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Abstract 

The advancement of biomarker discovery and implementation will enable earlier disease 

detection, support clinical decision making and improve patient outcomes. A major challenge 

faced is the development of methods capable of detecting small changes in a biological sample; 

there is a need for analytical methods that measure changes selectively and sensitively, and data 

analysis methods that effectively identify those changes.  

The use of glycans as a biomarker class has unique advantages. Due to their non-template 

production, their composition is dynamic with changes in the cellular environment. The 

composition of glycans is extremely heterogenous, so the use of glycans as biomarkers is 

analytically challenging but could reform the way disease is diagnosed and treated.  

One way to approach this conundrum is to combine mass spectrometry and machine 

learning. Mass spectrometry experiments generate great amounts of data, and often times, it is 

not feasible to peruse in its native size or format. Implementing machine learning with mass 

spectrometry data allows the inclusion of more data and in turn, will enable advancements in 

biomarker discovery.  

A software tool, LevR, has been developed to support mass spectrometrists implementing 

machine learning into their workflows; this tool provides automated formatting of mass 

spectrometry data into a machine learning ready format.  
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Chapter 1 Introduction 

1.1 N-linked glycosylation  

Glycans are complex carbohydrates that are involved in a common post-translational 

modification called glycosylation, and they play a major role in cellular activity, including 

protein function and stability, cell signaling, and disease development. They are composed of 

many monosaccharide units and their composition can be likened to a direct read-out of the 

cellular environment from which the glycoprotein originated; as the cell’s environment changes 

throughout a day, or week, or year, the glycosylation profile also undergoes changes. Many 

factors can influence cellular environment conditions; for example, the extent of reaction for 

glycosidase or transferase enzymes is dependent on the biochemistry in their surroundings. This 

level of sensitivity is what gives rise to the extreme heterogeneity in glycoforms, where in 

addition to enzyme kinetics, the monosaccharide units, linkages and branching also contribute to 

their complexity.1 

While there exist multiple types and classes of glycoconjugates,2-5 this thesis is focused 

on protein glycosylation- specifically N-linked protein glycosylation and methods of analysis by 

mass spectrometry. N-linked glycosylation, whose naming convention is derived from the amino 

acid residue to which the glycan is attached- asparagine, single letter code “N”, occurs in a 

specific amino acid motif: Asparagine-X-Serine/Threonine/Cysteine, where X can be any amino 

acid except proline.6, 7  

Glycans are synthesized in the endoplasmic reticulum and Golgi apparatus, where the 

precursor composition is Glc3Man9GlcNAc2. As the glycan makes its way through the cellular 

environment, it is exposed to a series of enzymes which trim and/or replace monosaccharides. 
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Figure 1-1 depicts this precursor, its building blocks, and the types of glycans that originate from 

this precursor.  

 

Figure 1-1. Glycans depicted with symbols, where each symbol represents a different sugar 
building block. The boxed portion on the precursor glycan highlights the conserved core. The 
three major types of N-linked glycans are high mannose, complex, and hybrid (which has 
characteristics of both high mannose and complex glycans). 

Proteins that are differentially glycosylated possess different physical characteristics, 

including folding, interactions, structure and thus, function, in comparison to their native 

glycosylation profile. For example, IgG has one N-linked glycosylation site within the Fc region; 

when glycosylation changes occur, so too does the structure, conformation, and binding affinity8. 

This has implications for immune and inflammatory responses if IgG is no longer performing its 

essential duties. In fact, IgG has been of interest during the COVID-19 pandemic; studies suggest 

that patients who have core fucosylated anti-SARS-CoV-2 antibodies are less likely to 

experience severe disease when compared to patients whose antibodies were afucosylated,9-11 or 

differentially glycosylated.12 This change in glycosylation is thought to be related to the immune 

response, specifically an amplified cytokine presence, which is a proinflammatory response. 

Although much remains unknown with how many roles IgG plays in the progression of COVID-

19 disease, the importance of studying and understanding glycosylation is ever apparent. 
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Beyond native biological changes that occur in relation to disease development, glycans 

are also critical in pharmaceutical development, as they determine efficacy, stability, and 

metabolism of biotherapeutics.13 For example, IgG glycosylation has been exploited to improve 

the efficacy of intravenous Ig (IVIg). By altering the glycan profile to be fully sialylated, the 

anti-inflammatory activity was increased 10X, when compared to traditional IVIg treatment.8 

1.2 Glycans identified as potential biomarkers 

A number of glycoproteins, and the changes that occur within their glycosylation profiles, 

have been identified as potential biomarkers for disease, as glycosylation has been found to 

undergo changes during disease pathogenesis,4, 14 chronic inflammation,15-17 and conditions 

associated with aging.18, 19 More specifically, abnormal glycosylation has been implicated in 

many disease states including Alzheimer’s disease,19 galactosaemia,20 acute lymphoblastic 

leukemia,21 and ovarian cancer,22, 23 among many other cancers,24-28 autoimmune disorders,29, 30 

and infectious disease.15   

In a disease state, glycosylation can be upregulated or downregulated, depending on the 

protein and glycan.  For example, many rheumatoid arthritis patients experience remission 

during pregnancy and relapse post-partum; the glycosylation changes on IgG in serum included 

an increase in sialylation and galactosylation during remission, followed by a sharp decrease.31 

In another glycomics-related study with cerebrospinal fluid from Alzheimer’s disease patients, 

female patients were found to have higher instances of fucosylation and bisecting GlcNac 

structures, and in both males and females, high mannose structures were less abundant.32  

1.3 Analytical methods for studying glycosylation 

Given the high diversity in structure due to their non-template production, glycans are 

challenging to study but contain a vast amount of information that could be leveraged for 
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diagnosing and prognosing disease, monitoring changes in health status and more. Beyond 

upregulation and downregulation of glycosylation, changes in branching and modifications to the 

core structure can be indicative of a change in the cellular environment.24  

Depending on the time scale and origin of the protein, these changes can be very subtle 

and hard to detect. Although these changes may be slight, the ability to monitor changes in 

glycosylation could be the key to advancing diagnostics, enabling earlier diagnosis of disease or 

other abnormal states. To harness the information contained in these sugars attached to proteins 

and detect subtle changes in a glycosylation profile, robust analytical methods are needed to 

generate interpretable results so that glycans can be used as biomarkers in a clinical setting.  

Current analytical methods for monitoring changes in glycosylation have been reviewed 

extensively.5, 30, 33-41 The most popular methods employ fluorescence or mass spectrometry for 

detection of enzymatically released glycans and/or glycopeptides, specifically: analysis of 

released glycans by LC-Fluorescence, MALDI-TOF MS and LC-MS, and LC-MS of 

glycopeptides. Each method possesses a unique set of advantages and disadvantages. As such, 

there exists no absolute “best method”, but more so a “best selection” from the methods 

available; this includes both the selection of sample preparation methods and instrumental 

analysis methods. A brief discussion of these methods is included herein.  

1.4 Studying glycosylation and enhancing detection of glycans and glycopeptides 

Changes in glycosylation can be monitored and quantified in two ways: 1) the glycans are 

released from the protein prior to analysis, or 2) the glycoprotein is digested to generate 

glycopeptides prior to analysis. Selection of the best method will depend on the specifics of the 

study at hand. Figure 1-2 is a visual depiction of some common glycomics workflows.  
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Figure 1-2. Common glycomics workflows. (a) Glycopeptides are generated enzymatically, 
either in crude mixture or after glycoproteins have been isolated from the sample, then analyzed 
by LCMS and tandem MS experiments. (b) Released glycans from either glycoproteins or 
glycopeptides can be analyzed by LC-ESI-MS, MALDI-TOF MS, and LC or CE with a 
fluorescence tag. 

1.4.1 Analysis of released glycans 
To obtain released N-linked glycans, PNGase F is commonly used; it cleaves the bond 

between the asparagine residue and the reducing end of the glycan and its digestion efficiency is 

highest when the glycoprotein has been denatured.42 Other enzymes may perform better, 

depending on the glycoform composition. For example, PNGase A is used for glycans with core 

alpha 1,3-fucosylation, as PNGase F is unable to cleave glycans with this character. However, 

PNGase A is not able to cleave glycans from glycoproteins, so glycopeptides must first be 

generated, using a proteolytic enzyme like trypsin.  

Native released glycans cannot be detected by optical detection methods because they do 

not have chromophore or fluorophore moieties. Glycans can, however, be derivatized with a 

fluorophore or chromophore tag by reductive amination at the reducing end, which can improve 
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separation and detection by liquid chromatography or capillary electrophoresis coupled with an 

optical detection method.43, 44  

Additional chemistry can be performed at the reducing end of the glycan to derivatize 

with other reagents via the formation of hydrazones and oximes.45-48 With this chemistry, a 

variety of tags can be appended to the glycan to improve ionization, detection, and assignment of 

the glycans in mass spectrometry experiments. In addition to reducing end modifications, 

glycans can be chemically modified to either alter the chemistry or aid in conserving the 

composition. A common modification necessary is the neutralization and stabilization of sialic 

acid moieties, as they are labile and easily lost during mass spectrometry experiments. This is 

most commonly achieved using permethylation, where all free hydroxyl groups are converted 

into methyl esters, amide hydrogens into methyl esters, and carboxyl groups are esterified.42 

These can bring many benefits to the analysis, including improved chromatographic separation, 

enhanced ionization efficiency, and stabilization of the labile sialic acid components of the 

glycans.  

Stable isotopes can be incorporated into glycans by various strategies to quantify the 

relative abundances of glycan species from distinct sample groups (e.g., disease vs healthy) in a 

mass spectrometry experiment. Dual labeling enables simultaneous quantification of neutral and 

acidic glycans.49-51 This approach involves incorporation of isotopic species at both ends of the 

glycan. Notably, this method provides added value through stabilization of sialic acid moieties, 

simplified sialic acid counting, and enhanced ionization.51, 52 Various tags have been designed, 

implementing this strategy to improve glycans’ detection and identification by mass 

spectrometry. For example, the mdSUGAR tag uses reductive amination and periodate oxidation 

to derivatize the reducing end and sialic acids, respectively, which introduces a larger mass 
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difference and renders this method amenable to lower resolution instruments.53 Isotopic PFBHA 

and isotopic methylamine have been used in a similar fashion, and they bring the added benefit 

of facilitating glycan enrichment via Fluorous SPE.52, 54 Other methods include enzymatic 18O 

labeling,55 isotopic permethylation,56 and metabolic labeling.57  

In the case of all tags, efficient derivatization is critical to achieving reliable 

quantification. If 100% of glycans in a given sample are not derivatized, the sample cannot be 

reliably quantified because not all glycans have been tagged. As discussed, glycans are typically 

derivatized at the reducing end. As derivatization is a chemical reaction, many factors contribute 

to a reaction’s ability to move to completion including temperature and chemical environment. 

Derivatization inefficiency continues to hinder reliable quantification, particularly when the 

reaction requires a certain pH, temperature, or concentration to proceed. The ideal derivatization 

workflow is one that can move to completion at any volume in a simple solvent like water.   

Tagging glycans can provide many benefits to the workflow when used appropriately. 

Tag-specific enrichment and simultaneous elimination of untagged components of a sample (e.g., 

undesirable salts and proteins) can improve signal during analysis. However, poor selectivity 

during enrichment can result in sample loss, so it is critical to use a selective enrichment method 

that effectively captures the analyte of interest.  

1.4.1.1 Fluorescence-based glycomics analysis 
In fluorescence-based glycomics analyses, the glycans are released enzymatically and 

derivatized with a reagent to enhance detection. The tag often serves dual purposes- for 

improved detection by fluorescence and to enhance the separation of different glycans. Since 

fluorescence on its own does not provide information on the composition of the glycans detected, 

the chromatogram generated is often utilized to match each peak to a glycan composition. To 

assign peaks in a chromatogram, a calibration method can be used. For example, a standard 
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dextran ladder can be used to normalize the data acquired by the separation method. A glucose 

unit is assigned to each peak, which is representative of the number of monosaccharides and 

linkages present in a glycan, and enables the determination of the theoretical position in the 

chromatogram (LC) or electropherogram (CE).58 This can then be compared to the experimental 

chromatogram to assign glycan compositions to various peaks. Although this methodology can 

be useful in glycomics research, supplemental data is needed to completely characterize the 

glycan structures; this can be done using highly specific enzymes (exoglycosidase) and 

additional analytical experiments or tandem mass spectrometry methods. Nevertheless, 

fluorescence-based methods are attractive for clinical assay design, particularly for high-

throughput applications with a minimized cost. A method for translation to clinical applications 

was recently described,59 in anticipation of advancements with glycan biomarkers. 

1.4.1.2 Mass spectrometry methods for analysis of released glycans  
Mass spectrometry is the leading analytical technique to study glycans, as it provides the 

ability to identify, profile, and quantify glycans when coupled with appropriate sample 

introduction and separation methods.  For the analysis of released glycans, there are two 

dominant mass spectrometry methods: MALDI-TOF MS or HPLC-ESI-MS. The first step of 

either method is generating released glycans; isolating the glycoprotein of interest or performing 

the enzymatic release in a crude mixture, using PNGase F to cleave the glycan from the protein. 

Then, depending on the detection method, glycans can be modified and enriched in various ways 

prior to the mass spectrometry experiment.28, 60, 61  

1.4.1.2.1 MALDI-TOF MS of released glycans 

During a MALDI-TOF MS experiment, the sample is ionized by a laser, which 

necessitates the sample be dissolved in a compatible matrix. Although dihydroxy-benzoic acid 
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(DHB) is the most common matrix used in glycan analysis, there are other matrices available that 

may be more amenable to the sample of interest.62, 63 Once in the matrix, the sample is spotted 

onto a MALDI plate and is irradiated with a laser, ions are generated and detected by the Time-

of-Flight mass spectrometer.  Since this method does not require a separation method prior to 

MS analysis, it is capable of being very high throughput which is attractive for translation to 

clinical glycomics. However, this method has potential shortcomings: quantification of different 

glycans within a sample is difficult due to varying ionization and technical expertise is required 

to operate the mass spectrometer and interpret the results.  

1.4.1.2.2 LC-ESI-MS of released glycans 

For the analysis of released glycans by LC-ESI-MS, the separation method development 

requires consideration of the glycan compositions and any tags used. Additional considerations 

include the ionization and detection method. Tags are frequently used to improve separation and 

detection, similar to fluorescence-based glycomics methods. An additional reason for using a tag 

in mass spectrometry experiments is to improve ionization efficiency during electrospray 

ionization or to aid in compositional assignment of the glycans. To enhance ionization efficiency 

of glycans, as native glycans ionize poorly due to their hydrophilicity, hydrophobic moieties are 

commonly used.22, 64   

First, the glycans are released in a crude mixture or after the glycoprotein of interest has 

been isolated, followed by enrichment, potentially derivatizing with a tag to aid in LC separation, 

ionization, and subsequent detection by mass spectrometry.  

The analysis of released glycans has limitations since the glycan is no longer attached to 

its glycosylation site; this is particularly problematic when there are multiple glycoproteins in the 

sample or there are multiple glycosylation sites on a single glycoprotein. In a scenario where the 
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protein of interest is not enriched prior to enzymatic release of the glycans, it is difficult to 

confidently monitor changes in the glycosylation profile, since the changes could be an artifact 

of a change in the glycoprotein expression rather than a change in the glycosylation profile.  

1.4.2 Analysis of glycopeptides 
1.4.2.1 LC-MS of glycopeptides 

The third and most comprehensive analysis in glycomics research is LC-MS of 

glycopeptides. The glycoprotein must first be isolated, denatured, reduced, alkylated, and 

purified, all before performing a digestion to generate glycopeptides and peptides. Various 

enzymes can be used in either a targeted or untargeted manner to cleave at different amino acid 

sequences to generate different peptides. The advantage to using enzymes with high specificity is 

that the peptide fragments it generates can be predicted, provided that the amino acid sequence of 

the protein is known. For example, trypsin can be used to cleave the protein between lysine and 

arginine on the C-terminal side, but missed cleavages are possible if the surrounding amino acids 

inhibit the enzyme by steric hindrance.65 Alternatively, non-specific digestion can be 

implemented with proteases like proteinase K, which results in many more, shorter peptides that 

can be enriched or purified by other methods to capture only the glycopeptides. The challenge 

with this approach is that since the enzyme cleaves rather indiscriminately, the peptides and 

glycopeptides generated are not predictable. 

The LC method prior to MS detection aids in separating the peptides, generated during 

the digestion, from the glycopeptides. This is an important step, as co-eluting peptides reduce the 

ionization efficiency of the glycopeptides.  

To begin to assign glycan compositions, tandem mass spectrometry experiments are 

necessary. These experiments fragment the carbohydrate moieties into smaller pieces. During 

collision-induced dissociation (CID), diagnostic oxonium ions are generated, which indicate that 



11 
 

there are glycopeptides present. Additionally, the product ions can be used to infer the glycan 

components of the glycopeptides.  To assign the composition of the peptide, electron transfer 

dissociation (ETD) is an alternative fragmentation approach that primarily provides 

fragmentation information about the peptide component. Both experiments provide 

complementary information as to the composition and structure of the glycan. These data, in 

addition to the high-resolution mass of the precursor ion, are used to assign the glycans present.  

While the preparation and analysis of glycopeptides is more involved, the data acquired 

can be more informative, since site-specific and protein-specific information is retained. Arriving 

at this level of information can be challenging, however, because both the peptide and glycan 

need to be characterized and assigned compositions.  Once the useful glycopeptides are 

identified, multiple reaction monitoring (MRM) is typically used for targeted quantification of 

the glycopeptides across multiple sample sets.34, 66, 67 This method is used widely in biomarker 

discovery phases, however, it requires an experienced mass spectrometrist to conduct the 

experiments and interpret the results.  In order to use this approach, the glycopeptides to be 

quantified must be known, their approximate retention times must be known, and their key 

product ions must be known. Thus, it is not an approach that can be applied without considerable 

up-front effort. 

1.5 Glycans as biomarkers and the computational challenges in biomarker development 

The use of glycans as biomarkers requires the ability to reliably monitor glycans in a 

simple, effective, high throughput manner. This is particularly important in clinical settings 

where a fast and reliable readout is critical to patient outcomes. Considerations for which is the 

best method have been reviewed, where each method has figures of merit.68 While significant 
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progress has been made, some remaining obstacles need to be addressed, including the ability to 

process large mass spectrometry data sets.  

Mass spectrometric analysis of changes in glycosylation can be complicated and often 

times, the data has to be reduced to a more manageable size and format. This can be particularly 

problematic in untargeted analyses, where the pertinent data is not known a priori. Traditional 

unsupervised data analysis methods, like PCA, do not yield useful results when applied to dense 

data sets, including glycomics. This is due to a mismatch in the data set and analysis process. If 

the process does not match the characteristics of the data set, it fails to capture the complexity 

within the samples. For example, applying PCA to glycomics data is potentially problematic 

because PCA only identifies the most impactful components contributing to the variability within 

the sample set.  The method does not explicitly look for variability due to the sample type 

(healthy vs. disease state, for example.). In glycomics samples, the changes and differences are 

subtle and numerous, so dimension reduction strategies are inappropriate to use as they can 

(unintentionally) omit important aspects of the data that help distinguish between the two 

samples. To advance the possibility of using changes in glycosylation as a clinical readout, 

strategies are needed that are built to handle mass spectrometry data sets with many features.    

An alternative data analysis approach to PCA, which has been developed and used 

increasingly over the last few years,69-74 is doing supervised machine learning on mass 

spectrometry data sets. While many different supervised classification algorithms exist, our 

research group has developed one specifically for use on glycomics data. This machine learning 

algorithm, the Aristotle Classifier,72, 74, 75 operates on the assumption that retaining a more 

complete set of features, regardless of their known or perceived importance, improves 

classification accuracy. In the context of diagnostics and disease/healthy samples, many features 
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within a sample contribute to its overall character, rather than an “all or nothing” approach. In 

Figure 1-3, this strategy is pictorially depicted. In Figure 1-3a, 6 squares from the original 

portrait are presented in no particular order. In Figure 1-3b, the 6 squares have been arranged in 

their original position, such that they are in context of one another. In Figure 1-3c, the full 

portrait is provided. The representation in Figure 1-3b illustrates how having the squares in 

context of one another helps the onlooker discern what the full portrait might be.  

 

Figure 1-3. A visual representation of the classifier’s approach to classifying samples. (a) 6 
squares from the portrait, in no particular order. It is challenging to discern what the full 
portrait is. (b) the 6 squares from panel a, in their original arrangement. (c) The full portrait of 
“Ballet Scene” by Edgar Degas, c. 1907, obtained via Creative Commons- National Gallery of 
Art (NGA46491). 

The use of machine learning facilitates interpretable biological information to be obtained 

from large amounts of complex non-linear data; this is in contrast to traditional methods that tend 

to perform well with linearly related data. With supervised machine learning strategies, the 

machine learning algorithm is first trained with samples that are labeled as belonging to Group 1 

or Group 2 (i.e., healthy or disease). Then, new data is submitted to the algorithm to be 

classified.  
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To develop robust machine learning tools, large amounts of data are needed to 

sufficiently train the model. When small data sets are used, there is a significant risk of 

overfitting the data; this is a common bioinformatics problem, frequently referred to as the big p 

(many measurements per subject), little n (not many subjects) problem. As the ratio of the 

number of features to the number of samples increases, the higher the likelihood that the 

algorithm will train on noise, which will be detrimental in validation studies.76 An obvious way 

to resolve this is to increase the number of samples in the data set, as any classifier will perform 

better with more training data, but this may not be possible if the workflow is not scalable or if 

the sample type is rare/difficult to obtain.  The Aristotle Classifier evades this problem better 

than other classifiers because it is less likely to over-emphasize a single feature or two in its 

scoring algorithm, and rather, uses many features to assign the sample to a given category.    

In glycomics research, obtaining large data sets is challenging due to the sample 

preparation, time requirement, and level of necessary expertise. Furthermore, often times in 

glycomics, there are a limited number of samples due to the nature of the disease of interest, 

including its rare incidence. Therefore, an opportunity exists to benefit both the fields of machine 

learning and glycomics/biomarker research by developing tools at the interface of these two 

fields. This thesis occupies that intellectual niche. 

1.6 Summary of following chapters 

The software tool created to facilitate machine learning on glycomics samples and other 

mass spectrometry data sets is called LevR, named for its utility in quickly formatting mass 

spectrometry data into a machine learning ready format Leveraging R programming. It is 

intended to make machine learning tools accessible to all mass spectrometrists, regardless of 

their level of experience with programming/coding; it enables 1) easy submission of MS data for 
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analysis by machine learning methods 2) fast application of machine learning methods on large 

MS data sets, and 3) straightforward interpretability to enable useful conclusions and actions.  

This workflow is scalable and does not sacrifice data quality or quantity in the process. The key 

contribution is the increased accessibility to machine learning tools for all mass spectrometrists: 

a simple, yet effective, method for configuring data into a machine learning-ready format. 

The second contribution is the development of a model data set using fingerprints that 

can be used to mimic the subtle changes that occur in glycosylation, but which does not require 

the tedious tasks that glycomics samples demand. This model data set is tunable, in that 

variability can be introduced and controlled in various ways. This characteristic is particularly 

useful when developing machine learning tools, as it enables the researcher to easily generate 

more challenging data sets without significant time or material investment.  

In the following chapter, these come together to provide a straightforward solution for 

mass spectrometrists who wish to implement machine learning strategies into their workflow, but 

who have minimal experience in formatting their data for ML-compatibility. The acquisition of a 

model data set via latent fingerprints is also described, which is particularly amenable to machine 

learning tool development. In the final chapter, future directions are discussed, including the 

continuation of fingerprints as a potential sample type for health status readout.  
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Chapter 2 Leveraging R for fast analysis of mass spectrometry data with 

machine learning 

2.1 Abstract 

Applying machine learning strategies to interpret mass spectrometry data has the 

potential to revolutionize the way in which disease is diagnosed, prognosed, and treated. A 

persistent and tedious obstacle, however, is relaying mass spectrometry data to the machine 

learning algorithm. Given the native format and large size of mass spectrometry data files, 

preprocessing is a critical step. To ameliorate the challenging steps that hinder mass 

spectrometrists incorporating machine learning strategies into their workflows, we sought to 

create an easy-to-use, continuous pipeline that runs from data acquisition to the machine learning 

algorithm. 

Here, we present a start-to-finish pipeline designed to facilitate analysis of mass 

spectrometry data by machine learning. The input can be any ESI data set collected by LC-MS or 

flow injection, and the output is a machine learning ready matrix, in which each row is a feature 

(an abundance of a particular m/z), and each column is a sample. This workflow provides 

automated handling of large mass spectrometry data sets for researchers seeking to implement 

machine learning strategies but who lack expertise in programming/coding to rapidly format the 

data. We demonstrate how the pipeline can be used in conjunction with machine learning using 

two different mass spectrometry data sets: 1) ESI-MS of fingerprint lipid compositions acquired 

by direct infusion and, 2) LC-MS of IgG glycopeptides. This workflow is uncomplicated and 

provides value via its simplicity and effectiveness.  
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2.2 Introduction 

The value of machine learning is best realized with large amounts of data; thus, a prime 

data type for machine learning is generated by mass spectrometry experiments. Applying 

machine learning strategies to mass spectrometry has yielded many advancements in the realm of 

human health; early detection of cancer,1-3 clinical decision support,2, 4-6 monitoring treatment 

response,7, 8 facilitating the discovery of novel drugs,9, 10 identifying microbial strains and 

screening for antibiotic resistance,11 and classifying single-cell types.12 A significant challenge, 

however, is the reproducible and comprehensive transfer of the data from the mass spectral files 

to the machine learning algorithm. In most of the above-mentioned cases, researchers first select 

a class of compounds of interest within the sample, identify and quantify them, then build data 

sets that are amenable to machine learning. But this process requires that researchers know in 

advance which peaks to select for analysis. Alternatively, all the MS data can be extracted for 

study, without identifying compounds of interest a priori. Due to the sheer amount of data, the 

required memory, and the need for interpretable results, mass spectrometrists have struggled to 

implement machine learning strategies into their workflow.13 Preprocessing methods tend to omit 

large parts of the valuable data, often using peak picking to reduce the number of features and 

increase interpretability.12, 14 By this omission, cryptic patterns and slight, nevertheless 

important, changes between sample types can be lost and the purpose of machine learning is 

defeated. If the goal is to detect subtle differences between highly similar samples (i.e., healthy 

vs. early-stage disease) in a high-throughput manner, a pipeline for mass spectrometry data from 

spectral files to a ML-ready format could be preferrable in contrast to doing learning on a vastly 

slimmed-down data set. To support mass spectrometrists in implementing machine learning into 

their workflows, we developed a start-to-finish pipeline to relay hundreds of mass spectral files 
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from their native format to a ML-ready format in a matter of minutes using a binning approach 

where every peak in the mass spectrum is included in the data matrix.  

The functionality of the tool we developed herein is most similar to XCMS,15 but it 

differs in many notable ways. We expect that in many cases, our approach will provide a 

significant benefit to a fraction of the MS community that wants a rapid solution to their data 

formatting problems. XCMS has functionality to align LC-MS data by retention time, identify 

molecular features within each LC-MS chromatogram, and export the identified features into a 

data matrix, which can then be used for machine learning. However, each of these steps requires 

its own code input, making the XCMS package a set of functions accessible to experienced 

programmers, rather than a tool designed for mass spectrometry experts (who have beginner 

skills in programming) to readily use.  Furthermore, the approach that XCMS uses to build its 

data matrices is fundamentally different than what is described here; in the former tool, the 

product attempts to define “features”, which are compounds with a unique mass and retention 

time.  This approach requires the chromatograms and spectra be aligned in both the time and m/z 

dimensions. As a radically simpler tool, LevR simply defines bins in the m/z domain, and each 

of these bins becomes a feature in the data matrix; no spectral alignment is done in advance, as 

the tool is predominantly envisioned to be used on either direct infusion experiments or LC-MS 

experiments where a short time segment is chosen for study. 

Initially, this pipeline was developed for ESI-MS data of extracted lipids from latent 

fingerprint samples. Analysis of latent fingerprints by mass spectrometry is an emerging research 

area showing potential, particularly in the field of forensics16-23. By taking advantage of the 

natural chemical changes that occur over time, the age of a fingerprint can be determined with 

analysis by mass spectrometry24. For example, unsaturated lipid molecules present in sebum are 
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susceptible to ozonolysis and over time, their amount decreases24-27. Additionally, fingerprints 

may be able to assist law enforcement in developing a profile, as their composition can possibly 

indicate identifying characteristics like age, sex, and lifestyle23, 28-32. Fingerprints have also been 

considered for clinical applications33, such as assays for diagnosing and monitoring metabolic 

disorders like diabetes34, 35.  To harness the full power and potential of fingerprint analysis, 

machine learning tools need to be incorporated into the analysis workflow. 

From a machine learning method development perspective, fingerprints are also an 

appealing sample type because they are dynamic and heterogenous. They can be used to generate 

many samples, and their biochemical composition can be modulated by, for example, varying the 

amount of time exposed to ambient air conditions prior to their extraction into organic solvents. 

The use of fingerprints enables non-invasive collection of a dynamic biological sample, easy 

preparation, and a relatively high-throughput MS method using direct infusion. These are ideal 

characteristics enabling the acquisition of samples that are highly similar with subtle 

differences,36, 37 thereby mimicking the key challenges faced in classification problems today.   

Following the development of the pipeline for direct infusion mass spectral data, we sought to 

enhance the approach to also accommodate LC-MS files, which are larger files and have the 

added complexity of peaks eluting at various retention times; these aspects necessitate 

significantly higher memory on a computer. After adapting the pipeline, we tested it using a data 

set of IgG2 glycopeptides that were present in two different forms, a native form and one that 

was slightly altered via the use of a glycosidase enzyme, to mimic the changes that occur in a 

glycosylation profile in the beginning stages of disease,37  

Here, we present the pipeline and show its utility using two different data sets. The output 

is compatible with machine learning strategies, like the Aristotle Classifier,7, 36-38 which makes 
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use of the many features within a spectrum that can all contribute to identifying a disease state. 

This tool will serve mass spectrometrists who have previously lacked accessibility to apply 

machine learning strategies to their data sets. LevR will enable enhanced data analysis and 

advance mass spectrometry research as a means for improving human health. 

2.3 Experimental Methods 

2.3.1 Fingerprint Samples: 
2.3.1.1 Fingerprint Collection and Preparation  

The collection and preparation of fingerprint samples was performed by adapting 

previously described methods.24-29 A single donor was used, and prior to fingerprint deposition, 

the donor swiped her fingertips over regions of the face that typically have high sebum secretion 

prior to depositing the fingerprints onto aluminum foil. These groomed fingerprints were 

collected over a series of days, limited to 6 fingerprint deposits (3 from each hand) per collection 

period, where two collection periods occurred ~ 1 hour apart. For each collection period, half of 

the samples were prepared immediately, while the other half were placed on a large watch glass 

for 24 hours on the lab bench, exposed to ambient air.  

Immediately after fingerprint deposition or after the 24-hour aging period, the aluminum 

foil squares containing the fingerprints were rolled loosely using clean tweezers and placed into 

individual 2 mL screw thread sample vials with PTFE closure. 200 µL dichloromethane was 

added to each, and the vials were vortexed for 1 minute, followed by 1 minute of rest, and 

removal of the foil. Then, to each vial, 200 µL deionized water was added, vortexed for 1 

minute, followed by 1 minute of rest, prior to liquid-liquid extraction. The aqueous layer was 

removed, and the organic layer was kept in the vial with an additional 200 µL dichloromethane. 

All samples were stored -20 °C until analysis, such that only one thaw cycle occurred. Gas-tight 

Hamilton syringes were used throughout the experiment. For analysis, an aliquot of 88 µL of the 
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fingerprint sample solution described above was diluted with 500 µL dichloromethane and 400 

µL NH4OAc in MeOH to achieve 5 mM ammonium acetate in the final solution. 

2.3.1.2 ESI-MS conditions 
Direct infusion ESI-MS analysis of the extracted fingerprint lipid samples was performed 

using an Orbitrap Fusion Tribrid mass spectrometer (Thermoscientific, San Jose, CA). The mass 

spectrometer was operated in negative ion mode with a sample injection flow rate of 3 µL/min. 

The heated-electrospray source was held at 2.3 kV while the ion transfer tube temperature, 

sweep, aux, and sheath gas flow rates were set at 300 °C, 2, 5, and 10 Arb units, respectively. 

The full MS scans for the m/z range of (150-600) were acquired in the Orbitrap with a resolution 

of 60k. The AGC target value for the full MS scan was 5×104, and the maximum injection time 

was 100 ms. For each sample, 30 scans were averaged for each file. Between analysis of every 

sample, a methanol/dichloromethane mixture was injected at 10 µL/min for approximately 10 

minutes or until the total ion count had returned to its baseline, established at the beginning of 

the experiment.  

2.3.2 Glycopeptide Samples:  
2.3.2.1 Materials and Reagents:  

Human serum IgG, ammonium bicarbonate, guanidine hydrochloride (GdnHCl), 

dithiothreitol (DTT), iodoacetamide (IAM), formic acid and HPLC grade acetonitrile and 

methanol were purchased from Sigma Aldrich (St. Louis, MO). Sequencing grade trypsin was 

from Promega (Madison, WI), and α1-2,3,4,6 fucosidase, 10X glycobuffer (pH 5.5), 100X BSA, 

was from New England BioLabs (Ipswich, MA). Ultrapure water was obtained from a Direct-Q 

water purification system (MilliporeSigma, Darmstadt, Germany). 

2.3.2.2 Preparation of Native and Partially Defucosylated IgG Tryptic Digests 
IgG glycoprotein (160 µg) was dissolved in 50 mM NH4HCO3 buffer at pH 8.0, to give a 

4 mg/mL concentrated glycoprotein solution; then, the glycoprotein solution was denatured by 
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adding GdnHCl (at 6 M final concentration). To reduce the disulfide bonds, DTT was added to 

the glycoprotein solution to a 10 mM final concentration, followed by sample incubation at room 

temperature for 1 h. Thereafter, disulfide bonds were alkylated by adding IAM to a final 

concentration of 25 mM, and this reaction was carried out in the dark, at room temperature for 1 

h. After the alkylation step, the excess IAM was neutralized by adding DTT to the reaction 

mixture (at a 30 mM final concentration), and the reaction was continued for 30 mins at room 

temperature. The resultant glycoprotein solution was filtered through a 10 kD MWCO filter and 

buffer exchanged two times with the NH4HCO3 buffer at pH 8.0. Subsequently, the glycoprotein 

concentrate was collected through reverse spin (1000 g × 2 min) and diluted with the buffer to 

give a 1 µg/µL final concentration prior to the trypsin digestion. Then, trypsin was added to the 

glycoprotein solution at a protein-to-enzyme ratio of 30:1 and incubated for 20 h at 37 °C. After 

the trypsin digestion, the pH of the IgG tryptic digest was adjusted to pH 5.5 by using 0.01% 

formic acid; then, the tryptic digest was filtered through 10 kD MWCO filters to remove trypsin, 

and the filtrate was collected. The filtrate that contains a mixture of IgG glycopeptides and 

peptides was aliquoted into two fractions; both aliquots (67 µL each) were treated with equal 

volumes (7.6 µL of each) of 10X glycobuffer and 10X BSA, which was diluted from 100X BSA 

stock solution. To obtain partially defucosylated IgG, α1-2,3,4,6 fucosidase enzyme (10 µL) was 

added to one treated aliquot, while the other fraction was treated with an equal volume (10 µL) 

of 10X glycobuffer to obtain a native (control) sample. Both aliquots were incubated at 37 °C for 

1 week. The aliquots were filtered through 10 kD MWCO filters separately, to remove BSA and 

fucosidase enzyme. Then, the filtrates were collected and acidified with 0.1% FA. Both aliquots- 

native and partially defucosylated- were diluted to result in IgG glycopeptide stock solutions of 

concentration 0.9 µg/µL and were then stored at -20 °C prior to analysis.  
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2.3.2.3 Preparation of Native and Mixed Samples for Analysis  
Native IgG glycopeptide samples at 0.1 ug/µL were prepared by simply diluting the 0.9 

ug/µL IgG native glycopeptide stock solution, prepared in the previous section, with deionized 

water. The IgG partially defucosylated glycopeptide stock solution, also prepared in the previous 

section, was diluted three-fold with deionized water to obtain a stock solution at 0.3 µg/µL. 

Then, appropriate volumes of this solution (0.3 µg/µL) and the original IgG native glycopeptide 

stock solution (at 0.9 µg/µL) were mixed to generate IgG 20% defucosylated sample, with a final 

glycopeptide concentration of 0.1 µg/µL.  

2.3.2.4 Liquid Chromatography-Mass Spectrometry Analysis of IgG Glycopeptide Samples 
IgG glycopeptide samples were separated in a reverse phase C18 capillary column (3.5 

µm, 300 µm i.d. ×10 cm, Agilent Technologies, Santa Clara, CA) connected online to a Waters 

Acquity high performance liquid chromatography system (Milford, MA) followed by mass 

spectrometric (MS) data acquisition using an Orbitrap Fusion Tribrid mass spectrometer 

(Thermo Scientific, San Jose, CA). For each run, 3 µL of sample volume was injected into the 

C18 column with a mobile phase flow rate of 10 µL/min. A gradient elution was performed to 

separate IgG glycopeptides with mobile phase A and mobile phase B; mobile phase A consists of 

99.9% of water with 0.1% formic acid while the mobile phase B consists of 99.9% acetonitrile 

with 0.1% of formic acid. The gradient included column equilibration by running 5% of mobile 

phase B for 3 mins, followed by linear increase of B from 5% to 20% in 22 min to separate the 

glycopeptides. Then B was ramped to 90% in 20 min for glycopeptide elution, followed by 

decrease of B to 5% in 5 min, and re-equilibrating the column at 5% B for another 10 mins.  

2.3.2.5 Mass Spectrometry (MS) Conditions     
Electrospray ionization (ESI)-MS in the positive ion mode with a heated ion source, 

which was held at 2.3 kV was used. The temperature of the ion transfer tube and the vaporizer 
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was set as 300 °C and 20 °C, respectively.  Full MS scans were acquired with the Orbitrap 

resolution at 60 k (at m/z 200) and the scan range was set at m/z range of 400 – 2000. The AGC 

target and the maximum ion injection time were set at 4 × 105 and 50 ms, respectively. Data 

dependent MS/MS data were acquired to confirm the glycopeptide compositions; collision-

induced dissociation (CID) data were collected by selecting the first five most abundant peaks 

from the full MS run. CID spectra were collected in the ion trap with a rapid scan rate, exclusion 

duration was set at 30s with a repeated count of one. For CID, AGC target of 2 × 103 and 

maximum injection time of 300 ms was used. Furthermore, during the MS/MS data acquisition, 

2 Da isolation width was used for parent ion selection, and the selected precursor ions were 

fragmented by applying 35% of collision energy for 10 ms. 

The data were acquired on two different days over a period of three weeks. For group 1 

(IgG native glycopeptides) and group 2 (IgG 20% defucosylated glycopeptides) samples, a small 

data set with five sample runs for each group were acquired on the first day. Blank runs were 

included in between each sample run. A larger data set was acquired 3 weeks later, where 14 

sample runs were included for each group, and blank runs were performed after each pair of 

sample runs. 

2.3.3 .RAW file handling 
The data, in .RAW format, was converted to .MS1 files using RawConverter (Scripps, 

Version 1.2.0.1).39 The settings used were the default selections after launching the software. The 

number of decimal places was set to match the output from the mass spectrometer. Once the files 

were in .MS1 format, they were relocated to a single folder in the working directory. This 

conversion process was the same for both data sets.  
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2.3.4 Pipeline construction 
The pipeline was built to run in R, and all code is confirmed to function in RStudio 

(version 1.4.1106-5) and R (version 4.0.3).40 The pipeline relies on the following packages to 

function: here,41 tidyverse,42 readr,43 dplyr,44 data.table,45 and ggplot.46 These dependencies are 

included in the script to be installed and loaded. 

2.3.5 Description of binning method 
Software Overview: The code used for all analyses in this manuscript is in Appendix A 

(ESI-MS data) and Appendix B (LC-MS data) at the end of the chapter. The entire text should be 

copied and pasted into the RStudio IDE as an RMarkdown (.Rmd) file. Included are basic 

operating instructions and guidelines. The script has six key sections: 1) reading in the data files, 

2) cleaning up the files, 3) compiling all data from all files in a single list, 4) creating bins whose 

size is specified by the user, 5) binning all data, and 6) outputting the binned data in a matrix 

format. From this output, the data can be submitted to the Aristotle Classifier or other analysis 

methods, like PCA. A descriptive overview of each component follows, as well as suggestions 

for appropriate parameters to input. 

Housing the files:  A file folder within the working directory in the R environment 

should contain all .MS1 files the user intends to use during the experiment. Each file must 

contain at least m/z values and their corresponding peak intensities and/or relative abundances; 

however, additional information, such as scan headers, can also be present in the text files, and 

they will not interfere. This script is written specifically to process the standard output from 

RawConverter, which leaves header information in the file. The lines at the header, and between 

each scan are removed during file processing. For optimal machine learning results, the data 

housed in any single folder should have identical acquisition parameters, including the m/z range, 
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resolution, and other parameters described below. This ensures that the data’s variability is not 

an artifact of a difference in experimental conditions.  

Adjusting parameters: After the user has moved the data files into a folder within the 

working directory, the parameters specific to the experiment are entered. When the user opens 

the RStudio window and opens the .Rmd file, a Knit button with an arrow will appear on the top 

bar above the script window; in the dropdown menu, the user selects “Knit with Parameters”.  A 

graphical user interface (GUI) then appears that is self-explanatory, requiring no programming or 

coding experience to operate. Parameters that are data-specific can be input, like the m/z range, 

the number of empty observations allowed for any given feature, and the bin width. The input 

parameters used in the experiments herein are reported in the specific settings section, below. 

After all the parameters are set as desired and the MS files are present in the working directory, 

the user selects the “Knit” function and the software script will proceed to produce the requested 

data matrix.  

2.3.6 Specific settings used for fingerprint samples 
The settings used for the analyses in this manuscript were as follows: 25% empty cells 

allowed, 20 lines in header, Lower m/z: 150, Upper m/z: 600, Bin width: 0.0125 Da. 

2.3.7 Aristotle Classifier settings and submission to the Aristotle Classifier  
The output matrix generated by LevR in the previous section was modified by the 

addition of a row of 1’s to last row of the matrix, as required by the Aristotle Classifier.37 K 

(repeats) value was set to 1000, and X value was set to 6.  

2.3.7.1 Extracting features by high scores 
After analyzing the fingerprint and glycopeptide data with the Aristotle Classifier, the 

highest-contributing features were identified.  To do this, the absolute value of each feature score 

for each sample was extracted. Then, the total score for each feature was calculated by summing 
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by row. This gives the total magnitude each feature contributed to distinguishing the samples. 

Next, the features were sorted in descending order. 

This process can be particularly useful for cases in which no a priori knowledge of the 

samples exists. Using the process outlined here, the feature scores can be extracted from the 

Aristotle Classifier; they can then be used retroactively to determine which features best 

distinguish between the samples.   

2.3.7.2 Workflow accommodation for LC data 
The original pipeline was modified to accommodate LC data- by the simple addition of 

two lines of code- to handle the significantly larger data files and dictate a narrow retention time 

range.  

2.3.8 Specific settings for glycopeptide samples 
The settings used for the analyses in this manuscript were as follows: 50% empty cells 

allowed, 20 lines in header, Lower m/z: 800, Upper m/z: 2000, Bin width: 0.10 Da., Retention 

time start: 21.3, Retention time end: 22.6. 

2.3.9 Using the Aristotle Classifier to classify samples 
The binned data, in the matrix format output from the LevR pipeline, was submitted to 

the Aristotle Classifier,47 after the addition of a row of 1’s to the last row of the matrix. The 

parameters were K value (repeats)=1000, and X value=4.  

2.3.10 Identification of features associated with glycopeptides 
A table of possible IgG glycopeptides- both native and partially defucosylated- was built. 

Included were the glycan composition and the theoretical m/z values for the first 8 isotopic peaks 

expected to appear in the spectrum. Bins were created to capture each m/z value present in the 

table, then, the data from the glycopeptide experiment were binned according to m/z value. Only 

the data that fit within the bins (associated with glycopeptides) were retained. This subset of data 

only contains data from the original matrix whose m/z values fit into glycopeptide bins.  
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2.3.11 Classification of samples using subset of data 
Only the data associated with the glycopeptides was retained, which was then submitted 

to the Aristotle Classifier. The parameter inputs were not changed from the previous 

classification of the same data set.  

2.3.12 Using PCA as a comparison 
The factoextra48 package was used to generate all PCA plots in this work.  

2.4 Results and Discussion 

2.4.1 Overview and Interface  
The overall goal of this research is to develop a pipeline for performing supervised 

classification and other machine learning techniques on ESI-MS data.  While we37, 47 and others2, 

23, 49 have already demonstrated that machine learning on ESI-MS data is possible, and indeed, 

quite useful, one of the major bottlenecks is processing the mass spectral data files into a data 

matrix, which is a prerequisite for applying these advanced mathematical techniques to the data.  

Normally, the data matrix is developed by users who first identify interesting features in their 

MS data and then quantify the relevant peaks in each of the samples.  For example, we identified 

all the glycopeptides for IgG from two different glycosylation states then quantified each 

relevant glycoform across a set of samples prior to machine learning.  While this approach was 

effective for generating a data set that could be classified by machine learning tools, the data set 

generation process is laborious and has inherent limitations.  Alternatively, particularly in the 

field of metabolomics, many researchers turn to existing open-source software like XCMS, 

which can build a machine-learning ready data matrix from the mass spectrometry files. Yet, 

learning to correctly use and apply this complex academic software, which does not come with 

user manuals, requires a considerable up-front time investment.  Furthermore, we aimed to retain 

all of the data, avoiding feature identification as is used in tools like XCMS. We envisioned an 
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alternative route forward, where the data matrix preparation could be done in a single step, after 

users selected a few parameters from a graphical user interface; this process would require little 

to no time investment.  The resulting data matrix would be generated containing all the samples 

of interest and all the mass spectral peak intensities for those samples. If such a tool could be 

developed, researchers from a variety of backgrounds could focus on the analysis and machine 

learning questions that interest them, without having to invest their efforts into the data 

extraction and formatting aspects of the process. 

The data formatter we developed is simply called LevR; its approach to processing the 

MS data and the GUI that controls it are shown in Figures 1 and 2.  The mass spectral data are 

used directly to populate a data matrix, where each column in the matrix is a sample, a single 

mass spectrometry data file, and each row in the matrix is a feature. Each sample and feature pair 

contains the sum of the peak abundances that appear in a narrow slice (m/z bin) of the mass 

spectrometry data.  For example, the mass spectrometry data could be binned to include features 

for each 0.1 Da present in the spectra, as shown in Figure 2-1a.  In this case, a portion of the 

mass spectrum that covers a range of 1.3 Da is represented by 13 bins, and four of the bins are 

populated with peaks. Figure 2-1b shows the data for the sample in Figure 2-1a, populating the 

first column in the data table.  In this case, since only 4 peaks were present in the spectrum, only 

four of the features (m/z bins) are populated with numerical data.  The tool also has the capacity 

to remove bins that are not populated by a certain percentage of the samples; this parameter is 

fully adjustable by the user. Furthermore, while the trivial example in Figure 2-1 shows the 

processing of just a single spectrum, and the subsequent processing of 4 other samples (spectra 

not shown), the script additionally processes as many high-resolution scans as the user chooses – 

either all the scans in the data file or all the scans in a selected elution range. 
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Figure 2-1. Visual depiction of the binning process. (a) 2 Da. range of spectrum from 
glycopeptide data set, with bin width set to 0.1 Da. Each colored slice of the spectrum represents 
a bin. (b) Data table depicting how data is arranged by LevR. The m/z value is the experimental 
m/z value from the spectrum. The feature is the narrow m/z range (bin) assigned to the 
experimental observation. Each sample occupies a column, and each sample-m/z pair contains 
the intensity of the m/z peak from the spectrum. 

Figure 2-2 shows the interface the users see. The name of the folder with the data present 

is input, along with the mass range desired, the bin width, and the percent of empty bins 

allowable. After selecting the desired conditions, the software builds the data matrix of interest.   
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Figure 2-2. Graphical User Interface (GUI) from LevR. 

2.4.2 Test set one: Fingerprints. 
To test the utility of this approach for generating useful machine-learning ready data sets, 

we developed a challenge data set in-house by acquiring mass spectrometry data of fingerprints 

that had been subjected to two different storage conditions.  While all the fingerprints were 

deposited onto aluminum foil, half the foil samples were immediately subjected to extraction 

with organic solvent.  The other half of the samples were left to sit for 24 hours prior to 

extraction.  Previous researchers24-27 have indicated that some of the lipids in the fingerprints that 
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are not immediately processed can undergo chemical changes, and this difference causes changes 

in a few peaks’ intensities in the mass spectrometry data.  The fingerprint samples for the data set 

were acquired over numerous days and the MS data was acquired in two separate analyses more 

than a week apart. No effort was made to control other variables that may impact the lipid 

distribution, such as the depositor’s diet or exercise status or the laboratory conditions (e.g., heat, 

humidity, light). This was intentional so that the data would be sufficiently variable and 

challenging to classify.  We sought to know whether it would be possible to classify the 

fingerprints’ age by simply extracting the full mass spectral data, binning it, as described above, 

and conducting machine learning on the output matrix.  If the classification were feasible in this 

paradigm, this outcome would demonstrate that the difficult up-front work of identifying the 

changing compounds may be eliminated.  Furthermore, it would show that LevR could be 

applicable to a variety of other problems where researchers do not know whether a successful 

classification would be possible with their samples. This tool would enable screening of data for 

good classification outcomes prior to going through the laborious process of identifying the 

features that might be useful. 

The data in Figure 2-3a clearly show that fingerprint age can be determined with a 

reasonable degree of accuracy using the data sets generated by LevR and classified by the 

Aristotle Classifier, a new machine learning tool developed by our group.  In Figure 2-3a, the 

output data from the Aristotle Classifier shows that a total of 70 samples were classified and 

about 85% were correctly assigned to their group.  Using a leave-one-out classification method, 

so test samples are never included in their training set, most of the (aged) samples, which are the 

first 35 samples shown, have Results of greater than zero, indicating that they are assigned to the 

aged group.  By contrast, the non-aged samples, which range from Sample number 36 to 70 in 
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the data set, mostly receive Results of less than zero, indicating that they are part of the non-aged 

group.  A minority of the samples, which appear in red quadrants, were misassigned.   

 

Figure 2-3. Comparison of Aristotle Classifier and PCA results for the fingerprint data set. (a) 
Results from the Aristotle Classifier for 70 fingerprint samples: 35 of each group (not aged and 
aged). Correctly classified samples are highlighted in the green quadrants. (b) PCA results of 
the same 70 fingerprint samples from panel a. 

 The data in Figure 2-3b show a PCA plot of the same data used for supervised 

classification in Figure 2-3a.  In this case, the two sets of samples, which are colored either 

orange or blue, are completely intermixed on the PCA plot.  This Figure indicates that the 

difference imparted by leaving the samples out on a benchtop for a day was a small and difficult-

to-detect difference, and other attributes contribute significantly more to the variability within 

the data.  The samples would have separated into their respective groups (aged or not aged) had 
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the difference in the samples due to the aging process been one of the most significant 

contributors to sample variability.  Rather, the first two principal components represent more 

than 50% of the variability within the samples, and this variability is not attributable to the two 

different sample types.   

In summary then, the simple data processor, LevR, was useful for rapidly rendering a 

data matrix for 70 different lipidomics samples from deposited fingerprints.  By coupling this 

software with a new machine learning tool, the Aristotle Classifier, the samples could be 

discriminated as either being aged or immediately processed, with reasonable accuracy (~83%), 

even though the target differences in the sample were minor compared to other properties that 

contributed to the samples’ variability and features were not pre-selected for classification.  This 

proof of concept, therefore, demonstrates the possibility of performing supervised machine 

learning directly on the full mass spectrometry data file for samples acquired by direct infusion 

experiments, without first identifying peaks of interest and quantifying them across a sample set.   

2.4.3 Test set two: Glycopeptides. 
In a second analysis challenge, LC-MS data of glycopeptides from IgG were interrogated.  

In this case, the classification challenge was to determine whether the IgG glycoforms matched a 

native glycosylation profile or a non-native form, which was intentionally generated in the 

laboratory by modifying IgG with fucosidase, an enzyme that trims fucose off the IgG glycans.  

More details describing the samples and their preparation are in the Experimental section.  

Again, the full mass spectral data including the elution window for the IgG glycoforms was used 

to build the data matrix, but only a small number of peaks within the data set carry the 

information content necessary to distinguish the two groups:  Any bin that did not include peaks 

corresponding to glycopeptides would be uninformative. The data set contains 12,000 features 

(each corresponding to a 0.1 Da bin), in which only 120 could be associated with glycopeptides 
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by our parameters (15 glycopeptides x the first 8 isotopic peaks); thus, the vast majority of the 

features would not be useful for classification.  So, we again sought to determine whether 

extracting the MS data over the entire elution window for the glycopeptides, without including 

an identification step where the potentially relevant features were selected first, would lead to a 

viable data set that could be classified correctly.   

 The data in Figure 2-4 show the results of supervised (2-4a) and unsupervised (2-4b) 

classification of this data set.  Figure 4a clearly shows that classification with the Aristotle 

Classifier was successful, and about 90% of the samples are correctly classified as either 

possessing a native or modified glycosylation profile.  Likewise, the data in Figure 4b show that, 

as expected, the glycosylation difference is not the factor that generates most of the variability 

within the sample set.  A plot of the first two principal components shows no ability to 

distinguish the native (blue) samples from the non-native (orange) ones.  The fact that the 

samples were not readily separable by their principal components in Figure 2-4b is not surprising 

because the change in glycosylation was subtle, and the vast majority of the features in the data 

set did not correspond to glycopeptide masses.  Even considering the fact that the glycosylation 

difference is slight and that only a fraction of the peaks in the data set were impacted by this 

difference, the combined workflow of first extracting all of the MS data using LevR and then 

subjecting it to the Aristotle Classifier shows promise for machine learning applications on MS 

data, even in the case where the differences in the data set are subtle and lurking in a background 

of many uninformative peaks. 
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Figure 2-4. Comparison of Aristotle Classifier and PCA results for the full IgG glycopeptide 
data set. (a) Results from the Aristotle Classifier for 38 IgG glycopeptides: 19 of each group 
(native and partially defucosylated). Correctly classified samples are highlighted in the green 
quadrants. (b) PCA results of the same 38 IgG glycopeptide samples from panel a. 

 The results in Figure 2-4a are exciting, but a logical next question is:  could we have done 

better at classifying the data by limiting the analysis to only the glycopeptide peaks? Supervised 

learning methods, like the Aristotle Classifier, achieve their enhanced predictive power over 

unsupervised methods, like PCA, by first determining the features that best discriminate the two 

states. Those features are then weighted more heavily than others in the final classification, 

although too many uninformative peaks can negatively impact the model’s performance.   We 

wanted to determine whether the classification would have been more successful had those 

uninformative features been removed in advance.  Furthermore, we sought to verify that the 
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glycopeptide peaks were, in fact, the ones that had been selected by the classifier as the 

“important features” in the classification shown in Figure 4a. 

  Determining which m/z regions in the spectra were weighted most heavily in the 

resulting classification is straightforward:  The version of the Aristotle Classifier used for this 

work, AC.2021,47 includes a built-in matrix called FeatureScore, which includes how each 

feature was weighted for the final result score for each sample.  FeatureScores can be positive, if 

the feature indicates the sample of interest is more like one sample type or negative, if the feature 

indicates that the sample is more like the alternative sample type.  Therefore, to determine which 

features most impacted the classifier’s weightings overall, the absolute values of the feature 

scores were summed across the sample set.  The resulting data is shown in Table 1- showing 19 

of the top 20 features were associated with IgG glycoforms. For each of the IgG-related features, 

the relevant glycoform, FeatureScore, and bin are included.  This result indicates that the 

embedded feature selection and weighting component of this particular classifier is effective at 

identifying the relevant features in the presence of many uninformative ones. 
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Table 1. Top 20 highest scoring features (m/z bins) as determined by the Aristotle Classifier. 
Within each glycoform section, features are ordered from highest to lowest scores. All features 
but one matched to an expected glycoform. Note, the m/z value includes the IgG2 peptide 
(EEQFNSTFR). 

  

But could the classification be more successful if only the glycopeptides had been 

included in the first place?  To answer this question, we first identified all the relevant m/z bins 

that would contain glycopeptide peaks, as described in the experimental section, and reclassified 

the data using only those features. The results appear in Figure 2-5a, for supervised 

classification, and 2-5b, where the unsupervised PCA plot is provided.  The PCA plot clearly 

shows that removing all the bins that do not contain glycopeptide information reduces the overall 
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variability in the data, and the two sample types, natively glycosylated or modified, are now 

somewhat separable using this unsupervised method.   

 

Figure 2-5. Comparison of Aristotle Classifier and PCA results for the refined IgG glycopeptide 
data set, including only features associated with glycopeptides. (a) Results from the Aristotle 
Classifier for 38 IgG glycopeptides data after removing all non-glycopeptide associated features. 
The misclassification rate did not change. The magnitude of the Y axis decreased slightly; this is 
due to a data set with reduced number of features. (b) PCA results for the refined IgG 
glycopeptide data set. 

This outcome is consistent with the well-known principal that removing uninformative 

features generally improves one’s ability to discriminate the different biological states.  Yet, the 

data in Figure 5a, showing the supervised classification of this data set with reduced features, is 

essentially identical to the result obtained in Figure 4a, where 12,000 uninformative features 

were still present in the data set.  The fact that Figure 2-4a and Figure 2-5a look so similar is a 

desirable result:  It unequivocally demonstrates that, when using the right kind of classifier, the 
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data set need not be preprocessed to remove unnecessary, uninformative features. Rather, both 

the glycopeptide example and the fingerprint example in Figure 2-3, show that when a 

measurable difference is present in two different sample groups, machine learning and mass 

spectrometry can be exploited to identify that difference and classify samples into their 

respective groups, using the straight-forward workflow shown here.   

2.5 Conclusion 

The combined functionality of LevR and the Aristotle Classifier yields exciting results 

for mass spectrometrists and researchers studying biomarkers. LevR is a plain, yet effective, 

solution for formatting large amounts of mass spectrometry data. Its coupling to the Aristotle 

Classifier, a new machine learning tool, results in a powerful workflow that can be accessed by 

all researchers regardless of coding experience. We imagine its application for biomarker 

discovery, in which biological samples can be analyzed by mass spectrometry, the data is 

formatted automatically, and the classifier renders results to indicate if there are detectable 

differences between the healthy and disease state biological samples. Further, the classifier’s 

results can be leveraged to identify which features contribute most to the difference between 

sample types. We anticipate LevR will be useful in advancing biomarker discovery to the point 

of implementation in a clinical setting.   
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2.8 Appendix A: LevR for ESI-MS data 

All text below, including dashed lines: paste into a new RMarkdown document. 

--- 

title: "ESI_MS_Title" 

output: html_document 

params:  

  spectra: 

    value: data_IN_folder ## data should be housed in a single folder within the working directory 

  head:  

    label: "Number of lines in header" 

    value: 20 

    input: numeric 

  perc_include:   

    label: "Percent empty cells included" ## this is the percent of empty observations to allow in 
the matrix 

    value: 25 

    input: slider 

    min: 0 

    max: 100 

  p_spec_low: 

    label: "Lower m/z" 

    value: 150 

    input: numeric 

  p_spec_hi:   

    label: "Upper m/z" 

    value: 600 

    input: numeric 

  bin_width:  
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    label: "Bin width (in Da.)" ## bin width can correspond with peak width within the spectra, or 
as defined by user 

    value: 0.0125 

    input: slider 

    min: 0 

    max: 5 

--- 

## data should be housed in the working directory in a folder named "data_IN_folder" 

```{r eval=FALSE, include=FALSE} 

install.packages("here") 

install.packages("tidyverse") 

``` 

 

```{r include=FALSE,warning = FALSE, message=FALSE} 

library(tidyverse) 

library(readr) 

library(here) 

library(dplyr) 

library(data.table) 

library(knitr) 

library(stringr) 

library(gapminder) 

``` 

 

```{r include=FALSE} 

here() 

file_path_spec <- as.vector(list.files(here(params$spectra)))  

bins <- seq(from=params$p_spec_low, to=params$p_spec_hi, by=params$bin_width) 

num_of_samps <- length(file_path_spec) 
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myfunction <- function(path) { 

  mymsdata <- fread((here(params$spectra, path)), skip=params$head, fill=TRUE)  

  ms_df <- cbind(mymsdata[,c(1:2)]) %>%  

  filter(str_detect(V1, "Instrument", negate = TRUE)) %>% 

  filter(str_detect(V1, "Ion", negate=TRUE))%>% 

  filter(str_detect(V1, "S", negate=TRUE)) %>%  

    as.data.frame() 

}  

bigdata <- lapply(file_path_spec, myfunction) 

names(bigdata) <- file_path_spec  

dt <- rbindlist(bigdata, use.names = TRUE, fill=TRUE, idcol="bigdata") 

 

``` 

 

```{r include=FALSE, warning = FALSE, message=FALSE} 

 

my_binned_data <- dt %>%  

  mutate(mz_bins=cut(as.numeric(V1), breaks=bins)) %>%  

  group_by(bigdata, mz_bins) %>% 

  summarise(grand_inten=sum(as.numeric(V2))) 

 

my_df <- as.data.frame(my_binned_data)%>%  

  pivot_wider(names_from = bigdata, values_from= grand_inten) %>% 

  as.data.frame() 

 

my_df$count_NA <- apply(is.na(my_df), 1, sum) 

my_df$percent_NA <-(my_df$count_NA)/num_of_samps*100 
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drop_NA <- my_df[my_df$percent_NA <= params$perc_include,] 

drop_NA[is.na(drop_NA)] <- 0 

my_df_zero <- drop_NA 

 

 

names(my_df) <- gsub("\\.ms1.*","", colnames(my_df)) 

 

my_df_mz <- as.data.frame(na.omit(my_df)) ## my_df_mz displays the mz bins for each 
feature, along with the data 

final_df <- my_df_zero[-1] ## final_df only has the data. The mz bins column is removed. 

 

``` 
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2.9 Appendix B: LevR for LC-MS data 

All text below, including dashed lines: paste into a new RMarkdown document. 

--- 

title: "LC_MS_Title" 

output: 

  html_document: default 

params: 

  spectra: 

    label: Spectra 

    value: LC_data_IN ##folder where the files are located within the working directory 

    input: text 

  p_spec_low: 

    label: Lower m/z  

    value: 800 

    input: numeric 

  p_spec_hi: 

    label: Upper m/z 

    value: 2000 

    input: numeric 

  bin_width:  

    label: "Bin width (in Da.)" ## bin width can correspond with peak width within the spectra, or 
as defined by user 

    value: 0.0125 

    input: slider 

    min: 0 

    max: 5 

  perc_include:   
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    label: "Percent empty cells included" ## this is the percent of empty observations to allow in 
the matrix 

    value: 25 

    input: slider 

    min: 0 

    max: 100 

  RTstart:  

    label: Retention time start (mins) 

    value: 21.3 

    input: numeric 

  RTend:  

    label: Retention time end (mins) 

    value: 22.6 

    input: numeric 

---  

```{r eval=FALSE, include=FALSE} 

install.packages("here") 

install.packages("gapminder") 

install.packages("tidyverse") 

install.packages("knitr") 

install.packages("data.table") 

``` 

 

```{r include=FALSE} 

library(here) 

library(gapminder) 

library(tidyverse) 

library(readr) 

library(dplyr) 

library(data.table) 



57 
 

library(stringr) 

library(knitr) 

``` 

## files should be housed in "LC_data_IN" folder within the working directory 

```{r include=FALSE} 

here() 

file_path_spec <- as.vector(list.files(here(params$spectra)))  

bins <- seq(from=params$p_spec_low, to=params$p_spec_hi, by=(params$bin_width))  

num_of_samps <- length(file_path_spec) 

``` 

 

```{r include=FALSE, eval=FALSE} 

## this takes about 5 sec per LC file 

 

myfunction <- function(path) { 

  mymsdata <- fread((here(params$spectra, path)), skip=22, fill=TRUE)  

  ms_df <- cbind(mymsdata[,c(1:3)]) 

  clean_1_ms_df <- ms_df %>%  

  filter(str_detect(V1, "Instrument", negate = TRUE)) %>% 

  filter(str_detect(V1, "Ion", negate=TRUE))%>% 

  filter(str_detect(V1, "S", negate=TRUE))  

  samp1 <- ms_df %>%  

    filter(str_detect(V1, "RetTime"))%>%  

    mutate(rett=readr::parse_number(as.character(V1))) 

  samp_tab <- left_join(clean_1_ms_df, samp1) %>% fill(rett) %>% na.omit() 

  samp_df <- as.data.frame(samp_tab) 

  GP_rettime <- samp_df[between(samp_df$rett, params$RTstart, params$RTend),] 

}  

bigdata <- lapply(file_path_spec, myfunction) 
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names(bigdata) <- file_path_spec  

dt <- rbindlist(bigdata, use.names = TRUE, fill=TRUE, idcol="bigdata") 

 

``` 

 

```{r include=FALSE, warning = FALSE, message=FALSE} 

 

my_binned_data <- dt %>%  

  mutate(mz_bins=cut(as.numeric(V1), breaks=bins)) %>%  

group_by(bigdata, mz_bins) %>% 

  summarise(grand_inten=sum(as.numeric(V2), na.rm = FALSE)) %>% na.omit() 

 

my_df <- as.data.frame(my_binned_data)%>%  

  pivot_wider(names_from = bigdata, values_from= grand_inten) %>% 

  as.data.frame() 

 

my_df$count_NA <- apply(is.na(my_df), 1, sum) 

my_df$percent_NA <-(my_df$count_NA)/num_of_samps*100 

 

drop_NA <- my_df[my_df$percent_NA <= params$perc_include,] 

drop_NA[is.na(drop_NA)] <- 0 

my_df_zero <- drop_NA 

 

names(my_df) <- gsub("\\.ms1.*","", colnames(my_df)) 

 

my_df_mz <- as.data.frame(na.omit(my_df))  

final_df <- my_df_zero[-1] 

``` 

## feature_matrix is ready for Aristotle Classifier 
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```{r include=FALSE} 

here() 

AC_df <- rbind(final_df, 1) 

feature_matrix <- as.matrix(AC_df[1:num_of_samps]) 

``` 
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Chapter 3 Future directions 

3.1 Summary 

From the research conducted in Chapter 2, there are two main tasks that relate to the 

continuation of research related to fingerprints, mass spectrometry, and machine learning: 1) the 

use of fingerprints as a biological sample that could be used in a clinical setting, and 2) the 

optimization of data acquisition and processing prior to doing machine learning.  

3.2 Studying metabolic health by fingerprint samples  

Following the initial fingerprint studies used for generating a model data set for mass 

spectrometry and machine learning applications, we recognized the potential of using 

fingerprints as a non-invasive biological sample that could be used as a health status readout. To 

test this hypothesis, we designed an experiment in which the fingerprint donor practiced a fasting 

mimicking diet (FMD), and fingerprints were collected over the course of 11 days total. Based 

on existing literature, we anticipated to see changes in the fingerprint composition as a function 

of which day in the fasting cycle it was collected. The fingerprints were prepared following the 

protocol described in Chapter 2, except all fingerprints were prepared immediately, such that the 

only intentional variability was the fingerprint donor’s diet. Again, other sources of variability 

were not attempted to be controlled. We hypothesized that changes in an individual’s diet could 

be monitored via changes in their fingerprint composition, by combining the strengths of the 

direct infusion ESI-MS method and the Aristotle Classifier. If changes were detectable between 

the two sample groups, we imagined applications where this approach might be useful.  

3.2.1 Fingerprint Applications for monitoring nourishment 
One area of human health that fingerprints could potentially revolutionize is monitoring 

nourishment of newborn babies. Adequate nourishment is critical for metabolic and 
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physiological function as well as growth, development, and energy supply. An added benefit for 

mom and baby who breastfeed is a strengthened immune system and decreased risk for various 

conditions, including metabolic disorders and chronic inflammatory disease.1 For breastfeeding 

mothers, concerns about exclusive breastfeeding and whether their baby was adequately 

nourished ranked as one of the top self-reported reasons they discontinued breastfeeding.2 The 

fact that there is no easy way to monitor a newborn’s nourishment results in delayed 

intervention; recording growth measurements like weight and length can be useful, but this 

method is not sensitive enough to detect changes over the course of a few days. Rather, it 

typically requires at least a week of measurements before the clinician can make an informed 

decision for course of action; this is certainly anxiety-inducing for new parents, whose baby is 

passing developmental milestones on a daily basis. This often leads the mother to discontinue 

breastfeeding and switch to formula feeding, potentially prematurely. While a fed baby is always 

best, having the ability to easily monitor their nourishment could lead to an increase in sustained 

breastfeeding practices, which would benefit both mom and baby, far beyond infancy.  

Some studies have attempted to determine what biomarkers might be useful for 

monitoring infant nourishment; indeed, there are distinct changes in the lipidomic profile that 

occur depending on the nourishment status and whether they are breast-fed or formula-fed.3-5 

Although these studies have been useful in identifying potential biomarkers, the methods require 

blood samples which are challenging to obtain; drawing blood from a newborn every day is not 

realistic from a logistical standpoint and not desirable for a new parent. We wondered if the 

fingerprint workflow developed in Chapter 2 could be used to monitor breastfed newborns’ 

nourishment, given that there is a known difference observed via other biological samples like 

blood. Since collecting fingerprints and analyzing them by mass spectrometry is non-invasive 
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and relatively simple, we pursued studies to explore how fingerprints could be used to address 

this common concern of new parents. 

3.2.2 Modeling changes in nourishment via fingerprints 
As a model of significant diet changes, which would mimic healthy and malnourished 

states, we designed a study in which the fingerprint donor- whose baseline is a plant-based diet- 

started with a high calorie diet and then completed a fasting mimicking diet program. The goal 

was to induce a significant biological change and to determine whether the method applied to 

aged fingerprints, in Chapter 2 of this thesis, could also be applied to this data set; collect 

samples, extract lipids, analysis by direct infusion ESI-MS, format the resultant data using LevR, 

and do machine learning using the Aristotle Classifier. If these changes were detectable and the 

classifier had sustained performance, it would be feasible to pursue more in-depth studies with 

the aim of translation to a clinical setting.  

For proof of concept, we followed a similar protocol as described in the experimental 

section of Chapter 2, but rather than aging being the variable, the fingerprint donor followed a 

strict diet regimen, as described in more detail in the next section. Fingerprints were collected 

every day for 11 days. Overall, 63 fingerprint samples were collected and analyzed. There were 

two instrument days used to acquire the data and the sample set was split, such that the sample 

order was identical for both days (i.e., if two samples were collected each on Days 1, 2, and 3, 

the first day of data acquisition included the first sample from all three days, and likewise with 

the second day).  

3.3 Experimental Methods 

3.3.1 Diet Regimen 
The fingerprint donor followed ProLon from L-Nutra, which is a fasting mimicking diet 

used for its supposed effects on metabolism and subsequent enhancement of healthy aging.6 The 
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fasting mimicking diet (FMD) has been studied via the collection of anthropometric data and 

blood samples for its potential anti-aging, anti-cancer, and decreasing the occurrence of aging 

related disease, like multiple sclerosis or cognitive decline, and metabolic disorders like 

cardiovascular disease and diabetes.7-9 The FMD consists of a 5-day cycle, during which the 

participant only consumes the calories provided in the diet box. For our studies, baseline status 

fingerprints were collected, along with high calorie diet status prior to the FMD, for the duration 

of the FMD cycle, and for 4 days after the cycle was completed.   

3.3.2 Fingerprint Collection and Preparation 
The collection and preparation of fingerprint samples was performed by adapting 

previously described methods,10-15 and varies slightly from the method described in Chapter 2. A 

single donor was used, and prior to fingerprint deposition, the donor swiped her fingertips over 

regions of the face that typically have high sebum secretion prior to depositing the fingerprints 

onto aluminum foil. These groomed fingerprints were collected over a series of days, limited to 6 

fingerprint deposits (3 from each hand) per collection period. 

Immediately after fingerprint deposition, the aluminum foil squares containing the 

fingerprints were rolled loosely using clean tweezers and placed into individual 2 mL screw 

thread sample vials with PTFE closure. 200 µL dichloromethane was added to each, and the vials 

were vortexed for 1 minute, followed by 1 minute of rest, and removal of the foil. Then, to each 

vial, 200 µL deionized water was added, vortexed for 1 minute, followed by 1 minute of rest, 

prior to liquid-liquid extraction. The aqueous layer was removed, and the organic layer was kept 

in the vial with an additional 200 µL dichloromethane. All samples were stored -20 °C until 

analysis, such that only one thaw cycle occurred. Gas-tight Hamilton syringes were used 

throughout the experiment. For analysis, an aliquot of 44 µL of the fingerprint sample solution 
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described above was diluted with 500 µL dichloromethane and 400 µL NH4OAc in MeOH to 

achieve 1 mM ammonium acetate in the final solution. 

3.3.3 ESI-MS conditions 
Direct infusion ESI-MS analysis of the extracted fingerprint lipid samples was performed 

using an Orbitrap Fusion Tribrid mass spectrometer (Thermoscientific, San Jose, CA). The mass 

spectrometer was operated in negative ion mode with a sample injection flow rate of 3 µL/min. 

The heated-electrospray source was held at 2.3 kV while the ion transfer tube temperature, 

sweep, aux, and sheath gas flow rates were set at 300 °C, 2, 5, and 10 Arb units, respectively. 

The full MS scans for the m/z range of (150-700) were acquired in the Orbitrap with a resolution 

of 60k. The AGC target value for the full MS scan was 5×104, and the maximum injection time 

was 100 ms. For each sample, 30 scans were averaged for each file. Between analysis of every 

sample, a methanol/dichloromethane mixture was injected at 10 µL/min for approximately 10 

minutes or until the total ion count had returned to its baseline, established at the beginning of 

the experiment.  

3.3.4 Specific settings used for fingerprint samples 
The settings used for the analyses in this manuscript were as follows: 25% empty cells 

allowed, 20 lines in header, Lower m/z: 150, Upper m/z: 700, Bin width: 0.001 Da. 

3.3.5 Aristotle Classifier settings and submission to the Aristotle Classifier  
The output matrix generated by LevR in the previous section was modified by the 

addition of a row of 1’s to last row of the matrix, as required by the Aristotle Classifier.16 K 

(repeats) value was set to 1000, and X value was set to 8.  

3.4 Preliminary results 

After sample processing, mass spectral data collection, and application of LevR and the 

Aristotle Classifier, the classification result in Figure 3-1 was generated, where each point 
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corresponds to a sample. In Figure 3-1a, the samples 1 through 63 are arranged in ascending 

order of sample collection, such that the left most observation is sample number 1 and the right 

most is sample 63. Samples 58 through 63 were misclassified; this seems to indicate that these 

last samples collected (1 day and 3 days post-FMD cycle) are more similar to the regular diet 

state rather than the fasting state. Another data set collected under the same conditions described 

above will be useful in determining to what extent this is repeatable.  

 

Figure 3-1. Comparison of Aristotle Classifier and PCA results for the full FMD data set. (a) 
Results from the Aristotle Classifier for 63 samples total. The correctly classified samples are 
highlighted in the green quadrants. The x-axis is ordered such that sample 1 is on the far left, 
and sample 63 is on the far right. (b) PCA results of the same 63 samples in panel a. 
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3.5 Discussion 

The next experiments will aim to validate of the findings above and perform additional 

experiments to unequivocally assign compositions to the features scored by the Aristotle 

Classifier as being the most significant for distinguishing between samples. To do this, the 

fingerprint donor will complete the ProLon FMD diet for a second time and fingerprint samples 

will be collected. The same protocol will be followed to prepare the fingerprint samples for mass 

spectrometry analysis. During the mass spectrometry experiment, additional tandem MS 

experiments will be done on a shortened list of high scoring features determined from the first set 

of experiments so that the identity of the peaks is determined. To generate a peak list to use for 

this purpose, a similar score extraction method can be used as was described in Chapter 2. Table 

2 shows the top 20 features and their predicted identity, but to unequivocally assign 

compositions to these mass spectral peaks, tandem MS experiments will be necessary. The 

resultant MSn spectra acquired will be compared to spectra collected on standard lipids from a 

library.  
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Table 2: Top 20 features as scored by the Aristotle Classifier and their possible composition 
based on HRMS and mass error. 

 

3.6 Normalization of MS data to improve outcomes from merged data sets 

From our initial studies using fingerprints as a sample type, we identified trends in the 

data that need to be investigated and addressed in future work with fingerprints. The first trend 

we identified is that instrument day was a significant contributor to the variability within a 

sample set with both groups. This became apparent when employing unsupervised classification 

methods to the fingerprint data. The PCA results were being used as a benchmark to show that 

the differences between the two sample types were subtle and numerous, and that unsupervised 

methods were not able to distinguish between sample types. What we found, however, is that 

there was significant clustering that correlated with the day the data was acquired. Figure 3-2a 

shows the original PCA generated, where each color is associated with a sample type- aged or 

not aged. This plot clearly shows that PCA does not separate the two sample types, which was 
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expected. There was, however, clustering related to other variables. These two clusters are 

circled on Figure 3-2a. The PCA groups were rearranged to color by data acquisition and the 

results are shown in Figure 3-2b. Note that the only change was what groups were used to color 

the plot. Neither the data, nor the clustering, has changed from Figure 3-2a to 3-2b. This 

indicates that a significant contributor to the variability within the data set is related to the day 

the data was acquired.  

 

Figure 3-2. PCA results for fingerprint data set, colored by (a) sample type or (b) day of data 
acquisition.  

As more data was acquired, this hypothesis was tested. In Figure 3-3, the PCA plot was 

generated with 4 days’ worth of data and colored by day. Again, the PCA results indicate that a 

significant contributor of variability between the data sets is related to the day the data was 

acquired. This is problematic, particularly with the generation of large mass spectrometry data 

sets depending on the ability to combine data acquired on different days. To address this 
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significant limitation, which would limit the applications possible with the method developed 

herein, a future research goal is to identify a normalization strategy that could be applied to all 

data sets to eliminate the variability contributed by instrument day. If this could be achieved, the 

acquisition of MS data on different days, months, or even years, would not be a problem. This 

would enable generation of large data sets with virtually no limitation. This is the ideal scenario 

for those interested in developing robust machine learning tools.   

 

 

Figure 3-3. PCA results for fingerprint data set colored by day of data acquisition, with 4 days 
of data total. 

3.7 Conclusion 

In conclusion, the specific aims of future research involving fingerprints, mass 

spectrometry, and machine learning should be to establish a normalization strategy that can be 

applied to data sets and to pursue the possibility of using fingerprints as a clinical readout for 

health status.  
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