determined by expanding the factors of SA in Eq. 4.22 and keeping

only terms linear in Aµ. The factors of SA are all contained in Σ̃A, which is evident

by inspection of diagrams (a) and (c) of Fig. 4.1. Under the restriction of Eq. 4.25,

diagrams (a) and (c) contain exactly one insertion of the external field and reduce to

vertex-correction and vacuum polarization diagrams, respectively. Both diagrams

contribute to Γµ
1 . Equation 4.22 becomes

[δEN ]high−E = −
∫
d3p′

∫
d3p ūN (~p′)Γµ

1 (~p
′, EN , ~p, EN )uN (~p)Aµ(~p

′ − ~p). (4.26)

At tree-level Γµ
1 → γµ, suggesting the identification

ūN [γµ + Γµ
1 ]un = ūN [γµF1(q

2) +
i

2
[γµ, γν ]qνF2(q

2)]uN , (4.27)

where the right-hand side gives the most general vertex structure allowed by parity,

gauge, and Lorentz invariance, with F1 and F2 the well-known Dirac and Pauli form

factors. F1 and F2 are defined order-by-order in perturbation theory and understood

here to be truncated at one-loop level, to match the vertex structure on the left-hand

side. By Eq. 4.27,

Γµ
1 = γµ(F1(q

2)− 1) +
i

2
[γµ, γν ]qνF2(q

2).
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The one-loop contributions to F1 and F2 are computed in nearly every introductory

quantum field theory text. Making use of these results reduces the problem of

computing [δEN ]high−E to a sum of problems already solved. The results, to one-

loop level, are

F1(q
2) = 1 +

e2

24π2
(
q2

m2
)[ln( µ

2

m2
) +

2

5
+

3

4
];

F2(q
2) =

e2

16π
.

(4.28)

The term ∼ 2/5 in F1 is from the vacuum polarization diagram. The remaining

terms in F1, and the lone term in F2, are contributed by the vertex-correction

diagram.

The calculation of [δEN ]high−E is straightforward, if tedious. The prescription

is:

• Fourier transform Eq. 4.26 into position space;

• Take Aµ → A0 ( ~A = 0) inside Eq. 4.26, which sends eFµν(~x) → ~∇[eA0(~x)];

• Set e~∇2A0(~x) = −Ze2δ3(~x);

• Use the non-relativistic approximations for ūMuN , ūMγ0uN , etc. alluded to

in Sec. 2.2.

The result is

[δEN ]F1 =
Ze4

12π2m2
[ln(m

µ
)− 1

5
− 3

8
] · |fN (0)|2;

[δEN ]F2 =
Ze4

32π2m2
· |fN (0)|2 + ie2

16π2m2

∫
d3xf †N (~x)~σ · [~∇(eA0(~x))× ~∇fN (~x)];

[δEN ]high−E = [δEN ]F1 + [δEN ]F2 .

(4.29)

The indexN labels the bound-state, withN = (n, `, j) and fn`j(~x) a non-relativistic

Schrodinger-Coulomb wave function. The first term of [δEN ]F2 cancels against the

third term of [δEN ]F1 . Since [δEN ]F1 ∼ |fN (0)|2 is non-zero only at the origin,

[δEN ]F1 contributes only to states with ` = 0, which are the only states with support
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at the origin. The second term of [δEN ]F2 by contrast contributes only to states

with ` 6= 0, which can be seen from the fact < ~σ · ~∇(eA0(~x) × ~p) >NN= −Ze <

(~σ · ~L)/r3 >NN .

[δEN ]high−E is dominated by the factor of ln(m/µ) in the first term of [δEN ]F1 .

Treating µ as a cutoff and setting it equal to the binding energy m(Zα)2— the

approximate scale at which the naive infrared divergence of the self-energy loop

is cut off— while ignoring the subdominant contributions of Eq. 4.29, predicts a

Lamb shift for electronic hydrogen E2S1/2−2P1/2
≈ 1300 MHz. 1300 MHz is about

30% larger than the experimental value. The actual cutoff is determined by the

low-energy part of δEN . To cancel the µ-dependence of Eq. 4.29, the low-energy

part is required to give a term ∼ ln(µ/Λ), with Λ a cutoff energy, fixed by the low-

energy calculation. It turns out Λ is considerably larger than m(Zα)2, which shifts

the predicted value for the Lamb shift down by ∼ 30%. The low-energy part of the

energy shift is discussed in the next subsection.

4.2 The low-energy part of the one-loop energy shift

The contribution to the energy shift from the infrared-finite vacuum polarization

diagram was considered in the previous section and does not need to be considered

here. The only diagram relevant to the calculation of the low-energy part of the

energy shift is the self-energy diagram, which can be calculated from Eq. 4.21:

[δEN ]low−E =

∫
d3z

∫
d3w ūN (~z) · [Σ̃A(~z, ~w;EN )]low−E · uN (~w), (4.30)

where

[Σ̃A(~z, ~w;EN )]low−E =

∫
dz0eiEN (z0−w0) · {ie2γρSA(z, w)γρD(z − w;µ)

+ δm(µ)δ4(z − w)− (Z2(µ)− 1)(γµ(∂µ + ieAµ) +m)}.
(4.31)
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The three terms inside the curly brackets of Eq. 4.31 are obtained by application

of the Feynman rules to the diagrams of Fig. 4.1(a)-(b) and apply equally to the

high-energy calculation, with the understanding that the form and interpretation of

D(z − w;µ) and SA differ between the low- and high-energy regimes. In the low-

energy (high-energy) regime, D(z−w;µ) is taken to be the low-energy (high-energy)

part of the photon propagator in position space. The counterterms δm(µ) and Z2(µ)

are calculated in a given regime using the relevant form of D(z−w;µ). The Z2(µ)-

dependence however disappears from Eq. 4.31, because the third term in curly

brackets acting on uN (~w) gives zero by the Dirac equation. SA, in the high-energy

calculation, was approximated by the second term of Eq. 4.12, containing only one

insertion of the external field. The low-energy calculation however must account for

photon momenta smaller than the binding energy and requires keeping the terms

of Eq. 4.12 to all orders in the external field. For calculational convenience, SA is

replaced in Eq. 4.31 not by Eq. 4.12 but by the functionally equivalent Eq. 4.14,

rewritten here in energy variables

− iSA(~x, ~y;E) =
∑
N

uN (~x)ūN (~y)

EN − E − iε
. (4.32)

All the pieces needed to calculate [δEN ]low−E are present in Eqs. 4.30-4.32. The

calculation is done in detail in Ref. [50] and involves more tricks than physical

insights. The result is

[δEN ]low−E =
e2

6π2

∑
M

(EM − EN )|~vMN |2[ln( µ

2|EM − EN |
) +

5

6
+ iπθ(EN − EM )].

(4.33)

EN and EM are, respectively, the energies of the initial-state and intermediate-

state leptons in the self-energy diagram, with the sum overM running over possible

intermediate-state lepton energies. As expected, the infrared divergence of the log-

arithm is cut off by the virtuality of the lepton and regulated within the calculation
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by subtraction of the δm counterterm.11 ~vMN is the expectation value of the veloc-

ity operator i~∇/m evaluated between Schrodinger-Coulomb wave functions f †M and

fN . The imaginary part of [δEN ]low−E parameterizes the possibility lepton state

N decays to lepton state M, allowed only if EN > EM . Only the real part of Eq.

4.33 is relevant to calculation of the Lamb shift. The imaginary part— as with

the imaginary part of [δEN ]high−E— contributes to the decay rate Γ, given by the

imaginary part of the total energy shift.

4.3 The total one-loop energy shift

It remains to relate Eq. 4.33 to the high-energy part of the energy shift (Eq. 4.29).

The relation (EM −EN )~vNM = [~v,H]NM , which may be easily verified, with H the

Schrodinger-Coulomb Hamiltonian, leads to

∑
M

(EM − EN )|vMN |2 = 1

2

∑
M

([vi,H]NM · viMN + viNM · [H, vi]MN )

= − 1

2m2
[pi, [pi,H]]NN .

(4.34)

−eA0(~x) is the only term in the non-relativistic Hamiltonian that does not commute

with ~p.12 Equation 4.34 becomes

∑
M

(EM − EN )|vMN |2 = − e

2m2
(~∇2A0(~x))NN

=
Ze2

2m2
|fN (0)|2,

(4.35)

where ~∇2A0(~x) = −Zeδ3(~x). Equation 4.35 allows [δEN ]high−E (Eq. 4.29) to be

added directly to [δEN ]low−E (Eq. 4.33) to obtain a µ-independent total energy
11as in the textbook calculation of the electron self-energy in the absence of an external field
12perhaps most easily seen by ’quantizing’ the Poisson bracket {pi, H}
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shift, with the result

[δEN ]total =
e2

6π

∑
M

(EM − EN )|vMN |2[ln( m

2|EN − EM |
) +

5

6
− 1

5
]

− e2

16π2m2
(σ · ~∇(eA0(~x))× ~p)NN .

(4.36)

The M -dependence of the logarithm in Eq. 4.33 necessitates writing Eq. 4.29 in

terms of
∑

M (EM−EN )|vMN |2 rather than writing Eq. 4.33 in terms of (~∇2A0(~x))NN .

Equation 4.36 conceals a lot of information. Its perturbative structure, lost in

the details of the calculation, can be teased out of each of the terms of [δEN ]total:

[first term] ∼ e2 · Ze
2

m2
· |fN |2 ∼ α · α

m2
· (α ·m

n
)3 ∼ R∞

n3
· (Zα)2 · α;

[second term] ∼ e2

m2
· ~∇(eA0) · |fN |2 ∼ α

m2
· α · (α ·m

n
)3 ∼ R∞

n3
· (Zα)2 · α.

(4.37)

Both terms have the same perturbative structure— an important consistency check—

and contain five powers of α: two (implicit in R∞) from Schrodinger theory, two

from the first-order relativistic correction, and one from the first-order radiative

corrections.

The first term of Eq. 4.36 is the energy shift due to the F1 contributions of the

naively-infrared-divergent self-energy calculation (first two terms in brackets) and

the infrared-finite vacuum polarization calculation (third term in brackets). The

second term is the energy shift due to the infrared-finite F2 contribution of the self-

energy calculation. The `-dependence of Eq. 4.36 is considered below, as a step on

the way to computing the (first-order radiative contribution to the) Lamb shift.

a. ` = 0 :

The second term of Eq. 4.36 is non-zero only for ` 6= 0, as discussed in part b below.

Consequently the total energy shift for states with ` = 0 is given by the first term
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of Eq. 4.36:

[δEN ]total · δ`0 ≈
e2

6π

∑
M

(EM − EN )|vMN |2[ln( m

2∆EN
) +

19

30
]. (4.38)

|EM − EN | has been replaced inside the logarithm by the mean excitation energy

∆EN . This replacement allows for the replacement of
∑

M (EM −EN )|vMN |2 in Eq.

4.38 with the expression on the second line of Eq. 4.35 and finds

[δEN ]total · δ`0 ≈
4α(Zα)4m

3πn3
[ln( m

2∆EN
) +

19

30
]. (4.39)

b. ` 6= 0 :

The second term of Eq. 4.36 can be rewritten as

− e2

16π2m2
[−Ze( 1

r3
~σ · ~L)NN ]

= − e2

16π2m2
[−Ze

∫
d3r

r3
f †N { ~J2 − ~L2 − ~S2} fN ]

=
α(Zα)4m

2πn3
[
j(j + 1)− `(`+ 1)− s(s+ 1)

`(`+ 1)(2`+ 1)
](1− δ`0),

(4.40)

where on the second line (~L · ~σ) fN = (2~L · ~S) fN = ( ~J2 − ~L2 − ~S2) fN = (j(j +1)−

`(`+ 1)− s(s+ 1)) fN , which is zero for ` = 0.13

The first term of Eq. 4.36 vanishes for states with ` 6= 0 according to Eq. 4.38.

Equation 4.38 however averages over the M -dependence of ln|EM −EN | of Eq. 4.36

so that

∑
M

(EM − EN )|vMN |2ln|EM − EN | → ln∆EN

∑
M

(EM − EN )|vMN |2.

Postponing the averaging over M allows the first term of Eq. 4.36 to be rewritten
13For a spin-1/2 nucleus, s(s+ 1) = 3/4.
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suggestively as

e2

6π

∑
M

(EM − EN )|vMN |2 · [ln( R∞
|EN − EM |

) + (terms independent of M)]

→ e2

6π

∑
M

(EM − EN )|vMN |2 · ln( R∞
|EN − EM |

).

(4.41)

The terms independent of M do not contribute to the energy shift for states with

` 6= 0. An expression identical to the expression on the second line of Eq. 4.41 can

be pulled out of the energy shift for ` = 0 states (see Eq. 4.38). The two expressions

encode contributions to the energy shift due to the physical infrared cutoff. Analogy

with Eq. 4.38 suggests Eq. 4.41 contributes to the energy shift for ` 6= 0 states as

[δEN ]IR(1− δ`0) =
4α(Zα)4m

3πn3
ln( R∞

∆EN
), (4.42)

which careful calculation confirms. The factor of R∞ inside the logarithm is cho-

sen by convention and is the scale at which the infrared divergence would naively

be expected to be cut off. The state-dependent quantities ln(∆EN/R∞) must be

calculated numerically and are called Bethe logarithms, often denoted lnk0(n, `).

The ultimate significance of the factor of R∞ is to define the units in which ∆EN

is computed.

The total energy shift for states with ` 6= 0, from Eqs. 4.40 and 4.42, is

[δEN ]total(1− δ`0) =
α(Zα)4m

πn3
[−4

3
ln(∆EN

R∞
) +

1

2
(
j(j + 1)− `(`+ 1)− s(s+ 1)

`(`+ 1)(2`+ 1)
)].

(4.43)

For illustration, we compute the 2S1/2−2P1/2 Lamb shift in electronic hydrogen,

determined from Eqs. 4.39 and 4.43:

[δE]2S1/2
− [δE]2P1/2

= 1039.31− (−12.88) = 1052.19MHz, (4.44)

which may be compared to the experimental value of 1057.845(9) MHz. Equation
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4.44 is conventionally given the following qualitative gloss.

• The vacuum polarization diagram contributes to the Lamb shift in electronic

hydrogen with a negative sign, because the virtual-pair creation associated

with the vacuum polarization correction increases the strength of the electron’s

binding.

• The self-energy diagram contributes to the Lamb shift in electronic hydrogen

with a positive sign, because the finite spread of the electron associated with

the self-energy correction decreases the strength of the electron’s binding.

• The overwhelming majority of the Lamb shift in electronic hydrogen is con-

tributed by the first-order radiative corrections of Fig. 4.1.

• The three points above are general features of the Lamb shift for any hydro-

genlike bound-state.

• The self-energy contribution dominates the Lamb shift in electronic hydrogen,

evidenced by the fact [δE]2S1/2
− [δE]2P1/2

> 0. This is however not a general

feature of hydrogenlike bound-states. Notably: the vacuum polarization con-

tribution dominates the Lamb shift in muonic hydrogen, a consequence of mµ

being a factor of 200 larger than me. See Section 6.1.

Section 6 compares the electronic and muonic Lamb shifts. Section 7 discusses the

Lamb shift in deuterium.

5 The full Lamb shift, including all effects

5.1 Organization of the contributions to the Lamb shift

Dirac theory treats the nucleus as an infinite-mass point source. Modeling the effects

of a physical nucleus— chiefly, the effects of its finite mass and size, its nuclear

polarizability, and its spin— corrects the Dirac spectrum and further breaks the
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degeneracy with respect to `, broken already by the leading radiative corrections

and the Darwin-Foldy term. The finite-mass corrections are referred to as recoil

corrections. The finite-size and polarizability corrections are referred to as nuclear-

structure corrections. The subset of nuclear-spin corrections accounting for the

relative orientation of the lepton and nucleus spins are referred to as hyperfine-

splitting corrections. We postpone discussion of the hyperfine splitting corrections

until Sec. 5.7.

The perturbation theory is rather intricate, with expansions in (Zα) (relativistic

corrections), (α/π) (radiative corrections), and (m/M) (recoil corrections) to keep

straight. Experimental precision ultimately determines where the perturbative ex-

pansions are truncated. Convergence of the various perturbative series is seldom

discussed but potentially problematic: see Sec 9.

Equation 4.11 suggests all contributions to the Lamb shift contain a common

factor m(Zα)4 ∼ R∞ · (Zα)2, which turns out to be the case. The leading radia-

tive corrections are of order m(Zα)4(α/π), the leading recoil correction is of order

m(Zα)4(m/M), and the leading nuclear-size correction is of order m(Zα)4 < r2 >,

where < r2 > is the rms charge radius of the nucleus.

The radiative corrections are calculated at fixed order in the relativistic ex-

pansion of Eq. 4.7 since, at fixed order in the relativistic expansion, all radiative

corrections, ∼ (α/π)`, are assumed to originate from the same distances.14 The

higher-order radiative corrections follow the same template as the first-order cor-

rections calculated above and are conventionally split into an F1 contribution and

an F2 contribution, with the F1 contribution further split into a vacuum polar-

ization contribution and a self-energy contribution. Hadronic vacuum polarization

contributions and electroweak contributions are considered separately.

Recoil corrections ∼ (Zα)j · (m/M)k · m, organized as a sum over k for fixed

j, are split off from radiative-recoil corrections ∼ (Zα)j · (m/M)k · (α/π)` ·m. The
14For high Z atoms, the relativistic corrections are calculated at fixed order in the radiative

expansion.
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recoil and radiative-recoil corrections account for the essentially two-body nature

of hydrogenlike bound-states and give corrections to the energy levels beyond those

given by the trick— equivalent to treating the bound-state as a one-body problem—

of replacing the lepton mass m with the reduced mass mr.

Nuclear size and radiative nuclear size corrections are organized in the same

way as the recoil and radiative recoil corrections, with corrections ∼ (Zα)j ·m and

∼ (Zα)j · (α/π)` · m, respectively, for j ≥ 4 and ` ≥ 1. Radiative nuclear size

corrections are especially important in muonic hydrogen where nuclear size effects

give a comparatively large contribution to the energy levels (Sec. 6.3). The recoil

and nuclear size corrections vanish in the respective limits of infinite nuclear mass

and infinitesimal nuclear size.

Care must be taken at every step of the calculation to avoid double-counting.

For instance, the Sachs electric form factor GE(Q
2) = F1(Q

2) − Q2/4M2 · F2(Q
2)

corrects the Coulomb potential for the finite-size of the nucleus (Sec. 5.4), where

q2 = −Q2 is the mass-squared of the virtual photon probing the nucleus. For

Q2 << m2, GE(Q
2) ≈ GE(0) +G′

E(0) ·Q2. The part of the correction proportional

to GE(0) = 1 corresponds to a point-like nucleus and is already implicitly taken into

account by the radiative corrections. The part proportional to G′
E(0) receives con-

tributions from F ′
1(0) and F2(0), with F2(0) the anomalous moment of the nucleus.

The F2(0) contribution is conventionally split off from the F ′
1(0) contribution, to

separate the effects of the anomalous moment of the nucleus from what are more

properly considered ’finite-size’ effects. Under this convention, the leading nuclear-

size correction, naively proportional to GE(Q
2), is instead taken to be proportional

to F1(Q
2)− 1.

5.2 Higher-order radiative corrections

Equation 4.36 gives the total energy shift due to the leading radiative corrections

to the energy (Fig. 4.1). The corrections are of order α(Zα)4. The first term of Eq.
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4.36 is obtained from the next-to-leading contributions to F1;15 the second term,

from the next-to-leading contribution to F2.

Similarly, the corrections of order αn(Zα)4 (n ≥ 1) are obtained from the NnLO

contributions to F1 and F2. Here NnLO refers to the nth-order beyond the (trivial)

leading order contributions to F1 and F2.

The corrections of order αn(Zα)5 have the added complication of being induced

by diagrams with two exchange photons, while corrections of order αn(Zα)6 have

at least three exchange photons.

5.3 Recoil corrections

Radiative corrections are calculated using the external field approximation, in which

the nucleus is taken to be infinitely heavy. Recoil (and radiative-recoil) corrections

account for the finite mass M of the nucleus and the ”truly relativistic two-body

nature of the bound-state problem”.

The Breit potential— which is the name given to the first-order relativistic cor-

rections to the non-relativistic two-particle Hamiltonian of Eq. 4.10— generates

all corrections to the energy levels of order (Zα)4. These corrections are shown in

Eq. 4.11. The mass-dependence of Eq. 4.11 is exact. The nth-order relativistic

corrections (n > 1) generate additional corrections of order (Zα)2(n+1).16 However

the recoil corrections that emerge from these nth-order relativistic corrections are

not complete.

As a case in point, the leading nontrivial recoil correction appears at order

(Zα)5(m/M) and is therefore not a part of the Breit spectrum. The correction is

instead generated, in the high-energy regime, by two-photon exchange diagrams.

The origin of the correction is discussed in App. G. The Breit spectrum also misses

recoil corrections of order≥ (Zα)6, some of which are relevant to the phenomenology.
15The next-to-leading contributions to F1 include contributions from the one-loop self-energy and

vacuum polarization diagrams.
16Recall that E =

√
p2 +m2 = m[1+1/2(p2/m2)−1/8(p2/m2)2+...] and p2/m2 ∼ m(Zα)2/m2 ∼

(Zα)2.
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5.4 Nuclear structure corrections

Finite size corrections

The elastic scattering amplitude for a virtual photon incident on a proton is

iM = −ieŪ(P ′, S′)[F1(q
2)γµ + F2(q

2)
iσµν
2mP

qν ]U(P, S) · εµ. (4.45)

mP is the mass of the proton, P (S), P ′ (S′), are the four-momenta (spin) of the

incoming proton and outgoing proton, and q = P ′ − P is the four-momentum of

the virtual photon. As before (Eq. 3.14), the quantity in brackets represents the

most general possible parity-invariant and gauge-invariant Lorentz structure for the

three-point vertex in QED.

Equation 4.45 can be written more compactly as

iM = −ie < P ′|Jµ|P > ·εµ, (4.46)

where Jµ is the current to which the virtual photon couples. In the Breit frame (dis-

cussed below), the longitudinal polarization vector εLµ = (q3, 0, 0, q0)/
√

−q2 reduces

to (1, 0, 0, 0). Hence,

< P ′|Jµ|P > ·εLµ =< P ′|J0|P >≡< J0 > . (4.47)

< J0 > is a Lorentz-invariant object resembling the (Fourier transform of) the pro-

ton’s electric charge density. We are interested principally in how the Coulomb

potential is modified as a consequence of this ’proton charge density’— or equiva-

lently, how the Coulomb potential is modified as a consequence of the finite size of

the proton.

From Eq. 4.45

< J0 >= Ū(P ′)[(F1(q
2) + F2(q

2))γ0 − F2(q
2)
EP

mP
]U(P ). (4.48)
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With the textbook identities Ū(P ′)γ0U(P ) = 2mP and Ū(P ′)U(P ) = 2EP , Eq.

4.48 becomes

< J0 >= 2mP [F1(q
2)−

~P 2

m2
P

F2(q
2)]

= 2mP [F1(q
2) +

q2

4m2
P

F2(q
2)]

≡ 2mPGE(q
2).

(4.49)

The second equality uses the relations ~P = −~P ′ and EP = EP ′ , which hold in the

Breit frame. The third equality uses the definition of the Sachs electric form factor

GE(q
2) = F1(q

2) + q2

4m2
P
F2(q

2).

For the Coulomb potential, Eq. 4.48 reduces to

< J0 >= Ū(P ′)γ0U(P ) = 2mP . (4.50)

Comparing Eqs. 4.49 and 4.50, we see the Coulomb potential receives a correction

due to the finite size of the proton, where

V =
e2

q2
→ V =

e2

q2
·GE(q

2). (4.51)

For q2 suitably small, the modified Coulomb potential can be approximated as

V ≈ e2

q2
· [GE(0) + q2 · dGE(q

2)

dq2
|q2=0, (4.52)

where GE(0) = F1(0) = 1. The shift in the Coulomb potential due to the finite size

of the proton is then

δV = 4πα · dGE(q
2)

dq2
|q2=0. (4.53)

The convention in the literature is to interpret GE in the Breit frame as the Fourier

transform of the proton’s electric charge density:

GE(q
2 → −~q2) =

∫
d3~rei~q·~rρ(|~r|). (4.54)
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The argument of GE connotes a shift to the Breit frame. (q2 equals −~q2 in the

Breit frame.) The issue with Eq. 4.54 is that the actual scattering event, of photon

on proton, is dynamical: the photon probe disturbs the proton target. In the Breit

frame q0 = 0 and ~P = −~P ′ so that the proton in and out states are similarly Lorentz

contracted.17 Referring the scattering event to the Breit frame effectively— but not

totally— deconvolves recoil effects (due to the probe) from internal structure effects

(which exist in the proton independent of the scattering). Equation 4.54 is thus

valid up to effects induced by the photon probe on the proton target. With this

understanding, we return to Eq. 4.54.

For small ~q2,

GE(−~q2) =
∫
d3~r [1− i~q · ~r − 1

2
(~q · ~r)2 + ...] ρ(r)

≈ 1− 1

2
~q2

∫
dΩ d3r r2ρ(r)cosθ

= 1− 2π

3
~q2

∫
d3r r2ρ(r)

= 1− 1

6
~q2

∫
d3~r r2ρ(r) ≡ 1− 1

6
~q2 < r2 >,

(4.55)

where r = |~r| and < r2 >=
∫
d3~r r2ρ(r) is the proton charge radius squared.

From Eq. 4.55,
dGE(0)

d~q2
= −1

6
< r2 > . (4.56)

The left- and right-hand sides of Eq. 4.56 transform as three-vectors squared. We

can promote dGE(0)/d~q
2 to a Lorentz scalar simply by replacing ~q2 with−q2. (Recall

that q2 = −~q2 in the Breit frame.) The Lorentz-invariant quantity 6dGE(0)
dq2

can

then be interpreted in the Breit frame as the proton charge radius squared. The

convention in the literature however is to attach the label r2p to 6dGE(0)
dq2

, regardless

of the choice of frame.
17The Breit frame conditions q0 = 0 and ~P = −~P ′ imply that, in the Breit frame, the proton

scatters off the photon as if the photon were a brick wall. The Breit frame is thus sometimes called
the ’brick wall’ frame.
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Plugging dGE(0)
dq2

= 1
6r

2
p into Eq. 4.57 and Fourier transforming finds

δV ≈ 2π

3
α r2p δ(~r). (4.57)

Due to the delta function, the leading finite-size correction ∆E =< ψ|δV |ψ >=

2π
3 α r

2
p |ψ(0)|2 > 0 contributes only to S-states. ∆E is positive, because the finite

size correction smears out the proton’s electric charge. The electron is thus bound

less tightly to the smeared-out proton than it would be to a pointlike proton.

The next-order nuclear-size correction∼ (Zα)5 comes from two-photon-exchange

diagrams (Fig. 4.2) with one and two insertions of (F1(q
2)− 1)γµ. (An insertion of

the form F1(q
2)γµ+F2(q

2)
iσµν
2mP

qν includes contributions from both the pointlike nu-

cleus and the anomalous moment of the nucleus. Those contributions are (sensibly)

conventionally included with the radiative corrections.)

Figure 4.2: Next-to-leading nuclear size correction with one insertion and two inser-
tions of (F1(q

2)− 1). An empty dot indicates an insertion of (F1(q
2)− 1).

In the external field approximation, the loop integrals associated with the two-

photon-exchange diagrams reduce to
∫∞
0

dq
q4
(F1(q

2)−1) (one insertion) and
∫∞
0

dq
q4
(F1(q

2)−

1)2 (two insertions). The total O((Zα)5) nuclear size correction is

∆E = −m(Zα)5

3n3
m3

r < r3 >, (4.58)

where < r3 > is the third Zemach moment:

< r3 >=

∫
d3r1d

3r2ρ(r1)ρ(r2)|~r1 + ~r2|3. (4.59)

For electronic hydrogen, Eq. 4.58 gives a correction ∆E(1S) ≈ 40 Hz.
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Nuclear polarizability corrections

The leading nuclear polarizability corrections appear at order (Zα)5— the same

order as the second-order contributions to the nuclear-size correction. The nuclear

polarizability corrections account for the effects of inelastic intermediate nuclear

states. The leading diagrams have two exchange photons; see Fig. 4.3.

Mmn Mmn

Figure 4.3: Leading nuclear polarizability corrections.

The diagrams of Fig. 4.3 contribute corrections of the form

∆E ∼ −|ψ(0)|2 · α
∫

d4k

(2π)4
DimDjn

k4
tr[γi(1 + γ0)m− k̂]

k2 − 2mk0
Mmn. (4.60)

The loop generating the integral of Eq. 4.60 consists of the two exchange photons

(DimDjn
k4

), the lepton propagator ( tr[γi(1+γ0)m−k̂]
k2−2mk0

), and the photon-nucleus inelastic

forward Compton amplitude (Mmn). The factor of α comes from the two photon

insertions in the lepton line, while the factor of |ψ(0)|2 indicates Eq. 4.60 contributes

only to S-states. A factor of Z2α is hidden in Mmn.

∆E is negative for typical parameterizations of Mmn. The lepton in the bound

state polarizes the nucleus. The attraction of the lepton to the induced nuclear

dipole increases the binding energy (decreasing the energy). For electronic hydrogen,

∆E(nS) ∼ −100/n3 Hz.

5.5 Hadronic corrections

The leading hadronic vacuum polarization (HVP) diagram is shown in Fig. 4.4.

The diagram gives a correction of order α(Zα)4— the same order as the leading

electron and muon vacuum polarization diagrams. The HVP insertion of Fig. 4.4
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modifies the Coulomb potential according to Eq. 3.40, with

V = −e
2

~q2
→ V = − e2

~q2(1−Π(−~q2))
. (4.61)

For |~q|2 << m2, the right-hand side of Eq. 4.61 can be approximated as

V = −e
2

~q2
(1 + ~q2 ·Π′(0)), (4.62)

where Π′(0) = dΠ(−~q2)/d~q2|~q2=0.

had.

Figure 4.4: Leading hadronic vacuum polarization correction.

The correction to the Coulomb potential due to Equation 4.62 is thus

δV = −4παΠ′(0)δ(~r). (4.63)

The corresponding correction to the energy levels is

∆E =< ψ|δV |ψ >= −4παΠ′(0)|ψ(0)|2. (4.64)

A numerical value for Π′(0) can be obtained through Eqs. 3.41 and 3.46. The sign

of ∆E is negative for the reasons discussed in Sec. 4.3.
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5.6 Electroweak corrections

The leading contribution to the energy levels due to the weak interaction is given

by the diagram of Fig. 4.5. The diagram generates a correction

∆E ≈ −7.7× 10−13α(Zα)
3mr

πn3
δ`0, (4.65)

which is negligible for phenomenological purposes.

Z

Figure 4.5: Leading electroweak correction.

5.7 Hyperfine splitting corrections

The hyperfine splitting (hfs) corrections account for the relative orientation of the

lepton and nucleus spin vectors. The hfs corrections are responsible for the splitting

of the 1S1/2 state into 1SF=0
1/2 and 1SF=1

1/2 states. We will discuss the splitting in

detail below, beginning with a qualitative picture. The 1SF=0
1/2 − 1SF=1

1/2 transition

holds a similar standing in the hfs literature as the 2S1/2 − 2P1/2 transition does in

the Lamb shift literature.

A system with a spin-1/2 lepton bound to a spin-1/2 nucleus can be a represented

as a linear combination of four basis states: a spin singlet state ((↑↓ − ↓↑)/
√
2)

corresponding to F = 0 and three spin triplet states (↑↑, (↑↓ + ↓↑)/
√
2, ↓↓) cor-

responding to F = 1. The spin singlet state has spin-0. Its lepton and nucleus

spin vectors are nominally anti-aligned, while its lepton and nucleus currents are

nominally aligned.18 The spin triplet states have spin-1, with lepton and nucleus

spin vectors (currents) nominally aligned (anti-aligned).

By the rule that parallel currents attract each other and anti-parallel currents
18Here, current := charge× spin− vector.
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repel each other, we then expect the spin singlet state (F = 0) to have lower energy

than the spin triplet states (F = 1).

The leading hfs correction is due to the interaction of the magnetic moment of

the nucleus ~µN with the magnetic field generated by the lepton magnetic moment.

The interaction Hamiltonian is given by

∆H = −~µN · ~B, (4.66)

where ~B can be obtained from ~Adip of Eq. 3.3.

A naive calculation of ~B = ~∇× ~Adip finds

~B = − µ0
4πr3

[~µ` − 3
(~r · ~µ`)
r2

~r − e

m
~L]. (4.67)

~B of Eq. 4.67 however is not the ~B of Eq. 4.66. The ~B of Eq. 4.66 receives an

additional contribution

δ ~B =
2

3
µ0 ~mδ(~r), (4.68)

which is due to Fermi. Here ~m is the magnetic (dipole) moment of the lepton.

Equation 4.68 can be derived by integrating
∫
r<R d

3r(~∇× ~Adip) under the assumption

that the lepton current is isolated to a ball of radius R.

Equations 4.66-4.68 then give

∆H =
µ0
4π

[−8π

3
~µ` · ~µNδ(~r) +

1

r3
[~µ` · ~µN − 3

(~r · ~µ`)(~r · ~µN )

r2
− e

m
~L · ~µN ]], (4.69)

where ~µ` = g`
e
2m
~S` and ~µN = gN

e
2M

~SN . For S-states, only the first term of Eq. 4.69

contributes to the energy. For all other states, only the second term contributes.

The splitting between the 1SF=0
1/2 and 1SF=1

1/2 states is thus

E(1SF=1
1/2 )−E(1SF=0

1/2 ) = −µ0
4π

8π

3
|ψ(0)|2[< ~µ` ·~µN >F=1 − < ~µ` ·~µN >F=0], (4.70)
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where < ~S` · ~SN >= −3/4~2 for the spin singlet state (F = 0) and 1/4~2 for the

spin triplet states (F = 1).19 Algebra then finds

E(1SF=1
1/2 )− E(1SF=0

1/2 ) =
8

3
(1 + a`)(1 + aN )

m

M
(Zα)4(

mr

m
)3mc2

≡ (1 + a`)EF ,

(4.71)

where a` and aN are the anomalous moments of the lepton and nucleus, respectively,

and the factor EF is the skeleton that the hfs perturbation theory organizes itself

around. Note: E(1SF=1
1/2 )−E(1SF=0

1/2 ) is positive, as expected, and evaluates to zero

for δ ~B → 0.

Higher-order hfs corrections can be systematically introduced in the same way

as the higher-order corrections of the Lamb shift, namely, via expansions in α, Zα,

and (m/M).

• Relativistic corrections are given by the matrix element ∆E =< n|γ0~γ ~A|n >,

where |n > are Dirac-Coulomb eigenkets and ~A is the vector potential gener-

ated by the magnetic moment of the nucleus.

• The dominant radiative corrections are generated by lepton self-energy cor-

rections at the lepton-photon vertex. These corrections take the form ∆E =

a`EF , as can be seen from Eq. 4.71. Vacuum polarization contributions are

negligible for electronic hydrogen and heavily suppressed for muonic hydrogen.

• The leading nuclear structure and recoil effects appear at order ZαEF .

The precision of the hfs measurements in electronic hydrogen is higher than the

precision of hfs theory. As a consequence, eH transition frequency measurements

are referred to a hyperfine centroid prior to being compared to eH theory. The

procedure removes hfs theory corrections from the phenomenology. The eH theory

appearing in the reference scheme, for example, contains no hfs corrections.
19~S = ~S`+ ~SN is the total spin. Then, ~S`̇~SN = 1/2(~S2− ~S2

` − ~S2
N ), where S`,N =

√
1/2(1/2 + 1)~

and S(F + 1) =
√

1(1 + 1)~ and S(F = 0) = 0.
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The hyperfine splittings in muonic hydrogen have not yet been measured. µH

transition frequencies must be compared directly to a representation of µH theory

that includes all hfs corrections down to a given size.

6 eH theory versus µH theory

The three primary differences between electronic hydrogen (eH) theory and muonic

hydrogen (µH) theory are a consequence of the muon being about 200 times heavier

than the electron. We list the differences below and then discuss each in turn.

• Electron vacuum polarization corrections. Radiative corrections generated by

electron loops are much larger in µH than in eH.

• Self-energy corrections. Self-energy corrections are much larger in eH than in

µH.

• Nuclear size corrections. The leading nuclear size correction is the second-

largest contribution to the Lamb shift in µH but stands as a small effect

among (competing) small effects in the Lamb shift in eH.

6.1 Electron vacuum polarization corrections

Following Pachucki [51], we introduce parameters βµ = me/µµα and βe = me/µeα,

where µµ and µe correspond respectively to the reduced mass of µH and eH. βµ

is of order 1, while βe ∼ 1/α. The parameters β` (` = e, µ), as we will see, are

useful for explaining why the electron loop contributions to the muonic Lamb shift

are much larger than electron loop contributions to the electronic Lamb shift.

We consider the leading electron-loop contribution to the Lamb shift in eH and

µH, corresponding to an electron loop insertion in the tree-level Coulomb exchange

diagram. The electron loop insertion modifies the Coulomb potential such that

V (−~q2) = −e
2

~q2
→ V (−~q2) = − e2

~q2(1− Π̂2(−~q2))
. (4.72)
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Π̂2(−~q2) = Π2(−~q2) − Π2(0) is related to the non-trivial part of the electron-loop

polarization tensor, which takes the form Πµν
2 = (q2gµν − qµqν)Π2(q

2). Equation

4.72 is motivated in the discussion preceding Eq. 3.40 and given further context

throughout Sec. 5.1. The exact form of Π̂2(−~q2), obtained by calculating the

electron loop, is not important for present purposes.

The modified Coulomb potential in position space is

V (~r) = −
∫

d3q

(2π)3
ei~q·~r

e2

~q2(1− Π̂2(−~q2))
. (4.73)

Performing the angular integration finds

V (~r) =
ie2

(2π)2r

∫ +∞

0
dq q

eiqr

q2 + µ2
[1 + Π̂2(−q2)], (4.74)

where q = |~q|, r = |~r|, and a fictitious photon mass µ has been introduced to

regulate the integral. The pole at q = iµ recovers the Coulomb potential in the

limit µ → 0. Additionally, Π̂2(−q2) has a branch cut starting at q = 2ime, which

gives a contribution δV (~r) to V (~r):

δV (~r) =
ie2

(2π)2r

∫ +∞

2

dQ

Q
e−meQrDisc. Π̂2(Q

2)

=
ie2

(2π)2r

∫ +∞

2

dQ

Q
e−meQr 2iImΠ̂2(Q

2)

= − α

πr

∫ +∞

4

dQ2

Q2
e−meQr ImΠ̂2(Q

2),

(4.75)

where Q = −iq/me.

The first-order contribution of δV (~r) to the Lamb shift is

EeV P (2P )− EeV P (2S) =

∫
d3rδV (~r)(ρ2P − ρ2S), (4.76)

where ρ2S = |R20|2, ρ2S = |R21|2, and R20 and R21 are the radial wave functions for

the 2S and 2P states, respectively.
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Computing the integral with respect to r finds

EeV P (2P )− EeV P (2S) = µµ(Zα)
2 1

π

∫ ∞

4

dQ2

Q2
ImΠ̂2(Q

2)
(β`Q)2

2(1 + β`Q)4
, (4.77)

where the contribution of EeV P (2P ) − EeV P (2S) to the electronic (muonic) Lamb

shift replaces β` with βe (βµ).

For β` = βe ∼ 1/α, EeV P (2P ) − EeV P (2S) is of order α5. For β` = βµ ∼ 1,

however, EeV P (2P ) − EeV P (2S) is only of order α3. (Note: ImΠ̂2(Q
2) is hiding

a factor of α, which comes from the electron loop.) The leading electron loop

contribution to the Lamb shift in µH is effectively enhanced by a factor of 1/α2

relative to the leading electron loop contribution to the Lamb shift in eH. Equation

4.77 gives by far the largest contribution to the Lamb shift in µH, contributing e.g.

205.006 meV to E(2P1/2)− E(2S1/2) ≈ 202 meV in µH.

The physical picture behind Eq. 4.77 is the following. The Coulomb potential is

strongly distorted by vacuum polarization insertions only within a radius of about

a Compton wavelength ∼ 1/me of the nucleus. Muonic hydrogen has a Bohr radius

a0(µH) = 1
mµα

≈ 1
200α

1
me

of roughly the same size as the Compton wavelength—

meaning, the muon spends a significant proportion of its time in the region in

which the Coulomb potential is strongly distorted. By contrast, the Bohr radius of

electronic hydrogen a0(eH) = 1
meα

is much larger than the Coulomb wavelength,

so the electron spends comparatively little time in the region of strongly distorted

Coulomb potential.

6.2 Self-energy corrections

Self-energy corrections smear out the wavefunctions of the electron in eH and the

muon in µH. The self-energy corrections are accommodated within quantum field

theory by shifting the Feynman rule for the three-point vertex in QED from −ieγµ

to −ieΓµ = −ie(F1(q
2)γµ +

iσµν
2m qνF2(q

2)), where m is the mass of the electron or

muon and qµ is the four-momentum of the virtual photon mediating the Coulomb
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interaction.

For simplicity, we consider an eH or µH atom in a state with ` = 0. Its energy is

independent of F2(q
2); see Eq. 4.38 and the discussion surrounding it. We thus take

−ieΓµ = −ieF1(−~q2)γµ. The self-energy corrections modify the Coulomb potential

such that

V (−~q2) = −e
2

~q2
→ V (−~q2) = −e

2F1(−~q2)
~q2

. (4.78)

Fourier transforming the modified Coulomb potential on the right-hand side of

Eq. 4.78 while expanding F1(−~q2) about ~q2 = 0 finds

V (~r) ≈ −α
r
− 4πα

dF1(−~q2)
d~q2

|~q2=0δ(~r), (4.79)

where the first term is the Coulomb potential and the second term is the modification

of the Coulomb potential due to the self-energy corrections. The factor dF1(−~q2)
d~q2

in

the second term is proportional to the charge-radius-squared of the electron in eH

or the muon in µH (cf. Eq. 4.57).

The leading self-energy correction to the ` = 0 energy levels in eH (µH) is

proportional to me (mµ); see Eq. 4.38. The shift in the Coulomb potential due to

the leading self-energy correction is thus proportional to 1/m2
e in eH and 1/m2

µ in

µH. These facts, together with Eq. 4.79, imply

dF1(−~q2)
d~q2

|~q2=0 ∝ < r2` > ∝ 1/m2
` , (4.80)

where < r2` > is the charge-radius-squared of lepton `, with ` corresponding to the

electron in eH or the muon in µH. The upshot of Eq. 4.80 is: the muon’s charge in

a µH atom is spread over a much smaller volume than the electron’s charge in an

eH atom. Consequently the leading self-energy correction (Fig. 4.1), which we saw

in Sec. 4.3 comprises the bulk of the Lamb shift in electronic hydrogen, comprises

only a small part of the Lamb shift in muonic hydrogen.
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6.3 Nuclear size corrections

The comparatively small Bohr radius of muonic hydrogen implies the muon in µH is

more sensitive to the finite-size of the nucleus than the electron in eH. The leading

nuclear size correction (Eq. 4.57), which comprises about 2% of the Lamb shift in

µH, comprises only about (me/mµ)
2 · 2% ∼ 0.01% of the Lamb shift in eH.

7 Deuterium theory

Deuterium consists of an electron bound to a deuteron, with the deuteron composed

of a proton and a neutron. Deuterium thus has Z = 1. The primary differences

between deuterium theory and hydrogen theory20 relevant to atomic spectroscopy

are the following.

• The proton in a hydrogen atom is spin-1/2; the deuteron in a deuterium atom

is spin-1.21 The Darwin-Foldy term (see Eq. 4.11 and subsequent discussion)

assumes a spin-1/2 nucleus and does not contribute to the Lamb shift in

deuterium.

• The proton charge radius rp differs from the deuteron charge radius rd. The

deuteron charge-radius-squared is conventionally modeled as r2d = r2p + r2deut,

where r2deut is determined on the basis of the frequency difference between the

1S2S transition in electronic deuterium f1S2S, eD and the 1S2S transition in

electronic hydrogen f1S2S, eH . The frequency difference, commonly referred

to as an isotope shift, is measured and compared to theory, and a value for

r2deut = r2d − r2p is extracted. Because rd is larger than rp, the nuclear struc-

ture corrections (finite size and polarizability) are larger in deuterium than

in hydrogen. Within the global fits of Ch. 7, rd is modeled as
√
r2p − r2deut.

20Hydrogen here refers to eH or µH.
21The deuteron in its ground state is in a spin triplet state but an isospin singlet state. The

isospin triplet is populated by a diproton state, a dineutron state, and an excited deuteron state,
all of which are spin singlet states and unstable. Deuterium is, at least empirically, composed of a
lepton and a stable, spin-1 nucleus.
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Although we could have just as easily defined rd as a free parameter of the

Ch. 7 global fits, independent of rp. In that case, we would have added the

experimental datum for the 1S2S isotope shift to the reference set (Table

2.1) to ensure the self-consistency of the fits, viz., to enforce the constraint

r2deut = r2d − r2p.

• The reduced mass of hydrogen differs from the reduced mass of deuterium.

• Deuterium spectroscopy is potentially sensitive to new physics that couples

to neutrons. A neutron-nucleus scattering experiment due to Barbieri and

Ericson [52] places limits on the size of the coupling of new physics to neutrons:
gegn
4π . 3.4 × 10−11( mX

MeV )4, where mX is the mass of a scalar boson and ge

(gn) is the coupling of the new particle to the electron (neutron). The new

physics that enters the Ch. 7 global fits is assumed not to couple to neutrons.

Alternative assumptions can be investigated using CONSTANT FINDER. The new

physics entering the global fits is discussed in Ch. 6.

8 The canonical eH spectroscopy experiment: the mea-

surement of the 1S2S transition

The measurement of the 1S1/2 − 2S1/2 transition frequency in electronic hydrogen,

due to Hansch, et al. [53], has an uncertainty of 10Hz (relative precision 4.2×10−15),

which is more than two orders of magnitude smaller than the uncertainty of the

second-most precisely-measured electronic hydrogen transition frequency (see Table

2.1).

The 1S2S measurement proceeded as follows. A 486 nm dye laser was frequency-

doubled and introduced into a vacuum chamber where it excited two-photon Doppler-

free 1S2S transitions in a population of hydrogen atoms prepared in the ground-

state. The hydrogen atoms, some fraction of them in the (metastable) 2S state, were

then conducted a distance of 13 cm into a detection region, where an electric field
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nudged the hydrogen atoms in the 2S state into the 2P state. The hydrogen atoms

in the 2P state subsequently decayed to the ground state, emitting Lyman-alpha

photons which were detected by photomultipliers. The 1S2S transition frequency

was measured by comparing the frequency of the dye laser at which the number of

photomultiplier counts was a maximum to an atomic Cesium clock.

The comparison of the dye laser frequency to the atomic clock involved several

steps. First, the frequency of a diode laser was measured using an optical comb,

with comb spacing set by the atomic Cesium clock. The second-harmonic of the

diode laser was phase locked to the dye laser prior to the measurement, such that

the dye laser had a frequency of 7f − 2∆f, while the diode laser had a frequency

of 3.5f −∆f. Second, the frequency 4f of a doubly frequency-doubled 339µm He-

Ne laser was measured using the optical comb. Third, the dye laser (frequency

7f − 2∆f) and doubly frequency-doubled He-Ne laser (frequency 4f) were sent

through an optical frequency divider located upstream of the optical comb. The

output of the optical frequency divider had a frequency of 4f −∆f, which was then

measured by the optical comb.

The two-photon 1S2S transition frequency corresponds to a frequency of 28f −

8∆f. (Recall that the dye laser, of frequency 7f−2∆f , was frequency-doubled prior

to interacting with the hydrogen.) The 1S2S transition frequency was thus recon-

structed from the three optical comb frequency measurements and the empirical

formula

f1S2S = 28f − 8∆f = 64(N2fR − fc2)− 8(N1fR − fc1), (4.81)

where fR is the comb spacing in units of frequency, N1 (N2) is the number of comb

spacings between 4f and 3.5f −∆f (4f −∆f and 3.5f −∆f), and fc1 (fc2) is the

frequency difference between 4f (4f − ∆f) and the nearest tooth on the optical

comb.

Equation 4.81 measures the frequency of a particular hyperfine transition of the

1S2S, namely, the 1SF=1
1/2 − 2SF=1

1/2 . However the final value for the 1S2S transition
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frequency reported in Ref. [54] and used in the CODATA adjustments corresponds

to the hyperfine centroid of the 1S2S transition. f1S2S of Eq. 4.81 receives a

correction of fhf = 310712233(13)Hz [54] to account for the hyperfine splitting of

the 1S and 2S energy levels. The result is

fh.f.centroid1S2S = 2466061413187103(46)Hz. (4.82)

Equation 4.82 was published in the year 2000. The 46Hz uncertainty of Eq. 4.82

has since shrunk to 10Hz due to better control of systematic effects.

The 10Hz uncertainty of the 1S2S is an extraordinary achievement. However

the theory uncertainty of the 1S2S is estimated to be at least 104Hz [55]. An exper-

imental datum with a theory uncertainty (that much) larger than its experimental

uncertainty complicates the determination of the fundamental constants. The issue

is discussed in Sec. 2.2. Our reference analysis omits the 1S2S from the reference

set of Table 2.1. The decision to omit the 1S2S is discussed in Appendix B. The

effects of including the 1S2S in the global fit as a function of the value of the theory

uncertainty assigned to the 1S2S can be evaluated using CONSTANT FINDER.

9 The reliability of eH spectroscopy data and theory

A small uncorrected systematic effect, common to all the electronic hydrogen spec-

troscopy measurements of the reference set (Table 2.1), could explain the proton size

puzzle. According to Ref. [56], the systematic effect would only need to be about

10−3 times the size of the linewidth. We have no reason, however— apart from the

existence of the puzzle itself— to believe such a systematic effect exists.

Regarding the reliability of eH theory: the eH data of the reference set— which

reinforce the proton size puzzle; see Line 9 of Table 7.4— have experimental uncer-

tainties at least five times as large as their respective estimated theory uncertain-

ties. To explain the proton size puzzle, any revision to eH theory consistent with
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the Standard Model would have to be enormously inconsistent with current theory

uncertainty estimates. On this basis, we judge eH spectroscopy theory to be reliable

(enough).

This judgment should be weighed against the following, however. Consider the

two-loop self-energy correction to the eH energy levels.

• There is significant disagreement about the size of the B60 contribution to the

two-loop self-energy correction, and the size of the disagreement is (modestly)

underreported by CODATA. The two-loop self-energy correction is organized

as

∆E = me(
α

π
)2
(Zα)4

n3
F (Zα), (4.83)

where

F (Zα) = B40 + (Zα)B50 + (Zα)2[B60 +B61L+B62L
2 +B63L

3] + ... (4.84)

and L = ln[(Zα)−2].

Jentschura [57] calculated B60 for the 1S energy level, finding B60(1S) =

−61.6(9.2), while Yerokhin [58] calculatedB60(1S) = −127(39). The Jentschura

value for B60(1S) shifts the 1S energy level by −6.2 kHz; the Yerokhin value,

by −12.7 kHz. One small higher-order effect is thus responsible for a 6 kHz

uncertainty in the 1S energy level.

The C14 value for B60(1S) is -81.3(0.3)(19.7). The first number in parenthe-

ses represents a state-dependent uncertainty. The second represents a state-

independent uncertainty common to all S states. The C14 value for B60(1S)

is the average of the Jentschura value for B60(1S) and the result of a second

calculation of B60(1S) by Yerokhin [59], which was obtained by extrapolating

a numerical calculation of F (Zα) at Z >> 1 to Z = 1. The magnitude of

the second Yerokhin value for B60(1S) (B60(1S) = −101(15)) is smaller than

the magnitude of the first Yerokhin value, likewise for the uncertainties. The
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uncertainties of the C14 value for B60(1S) were fixed at half the difference

between the Jentschura value for B60(1S) and the second Yerokhin value.

• The two-loop self-energy correction is not under perturbative control. Reference

[57] specifies values for the B60−B63 terms of Eq. 4.83 for the 1S energy level:

(Zα)2[B60+B61L+B62L
2+B63L

3] = (Zα)2[−61.6+476− 62+282]. (4.85)

The terms of Eq. 4.85 do not decrease in size. There is every reason to believe

the leading log expansion fails. The leading log expansion shows the same

pattern for the 2S energy level (not shown).

10 The canonical µH spectroscopy experiment: the mea-

surement of the 2SF=1
1/2 − 2P F=2

3/2 transition

The measurement of the 2SF=1
1/2 − 2PF=1

3/2 transition in muonic hydrogen was per-

formed by Pohl, et al. at the πE5 beam-line of the proton accelerator at Paul

Scherrer Institute. Muons from a muon beam were stopped in hydrogen gas to

form highly excited µH atoms. 99% of the excited µH atoms decayed to the 1S

state, while the remaining excited µH atoms decayed to the 2S. A pulsed laser was

then brought into contact with the µH atoms, tuned to induce 2S− 2P transitions.

The µH atoms in the 2P state subsequently decayed to the ground state, emitting

1.9-keV X-rays detected using photo-diodes. The 2SF=1
1/2 − 2PF=1

3/2 transition fre-

quency was determined by tuning the pulsed laser to the frequency that maximized

the number of 1.9-keV X-ray counts.

The measured transition frequency was compared to the theory expression for

the 2SF=1
1/2 − 2PF=2

3/2 transition frequency and a value for rp extracted. The theory

expression is

E(2SF=1
1/2 − 2PF=2

3/2 ) = 209.9779(49)− 5.2262r2p + 0.0347r3pmeV, (4.86)
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with rp =
√
< r2p >fm. The first term of Eq. 4.86 is primarily contributed by the

leading electron loop contribution to the muonic Lamb shift (Eq. 4.77). The second

term is the total finite-size contribution (Eq. 4.57). The third term is the third

Zemach moment (Eq. 4.58). The hyperfine structure corrections included in Eq.

4.86 are reviewed in Martynenko [60]. The various contributions to Eq. 4.86 are

collected in Table I of Ref. [61].

The value for the proton charge radius extracted from equating Eq. 4.86 with

the value of the measured transition frequency is

rp = 0.84184(67) fm, (4.87)

which is a few percent smaller than the value from eH spectroscopy reported in C10

(rp ≈ 0.87 fm). The discrepancy between these two rp values was the initial basis

for the proton size puzzle. Our paper [62], of the hundreds of papers that followed

the announcement of the proton size puzzle, was the first to critically evaluate the

C10 determination of rp.

11 The reliability of µH spectroscopy data and theory

The energy levels in muonic hydrogen ∼ mµ/n
2 are well-spaced compared to the

energy levels in electronic hydrogen ∼ me/n
2. Morever, the 2SF=1

1/2 − 2PF=2
3/2 tran-

sition in muonic hydrogen has the largest separation of all the 2S − 2P muonic

hydrogen transitions. As a consequence, the systematic effects accounted for in the

Pohl measurement are smaller, as a proportion of signal size, than the systematic

effects that must be accounted for in measurements of the Lamb shift in electronic

hydrogen.

The µH theory of Eq. 4.86 is likewise reliable on its face. The one-loop electron

vacuum polarization contribution and the finite size contribution are the two largest

contributions to Eq. 4.86. Uncalculated higher-order terms or calculation mistakes
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are unlikely to account for the proton size puzzle. Disagreements about the correct

values for the two-photon exchange correction (Sec. 5.4) and the third Zemach

moment are responsible for the two largest theory uncertainties. However those

theory uncertainties are too small to explain the proton size puzzle. The total theory

uncertainty of E(2SF=1
1/2 −2PF=2

3/2 ) is roughly the same size as the total experimental

uncertainty.
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Chapter 5

The Compton sector

The Compton wavelength emerges naturally from Schrodinger theory. The Schrodinger

equation for an electron in a Coulomb potential is

i~
∂

∂t
ψ = (−~2

~∇2

2me
− Ze2

4πε0

1

r
)ψ, (5.1)

which can be rewritten as

i
∂

c∂t
ψ = (−λ

2
~∇2 − α

r
)ψ, (5.2)

where λ ≡ ~
mec

and α ≡ Ze2

4πε0~c . λ = 2πλ = h
mec

is the Compton wavelength of the

electron, and α is the fine-structure constant. λ and α are free parameters, with α a

dimensionless coupling and λ−1 [m−1], by inspection of Eq. 5.2, effectively a mass.

λ sets the fundamental scale of QED, beyond which QED becomes necessary

for the proper description of nature. The standard, handwaving argument is as

follows: localizing an electron to within a radius of λ/2 implies the uncertainty in

the electron’s energy is large enough to allow for the creation of another particle of

the same mass as the electron:

~
2

1

∆p
≤ ∆x ≤ λ

2
=

1

2

~
mec

→ ∆p > mec → ∆E > mec
2. (5.3)
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λ appears in the Rydberg sector in the definition of the Rydberg constant, tying

the Rydberg to the fine-structure constant

R∞ =
α2

2λ
.

Precise values for λ have been determined from atomic interferometry experiments

(Sec. 1).

1 The measurement of h/mAt (At = Cs, Rb)

The measurement of ae by Gabrielse, et al. (Sec. 4) furnishes a prediction for α.

However that prediction is not a test of QED. ae(exp) of Gabrielse is set equal to

ae(theory; α) of Kinoshita, and a prediction for α is extracted, testing nothing. To

test QED, a second, independent prediction for α— with comparable precision to

the Gabrielse prediction— is needed. A series of atomic interferometry experiments

have been performed, in part, to fill this void.

At the time of publication of C14, the second-most precise determination of

α (the determination of Gabrielse being the most-precise) was due to an atomic

interferometry experiment by Bouchendira, et al. [24]. The experiment measured

the recoil velocity vr of a Rubidium atom (Rb) after the atom absorbed a photon of

momentum ~k. Here k corresponds to the wave number of the laser stimulating the

absorption. A value for h/mRb was obtained through an expression for the recoil

velocity: vr = ~k/mRb, where k is known and vr is measured. Finally, to pin down

a value for α, the definition of the Rydberg constant R∞ was used:

α2 =
2R∞
c

mRb

me

h

mRb
. (5.4)

R∞ is determined to 0.006 ppb precision, whilemRb/me is determined to better than

0.1 ppb precision. The value for mRb/me was stitched together from measurements
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of the relative masses1 of the electron and Rubidium, Ar(e) [5] and Ar(Rb)[63].

The prediction for α obtained from the Bouchendira measurement and Eq. 5.4

is

α−1 = 137.035998996(85), (5.5)

which has 0.62 ppb relative uncertainty, roughly an order of magnitude off the pre-

cision of the Gabrielse prediction. The precision of Eq. 5.4 is limited principally by

the precision of the measurement of h/mRb (relative uncertainty 1.2 ppb).

Parker, et al. [3] were able to obtain a prediction for α competitive with the

Gabrielse prediction using Cesium atoms (Cs). The Parker result was published too

late for inclusion in C14. The experiment measured h/mCs, to 0.4ppb, finding

α−1 = 137.035999046(27), (5.6)

where α−1 was determined on the basis of Eq. 5.4 with Rb replaced everywhere by

Cs.

Equation 5.6 can be compared directly to the Gabrielse prediction (Eq. 3.23).

The two predictions differ by 2.4σ. A possible explanation for the discrepancy is

discussed in Sec. 4, while the Parker experiment is discussed in more detail below.

The Parker, et al. experiment went as follows. Cesium atoms were conducted

into an optical trap and accelerated upwards, creating a fountain of Cs atoms. As

the Cs atoms fell back to Earth, they were put through an interferometry sequence,

which is shown in Fig. 5.1. Counterpropagating laser pulses imparted momentum

2n~k (n = 5) to the atoms in the fountain, with 50% probability. The atoms in the

fountain were thus split into two populations, which we denote |0 > and |n > . The

two populations were split again by a second set of counterpropagating lasers, with

|0 >→ |0 >A +|0 >C and |n >→ |n >B +|n >D . The populations |0 >A and |n >B

travelled upward; the populations |0 >C and |n >D, downward. The four popu-
1Relative masses for Rb and e were determined from measurements of the cyclotron frequency

ratios of pairs of ions— C6+ and Rb or C6+ and e— simultaneously trapped in a Penning trap.
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Figure 5.1: Schematic of the atomic interferometry experiment of Parker, et al. [3] used
to determine h/mCs. The experiment is described in the text. The figure is reprinted from
[3].

lations were then accelerated via Bloch oscillations2 which transferred momentum

2N~k (N = 125 − 200) to the upgoing populations and momentum −2N~k to the

downgoing populations. A third and fourth set of laser pulses recombined popula-

tion |0 >A with population |n >B and population |0 >C with population |n >D .

The phase difference ∆φ1 between |0 >A and |n >B was measured, along with the

phase difference ∆φ2 between |0 >C and |n >D . To limit systematic effects due to

gravity and vibrations, the total phase ∆φ = ∆φ1 − ∆φ2 was computed. ∆φ was

then compared to an empirical relation for ∆φ :

∆φ = 16n(n+N)ωrT − 2nωmT, (5.7)

where T is the time interval between the first and second and third and fourth

pulses, ωr is the photon recoil frequency, equal to ~k2/2mCs, and ωm is the frequency

difference between the first and second pulses. ωm was tuned so that ∆φ equaled
2A Bloch oscillation refers to the oscillation of a particle confined to a periodic potential while

simultaneously being accelerated by a constant force.
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zero, which occurred by inspection of Eq. 5.7 for

ωm = 8(n+N)ωr = 8(n+N)~k2/2mCs. (5.8)

Since n, N, k, and ωm were known or measured, a value for h/mCs could be readily

inferred from Eq. 5.8. The result is

h/mCs = 3.0023694721(12)× 10−9ms/s. (5.9)
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Chapter 6

New-physics contributions to

the global fit

Incorporating theory alternatives into the global fits of Ch. 7 is an important means

of stress-testing Standard Model theory. The theory alternatives can take many

guises and need not be particularly well-motivated. Some examples are: replacing

the principal quantum number n in the global fit with n1+δ under a half-baked,

MOND-like hypothesis, with δ a free parameter; truncating a given perturbative

expansion in the global fit at a given order; doubling all theoretical uncertainties in

the global fit; and adding new-physics contributions to the global fit.

Adding new physics to the global fit in general requires theoretical superstructure—

relating a term in a Lagrangian to an experimental observable— the other theory

alternatives listed above do not. Nevertheless adding new physics to the global fit

is straightforward and made easier by the fact any new physics, if it exists, must be

weakly-coupled to the Standard Model to evade experimental bounds. As a conse-

quence new physics contributions to the global fit need only be considered at leading

order.

The simplest low-energy extensions of the Standard Model hypothesize the exis-

tence of a hidden sector which interacts with the Standard Model exclusively through
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a so-called portal interaction. A new scalar particle would interact through a scalar

portal, a new vector through a vector portal, and so on. We list the most common

portal interactions below.

• Scalar portal, L ⊃ gφψ̄ψ.

φ is a scalar field. g gives the coupling of φ to Standard Model fermion ψ.1

• Pseudoscalar portal, L ⊃ ∂µa
fa
ψ̄γµγ5ψ → i

mψ

fa
aψ̄γ5ψ ≡ ig aψ̄γ5ψ.

If a is assumed to be an axion, the mass and coupling of a are tightly con-

strained by astrophysical and cosmological constraints on the axion decay

constant fa and by the details of the strong-CP problem a was introduced

to solve. If a is assumed to be merely axion-like, which is to say, a generic

pseudoscalar, the mass and Standard-Model couplings of a can be treated as

free parameters.

• Neutrino portal, L ⊃ YNLHN.

N is a Standard-Model-singlet sterile neutrino, conventionally introduced in

connection with the seesaw mechanism [64]. N couples with strength YN to

Standard Model lepton and Higgs doublets L and H via a Yukawa interaction.

• Vector portal, L ⊃ g′ψ̄γµψA
′
µ.

A
′
µ is an electrically neutral vector particle that couples to Standard Model

fermion ψ with strength g′. The vector portal interaction is conventionally

induced by kinetic mixing between the Standard Model and a hidden sector

U(1): see App. I.

In Ch. 7, we explore the effects of these portal interactions (neutrino portal ex-

cepted) on Rydberg sector phenomenology. Each portal interaction unambiguously

specifies a set of contributions to the global fit, with the mass and Standard Model

couplings of the new particle taken as free parameters of the fit. The fit contribu-
1A scalar portal interaction coupling φ to the Standard Model Higgs is of limited use at low

energies but is often introduced at collider energies.
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tions for a given portal interaction, particularly at leading order, are very general.

A new scalar or vector, for example, adds a Yukawa term to the energy levels of

the spectroscopy sector and only for ` = 0 states, while the leading contribution

to the spectroscopy sector due to a new pseudoscalar can be neglected altogether.

This generality allows us to adopt an essentially bottom-up perspective, in which

the analyses of Ch. 7 are carried out with respect to generic new particles with

given mass, coupling, and Lorentz structure, rather than in view of specific portal

models. We refer to these generic new particles as no-name bosons.

The global fits of Ch. 7, which are discussed at length in Ch. 2, test new-physics

hypotheses in relation to the null of the Standard Model. If a test indicates a new

physics scenario— instantiated by a new particle with given mass, couplings, and

Lorentz structure— is a viable alternative to the Standard Model, as determined by

∆χ2, a Lagrangian or Lagrangians can always be reverse engineered and a top-down

perspective adopted. Having a reason to propose a new-physics scenario independent

of the global fit is not strictly necessary. The mass and couplings of the new particle

favored by the global fit are tantamount to a testable prediction.

Of course, the proton size puzzle and muon g − 2 anomaly provide ample rea-

son to introduce new physics into the Rydberg sector, regardless of any global fit.

Top-down models, solving the proton size puzzle and/or the muon g − 2 anomaly,

are everywhere: see Refs. [65, 66, 67, 68, 69, 70, 71, 72]. Top-down models can

be parameterized within the global fit as special cases of the bottom-up scalar,

pseudoscalar, and vector interactions considered here and in Ch. 7.

A new scalar, pseudoscalar, or vector that couples to Standard Model fermions

will in general contribute to the spectroscopy and moments sectors of the global fit.2

Exactly how is discussed below.
2The Compton sector of the global fit consists entirely of the definition for the Rydberg and

does not depend on new physics considerations.

110



1 New-physics contributions to the moments sector

The leading contribution to the electron and muon anomalous magnetic moments

due to the interaction of a new scalar, pseudoscalar, or vector XJ (J = S, P, V ) is

shown in Fig. 6.1. Figure 6.1 is identical to the diagram for the leading contributions

to ae and aµ (Fig. 3.2), except with particle XJ in place of the photon in the loop.

p k + p k + p′ p′

k

q

Figure 6.1: The leading contribution to the moments sector of the global fit due to the
interaction of a new particle XJ (dotted line) with Standard Model leptons. Subscript J
denotes particle X as a scalar S, pseudoscalar P , or vector V .

The calculation proceeds in the same way as textbook calculations of the leading

contributions to ae and aµ, up to corrections for the Lorentz structure and nonzero

mass of XJ . The calculation is sketched below.

The vertex structure of Fig. 6.1 is

ieΓµ(p, p′) = e · g2J
∫

d4k

(2π)4
1

k2 −M2
{−−}J

/p′ + /k +m

(p′ + k)2 −m2
γµ

/p+ /k +m

(p+ k)2 −m2
{−−}J

≡ e · g2J
∫

d4k

(2π)4
Nµ

J

D
,

(6.1)

where m is the mass of the electron or muon, M is the mass of XJ , and {−−}J =

1, γ5, γν for J = S, P, V, respectively. The denominator D of Eq. 6.1 is the same

for all J.

After the introduction of Feynman parameters and a shift of the loop momentum

k, D becomes

D−1 =

∫
dxdydzδ(x+ y + z − 1)

2

(`−∆)3
, (6.2)
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where ` is the shifted loop momentum, equal to k+xp+ yp′, and ∆ = (1− z)2m2−

xyq2 −M2z.

The calculation of Nµ
J is considerably more involved and entails:

• replacing loop momentum k with shifted loop momentum `;

• making use of the gamma-matrix identities listed in footnote3 and the Feyn-

man parameter identities listed in footnote 4;

• discarding terms in Nµ linear in `, which integrate to zero;

• discarding terms in Nµ not proportional to iσµνqν/2m, which do not con-

tribute to the lepton anomalous moments (Sec. 2); and

• putting the initial- and final-state leptons on-shell via the Dirac equation and

the relations p2 = m2 = p′2.

The result is
Nµ

S ⊃ −im(z2 − 1)σµνqν ≡ ÑS(iσ
µνqν/2m)

Nµ
P ⊃ im(z − 1)2σµνqν ≡ ÑP (iσ

µνqν/2m)

Nµ
V ⊃ −2imz(1− z)σµνqν ≡ ÑV (iσ

µνqν/2m),

(6.3)

where ÑJ is the coefficient of the (iσµνqν/2m)-term in Nµ
J .

Combining Eqs. 6.1-6.3 yields an expression for the contribution to F2(q
2) due

to Fig. 6.1

iF J
2 (q

2) = g2J

∫
dxdydzδ(x+ y + z − 1)ÑJ

∫
d4`

(2π)3
2

(`2 −∆)3

= g2J

∫
dxdydzδ(x+ y + z − 1)[

−i
16π2∆

]ÑJ ,

(6.4)

In the limit q2 → 0, Eq. 6.4 can be interpreted as an integral expression for aJ` ,
3γνγν = 4; γν/aγν = −2/a; γν/a/bγν = 4ab; γν/a/b/cγν = −2/a/b/c; {γµ, γ5} = 0. aµ, bµ, and cµ are

arbitrary four-vectors.
4p− xp− yp′ = zp′ − (1− x)q; p′ − xp− yp′ = zp+ (1− y)q.
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the contribution to the lepton anomalous magnetic moment due to Fig. 6.1

aJ` = F J
2 (0) = g2J

∫
dz[

−1

16π2∆
]ÑJ

∫
dxdyδ(x+ y + z − 1)

=
g2Jm

2

8π2

∫ 1

0
dz[

(z2 − 1)δJS − (z − 1)2δJP + 2z(1− z)δJV
(1− z)2m2 −M2z

](1− z).

(6.5)

With J = V, M = 0, and g2V = e2 = 4πα, such that Fig. 6.1 reduces to Fig. 3.2,

Eq. 6.5 evaluates to Schwinger’s famous result5

F V
2 (0) =

2m24πα

8π2m2

∫
dz
z(1− z)

(1− z)2
(1− z) =

α

2π
,

as required.

The integrals of Eq. 6.5 have been carried out in Refs. [73]. The results are

aJ` (r) =
g2J
8π2

HJ(r), (6.6)

where r =M2/m2 and

HS(r) =
3− 2r

2
+
r(r − 3)

2
ln(r)− (r − 1)

√
r(r − 4)ln[

√
r +

√
r − 4

2
],

HP (r) = −(−2r + 1

2
+
r(r − 1)

2
ln(r)− r3/2(r − 3)√

r − 4
ln[

√
r +

√
r − 4

2
]),

HV (r) =
1− 2r

2
+
r(r − 2)

2
ln(r)− r1/2(r2 − 4r + 2)√

r − 4
ln[

√
r +

√
r − 4

2
].

The expressions for HJ continue cleanly to r < 4 and remain positive for r > 0,

suggesting all three particles XJ are viable candidate solutions to the muon g − 2

anomaly, which has aµ(Standard Model theory) < aµ(experiment). Additionally,

aJµ(r) is 2-3 orders of magnitude larger than aJe (r) for J = S, P, V, which opens the

door, at least in principle, to lepton-universal solutions to the muon g− 2 anomaly.

The expressions for HJ simplify in the limit M >> m, as would be the case for
5 α
2π

is inscibed on Schwinger’s tombstone at Mt. Auburn Cemetery in Cambridge, MA.
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an electron interacting with a & 10 MeV particle X:

HS ≈ ln(r)− 7/6

r

HP ≈ 1− ln(r)− 11/6)

r

HV ≈ 1

3r
.

(6.7)

Equation 6.7 was obtained by expanding HJ(r) at r = ∞. For m→ mµ ≈ 105 MeV

and M ∼ 10− 100 MeV6, the exact expressions for HJ(r) (Eq. 6.6) should be used.

2 New-physics contributions to the spectroscopy sector

Consider lepton-nucleus scattering, mediated by scalar particleXS of massM . Since

the lepton of mass m and the nucleus of mass mN (and Z = 1) are distinguishable,

we need to consider only the t-channel exchange of Fig. 6.2.

p p′

q

P P ′P P ′

Figure 6.2: The leading contribution to the spectroscopy sector of the global fit due to the
interaction of a new particle XJ (dotted line) with Standard Model fermions. Subscript J
denotes particle X as a scalar S, pseudoscalar P , or vector V .

The corresponding matrix element is

iM = −igSNgS` (ūs
′
(p′)us(p)

1

(p′ − p)2 −M2
Ū r′(P ′)U r(P )), (6.8)

where q2 = (P ′ − P )2 = (p′ − p)2 → −|~q|2 in the non-relativistic limit and the

superscripts s, s′, r, and r′ denote spin indices. With the textbook definitions

us(p) =
√
m(ξs ξs)T and ūs′us = 2mξs

′†ξs = 2mδss
′ , Eq. 6.8 becomes

iM =
igSNg

S
`

|~q|2 +M2
2mδss

′
2mNδ

rr′ . (6.9)

6The range M ∼ 10− 100 MeV is typical of the values of M used in the analyses of Ch. 7.
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Comparison of Eq. 6.9 to the Born approximation for the scattering amplitude

in non-relativistic quantum mechanics

< p′|iT |p >= −iṼ (~q)2πδ(Ep′ − Ep),

yields the Yukawa potential in momentum-space

V (~q) =
−gSNgS`
~q2 +M2

. (6.10)

Fourier transformation of Eq. 6.10 gives

V (r) =

∫
d3q

(2π)3
−gSNgS`
~q2 +M2

ei~q~x

=
−gSNgS`
4π2

∫ ∞

0
dq ~q2

eiqr − e−iqr

iqr

1

~q2 +M2
=

−gSNgS`
4π2ir

∫ +∞

−∞
dq

qeiqr

~q2 +M2

=
−gSNgS`
4π

e−Mr

r
,

(6.11)

where on the second line q ≡ |~q|.

For vector exchange, V (r) has the opposite sign. The sign difference can be

traced to swapping the scalar propagator in Eq. 6.8, which is proportional to i, for

a vector propagator, proportional to −igµν .

• For sign(gS` ) = ±sign(gSN ), scalar exchange produces an attractive/repulsive

potential.

• For sign(gV` ) = ±sign(gVN ), vector exchange produces a repulsive/attractive

potential.

The contribution to the hydrogenlike bound-state energy levels due to Fig. 6.2

is given by
∆En` =< ψn`|V (r)|ψn` >

= ∓4 · (mrα

n
)3 ·

g
S/V
N g

S/V
`

4πM2
· δ`0,

(6.12)
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where mr is the reduced mass of the hydrogenlike bound-state and the plus (minus)

sign corresponds to vector (scalar) exchange.

The leading finite nuclear size contribution to the bound-state energy levels

∆EFNS is proportional to < r2 > ·δ`0. The contribution of Fig. 6.2 to the energy

levels will shift the global fit such that ∆EFNS → ∆EFNS + ∆En`. For a 2S2P

transition, a positive value of ∆En` will decrease the fitted value of < r2 >; a

negative value will increase it. Because ∆EFNS is much larger in muonic hydrogen

than it is in electronic hydrogen (Sec. 6.3), the value of < r2 > determined by a fit

to electronic hydrogen data will be much more sensitive to ∆En` than the value of

< r2 > determined by a fit to muonic hydrogen data.

Pseudoscalar exchange is heavily suppressed in the non-relativistic limit and

contributes only negligibly to the hydrogenlike bound-state energy levels. The jus-

tification is as follows.

In the non-relativistic limit,

ūγ5u ≈ −i
2m

[~∇f †~σf + f †~∇ · ~σf ], (6.13)

where f is composed of a constant two-component spinor and a one-component

Schrodinger wave function and σj are 2× 2 Pauli matrices. See Sec.2.2.

Equation 6.13 can be rewritten via fast integration by parts as

ūγ5u ≈ i

2m
[f †~σ · ~∇f − [surface term]]. (6.14)

With Eq. 6.14, the matrix element corresponding to Fig. 6.2, with particle XP

in the t-channel, is

iM =
igP` ig

P
N

4mmN
f †` σ

iqif`
i

q2 −M2
f †Nσ

iqifN

=
igP` g

P
N

4mmN
f †` f` f

†
NfN

(~σ · ~q)(~σ · ~q)
~q2 +M2

.

(6.15)
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The non-relativistic potential can be read directly from Eq. 6.15

V (~q) =
igP` g

P
N

4mmN

(~σ · ~q)(~σ · ~q)
~q2 +M2

. (6.16)

V (~q), which becomes a ’derivative interaction’ in coordinate space, goes to zero as

|~q| goes to zero. The contribution to the hydrogenlike bound-state energy levels due

to Eq. 6.16 is vanishingly small.
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Chapter 7

Global fit results

This chapter presents the results of a variety of global fits. The purpose of the

chapter is threefold. First, the fit results presented here are relevant to the phe-

nomenology and ultimate disposition of the precision QED experimental anomalies

(Sec. 2), namely, the proton size puzzle and muon g−2 anomaly. Second, the results

can be reproduced using CONSTANT FINDER and stand as examples of the ways in

which the site can be used. Third, the results show (pointedly) a) the dangers of

using one-size-fits-all values of the fundamental constants in tests of fundamental

theory and b) the need for a community-wide mechanism like CONSTANT FINDER for

determining the fundamental constants.

The chapter is organized as follows. The first section (Sec. 1) relates to the

validation of the CONSTANT FINDER code. The second section (Sec. 2) discusses the

results of global fits to Standard Model physics, including a global fit to the reference

scheme. The reference scheme serves in this and subsequent sections as a de facto

null hypothesis, roughly equivalent to the statement, ”the Standard Model is true.”

See Sec. 3 for details. The third section (Sec. 3) discusses the results of global fits

to a theory alternative that adds the effects of a no-name vector boson (Ch. 6) to

the Standard Model. The fourth section explores the effects of the Parker datum

(Sec. 1) on the global fit results. Finally, the fifth section, which closes the chapter,
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alternately replaces the no-name vector boson in the global fit with no-name scalar

and psuedoscalar bosons.

1 Validation of the CONSTANT FINDER code

The early stages of this project centered on the spectroscopy sector, and the proton

size puzzle. The author and his advisor (John P. Ralston) separately typed the spec-

troscopy sector theory formulas of C10 into Mathematica,with each implementation

of the C10 spectroscopy theory requiring about 30,000 keystrokes.

Initial validation was done by fitting data using a basic chi-squared function

(Eq. 2.6). The two codes gave the same results to within machine precision. The

author’s code, with updates based on the results of C14, has been folded into the

CONSTANT FINDER algorithm.

A second round of validation was also done. The second round of validation

involved comparing the results from the two sets of code (hereafter, simply ’our

code’) to published results. Principally,

• We reproduced the rp values and error bars of Fig. 8.3.1 Figure 8.3 is reprinted

from Ref. [4]. Its rp values were determined by solving the system of equations

below for rp and R∞ :

fexp1S2S = f th1S2S(rp, R∞);

fexpJ = f thJ (rp, R∞).
(7.1)

Subscript J runs over the fourteen eH spectroscopic transitions of the figure.

The error bars in the figure were determined by re-solving Eq. 7.1 for rp and

R∞, with fexpJ → fexpJ +σexpJ and fexp1S2S →exp
1S2S .

2 Here σexpJ is the experimental

uncertainty of transition J.
1The author thanks Thomas Udem for providing code used to check the error bars of Fig. 8.3,

as well as for his general helpfulness.
2fexp1S2S was held fixed since 100 · σexp1S2S . σexpJ for all J.
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• We also reproduced to thirteen-digit accuracy and better the 56 theoretical

level frequency values of Table 4 of Ref. [31], which are due to Jentschura [55].3

The mean difference between the predictions of our code and the Jentschura

predictions of Table 4 was 65 Hz, with a standard deviation of 568 Hz.

Normalized to the relevant experimental uncertainties, these numbers trans-

late to a mean (normalized) difference squared ∆f2tt = (1/56)
∑

i(f
theory−1
i −

f theory−2
i )2/(σexpi )2 of 0.003 and a standard deviation of 0.010. The quantity

(f theory−1
i − f theory−2

i )2/(σexpi )2 was less than 0.04 for all i.

The theory expressions we typed in for the moments and Compton sectors, as

well as for the µH and µD transitions of the reference scheme, were vetted along

similar lines. Those expressions required far fewer keystrokes. The moments sector

theory of the CONSTANT FINDER algorithm was checked against the numbers in Refs.

[23] and [40], the Compton sector theory against the numbers in Ref. [20], and the

µH and µD theory against the numbers in Refs. [61] and [11], respectively.

3A comparison of level frequencies is more demanding than a compartion of transition frequencies
since many level contributions cancel in transitions.

120

www.www.constantfinder.org/home.jsp


Figure 7.1: Proton charge radius determinations from Ref. [4]. The determinations were
used in the validation of the CONSTANT FINDER code. See text for details. The figure and
its caption are reprinted from Ref. [4].

2 A global fit to the Standard Model

2.1 A global fit to the reference scheme

A quick review of the problem space: The proton size puzzle, the muon g−2 anomaly,

and the discrepancy between the Parker and Gabrielse determinations of α are each defined

on the basis of a piecemeal fit to data. The problem with such piecemeal fits is: the

values of rp and α depend on each other and on all the data of the Rydberg sector. The

pattern of dependencies is depicted in Fig. 7.2.4 This pattern requires, for reasons of

self-consistency, that rp and α be determined globally, rather than on a piecemeal basis.

’Global’ values for α and rp— if we knew them— would redefine the respective magnitudes
4Figure 7.2 is identical to Fig. 1.1.
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of the three experimental anomalies above. To what extent do these redefinitions change the

phenomenology? We would like to know. We have defined a reference scheme (Sec. 3) to

be used in the global fit. The reference scheme captures all relevant Standard Model theory

and all relevant experiments, with the exception of the atomic interferometry experiment of

Parker, et al., whose effects on the global fit are discussed in Secs. 4-5. The goal, as already

intimated, is a self-consistent, no-frills assessment of the size of the three experimental

anomalies above.

Figure 7.2: Schematic of the dependencies between experimental data and the fundamental
physical constants of the Rydberg sector.

The results of the global fit to the reference scheme are discussed below and

summarized in Tables 7.1-7.3.

The third column of Table 7.1 shows fitted values for the reference scheme ob-

servables, obtained from a global fit to the reference scheme. The corresponding

experimental values and experimental uncertainties are shown for comparison in

the second and fourth columns, respectively. With the exception of the observables

aµ and νH(2P1/2 − 2S1/2), the fitted and experimental values of Table 7.1 differ
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within their respective experimental uncertainties. Of the fitted values for aµ and

νH(2P1/2− 2S1/2), only the fitted value for aµ, which differs from experiment by

3.9σexpt, is true cause for concern. (The fitted value for νH(2P1/2− 2S1/2) differs

from experiment by 1.5σexpt.)

The results of Table 7.1 are corroborated in Table 7.2. Table 7.2 gives the sector-

wise chi-squared budget for the global fit. Chi-squared in the aµ sector, with its one

experimental datum, is 15.75. Each of the remaining sectors contributes less than

one unit of chi-squared per datum.

Hence the only anomaly evident in the global fit to the reference scheme is the

muon g − 2 anomaly. The muon g − 2 anomaly’s persistence under the reference

scheme can be understood in view of Fig. 7.2. The theory expressions for ae, aµ,

and the transition frequencies in the eH and eD sectors all depend explicitly on

α. However the extreme precision of the Gabrielse measurement of ae means that

the Gabrielse datum overwhelmingly determines the value of α. The effect is: the

Gabrielse datum pins down the value of α. That value of α then flows through to

the theory expression for aµ, creating an ’anomalous’ residual in the aµ sector of

the fit. The global fit thus effectively reproduces the piecemeal fit procedure that

created the muon g − 2 anomaly in the first place.

The fitted values of the fundamental constants from the global fit to the reference

scheme are shown in Table 7.3. The fitted values for R∞ and α are given relative to

their respective C14 reference values (denoted R∗
∞ and α∗). The details of the Table

7.3 results are as follows. The fit to the reference scheme shifts R∞ relative to its

C14 value by 4.6σ. The fit also shifts rp and rd from their C14 values by 2.1σ and

x.xσ, respectively, with rp and rd taking values consistent with the smaller radius

values that have been predicted from µH and µD experiments.

Interestingly Tables 7.1-7.3 show no evidence of a proton size puzzle. A global fit

to the reference scheme resolves the proton size puzzle in favor of the muonic radius
5|aexptµ − athµ |/σexpt =

√
15.7 = 3.9
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value. The only apparent cost of the solution is a shift in the best-fit value of the

Rydberg constant. However, since the only meaningful constraints on the Rydberg

constant are present in the fit, the cost of the solution has already been absorbed

by the fit.

In view of the proton size puzzle’s stature and long standing, the mechanics of

the solution to the puzzle offered by the fit to the reference scheme are astonishingly

simple. The Gabrielse datum fixes α at a value consistent with the C14 reference

value. The µH datum fixes rp at a ’small’ value, ∼ 0.84 fm. Then, R∞, as the only

remaining free parameter, floats inside the eH and eD sectors to its best-fit value,

4.6σ away from the C14 reference value. The fit is well-behaved everywhere except

in the previously-discussed aµ sector (see Table 7.2).

The solution is stable even in the eH sector of the fit. Figure 7.3 shows chi-

squared in the eH sector as a function of rp, with R∞, α, and rd fixed at the

fitted values of Table 7.3. The chi-squared minimum is at a manifestly ’muonic’

radius value, rp ∼ 0.85 fm. For reference, the C14 recommended value for rp (=

0.8775 fm), which is a de facto ’electronic’ radius value, is to the right of the Fig.

7.3 plot window.

The proton size puzzle can be seen as an artifact of comparing the rp values

determined from two separate piecemeal fit procedures, where one value of rp is

determined from χ2
µH and the other from χ2

eH . When a truly global, self-consistent

fit procedure is used— i.e., when rp and R∞ are allowed to find their level in the

context of a global fit that accounts for all relevant experimental data (see Fig.

7.2)— the proton size puzzle disappears. The only experimental anomaly that

remains is the muon g − 2 anomaly.
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Experimental datum Experimental value Fitted value σexpt

νH(2S1/2− 8S1/2) [Hz] 7.70649350012000× 1014 7.70649350015089× 1014 8600.
νH(2S1/2− 8D3/2) [Hz] 7.70649504450000× 1014 7.70649504448244× 1014 8300.
νH(2S1/2− 8D5/2) [Hz] 7.70649561584200× 1014 7.70649561577394× 1014 6400.
νH(2S1/2− 12D3/2) [Hz] 7.99191710472700× 1014 7.99191710480623× 1014 9400.
νH(2S1/2− 12D5/2) [Hz] 7.99191727403700× 1014 7.99191727407767× 1014 7000.
νH(2P1/2− 2S1/2) [Hz] 1.05784500000000× 109 1.05783220761556× 109 9000.
νH(2S1/2− 2P3/2) [Hz] 9911200000 9911209318 12000.
νH(2P1/2− 2S1/2) [Hz] 1057862000 1057832208 20000.
νD(2S1/2− 8S1/2) [Hz] 7.708590412457× 1014 7.7085904124256× 1014 6900.
νD(2S1/2− 8D3/2) [Hz] 7.708591957018× 1014 7.70859195700519× 1014 6300.
νD(2S1/2− 8D5/2) [Hz] 7.708592528495× 1014 7.70859252845263× 1014 5900.
νD(2S1/2− 12D3/2) [Hz] 7.99409168038× 1014 7.99409168041396× 1014 8600.
νD(2S1/2− 12D5/2) [Hz] 7.994091849668× 1014 7.9940918497316× 1014 6800.
νD(2P1/2− 2S1/2) [Hz] 1059280000 1059220261 60000
νD(2S1/2− 2P3/2) [Hz] 9912610000 9912815235 300000
νD(2P1/2− 2S1/2) [Hz] 1059280000 1059220261 60000

ae 0.00115965218072 0.00115965218078 2.8× 10−13

aµ 0.00116592089 0.00116591840 6.3× 10−10

∆ELS(µH) [meV] 202.3706 202.3705 0.0023
∆ELS(µD) [meV] 202.8785 202.8785 0.0034
λe [m]/10−12 2.4263102367 2.4263102356 1.1× 10−9

Table 7.1: Experimental data compared to calculations by the Constant Finder. Calculated
values are based on a Standard Model fit to Table 2.1 data. Fitted constants for the fit
appear in Table 7.3.
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χ2 dof χ2
λc

χ2
µH χ2

µD χ2
ae χ2

aµ χ2
eH χ2

eD

27.5 17 0.18 0.0012 0.000095 0.042 15.7 7.4 4.3

Table 7.2: Contributions to χ2 for global fits with different observables omitted. dof
stands for the number of degrees of freedom. Standard Model physics is assumed. The aµ
sector, when it appears in the global fits, contains only one experimental observable while
contributing 15.7 units of chi-squared. All other sectors across all fits have well-controlled
contributions to χ2.

(δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm

−13.4(2.9) −2.2(2.2) 0.84088(26) 2.12870(13)

Table 7.3: Fitted values of δR∞/R
∗
∞, δα/α∗, rp, rd for a global fit to the reference scheme,

where R∗
∞, α∗ are reference values. Standard Model physics is assumed, and all relevant

data has been included in the fit, with the exception of the Parker datum, which is discussed
and accounted for in subsequent sections. There is a 2.1σ discrepancy between the fitted
value of rp and the corresponding C14 reference value.

Figure 7.3: χ2
eH versus rp, with R∞, α, and rd fixed at the fitted values of Table 7.3. When

the muonic data is included in the analysis, the electronic hydrogen spectroscopy data favors
a ’small’ proton radius value ∼ .85 fm.
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2.2 Variations on the global fit to the reference scheme

In this section, we systematically omit data from the reference scheme to investigate

the effect of those omissions on the global fit. In particular, we would like to know

how robust the muon experimental anomalies are under changes to the input data

of the global fit. The results of the various fits are compiled in Tables 7.4 and 7.5,

and assume Standard Model physics throughout. Tables 7.4 and 7.5 are discussed

line by line below.

line omit (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm

1 none −13.4(2.9) −2.2(2.2) 0.84088(26) 2.12870(13)
2 λc −13.4(2.9) −2.7(2.4) 0.84088(26) 2.12870(13)
3 µH −10.1(3.6) −2.2(2.2) 0.859(11) 2.12870(13)
4 µD −14.7(4.4) −2.2(2.2) 0.84088(26) 2.1265(55)
5 µH, µD 3.4(9.5) −2.2(2.2) 0.883(19) 2.1433(96)
6 ae −13.4(2.9) −0.068(5.) 0.84088(26) 2.12870(13)
7 aµ −13.4(2.9) −2.2(2.2) 0.84088(26) 2.12870(13)
8 ae, aµ −13.4(2.9) −0.086(5.) 0.84088(26) 2.12870(13)
9 µH, µD, aµ 3.4(9.5) −2.2(2.2) 0.883(19) 2.1433(96)
10 eH −12.0(3.9) −2.2(2.2) 0.84087(26) 2.12870(13)
11 eD −15.2(4.4) −2.2(2.2) 0.84088(26) 2.12870(13)
12 eH, eD −500(1100) −2.7(2.2) 0.84087(26) 2.12870(13)
13 eD, µD −15.2(4.4) −2.2(2.2) 0.84088(26) –

Table 7.4: Fitted values of δR∞/R
∗
∞, δα/α∗, rp, rd for global fits with different observables

omitted, where R∗
∞, α∗ are reference values. Standard Model physics is assumed. Line 9

omits all muonic observables and gives fitted values consistent with the values of C14. There
is a 2.1σ discrepancy between the rp values of Line 1 and Line 9. The first line, omit none,
generates Table 7.3.

• The fit given by Line 1 of Tables 7.4 and 7.5 reproduces the fit to the reference

scheme of the previous section (Tables 7.2 and 7.3).

• The Line 2 fit omits the electron Compton wavelength λc from the fit to the

reference scheme. The role of λc in the reference scheme fit is to enforce

the definition of the Rydberg: R∞ := α2/2λc. The omission of λc from Fig.

7.2 effectively splits the figure into two independent halves, with one half

determining the value of α and the other half the values of R∞, rp, and rd.
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line omit χ2 dof χ2
λc

χ2
µH χ2

µD χ2
ae χ2

aµ χ2
eH χ2

eD

1 none 27.5 17 0.18 0.0012 0.000095 0.042 15.7 7.4 4.3
2 λc 27.3 16 – 0.0012 0.000095 0 15.7 7.3 4.2
3 µH 25.1 16 0.18 – 0.00043 0.043 15.7 4.8 4.4
4 µD 27.3 16 0.18 0.00076 – 0.042 15.7 7.2 4.2
5 µH, µD 22.8 15 0.19 – – 0.045 15.7 3.3 3.5
6 ae 27.3 16 0.000013 0.0012 0.000094 – 15.7 7.3 4.3
7 aµ 11.8 16 0.18 0.0012 0.000095 0.042 – 7.3 4.3
8 ae, aµ 11.6 15 0 0.0012 0.000094 – – 7.3 4.3
9 µH, µD, aµ 7.1 14 0.19 – – 0.044 – 3.3 3.5
10 eH 20.0 9 0.18 0 0 0.042 15.7 – 4.1
11 eD 23.1 9 0.18 0.00062 0 0.042 15.7 7.2 –
12 eH, eD 15.7 1 0 0 0 0 15.7 – –
13 eD, µD 23.1 8 0.18 0.00062 – 0.042 15.7 7.2 –

Table 7.5: Contributions to χ2 for global fits with different observables omitted. dof
stands for the number of degrees of freedom. Standard Model physics is assumed. The aµ
sector, when it appears in the global fits, contains only one experimental observable while
contributing 15.7 units of chi-squared. All other sectors across all fits have well-controlled
contributions to χ2.

That the Line 1 and Line 2 fitted values for α and R∞ agree as closely as they

do is largely coincidental.

• The fits of Lines 3-5 omit, respectively, µH, µD, and both µH and µD. Lines

3 and 4 report ’small’ values for rp and rd, while Line 5 reports significantly

larger values. The explanation is as follows. rp and R∞ are approximately

degenerate in the eH sector of the fit; rd and R∞, in the eD sector of the fit.

See e.g. Fig. B.1 and surrounding discussion. Hence when the µH and µD

data are omitted from the fit, as in Line 5, rp, rd, and R∞ float together, up or

down, to best-fit values within a relatively thin ellipsoid in (rp, rd, R∞)-space

that is determined by the degeneracies. It just happens that rp, rd, and R∞

float together within the ellipsoid to ’large’ rather than ’small’ values (due

to the peculiarities of the data in the eH, eD, and λc sectors). When the

ultra-precise µH (µD) datum is included in the fit, as in Line 3 (Line 4), it

pins rp (rd) at a ’small’ value. The approximate degeneracy between rp, rd,

and R∞ then ensures that rd (rp) and R∞ take ’small’ values too.
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• The fits of Lines 6-8 omit, respectively, ae, aµ, and both ae and aµ. In the Line

8 fit omitting both ae and aµ, α is fixed trivially by the λc datum through

the definition of the Rydberg constant, R∞ = α2/2λc. As with the Line 2 fit,

the close agreement of the Line 8 value for α with the Line 1 value is largely

coincidental. The Line 7 fit omitting aµ reinforces the idea that there is only

one experimental anomaly (muon g − 2). The Line 7 fit is under excellent

control across all sectors of chi-squared and favors small radius values for rp

and rd, consistent with the predictions of muonic spectroscopy. The Line 6

fit omitting ae finds a value for α which represents a compromise between the

competing demands of the aµ and λc sectors, with the aµ sector favoring a

large value for α and the λc sector a small value.

• The Line 9 fit omits, respectively, the µH, µD, and aµ data. The Line 9 fit is

designed to be a reasonable facsimile of the final adjustments of C10 and C14,

both of which omit all muonic data. The Line 9 values for the fundamental

constants are all within one sigma of the corresponding C14 recommended

values.

• The fits of Lines 10-12 omit, respectively, the eH data, the eD data, and the

eH and eD data. The Line 12 fit omitting both the eH and eD data reports

a null value for R∞
6 and favors the smaller muonic radius values for rp and

rd. The Lines 10-11 fits also report small values for rp and rd, as well as a

small value for R∞. The small values for rp and rd in the Lines 10-12 fits are

due, respectively, to the inclusion of the µH and µD data in the fit, while the

small value for R∞ in the Lines 10-11 fits is due to the approximate degeneracy

between rp, rd, and R∞ in the spectroscopy sectors of the fit. That degeneracy

is discussed above with respect to the Lines 3-5 fits.

The results of Tables 7.4 and 7.5 reaffirm the conclusions we drew from the fit
6The µH and µD sectors have no explicit R∞-dependence.
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to the reference scheme (Tables 7.2 and 7.3). For a global fit assuming Standard

Model physics, the muon g − 2 anomaly exists independent of the choice of data,

while the proton size puzzle exists only for certain choices of data and, in particular,

disappears when muonic hydrogen spectroscopy data is included in the fit.

Line 1 versus Line 9

In this section, we take a closer look at the mechanics of the Line 1 and Line 9 fits of

Tables 7.4 and 7.5, particularly, as they relate to the proton size puzzle. The Line 1

fit is a fit to the reference scheme and includes all relevant experimental data. The

Line 9 fit is a reasonable facsimile of the C14 fit and excludes all (of the putatively

anomalous) muonic data— namely, aµ, µH, and µD.

The Line 1 fit, since it includes all relevant data, can be regarded as a truly

’global’ fit, providing global values for rp, rd, α, and R∞. Whether or not those

global values can be deemed reliable depends on the extent to which the global

fit and its constituent parts (χ2
eH , etc.) are under control. Table 7.5 shows the

chi-squared contributions across all the sectors of the Line 1 fit. Except for the

aµ sector (where the muon g − 2 anomaly holds sway), the fit is under excellent

control and hence represents a self-consistent solution to the proton size puzzle,

with rp = 0.84088(26) fm. This value of rp works not only in the µH sector, where

χ2
µH = 0.0012 (1 data point), but also in the eH sector, where χ2

eH = 7.4 (8 data

points).

In fact the evidence for a proton size puzzle is confined to the Line 9 fit omit-

ting muonic data. The Line 9 fit finds rp = 0.883(19) fm. Since the muonic data

was omitted from the Line 9 fit, rp = 0.883(19) fm is nominally an ’electronic’ ra-

dius value. A ’muonic’ radius value can be obtained by solving ∆Etheory
LS (µH) =

∆Eexp
LS (µH; rp, α) for rp, with α fixed at the C14 reference value. The resulting rp

value is 0.84087(26) fm, and the discrepancy between the electronic and muonic ra-
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dius values— which is 2.2σ, in units of the electronic radius value’s uncertainty7—

defines the proton size puzzle.

The problem with taking such a discrepancy at face value is that it neglects

1) the interdependencies of the values of rp, rd, α, and R∞ and 2) the sensitivity

of the fit results to the choice of data. A shift in the value of one constant can be

compensated (or nearly) by a shift in the value of one or more of the other constants.

We refer to this kind of compensating mechanism as an approximate degeneracy.

For the Line 9 fit, one approximate degeneracy exists in the eH sector of the fit,

between rp and R∞, and another exists in the eD sector of the fit, between rd and

R∞. Hence, even though the Line 9 fit favors ’large’ values of rp, rd, and R∞, due

to the approximate degeneracies, those large values of rp, rd, and R∞ can be traded

for ’small’ values at the cost of only a few units of chi-squared. See App. C for a

more in-depth discussion of the approximate degeneracies.

When the µH and µD data are included in the fit, as in Line 1, the ultra-precise

µH and µD data (respectively) pin rp and rd at ’small’ values. R∞ is pushed to a

small value as well due to the approximate degeneracies in the eH and eD sectors.

I.e., R∞ can be moved down more cheaply than rp and rd can be moved up. The

upshot is: the Line 9 fit favors large values of (rp, rd, R∞) but exists as a point in

an ellipsoid over which chi-squared varies by no more than a few units and which

extends to ’small’ values of (rp, rd, R∞). The µH and µD data of the Line 1

fit then confine the region of best-fit to a cross-sectional slice of the ellipsoid near

rp ≈ 0.84 fm and rd ≈ 2.12 fm. The correlation matrix for the Line 9 fit is shown

in Table 7.6. rp, rd, and R∞ are all mutually positively-correlated, with the smallest

correlation between them larger than 0.82. The µH and µD data break up these

correlations by slicing into the best-fit ellipsoid, and the largest correlation in the

Line 1 correlation matrix is smaller than 0.01.

7The uncertainty of the C14 recommended value for rp is roughly a quarter the size of the
uncertainty of rp from the Line 9 fit, due to the inclusion of the 1S2S transition in the C14 fit. See
Appendix B for related discussion.
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The effects of µH and µD

Figure 7.6: The change in the fitted value of rp from adjusting the experimental error
of the µH datum ∆ELS(µH) → Nσ, where σ is the experimental uncertainty. As N is
increased rp moves from .84 fm, the value favored by the µH datum, to .88 fm, the value
favored by the eH sector. The global fit here is the same as Line 1, Table 7.4 omitting
muonic deuterium.


R∞ α rp rd
1.00 0.00356 0.888 0.927

0.00356 1.00 0.00382 0.00395
0.888 0.00382 1.00 0.822
0.927 0.00395 0.822 1.00


Table 7.6: The correlation matrix of the fit of Line 9, Table 7.4 omitting all muon
data.
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Figure 7.7: The non-trivial correlations of Line 5, Table 7.4, between rp − R∞, rd − R∞,
and rp − rd. Non-trivial correlations emerge only after removing the µH, µD data from the
fit, and are discussed in the text.

3 A global fit to a theory alternative

We explore the effects of adding a no-name vector boson to the global fit as a means

of resolving the muon (g− 2) anomaly. The no-name XV is assumed to couple with

strength λ to Standard Model leptons through the vector portal, L ⊃ g(XV )µψ̄γµψ

(see Ch. 6), and contributes to the moments sectors according to Eq. 6.6 and to

the spectroscopy sectors according to Eq. 6.12.

We briefly review the relevant phenomenology. Let the coupling of XV to elec-

trons, muons, and protons be denoted by ge, gµ, and gp, respectively. The matrix

element that gives the leading contribution of XV to ae (aµ) is proportional to g2e

(g2µ). The matrix element that gives the leading contribution of XV to eH (µH) is

proportional to ge · gp (gµ · gp). XV does not contribute to the Compton sector of

the fit.
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Kinetic mixing models, which are the simplest topdown motivation for a vector

portal interaction (see App. I), allow ge, gµ, and gp to take any sign. We follow suit

and allow sign(g` · gp) to be either positive or negative for ` = e, µ.

For simplicity, we assume |ge| = |gµ| = |gp| and take gk = εk · e, with subscript k

running over e, µ , and p. This identification allows the various leading contributions

of XV to be recast in terms of a mass mX and a coupling αX =
gk·gk′
4π = εk · εk′ · α,

where αX is strictly positive in the moments sectors of the fit but can take either

sign in the spectroscopy sectors8.

Within the global fits, αX has been further recast for convenience in terms of

the parameter ξ = αX/m
2
X . This identification allows the explicit mX -dependence

to be removed from the spectroscopy and ae sectors of the fit. See Eqs. 6.12 and

6.7, respectively. Note: Eq. 6.7 is valid only for mX >> me.

3.1 mX = 50MeV

We start by adding an mX = 50 MeV no-name vector boson to the global fit and

reproduce the results of Sec. 2. The results are shown in Tables 7.7 and 7.8. The fits

of Tables 7.7 and 7.8, apart from including the effects of the no-name, are identical

to the fits of Tables 7.4 and 7.5.

For the Table 7.7 fits omitting aµ, the no-name is not needed. Consider Line 9,

the fit omitting µH, µD, and aµ. The parameter ξ floats to a value whose error

bars cover 0. Additionally, the Birge ratios RB for the Table 7.8 fits omitting aµ are

considerably less than 1, indicative of overfitting.

For the Table 7.8 fits containing aµ, the Birge ratios are all close to 1 and the

sector-wise values of χ2 are under control across all sectors of the fit. Each of the

Table 7.8 fits containing aµ represents a candidate solution to the muon experimental

anomalies, valid in its own domain.

8Additionally, we assume sign(ge) = sign(gµ) and sign(gp) = sign(gd).
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line omit (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm ξ MeV−2/10−11

1 none −12.5(2.9) −5.1(2.3) 0.84115(27) 2.12879(13) 1.52(39)
2 λc −12.4(2.9) −6.5(2.6) 0.84117(27) 2.12879(13) 1.59(40)
3 µH −9.4(3.6) −5.1(2.3) 0.858(11) 2.12879(13) 1.51(39)
4 µD −14.1(4.4) −5.1(2.3) 0.84115(27) 2.1261(055) 1.52(39)
5 µH, µD 2.4(9.6) −5.1(2.3) 0.879(19) 2.1415(96) 1.50(39)
6 ae −12.5(2.9) −0.1(5.0) 0.84117(27) 2.12879(13) 1.59(40)
7 aµ −13.6(3.2) −1.5(4.9) 0.84082(49) 2.12868(19) −0.3(2.3)
8 ae, aµ 4.0(9.0) 0.0(5.0) 0.8463(26) 2.13054(90) 30(15)
9 µH, µD, aµ 2.5(9.6) 0.0(5.0) 0.883(20) 2.1428(97) −1.1(2.3)
10 eH −11.1(3.9) −5.1(2.3) 0.84114(27) 2.12879(13) 1.50(39)
11 eD −14.3(4.4) −5.1(2.3) 0.84115(27) 2.12879(13) 1.52(39)
12 eH, eD −1300(1100) −6.5(2.6) 0.84115(27) 2.12879(13) 1.57(40)
13 eD, µD −14.3(4.4) −5.1(2.3) 0.84115(27) – 1.51(40)

Table 7.7: Fitted values of R∞, α, rp, rd for global fits with different observables
omitted. A no-name boson (Ch. 6) with mass mχ = 50MeV and coupling αX =
ξm2

X has been introduced.

line omit χ2 dof RB ∆χ2 χ2
λc

χ2
µH χ2

µD χ2
ae χ2

aµ χ2
eH χ2

eD

1 none 12.5 15 .91(10) 15.0 1.0 0.0011 0.000096 0.24 0.019 7.0 3.3
2 λc 11.2 14 .89(10) 16.1 – 0.0011 0.000096 0 0.0030 6.9 3.3
3 µH 10.2 14 .85(10) 14.9 1.0 – 0.00038 0.24 0.026 4.7 3.4
4 µD 12.3 14 .94(10) 15.0 1.0 0.00068 – 0.24 0.019 6.8 3.2
5 µH, µD 8.2 13 .79(11) 14.6 1.0 – – 0.24 0.037 3.3 3.0
6 ae 11.2 14 .89(10) 16.1 0 0.0011 0.000095 – 0.0030 6.9 3.3
7 aµ 11.8 14 .92(10) 0.017 0.093 0.0012 0.000095 0.022 – 7.4 3.3
8 ae, aµ 7.0 13 .73(11) 4.6 0 0.000053 0.000088 – – 3.5 3.0
9 µH, µD, aµ 6.9 13 .73(11) 0.23 0 – – 0 – 3.3 3.0
10 eH 5.4 7 .88(17) 14.7 1.0 0 0 0.24 0.035 – 3.2
11 eD 8.1 7 1.08(17) 15.0 1.0 0.00056 0 0.24 0.020 6.8 –
12 eH, eD 0 0 – 15.7 0 0 0 0 0 – –
13 eD, µD 8.1 6 1.16(18) 15.0 1.0 0.00069 – 0.24 0.020 6.8 –

Table 7.8: Contributions to χ2 for global fits with different observables omitted.
A no-name boson (Ch. 6) with mass mχ = 50MeV and coupling αX has been
introduced. The aµ sector now has well-controlled χ2 across all fits. ∆χ2 gives
the improvement in χ2 due to the model variation over the corresponding Standard
Model fit of Table 7.5. RB =

√
χ2/dof is the Birge ratio. Overfitting is discussed

in the text.

3.2 The general mX-dependence

Table 7.9 shows the results of refitting Line 1 of Table 7.7 for different values of mX .

The improvement in χ2 due to the inclusion of the no-name in the fit is 6.6 units

for mX = 15 MeV , increasing to about 15 units for mX ≈ 50 MeV and remaining

at about 15 units for values of mX out to 1 GeV and beyond. The global fits with
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mX & 30MeV find χ2
aµ < 4 (i.e. |aexpµ − athµ (α)| < 2σ) with chi-squared in all other

sectors well-controlled.

Figure 7.8 shows the region in the mX − ε2 = αX/α plane favored by the Table

7.9 analysis. The red band represents the fitted value of αX for given mX , plus

or minus 2σ. The region of the red band to the right of mX & 30 MeV defines a

global candidate solution region over which the muon experimental anomalies can

be said to be solved (up to exclusion limits). The solid black lines define a piecemeal

candidate solution region which solves the muon (g−2) anomaly but not the proton

size puzzle via a piecemeal fit holding the values of α, R∞, rp, and rd fixed at C14

recommended values and varying only αX and mX . The piecemeal fit is falsely

restrictive for mX . 50 MeV and stands as an illustration, alongside the proton

size puzzle, of the hazards of drawing conclusions on the basis of piecemeal fits.

Fitting or placing limits on model parameters without also refitting the fundamental

constants on which they depend is a mistake in principle and, in practice, can lead

to misleading results, as in Fig. 7.8.

mχ MeV ∆χ2 (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm ξ MeV−2/10−11

15 6.6 −10.9(3.1) −10.6(3.9) 0.84157(37) 2.12894(16) 4.3(1.7)
25 12.4 −11.4(3.0) −8.9(2.9) 0.84147(31) 2.12890(14) 3.45(98)
50 15.0 −12.5(2.9) −5.1(2.3) 0.84115(27) 2.12879(13) 1.52(39)
100 15.5 −13.0(2.9) −3.6(2.2) 0.84101(26) 2.12875(13) 0.70(18)
150 15.6 −13.1(2.9) −3.1(2.2) 0.84097(26) 2.12873(13) 0.49(12)
200 15.6 −13.1(2.9) −3.0(2.2) 0.84096(26) 2.12873(13) 0.40(10)
300 15.6 −13.2(2.9) −2.8(2.2) 0.84094(26) 2.12872(13) 0.320(81)

Table 7.9: Fitted values of δR∞/R
∗
∞, δα/α∗, rp, rd, and ξ = αχ/m2

χ for the full
global fit with mχ fixed at different values. R∗

∞, α∗ are reference values. Line 3 of
this table corresponds to Line 1 of Table 7.7.
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Figure 7.8: Region in the (mX , αX) plane favored by the no-name analysis (red).
The red band represents the fitted value of αX for given mass mX , plus or minus
2σ. Within the red band the improvement ∆χ2 > 6 for mX > 10MeV, dropping
rapidly to ∆χ2 > 15 for mX > 50MeV , and then decreasing monotonically at a
much slower rate for larger mX . No upper limit on mX can be resolved, The solid
black lines define a piecemeal solution region seeking only to solve the muon g-2
anomaly with α, R∞, rp, and rd fixed at C14 recommended values. The region is is
falsely restrictive by not implementing a self-consistent global fit.

4 The effect of the Parker datum on the global fit results

Next, we explore the effects of adding the Parker datum [3] to the global fit, with

and without a 50MeV no-name XV included in the fit.

The Parker datum is discussed in Sec. 1 and implies a value for the fine-structure

constant that is 2.4σ larger than the value inferred from the Gabrielse datum [22]:

Parker : α2 =
2R∞
c

· mRb

me
· h

mRb
→ α−1

Parker = 137.035999046;

Gabrielse : aexpe = athe (α) → α−1
Gab = 137.035999084(33);

αParker > αGab.

(7.2)
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4.1 Global fit to the Standard Model

The fits of Tables 7.10 and 7.11 include the Parker datum but are otherwise identical

to the fits of Tables 7.4 and 7.5 assuming Standard Model physics.

For the Line 1 fit of Table 7.10, which includes all relevant experimental data,

the best-fit value for α floats to a value midway between αGab and αParker, leading

to a bad fit in the ae sector (4.9 units of chi-squared for one datum) and the λc sector

(4.5 units for one datum). χ2
aµ remains approximately 16, as it was for the Line 1 fit

of Table 7.5. The net effect of the Parker datum is a layer of complication added to

the global fit to the Standard Model: the muon (g−2) anomaly survives unchanged,

while the ae and λc sectors of the fit— under good control for the Standard Model

fits omitting the Parker datum— are under poor control.

line omit (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm

1 none −13.4(2.9) 2.7(1.5) 0.84088(26) 2.12870(13)
2 λc −13.4(2.9) −2.7(2.4) 0.84088(26) 2.12870(13)
3 µH −10.2(3.6) 2.7(1.5) 0.858(11) 2.12871(13)
4 ae −13.4(2.9) 5.8(1.9) 0.84088(26) 2.12870(13)
5 aµ −13.4(2.9) 2.7(1.5) 0.84088(26) 2.12870(13)
6 ae, aµ −13.4(2.9) 5.8(1.9) 0.84088(26) 2.12870(13)
7 aµ, µH, µD 3.0(9.5) 2.7(1.5) 0.882(19) 2.1429(96)
8 eH −12.1(3.9) 2.7(1.5) 0.84087(26) 2.12870(13)
9 eD −15.3(4.4) 2.7(1.5) 0.84088(26) 2.12870(13)
10 eH, eD −1700(610) −2.7(2.4) 0.84087(26) 2.12870(13)

Table 7.10: Fitted values of R∞, α, rp, rd for global fits with different observables
omitted. Standard Model physics is assumed. The Table 2.1 reference scheme has
been extended to include the Parker datum discussed in Sec. 1.
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line omit χ2 χ2
λc

χ2
µH χ2

µD χ2
ae χ2

aµ χ2
eH χ2

eD

1 none 36.7 4.5 0.0012 0.00010 4.9 15.7 7.3 4.3
2 λc 27.3 – 0.0012 0.0000944746 0.0000030 15.7 7.3 4.3
3 µH 34.3 4.5 – 0.00041 4.93624 15.7 4.8 4.4
4 ae 28.9 1.6 0.00123173 0.000095 – 15.7 7.3 4.3
5 aµ 21.0 4.5 0.0012 0.00010 4.9 – 7.3 4.3
6 ae, aµ 13.2 1.6 0.0012 0.000094 – – 7.3 4.3
7 aµ, µH, µD 16.5 4.6 – – 5.0 – 3.3 3.5
8 eH 29.2 4.5 0 0.0000059 4.9 15.7 – 4.1
9 eD 32.3 4.5 0.00060 0 4.9 15.7 7.2 –
10 eH, eD 17.3 1.6 0 0 0.0000032 15.7 – –

Table 7.11: Contributions to χ2 for global fits with different observables omitted.
Standard Model physics is assumed. The Table 2.1 reference scheme has been ex-
tended to include the Parker datum discussed in Sec. 1. The muon (g− 2) anomaly
survives unchanged, while the ae and λc sectors of the fit— under good control for
the Standard Model fits omitting the Parker datum (Table 7.5)— are now under
poor control.

4.2 Global fit to the Standard Model plus XV

The addition of a no-name XV to the global fits of Tables 7.10 and 7.10 has the

effect of increasing the tension between the piecemeal values of αParker and αGab.

XV contributes a positive quantity ∆ae to ae(theory), according to Eq. 6.6. With

the value of ae(exp) held fixed, the result of adding a term ∆ae > 0 to ae(theory)

is a decrease in the value of α inferred from the Gabrielse measurement.9 Hence,

since XV does not affect the value of α inferred from the Compton sector of the fit

(i.e. the value of α inferred from the Parker measurement), the addition of XV to

the global fits of Tables 7.10 and 7.11 increases the tension between the piecemeal

values of αParker and αGab.

The results of adding a 50 −MeV XV to the fits of Tables 7.10 and 7.11 are

shown in Tables 7.12 and 7.13. We focus on the Line 1 results. α floats to a value

between αGab and αParker but closer to αGab, and ξ floats to a value such that

χ2
aµ ∼ 1, χ2

ae ∼ 8, and χ2
λc

∼ 6.6. The overall reduction in chi-squared between the

Line 1 fit of Table 7.11 and the Line 1 fit of Table 7.13, which is due entirely to the
9aexpe = athe (α) + ∆ae(αX ,mX).
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inclusion of the no-name in the latter fit, is 9 units. The contribution of XV to the

Line1, Table 7.13 fit absorbs only part of the muon (g − 2) anomaly’s 16 units of

chi-squared and pushes the remainder into the already-discrepant ae and λc sectors

of the fit.

Tables 7.13 and 7.12 militate against a 50 −MeV no-name as a self-consistent

candidate solution to the muon (g − 2) anomaly. However the Parker datum does

not change our earlier conclusions about the proton size puzzle. Chi-squared in the

spectroscopy sectors of Tables 7.12 and 7.13 (as well as Tables 7.10 and 7.11) is

under good control, and rp ∼ 0.84 fm.

In the remainder of this chapter, we will make small variations to the analyses of

Tables 7.12 and 7.13, of the kind enabled by CONSTANT FINDER. The goal is to recover

a self-consistent global candidate solution to the muon experimental anomalies that

accounts for the Parker datum.

line omit (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm ξ MeV−2/10−11

1 none −12.8(2.9) 1.7(1.5) 0.84109(27) 2.12877(13) 1.16(38)
2 λc −12.4(2.9) −6.3(2.6) 0.84117(27) 2.12880(13) 1.59(39)
3 µH −9.6(3.6) 1.7(1.5) 0.859(11) 2.12878(13) 1.15(38)
4 µD −14.2(4.4) 1.7(1.5) 0.84109(27) 2.1264(55) 1.16(38)
5 µH, µD 2.8(9.5) 1.8(1.5) 0.880(19) 2.1423(96) 1.14(38)
6 ae −12.5(2.9) 5.8(1.9) 0.84117(27) 2.12880(13) 1.59(39)
7 aµ −15.3(3.0) 5.6(1.9) 0.84027(35) 2.12850(15) −3.4(1.3)
8 ae, aµ 4.7(8.9) 5.9(1.9) 0.8465(26) 2.13061(90) 32(15)
9 µH, aµ 3.4(9.5) 5.9(1.9) 0.887(19) 2.1451(96) −3.8(1.3)
10 eH −11.4(3.9) 1.7(1.5) 0.84108(27) 2.12877(13) 1.14(38)
11 eD −14.6(4.4) 1.7(1.5) 0.84109(27) 2.12877(13) 1.16(38)
12 eH, eD −2440(640) −6.3(2.6) 0.84116(27) 2.12880(13) 1.57(40)
13 eD, µD −14.6(4.4) 1.7(1.5) 0.84109(27) – 1.16(0.38)

Table 7.12: Fitted values of R∞, α, rp, rd for global fits with different observables
omitted. A no-name boson (Ch. 6) with mass mχ = 50MeV and coupling αX has
been introduced, and the Table 2.1 reference scheme has been extended to include
the Parker datum.
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line omit χ2 ∆χ2 χ2
λc

χ2
µH χ2

µD χ2
ae χ2

aµ χ2
eH χ2

eD

1 none 27.4 9.3 6.6 0.0011 0.00010 8.5 1.1 7.0 4.2
2 λc 11.2 16.1 – 0.0011 0.000094 0.0 0.0030 6.9 4.2
3 µH 25.2 9.1 6.6 – 0.00037 8.5 1.1 4.7 4.3
4 µD 27.3 9.3 6.6 0.00067 – 8.5 1.1 6.9 4.2
5 µH, µD 23.2 8.9 6.6 – – 8.5 1.2 3.3 3.6
6 ae 12.8 16.1 1.6 0.0011 0.000094 – 0.0030 6.9 4.2
7 aµ 14.3 6.7 1.6 0.0015 0.000096 0.029 – 8.3 4.3
8 ae, aµ 8.7 4.6 1.6 0.000053 0.000088 – – 3.5 3.6
9 µH , aµ 8.5 8.0 1.6 – – 0 – 3.3 3.5
10 eH 20.3 9.0 6.6 0 0.0000048 8.4 1.2 – 4.1
11 eD 23.0 9.3 6.6 0.00055 0 8.4 1.1 6.9 –
12 eH, eD 1.6 15.7 1.6 0 0 0 0 – –
13 eD, µD 23.0 9.3 6.6 0.00061 – 8.4 1.1 6.9 –

Table 7.13: Contributions to χ2 for global fits with different observables omitted.
A no-name boson (Ch. 6) with mass mχ = 50MeV and coupling αX has been
introduced, and the Table 2.1 reference scheme has been extended to include the
Parker datum. In the Line 1 fit, the no-name absorbs only part of the muon (g −
2) anomaly’s 16 units of chi-squared and pushes the remainder into the already-
discrepant ae and λc sectors of the fit.

4.3 Global fit to the Standard Model plus XV plus ∆ae

We explore the possibility that the experimental value for the electron anomalous

moment contains an unaccounted-for systematic bias of size ∼ few × u(aexpe ) ∼

7× 10−13.

A plausibility argument for such a bias is laid out in Sec. 4. Relativistic correc-

tions to the axial motion of the electron in the Penning trap could be responsible for

an unaccounted-for systematic bias in the measured value of ae of the size discussed.

Such a bias, when accounted for, would increase the value of αGab and bring it in

line with αParker.

The fits of Tables 7.14 and 7.15 use the Table 2.1 value for aexpe shifted by

∆ae = 7×10−13 but are otherwise identical to the fits of Tables 7.12 and 7.13. Each

of the fits of Table 7.15 is well-controlled across all sectors of chi-squared, with the

fits containing aµ representing viable candidate solutions to the muon experimental
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anomalies, valid in their own domains.10

Figure 7.9 shows χ2 (solid line), χ2
λc

(dashed), and χ2
ae (dot-dashed) as a function

of the size of the bias correction added to ae(exp).

line omit (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm ξ MeV−2/10−11

1 none −12.6(2.9) 3.8(1.5) 0.84113(27) 2.12879(13) 1.38(38)
2 λc −12.5(2.9) −0.3(2.6) 0.84117(27) 2.12880(13) 1.60(40)
3 µH −9.5(3.6) 3.8(1.5) 0.858(11) 2.12879(13) 1.37(38)
4 µD −14.0(4.4) 3.8(1.5) 0.84113(27) 2.1265(55) 1.38(38)
5 µH, µD 3.1(9.5) 3.8(1.5) 0.881(19) 2.1424(96) 1.35(38)
6 ae −12.5(2.9) 5.8(1.9) 0.84117(27) 2.12880(13) 1.59(39)
7 aµ −13.9(3.0) 5.6(1.9) 0.84074(35) 2.12865(15) −0.8(1.3)
8 ae, aµ 4.7(8.9) 5.9(1.9) 0.8465(26) 2.13061(90) 32(15)
9 µH, aµ 3.4(9.5) 5.9(1.9) 0.884(19) 2.1439(96) −1.1(1.3)
10 eH −11.3(3.9) 3.8(1.5) 0.84112(27) 2.12879(13) 1.36(38)
11 eD −14.4(4.4) 3.8(1.5) 0.84113(27) 2.12879(13) 1.37(38)
12 eH, eD −1230(640) −0.2(2.6) 0.84116(27) 2.12880(13) 1.57(40)
13 eD, µD −14.4(4.4) 3.8(1.5) 0.84113(27) – 1.37(38)

Table 7.14: Fitted values of R∞, α, rp, rd for global fits with different observables
omitted. A no-name boson (Ch. 6) with mass mχ = 50MeV and coupling αX has
been introduced, the Table 2.1 reference scheme has been extended to include the
Parker datum, and a speculative (but well-motivated) systematic bias correction has
been added to the Table 2.1 value of aexpe .

10The fits of Table 7.14 omitting aµ can be regarded as viable candidate solutions to the muon
experimental anomalies, too, under appropriate assumptions— e.g. that the BNL measurement of
aµ is in error and should not be included in the fit.
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line omit χ2 ∆χ2 χ2
λc

χ2
µH χ2

µD χ2
ae χ2

aµ χ2
eH χ2

eD

1 none 16.5 20.2 2.9 0.0011 0.000099 2.1 0.25 7.0 4.2
2 λc 11.2 16.1 – 0.0011 0.000094 0.0 0.0030 6.9 4.2
3 µH 14.3 20.0 2.9 – 0.00037 2.1 0.27 4.7 4.3
4 µD 16.3 20.2 2.9 0.00068 – 2.1 0.25 6.8 4.2
5 µH, µD 12.2 19.9 2.9 – – 2.2 0.31 3.3 3.5
6 ae 12.8 16.1 1.6 0.0011 0.000094 – 0.0030 6.9 4.2
7 aµ 13.5 7.5 1.6 0.0013 0.000095 0.025 – 7.6 4.3
8 ae, aµ 8.7 4.6 1.6 0.000053 0.000088 – – 3.5 3.6
9 µH, aµ 8.5 8.0 1.6 – – 0.0 – 3.3 3.5
10 eH 9.4 19.9 2.9 0.0 0.0000068 2.1 0.30 – 4.1
11 eD 12.1 20.2 2.9 0.00055 0.0 2.1 0.25 6.8 –
12 eH, eD 1.6 15.7 1.6 0.0 0.0 0.0 0.0 – –
13 eD, µD 12.1 20.2 2.9 0.00055 – 2.1 0.25 6.8 –

Table 7.15: Contributions to χ2 for global fits with different observables omitted.
A no-name boson (Ch. 6) with mass mχ = 50MeV and coupling αX has been
introduced, the Table 2.1 reference scheme has been extended to include the Parker
datum, and a speculative (but well-motivated) systematic bias correction has been
added to the Table 2.1 value of aexpe . The aµ sector now has well-controlled χ2

across all fits. ∆χ2 gives the improvement in χ2 due to the model variation over the
corresponding Standard Model fit of Table 7.11.

Figure 7.9: χ2 (solid line), χ2
λc

(dashed), and χ2
ae (dot-dashed) for a variation on the

global fit of Line 1, Table 7.15, which has been modified to be a function of ∆aexpe ,
the bias correction discussed in the text. The Line 1, Table 7.15 fit assumes a bias
correction of size 7× 10−13.
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5 Additional theory alternatives

We explore the effects of adding generic scalar and pseudoscalar particles to the

global fit, as we did with the no-name XV . We denote the generic scalar by XS

and the generic pseudoscalar by XP . XS and XP are discussed in detail in Ch. 6.

XS contributes to the moments sectors of the global fit according to Eq. 6.6 and

to the spectroscopy sectors according to Eq. 6.12, while XP contributes only to the

moments sectors of the fit (see Eq. 6.6).

5.1 Global fit to the Standard Model plus lepton-universal XV /XS/XP

Line 1 of Tables 7.16 and 7.17 corresponds to Line 1 of Tables 7.12 and 7.13, in which

a no-name XV was added to the fit to the reference scheme modified to include the

Parker datum. The fits of Lines 2 and 3 correspond to fits in which XV was traded

for XS and XP , respectively. Neither XS nor XP is able to reduce the size of the

muon (g − 2) anomaly. χ2
aµ = 15.7 takes the same value as it did before any new

physics terms were added to the fit (Line 1, Table 7.13). XS (XP ) are not able to

improve the fit in the aµ sector because the contribution to the electron anomalous

moment due to XS (XP ) is an order of magnitude larger than the contribution due

to XV for the same ξ. For a fit including XS/P , shifting ξ away from zero would

create a worse fit in the ae sector, which is already under strain due to the upward

pressure on the fitted value of α applied by the Parker datum. The result is that ξ

gets stuck at zero, and the muon (g − 2) anomaly remains intact.

line alternative (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm ξ MeV−2/10−11

1 XV −12.8(2.9) 1.7(1.5) 0.84109(27) 2.12877(13) 1.16(38)
2 XS −13.4(2.9) 2.9(1.8) 0.84088(26) 2.12870(13) 0.000(94)
3 XP −13.4(2.9) 2.9(1.8) 0.84088(26) 2.12870(13) 0.000(94)

Table 7.16: Fitted values of R∞, α, rp, rd for global fits that include the effects
of different theory alternatives. An mXi = 50MeV vector (XV ), scalar (XS), and
pseudoscalar (XP ) have been added to the fits of Line 1, Line 2, and Line 3, respec-
tively, and the Table 2.1 reference scheme has been extended to include the Parker
datum. The fits assume XV/S/P couple with equal strength to muons and electrons.
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line alternative χ2 ∆χ2 χ2
λc

χ2
µH χ2

µD χ2
ae χ2

aµ χ2
eH χ2

eD

1 XV 27.4 9.3 6.6 0.0 0.0 8.5 1.1 7.0 4.2
2 XS 36.7 0.0 4.1 0.0 0.0 5.4 15.7 7.3 4.3
3 XP 36.7 0.0 4.1 0.0 0.0 5.4 15.7 7.4 4.3

Table 7.17: Contributions to χ2 for global fits that include the effects of different
theory alternatives. An mXi = 50MeV vector (XV ), scalar (XS), and pseudoscalar
(XP ) have been added to the fits of Line 1, Line 2, and Line 3, respectively, and the
Table 2.1 reference scheme has been extended to include the Parker datum. The
fits assume XV/S/P couple with equal strength to muons and electrons. XV absorbs
part of the muon (g − 2) anomaly and pushes the remainder into the ae and λc
sectors of the fit, as discussed in sec:smplusxv. XS and XP are not able to improve
the fit in the aµ. See text for discussion.

5.2 Global fit to the Standard Model plus lepton-universality-violating

XV /XS/XP

We repeat the fits of the previous section but relax the assumption of lepton univer-

sality by assuming any new physics couples only to muons. The three fits of Table

7.18 yield substantively the same results. ξ is zero in the ae sector and comes in to

repair the muon (g− 2) anomaly in the aµ sector. The sign difference between ξ on

Line 1 and ξ on Line 2 can be traced to the relative minus sign between the Yukawa

potential for a vector and the Yukawa potential for a scalar (see Eq. 6.10). Recall

that ξ must be positive in the moments sectors but can, in general, take either sign

in the spectroscopy sectors. For the Line 3 fit including XP , ξ does not contribute

to the spectroscopy sectors (see Sec. 2) and so takes a positive sign where it enters

the fit, in the aµ sector.

The fits of Tables 7.18 and 7.19 are able to solve the muon (g − 2) anomaly but

leave the 2.4σ discrepancy between the values of αParker and αGab intact. That

discrepancy, however, is not inconsistent with the year over year fluctuations ob-

served in historical determinations of the value of α, which are shown in Fig. 1.2.

The fits of Tables 7.18 and 7.19, then, represent viable candidate solutions to the

muon experimental anomalies, up to complications stemming from the tension be-
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tween the piecemeal values of α that can be inferred from the Parker and Gabrielse

measurements.

line alternative (δR∞/R
∗
∞)/10−12 (δα/α∗)/10−10 rp fm rd fm ξ MeV−2/10−11

1 XV −13.3(2.9) 2.7(1.5) 0.84117(27) 2.12880(13) 1.58(40)
2 XS −13.4(2.9) 2.7(1.5) 0.84103(27) 2.12875(13) −0.79(20)
3 XP −13.4(2.9) 2.7(1.5) 0.84088(26) 2.12870(13) 1.60(40)

Table 7.18: Fitted values of R∞, α, rp, rd for global fits that include the effects of
different theory alternatives. A mχ = 50MeV vector (XV ), scalar (XS), and pseu-
doscalar (XP ) have been added to the fits of Line 1, Line 2, and Line 3, respectively,
and the Table 2.1 reference scheme has been extended to include the Parker datum.
The fits assume XV/S/P couple only to muons.

line alternative χ2 ∆χ2 χ2
λc

χ2
µH χ2

µD χ2
ae χ2

aµ χ2
eH χ2

eD

1 XV 21.0 15.7 4.5 0.0 0.0 4.9 0.0 7.3 4.3
2 XS 21.0 15.7 4.5 0.0 0.0 4.9 0.0 7.3 4.3
3 XP 21.0 15.7 4.5 0.0 0.0 4.9 0.0 7.3 4.3

Table 7.19: Contributions to χ2 for global fits that include the effects of different
theory alternatives. An mXi = 50MeV vector (XV ), scalar (XS), and pseudoscalar
(XP ) have been added to the fits of Line 1, Line 2, and Line 3, respectively, and the
Table 2.1 reference scheme has been extended to include the Parker datum. The
fits assume XV/S/P couple only to muons. All three fits are able to solve the muon
(g − 2) anomaly but leave the 2.4σ discrepancy between the values of αParker and
αGab intact. See text for discussion.
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Chapter 8

The CONSTANT FINDER website

CONSTANT FINDER enables users to fit the fundamental constants according to a

scheme of their choosing. This chapter functions as a user guide for the site.

Figure 8.1: CONSTANT FINDER logo.

1 Overview of the site

The site homepage consists of a set of collapsible menus, organized under a sticky

header, which remains visible at the top of the page on scrolling. The header,

shown in Fig. 8.2, contains links to the auxilliary pages of the site. The auxilliary

pages contain information on the data available on the site (via the ’Data Tables’

link in the header), how to use the site (’FAQ’), previous implementations1 of site

code (’Downloads’), and known problems with the site (’Bug Reports’). The data

available on the site is shown in Table 8.3.
1The implementations are contained in downloadable Mathematica notebooks.
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Figure 8.2: CONSTANT FINDER site header.

The collapsible menus are where users specify the scheme to be fit. The menus,

labeled respectively ’Fit-type’, ’Input Data’, and ’Theory Alternatives’, are de-

scribed in detail below (Secs. 2-4). Once a scheme is chosen, a global fit can

be initiated in the ’Global Fit Results’ section, below the collapsible menus. The

’Global Fit Results’ section is discussed in Sec. 5.
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Figure 8.3: Input data available on the CONSTANT FINDER site. Additional input data can
be added by hand. See Fig. 8.7.
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2 The Fit-Type menu

The fit-type menu is shown in Fig. 8.4. The available fit-types are chi-squared (Eq.

2.6), chi-squared with pull (Eq. 2.9), and chi-squared marginalized over nuisance

parameters (Eq. 2.10). An option to fit chi-squared including correlations between

input data (Eq. 2.11) is not available at the time of writing.

Figure 8.4: ’Fit-type’ menu.

3 The Input Data menu

The input data menu opens onto a set of collapsible submenus, which are labeled:

• Fixed parameters; Electronic hydrogen, eH; Electronic deuterium, eD; Muonic

hydrogen, µH; Muonic deuterium, µD; Electron anomalous magnetic moment,

ae; Muon anomalous magnetic moment, aµ; Compton wavelength, λe; and Ad-

ditional input data.

The fixed parameters submenu (Fig. 8.5) enables the fixed parameters of the

Standard Model theory entering the global fit to be changed by hand. Descriptions

are provided for fixed parameters whose meanings are not obvious to non-experts.

The descriptions can be accessed through links marked [INFO].

The remaining submenus— save for the submenu labeled ’Additional Input

Data’— are labeled according to the sectors of the global fit. The electronic deu-

terium submenu is shown in Fig. 8.5 and lists the eD data available on the site.
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Figure 8.5: ’Fixed parameters’ sub-menu of the ’input data’ menu. The sub-menu enables
the fixed parameters of the Standard Model theory entering the global fit to be changed by
hand. Descriptions of the fixed parameters can be accessed through a set of links marked
[INFO].

Within the submenu for each sector, the experimental value, experimental uncer-

tainty, and theory (or nuisance parameter2) uncertainty for the data in that sector

can be changed by hand. Check boxes to the left of each datum control which data

are to be included in the global fit.

The default values for all the experimental values and experimental uncertainties

contained in the ’Input Data’ submenus are given in Table 8.3, the default values

for the theory uncertainties are set to zero, and the default values for the nuisance

parameter uncertainties are set to the value of the corresponding experimental un-

certainty.

Additional input data can be specified via the ’Additional Input Data’ submenu.

Selecting the ’New’ button creates an instance of a fillable form, where information

about the new datum can be entered. The fillable form is shown in Fig. 8.7. The

form requires the input datum type to be specified, in addition to the datum’s experi-

mental value, experimental uncertainty, and theory/nuisance parameter uncertainty.
2Theory uncertainties must be specified for fit-type chi-squared with pull; nuisance parameter

uncertainties, for fit-type chi-squared marginalized over nuisance parameters.
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Figure 8.6: ’Electronic deuterium’ sub-menu of the ’input data’ menu. Editable check
boxes determine which data is to be included in the global fit. Each global fit sector has
its own sub-menu. The global fit sector sub-menus enable the experimental values, experi-
mental uncertainties, and theory (or nuisance parameter) uncertainties of the selected data
to be edited. The default values for the experimental values and experimental uncertainties
are given in Table 8.1, the default values for the theory uncertainties are set to zero, and
the default values for the nuisance parameter uncertainties are set to the value of the cor-
responding experimental uncertainty.

A new input datum of type eH, eD, µH, or µD requires the input of additional

information.

For a new input datum of type eH or eD, the quantum numbers for the relevant

transition must be specified, where the transition is assumed to be of the form

∆f = (fn2,`2,j2 − fn1,`1,j1)− c · (fn4,`4,j4 − fn3,`3,j3) [Hz]. (8.1)

The 1S1/2−2S1/2 transition, for example, would have quantum numbers (n1, `1, j1) =

(1, 0, 1/2) and (n2, `2, j2) = (2, 0, 1/2), with the parameter c set to zero. (Note the

absence of hyperfine splitting quantum numbers from Eq. 8.1. The input datum

matched to ∆f must be a hyperfine centroid frequency.)

For a new input datum of type µH or µD, a theory expression for the transition

must be entered by hand. The hyperfine splitting corrections necessary for com-

puting arbitrary µH and µD transitions are not included in the CONSTANT FINDER

algorithm. The fundamental constants within the µH or µD theory expressions
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should be parameterized as

α := aCOD · (1 + 10−10dalp); rp := rr; rd = rrD. (8.2)

Figure 8.7 cuts off above where the additional fillable blanks required for the

input of new spectroscopy data appear. Up to ten additional input data may be

added to a given global fit.

Figure 8.7: ’Additional input data’ sub-menu of the ’input data’ menu. The sub-menu
enables up to ten additional data points to be added to the fit.

4 The Theory Alternatives menu

The theory alternatives menu is shown in Fig. 8.8. The menu consists of three

radio buttons. The radio button for theory alternative ’None’ specifies a fit to

Standard Model theory. The radio button for theory alternative ’”No-name” vector

boson” specifies a fit to Standard Model theory plus terms added to the moments

and spectroscopy sectors modeling the effects of a no-name vector boson. The

phenomenology of the no-name boson is discussed in Ch. 6, as well as in Ref. [62].

A mass mX for the no-name must be specified prior to the global fit, with mX set to

50MeV by default. Finally, the radio button for theory alternative ’Other’ specifies
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a fit to Standard Model theory plus a user-specified theory alternative.

Figure 8.8: ’Theory alternatives’ menu. Radio buttons (’None’, ’No-name boson’, ’Other’)
determine the theory alternatives to be included in the global fit.

Selecting theory alternative ’Other’ creates a 7× 3 table of fillable blanks. Each

row in the table parameterizes the contribution of the user-specified theory alter-

native to a given sector. The first blank of each row is for the sector-wise theory

expression for the theory alternative, the second blank is for the free parameters

of the theory expression (i.e. the parameters to be fit), and the third blank is for

the fixed parameters of the theory expression. The blanks for specifying a new

contribution to eH theory are shown in Fig. 8.8.

Figure 8.9: Input blanks for a theory alternative of type ’Other’. Each global fit sector has
a set of three blanks. The blanks enable the theory expression parameterizing the theory
alternative in that sector to be fully specified. The first blank is for the theory expression
itself, the second is for the free parameters of the theory expression, and the third is for the
fixed parameters of the theory expression. The blanks for the eH sector are shown.
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5 The Global Fit Results section

The global fit results section contains two buttons: an ’Evaluate’ button and a

’Generate’ button. The buttons are shown in Fig. 8.10. The ’Evaluate’ button

prints the results of a given fit under the global fit results section. See Fig. 8.11 for

example fit results. The ’Generate’ button exports the fit results to a Mathematica

notebook. The Mathematica notebook includes results analogous to those of Fig.

8.11, as well as an analytic expression for the chi-squared function used in the fit.

The chi-squared expression allows for analyses along the lines of the analyses of Ch.

7.

Figure 8.10: Buttons to initiate a global fit. Global fit results can be printed in the browser
window (’Evaluate’) or exported to a Mathematica notebook file (’Generate’).
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Figure 8.11: Example global fit results obtained via the ’Evaluate’ button.
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Chapter 9

Concluding remarks

Our initial interest in the fundamental constants came out of an interest in the muon

experimental anomalies. So, let us take a moment to summarize the status of the

muon experimental anomalies in view of the global fits of Ch. 7.

• The proton size puzzle is not robust. A global fit to world data resolves the

proton size puzzle in favor of the muonic radius and shifts the value of the

Rydberg constant by 4σ relative to its C14 recommended value. These results

are supported by recent work by Pohl, et al. [56] and Gao, et al. [74]. Ref-

erences [56] and [74] both report a radius value consistent with the muonic

radius value, while Ref. [56] also reports a Rydberg value consistent with the

shifted Rydberg value from the global fit to world data. (The radius and Ryd-

berg values of Ref. [56] are based on a measurement of the 2S− 4P transition

in electronic hydrogen. The radius value of Ref. [74] is based on electron

scattering data.)

• The muon g − 2 anomaly is robust. The 4σ discrepancy between theory and

experiment persists1 for any global fit to Standard Model physics. The upcom-

ing measurement of aµ at Fermilab should help determine whether the muon
1The discrepancy is as small as 2.1σ for the largest estimates of the hadronic vacuum polarization

and hadronic light-by-light contributions to aµ(theory).
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g − 2 anomaly is a signal of new physics or the result of an unaccounted-for

systematic effect in the Brookhaven measurement.

• The discrepancy between the Gabrielse and Parker determinations of the fine-

structure constant is robust. The Gabrielse and Parker measurements are the

only data points in the global fit that meaningfully determine the value of

the fine-structure constant. The global fit thus trivially reproduces the 2.4σ

piecemeal discrepancy first reported by Parker, et al. A systematic effect, such

as the one discussed in Sec. 4, may be responsible for the discrepancy. Future

determinations of α via atomic interferometry and quantum Hall experiments

should provide needed context. The magnitude of the discrepancy is in line

with the year-to-year fluctuations of the value of α (Fig. 1.2).

• The simplest new physics explanations are not by themselves able to resolve

all three of the anomalies above at the same time. Such a conclusion however

should be reevaluated as new information comes to light.

The experimental anomalies above are slowly being chased down by new exper-

iments. In a few years, the anomalies may not exist. However, as the precision

of precision QED experiments increases, new anomalies are inevitable. In the face

of a new anomaly, a self-consistent global fit is needed, first, to determine whether

the anomaly is robust and, second— in the event of a robust anomaly— to evalu-

ate theory alternatives. Even in the absence of anomalies, QED theory should be

checked against other well-motivated hypotheses as a means of orienting new physics

searches. In any eventuality, a self-consistent mechanism for fitting the fundamental

constants is needed.

The need for self-consistent global fits is of course not limited to the Rydberg

sector. Many subfields of physics are entering a ’precision era’, even cosmology,

where 95% of what is known is unknown. CONSTANT FINDER and the global fits of

Ch. 7 could be expanded to include many other constants. The Standard Model

160

www.www.constantfinder.org/home.jsp


Lagrangian has 26 free parameters; the final adjustment of C14 fits 75 physical

constants. In principle, everything from the strong-CP problem to CPT violation

to the time-evolution of the fundamental constants could be investigated under the

CONSTANT FINDER umbrella.

In closing, we note: piecemeal approaches in precision QED have led to a consid-

erable amount of preventable dysfunction. We estimate more than 1,000 man-years

have been wasted on the proton size puzzle to-date. A candidate solution to the

muon g − 2 anomaly was also prematurely ruled out on the basis of piecemeal ar-

guments (see Sec. 3.2). We advocate generally for a community-wide embrace of

self-consistent global approaches to fitting the constants of nature. Orderly progress

within the increasing number of ’high-precision’ subfields of physics depends on it.
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Appendix A

The decision to fix not fit mµ

The muon massmµ enters the global fits of Ch. 7 through the mass-dependent QED

corrections of the electron and muon anomalous moments (Sec. 5.1), the Brookhaven

measurement of the muon anomalous moment (Sec. 6), and the muonic hydrogen

Lamb shift (Sec. 6). In all four places, the muon-mass dependence is negligible.

• The mµ-dependence of the mass-dependent QED contributions to ae: The

total of all the mass-dependent QED contributions to the electron anomalous

moment is ∆ae = 2.7475719(13)×10−12, while ae(exp) = 1159652180.72(28)×

10−12. ∆ae would need to move by & 10, 000 standard deviations to have a

large enough effect on ae(theory) to perceptibly change the prediction for α

that comes out of setting ae(theory) equal to ae(exp).

• The mµ-dependence of the mass-dependent QED contributions to aµ: The

total of all the mass-dependent QED contributions to the muon anomalous

moment is ∆aµ = 0.049×10−11, while aµ(exp) = 116592089(63)×10−11. ∆aµ

would need to move by & 20 standard deviations to have a large enough effect

on aµ(theory) to perceptibly change the prediction for α that comes out of

setting aµ(theory) equal to aµ(exp).

• The mµ-dependence of the Brookhaven measurement of aµ: The Brookhaven
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value for aµ(exp) was obtained from Eq. 3.53, which is reprinted here for

convenience:

ωa = aµ
eB

mµ
→ aµ =

2mµµp
e

ωa

ωp
= (1 + aµ)

µp
µµ

ωa

ωp
→ aµ =

R

λ−R
,

(A.1)

where µµ = (1 + aµ)
e

2mµ
, µp = (1 + ap)

e
2mp

, λ =
µµ
µp
, and R = ωa/ωp.

The parameter λ depends implicitly on aµ. Pushing all of the aµ-dependence

to one side of the rightmost equation of Eq. 3.53 finds

aµ =
(1 + ap)mµR

mp
→ δaµ

aµ
=
δmµ

mµ
. (A.2)

A one-standard-deviation shift in the muon mass corresponds to δmµ/mµ ∼

2.5 × 10−8. A relative shift in the muon mass of 2.5 parts in 108 would shift

δaµ/aµ by the same amount, which is about 20 times smaller than the relative

precision of aµ(exp), ∼ 5.4× 10−7.

• The mµ-dependence of the muonic hydrogen Lamb shift: Updating Eq. 4.86

for a shift in the muon mass finds

E(2SF=1
1/2 − 2PF=2

3/2 ) ' 209.9779(49)(
µ

µ•
)− 5.2262(

µ

µ•
)3r2p + 0.0347r3p meV,

(A.3)

where µ• and µ represent the reduced mass of µH before and after the shift

in mµ.

For µ = µ• + δµ :

(
µ

µ•
) ≈ (1 +

δmµ

mµ
); (

µ

µ•
)3 ≈ (1 + 3

δmµ

mµ
). (A.4)

The approximations of Eq. A.4 are good to about 20% and come out of the

identity δµ/µ = µ/mµ(δmµ/mµ).

A one-standard-deviation shift in the muon mass would shift the first term of
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Eq. A.3 by about 5 × 10−6 meV and the second term by substantially less.

The muon mass would need to move by about 30 standard deviations to have

a perceptible effect on Eq. A.3.
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Appendix B

The 1S2S transition

The most precise measurement of the 1S2S transition frequency in electronic hy-

drogen has a vanishingly small uncertainty of 10 Hz [53]. The 1S2S measurement

is 640 times more precise than the most precise measurement of Table 2.1. Per-

haps more astonishing still: σ̄2/σ21S2S ≈ 512, 000, where σ̄ is the mean value of the

experimental uncertainties of Table 2.1.

Inclusion of the 1S2S in the global fit swamps the fit, creating a de facto con-

straint:

∆fexp1S2S −∆f th1S2S ∼ 0, (B.1)

where ∆f1S2S denotes the 1S2S transition frequency.

Rewriting ∆f th as R∞c ·∆f̂ th(rp, α•)— with α fixed for simplicity at the C10

reference value— and then solving Eq. B.1 for rp, we find

rp ≈ 0.877 + 1.05× 109 · δR∞
R•

∞
, (B.2)

where R•
∞ is the C10 reference value. Equation B.2 defines a degeneracy curve in

the rp −R∞ plane. The CODATA reference values for rp and R∞ are consigned by

the sheer weight of the 1S2S to lie on the curve.

Equations B.1-B.2 allow us to determine approximate uncertainties for R∞ and
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rp as well, which are in (exact) agreement with those of C10:

δR∞ =

√
(
1

2

∂2χ2

∂R2
∞
)−1 =

√√√√(
∑
j

c2∆f̂2j
σ2j

)−1

≈

√
(
c2∆f̂21S2S
σ21S2S

)−1 ≈ 5× 10−12 ·R•
∞;

δrp ≈ 1.05× 109 · R∞
R•

∞
≈ .005 fm.

(B.3)

Chi-squared minimization makes clear the reality of the degeneracy curve. Figure

B.1 shows chi-squared contours for a fit to the electronic hydrogen data of Table

2.1 with and without the 1S2S transition. Including the 1S2S transition in the fit

produces chi-squared contours too thin to be resolved. The 1σ contour is shown

in the figure. It lies exactly on top of the degeneracy curve of Eq. B.2. The

uncertainties for rp and R∞ obtained from the 1σ contour are identical to those

of C10. The penalty for moving off of the degeneracy curve is severe: ∆χ2 is of

order 10,000 at the left edge of the error bar marking off the 1σ uncertainty of the

C10 reference value for rp. Removing the 1S2S transition from the fit produces the

1, 2, and 3-σ chi-squared contours shown in blue, which are comparatively robust.

Consequently we have chosen to omit the 1S2S transition from the reference set of

Table 2.1.

The C10 and C14 adjustments however include the 1S2S. As discussed in Sec. 3,

the CODATA adjustments introduce additive corrections to the theory expressions

describing the electronic hydrogen transition frequencies to fatten out the degen-

eracy curve created by the 1S2S. The additive corrections are equivalent to the

nuisance parameters of Eq. 2.9. According to C98, they ”represent [C98’s] lack of

knowledge of those expressions [...]. The initial estimate of each [additive correc-

tion] is zero but with an appropriate standard uncertainty.” In C98 the standard

uncertainty for the 1S2S additive correction was 90 kHz. In C10, due to advances
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Figure B.1: Contours of χ2 in the (rp, δR∞/R∞) plane for a fit omitting the 1S2S tran-
sition. The contours show 1, 2, and 3 σ Gaussian confidence levels corresponding to ∆χ2

= 1, 4, and 9. The muonic value rp = 0.841 fm is at the left edge of the plot, close to the
3σ contour. Including the 1S2S transition produces a 1σ contour represented by the red
line segment but too thin to be resolved at the scale of the figure. The dashed line is the
degeneracy curve predicted by the 1S2S transition. Least-squares analysis dominated by
this single datum predicts rp and R∞ fall on the line, regardless of other data or theory.
The point and its error bars are the C10 reference values [5]. See discussion in the text.
The second-most precise transition produces a different degeneracy curve (solid blue line),
which intersects the 2σ region of the χ2 contours.
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in theory calculations, which are reported in C02, C06, and C10, the uncertainty of

the 1S2S additive correction was 2.5 kHz.

Our reasons for omitting the 1S2S from the global fits of Ch. 7 (rather than

mimicking the CODATA procedure) are twofold. First, omitting the 1S2S allows us

to use an unadorned chi-squared function (Eq. 2.6) to fit the fundamental constants:

no additive corrections, no correlations. Outputs follow inputs with a minimum of

complication in between. Second, and here we quote liberally from Stump, et al.

[75]: ”A chi-squared distribution with many degrees of freedom is a very narrow

distribution, sharply peaked at χ2 = N. Therefore small inaccuracies in the values

of the [estimated uncertainties] σi and [estimated correlations] βij may translate into

a larger error in the confidence levels computed from the chi-squared distribution.”
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Appendix C

The approximate degeneracies

of the eH and eD sectors

We begin by writing the frequency νN of electronic hydrogen state N = |n`j > as

νN = R∞ · c · (− 1

n2
+ ...+ ν̂0N (FNS) + ...), (C.1)

where the first term on the right-hand side is the Schrodinger energy (divided by h)

and the second term

R∞ · c · ν̂0N (FNS) =
2π

3h
· α · r2p · |ψ(0)|2 ∼ R∞ ·

r2p
n2

· δ`,0 (C.2)

is the leading finite nuclear size (FNS) contribution to νN .

Seven of the eight eH transitions of Table 2.1 are of the form νnX − ν2S , where

X = S, P, D and n > 2.1

For those transitions, the leading FNS contribution is negative:

R∞ · c · (ν̂0nX(FNS)− ν̂02S(FNS)) ∼ (
1

n2
− 1

22
) < 0, (C.3)

1ν2S − ν2P is the lone exception.
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which implies that an increase in the value of rp will decrease the value of νnX−ν2S .

On the other hand, inspection of Eq. C.1 finds that an increase in the value of R∞

will increase the value of νnX − ν2S .

Hence, for each transition of the form νnX − ν2S , there is a degeneracy curve in

the (rp, R∞)-plane along which the value of νnX − ν2S remains constant.

The approximate degeneracy between rp and R∞ in the eH sector (Sec. ??),

then, arises from the collective contribution of all of the degeneracy curves of the

Table 2.1 eH data.

A parallel argument explains the approximate degeneracy between rd and R∞

that arises in the eD sector.
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Appendix D

The SO(4) symmetry of

hydrogen

The rotational invariance of the Schrodinger-Coulomb equation under SO(3) implies

the (2`+ 1) states of differing m belonging to a given ` have the same energy. The

spectrum of the Schrodinger-Coulomb equation must have an additional, ’accidental’

degeneracy with respect to ` since the energy levels of the hydrogen atom depend

only on n.1 As we will see, the accidental degeneracy is in fact dynamically generated

and often called a dynamical degeneracy as a result.

The dynamical degeneracy is related to the Runge-Lenz vector L of Newtonian

mechanics, which we briefly review here. Consider a planet moving subject to the

gravitational potential of the Sun. The Runge-Lenz vector ~L = 1
m
~L × ~p + κ~r

r is

conserved— i.e., ~̇L = 0, where m is the mass of the planet and κ is the numerator

GM of the Newtonian gravitational potential, with G the gravitational constant

and M the mass of the Sun.

The orbital angular momentum vector ~L is perpendicular to ~r and ~p so that
1The hydrogen energy levels are n2-degenerate:

n−1∑
`=0

(2`+ 1) = n+ 2

n−1∑
`=1

` = n+ 2
(n− 1)n

2
= n2. (D.1)
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the planet’s motion is confined to a plane. ~L is also perpendicular to ~L. Hence ~L

is confined to the plane of motion. When ~r is perpendicular to ~p, which occurs at

aphelion and perihelion, ~L points in the direction of ~r, which we can take to be in

the direction of the perihelion. Since ~̇L = 0, the perihelion doesn’t precess, and

the planet’s orbit closes. The upshot is: orbits in a 1/r-potential close due to the

existence of a conserved vector.

The quantum mechanical analogue of the planet-Sun system above, with the

planet replaced by an electron and the Sun replaced by a proton, superficially re-

sembles a hydrogen atom. The analogy seems clumsy on its face. However we

can take it seriously since the Hamiltonian governing the planet’s motion reduces

to the Schrodinger-Coulomb Hamiltonian once appropriate extensions to quantum

mechanics are made. We develop the quantum analogue below, starting with our

insistence that the canonical commutation relations hold:

[ri, pj ] = iδij ;

[Li, rj ] = iεijkrk;

[Li, pj ] = iεijkpk;

[Li, Lj ] = iεijkLk.

(D.2)

Equation D.2 is equivalent to the statement, ”~r, ~p, and ~L transform as vectors.”

Since ~L is a vector, the commutation relation [Li,Lj ] = iεijkLk should also hold.

Upon symmetrization, the Runge-Lenz vector becomes

~L =
1

2m
(~L× ~p− ~p× ~L) + κ

~r

r
.

The condition ~̇L = 0 becomes

[H, ~L] = ~̇L = 0,
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where H = ~p2

2m − κ
r , with κ now identified with the fine-structure constant α.

Finally, a tedious calculation finds

[Li,Lj ] = iεijk(
−2H

m
)Lk

→ [Mi,Mj ] = iεijkLk,

(D.3)

where ~M =
√

−m
2H

~L and
√

−m
2H is real for bound states (E < 0; H|E >= E|E >).

Since ~M is a vector, the commutation relation [Li,Mj ] = iεijkMk holds. This

commutation relation along with those of Eqs. D.2 and D.3 specifies an SO(4) Lie

algebra:
[Li, Lj ] = iεijkLk;

[Li,Mj ] = iεijkMk;

[Mi,Mj ] = iεijkLk.

(D.4)

The SO(4) Lie algebra breaks apart into two SU(2)’s with the substitution of

A±
i = 1

2(Li ±Mi) into Eq. D.4:

[A±
i , A

±
j ] = iεijkA

±
k ;

[A±
i , A

∓
j ] = 0.

(D.5)

The irreducible representations (irreps) of SO(4) are specified by (a+, a−), where

a+ = 0, 1/2, 1, 3/2, ... and a− = 0, 1/2, 1, 3/2, .... The states |b+, b− > in a given

irrep are enumerated by b± = −a±,−a± + 1, ..., a±, such that the dimensionality of

the irrep is (2a+ + 1)(2a− + 1).

~L and ~M are orthogonal, just as ~L and ~L were orthogonal for the classical

system. The relation 0 = ~L · ~M = ~A2
+ − ~A2

− implies the only irreps allowed are

(a+, a−) → (a, a), where a = a− = a+.

Computation of ~A2
+ + ~A2

− finds

~A2
+ + ~A2

− =
1

2
(~L2 + ~M2) = −1

2
(1 +

m

2E
κ2). (D.6)
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Evaluation of the left-hand side of Eq. D.6 on a state |b+, b− > in the irrep (a, a)

gives

( ~A2
+ + ~A2

−)|b+, b− >= 2a(a+ 1)|b+, b− > . (D.7)

The bound-state energy, obtained from Eqs. D.6 and D.7, is thus

E = −mκ
2

2

1

(2a+ 1)2
≡ −mα

2

2n2
. (D.8)

The definition of n (≡ 2a + 1) in Eq. D.8 requires n to be a positive integer for

a = 0, 1/2, 3/2, .... The n2-degeneracy of the hydrogen atom is identifiable as the

dimension of the irrep (a, a), consistent with the result of Footnote 1. To be clear:

the payoff here is not Eq. D.8. The payoff is in understanding the dynamical origin

of the accidental-seeming degeneracy of the Schrodinger spectrum with respect to

`.
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Appendix E

The Dirac spectrum

Consider uN with insertions of the parity operator P as follows:

uN (~x) =< 0|ψ(~x)|N >=< 0|P−1Pψ(~x)P−1P|N > .

ψ(~x) is the electron or muon field, |0 > is the vacuum, |N > is one of a complete

set of orthonormal state vectors, and P = P−1.1 A parity transformation of the

state vector gives P|N >= ηN |N >, with ηN = ±1 the intrinsic parity of |N >,

and a parity transformation of the field gives Pψ(~x)P−1 = iγ0ψ(−~x).2 For a parity-

symmetric vacuum,

uN (~x) = iγ0ηNuN (−~x)

or equivalently
fN (~x) = ηNfN (−~x),

gN (~x) = −ηNgN (−~x).
(E.1)

The parity of fN is the parity of state vector |N > .

1P = P−1 follows trivially from the requirement P2 = 1; performing two consecutive spatial
inversions of a vector does not change the orientation of the vector.

2(iγ0∂0 − i~γ · ~∇−m)ψ(~x) = 0
P−→ (iγ0∂0 + i~γ · ~∇−m)ψ(−~x) = 0, whether by taking ~x→ −~x or

by taking ψ(~x) → iγ0ψ(−~x).
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fN and gN can be expanded in spherical harmonics Y m
` (|~x|), where

Y m
` (|~x|) ∼ (d/dx)`+m(x2 − 1)`eimφ

and x = cosθ. Under a parity transformation, (θ, φ) → (π − θ, π + φ) such that

Y m
`

P−→ (−1)` Y m
` . (E.2)

According to Eqs. E.1 and E.2, fN and gN are required to have values of ` that

differ by an odd number. Possible values of ` are however limited to j ± 1/2.3 fN

can be taken to have ` = j∓ 1/2, and gN to have ` = j± 1/2. Explicit expansion of

fN and gN in spherical harmonics finds

fN (~x) =

 CY m
` (x̂)

C ′Y m′
` (x̂)

FN (|~x|) gN (~x) = (~σ · x̂)

 CY m
` (x̂)

C ′Y m′
` (x̂)

GN (|~x|) (E.3)

where C, C ′ are Clebsch-Gordon coefficients. The factor of ~σ · x̂ has been introduced

to ensure Eq. E.1 is satisfied. Applying ~σ · x̂ to a wave function preserves its total

angular momentum but flips its parity, shifting ` by one unit in the process.

Insertion of Eq. E.3 into Eq. 4.5 yields two coupled differential equations in FN

and GN , which can be solved for EN , with Eq. 4.6 the result.

3Jz = Lz+Sz → m` = mj−ms. m
max
j = j, ms = ±1/2, and 0 ≤ m` ≤ `. For fixed j, ` = j∓1/2.

However for ` = `max = n− 1 only ` = j − 1/2 is allowed since j + 1/2 ≤ n.
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Appendix F

The Breit potential

The Dirac Hamiltonian for a lepton of mass m in an electrostatic external field

(A0 = φ, ~A = 0) is

H = ~α · ~p+ βm+ eφ, (F.1)

where ~α = γ0 · ~γ, β = γ0, and ~p is the three-momentum of mass m. The term ~α · ~p

is off-diagonal in the Dirac representation, with Eq. F.1 becoming nearly diagonal

in the non-relativistic limit. A unitary transformation of H → H ′ = eiSHe−iS can

be effected to diagonalize Eq. F.1, with the associated four-component lepton wave

function transforming along with it: ψ → ψ′ = eiSψ. S is taken to be hermitian.

The diagonalization procedure is referred to as a Foldy-Wouthuysen transformation.

It separates the Hamiltonian into an upper part acting strictly on a two-component

lepton wave function and a lower part acting strictly on a two-component antilepton

wave function. In the non-relativistic limit, the lepton and antilepton wave functions

reduce to the product of a two-component constant spinor and a one-component

Schrodinger wave function, as discussed in Sec. 2.2. The scalar potential in Eq. F.1

decreases the energy of the lepton and increases the energy of the antilepton. The

lepton becomes bound; the antilepton gets accelerated.
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A time-dependent Hamiltonian will transform according to a time-dependent S :

Hψ = i∂t(e
−iSψ′) → i∂tψ

′ = [eiS(H − i∂t)e
−iS ]ψ′ = H ′ψ′,

where H ′ = eiS(H − i∂t)e
−iS . Application of the Baker-Campbell-Hausdorff lemma

to H ′ gives

H ′ = (H + i[S,H] +
i2

2
[S, [S,H]]...)− (Ṡ +

i

2
[S, Ṡ]...), (F.2)

with Ṡ = ∂tS.

H is conventionally separated for bookkeeping purposes into an even (or diago-

nal) part E and an odd (off-diagonal) part O.

H = βm+O + E (F.3)

where O = ~α · ~p and E = eφ.

Insertion of Eq. F.3 into Eq. F.2 gives

H ′ = βm+O + E + i[S, βm] +O(1/m). (F.4)

S is chosen to cancel O, which occurs for S = −iβO/2m. H ′ becomes

H ′ = βm+ E + i[S,O] + i[S, E ] + i[S, [S, βm]]− Ṡ +O(1/m2)

H ′ = βm+ E ′ +O′ +O(1/m2)
(F.5)

where the off-diagonal terms in H ′ have been swept into O′ = O + i[S, E ] − Ṡ and

the diagonal terms into E ′ = E + i[S,O] + i[S, [S, βm]].

H ′′ can be found via the same procedure, with S → S′ = −iβO′/2m. H ′′ gives

corrections to the energy up to order (1/m2). H ′′′ gives corrections up to order

(1/m3), and so on.
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The (1/m3) corrections are the leading relativistic corrections to the energy,

as can be seen from the low-momentum expansion of the relativistic energy E =√
p2 +m2 = [m+1/2·p2/m−1/8·p4/m3+...]. The diagonal order (1/m3) correction,1

sandwiched between two-component, non-relativistic lepton wave functions, recovers

the (1/m3) contribution to Eq. 4.7.

Accounting additionally for the finite mass M of the nucleus, assumed here to

be spin-1/2, follows a procedure similar to that of Eqs. F.1-F.5. The single-particle

wave function is replaced by a two-particle wave function with sixteen components.

The corresponding Hamiltonian is 16 × 16, composed of a sum of outer products

of gamma matrices. The Hamiltonian is transformed via a unitary transformation

such that, to order (1/m), it rotates the four components of the two-particle wave

function that mix the lepton and nucleus wave functions2 into one another. The

transformed Hamiltonian is block diagonal to order (1/m), with a 4 × 4 block and

a 12 × 12 block. Iterating this procedure to order (1/m3) gives the desired result.

The expectation value of the O(1/m3) 4× 4 block gives the energy spectrum of Eq.

4.11. Details are in Ref. [76].

A comment about spin: The energy shifts tied to the relative orientation of the

spins of the lepton and nucleus are, by convention, split off from the leading rel-

ativistic corrections considered here and are dealt with separately as (relativistic)

hyperfine splitting corrections (Sec. 5.7). However the two-component spinor con-

tained in the wave function for the spin-1/2 nucleus leads to a contribution to the

energy proportional to δ`0, the so-called Darwin-Foldy term. This contribution is

absent for spin-0 and spin-1 nuclei.

1The off-diagonal order (1/m3) corrections can be dialed away with S′′′, leaving diagonal and
off-diagonal corrections of order (1/m4).

2as opposed to the anti-lepton and anti-nucleus wave functions or the anti-lepton and nucleus
wave functions, for example
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Appendix G

The order (Zα)5(m/M) recoil

correction

The leading self-energy correction provides a correction

δV = −4πZα
dF1(−~q2)

d~q2
|~q2=0 · δ(~r) (G.1)

to the Coulomb potential. See Sec. 6.2.

By analogy with Eq. 4.57, −6dF1(−~q2)/d~q2|~q2=0 can be thought of as the mean-

squared fluctuation of the lepton coordinate due to the lepton self-energy corrections.

We denote the mean-squared fluctuation of the lepton coordinate as < r2` > .

To deal with the two-body nature of the bound-state, < r2` > should in all

generality be replaced by

< (r` − rN )2 >=< r2` > + < r2N > −2 < r` rN >, (G.2)

where < r2N > is the mean-squared fluctuation of the nucleus coordinate.

From Eq. 4.79,

< r2` >= −6dF1(−~q2)/d~q2|~q2=0 =
2Zα

πm2
ln(m

µ
), (G.3)
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where µ is the scale at which the would-be infrared divergence is cut off. As a first

approximation, we set µ equal to the binding energy m(Zα)2.

Following Eq. G.3, we write down analogous expressions for the remaining con-

tributions to < (r` − rN )2 >:

< r2N >=
4Zα

πM2
ln( 1

Zα
); (G.4)

− 2 < r` rN >= − 4Zα

πmM
ln( mZα

m(Zα)2
). (G.5)

The correlator < r` rN > is assumed to give zero over distances smaller than the

scale of the atom ∼ 1/mZα. As a consequence, the logarithm in Eq. G.5 is cut off

at mZα rather than m as it was in Eqs. G.3-G.4.

Combining Eq. G.1 with Eqs. G.3-G.5 finds

δV =
2π

3
Zα < (r` − rN )2 > ·δ(~r), (G.6)

where

< (r` − rN )2 >=
4Zα

πm2
ln( 1

Zα
)[1 + (

m

M
)2 − m

M
]. (G.7)

The first term of Eq. G.6 gives the leading self-energy correction, the second term

gives a recoil correction of order (Zα)5(m/M)2, and the third term gives a recoil cor-

rection of order (Zα)5(m/M). The O((Zα)5(m/M)) recoil correction is the leading

nontrivial recoil correction. The leading trivial recoil corrections, of order (Zα)4,

are implicit in the corrections to the energy generated by the Breit potential (see

Sec. 2.4). A more formal treatment of higher-order recoil corrections may be found

in Ref. [77].
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Appendix H

The BMT equation

Consider a charged particle of mass m with intrinsic spin that is accelerating in

the lab frame. We begin by building up the concepts and notation necessary to

derive the Bargmann-Michel-Telegdi (BMT) equation, which— in the context of

the Brookhaven measurement of muon (g− 2)— describes the time evolution of the

orientation of the particle’s spin vector in the particle rest frame metered by a clock

in the lab frame.

The angular momentum tensor Jµν is composed of the sum of an orbital angular

momentum tensor Lµν = xµpν − xνpµ and an intrinsic spin angular momentum

tensor Sµν , where Lµν represents the part of Jµν that depends on the choice of

origin. Total and orbital angular momemuntum three-vectors can be obtained by

contracting the spatial components of the relevant angular momentum tensor with
1
2εijk. To define a four-vector Sµ for the spin, it is conventional to introduce the

Pauli-Lubanski vector Wµ = −1
2εµνλρJνλpρ. Wµ reduces to (0,m ~J) = (0,m~S) in the

particle rest frame, suggesting Sµ =Wµ/
√
−W 2 as a covariant parameterization of

the spin four-vector— which turns out to be correct.

We want to write down an expression for dSα/dτ, where τ = γ−1t is the proper

time, which ensures dSα/dτ is covariant, and t is the time as measured in the lab

frame. We stipulate that the terms in the expression must be linear in Sα and
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contain no higher time-derivatives. The available four-vectors are Sα, Fαβ, Uα, and

dUα/dτ, where Uα is the particle four-velocity (pα = mUα). These considerations

lead to a unique expression for dSα/dτ :

dSα
dτ

= c1FαβSβ + c2(UβFβγSγ)Uα + c3(Sβ
dUβ

dτ
)Uα. (H.1)

A term ∼ S ·U is absent from Eq. H.1 since S ·U = 0— a fact that is easy to see in

the particle rest frame, where Uα = (1,~0) and Sα is by inspection purely space-like.

Differentiating S · U = 0 with respect to τ finds

dS

dτ
· U = −SdU

dτ
, (H.2)

which places a constraint on Eq. H.1— namely, Eq. H.1 satisfies Eq. H.2 only if

c1 = −c2 and c3 = −1.

We continue: the covariant form of the Lorentz force equation is

dUα/dτ = e/mFαβUβ. (H.3)

With Eq. H.3 and the substitutions for c2 and c3 necessitated by Eq. H.2, Eq. H.1

becomes
dSα
dτ

= c1Sβ(Fαβ − (UγFγβ)Uα)−
e

m
(SβFβγUγ)Uα. (H.4)

N.B.: Eqs. H.3-H.4 do not account for the effects of gradient forces.1

In the particle rest frame, Eq. H.4 reduces to

dSj
dτ

= c1FjkSk = c1(~S × ~B)j . (H.5)

Equation H.5 describes the precession of the angular momentum vector ~J = ~S in a
1We investigated the possibility that gradient forces, which were neglected in the Brookhaven

measurement, were responsible for the muon (g−2) anomaly. Possible contributions were too small
to be relevant.
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magnetic field, i.e., d~S/dτ = ~S × ~ω, where ~ω is the well-known Larmor frequency,

equal to ge
2m

~B ≡ c1 ~B.

With c1 determined, Eq. H.4 becomes

dSα
dτ

=
e

m
Sβ[

g

2
Fαβ + (

g

2
− 1)(FβγUγ)Uα], (H.6)

which has the same form as the original BMT equation of B-M-T.

The BMT equation used in the Brookhaven measurement of aµ is

dŝ/dt = ŝ× ~ωs,

~ωs =
e

m
[(aµ +

1

γ
) ~B − aµ(

γ

γ + 1
)(~β · ~B)~β + (aµ +

1

γ + 1
) ~E × ~B],

(H.7)

where aµ = g−2
2 , Uµ = (γ, γ~β), and ~ωs is the muon spin-precession frequency.

To see how Eqs. H.6 and H.7 are related, we first note that Eq. H.7 is defined

with respect to the precession of the spin vector ŝ in the particle rest frame and the

time t in the lab frame. Boosting ~S from the lab frame into the particle rest frame

finds

ŝ = ~S − γ

γ + 1
~β(~β · ~S). (H.8)

Differentiating Eq. H.8 with respect to t yields

dŝ

dt
=
d~S

dt
− ~β(~β · ~S) d

dt
(

γ

γ + 1
)− γ

γ + 1
[~β
d

dt
(~S · ~β) + (~S · ~β)d

~β

dt
]. (H.9)

To bring Eq. H.9 to heel, we make substitutions for ~S, d~S/dt, and d~β/dt using the

equations of this Appendix. We replace d~S/dt with the relevant parts of Eq. H.6. We

replace ~S with ŝ via Eq. H.8. Finally, we replace d~β/dt with e
γm [ ~E+β× ~B−~β(~β · ~E)],

pursuant to Eq. H.3.

After considerable algebra, the result of these substitutions gives an expression

of the form dŝ/dt = ŝ × ~ωs, which is identical to Eq. H.7. The final analysis: the

mapping from Eq. H.6 to Eq. H.7 amounts to taking ~S → ŝ and τ → t.
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Parenthetically, the expression for the cyclotron frequency ~ωc implied by Eq.

3.50 can be obtained by putting d~β/dt = e
γm [ ~E + ~β × ~B − ~β(~β · ~E)] into the form

~β × ~ωc, subject to the assumption ~β · ~E = 0.
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Appendix I

Kinetic mixing

The Lagrangian for a basic kinetic mixing model takes the form

L = −1

4
FµνFµν −

1

4
F ′
µνF

′
µν −

ε

2
FµνF

′
µν + iψ̄j [γµ(∂µ + ieAµ)]ψj , (I.1)

where Aµ, A′
µ are U(1)em, U(1)X gauge fields, respectively, and Fµν , F ′

µν are the

corresponding field strength tensors. A′
µ is often referred to as a dark photon.

We take advantage of the anti-symmetry of Fµν and substitute F ′
µν = 2∂µA

′
ν +

[symmetric] into the ’kinetic mixing’ term in Eq. I.1 that couples the hidden sector

to the Standard Model. The symmetric piece of F ′
µν contracted with Fµν gives zero.

Integrating what remains by parts yields εA′
ν∂µFµν plus a surface term. Finally,

identifying ∂µFµν somewhat carelessly as the electromagnetic current jemν finds

L = −1

4
F̃µνF̃µν −

1

4
F ′
µνF

′
µν + iψ̄k[γµ(∂µ + ieÃµ + ieεA′

µ)]ψk, (I.2)

where subscript k indexes the fermion species and the tildes have been added for

self-consistency, where Ãµ = Aµ − εA′
µ and F̃µν = ∂µÃν − ∂νÃµ. Equation I.2 can

be obtained more formally by diagonalizing the kinetic terms of Eq. I.1 to O(ε2).

The sign of ε, while conventionally taken to be positive, is unconstrained in Eq.

I.2. Hence A′
µ can mediate a repulsive interaction between lepton and nucleon just
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the same as an attractive interaction. The vector portal phenomenology of Ch. 6

is consistent with— but more general than— a Lagrangian of the form of Eq. I.2.

Mixing between Ãµ and A′
µ occurs through fermion loops.

Variations on Eq. I.2 exist, many of which assume the hidden sector U(1)X

mixes with the U(1)Y of the Standard Model. Regardless, a mass term for A′
µ can

be obtained via the Higgs mechanism, by adding a Higgs-like particle to the hidden

sector. The predicted mass range for A′
µ is model-dependent, with typical masses

in the range MeV −GeV. The original kinetic mixing model is due to Holdom [78].

A comprehensive review of dark photon phenomenology may be found in [79].
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