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Abstract 

Molecular machines play a central role in cellular processes like signal transduction, motility, genome 

duplication, transport, protein synthesis, protein degradation, and many more. These machines cannot be 

synthesized directly by the cell but are assembled from individual subunits through non-covalent 

interactions. Most of the molecular machines studied to date have evolved from ordered and hierarchical 

assembly pathways. In this dissertation, we focused on the assembly of a specific molecular machine – the 

proteasome. The proteasome is a critical component of intracellular protein degradation and is involved in 

numerous processes such as cell growth, maintenance, and cell division. The proteasome consists of a 

proteolytically-active 20S Core Particle (CP) and a 19S Regulatory Particle (RP) that binds the CP and 

recognizes proteins tagged for degradation. The architecture of the CP is conserved across archaea, bacteria, 

and eukaryotes. The CP is formed from 14 α and 14 β subunits, arranged in a barrel-shaped complex of 

four stacked rings in an α7β7β7α7 arrangement. The β proteins are the catalytically active subunits, whereas 

the α subunits serve to bind the RP and ensure that only proteins targeted for degradation enter the CP. The 

proteasome CP is active only when fully assembled, which begins with the formation of Half Proteasomes 

(HP- α7β7), and then two HPs dimerize into a CP. All the β subunits are synthesized with an N-terminal 

propeptide, autocatalytically cleaved off when two HPs dimerize, and only then the CP becomes active. In 

this dissertation, I elucidate different steps of CP assembly in the bacterium Rhodococcus erythroplis (Re). 

First, we are investigating the molecular mechanism behind the separation of time scales observed in CP 

assembly. Experimental work on bacterial proteasomes has shown that the HP forms completely within 

minutes, while HP dimerization to form CPs takes hours to complete. These studies also suggested that the 

β propeptide plays a role in regulating the dimerization rate. Using all-atom Molecular Dynamics (MD), 

we investigated the role of the β propeptide in Re CP assembly and showed that the length and polarity in 

the propeptide impact dimerization rate.  We further validated these findings experimentally. In all species, 

CP assembly always occurs with two HPs dimerizing, and we never observe CP with one or two missing 

subunits. We hypothesized that there exists some allosteric communication among the subunits to prevent 
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dimerization of near-HP structures (α6β7, α7β6, and α6β6) with each other or an HP.  Our Molecular 

simulations revealed a global conformational shift in the β subunits that causes significant conformational 

transitions making the near-HP structures in a non-dimerizable state. Next, we investigated the formation 

of HPs in three assembly CP pathways, using coarse-grained ODE mathematical models based on chemical 

reaction kinetics theory. Our results discuss kinetic trapping and CP assembly dynamics in different 

pathways. Our mathematical models reveal that there is a tradeoff between speed and robustness in these 

assembly pathways. Ultimately, our simulation findings have helped us address long-standing questions in 

the proteasome assembly field and obtain structural and molecular insights. Further, our results will lay a 

promising foundation for structure-based drug design for designing specific, efficient, and less toxic small-

molecule proteasome assembly inhibitors to treat tuberculosis and other diseases. Lastly, our findings on 

self-assembling bacterial CPs will serve as a proof of concept for designing nanomachines and other 

nanotechnology applications.  
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Figure 3.10: Violin distributions of βØtilt for all β subunits in different colors of the four sets of simulations. 

A) α7β7 (HP) simulations and their distributions. B) α6β7 C) α6β6 D) α7β6. ................................................. 58 
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Figure 4.4: Fraction of assembled three-membered single and three-membered stacked ring after 24 hours 
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Figure 5.1: The mixtures and fractions used for data collection. A) Table showing the percentages of three 
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Figure 5.2: Raw data and mutual information score (in bits) for (A) UV-Vis absorption, (B) CD, and (C) 

FTIR data from Crofelemer pure lots and mixtures. In each plot, the colored lines show the normalized data 

for the corresponding technique and the background shows the mutual information score. In each case, the 

raw data were divided by the concentration of the samples, and the maximum intensity in each case was 

normalized to 1. The lines represent the different replicates from the pure lots and mixtures. .................. 94 
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the corresponding technique and the background shows the mutual information score. In each case, the raw 

data were divided by the concentration of the samples, and the maximum intensity in each case was 

normalized to 1. The lines represent the different replicates from the pure lots and mixtures. .................. 95 

Figure 5.4: Plots for mutual information score (MIS in bits) and for SEC and HILIC of Croefelmer mixtures. 

(A) Heat map of mutual information score for SEC. (B) The red curve represents the mutual information 

score averaged over all retention times, and the blue curve represents the mutual information score averaged 

over all wavelengths for SEC data. (C) and (D) same as in (A) and (B) for HILIC data. .......................... 97 

Figure 5.5: A) Principal Component Analysis and B) Similarity Analysis for five techniques combined. 98 

Figure 5.6: A) Principal Component Analysis for top 100 MIS and B) Similarity Analysis for five 
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Figure A.1. Cartoon representation of the WT Half Proteasome from Molecular Dynamics simulations of 

Re bacterium. In both images, the α subunits are shown in green, β subunits in blue and the β propeptides 

in the purple spheres. (A) The WT HP at 996 ns. (B) WT HP at 1240.8 ns. The arrow serves to highlight 

the protruding propeptide. Both images were rendered using VMD. ....................................................... 116 

Figure A.2. Root Mean-Square Fluctuations (RMSF) of the β propeptide in WT, SLOW and FAST HPs. 

The panels show the average RMSF after 2.5 µs for all the backbone atoms of each residue of the β 

propeptides in (A) WT, (B) SLOW and (C) FAST HP for three independent Molecular Dynamics 

simulations. For all panels, electron density of the residues in crystal structure is depicted by the colored 

bars; missing electron density residues (purple) and residues with electron density (grey). The missing 

electron density residues were modeled by Rosetta. The RMSF values measured for Replicate Rep. 1 is 

shown by the blue curve, Rep. 2 by the green and Rep. 3 by the pink colors. .......................................... 117 

Figure A.3. Potential energy of each simulation. The potential energy of each 2.5 µs simulation on Anton 

with (A) WT, (B) SLOW and (C) FAST HPs. Plots show the potential energy for Rep. 1 (left), Rep. 2 

(middle) and Rep. 3 (right) separately for each HP type.  Every simulation took about 500 ns to converge.
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Figure A.4. RMSD for HP without the propeptide. Panels show the average RMSD for all seven β subunits 

of the HP without including the propeptide residues in the RMSD calculations at each time point for (A) 

WT, (B) SLOW and (C) FAST HPs. For comparison, all three replicates (blue, green, and pink) are shown 

on the same axes. ...................................................................................................................................... 119 

Figure A.5. LOWESS plots for HPs. Plots show the number of hydrogen bonds formed by the propeptide 

of (A) WT, (B) SLOW and (C) FAST HPs at each time point. Plots show the hydrogen bonds for Rep. 1 

(left), Rep. 2 (middle) and Rep. 3 (right) separately for each HP type.  Black line indicates the non-

parametric LOWESS fit. ........................................................................................................................... 120 

Figure A.6. Violin plots of hydrogen bonds formed by propeptide. Violin plots showing the total number 

of hydrogen bonds formed between the propeptide and key residues at the HP dimerization interface for 

each replicate of WT (blue), SLOW (red) and FAST (purple) HP. .......................................................... 121 

Figure A.7. Kymographs for WT, and mutants. The kymographs show the total number of hydrogen bonds 

formed between each β subunits and the key resides at each time point for (A) WT, (B) SLOW and (C) 

FAST HPs. Plots show the hydrogen bonds for Rep. 1 (left), Rep. 2 (middle) and Rep. 3 (right) separately 
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Figure B.1: Cartoon representations of the three near-HP intermediates, which are simulated for 2.5 µs. The 

three models were built using the crystal structure of the WT proteasome, with its propeptide present, as a 

starting point.  These were developed by starting from our previous WT HP simulations and removing the 

relevant subunits. These are α6β7 and α7β6 (i.e., HPs missing just one α or β subunit), α6β6 (an HP missing 

an entire α/β dimer).  All α subunits are shown in green and β subunits are blue, and the propeptide is purple.
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Figure B.2: Region I RMSD shown as violin plots. Each violin represents each intermediate and has 

observations for simulations from all the three replicates (from 500 ns to 2.5 µs) combined into one violin.
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Figure B.3.1: The method for calculating β of the β subunits. All the seven β subunits of the CP are colored 
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Figure B.3.2: Method to calculate the dihedral angle βØtilt made by every β subunit in the ring. The α6β7 

intermediate is shown in cartoon representation. With alpha subunits in green, and β subunits in different 

colors. The zoom in picture shows only three β subunits β6(red), β7(grey) and β1(orange). The blue spheres 

represent the center of mass of the β subunits, and the magenta spheres represent the center of mass of the 
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Figure B.4: The values of β as a function of time for all subunits of the β ring. A) HP-α7β7 B) α6β7 C) α6β6 

and D) α7β6. Each angle for the β subunits is in a different color, and the α6β, and α7β6 simulations have 

the β values from HP simulations for comparison. ................................................................................. 131 

Figure B.6: The values of βØtilt as a function of time for all subunits of the β ring. A) HP-α7β7 B) α6β7 C) 

α6β7 and D) α7β6.  Each β subunit tilt is in a different color. ..................................................................... 135 

Figure C.1: Schematic of a trimer formation displaying the sidedness used for developing ODE models. 

Each subunit has a distinct left (L) and a right (R) side, and interactions can occur only between the right 

side of one subunit and the left side of the other subunit.  Case 1 shows the allowed reactions and Case2 

shows the reactions which are not allowed due to incorrect sides interacting. ......................................... 139 

Figure C.2: Schematic of the Re CP crystal structure (PDB ID: 1Q5R) to show the different interfaces (IN). 

There are six unique interfaces for every CP. ........................................................................................... 140 

Figure C.3: CP assembly at varying concentrations with [α] = [β]. The three models exhibit different 

fraction CP assembled (or assembly efficiency) and show a varying deadlocked plateau.  The x-axis is in 

log scale to clearly illustrate the deadlock plateau. The interaction affinities for each model are equivalent 
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Figure C.4: Effect of subunits concentration on CP assembly dynamics A) At concentration [α] = [β] = 10-

6 M. B) At concentration [α] = [β] = 10-5 M. C) At concentration [α] = [β] = 10-4 M. The k+HP = 103 M-1s-1, 

k+=106 M-1s-1, KD4 =1X10-4M (UOM, ABD), KD1 =1X10-4M (ARF), and the other KD are at a lower affinity 

of 1X10-2M. ............................................................................................................................................... 142 

Figure C.5: Native-PAGE Analysis of in vitro assembly of 20S proteasome Core Particle from Rhodococcus 
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Chapter 1  

 

Introduction 

 
 

Molecular machines are complexes that play an essential role in numerous biological processes.  These 

machines are highly complex and efficient.  Molecular machines are assembled from a set of subunits into 

a fully functional form; forces of evolution very likely guide the assembly of these complexes.  A few 

examples include the proteasome, ribosome, spliceosome, myosin, motor proteins, ATP synthase, and many 

more.  This thesis presents a detailed study of a highly critical macromolecular stacked ring complex - the 

proteasome, a central component of intracellular protein degradation.  The proteasome complex is 

predominantly involved in the degradation of unwanted or damaged cellular proteins, regulates various cell 

processes, and plays a crucial role in maintaining homeostasis. Proteasome dysregulation has been 

associated with autoimmune diseases, cancer, neurodegenerative disorders, cardiomyopathies, and several 

other conditions.  

     Degradation of cellular proteins is essential in signal transduction, proteostasis, signaling, and cell cycle 

regulation [1-3]. Proteasomes are ubiquitous to life and are found in prokaryotes and eukaryotes. Not all 

prokaryotes have proteasomes; only archaea and a subset of bacteria (actinomycetes) have these complexes. 

The actinomycetes have most likely acquired the proteasome through a horizontal gene transfer.  The other 

bacteria like Escherichia coli have simpler proteases like HslV/ClpQ, which share the same catalytic 

mechanism as proteasomes [3, 4]. In eukaryotes, proteasomes are found in the nucleus, attached to the 

endoplasmic reticulum, and in the cytosol and are essential for the viability of eukaryotic cells [3, 4]. Also, 

in eukaryotes, proteasomes are a part of the ubiquitin-proteasome system (UPS), which plays a central role 

in numerous regulatory pathways, protein quality control, antigen presentation, and other functions. 
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Prokaryotes have a simpler form of proteasome formed by four stacked rings, and eukaryotes have the most. 

complicated form, i.e., 26S proteasome. [3-6].  

 

      

       

      This complex 26S proteasome (2.5 MDa) is a central protease involved in intracellular protein 

degradation. It consists of a 20S catalytic Core Particle (CP) of approximately 700KDa and capped by one 

or two 19S Regulatory Particles (RP) (Fig. 1.1).  The 19S RP can be divided into the base and lid 

components, and structural studies on RP are currently relatively limited [7]. The 19S RP is found only in 

eukaryotes and thus is not conserved in the evolution. RP is involved in recognizing the proteins targeted 

for degradation and then translocating them to the CP [3, 8]. The CP complex is very well studied and 

Figure 1.1: Structure of the human 26S proteasome (PDB ID:5GJR) comprising of 19S Regulatory Particle 

(RP) and 20S Core Particle (CP). The CP consists of four α (green) and β (blue) stacked rings. Figure 

rendered in Pymol.  
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characterized and is about 15 nm in length and 11nm in diameter [9].  The active sites reside in the CP, 

which is a barrel-shaped complex stacked of four heptameric rings. 

     Prokaryotes do not have the 19S RP, but instead have AAA+ ATPases (like Pan, Arc, and Mpa), which 

help in protein substrate unfolding and translocation to the CP [10]. Much research is still undergoing to 

understand the assembly and functions of the RP. Our work focuses on studying the assembly of the 

proteasome CP, and more on its quaternary structure and assembly in bacterial cells is described below. 

The 20S CP is found in all three kingdoms archaea, bacteria, and eukaryotes, and its overall structure is 

highly conserved [2, 3]. It consists of four stacked rings, each ring composed of seven subunits.  The two 

outermost rings are made up of seven α subunits each. In contrast, the two inner rings are made up of seven 

β subunits, each, and together these are arranged in the stoichiometric form α7β7β7α7 (Fig. 1.2).   

Prokaryotic proteasomes contain one or two types of α and β subunits, while eukaryotic proteasomes 

contain seven different but related α and seven different but related β subunits [2, 3, 6]. Both α and β 

subunits have the same protein fold of an α+β tertiary structure [11, 12].  The α subunit has a structural 

Figure 1.2: Surface representation of proteasome Core Particle structures from prokaryote (Rhodococcus 

erythropolis; PDB:1Q5Q) and eukaryote (Saccharomyces cerevisiae; PDB:5L52).  The schematic shows 

that eukaryotic CP has seven different alpha and beta subunits, whereas the prokaryotic CP is simpler and 

made of one or two alpha and beta subunits. Figure rendered in Pymol.  

 



4 

significance and is known to be involved in the gating process for many archaea and eukaryotic CP's. In 

contrast, the β subunits are proteolytically active and contain the active site threonine.  

     The subunit composition difference between prokaryotic and eukaryotic is seen in (Fig. 1.2) as 

differences in overall shape, symmetry, and interfaces. The differences in subunit composition are likely 

due to evolutionary pressures and selections for more complex organisms. Additionally, all the14 β subunits 

of prokaryotic CP are catalytically active (generally having chymotryptic peptidase activity), whereas, in 

eukaryotic CP’s only three subunits (β1, β2, and β5) are catalytically active [4]. To be specific in most 

organisms, β1 catalyzes caspase-like activity, β2 tryptic, and β5 chymotryptic activity [4]. 

     It is unknown what drove the origin of four inactive and three active β subunits in eukaryotic cells [4, 

13]. In higher eukaryotes, there are also immunoproteasome and thymoproteasomes, which use alternative 

β subunits and display altered proteolytic activity. Despite the difference in subunit complexity, the CP’s 

overall structure is highly conserved in all known prokaryotic and eukaryotic proteasomes (Fig. 1.2). 

Another striking feature of eukaryotic proteasomes is that they require dedicated assembly factors and 

chaperones to guide CP assembly. The eukaryotic proteasome is made of seven distinct α and β subunits; it 

is more complicated and requires several dedicated chaperones like PAC1-PAC2, PAC3-PAC4, and UMP1 

[3]. So far, no evidence exists that prokaryotes require such chaperones for proteasome assembly; the α and 

β subunits have been repeatedly shown to spontaneously self-assemble into a prokaryotic CP without any 

additional factors [14].  

     In all 20S proteasomes, the monomers first form Half Proteasomes (HP: α7β7), which then dimerize to 

form an active CP (Fig. 1.3). To protect the catalytically active sites, β subunits are expressed in an inactive 

precursor form with a propeptide sequence at the N terminus. These N-terminal β propeptides are d auto-

catalytically cleaved when two Half Proteasomes (HP) associate to form a fully active CP [1] (Fig. 1.3). 

This dimerization of half proteasomes thus triggers the autocatalytic processing of propeptides.   
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     The CP is not active after until its fully assembled and the propeptide is autocatalytically cleaved off. 

Thus, the propeptide sequesters the active site from the environment until CP assembly is complete. These 

β subunit propeptides are of varied length and sequence, depending on the species. Some are only a few 

residues, while others are more than 60 residues long [9]. Previous studies have revealed that CP assembly 

is universally hierarchical, and that the HP is an obligate intermediate in all assembly pathways. However, 

the, β propeptides play different roles in the assembly and activation of CP depending on the organism [1].  

Since the CP is only active when fully assembled, we expect that nature has evolved an efficient assembly 

pathway. Assembly of the CP in a regulated manner is highly critical because incorrect assembly might 

give rise to uncontrolled proteolysis (exposing active sites before assembly), non-specific cleavage, and 

accumulation of proteins, which destroys the cell’s ability to maintain homeostasis and could eventually 

cause stress or even cell death. The proteasomes play a critical role in pathways fundamental to cell survival 

and proliferation, numerous specific inhibitors of the proteasome have been developed. Proteasome 

inhibition has become a novel drug target to treat multiple myeloma, malaria, neurodegenerative disorders, 

and other diseases. [15-19]. Over the last two decades, the FDA has approved three proteasome inhibitors: 

Bortezomib, Carfilzomib, and Ixazomib, all to treat multiple myeloma [20-24]. Along with the increasing 

crisis of antibiotic resistance, bacterial proteasomes are a promising drug target.  

Figure 1.3: Generalized scheme of proteasome Core Particle assembly.  The CP is active only after assembly. 

The α subunits are in green, β subunits in blue, and beta propeptides are in purple.  
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      The bacterial pathogen Mycobacterium tuberculosis (Mtb) is known to have caused around 1 billion 

deaths in the past two centuries, underscoring the need to treat tuberculosis [25]. Mtb is a challenging 

bacterium to target since it has developed multidrug resistance [26]. Gene knock-out studies in mice have 

suggested that the proteasome is essential for virulence and survival to stress in Mtb [25]. These findings 

led to the identification of the Mtb proteasome as a novel drug target. Proteasome active sites are structurally 

conserved, making it challenging to develop the proteasome inhibitors targeting the pathogen and not 

human proteasomes [16]. 

     Additionally, proteasome active site inhibitors can also non-specifically block the function of other 

cellular proteases that share the Ser/Thr active site architecture. To circumvent the non-specificity of active 

site inhibitors, we can exploit targeting proteasome assembly by designing assembly inhibitors instead of 

activity inhibitors. Targeting proteasome assembly has just begun to develop actively. It is an attractive 

approach because the subunit interfaces are different in human and Mtb proteasome, and the assembly 

pathways are likely different [25]. We thus anticipate that targeting proteasome assembly could have high 

specificity [27]. Since proteasomes are not active until fully assembled, small molecules that disrupt 

assembly represent an alternative approach to block proteasome function. To our knowledge no proteasome 

inhibitors are currently being investigated for tuberculosis in the clinic, further suggesting that assembly 

may be an attractive drug target. So far, Mtb CP assembly has not been well characterized, and thus 

understanding the assembly pathway and intermediates formed will help us design efficient inhibitors. 

       Besides the clinical relevance, hierarchical structures like proteasomes, the apoptosome, virus capsids, 

and other macromolecular complexes have likely experienced significant evolutionary pressure to assemble 

efficiently and quickly into a functional form. It is quite intriguing to imagine how the subunits of such 

complexes assemble in cells with so many possible combinations. Additionally, the cell must ensure that 

these complexes can find the interacting subunits despite macromolecular crowding.  Another exciting 

application of studying self-assembly is material science, nanomachines, and protein cages. Prokaryotic 

proteasome assembly occurs spontaneously without any extrinsic factors; understanding the principles of 

self-assembly will be highly beneficial for designing emerging protein nanomachines, biomaterials, and for 
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synthetic biology in general.  

       CP assembly kinetics have been perhaps best characterized experimentally in the bacterium 

Rhodococcus erythropolis (Re). The Mtb proteasome shares about 64% sequence similarity with Re. 

Experimental studies in R. erythropolis have demonstrated that α and β subunits stay monomeric when 

expressed separately and spontaneously assemble in vitro into active CPs on being incubated together. 

Experimental findings also reveal that the HPs are formed almost immediately (seconds) after the reaction 

starts. The CP appears after a certain time lag and 100% CP assembly takes about 3 hours [28, 29]. This 

evidence suggests that dimerization of HP’s is a rate-limiting step and indicates that HP is an obligatory 

intermediate in the hierarchical assembly pathway. The reason for this separation of timescales is currently 

unknown, but existing experimental evidence supports a key role for the propeptide in regulating 

dimerization.  HP formation becomes slower if the propeptide is deleted, but HP dimerization is very fast 

if the propeptide is added in trans to an assembly reaction with the α and propeptide deletion β subunits. In 

that case CP assembly occurs nearly as fast as HP assembly [28].  While it is thus clear that the propeptide 

inhibits HP dimerization, the molecular mechanism is currently unknown. So far, the assembly pathways 

have been studied experimentally in the model systems of our interest primarily R. erythropolis and T. 

acidophilum [2, 30, 31]. So far, there has been no atomic level computational study or any molecular 

modeling of the prokaryotic proteasome. Thus, this approach is first of its kind to obtain atomic insights 

using molecular models and offers opportunities to gain in-depth understanding at molecular level for the 

CP assembly in the model systems of our interest. 

     One popular method to understand biological molecules and their molecular mechanisms is Molecular 

Dynamics (MD). In MD, atoms are considered spheres, and the bonds are treated as springs, and then for a 

collection of atoms, say proteins, Newton's equations of motion are numerically solved. It has three main 

components: the force field, which describes potential energy based on the laws defining the mutual 

interactions in the system of interest. Secondly, one must define an algorithm to integrate the equations of 

motion numerically, and several types of integrators like Velocity Verlet, and Leapfrog are available. 

Lastly, it needs a set of initial positions and velocities for all-atom systems.  MD is fundamentally a 
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statistical mechanic method and helps explore a system's dynamics, structural and thermodynamic 

properties. The structural and thermodynamic properties at a level of resolution that is difficult to obtain 

experimentally. Hence, MD has emerged as an extremely valuable tool to understand conformational 

changes occurring in biological molecules like proteins, lipids, etc. All-atom simulations typically have a 

biological molecule of interest such as protein, lipids, DNA, or RNA and have water and ions to mimic the 

experimental conditions.   

     In the second chapter, we have employed all-atom MD simulations to elucidate the separation of time 

scales observed in Re CP assembly. From these simulations, we found that a region of the propeptide near 

the HP dimerization interface in Re is highly disordered and interacts with key residues in the HP interface 

important for dimerization.  We also validated the MD simulation predictions with experimental findings.  

Understanding the molecular mechanism in R. erythropolis slow HP dimerization elucidated a critical step 

in the CP assembly pathway in detail and provides insights into the dimerization interface, an attractive 

target for assembly inhibitors. In the long term, this work will provide a framework to use structure-based 

approaches to design inhibitors of CP assembly.  Particularly, studying the proteasome assembly pathway 

in species like pathogenic M. tuberculosis and the archaea, Thermoplasma acidophilum will aid in 

developing efficient and novel assembly inhibitors for tuberculosis and understand the evolutionary aspects 

of how ring-like complexes such as proteasome have evolved. 

       As discussed above, in all the organisms, CP assembly is hierarchical in that the HP is an obligate 

intermediate in all assembly pathways [32, 33]. To date, we have never seen evidence for a CP with missing 

subunits, i.e., an HP never dimerizes with another near-HP intermediate like α6β7 (i.e., the HP missing a 

single α subunit), α7β6, and α6β6, etc. However, it is currently unknown how the subunits allosterically 

communicate to achieve hierarchical assembly pathways.  In other words, how do the subunits “know” to 

first assemble the HP structure and only then dimerize? Allosteric communication likely occurs among the 

CP subunits, which allows the system to differentiate between obligatory and non-obligatory intermediates. 

        The third chapter focuses on a study of conformational allostery and how this allostery is 

communicated among intermediates to prevent incompatible intermediates from assembly into incorrect 
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CP-like structures. Determining the structure of intermediates involved in CP formation will be vital for 

further understanding the assembly pathway and molecular events that lead to CP formation. Crystal 

structure analysis, mass spectrometry, microscopy studies, and electron microscopy have provided evidence 

that the near-HP intermediates like α6β7, α7β6, and α6β6 occur during assembly and are present for a 

significant time. However, these near-HP intermediates never dimerize with an HP or with one another to 

form atypical and incomplete structures of CP-like complexes. (α6β7β7α7, α6β6β7α7 or α6β7β7α7). The 

formation of such incomplete CP’s could have drastic effects because of unregulated protein degradation 

and perturb homeostasis in cells. Understanding the allosteric regulation involved in preventing the 

dimerization of near-HP intermediates will help us elucidate the molecular events leading to CP assembly 

and understand the stability of these near-HP intermediates. A better understanding of the bacterial CP 

assembly pathway will provide a framework for designing new inhibitors that target CP biogenesis, 

impacting specific steps in the assembly pathway. The third chapter addresses why the near-HP 

intermediates do not dimerize with a true HP and assemble into a CP and how this information is 

communicated in the intermediates or other similar hierarchical assemblies.   

     While our findings provide insight into the separation of time scales in CP assembly and the role of 

allostery in CP assembly, many interesting questions are still unanswered.  The proteasome CP and other 

proteins like AAA+ ATPases, GroEL, DNA binding proteins (e.x. RAD 52) all have a ring-like structure. 

These proteins would have evolved a strategy and method to overcome or avoid kinetic challenges to 

assemble efficiently [34]. A pioneering and elaborate study on ring-like structures provides an evolutionary 

rationale and understanding of self-assembly dynamics in biological molecules like the proteasome [34]. 

For ring-like structures, a form of kinetic trapping known as "deadlock" and evolutionary pressures have 

carved assembly pathways for such structures to avoid deadlock. Coarse-grained computational approaches 

are highly suitable to investigate the kinetics of assembly pathways for complicated structures. The coarse-

graining approach is powerful and fast and allow us to understand long time-scale assembly phenomena in 

complex machines like the proteasome.  

     In the fourth chapter, we have used coarse-grained ODE models to understand the assembly kinetics of 
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CP assembly in Re. Specifically, we address the pathway adopted by the cell to form an HP and then 

dimerize it into a CP. Previous work based on limited evidence has led to the speculation that archaea and 

bacteria follow different pathways to assemble a CP [1]. Interestingly, our findings report a novel pathway 

that operates in Re in-vitro CP assembly. Our results are based on the ODE models, which follow a 

chemical-kinetics-based approach. In the future, these models can be explored with different parameters 

like association rates, binding affinity, and rate constants to understand the CP assembly for other species 

like Mycobacterium tuberculosis, Thermoplasma acidophilum, and even the highly complex eukaryotic 

CP’s.     

     Lastly, the final Chapter 5 takes a different direction and discusses the comparative characterization of 

Croefelmer drug mixtures using Machine Learning and Data Mining approaches.  Drugs that are 

manufactured using naturally occurring raw materials are highly complex and heterogeneous [35]. 

Croefelmer is a botanical complex mixture drug extracted from the sap of South American tree, Croton 

lechleri. It is an FDA-approved drug used to treat noninfectious diarrhea in HIV patients [36]. Such drugs 

derived from natural resources exhibit batch-to-batch variation and are extremely sensitive to 

manufacturing processes. Post-approval, these drugs can be subjected to changes in raw materials, 

manufacturing process, or other parameters. To ensure that the drug quality post-approval remains 

sufficient, extensive analytical characterization is required. Using machine learning classifiers, PCA, and 

mutual information approaches, we have developed a mathematical tool that can identify critical quality 

attributes (CQAs) that help in distinguishing different batches of Croefelmer, especially to identify if the 

batches are expired or not. This kind of comparative characterization can be extended to other biologic 

drugs to distinguish between batches and decide if two preparations of drugs are highly similar.  

     Chapters 2-4 utilize atomistic Molecular Dynamics, and coarse-grained (ODE) simulation approaches 

to understand the CP assembly and its dynamics in Rhodococcus erythropolis. Using all-atom Molecular 

Dynamics (MD) simulations, we have gathered fascinating insights on the role(s) of the propeptide in CP 

assembly.  These atomistic simulations are explicit models and use the same salt concentration as used in 

proteasome in-vitro experiments. Additionally, we have studies that elucidate the allosteric regulation at 
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the atomic level among proteasome subunits, which helps prevent aberrant structures. This work further 

forms a promising foundation to implement similar studies in Mtb and higher-order organisms CP assembly. 

Moreover, our work potentially contributes to identifying novel inhibitors of proteasome CP assembly and 

can be applied to identify conformations of various intermediates in Mtb. In addition, our work can be 

applied to propose simple concepts for self-assembly in nanomaterials and protein nanomachines. 
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Chapter 2 

 

Understanding the Separation of 

Timescales in Rhodococcus erythropolis 

Proteasome Core Particle Assembly 
 

 

2.1 Introduction  

 

The degradation of proteins is an essential step in signal transduction, proteostasis, and the regulation of 

biochemical pathways [1-3]. The 26S proteasome, a massive 2.5 MDa molecular machine, is a central 

protease involved in intracellular protein degradation. In eukaryotes, the catalytically active 20S Core 

Particle (CP) is capped by two 19S Regulatory Particles (RP's), forming the 26S proteasome. The CP 

consists of four heptameric rings, which are stacked coaxially in a barrel-shaped structure. The α and β 

subunits form the outer and inner rings, respectively, with an α7β7β7α7 stoichiometry [1, 4]. The α subunits 

interact with regulatory particles and help control the target substrate's entry into the barrel, while the β 

subunits are catalytically active and carry out proteolysis. The CP is found in all three kingdoms of life, 

archaea, bacteria, and eukaryotes, and its overall quaternary structure is highly conserved [5, 6]. 

     Like many molecular machines, the proteasome cannot be synthesized by the cell in an active form. 

Instead, it is assembled from a set of subunits into a functional quaternary structure. The proteasome CP is 

active only when it is fully assembled, since the β subunits are initially expressed in an inactive precursor 

form with a propeptide sequence at the N terminus (Fig. 2.1A). As a result, understanding CP assembly and 
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biogenesis is critical to our overall understanding of the proteasome's function and regulation in vivo. In 

particular, the proteasome is well established as a drug target for treating a variety of diseases, including 

cancer and tuberculosis [7-9]. Traditional approaches to targeting the proteasome have focused on small 

molecules like Bortezomib that directly bind to the active site and disrupt proteolysis [7, 10-12]. However, 

it has been suggested that inhibiting assembly could offer an alternative and relatively unexplored approach 

to pharmacologically disrupting proteasome function. This is particularly important for Mycobacterium 

tuberculosis (Mtb); it has been shown that disrupting proteasome function can ameliorate chronic Mtb 

infections, but therapies targeting proteasome assembly have yet to be developed for clinical applications 

[7].  A better understanding of the assembly pathways and mechanisms underlying bacterial CP biogenesis 

could eventually lead to a new class of therapeutics for diseases like tuberculosis.   

     The assembly of the CP has been studied experimentally in a wide variety of organisms [3, 13-16]. In 

all cases, the CP assembly pathway involves the formation of Half Proteasomes (HP: α7β7) from α and β 

subunits. During CP assembly, two HPs dimerize to form the pre-holo-CP, and then the propeptide is auto-

catalytically cleaved off to form the active CP [2, 17] (Fig. 2.1A). While assembly pathways that form the 

HP differ between organisms [2, 13, 18], the HP is an obligatory intermediate in all organisms studied to 

date [2, 13, 18-20]. Given the proteasome's intricate quaternary structure, we expect that CP assembly has 

evolved to be efficient, accurate, and robust. Particularly when considering that incorrect assembly could 

give rise to uncontrolled proteolysis, non-specific cleavage, and accumulation of proteins if active sites 

remain exposed [3, 15]. Exactly how the assembly pathway achieves accurate CP assembly, however, is 

currently unclear. 

     CP assembly kinetics have been perhaps best characterized experimentally in the bacterium 

Rhodococcus erythropolis (Re). Over twenty years ago, Baumeister and colleagues demonstrated that the 

Re α and β subunits remain monomeric when expressed and purified independently [19, 21]. This property 

allows us to monitor both HP CP formation in vitro [15, 19, 20]. Baumeister et al. showed that the HPs are 

fully formed almost immediately after the subunits are mixed, with complete assembly of the HP observed 
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at 30 seconds. However, fully formed CPs are visible after a considerable time lag of about 30 minutes, and 

100% CP assembly takes up to 3 hours [2, 19]. This evidence suggests that dimerization of HP's is a rate-

Figure 2.1: Bacterial 20S proteasome assembly and propeptide conservation. (A) Schematic of the 

proteasome Core Particle (CP) assembly. The α subunits are shown in green and β subunits in blue with the 

propeptide in purple. Arrows demonstrate progression from subunits to active CP and separation of time 

scales between Half Proteasome (HP) and CP assembly. (B) Note: This alignment is a representative subset 

of the 256 species MSA used for analysis. Eight amino acid sequences of the N-terminal β subunit 

propeptide from Rhodococcus erythropolis (Re), Rhodococcus rhodnii (Rr), Saccharopolyspora 

shandongensis  (Ss), Saccharomonospora viridis (Sv), Amycolatopsis orientalis (Ao), Mycobacterium 

tuberculosis (Mtb),  Mycobacterium mageritense (Mm) and Actinopolyspora saharensis (As). The 

conserved residues are highlighted in red, residues in orange have conservation between amino acid groups 

of similar properties and the residues in purple have conservation between amino acids of weakly similar 

properties.  The active site is shown the vertical arrow above the Threonine (T). (C) β propeptide sequence 

in Re. Region I is made up of residues -65th to -43rd, Region II is from the -42nd to the -27th residues, and 

Region III is from the -26th to -1st residues. The residues without electron density are highlighted in purple 

and are modeled for simulations. 

 

https://en.wikipedia.org/wiki/Amycolatopsis_orientalis
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limiting step and demonstrates a significant separation in time scales between HP formation and 

dimerization to form the CP (Fig. 2.1A).       

     The reason for this separation of these timescales is currently unknown, although existing experimental 

evidence supports a key role for the propeptide in regulating dimerization [19].  Baumeister and colleagues 

monitored Re CP assembly in three different scenarios. First, wild type (WT) α and β subunits form HPs 

within seconds, but there is a time lag of approximately 30 minutes in CP assembly. Second, WT α subunits 

and a mutant variant of the β-subunits with no propeptide (βΔpro) assembled the HP at a significantly 

slower rate. Subsequent crystallographic studies on the Re CP with a β mutant where the propeptide cannot 

be cleaved demonstrated that the propeptide mediates critical interactions between the α and β subunits, a 

possible explanation as to why assembly is attenuated in βΔpro mutants [1, 19]. Finally, they added the 

propeptide in trans with α and βΔpro subunits. Surprisingly, active CP was formed significantly faster, 

within ~30 seconds. The HPs were not observed, suggesting that they dimerized so quickly that they could 

not be captured in native gels [19].  Collectively, these findings provide evidence that propeptide regulates 

the dimerization rate by inhibiting HP dimerization. The molecular mechanisms through which the 

propeptide achieves this regulation, however, are not currently understood. 

     We recently performed a combined computational and experimental study that began to elucidate the 

propeptide's role in the dimerization step (19).  As part of this work, we performed a Multiple Sequence 

Alignment (MSA) of the Re β subunit, including the propeptide, with sequences from various bacterial 

species (Fig. 2.1B). We divided the bacterial propeptide into three distinct regions based on this alignment 

and the available crystal structure (Fig. 2.1B) (1, 3, 5, 19). Region I is the most N-terminal segment of the 

propeptide (residues -65 to -43 in the Re sequence), is more flexible than Region II and interacts with α 

subunits. Region II (residues -42 to -27 in Re) is much more conserved than Regions I and III and forms 

the crucial central region (1); these residues form contacts with both the α and β subunits. Region III 

(residues -26 to -4) is highly flexible and is immediately N-terminal to the active site threonine of the β 

subunits. This region is also highly enriched in glycine residues (~17%) across all bacterial species (19) 

(Fig. 2.1B). Region III is notably near the HP dimerization interface, suggesting that it could play a crucial 
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role in CP assembly. Determining the role of Region III of the propeptide in HP dimerization requires 

detailed analysis. Molecular Dynamics (MD) simulations provide details that current biochemical 

approaches cannot. Further, MD simulations provide a detailed platform to gather atomistic insights into 

the function of the propeptide during CP assembly [22, 23]. Our preliminary MD results from previous 

work show that the Re propeptide has a high root mean square fluctuation (RMSF) value for Region III, a 

metric that measures a residue’s flexibility averaged over time. We observed that this flexibility enables the 

propeptide to move near the HP dimerization interface.  

     Furthermore, at the HP dimerization interface, there are a set of key residues in Re β subunits which are 

involved in critical interactions (hydrogen bonds, salt bridges, or other noncovalent interactions) with the 

β’ ring of the other HP (Fig. 2.2A and 2.2B), these interactions drive CP assembly [5]. Since these key 

residues occur at the HP dimerization interface, we hypothesized that the propeptide interacts with the key 

Figure 2.2 Re CP structure and key residues (A) Side view of the WT Rhodococcus erythropolis (PDB 

entry:1Q5R) Core Particle (CP). The colored β subunits (blue, yellow and red) highlight interactions between 

β and β’ subunits which occur at the Half Proteasome (HP) dimerization interface. (B) This inset shows the 

zoom in view of the key residues associated with β-β’ interactions that are part of S2-S3 loop and H3-H4 

helices (REF) (C) Re β propeptide sequence for Wild Type (WT) and mutant version SLOW, which forms 

CP at slower rate. 
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residues, physically preventing them from associating with another HP and thus slowing dimerization. To 

further investigate flexibility and glycine enrichment shown in the MSA, we designed mutants targeting 

Region III of Re propeptide (Fig. 2.1C). In vitro experiments revealed that propeptide mutations lead to 

slower HP dimerization relative to WT and little to no active CP [24].  These experiments provided further 

evidence that Re propeptide regulates HP dimerization rate (9). 

     While our earlier experiments and simulations on Re CP provided significant information regarding CP 

assembly, to date, there have been limited attempts to determine the role of the propeptide in HP 

dimerization quantitatively [24].   In this work, we began investigated the role of the propeptide in Re CP 

assembly by performing extensive all-atom MD simulations of the Re WT HP and an extremely slowly 

dimerizing mutant from our previously published work which we call as the “SLOW” mutant [24]. Here, 

we used the Anton supercomputer to complete these simulations, allowing us to achieve microsecond 

sampling for very large HP structures [25]. Our simulations show specific hydrogen bonding interactions 

between the propeptide and the key residues at the dimerization interface. These interactions are 

considerably more frequent in the SLOW mutant than in WT. Analysis of these simulations suggested that 

mutating charged residues in Region III would reduce those hydrogen bonds and make dimerization faster. 

We thus computationally designed a FAST mutant by mutating two charged residues in WT β subunits to 

alanine. As anticipated, the FAST mutant HP simulations revealed that the propeptide makes fewer 

interactions with key residues than WT. We then tested these predictions experimentally using in vitro 

assembly assays and found that the FAST mutant does dimerize considerably faster than the WT. This study 

thus proposes a model where the Re HP exists in two conformational states: D+ (dimerizable) or D- (non-

dimerizable). If the WT HP is in a D+ state, its propeptide residues do not interact with the dimerization 

interface key residues. Hence, they can bind with the β’ ring of another HP and assemble into a CP.  In 

other words, D- state refers to the conformation of HPs where the propeptide of any β subunit interacts with 

key residues at the dimerization interface.  The propeptide interactions thus prevents the β subunit from 

associating with another HP. In solution, both D+ and D- states exist in equilibrium, and mutations or other 

perturbations can influence this equilibrium. Our results show that, in WT, the D+ and D- are both present, 
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but in SLOW mutant, D- conformation dominates. As anticipated, the FAST mutant more frequently resides 

in the D+ conformation. This model explains our previous experimental results and provides unprecedented 

insights into how HP dimerization is regulated. 

     This study thus presents, a deeper understanding of the propeptide’s functional role in Re CP assembly. 

Our findings demonstrate that the propeptide regulates the HP dimerization step and is tightly coupled with 

the propeptide’s length and amino acid composition. In the future, this work will provide support for 

ongoing efforts to use structure-based approaches to design inhibitors of CP assembly.  

 

2.2 Materials and Methods  

 

2.2.1 Half Proteasome structure for Molecular Dynamics simulations 

The starting structure for the Rhodococcus erythropolis Core Particle (CP) was taken from PDB 1Q5R [1]. 

The Half Proteasome (HP) starting structure was obtained by taking the top-half of CP coordinates, with 

all 14 chains is used as a starting structure for MD simulations.  

 

2.2.2 Modeling missing propeptide residues 

For the SLOW mutant in this study, the missing regions of the propeptide were modeled using Rosetta 

Comparative Modeling [26, 27] hosted at the Robetta server. For this, we first modeled a single α-β dimer 

and then repeated the same model for seven-fold symmetry to obtain the HP structure. 

 

2.2.3 Molecular Dynamics simulations setup 

The simulation inputs were generated using the CHARMM-GUI solution builder module [28-30]. All the 

systems were neutralized with 100mM NaCl (same used for experiments) and 15A° water on each side of 

the protein for a rectangular box. The detailed components are given in the supplementary material. We 

performed a short minimization of 5000 cycles, switching from steepest descent to conjugate gradient after 
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2500 cycles, the system is held at constant volume, no restraints are held on atoms, and the nonbonded 

cutoff is 10 Å. Next it is followed by 5ns of NVT and 60ns NPT equilibration with a 2fs time step using 

the GPU version of AMBER18 [31, 32] using CHARMM forcefield. Each simulation took ~ 48 hours to 

finish 65ns of equilibration on NVIDIA RTX 2080Ti GPU.  The detailed parameters for the equilibration 

are given in the supplementary material. After finishing AMBER equilibrations, the coordinates and restart 

files were used to initiate 2.5 µs simulations on Anton2 for long time scale Molecular Dynamics simulations 

[25]. The NPT ensemble and CHARMM 36m force fields, and TIP3P water models were used for Anton 

simulation runs. Additionally, the pressure and temperature are constant at 1bar and 303.15 K using 

Multigrator integrator and default NPT parameters [33]. The RESPA (Reference systems propagator 

algorithms) integration method was employed with a timestep of 2.5 fs, and the coordinates were saved 

every 0.24ns. All systems were simulated under periodic boundaries in the NPT ensemble. Additional 

details of the equilibration and MD simulations are provided in A.10. 

     All the simulations for WT and mutants have a backbone RMSD around 3.5 Å – 6.5 Å (Fig. S4) 

and they require about 500 nanoseconds to converge (Fig. S1). So as a result, we did not include the first 

500 nanoseconds of the runs in our analysis.  All the details and methods for in vitro reconstitution 

experiments for the WT and FAST variants are in appendix A.7.  

 

2.2.4 Statistical analysis 

To estimate the differences between the WT and mutant simulations, we used a categorical regression in R 

(Tables A.9). This test is used to determine if the average behavior of WT is different from SLOW and 

FAST or if they were drawn from different distributions. MD simulations data is time-dependent and 

autocorrelated, and as such it is challenging to find a statistical test to estimate the significance of MD 

simulations. Therefore, to account for these factors, we have used the Newey West estimators of standard 

errors and Ordinary Least Squares Regression with categorical variables. The use of categorical variables 

as separate binary variables is done for WT replicate and each mutant replicate. All the linear regression, 
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estimates and tests are done using the lm function in R [34] and scripts are available in the Supplementary 

material. 

  

2.3 Results 

2.3.1 Key residues regulate CP assembly 

Shorter simulations from our previous work revealed that in the WT Re propeptide Region III, which is 

near the HP dimerization interface, is highly flexible and is generally found outside the HP barrel [24]. In 

this work, we performed 2.5 s Molecular Dynamics (MD) simulations of the Half-Proteasome (HP). 

Closer inspection of Region III revealed a possible steric challenge for another HP to bind (Fig. A.1). 

Indeed, MD simulations show the propeptide physically blocking the regions on which a second HP could 

theoretically bind. In fact, a stretch of about 7-10 residues of Region III is more mobile than the Regions I 

or II (Fig. A2). Further, we found that this stretch forms hydrogen bonds with a group of residues at the 

dimerization interface of the HP. Interestingly, this group of residues have been previously identified as 

key residues for CP assembly [5]. Experimental evidence from Witt et. al showed that these key residues 

form critical interactions with the key residues of the opposing HP.  In Re Half Proteasome (HP) assembly, 

a set of key residues on the β subunits interact with the opposing β’ of another HP to drive CP formation 

(Fig. 2.2A and 2.2B). These interactions include hydrogen bonds, salt bridges, and hydrophobic 

interactions between the β rings [5]. Perturbing any of these critical interactions by mutating the key 

residues has a destabilizing effect and, in most cases, completely prevents CP formation (5). Experimental 

work demonstrated that alterations to the propeptide length in Re increased CP assembly time or prevented 

dimerization altogether [24]. However, from in vitro assembly assays alone, it remains unclear how these 

propeptide alterations slowed CP assembly. Thus, since the propeptide residues are within 2-3Å from the 

key residues, it is possible that the propeptide interacts with the key residues and regulates dimerization 

rates. 
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2.3.2 Mutant with extended propeptide Region III dimerizes very slowly 

Propeptide Region III is Glycine rich and contains a -13GDGMESG-7 motif that frequently interacts with the 

key residues (data not shown) [24]. To determine this part of the propeptide influence CP assembly and 

kinetics, we previously designed β mutants with a longer Region III loop.  In vitro assembly assays showed 

HP formation in altered Region III mutants but no CP formation even after prolonged incubation times [24]. 

All the mutants considered in this previous study had a portion of Region III deleted or added near the HP 

dimerizing interface. One mutant, the Extended Loop SLOW (EL1 in [24]), has an additional sequence of 

charged residues (Fig. 2.2C). We introduce a repeated glycine-rich motif twice to the WT propeptide, 

hypothesizing that this addition can delay HP dimerization. To elucidate the mechanisms behind the slow 

dimerization, we simulated the WT and SLOW HP using MD simulations. We speculated that the additional 

charged residues result in more interactions between the key residues and the propeptide, slowing down HP 

dimerization. Additionally, the SLOW mutant's extra residues would cause steric hindrance for the 

opposing HP to collide and form CP (Fig.  A1).  

     We used the Anton2 supercomputer [25] to simulate both WT and SLOW HPs for 2.5 µs. If there are 

hydrogen bonds between propeptide and key residues in any of the β subunits, we hypothesized the HP 

would be in an interacting state that cannot dimerize with another HP, thus termed non-dimerizable (D-). 

If there are no hydrogen bonds formed between the propeptide and the key residues, then the HP is non-

interacting, free to dimerize with another HP, thus dimerizable (D+). Fig. 2.3A illustrates the non-

dimerizable (interacting) and dimerizable (non-interacting) states.  We quantified interactions by 

calculating the number of simulation frames in which a hydrogen bond (2.4 Å distance) between a key 

residue and a propeptide residue is formed. For each timestep (0.24ns), we determine the number of 

hydrogen bonds formed and which state the HP is dimerizable or non-dimerizable. Consistent with our 

hypothesis, simulation results revealed that the SLOW mutant propeptide makes many more interactions 

with the key residues (Fig 2.3B).  The ratio of simulation frames in each state shows that WT HP exists in 

either a D+ (25%) or D- (75%) state in the 2.5 us sampled (Fig. 2.3B). The HP of the SLOW mutant nearly 
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always (99% of simulated time) resides in a D- state (Fig. 2.3B). Additionally, our simulations show many 

Figure 2.3: Conformational states definition and WT, and SLOW hydrogen bonds profile. (A) Ribbon 

diagrams of the β subunit (blue) with a full length propeptide (purple). Key residues are shown as colored 

atoms. (Left) β subunit of a HP in a non-dimerizable state with inset highlighting interactions. (Right) β 

subunit of HP in a dimerizable state for comparison. (B) Bar graph of percent of simulated time frame in D+ 

and D- states for both WT and SLOW β subunit mutants. Error bars signify SEM for 3 MD simulations of 

2.5 µs. (C) Bar graph showing the total number of hydrogen bonds formed between the propeptide and the 

key residues as an average over 3 MD simulations for both WT and SLOW Half-Proteasomes (HPs). Error 

bars show SEM for 3 MD simulations of 2.5 µs. 
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hydrogen bonds between the propeptide, and key residues of the SLOW mutant and fewer hydrogen bonds 

formed in the WT HP (Fig. 2.3C).   

    Our simulation results suggest that adding the extra charged residues to Region III of propeptide makes 

it further extensible and interacts with key residues by making more noncovalent interactions (Fig. 2.3). 

The hydrogen bonds could be perturbing the native interactions required for CP formation. Hence, the HP 

with a longer propeptide Region III is not in the required confirmation to dock with the opposing HP. This 

may be why the SLOW mutant has no CP assembly observed even after 24 hours of incubation time (9). 

    

2.3.3 Charged residues in Region III yields a HP in a mostly dimerizable state 

As observed in the SLOW mutant, the addition of charged residues delays CP assembly; we further 

investigated the role of charged amino acids and hypothesized that mutating charged residues to non-polar 

amino acids would potentially reduce these critical interactions. To determine the role of Region III charged 

residues on assembly, we selected two charged residues in WT Region III, E-9, and D-12, and 

computationally mutated them to Alanine using CHARMM GUI [28] to generate what we term as FAST 

mutant (Fig. 2.4A). In the WT sequence, both residues make many interactions, specifically by forming 

side-chain hydrogen bonds with several amino acids that form salt bridges across the HP dimerization 

interface, particularly R29 and N24 residues. We predicted that mutating the Glutamic Acid and Aspartic 

Acid to Alanine would potentially contribute to faster dimerization by making fewer non-covalent 

interactions. We ran similar MD simulations for 2.5 µs with this FAST HP mutant to test our hypothesis 

and quantified the ratio of simulated time the HP spent in the D+ vs. D- state. Analysis of the FAST mutant 

simulations revealed that interactions between the propeptide and the key dimerization residues were much 

less frequent than WT, i.e., about 11% instead of 25% in WT (Fig. 2.4B).  Further, the FAST HP formed 

fewer hydrogen bonds compared to the WT HP (Fig. 2.4C). As expected, interactions between the -9 and -

12 positions of the propeptide and the key residues were much less frequent (Fig 2.4B and 2.4C). This 

suggests that the FAST mutant could dimerize faster than WT.  
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Figure 2.4: WT and FAST hydrogen bonds profile. (A) Sequence of β subunit propeptide regions in WT 

(top) and FAST (bottom) mutants. Red bolded residues are the altered D, E to A. (B) Bar graph of percent 

of simulated time frame in D- and D+ states for both WT and FAST β subunit mutants Half-Proteasomes 

(HPs). Error bars signify SEM for 3 MD simulations of 2.5 us. (C) Bar graph showing the total number of 

hydrogen bonds formed between the propeptide and the key residues as an average over 3 MD simulations 

for both WT and FAST HPs. Error bars show SEM for 3 MD simulations of 2.5 us. (D) 4-20% Tris-Glycine 

native gels from in vitro assembly assays at increasing time points (time points labeled above each lane in 

minutes) for WT (top) and FAST (bottom) β subunit mutants. Gels were stained with Spyro Ruby protein 

and visualized with a BioRad Imager.  
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 Based on our computational predictions, we generated a double point mutation D-12A&E-9A variant (Fig. 

2.4A), using ligation independent cloning [24]. To compare the assembly rates of WT and FAST mutants, 

α and β mutant substrates were mixed in vitro and incubated at 300C at increasing time points from 0 

seconds to 180 minutes. This assay provides a readout of the ability of α and β subunits to assemble core 

particles. At each time point, we can visualize the CP assembled and the HP fractions remaining to be 

converted to CP (Fig. 2.4D).  We performed those experiments to obtain time course for WT and FAST 

proteasome CP assembly (Fig. 2.4D). Native gels show that, indeed, the FAST mutant forms CP faster than 

WT. In fact, after 30 mins, the FAST mutant has formed CP, and there is little to no detection of HP, 

suggesting all the HP’s have dimerized by this point. In contrast, at 30 minutes the WT subunits have 

formed some CP and HPs (Fig. 2.4D). Further, the SLOW has formed no CP at all by 30 minutes incubation 

[24]. The experimental results thus are consistent with the MD simulation predictions.  

 

 2.3.4 Hydrogen bond dynamics shows state transitions  

To look closer at the dynamics of hydrogen bonds formed over the simulation time for every β subunit, we 

characterized the hydrogen bonds formed between the subunits and the key residues as a function of time. 

The SLOW mutant has more hydrogen bonds forming between the key residues and all seven propeptides 

than WT (Fig. 2.5A, B); FAST had fewer hydrogen bonds than the WT (Fig. 2.5 A, C). Additionally, WT 

has a lower ratio of non-dimerizable states than the FAST mutant over the simulated 2.5 us. Thus, the 

dynamics of hydrogen bonds forming could provide insights into the mechanisms regulating the 

dimerizable and non-dimerizable states. Here, we used the Locally Weighted Scatterplot Smoothing 

(LOWESS) method [35] to capture the hydrogen bonds taking place between propeptides and key residues 

over time. LOWESS plots indicate that the HP needs about 500ns to reach a converged state after 

equilibration (Fig. A.3); this is primarily due to not having the solved HP crystal structure, the large 

complex size, and limited sampling using all-atom unconstrained MD simulations.  
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     LOWESS plots for our MD simulations show that during the MD simulation, WT and SLOW form more 

hydrogen bonds than the FAST mutant (Fig. 2.5A). The LOWESS plot for the FAST mutant shows frequent 

transitions from zero hydrogen bonds to multiple (Fig. 2.5A). This suggests that the FAST HP transitions 

from a dimerizable to a non-dimerizable state frequently in the span of a 2.5us simulation. These rapid 

transitions never occur in the SLOW HP, (Fig. 2.5A). After 500ns, the SLOW HP usually forms more than 

20 hydrogen bonds and thus in a non-dimerizable conformational state (Fig. 2.5A). Further, the WT HP 

transitions between dimerizable and non-dimerizable states based on the hydrogen bond count, but less 

frequently than the FAST HP (Fig. 2.5A) 

     We used violin plots to compare the overall distribution of hydrogen bonds across the simulations. Violin 

plots use kernel density estimates (KDE) [36] to depict distribution of hydrogen bonds formed for WT, 

FAST, and SLOW (Fig 2.5B). MD simulations are time-dependent, and to incorporate that in our statistical 

Figure 2.5: Hydrogen bond dynamics in MD simulations, shown for one replicate of each type. (A)(B)(C) 

LOWESS plots of the number of hydrogen bonds formed by the HP over simulated time (in ns) for a single 

MD simulation of WT (left), SLOW (middle) and FAST (right) β subunit mutants for the first replicate. 

Bold line represents the non-parametric LOWESS fit. LOWESS plots for remaining replicates are included 

in Supplementary Material. (D) Violin plot of distribution of hydrogen bonds formed over each of three 

independent MD simulations of WT (blue), SLOW (red) and FAST (purple) HPs. White dot in the violin 

plots represents average number of hydrogen bonds for that computational replicate. E) Categorical 

regression p-values to compare the WT and the SLOW, FAST mutants shown in D).  
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analysis for comparing simulations, we used heteroscedasticity and autocorrelation consistent Newey-west 

estimators to assess the statistical variability and determine if the overall behavior of WT differs from 

SLOW and FAST. For this, we did a detailed analysis by categorial regression of the number of hydrogen 

bonds formed in WT vs mutants as a function of time (Tables in A.9). We observed that all the WT differ 

significantly from SLOW and FAST and display a significant p-value with for intercepts or slopes (Fig. 2. 

5D). We have only shown these tests for one replicate in Fig. 2.5D the complete details are described in 

Tables in A.9.  

     The multimeric structure of proteasome relies on the thermodynamics principle of cooperativity to 

assemble subunits into a CP [37]. We looked at kymographs for each simulation to investigate if the WT, 

FAST, and SLOW β subunit mutants show cooperativity. Kymographs are graphical representations of 

hydrogen bonds made by the propeptide of each β subunit over time. These graphs allow us to determine if 

β subunits displayed cooperativity among themselves. In other words, if one β subunit propeptide interacts 

with the key residues, does that influence the other β subunits to interact as well? In Fig. 2.6, we show the 

number of hydrogen bonds formed in each β subunit over time for WT (Fig. 2.6A), FAST (Fig. 2.6B), and 

SLOW (Fig. 2.6C) HPs. We observed no cooperativity between the subunits in any of the mutants. 

Interestingly, we observed a heterogeneous distribution of hydrogen bonds among the seven β subunits. As 

Figure 2.6: Hydrogen bond dynamics in each β subunit. Kymograph of the number of hydrogen bonds 

formed over simulated time for each β subunit in the HP of WT (A), SLOW (B), and FAST (C) mutants. 

Colors correspond to the number of hydrogen bonds formed based on colormap with the brighter red as a 

higher count. 
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expected, the SLOW mutant had a higher number of hydrogen bonds across the subunits than WT and 

FAST. We also observed heterogeneity among the subunits, i.e., once a β subunit reaches a non-dimerizable 

state, it likely stays there for longer timescales (much longer than 2.5 µs).  For WT we observed that the 

individual subunits flip between D+ and D- states. In the SLOW mutant we observed that if a subunit is in 

D- state (like β subunit-7) it stays for a longer time (> 2.5 µs) in the non-dimerizable state. For the FAST 

mutant, we saw even more transitions from D+ to D- than the WT or SLOW.  

 

2.4 Discussion 

The assembly of the active proteasome Core Particle (CP) has been previously studied in several species 

[18, 19, 38]. Since the proteasome is a crucial complex for regulating the cell cycle, immune response and 

maintaining homeostasis, the order of events taking place during CP assembly requires temporal control. 

Our understanding of the detailed structural aspects of the molecular mechanisms regulating these 

hierarchal assembly pathways is largely unknown. To our knowledge, this work is one of the first studies 

on the complex dynamics of CP assembly at an atomic level. 

     A critical step in CP assembly, which is conserved across species, is the dimerization of two Half 

Proteasomes (HPs). In the bacterial species Rhodococcus erythropolis (Re), experimental assembly assays 

show that the HP is quickly assembled while the CP assembly takes considerably longer. Our previous 

work identified the propeptide on the β subunits as crucial for dimerization (22). The evolutionary 

motivation for this separation of time scales remains unknown. Here we describe a novel mechanism to 

explain this separation of time scales. We observe a structural transition that we hypothesize physically 

blocks the dimerization of two HPs, which may explain how the propeptide regulates dimerization rates. 

     Here, we performed all-atom Molecular Dynamics (MD) simulations with Re HP, focusing on WT and 

β propeptide mutants. A significant result from our MD simulations suggests that the length and residue 

composition of the propeptide regulate the conformations for an HP to dimerize based on the interactions 

the propeptide makes with key residues – those associated with binding the opposing β ring. Our work 
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indicates that the HP exists in one of the two states that drive CP assembly, a dimerizable state or D+ that 

leads to two HPs association and a non-dimerizable or D- state that does not. Experimental evidence shows 

that with WT subunits, the HP forms quickly, while dimerization of HPs to form the CP takes relatively 

longer [15, 19]. With β subunit mutants with a longer propeptide, i.e., SLOW mutant, experiments show 

that the CP is assembled even slower, and no CP formation is seen after 24 hours [24].  Our MD simulations 

show that the SLOW HP propeptides form more hydrogen bonds with key residues at the dimerization 

interface (β ring). This binding implies that these interactions prevent the HP from associating to the 

opposing HP, therefore maintaining the HP in a D- state. The WT HP spends less time in this state and is 

thus more likely to dimerize and form a CP. Further, MD simulations show that the polarity of the 

propeptide plays a role in the ability of the HP to dimerize. Our simulations with altered propeptide residues, 

in the FAST mutant, show an HP that forms fewer hydrogen bonds between the propeptide and the key 

residues than a WT HP. This suggests that the FAST β mutant HP is more likely to be in a dimerizable state 

than the WT. Our in vitro assembly assays show this mutant indeed forms CPs much faster. From our MD 

simulations, we believe that since the FAST HP is forming fewer hydrogen bonds than the SLOW mutant, 

and the FAST mutant is more likely to be in a dimerizable state and able to bind with another HP.  

    When the propeptide from one β subunit forms hydrogen bonds with the key residues of the same or 

neighboring β subunit (non-dimerizable subunit), the remaining β subunits propeptides do not necessarily 

form such hydrogen bond. However, our understanding is that even if a single β subunit is in the non-

dimerizable state, then likely, the HP cannot associate with another HP. It would be interesting to examine 

the β subunits involve in cooperative transitions to make other β subunits non-dimerizable. From the 

kymographs (time evolution of hydrogen bonds for β subunit), we observed that subunits behave 

independently in all simulations (Fig. 2.6 and Fig. A.8). Further, in our kymographs, we observe 

heterogeneity among these subunits, wherein the WT and the FAST the β subunits flip a lot between D- 

and D+. However, in the SLOW mutant kymographs, we do not observe such transitions between the states; 

instead, we see that the SLOW β subunits remain in the same state for more than 2.5 µs. For instance, in 

Fig. 2.6 B the β1, β5, and β6 are in D- states for most of the time. Furthermore, we did not observe any 
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cooperative transitions among the β subunits. In other words, if one β subunit flips to D- state it does not 

influence its neighboring β subunits to transit into D- states. Thus, every β subunit behaves independently 

and contributes to the overall HP conformation and hence dimerization state. Probably, a different metric, 

such as a Mutual Information measurement (26, 27), could quantify cooperativity; however, our 

kymographs did not suggest any such correlation.  

      The proteasome is conserved across all kingdoms of life, but the subunit sequences are different. The β 

propeptide is present on all β subunits with very less sequence conservation [39]. Our previous work shows 

the β propeptide in bacteria can be categorized into three regions and with different amounts of glycine’s 

in each region, and Region II being the most conserved among all bacterial species. However, the assembly 

pathway of different bacterial proteasomes remains unexplored, with the most common model system is 

that of Re. Future studies are critical to uncovering if the propeptide similarly regulates dimerization in 

other bacterial proteasomes. For example, in Mycobacterium tuberculosis (MT), the proteasome is 

implicated in the bacterium’s ability to resist macrophages [40-42]. Upon closer inspection, mob 

proteasome shares 64% sequence similarity with Re, suggesting that the flexibility in Region III might be 

a similar feature between the two bacterial species [24]. We hypothesize that this flexibility in Region III 

may also play a critical role in dimerization rates in other bacterial proteasome assemblies, like what we 

have observed here with R. erythropolis.  

     Our results also indicate a need for further structural studies to identify and capture the Re HP 

transitioning from a non-dimerizable to dimerizable state. Electron Microscopy (EM) studies have captured 

HP and CP with WT subunits [16, 43]; however, the structures formed with β mutant variants remain 

unknown. Further, the CP with β mutant variants could be inactive, thus obtaining high-resolution structures 

of these HPs and CP’s will be immensely valuable for understanding Re CP function and assembly. 

Notably, there may be a structural mechanism regulating dimerization states in the mutant HP.   

     In some eukaryotic proteasomes, β subunits have longer propeptides than the bacterial species [13, 39]. 

Eukaryotic proteasomes also require chaperone’s assistance during assembly [38, 44, 45] to control the 

addition of subunits and conformational states during HP formation. It is, therefore, possible that the Re 
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bacterial propeptide acts like a chaperone to regulate dimerization rates by controlling the conformational 

states. However, there is a significant need to verify this experimentally. To our knowledge, there are no 

experimental studies that measure the assembly rates of proteasomes other than in Re. However, if subunits 

can evolve to have a faster assembly, why has the proteasome evolved to display a separation of time scales 

regulated by the propeptide? We speculate that the slow HP dimerization step serves as a checkpoint in 

cells to ensure the correct stoichiometry of the intermediates before dimerizing to form a CP and thus 

prevent formation of aberrant CP-like (less than 28 subunits) structures. Further, there is a possibility that 

mutations to the propeptide, particularly those altering length and polarity, render the CP inactive and thus 

are not beneficial. The in vitro assembly assays discussed in this study cannot demonstrate if the propeptide 

is autocatalytically cleaved off and CP renders active after assembly. Mutants can often have slower activity 

rates than WT [5, 24]. To further validate assembled CP, activity assays and FAST mutant are essential to 

confirm if it has altered CP activity. 

     Developing a complete understanding of how propeptide affects CP assembly will require 

comprehensive computational and experimental efforts in other organisms [13, 39, 46, 47]. However, 

several open questions remain unanswered; for example, would mutating the other charged propeptide 

residues in Region III of the FAST mutant (ARG -15 in Fig. 2.4A) make CP assembly even faster?   Has 

the pathogen mob like Re have a similar mechanism for the separation of time scales in its CP? Moreover, 

why has this slow dimerization step evolved if there was a possibility of making assembly faster?  There 

are still numerous long-standing questions to be answered in understanding proteasome assembly. These 

questions will require additional atomistic simulations and experiments for seeking out answers.  

     Our result on molecular simulations emphasizes the importance of the HP’s ability to dimerize as the 

propeptide length and composition regulate it. This work will also lay the foundations for structure-based 

drug design by utilizing the HP structures from simulations as a template, where small-molecular assembly 

inhibitors can lock the HPs in a non-dimerizable state. The development of effective and potent CP 

assembly inhibitors will also lead to a framework where this approach of using MD simulation structures 

as a template, to target diseases like tuberculosis [48, 49], cancer [9, 50-52], and other diseases [53, 54]. 
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Ultimately, our work highlights the critical need of studies combining biophysical models and experiments 

to elucidate hierarchical assemblies.  
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Chapter 3 

   

Global conformational shifts act as a 

checkpoint in bacterial proteasome Core 

Particle assembly 
 

3.1 Introduction 

Proteins bind each other through noncovalent bonds and form macromolecular complexes. Macromolecular 

machines, like the proteasome, ribosome, spliceosome, AAA ATPases, GroEL, and virus capsids, entail 

many noncovalent interactions so that their subunit interfaces combine and form the final structure [1]. In 

general, macromolecular machines are assembled from a set of individual subunits or monomers. The 

assembly pathways for macromolecular machines are almost always hierarchical, with a sequence of 

specific steps necessary to obtain the final complex. A classic example is the proteasome, which also 

exhibits a hierarchal pathway to assemble into the final complex. 

     Proteasomes are critical proteases involved in the degradation of damaged and unwanted proteins. Since 

they are involved in regulating the turnover of numerous proteins in cells, their activity is tightly controlled 

[2]. The proteasome 20S Core Particle (CP) forms the central component of the complex and is found in all 

three kingdoms of life. The 20S CP quaternary structure is highly conserved and consists of four stacked 

rings. Each ring comprises seven subunits, the outer two rings are made up of α subunits, and the inner 

rings are made up of β subunits (which are catalytically active) [2]. In prokaryotes, the four CP rings are 

homo-heptameric (made up of one type of α and β subunits), whereas, in eukaryotes, the rings are hetero-

heptameric (made up of seven distinct types of α and seven distinct β subunits).  

     Assembly of proteasome CP has been widely studied in organisms ranging from humans to archaea and 

bacteria. CP assembly begins with forming a Half Proteasome (HP- α7β7) for all species (Fig. 3.1). All the 
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β subunits are synthesized in an inactive zymogen form with a propeptide at its N-Terminal. When two HPs 

dimerize, the propeptide is auto-catalytically cleaved, and an active CP is formed [3, 4]. Thus, a CP 

assembly does not occur unless two HPs dimerize and form the necessary interactions (Fig. 3.1). The 

pathway leading to the formation of the HP can differ depending on the organism in question. Still, CP 

formation always occurs from the association of two HPs in all organisms. Interestingly there is no evidence 

of proteasome CPs that have less than 28 subunits arranged as four stacked rings. One of the critical 

questions about CP assembly currently unanswered is how does the HP "know" that it must associate with 

another HP? 

 

 

In this work, we chose the bacterial Rhodococcus erythropolis proteasome CP as our model system. In 

prokaryotes, CP assembly is spontaneous and occurs without using any chaperones or assisting assembly 

factors. But, in all organisms, CP assembly is universally hierarchical (Fig. 3.1), and HP is an obligatory 

intermediate in the CP assembly of any organism. In Chapter 2, we addressed a critical question in CP 

assembly of bacterium Rhodococcus erythropolis (Re), a close relative of Mycobacterium tuberculosis 

species. Specifically, we investigated the dimerization of two HPs into a CP in Re.  While the findings 

discussed in Chapter 2 provide insights into the separation of time scales in CP assembly, many questions 

Figure 3.1: Schematic of the 20S proteasome assembly. The α subunits are shown in green and β subunits 

are shown in blue, and the propeptide in purple. Two Half Proteasomes (HP) associate to form a Pre-holo 

Core Particle and then the propeptide is autocatalytically cleaved off, assembling into the active CP.  
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about CP assembly remain unanswered. As mentioned above, HP dimerization occurs only when both 

reactants are true HP (α7β7) structures. Experimental work on Re CP assembly has shown that intermediates 

which are near-HP, for example, α6β7 (i.e., the HP missing a single α subunit), α7β6, and α6β6 occur during 

assembly and that they persist for non-trivial amounts of time [3, 5, 6]. However, these intermediates never 

dimerize, either with one another or with "true" α7β7 HPs, to form aberrant CP-like structures (e.g., α6β7β7α7) 

(Fig. 3.2A, B and C). For instance, in the near-HP intermediate α6β, the entire β ring is formed. Yet, these 

intermediates never dimerize with the α7β7 HP (Fig. 3. 2A). In some way, the information about the missing 

subunit is transmitted over ~ 30 Å to the HP interface to prevent dimerization. There can be many such 

intermediates during CP assembly, but we consider three important near-HP intermediates in this work, as 

shown in Fig. 3.2A, B, and C. It is currently unknown how the proteasome subunits allosterically 

communicate to achieve hierarchical assembly pathways.  

     Incorrect assembly and incomplete structures like α6β7β7α7 or α6β6β7α7 would likely allow proteins to be 

degraded in an unregulated manner and disturb the cell's homeostasis. Additionally, such structures might 

lead to kinetic trapping, reducing the assembly yield and further influencing assembly dynamics. We chose 

these three intermediates α6β7, α7β6, and α6β6 as they are on-pathway intermediates for the various proposed 

CP assembly pathways, which are discussed in detail in Chapter 4. We initially hypothesized that the β 

propeptide might cause conformational transitions that make the near-HP states non-dimerizable. To date, 

there have been no molecular simulation studies for understanding the type of allosteric communication 

that characterizes the intermediates.  

     To investigate our hypothesis, we employed Molecular Dynamics (MD) simulation on our model system 

- Rhodococcus erythropolis (Re). MD is an appealing method to study processes at the molecular and 

atomistic level, where traditional experimental techniques cannot provide detailed insights. A major 

limitation for assembly intermediates in Re is that we have no HP or any other intermediate crystal 

structures available. We decided to delete the subunits in the crystal structure (PDB:1Q5R) for the Re CP 

to overcome this. Since these modified starting structures are not obtained from the solution, we need 

extended MD simulation runs to achieve equilibrium sampling.  
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Figure 3.2: Schematic showing three examples of reactions that do not occur in CP assembly. A)  The near-

HP intermediate α6β7 does not dimerize with a true HP (α7β7). B) The near-HP intermediate α6β6  does not 

dimerize with an HP C) The near-HP intermediate α7β6 does not dimerize with an HP.  
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For this, we have used the special purpose supercomputer Anton and obtained 2.5 µs of simulation for three 

replicates of each α6β7, α7β6, and α6β6 intermediates. We compared these results to the WT Re HP 

simulations described in detail in Chapter 2 of this dissertation.   

     Our MD simulations reveal global conformational shifts in these near-HP structures, particularly 

distortion in β ring symmetry, tilt, and geometry. These distortions change the entire confirmation and the 

structure of the intermediate. For the α7β6 and α6β6 simulations, we observed changes in the β ring geometry; 

the angles made by the β subunits relative to one another changed significantly when compared with the 

HP simulations. For α6β7, we observed that the β subunit with a missing alpha (β7) has a different tilt angle 

changing the interfaces with its neighboring β subunits. It thus appears that our initial hypothesis regarding 

β propeptide is not the primary contributor for the non-dimerization of near-HP intermediates; instead, a 

global conformational shift occurs in the intermediate's ensembles. Taken together, all the conformational 

changes and distortions in symmetry change the dimerization interface and prevent critical interactions that 

are needed in the near-HP structures; thus, they are likely prevented from associating with themselves or 

another HP.   

     The insights from simulations elucidated the mechanism of why near-HP intermediates cannot dimerize 

with HPs or themselves. Our work strongly suggests that the interfaces between the protein subunits have 

evolved to be frustrated [7, 8] and therefore are "intrinsically frustrated." For instance, we observed from 

the simulations that the β subunit angles in the α6β6 simulations are not the same as we see in HP simulations. 

Therefore, the addition of the last αβ dimer generates a non-optimal set of β subunit angles, suggesting the 

observed bond angles in the CP structure are frustrated. These findings suggest that such global 

confirmational shifts may occur in many hierarchical assembly pathways and not just proteasomes. If this 

true, then the allosteric mechanism among subunits of macromolecular assemblies acts as a checkpoint 

factor to prevent aberrant structure formation and as an evolutionary approach to maximize assembly yields 

of complexes. Additionally, understanding the molecular mechanism of the allosteric communication, 

which prevents dimerization of near-HP intermediates, will give insights into specific interactions in α and 

β subunits. These interactions can be modulated to develop specific and less toxic drugs in the future. 
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3.2 Materials and Methods 

3.2.1 Modeling missing propeptide residues 

The starting structure for the Rhodococcus erythropolis CP was obtained by taking the top-half of CP (Point 

mutant CP with the propeptide) coordinates, i.e., 14 chains from PDB 1Q5R [4]. We mutate the A33 to 

K33 in the β subunits (as the crystal structure is a point mutant). The missing regions of the propeptide were 

modeled using Rosetta Comparative Modeling [9, 10] hosted at the Robetta server. For this, we first 

modeled a single αβ dimer and then repeated the same dimer model to obtain the HP structure. We used the 

Wild Type (WT) modeled structure used for simulations in Chapter 2.2 as our starting structure. The three 

intermediates were generated from this structure by deleting the relevant chains in CHARMM-GUI [11].  

 

3.2.2 Molecular Dynamics simulations setup 

The simulation inputs were generated using the CHARMM-GUI solution builder module [11-13]. The 

systems were neutralized with 100mM NaCl (the same salt concentration used for experiments), and 15A° 

water was added on each side of the protein in a rectangular box. The detailed components of the 

simulations are described in Table B.8. We performed a short minimization followed by 5ns of NVT and 

60ns NPT equilibration with a 2fs time step using the GPU version of AMBER18 [14, 15] using the 

CHARMM36m forcefield [16]. Each simulation took ~ 48 hours to finish 65ns of equilibration on NVIDIA 

RTX 2080Ti GPU. After finishing AMBER equilibrations, the coordinates and restart files were used to 

initiate 2.5 microseconds simulations on Anton2 for long time scale Molecular Dynamics simulations [17]. 

The NPT ensemble and CHARMM version [18] of the TIP3P water model [16] were used for the Anton 

simulations. Additionally, the pressure and temperature are constant at 1bar and 303.15 K using Multigrator 

integrator and default NPT parameters [19]. The coordinates are saved every 0.24ns. For the RESPA 

(Reference systems propagator algorithms) scheme, every second time step was used for evaluating long-

range interactions. The pressure was controlled using the Martyna-Tobias-Klein (MTK) barostat [20] and 

an interval length of 480 picoseconds. The temperature was maintained by the Nose-Hoover thermostat 
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[21] with an interval length of 24 picoseconds. A relaxation time of τ=0.041667 picoseconds was used for 

the barostat and thermostat. All systems were simulated under periodic boundaries in the NPT ensemble. 

 

3.2.3 Estimation of the angles (β)  of the β subunits 

To estimate the β, which is the angle made by every β subunit with reference to the center of the β ring, 

we used the center of mass and fundamental vector algebra operations. For this, we select all atoms in the 

β ring (without propeptide) and translate its center of mass to origin. Next, we select every β subunit (βn) 

in a clockwise direction (where n refers to the number of β subunits in the simulation), and its left 

neighboring β subunit (βn+1) and obtain the center of mass for both these selections (Fig. B.3.1). This results 

in two vectors for each set of β subunits. Next, we use the dot product to calculate the angle made between 

these two β subunits (β) (Fig. B.3.1). This process is repeated for seven β subunits in α6β7 and HP 

simulations, and six β subunits for α7β6, and α6β6.  To estimate the distortion in β ring geometry of the 

intermediates for intermediates α7β6, and α6β6, we calculate angle β6-β1 to which is then compared with the 

β6-β1 of HP and represents the extent to which the α7β6 and α6β6 structures are collapsing.  

 

3.2.4 Estimation of the angles (βØtilt) of the β subunits 

To estimate the βØ tilt, which is to estimate the rotation of β subunits in the intermediate’s simulations. For 

this, we select the β ring (without propeptide) and translate its center of mass to origin. As we are estimating 

the torsional angles, we need to have four points in two planes. One set of points are the center of mass of 

two selected β subunits, and the other set of points are the center of mass of a helix (H1: residues 42 to 62) 

in the β subunits. Next, we select every β subunit in an anti-clockwise direction and its right neighboring β 

subunit and obtain the center of mass for both these selections (Fig. B.3.2). So, we get two vectors for every 

four points for each set of β subunits. Next, we use these vectors to calculate the torsional angle between 

the β subunits, which we refer to as "βtilt” (Fig. B.3.2). This process is repeated for seven β subunits in 

α6β7 and HP simulations, and six β subunits for α7β6, and α6β6.   
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3.2.5 Statistical analysis for βØ and βØtilt values 

To estimate the significance of changes in βØ and βØtilt for the WT and intermediates, we have used 

categorical regression using the Newey-West estimator using R packages [22]. This test is used to determine 

if the time-dependent behavior of α7β7 is different from α6β7, α7β6, and α6β6, in other words, to estimate the 

probability that they are from the same distributions. Unfortunately, MD simulation data is time-dependent 

and hence autocorrelated; it is challenging to find a statistical test to estimate the significance of our 

simulations. To account for these limitations, we used Newey-West estimators [22].  The p-values from the 

categorical regression statistical tests for every replicate and each β subunit for β and βØtilt calculations 

are reported in Appendix (Figs. B.5 and B.7). 

 

3.3. Results 

3.3.1 Region I have higher RMSF in all the near-HP’s than HP simulations 

Electron microscopy, Mass spectrometry, and native-gel experiments provide evidence of near-HP 

intermediates like α6β7, α7β6, α6β6, and α6β5, etc. during Core Particle (CP) assembly [3, 5, 6]. These near-

HP intermediates are non-obligatory and assembly-incompetent as they do not dimerize with each other or 

another "true Half Proteasome" (HP- α7β7) to form a CP (Fig. 3.1). In Chapter 2, we focused on a specific 

step in Rhodococcus erythropolis CP assembly, where we demonstrated that the β propeptide is involved 

in regulating the dimerization rates. Changes to the Region III length or amino acid composition impact the 

time required for CP assembly. Here, we focus on a different aspect of assembly, i.e., why an HP and near-

HP intermediates do not dimerize.  We hypothesized that similar to the separation of timescales, the 

propeptide induces transitions in near-HP intermediates to a non-dimerizable state that cannot associate 

with an HP, and dimerization is highly unlikely to occur. α7β7 
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     The Re propeptide is 65 residues long and is categorized into three regions based on position in the Re 

HP, conserved residues, secondary structure, and electron density of propeptide residues (Fig. 3.3.1A). The 

three propeptide regions (sequence numbering refers to Re crystal structure) are shown in (Fig. 3.3.1A, B). 

Region I is N terminal Residues from -65th to -43rd, which are near the α subunits. Next, Region II: Residues 

from -42nd to -27th have several conserved residues and forms the crucial central box region [3]; this region 

residues form contacts with both α and β subunits. Lastly, Region III comprises from Residues from -26th 

to -1st, which are near the β subunits and located around the HP dimerization interface.  

     To investigate our hypothesis that the propeptide induces transitions that make the near-HP 

conformations non-dimerizable, we performed all-atom unbiased MD simulations of three intermediates 

α6β7, α7β6, and α6β6. These intermediates are missing one or two subunits from the true HP. Our simulations 

Figure 3.3.1: A) Re propeptide sequence showing the three regions. The residues shaded with a grey 

background do not have electron density in the crystal structure (1Q5R) and are modeled. Region I (magenta) 

is near to α subunits, Region II (teal) is at the interface of α and β subunits, and Region III (purple) is near β 

subunits and the HP dimerization interface. B) A α (green) and β (blue) dimer and the Re HP are shown in 

cartoon representation.  
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for the HP are extracted from a mutant CP (PDB: 1Q5R) crystal structure that cannot cleave the propeptide. 

One significant challenge faced in this work is that there are no available structures of the intermediates we  

wish to simulate.  All available structural data is for the entire CP and not for any of the CP assembly 

intermediates. So, we begin all the intermediate simulations using coordinates extracted from the top half 

of a CP structure and then deleting the subunits (Fig. B.1) as needed in CHARMM-GUI [11]. 

 

3.3.2 Propeptide Region I is highly flexible in near-HP intermediates 

All-atom MD simulations were run for 2.5 µs on the Anton2 supercomputing resource [17]. After 

visualizing the trajectories, we observed that Region I (-65th to -43rd) of the propeptide was highly flexible 

and fluctuated more than Region II (-42nd to -27th) and Region III (-26th to -1st). Interestingly, we also saw 

that Region I of the propeptide comes near the space where the missing subunits (either α or β) would 

occupy if it were a complete HP. In other words, the propeptides of the neighbors of missing the β subunits 

or diagonally opposite of the missing β subunits essentially move to partially fill in the space of the missing 

α or β subunits.  

     We performed a Root Mean Square Fluctuation (RMSF) analysis to calculate the overall fluctuations of 

the entire 65 residues long propeptide for HP-α7β7 and the three intermediate simulations. As seen in Fig. 

3.3.2 the Region, I have a 3- 4Å higher RMSF than the Re HP. We also observed that Region III does not 

fluctuate as much for near-HP intermediates as for WT and the mutants used in the earlier study the Chapter 

2 (Fig. B2). The Region I RMSD of the intermediate simulations further confirmed that all the three 

intermediates have a notably higher Region I RMSD than the HP, and the missing subunits likely give the 

compact propeptides more space and mobility inside the rings.  
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3.3.3 The α6β6 intermediate collapses into a more compact information  

The α6β6 like the other simulations began with the crystal structure and were equilibrated for 65 ns before 

running on the Anton resource. Nearly after ~ 500-600ns, the subunits without a neighbor start to come 

closer to one another. At the beginning of the simulation, we see a void for the missing β in α6β6 (Fig. 3.4.1 

and 3.4.2). With time the β1 and β6 subunits come very close to each other and fill up that void (Fig. 3.4.1).  

Figure 3.3.2: RMSF plots of propeptide backbone atoms in WT and intermediates are shown for three 

replicates and averages over 2.5 microseconds. The pink shaded regions indicate the residues with missing 

electron density, and grey regions have electron density. The panel's A) B) C) and D) are for the four different 

intermediates simulations as indicates. The three lines correspond to the three replicates for each system.  
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This conformational shift is clearly seen in the bottom view of β subunits; the closed conformation is seen 

at the end of 2µs (Fig. 3.4.2) and highlights the structural rearrangement. This interesting structural 

rearrangement could be the structure of α6β6 in solution, but we do not have any crystal structures of α6β6 

or any of the intermediates. It is also interesting to see that these changes are for the entire α6β6 and not just 

one or two subunits.  

  

 

  

 

 

 

 

 

 

 

 

Figure 3.4.1: Side view of α6β6 MD simulations at the beginning (0 seconds) and the end of 2μs shown in 

surface representations. The α subunits are in green, and the β subunits are in six different colors.  

 

Figure 3.4.2: Bottom view of β subunits in α6β6 MD simulations at the beginning (0 seconds) and the end of 

2μs shown in surface representations. The α subunits are hidden, and the β subunits are in six different colors 

as indicated.  
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3.3.4 The α7β6 intermediate shows β subunits getting closer 

As observed in α6β6 we also noticed structural rearrangements in the β ring for α7β6.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.1: Side view of α7β6 MD simulations at the beginning (0 seconds) and the end of 2μs shown in 

surface representations. The α subunits are in green, and the β subunits are in six different colors.  

 

Figure 3.5.2: Bottom view of β subunits in α7β6 MD simulations at the beginning (0 seconds) and the end 

of 2μs shown in surface representations. The α subunits are hidden, and the β subunits are in six different 

colors as indicated.  
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3.3.5 α7β7 simulations shows no similar transitions as seen in α6β6 and α7β6 

The conformational transitions that we had observed in the intermediate simulations are likely due to the 

lesser stability of the interfaces, which arises from missing subunits. As a control simulation, we looked at 

the HP (α7β7) simulations (Chapter 2) we ran under the same conditions and simulation length. We did not 

observe any drastic transitions in any of the β subunits (Fig. 3.6.1 and Fig. 3.6.2). The HP side view and 

the bottom view of β subunits show transitions that reflect protein dynamics and are likely how the HP 

structures look in the solution.   

Figure 3.6.1: Side view of α7β7 – HP MD simulations at the beginning (0 seconds) and the end of 2μs shown 

in surface representations. The α subunits are in green, and the β subunits are in seven different colors.  

 

Figure 3.6.2: Bottom view of β subunits in α7β7 - HP MD simulations at the beginning (0 seconds) and the 

end of 2μs shown in surface representations. The α subunits are hidden, and the β subunits are in seven 

different colors as indicated.  
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3.3.6 The angle between β subunits (β) in intermediate is significantly different from HP 

simulations 

All 20S proteasomes have a C2 symmetry [23]; having such symmetry is advantageous for protein 

complexes because they offer increased stability, cooperativity and lead to lower energy complexes. We 

designed a metric β to quantify the changes and distortion seen in the simulation trajectories (β). Here, 

we calculate the angle made between every β subunit and its neighboring β on the right-side and the center 

of mass of the seven membered β ring (Fig. B.3). The Re HP crystal structure has β around 510 for all β 

subunits; we hypothesized that the intermediates would have a considerably different number and 

distribution from a β of 510.  

     The violin plots in Fig. 3.7 describe the distribution of β values for each β subunit in the simulation 

from 500ns to 2.5μs (500 ns simulations are considered equilibration). The median values of β (for all 

seven β subunits like the initial β1-β2 etc.,) in α7β7 and α6β7 are around 500- 600 (Fig. 3.7A, B). As seen in 

Fig. 3.7 A, B, the distributions for all β subunits do not fluctuate much above the β that is seen in the Re 

crystal structure (510). The α6β7 looks very similar to α7β7 as it has all seven β subunits, and this helps to 

maintain the total of about ~3600 for the entire β ring. We see by visualization (Fig. 3.7C, D) that the other 

two intermediates, α6β6 and α7β6, have a very different distribution when compared to α7β7 and thus are in a 

distinctly different conformation and symmetry. This distortion in ring geometry and shape indicates a 

global conformational transition in the intermediates. Very likely, the interfaces in α6β6 and α7β6 are likely 

not in the correct orientation and conformation to associate with another HP   

      For α6β6 simulations, as seen in Fig. 3.7C, the subunits β1-β4 have the β much higher than α7β7. 

Interestingly, the β6-β1 angle has a broad distribution, indicates the position where the missing β occupies 

becomes collapsed. Moreover, when we compare the same β6-β1 angle in α7β7 (HP), the value should be 

1020.  Therefore, the global conformational shifts bring β1 and β6 very close, and thus another β subunit 

cannot easily fit into the ring due to the steric hindrances. The β for subunits β6-1 (Fig. 3.7C and Fig. B.4C) 

rapidly decreased after 500ns, indicating that the symmetry of the intermediate has changed.  Similarly, for 
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α7β6 in Fig. 3.7 D, the incomplete β ring symmetry is distorted, and the structure is also more closed and 

collapsed. We also see that the β subunits which have neighboring β and α subunits, specifically β2-β3 and 

β3-β4, are very distorted and different from the HP structures shown in Fig. 3.7A. This is because the β6 is 

B

A
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getting closer to β1 as shown in red violin (Fig. 3.3 D), and this forces the distant β subunits to have a higher 

β to retain the ~3600 total angles (sum of all seven β subunits). 

 

 

C

D

Figure 3.7: Violin distributions of β for all β subunits in different colors of the four sets of simulations. A) 

α7β7 (HP) simulations and their distributions. B) α6β7 C) α6β6 including the β6-1 of α7β7. D) α7β6 including the 

β6-1 of α7β7 in blue.  
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     The set of key residues at the HP dimerization interface described in Chapter 2 (Fig. 2.2) are a part of 

highly critical interactions that drive CP assembly; any perturbations to interactions has a drastic impact on 

the CP formation [24]. After looking at the β distributions and the snapshots from simulations, it is very 

unlikely for the key residues of another HP to bind with near-HP intermediates and participate in essential 

interactions like salt bridges, hydrophobic interactions, and hydrogen. Hence, we conclude that the α6β6 and 

α7β6 intermediates are in a non-dimerizable state and incorrect conformation to associate with an HP. 

Change in β as a function of simulation time is shown in Fig. B.4. We can see the heterogeneity among 

the β subunits and clear outliers that distinguish the intermediates, especially α6β6 and α7β6, from the HP. 

Though we did not see anything notably distinct in β distributions for α6β7, we did observe (Fig. 3.5) that 

a few of the β subunits which are around the missing α attain a different conformation and are distinct from 

the other subunits throughout the trajectory. Very likely, α6β7 follows a different mechanism than α6β6 and 

α7β6 for not associating with an HP in the CP assembly step.  

 

3.3.7 Statistical Analysis for β 

A common feature of Molecular Dynamics simulations involving multiple replicates is that independent 

simulations can evolve differently and lead to different results, despite starting from the same starting 

structure and parameters. A significant challenge with MD simulations is that they are time-dependent and 

autocorrelated, and this needs to be considered in any statistical analysis.  We thus have used the Newey 

West estimators [22], which are robust to autocorrelators and heteroscedasticities, with categorical variables 

to account for these factors. Categorical variables are used as separate binary variables for every α7β7 

replicate and every intermediate replicate. The linear regression, estimates, and tests are done using the 

linear model (lm) function in R 3.5.2 [25]. 
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     To consider that multiple simulation replicates can lead to different results, we have done a pairwise 

categorical regression, i.e., every HP replicate (α7β7) is compared with every intermediate. Since we are 

looking for changes in β subunits, all the β subunits comparisons are tested.  

Our null hypothesis is that there is no statistical difference in β values between the HP (α7β7) and 

intermediates. The regression model is of the form   y =  β0 + β1.  X + B2. C + B3. C. X + ε where y is the 

β,  β0 is the intercept for α7β7, β1 is the slope of α7β7, β2 is the intercept of intermediate, β3 is the slope 

of intermediate, ε is the error term, and C is the categorical variable. We have shown only a subset of 

statistical results for i.e., β  for β6-β1 in α6β6 and α7β6 simulations in Tables 3.8.1 and 3.8.2 and the entire 

set of statistical results are in Fig. B.5. The p-values with insignificant slopes are highlighted in blue.        

     Initially, a significance of α=0.05 was used and later, we corrected it for multiple hypothesis tests, using 

the Bonferroni adjustment, which changes the form α from 0.05 to 1.95X10-4 (α6β6 and α7β6) where n (216) 

refers to the total number of statistical tests done. The p-values in Table 3.8.1. confirm that β distributions 

of β6-β1in α6β6 simulations are significantly different from the β distributions of β6-β1in HP simulations.  

In Tables 3.8.1. and Table 3.8.2 the p-values with the HP slope being insignificant (blue highlighted) 

indicate that the β in HPs will not change with time, and the simulation has reached its convergence. But 

Table 3.8.1: p-values for the intercepts and slope from Newey-West estimators for the β as a function of 

time (500ns to 2.5μs) in HP (α7β7) and the intermediate (α6β6) simulations. The p-values of slopes or intercepts 

of HP that are insignificant are highlighted in blue.  

 

Table 3.8.2: p-values for the intercepts and slope from Newey-West estimators for the β as a function of 

time (500ns to 2.5μs) in HP (α7β7) and the intermediate (α7β6) simulations. The p-values of slopes or 

intercepts of HP that are insignificant are highlighted in blue.  
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the β slope in α6β6 and α7β6 is significant in all replicates and will change with time, and hence we likely 

will observe more distortions to β.  Overall, the statistical results conclude that besides a few exceptions 

(red highlighted p-values in Tables B.5), all the replicates of the intermediate simulations are significantly 

different in their β from the HPs β, which confirms that the β conformational shifts are significant.  

 

3.3.8 α6β7 shows subunits near missing alpha in a different conformation which destabilizes 

its structure.  

In the α6β7 MD simulations, we observed that the β7 unit adopts a very different conformation, and it 

appeared as it shifted to a different plane. We have quantified the angle made by every β subunit with 

reference to the center of mass of the β ring (Fig. B.3.2).  In the side view, we mainly saw β6 and β7 appear 

distorted. These distortions reflect the changes in the quaternary structure, in HP the interfaces between α 

and β subunits participate in non-covalent interactions and thus keep them in the right symmetry. Such 

noncovalent bonds are not possible if β6 and β7 are tilted. Though the bottom views of α6β7 (Fig. 3.9.2) do 

not look strikingly different, the side views (Fig. 3.9.1) show the flip in β7.  

Figure 3.9.1: Side view of α6β7 MD simulations at the beginning (0 seconds) and the end of 2μs shown in 

surface representations. The α subunits are in green, and the β subunits are in seven different colors.  

 

t=0s t=2 s
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3.3.9 α6β7 shows a distorted structure due to change in the rotation of the β subunits (βØtilt) 

     Though in 3.3.4, we observed structural transitions in α6β6 and α7β6, which explains why they are unable 

to dimerize with an HP. By visualization, it appeared that α6β7 has a different mechanism describing why it 

cannot dimerize. To investigate this underlying molecular mechanism, we used the torsional or dihedral 

angles (βtilt) to calculate the rotation of the β subunits, as seen in Fig. B.3.2. The βØtilt angle in the crystal 

structure of Re is about -19.10, and hence we expect the α7β7 simulations to be closer to this number. As 

expected, all the β subunits in HP are approximately around 19.10 (Fig. 3.10A). In the α6β7, we observed 

that the β1, β6, and β7 are displaced from their positions compare to the WT HP (Fig. 3.10B) as the α ring is 

incomplete, causing several interfaces in the CP to have a weak affinity. As seen in Figs. 3.9.1 and 3.9.2, 

the β6 and β7 are tilted and rotated with reference to the β ring. Interestingly, we also observed that in α6β6 

and α7β6, the distributions of βØtilt are noticeably different from the HP (Fig. 3.10). We expected that α6β7 

could not dimerize because its β ring is distorted, but α6β6 and α7β6 are also having rotational distortions 

along with the angular changes in the incomplete β ring. Therefore, we summarize that, on average, all the 

three intermediates differ from HP-α7β7 conformationally and are in a non-dimerizable state.  

 

Figure 3.9.2: Bottom view of β subunits in α6β7 MD simulations at the beginning (0 seconds) and the end of 

2μs shown in surface representations. The α subunits are transparent (green), and the β subunits are in seven 

different colors as indicated.  
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To observe the βØtilt evolution as a function of time, we have time-series plots for the torsion angle 

calculated in (Fig. B.6 A, B, C, and D). Therefore, we summarize that, on average, all the three 

intermediates differ from HP-α7β7 conformationally and are in a non-dimerizable state. To observe the 

A

B
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βØtilt evolution as a function of time, we have time-series plots for the torsion angle calculated in (Fig. B.6 

A, B, C, and D) 

 

D

C

Figure 3.10: Violin distributions of βØtilt for all β subunits in different colors of the four sets of simulations. 

A) α7β7 (HP) simulations and their distributions. B) α6β7 C) α6β6 D) α7β6. 
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3.3.10 Statistical Analysis for βtilt 

On similar lines with β statistical analysis in section 3.3.7, we have performed Linear Regression using 

categorical variables for every subunit and replicate for βtilt. Our null hypothesis states no statistical 

difference in βØtilt values between the HP (α7β7) and α6β7. The model is of the form   y =  β0 + β1.  X +

B2. C + B3. C. X + ε where y is the βØtilt,  β0 is the α7β7 intercept, β1 is the slope of α7β7, β2 is the intercept 

of α6β7, β3 is the slope of intermediate, ε is the error term, and C is the categorical variable. We have shown 

only a subset of statistical results (βØtilt for subunits β6 and β7) in (Table 3.11), and the entire set of results 

are in Tables B.7.  

      

     As seen in Table 3.11, we did not find any cases with insignificant p-values for both intercept and the 

slope. Specifically, we were looking for cases where both the intercept and slope are above a threshold of 

> 2.31X10-4 (Bonferroni corrected for 256 tests from initial α=0.05).  The p-values shaded in yellow 

indicates that the intercept is insignificant. We found only three cases where the HP simulations (replicate 

3) has an insignificant intercept. The p-values shaded in blue indicates that the slope is insignificant. Here, 

we found three cases where the HP slopes are insignificant and three for α6β7 βØtilt values. If the slope is 

insignificant then, it only indicates that there is no change in slope as a function of time indicates because 

these βØtilt values are converged. We did not find in this subset any β subunits in α6β7 with an insignificant 

intercept, which depicts that these are having a significantly βØtilt when compared to the HP simulations. 

Table 3.11: p-values for the intercepts and slope from Newey-West estimators for the βØtilt as a function of 

time (500ns to 2.5μs) in HP (α7β7) and the α6β7 intermediate simulations. This table has only a subset of p-

values for β6 and β7. The p-values of insignificant slopes are in blue and insignificant intercepts are 

insignificant are in blue.  
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Overall, for subunits β6 and β7 the βØtilt values in α6β7 are significantly different in reference to the HP, and 

thus have a distinct rotation in β subunits.  

 

3.4 Discussion  

This study addresses a specific step of CP assembly in which two HP's associate to form a CP. All CP 

assembly studies to date have shown that two HPs assemble into a CP. However, we never observe a near-

HP intermediate (HP with one or two missing subunits) associating with a "true HP" (α7β7) and forming 

CP-like complexes (α7β7β6α6). It is completely unclear, however, how these intermediates are prevented 

from dimerizing. We used all-atom MD simulations to understand the molecular mechanism in Re CP 

assembly, which prevents such near-HP intermediates association. These near-HP intermediates do exist in 

solution and are likely to be present for non-trivial amounts of time. Their persistence can lead to kinetic 

traps reducing the CP assembly yields. If such CP-like structures become active, it can allow for unregulated 

protein degradation and disrupts homeostasis in cells. Therefore, likely an allosteric mechanism operates in 

cells that prevent such destabilizing intermediates association. Since the Re CP occurs without the use of 

any external factors or chaperones, the information for the allosteric mechanism must already be 

incorporated in the sequence and shape of α and β subunits.  

     We initially hypothesized that the β propeptide blocks association of near-HP intermediates with a true 

HP. Basically, the propeptide perturbs the critical interactions required for CP assembly (Fig. 2.2) and 

causes transitions making the intermediates non-dimerizable. Alternatively, we hypothesized that an 

alternative allosteric mechanism is possible, which causes conformational changes. To test our hypotheses, 

we have simulated three intermediates α6β7, α6β6, and α7β6. Our results did not show any direct correlation 

between the β propeptide and non-dimerizable conformational states. Instead, we saw interesting global 

conformational shifts that happen in the subunits, which causes changes to the entire quaternary structure 

and rings geometry. In all the intermediate simulations, we observed distortion in the β ring symmetry and 

global conformational shifts. In the intermediates with incomplete β ring, we observed that the subunits 
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beside missing α or β collapse and became compact.  Specifically, in α6β6, its overall geometry changes 

significantly, as seen in Fig. 3. 7C-red violin, the angle-β in subunits β6 – β1, drastically shifts and has a 

distinct distribution compared to the β6 – β1 in HP simulations (Fig. 3. 7C - blue violin). Similarly, the α7β6 

intermediate, had several structural changes when visualized (Fig. 3.5). The angle in β6 – β1 of α7β6 has a 

very different distribution from β6 – β1 of HP (Fig.3.7D- red and blue violins). The intermediate α6β7 likely 

follows a different mechanism than α6β6 or α7β6. As seen in Fig. 3.7B, the β distributions are very similar 

to that of HP-α7β7. This could also be because α6β7 has the complete β ring and maintains a total angle of 

about 3600. We observed that the β subunits near the missing α have a tilt and thus changing the overall 

dimerization interface shape. As seen in Fig. 3.10 A, and B, the α6β7 has totally different distributions of 

subunits tilt.  

   Another consequence of the global confirmational shifts in the near-HPs, are the distortions in 

dimerization interface. These changes make dimerization interface incompatible and non-complementary. 

Thus, its highly probable, that the near- cannot make the crucial interactions with the key residues at the 

dimerization interface of opposing HP. In Chapter 2, I discussed in detail about these crucial interactions 

[24], and how small perturbations of these interactions effects CP assembly (Fig. 2.2). All the near-HP 

intermediates have many confirmational shifts, making them highly unlikely to be in the correct orientation 

for participating in the non-covalent interactions. Specifically, the key secondary structural elements at the 

HP dimerization interface, which include the S2-S3 loops and H3-H4 helices, would be in incorrect 

orientation to form the critical interactions that drive CP assembly [24]. Therefore, the shifts in angles-β, 

and subunit tilt-βØtilt acts as a cause the near-HP intermediates to be in a non-dimerizable states and such 

conformational shifts act as a checkpoint factor to prevent incorrect assemblies.  

     Our results have several implications. Firstly, the intrinsic β subunit angles in the intermediates, are 

highly different from the angles in HP. This difference likely stems from the evolution of frustrated 

interfaces in unbound protein structures (subunits). Upon binding, these protein subunits become less 

frustrated [7, 8]. For instance, as seen in the simulation snapshots, the structure of HP is very different from 
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α6β6 (Fig. 3.4). Because of the two missing subunits, the entire α6β6 structure has collapsed, and relaxes to 

a differed conformation. Currently our results are preliminary, but our findings of global conformational 

shifts suggests that the subunits are intrinsically frustrated.  

     These frustrations also have impacts in completing the assembly, because they can have kinetic and 

thermodynamic challenges to overcome. As seen in α6β6 or α6β7, the frustrated interfaces of the subunits 

have made the structures highly compact and distorted, such that the missing subunits cannot readily 

associate with the intermediates. From our findings, it’s hard to explain how these intermediates can 

accommodate missing subunits to form HPs. The α6β6 simulations show clearly, the collapse in structure 

and do not have any void for the missing α or β subunit to integrate into the structure.  

     With these simulations going forward we can use these intermediates structures to screen small-molecule 

inhibitors for assembly. As seen the interfaces are very different in intermediates when compared to the 

HPs or assembled structures. More importantly our work lays foundation to investigate if similar 

mechanisms are conserved in other hierarchical assemblies.  Would such global confirmational shifts also 

occur in other non-proteasome assemblies?[26] Do other multi-subunit complexes have conformational 

shifts acting as assembly check points?  Is this a conserved mechanism for preventing incorrect assemblies?  

     Ultimately, our work is the first molecular simulation study that shows evidence for allosteric 

communication among CP subunits. There have been no such molecular simulation studies on near-HP 

intermediates for any 20S CP. In the future, our results will aid in investigating specific interfaces for 

contacts and interactions that are unique in these intermediates. This specificity from different interfaces 

can be exploited to design effective and novel CP small-molecule assembly inhibitors for targeting specific 

assembly steps in the bacterial proteasomes.   

[5, 23, 27-32] 
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Chapter 4 

 

Kinetic Trapping and Robustness in 

Bacterial Core Particle Assembly  
 

 

4.1 Introduction 

 

Assemblies of proteins are involved in every major function of a cell. Cells require molecular machines 

like ATP synthase, the proteasome, ribosome, the apoptosome, nucleosome, and several other 

macromolecular complexes to maintain cellular homeostasis and carry out protein synthesis and protein 

breakdown. These large molecular machines are composed of many subunits, are highly coordinated, and 

have evolved to function in an efficient and organized manner. Cells cannot synthesize such molecular 

machines directly, but instead they are assembled from a set of subunits into a fully functional structure.  A 

comprehensive understanding of the function of the molecular machines requires knowing the structure, 

kinetics, and energetics of its reaction intermediates [1]. To fully decipher the role and understand the 

importance of macromolecular complexes requires an understanding of these complexes' kinetics, 

thermodynamics, and assembly.  

     Assembly of molecular machines is often thought to be hierarchical and ordered. Though several 

theoretical studies on assembly assume that the assembly pathways need not be hierarchical. Understanding 

assembly pathways gives us insights into the evolutionary process that have favored some intermediates 

and prevented other off-pathway or kinetically trapped intermediates.  Macromolecular assembly dynamics 

and kinetics often encounter situations where the subunits required for the final structure are exhausted and 

exist as incompatible intermediates that cannot interact to form the final complex. These incompatible 

intermediates are kinetically trapped and reduce assembly speed and waste energy. Studying assembly of 

complexes like CP and others can us give more insights into how these machines are built in cells. The 
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principles used in constructing these machines, especially self-assembling complexes like bacterial CP can 

serve as a proof of concept in building nanomachines, and nanoscale structures. Additionally, assembly 

studies can be applied to design highly specific, potent assembly inhibitors.   

     Protein degradation is tightly regulated as the misfolded or damaged proteins must be removed 

selectively from cells. Cells carry out intracellular protein degradation through molecular machines called 

proteasomes.  These massive molecular machines are critical for a variety of cellular functions Proteasomes 

are found in archaea, bacteria, and eukaryotes. The 20S Core Particle (CP) forms the catalytic core, whereas 

the 19S Regulatory Particles (RP) caps the CP and is involved in regulatory functions [2]. Structural studies 

have shown that the 20S CP quaternary structure is highly conserved in all kingdoms of life [2]. The CP’s 

show a characteristic pattern of four coaxially stacked heptameric rings of either seven α or seven β subunits 

in an α7β7β7α7 arrangement. The α subunits form the outer rings, and the β subunits are catalytically active 

and form the inner rings. There are substantial differences in the subunit complexity in prokaryotic and 

eukaryotic CPs. Prokaryotes CP assembly takes place spontaneously, but eukaryotic CP assembly is more 

complicated and requires dedicated chaperones and assembly factors to mediate CP formation [3]. In this 

study, we have demonstrated kinetic trapping computationally and experimentally in the macromolecular 

complex proteasome Core Particle.  

     Several studies have proposed two distinct pathways for prokaryotic CP assembly [4-6]. Assembly of 

CPs in archaea is thought to begin with the formation of the α ring first (ARF), and then the β subunits 

append to it (Fig. 4.1). On the other hand, in bacteria, seven αβ dimers (ABD) are thought to assemble to 

form a CP (Fig. 4.1).  Both pathways are hierarchal, and therefore we propose another model of CP 

assembly pathway, which we call the unordered model (UOM). Where, the initial nucleation step involves 

the formation of a αβ dimer, but then all possible association are possible up to the formation of a HP (Fig. 

4.1). This UOM is not investigated by any other studies on CP assembly.  To further understand these 

pathway assembly dynamics, we need to develop models so that we can have defined parameters that 

govern the assemblies. Previous work has demonstrated that ring-like structures assemblies are susceptible 
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to “deadlock” during the assembly process [7]. Such studies will provide insights into the evolutionary 

process have guided the assembly of ring-like structures such as the CP.  

 

     In this work, we have chosen the actinomycete bacterium Rhodococcus erythropolis (Re) as our model 

system to study CP assembly. The Re CP assembly is well studied, and its subunits can be purified 

separately as monomers, and they spontaneously self-assemble into active CPs in vitro [4, 8]. We developed 

mathematical models to understand the assembly dynamics of homomeric stacked rings like proteasome 

CP. We also validated our model findings by in vitro experiments in Re. Our results indicate that bacterial 

assembly is affected by kinetic trapping, and there is a tradeoff between speed and robustness in CP 

assembly pathways. We also observed that kinetic trapping is dependent on serval parameters like 
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Figure 4.1: Schematic of the three CP assembly pathways. Alpha Ring First (ARF) is known to occur in 

archaea, Alpha Beta Dimer (ABD) is known to occur in bacteria, and the Unordered Model (UOM) of 

assembly is the new pathway we propose in this study. All the α subunits are in green, β is in blue and the 

propeptide is in purple. Irrespective of the pathways involved in formation of HP, all CPs are formed only 
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interaction affinities, rate constants. Also, our models indicate that in bacterial CP assembly, speed is more 

crucial than robustness for both in vivo and in vitro scenarios. Additionally, the studies present the assembly 

dynamics and kinetics of the newly proposed CP assembly pathway – UOM.  

 

4.2 Materials and Methods 

4.2.1 Mathematical models 

The mathematical framework used for developing the ODE models is largely based on the ring assembly 

dynamics and is described in the main and the Supplemental text of a previous study on ring assembly [7]. 

For CP, the modeling approach begins with generating different species required for CP assembly. The 

molecular species can be generated from size 1 to size 28 (four stacked rings). The simulation methodology 

is based on “Chemical Reaction Network” (CRN) approaches and inspired by rule-based approaches based 

on molecular graphs used by several groups [7, 9, 10]. The species in CP assembly are presented used a 

bitwise representation, of 0’s (absence) and 1’s (presence) as a formal notation to represent all possible 

intermediates in the assembly process as described by other works [7, 11, 12].  

     We have three CP assembly pathways -ARF, ABD, and UOM, constructed differently due to their 

hierarchy. The number of species for each pathway differs, in ARF 27 different species can be formed, 

which includes the two monomers and seven different ways of forming a seven-membered alpha ring. Then 

the remaining species include the different ways seven beta rings can append to this alpha ring. For the 

ABD model, 7 specie are possible which reflect the seven dimers assembling into an HP. Lastly, the UOM 

allows many different on-pathway intermediates, and hence we have 875 species in total. Next, the reactions 

are enumerated for each model; there are few rules, including ring-sidedness and no clashes. Considering 

these, we will have 14795 reactions for ARF, 13 reactions for ABD, and 18149 reactions for UOM.  Next, 

a system of ODE is derived, which describes the ODE’s time evolution of the concentration of any 

intermediate and for the four stacked rings. The Odes are integrated using CVODE libraries, and the 

Backward Differential Methods [13, 14]. 
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     Assembly of CPs is majority carried by cells that constantly produces monomers to balance the decrease 

in the concentration of intermediates and fully assembled complexes that happened due to cell growth, 

dilution, and protein degradation. To explore these in vivo conditions, we incorporated the synthesis and 

degradation processes in our models using two terms – rate of synthesis (Q) and rate of degradation (𝛿).  

Thus, the concentration of subunits (C) depends on both these rates as C=Q/𝛿. These models are described 

in detail in a different study [7].  

 

4.2.2 In vitro native gel assembly experiments 

The α and β subunits were expressed in E.coli and purified using affinity chromatography and ion-exchange 

chromatography (Details of all experimental protocols may be found in supporting information). Dynamic 

light scattering was used to ensure the subunits were in a monomeric state. The α and β subunits were 

concentrated to roughly 35uM using Amicon Ultra 10K centrifugal filters (Millipore) and diluted to 0.5uM, 

1uM, 2uM, 4uM, 8uM, 16uM, and 32uM in an assembly buffer (HNE). Both subunits were then mixed in 

equal volumes to obtain a final subunit concentration of 0.25uM, 0.5uM, 1uM, 2uM, 4uM, 8uM, and 16uM. 

For each concentration, the subunits were mixed in equimolar ratios. The assembly reaction was allowed 

to proceed for 24hours at 30°C. An equal volume of the assembly reactions was mixed with an equal volume 

of loading dye (0.8M HEPES,0.1% Bromophenol Blue, 20% Glycerol). These samples were then loaded 

on a 4-20% native gel (Invitrogen). The gels were run at four °C and 120 V for 12 hours. Gels were stained 

with Sypro Ruby protein stain, visualized using Licor Odyssey Fc imager, and quantified using 

ImageStudio Lite software. 

The α and β subunits were transferred into a working buffer (HNE 20mM HEPES, 100mM NaCl,1mM 

EDTA, 5mM DTT PH 7.0) and concentrated using Amicon Ultra 10K centrifugal filters (Millipore). Protein 

concentrations were estimated to be roughly 35uM by measuring absorbance at 280nm and using the molar 

extinction coefficient of 16390 for α and 17880 for β. These stocks were then diluted to 0.5uM, 1uM, 2uM, 

4uM, 8uM, 16uM, and 32uM. Both subunits and mixed in equal volumes to obtain a final subunit 
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concentration of 0.25uM, 0.5uM, 1uM, 2uM, 4uM, 8uM, and 16uM. The assembly reaction was allowed 

to proceed for 24hours at 30°C. An equal volume of the assembly reactions was mixed with an equal volume 

of loading dye (0.8M HEPES,0.1% Bromophenol Blue, 20% Glycerol). These samples were then loaded 

on a 4-20% native gel (Invitrogen). The gels were run at four °C and 120 V for 12 hours (Fig. C.5). 

 

4.3 Results 

4.3.1 Homomeric trimeric and trimeric stacked rings assembly 

In three-membered homomeric (trimeric) rings, when all the interaction affinities (binding affinities/ 

strengths) between the subunits are equal, and at a fixed concentration of the subunits, we observe the 

existence of the plateau or "deadlock" for the trimeric rings after a certain amount of time [7] (Fig. 4.2). 

The depletion of monomers and dimers contributes to the formation of trimeric rings. But, after a certain 

time, as the formation of trimers reaches the plateau, and the system reaches a kinetically trapped state or 

“deadlock”. This happens because all the intermediates remaining are not compatible with forming a 

Figure 4.2: The assembly dynamics information of a trimeric homomeric ring. Depletion of monomers 

(purple) results in the formation of dimers (blue) and trimers (black). The plateau seen in trimers is the 

deadlock phase, where the intermediates are kinetically trapped.  
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trimeric ring and are kinetically trapped. So, for instance, we can have intermediates like two dimers that 

cannot interact to form a homomeric trimeric ring. This deadlock is alleviated only after a certain time when 

the dimers begin to dissociate. The compatible intermediates (monomers and dimers) are again available, 

which can form the trimeric ring. The existence and duration of the plateau depends on several parameters 

of the model [7].  

     This model is based on the chemical kinetics approach, and here we first enumerate the species 

(intermediates) involved in the assembly of a trimeric ring. Next, we enumerate all the reactions involved 

in the assembly, in other words two monomers reacting with each other to form a dimer, a monomer and a 

dimer reacting to form a trimer. In the model, we also have few rules which dictate the dynamics of ring 

assembly. For instance, we consider a "sidedness," which incorporates the asymmetric aspects of the 

subunits [7]. As observed in nature, all known subunits or monomers in ring-like protein structures are 

internally asymmetric. To account for asymmetry in our model (see C.1), binding is permitted only if 

interactions can occur from the right side of one subunit with the left side of the other subunit (Fig. C.1). 

Also, we do not allow steric clashes in the model, such as two dimers interacting to form a tetramer; such 

reactions cannot occur.  After considering these rules, we define a system of Ordinary Differential 

Equations (ODEs) used to determine the species and reactions and further solve each species time evolution 

based on the law of mass action [15].  

     For heteromeric rings, the assembly situation differs because we can vary the interaction affinities 

independently for every subunit. As discussed in pioneering study [7], Deeds. et al. examined the influence 

of assembly dynamics by changing the interaction affinities of a heteromeric trimeric ring. They found that 

at least one weak interaction (“single weak interaction” strategy) provides robust and efficient ring 

assembly with maximal yield. Ring-like structures are very thermodynamically stable and thus dominate at 

equilibrium, we can expect that for stacked ring structures like our model – the proteasome CP- the 

assembly dynamics and deadlock formation can be quite dramatic [7].  We began by investigating the 

assembly dynamics of stacked rings by considering a simpler system, i.e., a trimeric stacked ring; as 
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described earlier in this model, we enumerate all the species and reactions and followed by numerically 

integrating the ODE's using CVODE libraries.   

     We found key differences in the assembly of trimeric rings and trimeric stacked rings. Firstly, the 

deadlock plateau for trimeric stacked rings reduced assembly efficiency more dramatically, and the 

deadlock plateau exists for much longer times (Fig. 4.3). This is mainly because the intermediates, which 

are kinetically trapped in the formation of a trimeric stacked ring, are also ring-like structures. For example, 

we can have tetrameric stacked rings highly stable, and these intermediates do not dissociate on biologically 

relevant time scales. Therefore, the deadlock in stacked rings exists for an indefinite period. 

      

      The deadlock plateau observed in these rings is also dependent on the concentration of the subunits, and 

the assembly dynamics are different for rings and stacked rings. When we compare the fraction assembled 

in a single ring and stacked ring as a function of the concentration of subunits, we observe the impact of 

longer deadlocks (> 24hrs) in stacked rings (Fig. 4.4). With increasing subunit concentration, the assembly 

Figure 4.3: Assembly dynamics for a three-membered ring and three-membered stacked ring as a function 

of time. The red curve depicts the formation of the three-membered ring, and the black curve for three-

membered stacked rings. The plateau phase (middle) in both the curves is the "deadlock."  
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efficiency increases up to a certain concentration (1 μM in this example). After the maximum assembly 

efficiency is reached, increasing concentration; causes increase in kinetically trapped intermediates and 

thus deadlock to decrease the assembly efficiency. The concentration needed to achieve maximum yield 

and the reduction in assembly efficiency depend on several parameters like interaction affinities and rate 

constants. But increasing the subunit concentration after a certain limit does not affect assembly efficiency 

because the system is now dependent on the dissociation of the kinetically trapped intermediates. These 

intermediates are very stable and hence do not dissociate readily on biologically relevant timescales.  

 

      This highlights that in stacked rings, the highly stable kinetically trapped intermediates can cause a 

detrimental impact, especially if they are part of biological molecules. For ring-like protein complexes, the 

deadlock effect can disturb the cells homeostasis and unfruitful investment of ATP towards the synthesis 

of subunits.  In this work, we have bacterial CP as our model system, and the ODE models for these are 

more complex than those for simple rings; hence we incorporated additional parameters based on other 

macromolecular simulation studies and experimental evidence. 

Figure 4.4: Fraction of assembled three-membered single and three-membered stacked ring after 24 hours 

as a function of subunit concentration. This model shows the appearance of deadlock after the 

concentration increases 1uM in the three membered stacked rings. 
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4.3.2 ODE models for investigating bacterial CP assembly dynamics  

To further understand the impact of deadlock in larger rings and protein complexes, we employed in-house 

ODE models as several studies have proposed that the CP assembly pathway is Alpha Ring First (ARF) or 

Alpha Beta Dimer (ABD) (Fig. 4.1). It is thought that the archaea follow ARF, and bacteria follow the 

ABD pathway. So far, no concrete study demonstrates that bacteria follow only the ABD pathway for CP 

assembly. Both pathways are hierarchical; the ARF requires the formation of a seven-membered α ring and 

then proceeds to form HP's.  The ABD pathway requires seven α-β dimers and then forms the HP's and CP.  

In this work, we propose a new pathway- the "Unordered Model" (UOM), which is non-hierarchical. Thus, 

the intermediates can be any of the possible species up to the formation of an HP (Fig. 4.1). As previously 

described the, HP is an obligatory intermediate, and irrespective of the pathway, CP assembly occurs from 

the dimerization of two HP's and not by other intermediate species.  Experimental evidence suggests that 

dimerization of HP takes hours to finish, but HP formation occurs almost immediately after the reaction 

begins (Chapters 2 and 3).  The scope of this work is focused on understanding the assembly pathway of 

HP, which eventually assembles into a CP.  

    We have several ODE assembly models based on simulations for complex macromolecular assemblies 

and experimental studies on bacterial CP's. For all the three models of CP assembly, we have three primary 

parameters, interaction affinity (KD) (binding affinity or binding strength between two interfaces, see C.2) 

and association rates for two HP’s (k+HP), and association rates for subunits (k+). The other parameters 

include subunit concentration, simulation time, and error tolerance. The interaction affinities (KD), which 

represent how strong can two interfaces associate, we obtain this information approximately from the 

surface contact area between interfaces. As a convention, we have defined six unique protein-protein 

interfaces in a CP. We primarily refer to the Rhodococcus erythroplis (Re) CP interfaces in this study (Fig. 

C.2). Out of these six interfaces, IN5 and IN6 are involved in HP dimerization, and the other four interfaces 

are a part of HP formation. Thus, interfaces IN5 and IN6 are not included in our models since they do not 

contribute to the assembly dynamics but are a part of HP dimerization.  
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The interfaces (1- 4) are our regions of interest; IN1 is the interface between two alpha subunits, IN2 is the 

interface between two beta subunits, IN3 and IN4 are the interfaces between alpha and beta subunits (Fig. 

C.2). These binding affinities are connected to the contact surface area buried between the subunits involved 

in the interface. Re Crystal structure studies suggest that IN4 is the strongest in binding affinity and IN1 for 

Thermoplasma. acidophilum (Ta), which is thought to follow the ARF pathway [16]. As seen in the 

assembly models (Fig. 4.1), ARF pathways needs first the alpha ring to be formed, and this requires a strong 

affinity to begin the assembly reactions, thus IN1 interaction affinity i.e., KD1 is critical for ARF. In ABD 

and UOM, we focus on IN4 (largest interface for alpha beta dimer) as the formation of αβ dimers is a 

nucleating step, so thus IN4 interaction affinity i.e., KD4 is critical.  The other three remaining interfaces 

KD’s are set to a lower affinity (10-2 M). The other parameter k+ which represents the association rate of 

subunits in most cells is about 105 M-1s-1to 107 M-1s-1 [17]. 

 

4.3.3 Deadlock formation is varying in the three models 

     We selected a range of commonly used concentrations in CP assembly experiments and similarly chose 

the KD’s of interfaces based on modeling approaches performed by several groups [7, 12, 18, 19]. The HP 

dimerization rate (k+HP) was approximated based on the time course assembly experiments (Chapter 2). 

Next, we simulated the three assembly models with this set of parameters and observed interesting 

differences in assembly dynamics.  

     For all the three models (Fig. 4.5), similar what we see in the assembly of stacked rings (Fig. 4.2), 

increasing subunit concentrations, gives higher assembly efficiency, and then the yield gets reduced due to 

deadlock. Interestingly, the extent of deadlock varies among the three models, with ARF showing no 

deadlock even at higher concentrations (Fig. 4.4). Hence, the assembly in ARF is very robust and non-

susceptible to kinetic trapping.  In ABD, deadlock reduces the assembly efficiency by 20-25%, as the 

kinetically trapped intermediates are stable and do not dissociate on these timescales. The effect of kinetic 

trapping is seen by the decrease in assembly efficiency. In the UOM a similar trend occurs, but this model 

is most susceptible to deadlock, where the assembly efficiency after 24 hours is reduced by ~ 50%. The 
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kinetically tapped intermediates are abundant in UOM since it allows any many possible combinations of 

on-pathways intermediates, hence the proportion of kinetically trapped intermediates is higher.  

     The strength of KD used in Fig. 4.5 is independently varied for each model. It is tuned such that the 

maximum assembly efficiency occurs at 1 μM (used for assembly experiments), and the parameter used to 

show the assembly dynamics as seen in Fig. 4.4 are described in C.3. The interaction affinity plays a critical 

role in achieving maximum yield at different concentrations. Depending on the assembly model, the KD 

modulates the maximum yield, since a stronger KD will yield maximum assembly efficiency at lower 

concentrations and weaker KD will yield maximum yield at a higher concentration of subunits (Fig. 4.5 and 

C.3).  

 

4.3.4 In vitro CP assembly dynamics in Rhodococcus erythropolis (Re).  

     The above discussion focuses on the ODE models, which suggest kinetic trapping in CP assembly. We 

further wanted to experimentally investigate kinetic trapping, and the type of CP assembly pathway which 

Figure 4.5: CP assembly at varying concentrations with [α] = [β]. The three models exhibit different fraction 

CP assembled (or assembly efficiency) and show a varying deadlocked plateau. The affinities and 

association parameters were chosen such that they have a maximum assembly at 10-6 M. The interaction 

affinities and the association rates for each model are in (see C.3) The x-axis is in log scale.  

  



77 

operates in our model system Re. This bacterium has been well characterized experimentally and has a 

simple subunit composition compared to the complex eukaryotic CPs [3]. In the bacteria Re, subunits stay 

monomeric until mixed. This finding led to the hypothesis that in bacteria, α and β dimers are formed, 

which further assemble into an HP. As we had seen in the CP assembly models described in the previous 

section, we hypothesized that CP assembly is also susceptible to kinetic trapping.  

     To investigate if kinetic trapping occurs in vitro, a set of assembly experiments was performed. As 

described (Fig. C.5), we conducted a set of native gel CP assembly experiments. Interestingly, we observed 

a decrease in assembly efficiency as the α and β subunit concentrations were increased. After a particular 

concentration (1μM), we found that the assembly efficiency starts decreasing. This finding confirmed our 

hypothesis of kinetic trapping in proteasome CP in-vitro assembly (Fig. 4.5). This result suggests that, like 

the ODE models, in vitro assembly of CP is initially slower because the time it takes to for subunits to 

associate at low concentration, followed by the formation of kinetically trapped intermediates at higher 

subunit concentration.  

 

Figure 4.6: Quantification of Native-PAGE gels.  

Gels were stained with Sypro Ruby protein stain and imaged using a Licor Odyssey Fc imager. Bands were 

quantified using the ImageStudio Lite software. Band intensities are considered proportional to CP 

concentration. Assembly efficiency was determined by dividing the band intensity with individual subunit 

concentration and normalized to the highest value.  
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4.3.5 Investigating Re CP assembly pathway from in-vitro experiments 

Based on the visual comparison of the in vitro results of CP assembly in Re, we speculated that it follows 

the UOM of assembly. This is surprising, as it was previously thought that CP assembly occurs through the 

ABD pathway in bacteria. To further confirm our hypothesis, we performed fits of the assembly models 

with the experimental results. For this, we varied three parameters, KD, the strongest interaction affinity 

between protein subunits, k+, and k+HP. The three parameters were varied over a range of physiologically 

relevant values (C.6). We used the Root Mean Square Error (RMSE) statistic to fit the assembly efficiencies 

over a range of concentrations (0.5 μM to 16 μM) to that of the three assembly models.  

      

     CP assembly in Re appears significantly different from the ARF model predictions, as we could not find 

a good set of parameters that yielded a perfect fit (Fig. 4.7A). While the ABD model provided a better fit 

Figure 4.7: The ODE models and the in vitro experimental fits for the three CP assembly pathways. A) 

Alpha Ring First, the model is shown in blue curve, B) Alpha Beta Dimer the model is shown in green C) 

Unordered model the model is shown in red. UOM model has the best fit to the experimental data indicating 

that Rhodococcus erythropolis likely follows Unordered Model of CP assembly in vitro. All the parameters 

for the fits are given in C.6.  
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to the data, the fit was far from perfect, particularly at lower and higher subunit concentrations (Fig. 4.7B). 

Though the ABD pathway is thought to operate in bacteria, there is no concrete evidence for this finding. 

Our fits indicate that ABD pathway of CP assembly likely does not occur in Re. Despite the ABD pathways 

being widely accepted in field for bacterial system, it does not fit well with experimental data (Fig. 4.7B). 

For the UOM model, we got excellent fits with the experiments (Fig. 4.7C). This finding is interesting since 

the UOM is susceptible to kinetic trapping and the deadlock reduces the assembly efficiency and it is the 

least robust. This leads to the question if a fast and non-hierarchical assembly pathway has some 

evolutionary advantages for the evolutionary advantages for the cells. 

 

4.3.6 CP assembly models display a tradeoff between speed and robustness 

The influence of deadlock on different assembly pathways (Fig. 4.5) indicated that more hierarchical 

pathways are less susceptible to deadlock. But we know from our previous observations on stacked rings 

that kinetically trapped intermediates do not resolve biologically relevant time scales. To further elucidate  

the assembly dynamics and understand how the assembly yields change over time, we examined the above 

simulation parameters differently. All the above simulations in section 4.3.2 have the same concentration 

of subunits but independent interaction affinities (KD) for each pathway. Each pathway has only one KD 

stronger and the remaining three interfaces KD relatively weaker. To understand the differences in assembly 

kinetics of the CP in each model, we simulated having the same KD’s and association rate for all pathways  

and at the same subunit concentration. We observed that UOM was the fastest (Fig. 4.8), then ABD and 

ARF. 

     In the ARF pathway for CP assembly, a seven-membered α ring must be formed first, and only then can 

β subunits bind; since the α ring takes time to fully to form, CP assembly is slower. In the ABD pathway, 

αβ dimers must form first, and then other dimers can associate to form stable structures and finally assemble 

into the CP (Fig. 4.1). In the UOM, only the first nucleation step requires an αβ dimer, but after that any 

possible intermediate can associate with the dimer and quickly form an HP and then dimerize into CP. This 

non-hierarchy also makes this model prone to deadlock because there are more possible combinations to 
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generate incompatible intermediates. Therefore, though UOM is less robust, it is very fast in forming CP's, 

and it’s followed by ABD and ARF (Fig. 4.8), indicating a tradeoff between speed and robustness in the 

CP assembly dynamics.  Also, if we increase subunit concentration > 10-6 M (Fig. C.4A, B, and C), we 

notice the appearance of deadlock which reduces the assembly yield in UOM and ABD, as previously seen 

in Fig. 4.3. This indicates that UOM is fastest, but not robust, therefore there is a tradeoff between speed 

and robustness in these assembly pathways.   

  

4.3.7 CP assembly dynamics in vivo  

The above findings describe a situation that begins with a certain fixed concentration of subunits. The cells 

scenario is entirely different from this, where ring-like structures are constantly synthesized and lost. 

Complexes like proteasomes are actively being lost due to dilution, degradation, cell growth, and division 

[7]. This represents typical “in vivo” conditions, where the subunits are constantly synthesized and 

Figure 4.8: CP assembly time courses of the three models ARF, ABD, and UOM.  At concentration [α] = 

[β] = 10-6 M. The time evolution clearly shows that UOM is the fastest. The detailed parameters are described 

in section C.4. 
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degraded.  To explore the "in vivo" CP assembly dynamics, we included synthesis and degradation rates for 

the three CP assembly models. 

       

     To incorporate degradation rate (𝛿), we considered the value of 6.944 X10-5 s-1, which are chosen to 

represent the half-life of proteins in Re (doubling time is ~ 4hours) cells. The slower the doubling time of 

the species, the slower is the effective degradation rate. In the above simulations for three assembly models, 

we observed that in the UOM, the steady-state CP yield (fraction of monomers in CP) reaches a maximum 

at lower concentrations (Fig. 4.9). In comparison, ABD and ARF need a much higher concentration of 

subunits than UOM. Like what we observed in the "in vitro” CP assembly models (Fig. 4.9), we found 

similar assembly dynamics in the "in vivo" models, where UOM is fastest and is followed by ABD, and 

ARF. These findings suggest that for hierarchical pathways like ABD and ARF, CP assembly takes a longer 

Figure 4.9: Steady state Core Particle assembly yield in the presence of synthesis and degradation for Re.  

The steady state yield for the three models with varying synthesis   and degradation rates are shown as a 

function of concentration of monomer. The degradation rates (𝛿) correspond to the doubling time of the 

bacteria and the α, β monomers synthesis rate (Q) corresponds to the concentration of α and β monomers.  

The synthesis rate at various concentrations is calculated by CT = Q / 𝛿. The parameters in this case are 

degradation rate 𝛿 = 5.55X10-4s-1 and monomers synthesis rate Q and CT varies from 10-2M to 10-8M.  This 

degradation rate corresponds to the average doubling time of R. erythropolis bacteria.  The steady state 

yield plots for slower degradation rates are discussed in C.7. 
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time as the intermediate species require more time to associate and dissociate to form an HP. This happens 

because the longer the intermediate persists, the greater the probability it will be degraded, and the more 

intermediates are degraded the less they contribute to CP formation, and thus lower is the assembly 

efficiency.  Our findings for the in vivo scenario suggest that CP assembly in cells has evolved to be fast 

and optimize resource utilization faster than hierarchy and robustness to deadlock.  

 

4.4 Discussion 

Macromolecular machines are large complexes involved in integral biological functions like signal 

transduction, cell motility, protein synthesis and degradation and hence critically influence many cell 

processes. These machines are assembled from a set of subunits or monomers into the final functional form. 

The assembly pathways of these complexes depend on the order and rates at which the subunits bind.  All 

self-assembly pathways depend on diffusion-driven random collisions among the subunits in cells [15]. The 

widespread notion in the field is that all macromolecular complexes have evolved to assemble in an ordered 

and hierarchical manner. This requires the assembly to occur in a series of steps, for example in archaeal 

CP assembly, in the Alpha Ring First (ARF) assembly operates where, the seven-membered α ring must be 

formed before the β subunits can bind to it, and only then is an HP is formed, and only then can two HPs 

assemble into a CP. Simulations of such hierarchal pathways, have shown the existence of kinetically 

trapped intermediates. Theoretical studies have shown that incompatible intermediates can dominate the 

assembly dynamics. These kinetically trapped structures reduce the assembly yield (number of functional 

structures formed given a fixed concentration of subunits). This reduced assembly yield is also known as a 

deadlock. Naturally we can expect that, deadlock can be highly disadvantageous to the cell, and evolution 

would have designed some ways to overcome this kinetic challenge. In this work, we used a combination 

of theoretical models and in vitro experiments to understand the kinetic trapping in bacterial proteasomes.  

     For the first time, this study demonstrates that kinetic trapping exists in vitro, and the impact of kinetic 

trapping depends on the assembly pathways. The ARF and ABD assembly pathways are hypothesized to 
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exist in archaea and bacteria, respectively. Here, we have proposed another new pathway which is non-

hierarchical, called the Unordered Model. Assembly kinetics from the ODE models for these three CP 

assembly pathways indicate presence of deadlock at higher subunit concentrations.  As the α and β subunit 

concentration increases, the intermediates in UOM and ABD get kinetically trapped, and hence further 

increase in subunit concentration does not increase CP yield. To further understand the assembly dynamics, 

we have chosen Re CP as the model system. In vitro studies on the Re CP, the subunits stay monomeric 

when expressed and purified separately in E. coli, and on mixing, they spontaneously assemble into full 

CP. Interestingly, in experiments, we saw that as the concentration increased, the assembly yield started to 

reduce (Fig. 4.3). This decline is likely due to the kinetic trapping, as demonstrated in our ODE assembly 

models.  

     We compared the in vitro assembly kinetics with the ODE models and performed an RMSE fit to 

examine which pathways of CP assembly likely operate in Re. This analysis suggests that Re, most likely 

follows the UOM of CP assembly.  This indicates that speed is more crucial than hierarchy, and the cells 

require faster assembly than being more robust. Most cells have a continuous synthesis and degradation of 

proteins; to explore this, we modified our models to include synthesis and degradation rates. The 

degradation rate  is approximate to the inverse of the doubling time of the Re bacteria, and thus we have a  

=6.944X10-5 s-1 for our models. These models or “in vivo” scenario also indicates that UOM has higher 

steady state yield than ABD and ARF. Also, with decreasing degradation rate (C.7), we obtain higher yields 

at lower concentrations, showing that the cells have enough time to alleviate deadlock and get maximum 

steady-state CP yield. In both in vitro and in vivo scenarios, the UOM gives the maximum CP yield and is 

likely an evolutionary selection for cells, since the UOM pathway is shown to be the fastest as demonstrated 

in our models and experiments. Our results suggest that the bacterial CP assembly process selects speed of 

assembly over robustness to kinetic trapping.  

     This work employs a coarse-grained approach using ODE models to help us understand CP assembly 

pathways and assembly kinetics for bacterial proteasomes. Further, we can use such models to study CP 
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assembly in other bacteria and archaeal CPs to examine if there is a similar tradeoff between speed and 

robustness. Experiments like mass-spectrometry and Cryo-EM can help us further characterize the 

kinetically trapped intermediates that we observe in-vitro and the simulations. Additionally, we can also 

examine if any specific intermediates dominate in the solution. For the ODE simulations we used a constant 

association rate (k+=106 M-1s-1), that is often found in most protein-protein association reactions [15]. We 

would need further detailed mathematical models to change these rates as a function of the intermediates 

size or stoichiometry and then observe the changes to assembly dynamics and kinetics. These types of 

coarse-grained ODE models also can be developed for other self-assembly complexes like virus capsids, 

AAA ATPases, etc., Our self-assembly studies can inform for future designing of nanomachines and 

nanotechnology applications in pharmaceuticals (drug delivery) and semiconductor industry 

(photolithography). Additionally, identifying stable and transient intermediates will also help us to obtain 

new drug targets for CP assembly. 
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Chapter 5 

 

Comparative Characterization of 

Crofelemer Drug Mixtures Using 

Machine Learning and Data Mining 

Approaches 

 
5.1 Introduction 

 
Natural products and their derivatives have played a significant role in drug discovery. Over the past 

decades, drug discovery mainly relied on synthetic compounds as the source, which are comparingly easy 

to produce, supply, and test. However, there has been a lot of scientific interest in obtaining drugs from 

natural products as they provide a lot of structural diversity compared to standard combinatorial chemistry. 

Archaeological evidence suggests that the use of medicinal plants for therapeutic purposes began thousands 

of years ago [1]. In 1827, the plant alkaloid morphine was the first commercial natural product drug, 

introduced by Merck [1]. Over the years, the term "biologics" has been used to describe drugs whose source 

material comes from microorganisms or living systems. Biologics have revolutionized the treatment of 

severe diseases and illnesses.  Drugs like penicillin, Humira, Taxol, Avastin, and monoclonal antibodies 

are a few of the drugs that have been developed from natural resources.  

     The FDA has shown interest in the past few decades in developing botanical drugs. Currently, there are 

two FDA-approved botanical drugs Veregen (sine catechins) and Mytesi (Crofelemer) [2]. Botanical drugs 

are mixtures of several chemical entities and are highly heterogeneous due to their natural origin and often 

lack distinct active ingredients [3]. Due to the heterogeneous nature of raw material, there is a critical need 
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to ensure that these drugs are consistent across batches in effectiveness, safety, and potency. This work 

presents a Comparative Characterization study of the botanical drug Crofelemer (MytesiTM, Fulyzaq™).  

     Crofelemer was approved in 2006 by the FDA to treat noninfectious diarrhea in HIV patients undergoing 

antiretroviral therapy [4-6]. More than a quarter of HIV-infected patients or these therapies reported 

suffering from diarrhea, impacting their health [2].  This drug is administered orally and works by inhibiting 

chloride ion channels (the CFTR, the CaCC, and the CLC-2 channels) in the gastrointestinal tract [7, 8]. 

This drug is extracted from the sap of the South American tree Croton lechleri, commonly known as 

“dragon's blood”, due to its deep red color. The Crofelemer is a complex mixture 

of procyanidins and prodelphinidins forming oligomers of 5-11 linearly covalently  linked monomers in 

varying ratios [2]. This heterogeneous mix makes Croefelmer a complex drug product and complicates 

chemical and physical characterizations [4]. There can also be changes to the manufacturing process during 

the approval process or post-commercialization in a drug's lifecycle. This highlights the company's need 

for a critical assessment, which can show that the changes in the manufacturing process or raw material do 

not affect the safety, purity, and efficacy of the approved drug. Thus, any process changes need to be 

supported by substantial data that show any manufacturing process changes do not have any adverse effects 

and result in highly similar quality attributes. Many post-drug approval changes like the manufacturing 

process can lead to detectable analytical differences compared to the original (reference) product. From a 

regulatory perspective, the reference and consequently produced biologic drugs must be highly similar in 

efficacy and safety. These kinds of comparison studies are called comparability assessments and 

biosimilarity studies [9, 10]. 

     In this work, we performed a comparability assessment of different batches and mixtures, which assess 

the ability of analytical techniques to capture batch-to-batch variability in Crofelemer (CF). The 

mathematical model approach used is similar to a previous study, on Comparative Characterization of 

Crofelemer stability studies and is published in three companion articles [4, 11, 12]. For ease, this CF 

stabilities study will be referred to as "Year 1 CF samples”. For the stability studies, a single CF lot [4] was 

obtained from the manufacturer, and then "virtual" lots were created through a combination of techniques 

https://en.wikipedia.org/wiki/Procyanidin
https://en.wikipedia.org/wiki/Prodelphinidin


88 

like dialysis, fractionation by, centrifugation, and forced degradation studies [4, 12].  In total, the Year 1 

CF study had 35 distinct samples, for two different temperatures. These samples were subjected to physical 

and chemical assays. The resulting data was analyzed using data mining and machine learning approaches 

to identify the analytical differences in treated CF materials [11].  

      Using a similar mathematical model and data mining approaches, we are characterizing CF mixtures in 

this Chapter.  Many analyses and techniques are adapted from previous studies done in the group [11, 13]. 

The CF mixtures used in this study will be referred to as "Year2 CF samples", which focuses more on 

differentiating mixtures and identifying batch-to-batch variability. For this, three different batches or "pure 

lots" were obtained, and then six different mixtures were generated by combining different proportions of 

the three pure lots (Fig. 5.1A). To further prepare the samples, these CF lots were subjected to filtration via 

centrifugation to obtain three fractions (10kDTop, 10kD bottom, and unfractionated) (Fig. 5.1B). In total, 

we had 27 distinct samples, each with 3-4 replicates.  

 

     Traditional analysis of results from physicochemical techniques can easily miss identifying important 

qualities, called “critical quality attributes” (CQAs). Computational methods like machine learning, 

information theory, statistics, and data processing are essential to identify CQAs that can differentiate 

between the batches or lots. Aside from identifying CQAs, the computational approach used here can also 

be applied to the study of biologics and to address the issue of biosimilarity. These tools are highly useful 

Crofelemer mix

Unfractionated 10 kD MWCO filter

10kD top

10kD bottom

Figure 5.1: The mixtures and fractions used for data collection. A) Table showing the percentages of three 

pure lots (batches) and six different mixtures (generated from different combinations of pure lots). B) The 

centrifugal filters used for collection of fractions.  

 

Mixture 

Crofelemer

P1 P2 P3 M1 M2 M3 M4 M5 M6

Percentage (%) of Pills

Lot 1 100 10 10 33.3

Lot 2 100 90 33.3 50 10 90

Lot 3 100 90 33.3 50 90 10

BA
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for evaluating large data sets like CF and similar biologics. The results obtained can help identify batches 

with contaminants or other variants that might not have the same efficacy as the original approved drug or 

reference drug. Hence, the combination of computational analysis and physiochemical characterization can 

help maintain regulatory standards and provide a more structured way to evaluate changes in the drug 

manufacturing process.   

     This work aims to distinguish CF mixtures from one another, and we achieved this by using a 

combination of mutual information (MI), principal component analysis (PCA), similarity analysis, and 

machine learning classifiers from the scikit learn package in Python [14]. Our study distinguished expired 

CF lots from valid lots and mixtures, and we also simulated a biosimilarity experiment, where our 

mathematical model successfully identified active vs. inactive Croefelmer groups. Ultimately, this approach 

lays a foundation for future works on assessing biologics and addressing issues of biosimilarity. 

Additionally, it highlights the need for more robust machine learning-based approaches to analyze the 

results of physical, chemical, and biological assays in pharmaceutical characterization.   

 

5.2 Materials and Methods 

 

5.2.1 Sample preparation 

 
For this study, the Croefelmer mixtures were prepared similarly as described in the articles [4, 12]. The 

further details of mixtures and sample preparation are not described in this chapter and are out of scope. 

The data was provided by our collaborators using similar methods as published in previous studies [4, 11, 

12]. As described in a similar study, the Fulzaq tablets were obtained in three batches [11]. The filtrate after 

centrifugation was categorized into two fractions, the 10-kDa top fraction, which contains molecules with 

Molecular Weight greater than 10 kDa, and the 10kDa bottom fractions, which contains molecules less than 

10k Da. The third fraction was the unfractionated CF drug. The mixtures were prepared by mixing different 

proportions of three pure lots (batches) in various combinations or rations (Fig. 5.1). The table shown in 
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Fig. 5.1 has the three pure lots (first three mixtures) and then mixtures (4 - 9) with different combinations. 

In total, we have nine mixtures, each with three fractions and each fraction having four replicates; precisely, 

we have = 9(mixtures) X 3 (fractions) = 27 distinct samples.  

 

5.2.2 Physical assays datasets preprocessing 

     A wide range of techniques like Ultraviolet-visible absorption spectroscopy (UV-Vis), Fourier 

transform infrared spectroscopy (FTIR), circular dichroism (CD), Nuclear magnetic spectroscopy (NMR), 

normal phase high-pressure liquid chromatography (HPLC), and other HPLC techniques like size-exclusion 

chromatography (SEC) and hydrophilic interaction chromatography (HILIC) were employed to 

characterize the CF mixtures and generate the datasets used for our analysis. (All of the experimental data 

for this study are done by our collaborators). 

     The data for UV-Vis’s spectroscopy is recorded from 190 nm to 1100 nm. The FTIR data measures 

absorbances from 900 cm-1 to 4000 cm-1. The CD measures the absorbances from 200 to 250nm. For the 

normal phase HPLC, we have absorbances at 280 nm and retention times 0 to 65 minutes (at 640-

millisecond intervals). For SEC we had absorbances collected from 190 nm to 800 nm with the retention 

times from 0 to 30 minutes (at 640 milliseconds interval). Similarly, for HILIC, we have absorbances 

collected from 190 nm to 800 nm with retention times from 0 to 50 minutes (at 640 milliseconds interval). 

For CD, HILIC, and SEC, the experiment was also run with buffer (without any sample treatment). We 

subtracted these background correction values from the raw data before normalizing them by concentration. 

To summarize we had 5.502,379 total features (150:CD, 912: UV-Vis,3215: FTIR, NMR:1,769,526, 6096: 

HPLC, 1,396,240:SEC and 2326240: HILIC for each replicate of each sample).  

     Some of these techniques had artifactual data for certain ranges of wavelengths, thus we did not include 

the data from these regions in our analysis. We only have included the wavelengths between 240 and 600 

nm for UV and wavenumbers between 1100 and 1700 cm-1 for FTIR. For SEC and HILIC we used the 

retention times from 10 to 18 mins and 3.5 to 46.5 mins, respectively. For 13CNMR, we had 0 to 170 ppm, 

and for 1HNMR, we had 2.5 to 7.5 ppm. We have not included HPLC and both NMR techniques for 
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classification in the later analysis as they had low information regions. After excluding the artifactual data 

our total number of features reduced from 3,725,757 to 2,419,134 features (150:CD, 351: UV-Vis,622: 

FTIR, 371,999:SEC and 2,046,000: HILIC). 

 

5.2.3 Mutual Information 

Mutual information (MI) measures the relatedness of two random variables [15, 16]. We referred to the 

method employed in related studies [11, 12, 17]. All the calculations are done using the mutual_info_score 

method from the scikit-learn package [14] in Python to calculate the mutual information score (MIS). 

Mutual information is a data mining technique that we used to identify regions of the data set that are rich 

in information content. The mutual information between 2 discrete random variables is defined as follows 

[17]. 

where X and Y are sets of possible x and y bins, p(x,y) is the joint probability distribution function of X 

and Y, and p(x) and p(y) are the marginal probability of distribution functions of X and Y, respectively.  

All the figures with MI have units of bits as we have used base two logarithms. As done in previous study 

[11], for calculating MI, 𝑦-bins are 27 categorical variables (nine mixtures with three fractions each), and 

𝑥 -bins are 6 (arbitrary) estimate the probability of range of feature values. 

     Feature reduction is often made to reduce dimensionalities and remove the redundant and low variance 

regions that add computational complexity to the problem. For our analysis feature selection was 

accomplished by ranking every feature based on their MI scores. So, a high MI score indicates that the data 

point is more dependent on the labels (each label is a distinct sample). We selected the top hundred MI 

scores after combining all the physical assay datasets for part of our analyses.  
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5.2.4 Principal Component Analysis (PCA) 

To visualize many features in two-dimensional space for a more intuitive understanding, we utilized the 

popular dimensionality reduction technique of Principal Component Analysis (PCA). After preprocessing 

data and performing the background correction when needed, we performed PCA on the resulting matrix. 

The rows represent the different CF pure lots and mixtures, and each column represents the features. We 

used the function scale () from scikit-learn for standardization and PCA ().fit().transform() from scikit-learn 

in Python to calculate the principal components for the data [14].  

 

5.2.5 Similarity analysis 

A similarity measure is used to determine how similar two variables and here we quantified the similarity 

between two objects by measuring the Euclidean distance between them. We have six mixtures and three 

pure lots for our case, each having three different fractions; for consistency, we chose only three replicates 

from all fractions. Thus, we have an 81X81 matrix that contains the distances between samples by 

combining the data and representing it as a heatmap to visualize the high dimensional space in 2D.  Since 

we are using data from different experimental techniques, it is crucial to perform standardization of the 

input feature matrix. We used the function euclidean_distances() from sklearn.metrics.pairwise in Python 

scikit-learn [14].   

 

5.2.6 Machine learning Classifiers and Cross-Validation 

For this study, we used six classifiers which include k-nearest neighbor (kNN) [18], linear discriminant 

analysis (LDA) [19, 20], support vector machine (SVM) [21, 22], Decision tree (DT) [23], Random Forest 

(RF) [24] and Ada-Boosted Decision Tree (AdaBoost) [25].  The parameters were optimized for each 

classifier by calculating the accuracies as done in [11].  

     Cross-validation is a statistical technique used to assess the effectiveness of a machine learning model 

on unseen data. This technique typically involves splitting the data into training and test datasets. The model 
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is trained using the training data set and later validated/evaluated over the test data set. There are several 

methods of cross-validation; in this work, we have used two methods: 

1. Test-train split, or Monte Carlo test-train split: In this method, we randomly split data into subsets, 

like 70:30, 80:20, or 90:10. The larger number represents the training dataset subset, and the smaller 

represents the test data subset. For our work, we have split the data into 90:10 and repeated the test-

train split 100 times to achieve statistical accuracy. The results reported are percentage accuracy, 

on the test data, averaged over these 100 individual cross validation experiments.   

2. Leave – one – out: This a type of exhaustive cross-validation, where N samples are randomly 

chosen as a test set, and the remaining form the training set. For our analysis, N=1, so we had one 

(out of 108) sample as the test set and the remaining data for training our classifiers. Other popular 

variations include, leave-11-out or leave-8-out and so on. The results reported are average 

percentage accuracy.  

 

5.2.7. Biosimilarity assessment 

To validate if the classifiers distinguish between active and inactive samples, we performed a biosimilarity 

assessment combining the Croefelmer mixtures datasets used in this study (“Year2 CF lot”) and the 

Croefelmer stability datasets (“Year1 CF lot”) which is used in previous studies as described in three 

companion articles [4, 11, 12].  The “Year1 CF lot” were the stability studies conducted in 2016, which had 

a single batch of surface scraped Fulyzaq tablets were dissolved in water and centrifuged, the resulting 

filtrate was fractionated with 10kDa and 3kDa filers.  This yielded 10kDa top, 10kDa bottom, 3kDa top, 

and 3kDa bottom fractions. Also, an unfractionated set of samples was used for this study. All these five 

fractions were then maintained at two temperatures 250C and 400C for 0 days (had only250C), 2 days, 1 

week, and 1 month.  These totally produced 35 distinct samples (4 days, two temperatures (not for day 0), 

and 5 fractions). For the biosimilarity experiment, the active group comprised of all unfractionated samples 

for 9 mixtures of “Year2 CF lot” and all unfractionated samples maintained at 0 days. This leads to 10 
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distinct samples for the active group. The inactive group, consisted of only “Year2 CF lot” 10kDa top and 

3kDa Top maintained at 2days, 1week, and 1 month (250C and 400C). Hence, we have 12 samples for the 

inactive group.   

5.3 Results 

 
5.3.1 Analysis of UV-Vis, FTIR, CD physical assays data 

Each of the Croefelmer pure lots and mixtures was subjected to UV-Vis’s absorption, FTIR, and CD 

physical techniques. After, we did background corrections and normalization (see 5.2.2), we found that all 

these three biophysical techniques have high levels of mutual information (MI) (Fig. 5.2). MI is an 

information theoretic measure of statistical correlation between variables.  We used MI scores to quantify 

Figure 5.2: Raw data and mutual information score (in bits) for (A) UV-Vis absorption, (B) CD, and (C) 

FTIR data from Crofelemer pure lots and mixtures. In each plot, the colored lines show the normalized data 

for the corresponding technique and the background shows the mutual information score. In each case, the 

raw data were divided by the concentration of the samples, and the maximum intensity in each case was 

normalized to 1. The lines represent the different replicates from the pure lots and mixtures.  
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the data for each data point for all techniques and then used heat map to represent along with the actual data 

to visualize differences among mixtures. The MI scores are independently calculated between each signal 

and wavelength for each sample type (see 5.2.3). This analysis showed that UV, FTIR and CD have 

relatively high MI scores (1.7-2 bits) and they can discriminate between the Croefelmer mixture samples 

to some extent.   

 

5.3.2 Analysis of NMR and HPLC data 

     Along with UV, FTIR, and CD we had three additional data sets from NMR and HPLC techniques. 

After computing MI scores as done in section 5.3.1, we observed that overall, for NMR and HPLC 

Figure 5.3: Raw data and mutual information score (in bits) for (A) 13C NMR, (B) 1H NMR, and (C) HPLC 

data from Crofelemer pure lots and mixtures. In each plot, the colored lines show the normalized data for 

the corresponding technique and the background shows the mutual information score. In each case, the raw 

data were divided by the concentration of the samples, and the maximum intensity in each case was 

normalized to 1. The lines represent the different replicates from the pure lots and mixtures.  
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techniques the MI scores 13C NMR and HPLC have moderate levels of information and 1H NMR has very 

low levels of information around 1.1 bits (Fig. 5.3). For further analysis and classification, we did not 

include NMR and HPLC data. Visualization analysis like PCA also showed relatively less clustering for 

NMR and HPLC (data not shown).    

 

5.3.3 Analysis of SEC and HILIC physical assays data 

     Chromatography techniques like SEC, and HILIC HPLC were also applied to the Croefelmer mixtures, 

and these two techniques provide large amounts of data. For SEC, the data was collected from retention 

times of 0 to 30 minutes (at 640 millisecond interval) and the absorption spectra was collected from 190nm 

to 800nm for each retention time (Not matching the methods). Similarly, for HILIC the data was collected 

from retention times of 0 to 50 minutes (at 640 millisecond interval) and the absorption spectra was 

collected from 190nm to 800nm for each retention time. In total we have 1,396,240 features for SEC and 

2,326,240 features for HILIC. This enormous amount of data is tedious and impractical to use for further 

characterization. So, we employed the MI score approach to examine the find useful subsets of the 

chromatography data for further analysis of Croefelmer mixtures. 

     For SEC we observed high MI scores for broader wavelength but smaller spans of retention times (~10-

19mins) (Fig. 5.4A).  To further quantify this observation, we averaged all MI scores over all wavelengths 

for a given retention time (Fig. 5.4 B blue curve) and separately averaged all retention times for a given 

wavelength (Fig. 5.4 B red curve). The average MI was highest for retention times between 10 to 12 mins. 

As earlier observed (Fig. 5.4 A) the curve showing MI scores averaged over time (Fig. 5.4 B red curve) did 

not show a prominent peak for all wavelengths.  

     HILIC data showed a different behavior, where we observed high MI scores for all retention times (0-

50mins) for wavelength from 190nm to 255nm (Fig. 5.4C). We observed that retention times from 12mins 

to 50 mins for wavelength of 257nm to 460nm had very low MI scores (~ 0 bits) (Fig. 5.4C). Like the SEC 

case, we averaged the MI scores over all wavelengths and over all the times for HILIC data (Fig. 5.4D). 
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Here, the absorbance values for the wavelength near 220 nm had the maximum average MI score across all 

retention times. Additionally, we observed a maximum average MI score at 2 minutes averaged over all 

wavelengths (Fig. 5.4D).  These results emphasize the utility of using MI scores as a tool for identifying 

regions with extremely rich sets of information.  

 

 

 

Figure 5.4: Plots for mutual information score (MIS in bits) and for SEC and HILIC of Croefelmer mixtures. 

(A) Heat map of mutual information score for SEC. (B) The red curve represents the mutual information 

score averaged over all retention times, and the blue curve represents the mutual information score averaged 

over all wavelengths for SEC data. (C) and (D) same as in (A) and (B) for HILIC data.  
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5.3.4 Visualization of data 

From the MI scores data, we selected several subsets from all the techniques that would be useful for 

classifying the different pure lots and mixtures. From UV-vis we took data from (240 – 300 nm), CD from 

(200 – 350 nm), FTIR from (1100 cm-1-1700cm-1) (Fig. 5.3), SEC all wavelengths from retention times of 

10-18 mins (Fig. 5.4A, B), and for HILIC we selected all wavelengths from retention times of 3.52 to 47.5 

mins (Fig. 5.4 C, D). All these five techniques combined (NMR and HPLC were not included due to low 

MI scores) gave a total of 2,419,134 features per replicate/sample (total 108 reps). To visualize the data 

better we performed a PCA with the 2,419,134 features per sample (Fig. 5.5A). We can still see that the 

data does not show clear separations among pure lots and mixtures, even though the first two principal 

components capture almost 80% variance (Fig. 5.5A), where each fraction and mixture are shown with a 

different legend. Additionally, we also used a similarity analysis visualization which represents data based 

on Euclidean distances (Fig. 5.5B).  The similarity analysis and PCA helps us visualize the Croefelmer 

mixtures among large feature space. The similarity analysis heat-map (Fig. 5.5B) shows that all the three 

pure lots and six mixtures cannot be distinguished in the combined data set. As seen, the pure lots (P1, P2 

and P3) with fractions (Top-T, Bottom-B, and Unfractionated-U) are all equidistant and not distinct.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: A) Principal Component Analysis and B) Similarity Analysis for five techniques combined. 
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5.3.5 Visualization of the physical techniques of top 100 mutual information scores from 

datasets 

For feature selection we decided to select the top 100 features with the highest Mutual Information Scores 

(MIS) among all the data. After selecting the top 100 MIS, we observed that the 1st and 2nd principal 

components capture more than 82% of the variance in the data (Fig. 5.6A) and the heat-map from similarity 

analysis shows a clear distinction between bottom and other fractions (Fig. 5.6B). 

Selecting the features with top 100 MI scores, thus does a better job in capturing differences between 

samples. We also saw that the three pure lots (P1, P2 and P3), which are three different batches, shows 

some clustering in the PCA representation (Fig. 5.6A).  Overall, selection of the top 100 features leads to 

somewhat better clustering and much better similarity analysis (Fig. 5.6A, B).  

     We investigated further to see which techniques contribute the most to top 100 MI scores, and we 

observed that the high dimensional techniques i.e., SEC and HILIC, contribute the most. As seen in the pie 

chart Fig. 5.7 HILIC contributes about 64%, followed by SEC with a 22%, FTIR about 9% and UV-Vis 

with 5%. Interestingly, we did not see any features from CD in the top 100 MI scores (Fig. 5.7).  

Figure 5.6: A) Principal Component Analysis for top 100 MIS and B) Similarity Analysis for five 

techniques combined for top 100 MIS.  

 



100 

 

 

5.3.6. Classification Analysis 

The MI score is a promising information theoretic measure that can be used to extract useful features. As 

seen in the MI scores analysis, most techniques have high information about score (2.5 bits) on their own. 

But no single feature can identify the different mixtures, to have a more robust classification, we have used 

the machine learning classifiers on every technique.  We performed supervised learning classification using 

the seven classifiers (see 5.2.6) on individual techniques and combing all the techniques. Similar to the 

approach used in a previous study [11] we used Monte Carlo test train split with 91% of data as training set 

and 9% as test set and averaged the accuracies over 100 iterations to determine statistical significance. From 

the seven classifiers used LDA performed the best and kNN, SVM (linear and radial), and random forest 

also performed well (Table 5.8).  Clearly, as MI scores indicated NMR and HPLC techniques had very low 

classification accuracy (Table 5.8).   

 

Figure 5.7: Pie chart shows the percentage of features that are part of the top 100 mutual information scores.  
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We also used leave-one-out cross validation. The same classifiers which performed well for Test-train split 

had higher accuracies under leave-one-out cross validation technique (Table 5.9).  

 

 

 

 

 

Technique kNN LDA
SVM

(Linear)

SVM

(Radial)

ADA

Boost

Decision

Tree

Random

Forest

CD 0.83 0.87 0.88 0.87 0.19 0.50 0.78

UV 0.88 0.90 0.92 0.91 0.24 0.64 0.85

FTIR 0.84 0.99 0.91 0.88 0.34 0.77 0.92

HPLC 0.12 0.42 0.18 0.15 0.11 0.17 0.22

13C NMR 0.24 0.15 0.16 0.09 0.07 0.15 0.16

1H NMR 0.32 0.10 0.21 0.17 0.08 0.14 0.18

SEC 0.83 0.85 0.67 0.55 0.13 0.61 0.51

HILIC 0.52 0.54 0.68 0.45 0.13 0.63 0.61

Technique kNN LDA
SVM

(Linear)

SVM

(Radial)

ADA

Boost

Decision

Tree

Random

Forest

CD 0.84 0.93 0.88 0.12 0.31 0.50 0.81

UV 0.89 0.94 0.95 0.18 0.27 0.57 0.72

FTIR 0.96 1.0 0.98 0.16 0.17 0.79 0.94

HPLC 0.08 0.48 0.20 0.12 0.0 0.12 0.17

13C NMR 0.33 0.14 0.25 0.11 0.0 0.03 0.11

1H NMR 0.11 0.18 0.14 0.03 0.07 0.03 0.22

SEC 0.66 0.79 0.66 0.16 0.04 0.45 0.55

HILIC 0.57 0.60 0.58 0.14 0.13 0.37 0.52

Table 5.8: Classification accuracies under Test-train split for individual technique averaged over 100 

iterations of cross-validation. Accuracies greater than 75% are in red.  

 

 

Table 5.9: Classification accuracies under leave -one -out cross validation for individual technique averaged 

over 100 iterations o cross-validation. Accuracies greater than 75% are in red.  
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For leave-one-out classification accuracies, we noticed that LDA has 100% accuracy for the FTIR 

technique. Interestingly, similar studies on biosimilarity assessment using leave-one-out cross-validation 

also had the LDA classifier showing as high as 100% accuracy [11, 13].  

 

 

Similar to test-train split NMR and HPLC had very low classification accuracies for the leave-one out 

scheme as well (Table 5.10). Next, we used data combined from five techniques (UV, CD, FTIR, SEC and 

HILIC) to classify using the test-train split and leave-one out cross-validation schemes. Combination of all 

data leads to low classification accuracies, even LDA which had 100% accuracy under leave-one out cross 

validation for FTIR shows low accuracy.  

This tables show accuracies for all combined datasets 
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Classifier Test-train split
Leave-one-out

cross-validation

kNN 0.65 0.67

LDA 0.51 0.59

SVM(Linear) 0.67 0.66

ADB 0.13 0.24

SVM(Radial) 0.33 0.17

Decision Tree 0.55 0.48

Random Forest 0.50 0.51

Table 5.10: Classification accuracies under test-train split and leave -one -out cross validation for combined 

datasets averaged over 100 iterations. None of the accuracies were above 75%.  
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     We did not find any classifiers greater than 75% accuracy for the combined data set (Table. 5.11). We 

had previously seen (Fig. 5.5) that combining these techniques shows poor clustering and cannot distinguish 

between Croefelmer mixtures. This is very likely due to the low variance and low information data in the 

physical techniques; these data points lower the classification accuracy and makes the samples 

indistinguishable.  Next, we performed feature selection as previously described in section 5.2.3 by 

selecting top 100 features with highest MI scores. We see improvement in classification accuracy with this 

MI feature selection (Table 5.11). All the techniques except Adaptive Naïve Bayes (ADB) had greater than 

75% accuracy for at least one cross-validation scheme. kNN, LDA, SVM (linear and radial), and random 

forest all have very high classification accuracies for both the cross-validation schemes. These accuracies 

are consistent with our previous clustering and visualization results described in section  

 

 

 

 

 

Technique Test-train split
Leave-one-out

cross-validation

kNN 0.95 0.79

LDA 0.97 0.99

SVM(Linear) 0.97 0.97

ADB 0.5 0.29

SVM(Radial) 0.97 0.22

Decision Tree 0.71 0.76

Random Forest 1.0 0.84

Table 5.11: Classification accuracies under test-train split and leave-one-out cross validation for combined 

datasets averaged over 100 iterations. Classification accuracies which are above 75% are highlighted in red.  
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5.3.7. Biosimilarity Experiment 

Biosimilar drugs are expected to be highly similar to the FDA-Approved drugs (reference drugs). The 

biosimilar drug should have no have no clinically meaningful differences in safety, purity, or potency 

(safety and effectiveness) compared to the reference product. The biosimilar and reference drugs should 

exhibit similar biochemistry in structure and function.  A previous stability study on Croefelmer drug by 

our group has used similar mathematical approaches to identify signatures to distinguish Croefelmer drug 

samples [11].  

The data from this study also labeled as “Year 1 CF lot” Croefelmer data was utilized for simulating a 

biosimilarity experiment (See 5.2.7). The Croefelmer mixtures datasets used for this Chapter are labeled 

as “Year 2 CF lot”. The Croefelmer datasets were divided into two categories: active and inactive. The 

active category has all unfractionated samples from the three pure lots and six mixture datasets (Fig. 5.1) 

and additionally it has all the unfractionated samples of Day 0 from “Year 1 CF lot”. These fractions have 

the active ingredients in them. So, in total the active dataset has ten distinct samples (nine mixtures from 

“Year 2 CF lot” and one mixture from “Year 1 CF lot”). The inactive dataset has all unfractionated and 

3kD top fractions for the days 2,7, and 30 (for two temperatures i.e., 250C and 40C). Thus, it has twelve 

Physical assay Selected
features

Original
9 active +  11 inactive

Train 
classifiers

Biosimilar

1 active + 1 inactive
Accuracy

Figure 5.12: Model of the Comparative Characterization experiment for CF mixtures and stability data.  
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distinct samples which are not having the active ingredient and hence the CF from these mixtures are not 

effective.  

     From the active and inactive datasets, we randomly chose one sample from each group and left it out as 

biosimilar data i.e., two samples (1 sample from 10 active and 1 from 12 inactive) (Fig. 5.12). The 

remaining twenty samples from the training or original dataset. Next, we performed supervised learning 

classification using Test-train split (91% training and 1% test) and leave-one out cross validation schemes. 

The results of this classification are summarized in Table 5.13. Note that, there are 120 combinations 

((Active)10C1 X (inactive)12C1 = 120) of leaving out the data for this active and inactive groups. The classifiers are 

optimized and calculated for all the possible combinations. We see that on an average we obtain greater 

than 75% accuracies for most classifiers.  

      We observed very high classification accuracies for the experiment, besides SVM (radial) under test-

train split. SVM (linear) shows a 100% accuracy for the biosimilarity assessment (Table. 5.13). These high 

accuracies implied a very high rate of success to model biosimilarity assessment using physical techniques 

data. In future, this model can be also applied to other biosimilar drugs and understand their biological 

activity and lot-to-lot variability during manufacturing.  

Technique Test-train split
Leave-one-out

cross-validation

kNN 0.99 0.95

LDA 0.99 0.99

SVM(Linear) 0.99 1.00

ADB 0.97 0.98

SVM(Radial) 0.39 0.97

Decision Tree 0.97 0.98

Random Forest 0.97 0.98

Table 5.13: Classification accuracies under test-train split and leave-one-out cross validation for 

biosimilarity experiment averaged over 100 iterations. Classification accuracies which are above 75% are 

highlighted in red.  
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5.4 Discussion 

 
Drugs made using natural sources as raw materials are highly heterogeneous and are subjected to batch-to-

batch variability [4, 10, 11, 13]. In this work, we have different mixtures of the botanical drug Crofelemer 

(CF), which forms our model system. This characterization study aimed to identify subtle differences 

between these samples, which are missed in the traditional data analysis and analytical characterization 

methods. The mathematical model helps for a better understanding of data and select the regions of high 

information. Further, the use of classifiers can be used to identify differences in physical assays. This study 

is similar and uses similar methods and data mining approaches in our research group [11].  

     Physiochemical assays like UV-vis, CD, FTIR, NMR, SEC, and HILIC were then performed on these 

mixtures to obtain the analytical datasets. The UV, CD, and FTIR were used to obtain spectroscopy 

characters, NMR, SEC, and HILIC to get the information on the degree of polymerization, composition, 

and molecular weight distribution [4].  In this work, we have applied a mathematical model for the 

comparative characterization of CF mixtures datasets. Modern data mining and machine learning methods 

make a robust and well-suited technique to analyze large datasets.  We demonstrated that using techniques 

like mutual information, PCA, similarity analysis, and machine learning methods, it is possible to 

differentiate and classify the different mixtures and address batch-to-batch variability issues.  

     Our analysis dataset consists of the CF mixtures from three pure lots (different batches) and six mixtures. 

Further, each of these fractions has multiple replicates; the bottom fractions, the top, and unfractionated 

fractions have four replicates. Therefore, for nine mixtures and three fractions with multiple replicates, we 

have a total of 108 samples.  Our analysis using MI scores showed that most techniques have regions of 

high information, except HPLC and the NMR techniques. Even PCA showed good clustering and 

separation and separation for UV-vis, CD, and FTIR but had poor separation and less structuring for HPLC 

and NMR (data not shown). Most of the PCA results on individual techniques showed a clear separation of 

the bottom fractions, which are inactive. The PCA of CD also showed a clear separation of the pure lots 
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and mixtures (data not shown). Overall, the five techniques - UV-vis, CD, FTIR, SEC, and HILIC contained 

rich and essential information, and HPLC and the NMR techniques did not have enough information to 

classify the CF mixtures.  

     The chromatography techniques like SEC and HILIC generate vast data sets as these techniques collect 

data over a range of absorption spectra (200 nm-800 nm) for intervals in retention times (30-60 minutes). 

Analyzing such large datasets with traditional methods is not feasible; our approach of using information-

theoretic metric - mutual information (MI) helped identify information-rich regions. Feature selection based 

on MI scores enabled us to reduce the features from 1,396,240 to 371,999 in SEC and from 2,326,240 to 

2,046,000 in HILIC datasets for each sample. To see if a single feature can differentiate between all 

mixtures, we combined the data from five techniques. The combined datasets PCA and similarity analysis 

(Fig. 5.6A, B) successfully determine the bottom fractions of very low concentrations (less than 10kDa) 

from the unfractionated and top. Moreover, we also saw the separation between the three different batches: 

pure lot 1, 2, and 3 (PL in Fig. 5.6 A). The similarity analysis heatmap also shows that bottom fractions are 

very distinct because of low concentration and are inactive, shown in Fig. 5.6 B.  

     We used the supervised machine learning classifiers to classify the samples. When used for a single 

technique, we observed that for two cross-validation schemes, we obtained high accuracy for UV, CD, 

FTIR, and SEC (Fig. 5.9 and 5.10). We excluded the NMR and HPLC datasets with significantly less 

information and then combined the remaining five UV, CD, FTIR, SEC, and HPLC techniques. Using 

classifiers on this combined dataset gave low accuracy, and none of the classifiers used had greater than 

75% accuracy (Fig. 5.11).  Interestingly, the top 100 MI scores and select those features for classification 

accuracies allowed several classifiers to achieve near 100% accuracy for the random forest, and other 

classifiers performed very well. This is one of the critical results of our work, suggesting that it is possible 

to improve classification accuracies by using top-ranked features for the physical assays (Table 5.13).  

     Another interesting application of using mathematical models for such data sets is to simulate 

biosimilarity experiments. For our work, we collected the data from previous stability studies on CF [4, 11, 

12], which had 35 distinct samples (Year 1 CF lot). This stability study started with a single batch of CF 
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drug, and then it was subjected to thermal degradation at two temperatures -250C and 400C and incubated 

for different lengths of time (See 5.2.7). We know that for day 0 and temperature of 250C, the unfractionated 

samples are active. This sample from Year 1 datasets and the nine samples of the study of the current 

mixture (only unfractionated samples from three pure lots and six mixtures) together formed ten samples 

of the active group. The inactive group had 12 samples from the "Year 1 CF lot" (which were incubated for 

more than a day) [11]. Then, we randomly chose one sample from the active and the inactive group as our 

test set and train the machine learning classifiers on the remaining data. We observed very high 

classification accuracies.  The classifiers successfully distinguished among the active and inactive samples.  

     This simulated experiment is a great example of applying machine learning methods to differentiate 

active and inactive samples with high statistical significance. Such methods can be applied to biosimilars. 

The new product is an identical copy of the reference (original) product and is expected to show similar 

biochemistry, safety, and efficacy as the reference product. The mathematical model in our study can have 

also been applied to monoclonal antibodies (IgG) datasets from physical, chemical, and biological assays. 

In the future, similar methods can be applied for cases where there has been a change in the manufacturing 

process, raw material, or contaminated drugs manufactured, and these models help evaluate the new product 

before it is available for public use.  

     Overall, our results in Chapter 5 suggest that using machine learning methods is a promising approach 

to differentiate between mixtures or batches of biological origin drugs. They can classify mixtures 

exhibiting different biological activity. Also, the mathematical model used can discriminate between active 

and inactive drugs (expired or not having potency). Perhaps, additional chemical and biological assays for 

the CF mixtures like fluorescence assays, single-cell patch-clamp assays, and oxidation relates studies can 

give us richer information and help further evaluate our model to determine if it was robust. Applying our 

model to physical, chemical, and biological assays data can help to reduce the number of assays and 

experiments in analytical characterization, and further highlight subtle CQAs missed in the routine analysis. 

More studies for characterizing biopharmaceuticals are essential and are upcoming with the recent advances 

in machine learning and artificial intelligence. These techniques have also found application in studies on 
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microRNA datasets [26], nanoparticles of medical interest [27], air pollution epidemiology [28], gene 

expression data [29], and many more studies [30, 31]. These studies describe the enormous potential and 

challenges faced in using machine learning and data mining approaches systematically to obtain proper 

classification and biomedical information to advance scientific discoveries in the new computational era. 
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Chapter 6 

 

Conclusion and Future Directions 

 
 
Macromolecular machines are crucial components of living systems and are assembled from multiple 

subunits. These machines are evolutionarily designed to be effective, robust and are involved in nearly all 

cellular processes. Ribosomes, nucleosomes, spliceosomes, GroEL, Clp proteases, proteasomes, virus 

capsids, and motor proteins are some examples of such machines, and they are present in all life forms, 

from tiny viruses, ancient archaea, and bacteria to the complex eukaryotes. The prokaryotic proteasome 

20S Core Particle (CP) is the molecular machine of interest in this thesis. The proteasomal CP consists of 

four heptameric rings arranged in a cylindrical pattern α7β7β7α7.   Here, we address multiple questions on 

CP assembly using Rhodococcus erythropolis (Re) bacterium as our model system. The CP has gained 

significant interest recently as it is a novel drug target for the treatment of tuberculosis [1-4], multiple 

myeloma [5-9], and other diseases [6, 10, 11]. Chapters 2-4 address specific questions in bacterial CP 

assembly, which have long been unanswered in biology. Chapter 2 addresses the slow dimerization of HPs 

into CP. Chapter 3 provides evidence of why near-HP intermediates do not associate with HP or each other. 

Chapter 4 investigates the formation of HPs in assembly and assembly dynamics of different CP assembly 

pathways.  

     Experimental studies indicate that the Re β propeptide can regulate the slow dimerization in CP 

assembly. In Chapter 2, we used Molecular Dynamics (MD) simulations of Re pre-holo CP- α7β7β7α7 to 

investigate the role of β propeptide in dimerization of two Half Proteasomes (HP- α7β7) into a fully 

assembled CP. We categorize the Re β propeptide into three regions (I, II, and III). Our findings suggest 

that the length and polarity of Region III impact dimerization rate. We observed that extending Region III 

by including charged residues yields more interactions between the propeptide and a set of key residues at 
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the dimerization interface. These non-covalent interactions delay HP dimerization and thus CP assembly. 

The mutation of charged residues to Alanine (FAST mutant) in Region III reduces the interactions between 

propeptide and key residues, thus allowing the key interactions to form between two opposing HPs and 

making CP assembly faster than in WT. Statistical analysis showed that the distributions of hydrogen bond 

interactions between propeptide and key residues in the WT simulations differed significantly from the 

mutants. Both the FAST and SLOW mutants are validated experimentally.  Our MD simulations analysis 

revealed other charged residues in Region III (like ARG-15 in Fig. 2.1C), potentially mutated, and studied 

to observe if it is faster than the FAST mutant.  

       The Mycobacterium tuberculosis pathogen is a close relative of Re and a similar length β propeptide. 

In the future, we can investigate if similar separation of time scales also exists in Mtb and if β propeptide 

can impact its HP dimerization rate and hence CP assembly. Additionally, structure-based drug design 

approaches can utilize the HP structures from our MD simulations to screen novel and potent small 

molecule CP assembly inhibitors. As there are no crystal structures available for any CP assembly 

intermediates, our MD simulations can serve as ideal templates for drug design approaches. 

     The HP is an obligatory intermediate in every species CP assembly pathway; we have no evidence of 

CPs with less than 28 subunits (CP-like). Near-HP structures (α6β7, α6β6, and α7β6) never dimerize with a 

true HP(α7β7) or each other. We hypothesized that likely an allosteric mechanism operates in these 

intermediates to prevent the formation of CP-like structures. The near-HP intermediates MD simulations 

discussed in Chapter 3 reveal a global conformational shift and distortion in the α and β rings geometry. 

We saw a significant change in the β subunits angle in the intermediates with the incomplete β ring. In α6β7, 

we noticed that β subunits near the missing α subunit change their tilt angle and are distorted in shape and 

geometry. These significant shifts are allosterically communicated through the propeptide and the subunits 

and conformational changes to the complete quaternary structure. As a result, these intermediates have 

incompatible interfaces and cannot associate stably with HPs or each other. Such global conformational 

shifts may indicate that the subunits of the CP are intrinsically frustrated in true HPs (α7β7). This would 
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need further analysis to investigate the interactions between interfaces and the thermodynamic contributions 

to global conformational shifts.    

     . We also do not understand why an β or an α monomer cannot bind with an HP; the molecular 

mechanism which prevents their association that forms incompatible intermediates like α7β7-β remains 

unexplored. It would also be intriguing to develop theoretical biophysical models and design more 

simulations for hierarchical assemblies other than the proteasome. We speculate that the subunits in 

assembled multi-subunit non-proteasome complexes are likely intrinsically frustrated. Additional analysis 

from the Re near-HP simulations, for instance, investigating different interface contacts, the surface contact 

area, will also provide further evidence for our speculation that these subunits are intrinsically frustrated. 

     In the final study on CP assembly in Chapter 4, we utilized Ordinary Differential Equations to develop 

mathematical models for investigating kinetic trapping and the assembly dynamics in bacterial CP. Previous 

studies on ring-like structures [12] demonstrated that in conditions where the initial subunit concentrations 

are fixed, like in the case of in vitro experiments,  increasing the subunit concentration gives rise to a plateau 

phase called "deadlock" because the incompatible intermediates dominate.  Deadlock is a type of kinetic 

trapping phenomenon, which occurs when monomers are exhausted, and the stable incompatible 

intermediates accumulate and dominate the system. These intermediates are very stable (ring-like); hence 

do not dissociate readily and are kinetically trapped. Our deterministic simulations were run for three CP 

assembly models, two of which are widely accepted – Alpha Ring First (ARF) and Alpha Beta Dimer 

(ABD) in the proteasome field. Here, we proposed a new pathway of CP assembly- Unordered Model 

(UOM), which is partially hierarchal and has not been examined before in any CP assembly study. Our 

simulations indicate that kinetic trapping occurs in UOM and ABD but not in the ARF. The kinetic trapping 

is also observed for in vitro experiments on Re CP. These assembly models demonstrated a tradeoff between 

speed and robustness, where UOM is the fastest and least robust, whereas ARF is the lowest but very robust. 

Interestingly, the UOM is also fast in vivo, implying that evolution has favored faster assembly over 

robustness. We can develop more models to investigate the effect of association rates on assembly dynamics 
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and kinetics in the future. Also, more comprehensive models can be developed to investigate how evolution 

has overcome the challenge of kinetic trapping in other molecular machines.  

     In the miscellaneous Chapter 5, we discuss the application of machine learning and data mining methods 

for biopharmaceuticals characterization. Botanical drug Croefelmer displays heterogeneity and batch-to-

batch variation due to its natural source of raw material.  We used a mathematical model for comparative 

characterization of complex mixture drugs using Croefelmer (CF) as a model system. Our collaborators had 

generated CF drug mixtures and then subjected them to physicochemical assays like UV-Vis, CD, NMR, 

HPLC, SEC and HILIC, for data collection. We used PCA and similarity analysis techniques to visualize 

the data, and mutual information (MI) score to identify "high information" regions within the datasets. 

Finally, we performed supervised machine learning classification to detect differences in different CF 

mixtures. Feature selection (selecting a subset of data) was made by ranking every data point by their MI 

scores and selecting the top 100 features with the highest MI scores. One of the key results of this work is 

that it was possible to significantly improve classification accuracy and discriminate CF mixtures by using 

the top-ranked features for the physiochemical assays based on their MI scores.  This combination of 

mathematical models can also be applied to characterize other biologics, identify batch-to-batch variability, 

or even analyze large volumes of physiochemical assays data. As previous studies by our group [13, 14], 

MI scores offer an effective way to identify species that differ due to different storage temperatures or times 

and provide further insights.  

     Molecular machine assembly is hierarchal and can assemble via different pathways to regulate 

assembly efficiency. As shown in this dissertation, we have investigated three steps in bacterial CP 

assembly using computational and theoretical models. Specifically, we have elucidated molecular 

mechanisms which regulate HP dimerization and thus CP assembly. Also, we observe global 

conformational shifts, which likely act as a checkpoint factor in CP assembly, to prevent aberrant CP-like 

structures which can cause uncontrolled proteolysis. Lastly, our findings show a tradeoff between speed 

and robustness in hierarchal pathways, suggesting evolution favors speed over robustness in bacterial CP 

assembly. Ultimately, this work has helped advance our knowledge on bacterial CP assembly and 
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understand the role of allostery in hierarchal assemblies. In the future, our results can be applied to study 

how similar molecular mechanisms operate in other species of CP as well and test if these assembly 

mechanisms are conserved across different organisms.  
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Appendix A  

 

Appendix for Chapter 2 
 
Understanding the Separation of Timescales in Rhodococcus 

erythropolis Proteasome Core Particle Assembly 

 

 

A.1 Propeptide comes out of the HP barrel in WT simulations 

 
 

 

 

Figure A.1. Cartoon representation of the WT Half Proteasome from Molecular Dynamics simulations of 

Re bacterium. In both images, the α subunits are shown in green, β subunits in blue and the β propeptides 

in the purple spheres. (A) The WT HP at 996 ns. (B) WT HP at 1240.8 ns. The arrow serves to highlight 

the protruding propeptide. Both images were rendered using VMD.     
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A.2 Root Mean Square Fluctuation (Å) for the propeptide in WT, SLOW and FAST 

simulations 

 

 

Figure A.2. Root Mean-Square Fluctuations (RMSF) of the β propeptide in WT, SLOW and FAST HPs. 

The panels show the average RMSF after 2.5 µs for all the backbone atoms of each residue of the β 

propeptides in (A) WT, (B) SLOW and (C) FAST HP for three independent Molecular Dynamics 

simulations. For all panels, electron density of the residues in crystal structure is depicted by the colored 

bars; missing electron density residues (purple) and residues with electron density (grey). The missing 

electron density residues were modeled by Rosetta. The RMSF values measured for Replicate Rep. 1 is 

shown by the blue curve, Rep. 2 by the green and Rep. 3 by the pink colors.     
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A.3 Potential energy profiles of the Anton simulations 

 

 
Figure A.3. Potential energy of each simulation. The potential energy of each 2.5 µs simulation on Anton 

with (A) WT, (B) SLOW and (C) FAST HPs. Plots show the potential energy for Rep. 1 (left), Rep. 2 

(middle) and Rep. 3 (right) separately for each HP type.  Every simulation took about 500 ns to converge.  
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A.4 RMSD (without propeptide) of all backbone atoms as a function of time 

 

Figure A.4. RMSD for HP without the propeptide. Panels show the average RMSD for all seven β subunits 

of the HP without including the propeptide residues in the RMSD calculations at each time point for (A) 

WT, (B) SLOW and (C) FAST HPs. For comparison, all three replicates (blue, green, and pink) are shown 

on the same axes.  
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A.5 LOWESS plots of hydrogen bonds between propeptide and key residues  

 

 

 

 

 

 

 

Figure A.5. LOWESS plots for HPs. Plots show the number of hydrogen bonds formed by the propeptide 

of (A) WT, (B) SLOW and (C) FAST HPs at each time point. Plots show the hydrogen bonds for Rep. 1 

(left), Rep. 2 (middle) and Rep. 3 (right) separately for each HP type.  Black line indicates the non-

parametric LOWESS fit.  

 

 

 

 



121 

A.6 Violin distributions for all replicates of WT, SLOW and FAST 

Figure A.6. Violin plots of hydrogen bonds formed by propeptide. Violin plots showing the total number 

of hydrogen bonds formed between the propeptide and key residues at the HP dimerization interface for 

each replicate of WT (blue), SLOW (red) and FAST (purple) HP.   

 

A.7 In vitro reconstitution experiments / Experimental Methods 

The α, Wild Type β and FAST β proteins were expressed and purified. All proteins were concentrated to 

8uM using Amicon Ultra 10K centrifugal filters (Millipore) in an assembly buffer HNE (20mM HEPES, 

100mM NaCl, 1mM EDTA, 5mM DTT, pH7.0). The α subunit was mixed with wild type β and FAST 

mutant β separately in equi-molar ratio to obtain a final subunit concentration of 4uM. Assembly reactions 

were allowed to proceed for 3hrs at 30°C. At the end of the 3hrs time course, equal volume of loading dye 

(0.8M HEPES, 0.1% Bromophenol Blue, 20% Glycerol) was added to the reactions. Samples were loaded 

on a 4-20% native gel (Invitrogen). Gels were run at 4°C, 120V for 12 hours, stained with Sypro Ruby 

(Thermofisher Scientific, catalog number S12000) protein stain as described by Thermofisher Scientific [1] 

in the manual, visualized using Biorad ChemiDoc imager and quantified using ImageLab software. 

 

 



122 

A.8 Kymographs for all replicates of WT, SLOW and FAST 

 

 

Figure A.7. Kymographs for WT, and mutants. The kymographs show the total number of hydrogen bonds 

formed between each β subunits and the key resides at each time point for (A) WT, (B) SLOW and (C) 

FAST HPs. Plots show the hydrogen bonds for Rep. 1 (left), Rep. 2 (middle) and Rep. 3 (right) separately 

for each simulation type.  
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A.9 Statistical Tables for categorical regression analysis 

A.9.1. Model 1 statistical p-values: one intercept and one slope 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The null hypothesis would be that the average number of hydrogen bonds that assist or delay CP assembly 

will not follow the same trend in longer simulations (seconds) as shown in our current µs simulations. The 

α threshold is 0.05 and only one replicate i.e., FAST mutant replicate 1 has an insignificant slope i.e., the 

num. of hydrogen bonds being formed will not increase with longer simulations and this results the slope 

being equal to 0.  Also, all the SLOW mutant replicates are having very high significance with p-value less 

than 2.2 e-16. This indicates, that on an average the number of interactions between propeptide and key 

residues which delay dimerization are significantly in more numbers in SLOW than the FAST or WT 

simulations. Additionally, all the replicates of WT specially, rep2 and rep3 do not look very different from 

Simulation 
Intercept 

p-value 

Slope 

p-value 

WT-rep1 < 2.2e-16 1.65e-05 

WT-rep2 2.0e-4 < 2.2e-16 

WT-rep3 2.7e-4 1.73e-12 

SLOW-rep1 < 2.2e-16 7.6e-4 

SLOW-rep2 < 2.2e-16 2.05e-05 

SLOW-rep3 < 2.2e-16 < 2.2e-16 

FAST-rep1 < 2e-16 0.2072 

FAST-rep2 6.77e-09 3.1e-04 

FAST-rep3 1.37e-06 6.94e-09 

Table A.9.1: Table for categorical regression p-values for the intercept and slope from Newey-West 

estimator fits for number of hydrogen bonds as a function of time (500ns to 2.5 µs).The model is of the for 

  𝑦 =  𝛽0 + 𝛽1.  𝑋 + 𝜀 where y is the number of hydrogen bonds between propeptide residues and the set of 

key residues at HP dimerization interface,  𝛽0 is the coefficient, 𝛽1  𝑖𝑠 𝑠𝑙𝑜𝑝𝑒, and 𝜀 is the error term. The 

insignificant p-values are highlighted in grey.  
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the FAST mutant simulations, but if we see the p-values for WT slope they all are significant, and hence 

with more longer simulations all the WT replicates will look significantly different than FAST.  

 

A.9.2 Model 2 statistical p-values: two intercepts and one slope 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.9.2: Table for categorical regression p-values for the intercepts and slope from Newey-West 

estimator fits for the number of hydrogen bonds as a function of time (500ns to 2.5 µs). The model is of the 

for   𝑦 =  𝛽0 + 𝛽1.  𝑋 + 𝐵2. 𝐶 + 𝜀 where y is the number of hydrogen bonds between propeptide residues 

and the set of key residues at HP dimerization interface,  𝛽0 is the coefficient for WT, 𝛽1 is the mutant 

coefficient of intercept, 𝛽2 is the combined slope, 𝜀 is the error term and C is the categorical variable. The 

simulations whose p-value slope are not significant is highlighted in grey background.  

 

The null hypothesis would be that on average the WT simulations are not different from the SLOW and 

FAST mutants. The α threshold is 0.05 and in Table A.9.2 three cases the intercept is insignificant and two 

cases the slope. Thus, for cases where intercept is insignificant, we observe that the slope is significant and 

Wild-Type 

(WT) 
Mutant 

WT- 

Intercept 

p-value 

WT & 

Mutant-

Slope 

p-value 

Mutant-

Intercept 

p-value 

WT-rep1 

SLOW-rep1 3.92e-16 0.2527 < 2.2e-16 

SLOWrep2 < 2.2e-16 1.98e-05 < 2.2e-16 

SLOW-rep3 3.92e-16 < 2.2e-16 < 2.2e-16 

FAST-rep1 < 2.2e-16 3.86e-05 9.70e-08 

FAST-rep2 < 2.2e-16 9.70e-08 < 2.2e-16 

FAST-rep3 < 2.2e-16 5.66e-11 < 2.2e-16 

WT-rep2 

SLOW-rep1 < 2.2e-16 1.23e-06 < 2.2e-16 

SLOW-rep2 1.15e-03 < 2.2e-16 < 2.2e-16 

SLOW-rep3 0.3865 < 2.2e-16 < 2.2e-16 

FAST-rep1 < 2.2e-16 < 2.2e-16 < 2.2e-16 

FAST-rep2 < 2.2e-16 < 2.2e-16 < 2.2e-16 

FAST-rep3 < 2.2e-16 < 2.2e-16 6.14e-13 

WT-rep3 

SLOW-rep1 2.87e-14 0.3975 < 2.2e-16 

SLOW-rep2 0.3425 6.04e-10 < 2.2e-16 

SLOW-rep3 7.44e-14 < 2.2e-16 < 2.2e-16 

FAST-rep1 1.67e-10 3.79e-07 7.75e-07 

FAST-rep2 3.48e-04 8.59e-11 2.59e-10 

FAST-rep3 0.0479 3.614e-16 < 2.2e-16 



125 

thus with longer simulations we have enough evidence that they will be different. If the slope is insignificant 

i.e., the simulation has already reached equilibrium and the number of hydrogen bonds as shown in here 

would not change with longer simulations. Overall, we found no replicates in Table A9.2 where both 

intercept and slope are insignificant, hence we have sufficient evidence that the WT replicates are different 

from SLOW and FAST.   

 

A.9.3 Model 3 statistical p-values: two intercepts and two slopes 

 

Wild-Type (WT) Mutant 
WT- Intercept 

p-value 

WT-Slope 

p-value 

Mutant-Intercept 

p-value 

Mutant-Slope 

p-value 

WT-rep1 

SLOW-rep1 < 2.2e-16 5.49e-05 < 2.2e-16 3.65e-06 

SLOW-rep2 < 2.2e-16 5.05e-05 < 2.2e-16 0.5556 

SLOW-rep3 < 2.2e-16 5.47e-05 0.1767 < 2.2e-16 

FAST-rep1 < 2.2e-16 5.50e-05 1.142e-10 0.0053 

FAST-rep2 < 2.2e-16 6.50e-05 1.410e-11 0.3192 

FAST-rep3 < 2.2e-16 < 5.09e-05 4.706e-12 0.8151 

WT-rep2 

SLOW-rep1 0.0004 < 2.2e-16 < 2.2e-16 < 2.2e-16 

SLOW-rep2 0.0003 < 2.2e-16 < 2.2e-16 0.0072 

SLOW-rep3 0.0004 < 2.2e-16 4.71e-16 6.28e-07 

FAST-rep1 0.0004 < 2.2e-16 0.0104 9.26e-13 

FAST-rep2 0.0004 < 2.2e-16 0.2020 5.27e-07 

FAST-rep3 0.0003 < 2.2e-16 0.3905 0.0001 

WT-rep3 

SLOW-rep1 0.0043 1.86e-11 < 2.2e-16 1.12e-07 

SLOW-rep2 0.0041 1.57e-11 < 2.2e-16 0.2489 

SLOW-rep3 0.0043 1.85e-11 < 2.2e-16 < 2.2e-16 

FAST-rep1 0.0043 1.90e-11 9.07e-08 0.0009 

FAST-rep2 0.0046 2.68e-11 0.0013 0.4784 

FAST-rep3 0.0042 1.63e-11 0.0099 0.3358 

Table A.9.3: Table for categorical regression p-values for the intercepts and slope from Newey-West 

estimators for the number of hydrogen bonds as a function of time (500ns to 2.5 µs). The model is of the 

form   𝑦 =  𝛽0 + 𝛽1.  𝑋 + 𝐵2. 𝐶 + 𝐵3. 𝐶. 𝑋 + 𝜀 where y is the number of hydrogen bonds between 

propeptide residues and the set of key residues at HP dimerization interface,  𝛽0 is the coefficient for 

WT, 𝛽1 is the slope of WT, 𝛽2 is the intercept of mutant, 𝛽3 is the slope of mutant, 𝜀 is the error term and 

C is the categorical variable. The simulations whose p-values are not significant are highlighted in grey 

background. 
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     The null hypothesis would be that on average the WT simulations are not different from the SLOW and 

FAST mutants. The α threshold is 0.05 and we observed in three cases the intercept is insignificant and five 

cases the slope. Thus, for cases where intercept is insignificant, has the slope very significant (Ex: WT-rep1 

and SLOW-rep3) and hence with longer simulations we have enough evidence that WT and mutants will 

remain different. If the slope is insignificant (Ex: WT-rep1 and SLOW-rep2) i.e., the simulation (mutant) 

has already reached equilibrium and the number of hydrogen bonds in our µs’s simulations would not 

change with time. Overall, we found no replicates where both intercept and slope are insignificant, hence 

we have sufficient evidence that the WT replicates are different from SLOW and FAST, and the statistics 

show significant evidence and are drawn from different distributions.   

 

 

A.10 MD simulations systems details 

 

 

 

Table A.10: System properties and details of the WT, FAST, and SLOW simulations. All the simulations 

are run in a rectangular water box with 15 Å water on each side of the protein. 

 

 

 

 

 

 

 

 

 

 

 

Simulation Box size (Å) Number of atoms 
Number of water 

molecules 
Ions 

WT 155 X 155 X 155 352979 298725 
Na+ = 275 

Cl- = 184 

SLOW 155 X 155 X 155 353567 298515 
Na+ = 275 

Cl- = 184 

FAST 155 X 155 X 155 345648 291465 
Na+ = 257 

Cl- = 180 
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A.11 Additional MD simulations details.  

Proteins are described by CHARMM36 force field and explicit water was modeled with the CHARMM 

version of the TIP3P water model [2]. All the simulations are explicit solvent and TIP3P water model with 

CHARMM version [3]. In the Anton2 simulations, integration was carried out using the Multigrator 

algorithm [4] with a 2.5 fs time step. For the RESPA scheme every second time step was used for long 

range interactions. Pressure was controlled using the Martyna-Tobias-Klein (MTK) barostat [5] and with 

an interval length of 480 ps. The temperature was maintained by the Nose-Hoover thermostat [6] with an 

interval length of 24 ps. A relaxation time of τ=0.041667 ps was used for barostat and thermostat. 
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APPENDIX B 

 

Appendix for Chapter3 
Global conformational shifts act as a checkpoint in 

bacterial Core Particle assembly 

 

B.1 Cartoon representation of near-HP intermediates structures    

             

  

 

 

 

Figure B.1: Cartoon representations of the three near-HP intermediates, which are simulated for 2.5 µs. The 

three models were built using the crystal structure of the WT proteasome, with its propeptide present, as a 

starting point.  These were developed by starting from our previous WT HP simulations and removing the 

relevant subunits. These are α6β7 and α7β6 (i.e., HPs missing just one α or β subunit), α6β6 (an HP missing an 

entire α/β dimer).  All α subunits are shown in green and β subunits are blue, and the propeptide is purple.  
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B.2 Propeptide Region I RMSD shown as violin distributions 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2: Region I RMSD shown as violin plots. Each violin represents each intermediate and has 

observations for simulations from all the three replicates (from 500 ns to 2.5 µs) combined into one violin. 
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B.3.1 Method for calculating the β 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.3.2 Method for calculating the βØtilt 

 

Figure B.3.1: The method for calculating β of the β subunits. All the seven β subunits of the CP are colored 

differently.  Every angle is calculated between two β subunits and the Center of Mass of the β ring.  

Figure B.3.2: Method to calculate the dihedral angle βØtilt made by every β subunit in the ring. The α6β7 

intermediate is shown in cartoon representation. With alpha subunits in green, and β subunits in different 

colors. The zoom in picture shows only three β subunits β6(red), β7(grey) and β1(orange). The blue spheres 

represent the center of mass of the β subunits, and the magenta spheres represent the center of mass of the 

H1 helix of β subunits.  

  



131 

B.4 β as a function of time for the HP and intermediate simulations  

 

 

 

Figure B.4: The values of β as a function of time for all subunits of the β ring. A) HP-α7β7 B) α6β7 C) α6β6 

and D) α7β6. Each angle for the β subunits is in a different color, and the α6β, and α7β6 simulations have the 

β values from HP simulations for comparison.  
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B.5 Statistics Tables for β categorical regression 

 
B.5.1 α7β7 and α6β7  

 

We observed only two cases where β  values of both the intercept and slope of α6β7 were not significantly 

different from the α7β7 HP simulations (red highlighted). We also see many p-values with an insignificant 

slope (blue), indicating that the β  values will not change with time and have the simulations converged. 

The cases with insignificant p-values of slope (yellow) all have the corresponding slope p-value significant, 

thus for these cases with extended simulations, the β values of intercept will be significant.  

 

 

 

 

 

 

Table B.5.1: p-values of 256 categorical regression tests for β as a function of time all seven β subunits in 

α7β7 and α6β7. The p-values with insignificant intercept are marked in yellow, p-values with insignificant 

slope are marked in blue, and in red if both intercept and slope are insignificant. The null hypothesis is 

rejected for tests whose p-values are marked in red. 

 



133 

B.5.2 α7β7 and α6β6  

 

 

We observed no cases where p-values of both intercept and the slope are above our threshold of 2.3e-4. 

Thus, all the β values in all the β subunits of α6β6 are significantly different from α7β7. We also see many 

p-values with an insignificant slope which indicates that the β  values will not change with time and have 

converged. The cases with insignificant p-values of slope (yellow) all have the corresponding slope value 

significant, thus for these cases with extended simulations, the β values of intercept will be significant.  

 

 

 

 

 

 

 

 
 

Table B.5.2: p-values of 216 categorical regression tests for β as a function of time all seven β subunits in 

α7β7 and α6β6. The p-values with insignificant intercept are marked in yellow, p-values with insignificant 

slope are marked in blue, and in red if both intercept and slope are insignificant. The null hypothesis is not 

rejected for any tests in this table.  

 



134 

B.5.3 α7β7 and α7β6 

We observed only two cases where β  values of both the intercept and slope of α7β6 were not significantly 

different from the α7β7-HP simulations (red highlighted). We also see many p-values with an insignificant 

slope(blue), indicating that the β  values will not change with time and have converged. The cases with 

insignificant p-values of slope (yellow) all have the corresponding slope value significant, thus for these 

cases with extended simulations, the β values of intercept will be significant. Compared to the β  values 

of α6β7, the α7β6 intermediate has only four cases of insignificant slope, which depicts that for our 

simulations β distributions fluctuate more in α7β6 than α6β7 compared to the HP.  

Table B.5.3: p-values of 216 categorical regression tests for β as a function of time all seven β subunits in 

α7β7 and α7β6. The p-values with insignificant intercept are marked in yellow, p-values with insignificant 

slope are marked in blue, and in red if both intercept and slope are insignificant. The null hypothesis is 

rejected for tests whose p-values are marked in red. 
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B.6 βØtilt as a function of time for the HP(α7β7) and intermediate simulations  

 

 

 

Figure B.6: The values of βØtilt as a function of time for all subunits of the β ring. A) HP-α7β7 B) α6β7 C) 

α6β7 and D) α7β6.  Each β subunit tilt is in a different color.  
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B.7 Statistics Tables for βØtilt categorical regression 

 
B.7.1 α7β7 statistical results and α6β7 

 

 
     We observed three cases where βØtilt values of both the intercept and slope of α6β7 were not 

significantly different from the α7β7-HP simulations (red highlighted). We also see many p-values with an 

insignificant slope (blue), indicating that the βØtilt values will not change with time and have converged. 

The cases with insignificant p-values of slope (yellow) all have the corresponding slope value significant, 

thus for these cases with extended simulations, the βØtilt values of intercept will be significant. But in all 

the three replicates of α6β7 we see that their βØtilt values for β6, and β7 are significantly different from the 

HP simulations.   

 

Table B.7.1: p-values of 256 categorical regression tests for βØtilt as a function of time all seven β subunits 

in α7β7 and α6β7. The p-values with insignificant intercept are marked in yellow, p-values with insignificant 

slope are marked in blue, and in red if both intercept and slope are insignificant. The null hypothesis is 

rejected for tests whose p-values are marked in red. 
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B.7.2 βØtilt statistical results for α7β7 and α6β6  

Similar to Table B.5.2, we observed no cases where p-values of both intercept and the slope are above our 

threshold of 2.3e-4 for the intermediate α6β6. Thus, all the βØtilt values in all the β subunits of α6β6 are 

significantly different from α7β7.  

 
B.7.3 βØtilt statistical results for α7β7 and α7β6 

     We observed only two cases where βØtilt values of both the intercept and slope of α7β6 were not 

significantly different from the α7β7-HP simulations (red highlighted). We also see many p-values with 

an insignificant slope (blue), indicating that the βØtilt values will not change with time and have 

converged. The cases with insignificant p-values of slope (yellow) all have the corresponding slope value 

significant, thus for these cases with extended simulations, the β values of intercept will be significant. 

Interestingly, we see only two cases where the intercepts (yellow) are insignificant, compared to the four 

insignificant slopes in β  values in Table B.5.3.   

Table B.7.2: p-values of 216 categorical regression tests for βØtilt as a function of time all seven β subunits 

in α7β7 and α6β6. The p-values with insignificant intercept are marked in yellow, p-values with insignificant 

slope are marked in blue, and in red if both intercept and slope are insignificant. The null hypothesis is not 

rejected for any tests in this table.  
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B.8 Simulations System Information 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table B.8: System properties and details of the HP and near-HP simulations. All the simulations are run in 

a rectangular water box with 15Å water on each side of the protein. 

Simulation Box size (Å) Number of atoms 
Number of water 

molecules 
Ions 

HP-α7β7 155 X 155 X 155 352979 298725 
Na+ = 275 

Cl- = 184 

α6β7 155 X 155 X 155 386163 335430 
Na+ = 285 

Cl- = 209 

α6β6 155 X 155 X 155 353249 306735 
Na+ = 256 

Cl- = 190 

α7β6 155 X 155 X 155 379857 329751 
Na+ = 284 

Cl- = 205 

Table B.7.3: p-values of 216 categorical regression tests for βØtilt as a function of time all seven β subunits 

in α7β7 and α7β6. The p-values with insignificant intercept are marked in yellow, p-values with insignificant 

slope are marked in blue, and in red if both intercept and slope are insignificant. The null hypothesis is 

rejected for tests whose p-values are marked in red. 
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APPENDIX C 
 

 

Appendix for Chapter 4 

Robustness and Kinetic Trapping in 

Bacterial Core Particle Assembly  
 

C.1 Sidedness of subunits in ODE models 

C.2 Definition of the CP interfaces for interaction affinity (KD)  

 

Figure C.1: Schematic of a trimer formation displaying the sidedness used for developing ODE models. 

Each subunit has a distinct left (L) and a right (R) side, and interactions can occur only between the right 

side of one subunit and the left side of the other subunit.  Case 1 shows the allowed reactions and Case2 

shows the reactions which are not allowed due to incorrect sides interacting.  
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     All proteins are internally asymmetric, and there is a sidedness to the protein structure [1]. We have 

defined six unique interfaces as a convention for our proteasome CP studies. Since the 20S CP quaternary 

structure is conserved, these conventions can be applied to CPs from different species. For our studies, we 

are referring to the Re bacterium 20S CP (PDB:1Q5R). 

     Interface 1(IN1): Is the interface between two α subunits. Interface 2(IN2): is the interface between two 

β subunits. Interface 3(IN3) and Interface 4(IN4): are the two interfaces between α and β subunits. The last 

two are interfaces that form the HP dimerization surface, i.e., Interface 5 (IN5) and Interface 6 (IN6): where 

two β rings of HP's interact and assemble into the CP. For the ODE models, we associate each interface 

with an interaction affinity or binding strength (KD) in M. Stronger interfaces have higher; for example, 

the avidin-biotin complex is the strongest known non-covalent interaction with KD = 10-15 M. We are 

looking into only the four interfaces (IN1, IN2, IN3, and IN4) for our models because we are explicitly 

looking to form HP's. For ARF, we vary KD for IN1 (KD1) and maintain the remaining KD values at a 

Figure C.2: Schematic of the Re CP crystal structure (PDB ID: 1Q5R) to show the different interfaces (IN). 

There are six unique interfaces for every CP.  
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constant number. Similarly, we vary KD for IN4 (KD4) for ABD and UOM while retaining the other 

interface's KD values at a constant number.  

C.3 Proteasome assembly dynamics and deadlock 

As discussed in the main text, CP assembly dynamics are susceptible to deadlock, and this reduces assembly 

efficiency. For the three models of CP assembly described-ARF, ABD and UOM, the partly hierarchical 

and less robust UOM shows are highly susceptible to deadlock. As described in detail in Supplementary 

Section 4 [1], every ring-like structure has an optimal affinity based on its ring size and subunit 

concentration. To generate the results in Fig. C.3 we adjusted the interaction affinities so that the maximum 

CP efficiency at 1 μM. The subunit concentration ([α]=[β]) was from 10-12 to 10-2 M, with the interaction 

affinities (KD) as follows: UOM and ABD, KD at IN4 is the strongest (UOM=1X10-4M; ABD=1X10-6M), 

but ARF KD at IN1 is the strongest (1X10-8M). All the remaining interfaces have a weak affinity (KD = 10-

2 M) for all models. The association rates k+=106 M-1s-1, which is the protein association rates observed in 

most reactions, and the k+HP = 103 M-1s-1 which is approximated from the experimental evidence that we 

observe for dimerization of HP’s (Chapter 2). 

Figure C.3: CP assembly at varying concentrations with [α] = [β]. The three models exhibit different fraction 

CP assembled (or assembly efficiency) and show a varying deadlocked plateau.  The x-axis is in log scale 

to clearly illustrate the deadlock plateau. The interaction affinities for each model are equivalent in this plot.  
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C.4 Time profiles of the CP assembly kinetics  

      If we have the same KD for all the three model’s we observe that their maximum assembly efficiency 

peaks at different concentrations. This implies that based on the assembly pathway an optimal affinity 

exists, and if the KD is too weak then the intermediates fall apart even before they are assembled and if KD 

is very strong then there exists a longer deadlock phase. In (Fig. C.3) we have all the parameters same 

across the three models. The KD4 =1X10-4M for UOM and ABD, but for ARF KD1 =1X10-4M, and the 

remaining three affinities in either case are set to a lower strength of KD =1X10-2M. 

     The initial concentration of subunits also affects the CP assembly dynamics, as shown in Fig. C.4. We 

observe that at lower concentration UOM (Fig. C.4.A) is fastest and then as subunit concentration increases 

(Fig. C.4.B, and 4C) there is deadlock induced in UOM, which reduces its assembly efficiency. The ABD  

model has maximum efficiency at 10-5M and then with further increase in concentration it started declining. 

Figure C.4: Effect of subunits concentration on CP assembly dynamics A) At concentration [α] = [β] = 10-6 

M. B) At concentration [α] = [β] = 10-5 M. C) At concentration [α] = [β] = 10-4 M. The k+HP = 103 M-1s-1, 

k+=106 M-1s-1, KD4 =1X10-4M (UOM, ABD), KD1 =1X10-4M (ARF), and the other KD are at a lower affinity 

of 1X10-2M.  
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The ARF (Fig. C.4.C) has higher assembly efficiency at higher concentrations than UOM, and ABD. The 

ARF is slower (Fig. C.4C) because the KD1 =1X10-4M is a weak interaction affinity and thus delays the CP 

assembly because the intermediates are not stable and fall apart quickly. As seen in Fig. C.3 the optimal 

affinity for ARF is KD1 =1X10-8M.  

 

C.5 In vitro native gel CP assembly experiments  

For the assembly experiments, which are done by a graduate student in Dr. Eric J. Deeds lab-Anupama 

Kante, began with the cloning the α1 and β1 genes of Re in separate expression plasmid vectors. The α and 

β subunits were expressed in E. coli and purified separately using metal affinity chromatography (see 

methods). As seen in several other studies [2-4], she was able to obtain fully assembled CPs on mixing the 

two subunits together. To determine the effect of subunit concentration on the assembly efficiency, we 

incubated the α and β subunits together in an equimolar ratio at seven concentrations ranging from 0.25uM 

to 16uM. The assembly process was allowed to proceed for 24hrs at 300C and formation of CP was 

determined by native PAGE (Fig. C.5). Gels were stained using Sypro Ruby [5] and imaged using a Licor 

imager. The sensitivity of the Sypro Ruby stain [5] was established by the linearity of the band intensities 

corresponding to concentrations of pre-assembled CPs. Assembly reactions at all concentrations show two 

distinct bands – a 740kD proteasome CP and a smaller 480kD HP band. As defined earlier, assembly 

efficiency is the percent of monomers present in the CP. In this assay, band intensity is proportional to the 

concentration of CP. The CP assembly efficiency was thus calculated by dividing the band intensity with 

respective subunit concentration and normalized to the highest value in the assay. In Fig. 4.5, we see an 

increase in assembly efficiency with initial increase in the subunit concentration but, as concentration 

increased above 1uM, assembly efficiency started to decline. The in vitro assembly yield (Fig. C.5) has a 

similar profile as that of the simulation showing the effect of concentration on the assembly yield of three 

membered stacked ring in Fig. 4.1. This result concretely suggests that like the model, in vitro assembly of 



144 

CP is initially limited by diffusion of subunits at low concentrations and by dissociation of kinetically 

trapped intermediates at high concentrations. 

 

 

C.6 Parameter selection for comparing models and experimental data  

 

To fit the assembly models with in vitro CP assembly dynamics, we did a maximum likelihood estimation 

using Root Mean Square Error (RMSE) as a measure statistic to identify the absolute fit of the model to the 

experimental data. Lower values of RMSE indicate a better fit. We initially started with varying three 

parameters –– k+, k+HP, and KD. The k+ and k+HP was varied from 102 to 108 M-1s-1 in increments of 10 and 

KD was varied to make the affinities range from 10-2M to 10-8M. For all these combinations a RMSE was 

calculated to search for the lowest value as close to 0. The Table C.6 shows the parameters which were 

selected for the final fit results that are shown in Fig. 4.6.  

 
 

 

Figure C.5: Native-PAGE Analysis of in vitro assembly of 20S proteasome Core Particle from Rhodococcus 

erythropolis.  
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Table C.6: Table showing the list of parameters optimized for final fits of the models and experimental data 

which are shown in Chapter 4 (Fig. 4.6).  

 

 

C.7 In vivo assembly dynamics with synthesis and degradation rates 

 
We included synthesis (Q) and degradation rates (𝛿), for various concentrations as used in Chapter 

4 (Fig. 4.7) to explore if deadlock can still impact assembly efficiency in “in vivo” scenarios. Here, the 

subunits are constantly supplied and degraded as it happens in living systems. In Fig. C.7 we demonstrate 

the impact of degradation rates on assembly efficiency. The synthesis rate is calculated by CT
 
= Q / 𝛿. The 

parameters for Fig. C.7 are three degradation rates and monomers synthesis rate Q and CT varies from 10-

2M to 10-8M.  Another feature of these models is that the synthesis rate is only for the subunits or monomers 

and no other intermediates.  

     We observe that for slower degradation rates 𝛿 = 5.55X10-6 s-1 (Fig. C.7C) the subunits have enough 

time to alleviate deadlock and get higher yields at lower concentrations and (10-7M), whereas for higher 

degradation rates 𝛿 = 5.55X10-4 s-1 (Fig. C.7A) we obtain higher yields at higher subunit concentrations 

because the intermediates are degraded faster than they are bring used for assembly.  

 

Model k+ k+HP KD 

ARF 108 108 5X10-6 

ABD 106 100 8x10-7 

UOM 1100 270 3x10-5 



146 

 

C.8 References 

 

1. Deeds EJ, Bachman JA, Fontana W: Optimizing ring assembly reveals the strength of weak 

interactions. Proc Natl Acad Sci U S A 2012, 109(7):2348-2353. 

2. Mayr J, Seemuller E, Muller SA, Engel A, Baumeister W: Late events in the assembly of 20S 

proteasomes. J Struct Biol 1998, 124(2-3):179-188. 

3. Zuhl F, Seemuller E, Golbik R, Baumeister W: Dissecting the assembly pathway of the 20S 

proteasome. FEBS Lett 1997, 418(1-2):189-194. 

4. Zühl F, Tamura T, Dolenc I, Cejka Z, Nagy I, De Mot R, Baumeister W: Subunit topology of the 

Rhodococcus proteasome. FEBS Letters 1997, 400(1):83-90. 

5. SYPRO Ruby Protein Gel Stain [https://www.thermofisher.com/document-connect/document-

connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-

Assets%2FLSG%2Fmanuals%2Fmp12000.pdf&title=U1lQUk8gUnVieSBQcm90ZWluIEdlbCB

TdGFpbg==] 

 
 

Figure C.7: Assembly dynamics for models with synthesis and degradation rates. A) 𝛿 = 5.55X10-4s-1   B) 𝛿 

= 5.55X10-5 s-1 C) 𝛿 = 5.55X10-6s-1. 

 

 


