CYCLOIDEA paralogs function redundantly to specify dorsal flower development in Mimulus lewisii (Phrymaceae)

 By

 By}
© 2021

Taryn Sena Dunivant
B.Sc., University of California, Santa Cruz, 2017

Submitted to the graduate degree program in Ecology and Evolutionary Biology and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Master of Arts.

Chair: Dr. Lena Hileman
\qquad

Dr. John Kelly
\qquad
Dr. Jamie Walters

Date Defended: 27 August 2021

The thesis committee for Taryn Sena Dunivant certifies that this is the approved version of the following thesis:

CYCLOIDEA paralogs function redundantly to specify dorsal flower development in Mimulus lewisii (Phrymaceae)

Chair: Dr. Lena Hileman

Abstract

Repeated independent transitions between radial and bilateral flower symmetry have occurred across the angiosperm phylogeny, contributing to the vast diversity we see in floral morphology. The genetic program for bilateral flower symmetry has been documented in the model system Antirrhinum majus where the paralogs CYCLOIDEA (CYC) and DICHOTOMA (DICH) have partially redundant functions in establishing dorsal petal identity. These paralogs resulted from a duplication event in the ECE-CYC2 gene lineage. Within Lamiales, at least 12 additional duplications in the ECE-CYC2 lineage have occurred. The close homologs CYC1 and CYC2 resulted from one of these additional duplication events at the base of the higher core Lamiales (HCL).

In this study, we are using the emerging model Mimulus lewisii (Phrymaceae, HCL), to test for conservation of $M l C Y C 1$ and $M l C Y C 2$ in flower symmetry development, and whether these genes similarly function redundantly compared to AmCYC and AmDICH . Using Agrobacterium-mediated stable transformation techniques and RNA interference (RNAi), we were able to characterize $\mathrm{MlCYC1}$ and MlCYC 2 RNAi silenced lines. In addition, by crosspollinating MlCYC1 and MlCYC2 single lines, we generated and characterized double MlCYC1:MlCYC2 RNAi silenced lines. Our results from RNAi silencing, and consistent with our gene expression analyses, demonstrate that MlCYCl and MlCYC 2 together function to specify dorsal flower identity. Additionally, we find extensive functional redundancy between the paralogs MlCYCl and MlCYC2, with MlCYC1 playing the dominant role in establishing dorsal petal identity. These results are consistent with what is found in A. majus, nonetheless the paralogs arose from independent gene duplication events in the ECE-CYC2 gene lineage.

Acknowledgments

This work was supported in part by the Benjamin D. Hall, PhD \& Margaret B. Hall Fund through the College of Liberal Arts and Sciences Research Excellence Initiative at the University of Kansas. And by the Botany Endowment fund to Ecology and Evolutionary Biology at the University of Kansas.

This project would not have been possible without the work of Vibhuti Singh for her help with initial construction of the RNAi vectors, Kaylee Livingston for her help with data collection, and Katie Sadler for her assistance in the greenhouse. A thank you to my committee members for their service and insightful remarks.

I want to thank my advisor Lena Hileman for all of her support and mentorship in research and my development as a plant biologist.

Table of Contents

Abstract iii
Acknowledgments iv
INTRODUCTION 1
MATERIALS AND METHODS 11
RESULTS 18
DISCUSSION 33
CONCLUSION 40
References 41
Appendix A: Supplementary figures and tables 56

INTRODUCTION

Overview of floral symmetry

The extensive diversity of angiosperms has long left naturalists pondering the form, function and evolution of complex floral structures (Friedman, 2009). Angiosperms rely on their flowers to both disperse and receive pollen for reproduction, but as sessile organisms, angiosperms have evolved various pollination strategies, often referred to as syndromes, to ensure cross-pollination (reviewed in Dellinger, 2020; Fenster et al., 2004). These include abiotic syndromes such as wind or water pollen dispersal, and a wealth of biotic syndromes such as dispersal by insects or birds. These abiotic and biotic interactions between flowers and pollentransferring vectors introduce selection pressures that result in novel and complex floral traits, and therefore a wealth of diversity. To understand the processes underlying evolution of these diverse traits, we can now integrate phylogenetics, genetics and advanced molecular techniques to associate flower trait evolution with genetic and developmental mechanisms.

Extensive trait mapping on angiosperm phylogenies shows that parallel recruitment of adaptative floral traits is common across angiosperms. For example, fusion of floral organs (reviewed in Wessinger \& Hileman, 2020), flower color (Wessinger et al., 2019), floral corolla tube length (Landis et al., 2018), or nectar spurs (Fernández-Mazuecos et al., 2019). One floral trait of interest that shows this pattern of parallel evolution is bilateral flower symmetry. Across angiosperms, we find two common forms of flower symmetry, radial and bilateral. Radial flower symmetry (polysymmetry, actinomorphy) is defined by having multiple axes of symmetry able to bisect a flower. Whereas, flowers with bilateral flower symmetry (monosymmetry, zygomorphy) have one axis of symmetry resulting in flowers with differentiated halves, dorsal (adaxial) and ventral (abaxial), with the single axis (dorsoventral axis) of symmetry vertical
along the flower (Figure 1). The ancestral form of floral symmetry has been determined to be radial through fossil and phylogenetic evidence (Dilcher, 2000; Sauquet et al., 2017) and has persisted in several extant linages (e.g. Nymphaeales, Oxalidales, Cornales) (Reyes et al., 2016). Yet, bilateral flower symmetry appeared early in the diversification of angiosperms (Magnoliids) (Reyes et al., 2016), with the first radiation occurring around the Paleocene and Eocene (Dilcher, 2000). Bilateral flower symmetry has been estimated to have evolved a minimum of 130 times across the angiosperm phylogeny with origins in all major linages (Reyes et al., 2016). In addition, reversals back to radial flower symmetry occurs in many lineages (Donoghue et al., 1998; Endress, 2012; Hileman, 2014; Ree \& Donoghue, 1999; Reyes et al., 2016; Zhong et al., 2017). Large portions of floral diversity can be attributed to these repeated transitions between radial and bilateral flower symmetry and transitions are often associated with shifts in biotic pollinators (Neal et al., 1998; van der Niet \& Johnson, 2012).

Figure 1. Floral symmetry forms commonly found in angiosperms, radial (A) and bilateral (B).

Strong selection with specialized pollinators is hypothesized to have driven the evolution of bilateral flower symmetry (Endress, 2001; Neal et al., 1998). Interactions among pollinator types and flowers differ between radially and bilaterally symmetric flowers (Rodriguez et al., 2004). Bilaterally symmetric flowers often have pollinator-specific features such as landing platforms (i.e. enlarged ventral petals), specialized reproductive organs (e.g. decrease in stamen number, curved styles and filaments), nectar guides (Endress, 1994), increases in corolla biomass (Herrera, 2009), and banner petals that either increase signaling or ability to transfer pollen (i.e. pollination success). These features promote plant-pollinator interactions and make them more efficient, thus often resulting in coevolution between pollinators and flowers (Fenster et al., 2004). Studies have demonstrated that bilaterally symmetric flowers more effectively direct pollinators compared to radially symmetric flowers, which can increase consistent pollen placement (Endress, 1999). The resulting increase in efficiency of pollen transfer ultimately improves the likelihood for cross-pollination thus leading to an increase in fitness (Gómez et al., 2006). Moreover, localized pollen placement may lead to reproductive isolation and potential speciation. Finally, bilateral flower symmetry has been shown to be associated with increases in net diversification rates (Sargent, 2004; Vamosi \& Vamosi, 2010).

Genetics of bilateral flower symmetry in Lamiales

Gene and genome duplications are pervasive in plants. A survey of 41 land plant genomes found that on average 65% of plant genes are paralogous, with a high of 84% found in apple (Malus domestica) (Panchy et al., 2016). These duplications have contributed to the evolution of novel plant structures and forms (Flagel \& Wendel, 2009), including in genes responsible for bilateral flower symmetry.

Figure 2. Bilateral flower symmetry genetic network as elucidated in A. majus. Arrows indicate positive regulation; line with a cross bar indicates repression. Created with BioRender.com.

The genetic program for bilateral flower symmetry has been well examined in the model system Antirrhinum majus (snapdragon, Order Lamiales) (Figure 2). Antirrhinum majus flowers are strongly bilateral, with two large dorsal petals comprising the dorsal region and two lateral petals flanking the ventral petal in the ventral region. Studies in this system have shown that while genome/gene duplications have produced numerous gene families, only two, though large, gene families are primarily responsible for bilateral flower symmetry: MYB (reviewed in Sengupta \& Hileman, 2018) and TCP (reviewed in Martin-Trillo \& Cubas, 2009) (and see below). Members of the TCP gene family, and key regulators of bilateral flower symmetry in A. majus, are the paralogs CYCLOIDEA (CYC) and DICHOTOMA (DICH). CYC and DICH have partially redundant functions in establishing dorsal flower identity in A. majus (Luo et al., 1996, 1999). The roles of these genes differ slightly in that $C Y C$ functions to establish overall dorsal flower identity and abortion of the dorsal stamen (Luo et al., 1996), while DICH functions to specifically establish dorsal petal identity (Luo et al., 1999). Evidence from the infamous A. majus mutants show that only in the cyc;dich double mutant is the flower fully radialized (Luo et al., 1999). CYC and DICH are understood to regulate cell-cycle genes (reviewed in Martin-Trillo \& Cubas, 2009), controlling growth. However, it is unclear what regulators may be upstream of
these dorsal identity genes. Some evidence suggests plant hormones may play a role in regulating $C Y C$ and $D I C H$. For example, the addition of auxin to A. majus flowers resulted in radialized flowers (Bergbusch, 1999).
$C Y C$ and $D I C H$ positively regulate RADIALIS (RAD), a transcription factor in the MYB gene family (Corley et al., 2005). $R A D$ restricts ventral identity to the ventral region of the flower by inhibiting the activity of DIVARACATA (DIV) in the dorsal region (Corley et al., 2005) (Figure 2). DIV, also a MYB transcription factor, is responsible for activating ventral petal identity genes (Almeida et al., 1997; Galego \& Almeida, 2002). DIV relies on the binding of DIV-and-RAD-interacting-factors (DRIF), a pair of MYB proteins. DIV and DRIF form a heterodimer complex capable of DNA binding (Raimundo et al., 2013). However, RAD proteins also bind to DRIF proteins and when RAD proteins are present they outcompete DIV for DRIF binding (Figure 2). This prevents the formation of the DRIF-DIV complex and suppresses ventral identity in the dorsal region (Raimundo et al., 2013). CYC, DICH and RAD expression is constrained to the dorsal region of the flower (Corley et al., 2005; Luo et al., 1996, 1999), allowing the DRIF-DIV complex to fully function in the ventral region. RAD proteins are found in the margins of the lateral petals, but presumably via nonautomous movement of mRNA or protein from the dorsal region (Corley et al., 2005). Lateral petal identity is thereby hypothesized to have marginal control by RAD, where petal shape is a combination of dorsal and ventral petal traits (Corley et al., 2005). Alternatively, lateral petal form is the default as shown in the cyc;dich;div A. majus mutant, which presents flowers comprised solely of lateral petals, additionally, in div mutants, the ventral petal takes on lateral identity (Almeida et al., 1997).

Since the elucidation of the developmental program of bilateral flower symmetry in A. majus, researchers have been exploring floral symmetry genes in non-model systems of other

Asterids as well as clades in Rosids, monocots, and basal eudicots (Broholm et al., 2008; Busch \& Zachgo, 2007; Citerne et al., 2017; Feng et al., 2006; Garcês et al., 2016; Jabbour et al., 2014; Madrigal et al., 2019; Wang et al., 2008). They have found parallel recruitment of CYC and MYB genes for establishing bilateral flower symmetry in many of these clades, although operating under differing developmental mechanisms.

Evolutionary history of CYC-like genes

CYC and DICH are members of TCP, a large plant-specific gene family of transcription factors. The name TCP originates from four genes within the family: TEOSINTE BRANCHED1 (TB1) (maize; Doebley et al., 1997), CYC (snapdragon; Luo et al., 1996), and PROLIFERATING CELL FACTORS 1 and 2 (PCF1 and PCF2) (rice; Kosugi \& Ohashi, 1997). A conserved trait shared by members of TCP is the TCP domain, a basic helix-loop-helix composed of 59-amino acids capable of DNA binding and protein-protein interactions (Cubas et al., 1999). Proteins in this family have been documented to be involved in developmental control of plant morphology by both promoting (Hervé et al., 2009; Li et al., 2005) and inhibiting (Feng et al., 2006; Luo et al., 1996) cell proliferation and growth.

Repeated duplications within the TCP family have resulted in two major linages of TCP genes, class I and class II, with the class II subfamily containing a conserved R domain (arginine-rich motif) (Cubas et al., 1999). A subset of this class II lineage contains an additional conserved domain, the ECE (glutamic acid-cysteine-glutamic acid) motif (Howarth \& Donoghue, 2006). Extensive independent duplications of the ECE lineage have occurred during angiosperm diversification. Two specific duplications of the ECE clade gave rise to three gene groups shared by the core eudicots (Howarth \& Donoghue, 2006): CYC1, CYC2, and CYC3, and multiple copies of each of these three gene groups are found in core eudicots (Citerne et al.,

2003; Hileman et al., 2003; Reeves \& Olmstead, 2003). Similarly, often more than one ECE CYC-like gene is found in monocots and basal eudicots (Bartlett \& Specht, 2011; Citerne et al., 2013). Within the ECE clade, ECE-CYC2 is the parent lineage of $C Y C$ and DICH. ECE-CYC2 genes (including CYC and DICH) have been shown to control cell cycle and organ differentiation, in many cases by preventing cell proliferation (Luo et al., 1996). ECE-CYC2 genes tightly control mRNA distribution by maintaining localized patterning specific to development and tissue type.

At least five core eudicot groups (Brassicales, Malpighiales, Dipsacales, Asterales, and Lamiales) show a repeated pattern of duplication linked to recruitment of ECE-CYC2 genes for bilateral flower symmetry development (reviewed in Hileman, 2014). This is supported by phylogenic and expression evidence (Bartlett \& Specht, 2011; Busch et al., 2012; Citerne et al., 2006, 2017; Howarth et al., 2011; Howarth \& Donoghue, 2005; Hsin et al., 2019; Hsin \& Wang, 2018; Jabbour et al., 2014; Pang et al., 2010; Preston et al., 2011; Preston \& Hileman, 2012; Zhang et al., 2010, 2012, 2013; Zhao et al., 2019; Zhong et al., 2017; Zhong \& Kellogg, 2015a, 2015b; Zhou et al., 2008), in addition to functional evidence in a small number of studies (Broholm et al., 2008; Busch \& Zachgo, 2007; Feng et al., 2006; Garcês et al., 2016; JuntheikkiPalovaara et al., 2014; Preston et al., 2014; Wang et al., 2010; Wang et al., 2008; Xu et al., 2013; Zhao et al., 2018). Duplication of ECE-CYC2 genes is often followed by spacio-temporal changes in expression, which can result in sub- and neofunctionalization of resulting paralogs (Preston \& Hileman, 2009; Spencer \& Kim, 2017). In Fabales for example, ECE-CYC2 duplications and functional divergence are linked to the establishment of bilateral flower symmetry in Papilionoideae (Zhao et al., 2019). In sunflowers, several duplications of the ECE$C Y C 2$ group resulted in at least five gene members and, followed by sub- and
neofunctionalization, expression of only one of the five ECE-CYC2 genes is restricted to the bilaterally symmetric ray florets (Chapman et al., 2008). Similar patterns hold for Malpighiales (Zhang et al., 2010) and Dipsacales (Howarth \& Donoghue, 2005).

Less well explored are comparative functional studies of ECE-CYC2 lineage paralogs within angiosperm lineages where bilateral flower symmetry is dominant. Specifically, we lack a comprehensive understanding of how bilateral flower symmetry is maintained following duplication in the ECE-CYC2 gene lineage. For example, in A. majus CYC and DICH are paralogs derived from a recent duplication event (Gübitz, 2003; Hileman \& Baum, 2003); CYC maintains most of the presumed ancestral function of specifying dorsal flower organ identity while DICH primarily functions to shape the dorsal petals (Luo et al., 1996, 1999). Is this evolutionary progression common? One paralog primarily maintaining the overall dorsal flower organ identity function while the other paralog, if retained, evolves a novel function? Addressing these outstanding questions provides an opportunity to study evolutionary change in gene networks during the maintenance of key adaptive phenotypes (e.g. bilateral flower symmetry).

Study system

Bilateral flower symmetry evolved early in the order Lamiales and has been retained in most lineages except a few in which there have been reversals to radial symmetry (Donoghue et al., 1998; Preston et al., 2011; Zhong \& Kellogg, 2015a). Yet during Lamiales diversification, the ECE-CYC2 gene lineage has been estimated to have undergone at least 13 gene duplications (Zhong \& Kellogg, 2015b) (Figure 3). Maintenance of Lamiales ECE-CYC2 lineage paralogs is surprising given the high level of bilateral flower symmetry conservation across the group. One of these duplications occurred at the base of Antirrhineae (Plantaginaceae), resulting in the paralogs CYC and DICH (Gübitz et al., 2003; Hileman \& Baum, 2003). Another set of paralogs
is shared by the Higher Core Lamiales (HCL) clade, HCL-CYC2A and HCL-CYC2B (Zhong \& Kellogg, 2015b). These independent gene duplication events provide an opportunity to test for shared patterns of functional evolution following duplication when overall associated morphology is conserved-bilateral flower symmetry in this example.

Figure 3. Cladogram of Lamiales depicting the duplication events of the ECE-CYC2 gene lineage proposed by Zhong and Kellogg (2015b) as indicated by purple tick marks. *indicates duplication that gave rise to CYC and DICH; **indicates duplication that gave rise to HCL-CYC2A and HCL-CYC2B shared by the Higher Core Lamiales (HCL).

Mimulus (Phrymaceae, belonging to the HCL group) is a prominent system for investigating ecological and evolutionary questions, and has more recently been expanded as a model system in genetic and developmental studies (Yuan, 2018). Specifically, Mimulus lewisii is an emerging model, complete with a draft genome (www.mimubase.org) and rigorous protocols for transient (Ding \& Yuan, 2016) and stable (Yuan, Sagawa, Young, et al., 2013) transformation. Several studies have demonstrated that stable transgenic RNAi experiments
produce proof for forward genetics and allow for examination of gene function in M. lewisii (LaFountain et al., 2017; Sagawa et al., 2016; Yuan, Sagawa, Stillo, et al., 2013; Yuan, Sagawa, Young, et al., 2013). The focus of these transgenic RNAi experiments has been on pigment biosynthesis and corolla tube formation, however, functional studies investigating the flower symmetry genetic network have not been published for M. lewisii.

Functional studies in Mimulus guttatus investigating the HCL-CYC2A (MgCYC2) and HCL-CYC2B (MgCYC1) paralogs (Preston et al., 2014) suggested partially redundant functions. Specifically, loss of flower dorsal identity was only seen in double silenced $\mathrm{MgCYC1}: \mathrm{MgCYC} 2$. However, Preston et al. (2014) utilized a Virus-Induced Gene Silencing (VIGS) approach to ECE-CYC2 lineage gene downregulation. VIGS is highly variable, even within a single flower, and therefore gene function for individual paralogs was not fully determined. With the continued improvement of a genome, rigorous stable transformation protocol, and placement in the HCL, M. lewisii is an optimal study system to investigate the genetic program of bilateral flower symmetry. Specifically, with focus on the HCL-CYC2A and HCL-CYC2B paralogs and the potential for a comparative framework with A. majus.

Here, we test for the conservation of the bilateral symmetry development program in M. lewisii as compared to A. majus. We survey the expression of HCL-CYC2B (MlCYC1), HCLCYC2A (MlCYC2), MlRAD4, and MlRAD5 across floral development and between floral tissue types to determine patterns consistent with a role in establishing dorsal flower identity. We use stable transgenic experiments to investigate the paralog-specific and combined functions of MlCYC1 and MlCYC2. With these methodologies we address the following questions: 1) What are the respective roles of $M l C Y C 1$ and $M l C Y C 2$ in M. lewisii bilateral flower symmetry development? 2) Do MlCYC1 and/or MlCYC2 positively regulate MlRAD?

MATERIALS AND METHODS

Plant Growth Methods

Mimulus lewisii FL10 seeds (Yuan, Sagawa, Young, et al., 2013) were provided by Yaowu Yuan (University of Connecticut). Berger BM7HP (Berger) soil medium was used for all plant propagation. We grew all plants in climate-controlled growth chambers at the University of Kansas under KIND LED X-80 Bar Lights (KIND LED Grow Lights), with a long day photoperiod (16-h light/8-h dark), and $21 / 15^{\circ} \mathrm{C}$ day/night temperature cycles. We stratified sowed seeds at $4^{\circ} \mathrm{C}$ for 5-7 days. We then placed the sowed seeds under Vegetative Bar Lights (blue-spectrum) for germination, moving them to Flower Bar Lights (blue- and red-spectrum) at approximately the 4-leaf stage. Once mature, we maintained plants under Flower Bar Lights, hand watered and fertilized with Blossom Booster (Peters Professional, Scotts) approximately every two weeks.

DNA Methods / DNA Extractions

From young leaf tissue, we extracted genomic DNA (gDNA) using the
Cetyltrimethylammonium bromide (CTAB) method (Doyle \& Doyle, 1987). We ground liquid nitrogen flash-frozen leaf tissue to a fine powder using a chilled mortal with pestle. The ground tissue from each sample was transferred into $600 \mu \mathrm{l}$ CTAB buffer (1 M Tris- $\mathrm{HCl} \mathrm{pH} 8,5 \mathrm{M} \mathrm{NaCl}$, 0.5M EDTA pH 8, CTAB, milliQ $\mathrm{H}_{2} \mathrm{O}$) with $100 \mathrm{mg} / \mathrm{ml} \mathrm{PVP}, 4.4 \mathrm{mg} / \mathrm{ml}$ ascorbic acid, and 20 $\mu \mathrm{l} / \mathrm{ml} 2 \mathrm{M}$ DTT and digested for 1-h at $60^{\circ} \mathrm{C}$. We purified gDNA with 24:1 chloroform-isoamyl. In addition, we performed an RNase treatment by adding $5 \mu 1$ PureLink RNase A $20 \mathrm{mg} / \mathrm{ml}$ (Invitrogen) in $500 \mu \mathrm{l}$ extracted gDNA, and incubating for $30-60$ min at $37^{\circ} \mathrm{C}$. gDNA was purified with an additional wash of $24: 1$ chloroform-isoamyl. We precipitated gDNA in
isopropanol at $-20^{\circ} \mathrm{C}$ for 20 min . gDNA was pelleted, washed x 2 with 70% ethanol, and eluted in low Tris EDTA buffer. gDNA was stored at $-20^{\circ} \mathrm{C}$.

RNA Methods / RNA Extractions and cDNA Synthesis

Liquid nitrogen flash-frozen plant tissues were ground to a fine powder as above. We extracted total RNA from plant tissues using the RNeasy Plant Mini Kit (QIAGEN) following manufacturer's protocol. We removed residual DNA with the TURBO DNA-free Kit (Invitrogen) following manufacturer's protocol. RNA was stored at $-80^{\circ} \mathrm{C}$. From our isolated RNA, we synthesized complementary DNA (cDNA) using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) following manufacturer's protocol. cDNA was stored at $-20^{\circ} \mathrm{C}$.

Figure 4. Flower developmental stages selected for expression analyses, (scale bar, 1 cm).
qRT-PCR Qualitative Expression / Developmental stages
We performed quantitative reverse transcriptase PCR (qRT-PCR) to determine the expression patterns of MlCYCl, MlCYC2, MIRAD4, and MIRAD5 across flower development in M. lewisii LF10. We collected whole flower buds for five flower developmental stages (5 mm , $15 \mathrm{~mm}, 25 \mathrm{~mm}$, pendant, open; Figure 4), leaf, and stem node tissues. We isolated flower organs (sepals, petals, stamens, carpels) for the 15 mm and pendant flower developmental stages; isolated organs were pooled from four flowers. We isolated ventral and dorsal specific floral tissues for the $5 \mathrm{~mm}, 15 \mathrm{~mm}$, and open flower developmental stages; isolated tissues were pooled
from four flowers for the 5 mm flower bud stage. Collected tissues were flash frozen immediately following collection and stored at $-80^{\circ} \mathrm{C}$. From these tissues, we isolated total RNA, purified, and synthesized to cDNA as described in RNA methods. With a real-time PCR instrument (QuantStudio®3, Applied Biosystems), we amplified and quantified each gene fragment from cDNA (diluted 1:20 as template for qRT-PCR reactions) using gene-specific primers (Table A1) and PowerUp SYBR Green Master Mix (Applied Biosystems) following manufacturer's protocol. We normalized the expression of MlCYC1, MlCYC2, MlRAD4 and MIRAD5 with the expression of MIIFA (transcription initiation factor TFIID subunit 2) (Stanton et al., 2017). We calculated relative expression for each gene, developmental stage, and tissue type using the $\Delta \Delta \mathrm{Ct}$ method with primer amplification efficiency correction (Peirson et al., 2003).

RNAi Plasmid Construction

Following Yuan et al. (2013a), we built independent RNA interference (RNAi) binary vectors for expression knockdown of MlCYC1 and MlCYC2 in M. lewisii LF10. We targeted and amplified gene fragments from MlCYC1 (274-bp) and MlCYC2 (157-bp) (Figure A1) from cDNA using Phusion High-Fidelity DNA Polymerase (New England Biolabs) and primer pairs with restriction sites for cloning (Table A2). Amplified MlCYC1 and MICYC2 fragments were digested and each inserted, respectively, into the binary vector pFGC5941 (Kerschen et al., 2004; Arabidopsis Biological Resources Center, CD3-447) as follows. First, amplified fragments were cloned into the pFGC5941 vector in the sense orientation at the AscI/NcoI site. Next, the same amplified fragment was cloned in the antisense orientation at the BamHI/XbaI site of the vector containing the sense fragment. We sequenced the final plasmids to verify correct gene fragment
and placement in each plasmid. We transformed Agrobacterium tumefaciens (strain GV3103) by electroporation with our final $M l C Y C 1$ and $M l C Y C 2$ RNAi binary vectors.

Agrobacterium-mediated Plant Transformation

To test the function of $M l C Y C 1$ and $M l C Y C 2$ we generated transgenic lines carrying the T-DNA insert from our binary vectors. We followed the protocol for stable transformation of M. lewisii LF10 (Yuan, Sagawa, Young, et al., 2013). This method includes both floral spray and vacuum infiltration. We grew transformed A. tumefaciens to stationary phase in liquid culture at $29^{\circ} \mathrm{C}$ in sterilized LB with rifamycin ($25 \mathrm{mg} / \mathrm{L}$), kanamycin ($50 \mathrm{mg} / \mathrm{L}$), and gentamycin (50 $\mathrm{mg} / \mathrm{L})$. We aggregated the bacteria from the culture by centrifuging for $15-20 \mathrm{~min}$ at $4^{\circ} \mathrm{C}$ and 4000 rpm and resuspended the cells in an inoculation solution (milliQ water, 5% sucrose, 0.1 M acetosyringone, and $1 \mathrm{ml} /$ L Silwett (Vac-n-stuff)). Wild-type plants were trimmed to induce lateral growth in order to increase overall abundance of floral meristems. We selected plants with large quantities of young flower buds ($<5 \mathrm{~mm}$) for inoculation and removed larger flower buds. We heavily sprayed flower buds with transformed A. tumefaciens resuspended in inoculation solution, placed plants inside a pressure chamber and vacuum infiltrated plants for two minutes at $26-28 \mathrm{Hg}$, followed by a quick release of pressure. Inoculated plants were housed inside a dark, humid box to recuperate for a 24 -h period, then placed back in a growth chamber under the Flower Bar Lights. We self-pollinated infiltrated flowers at a whole plant level for two weeks and collected fruits 2-3 weeks after pollination for a 1-2 week period.

Transgenic Plant Confirmation

Selection of transgenic plants is possible since the T-DNA from the pFGC 5941 vector contains the $B A R$ gene, which provides resistance to glufosinate, an herbicide compound. Seeds collected from inoculated flowers were sown on flats of soil and grown as described for plants
above. To select for transgenics, we sprayed seedlings with BASTA (glufosinate ammonium, 1:1000, Bayer CropScience) every 2-3 days for a total of 5 sprays. Putative transgenic lines were transplanted into individual pots and screened for the transgene via PCR: two primer pairs, pFGC5941_2372F/3082R and pFGC5941_3930F/4430R specific to vector regions flanking the insert (Table A3), were used to confirm that the complete RNAi T-DNA fragment was inserted, which is necessary to produce the hairpin RNA (hpRNA).

Confirmation of MlCYC1 and MlCYC2 Expression Downregulation in RNAi Lines

To confirm that MlCYC1 and MlCYC2 RNAi lines were demonstrating downregulation of the respective gene, we utilized qRT-PCR. The 15 mm flower bud developmental stage was selected for expression analysis based on the relatively high level and low variation in MlCYC1 and MlCYC2 expression at this stage in wild-type M. lewisii LF10 plants. From whole 15 mm flower buds, RNA was extracted, purified, and synthesized to cDNA as described in RNA Methods. We amplified and quantified $M l C Y C 1$ and $M l C Y C 2$ transcripts using qRT-PCR methods as described above.

MlCYC1:MICYC2 RNAi Line Generation

To generate $M l C Y C 1: M l C Y C 2$ double RNAi lines, we selected $M l C Y C 1 _R N A i ~ a n d ~$ MlCYC2_RNAi lines confirmed for downregulation and cross-pollinated them to produce a variety of independent lines. We collected seeds and grew plants as described in Plant Growth Methods. Seeds were initially screened for transgenic plants using BASTA (glufosinate ammonium, 1:1000, Bayer CropScience). To confirm the presence of at least one of the respective MlCYC1 and MlCYC2 T-DNA inserts, we isolated gDNA as described in DNA Methods and performed PCR using primers specific to each MlCYC1 and MlCYC2 RNAi TDNA (Table A4). Plants confirmed to carry both MlCYC1 and MlCYC2 RNAi T-DNA inserts
were further confirmed for both MlCYCl and MlCYC 2 gene expression knockdown by qRT-PCR methods as described above.

RNAi Line Characterization

Figure 5. Diagram of flower traits measured for wild-type and all RNAi lines. Face view measurements taken shown on wild-type and $M l C Y C 1: M l C Y C 2 _$RNAi flowers (A), (scale bar, 1 cm). Side view of measurements taken shown on wild-type and MlCYCl:MlCYC2_RNAi flowers (B), (scale bar, 1 cm). Dissected corolla tube with nectar guide ridge counts on wild-type and $\mathrm{MlCYCl}: \mathrm{MlCYC2}$ _RNAi flowers (C), (scale bar, 1 cm). Numbers correspond to character ID traits listed in Table 1. D, dorsal petal; L, lateral petal; V, ventral petal.

Table 1. Flower traits measured for characterization of RNAi lines. Character IDs correspond to diagram (Figure 5).
Character ID

1	Face	Dorsal petal width	cm; petals averaged
2	Face	Dorsal petal length	$\mathrm{cm} ;$ petals averaged
3	Face	Dorsal petal width:length	ratio
4	Face	Lateral petal width	cm; petals averaged
5	Face	Lateral petal length	$\mathrm{cm} ;$ petals averaged
6	Face	Lateral petal width:length	ratio
7	Face	Ventral petal width	cm
8	Face	Ventral petal length	cm
9	Face	Ventral petal width:length	ratio
10	Face	Dorsal-dorsal petal angle	Deg.
11	Face	Dorsal-lateral petal angle	Deg.; angles averaged
12	Face	Ventral-lateral petal angle	Deg.; angles averaged
13	Side	Dorsal corolla tube flare	Deg.
14	Side	Ventral corolla tube flare	Deg.
15	Dissected	Nectar guide ridge count	WT=2; half scores given; includes presence of anthocyanin spots, trichomes, and carotenoid pigment

To determine changes in flower morphology we characterized floral phenotypes of MlCYC1, MlCYC2 and MlCYC1:MlCYC2 RNAi lines. When possible, we collected the first several flowers at anthesis and photographed each flower from multiple viewpoints on a scaled stage. To photograph the inner corolla tube, we dissected flowers along the center of the ventral petal between the two nectar guide ridges. 15 floral traits (Figure 5; Table 1) were measured using Fiji (https://imagej.net/Fiji). Each measurement was taken $3 x$ and we recorded the mean. For flower petal shape, we took the width to length ratio to account for high plasticity in overall flower size. To test for significance, we performed a two-tailed, unpaired Student's T-test for each trait between M. lewisii LF10 plants compared to each independent RNAi line.

Quantitative Expression of MIRAD5 in RNAi Lines

We performed qRT-PCR to test for downregulation of MlRAD5 in the MlCYC1:MlCYC2 RNAi backgrounds. From 15 mm flower buds, we isolated petal+attached stamen and carpel organs; isolated organs were pooled from four flowers per plant. Pools were collected from wildtype ($n=4$) and MlCYC1:MlCYC2_RNAi lines ($n=19$). For each pool, we extracted and purified RNA and synthesized cDNA as described in RNA methods. We amplified and quantified MlRAD5 transcripts using gene specific primers (Table A1) and qRT-PCR methods as described above.

Identifying M. lewisii CYC orthologs

Putative M. lewisii CYC orthologs were identified in Sengupta and Hileman (2018):
Mimulus_lewisii_CYCLOIDEA_like_2a_sc424_contig9407 (here MlCYC1) and
Mimulus_lewisii_CYCLOIDEA_like_2b_sc2324_contig 13781 (here MlCYC2). We recovered coding sequences for these genes from the M. lewisii LF10 draft genome (www.mimubase.org) and aligned them manually to known $\mathrm{HCL} C Y C 2 A$ and $C Y C 2 B$ lineage genes (Figure A1; Table

A5) in Geneious Prime v.2021.2.2. We used these alignments to estimate gene relationships under Maximum Likelihood, GTR+Gamma model of molecular evolution in RAxML (Stamatakis, 2006) implementing 1000 bootstrap replicates.

RESULTS

MlCYC1 and MlCYC2 belong to the higher core Lamiales CYC2B and CYC2A lineages, respectively

Figure 6. Maximum likelihood ECE-CYC2 gene tree reconstructed via RAxML with 1000 bootstrap replications. Numbers at nodes indicate recovered bootstrap support. Labels at right indicate HCL-CYC2A and HCL-CYC2B gene lineages, respectively.

We included MlCYC1 and MlCYC2 in a phylogenetic analysis with other CYC2-lineage genes from Phrymaceae (HCL; Zhong \& Kellogg, 2015b) rooted with A. majus CYC and DICH (Luo et al., 1996, 1999). We found that MlCYC1 belongs to the HCL-CYC2B lineage (97\% bootstrap support) and MlCYC2 belongs to the HCL-CYC2A lineage (99% bootstrap support; Figure 6). Therefore, the duplication that gave rise to $M l C Y C 1$ and $M l C Y C 2$ paralogs is quite ancient, dating to before the diversification of the HCL clade (Zhong \& Kellogg, 2015b).

MICYC1 and MICYC2 show dorsal perianth expression with additional MlCYC1 carpel expression

Figure 7. Relative expression of $M l C Y C 1$ and $M l C Y C 2$ across flower developmental stages and floral tissue types in M. lewisii LF10. Relative expression of MlCYC1 (A) and MlCYC2 (B) in whole flowers (15 mm to anthesis), leaves and node sections of stems. Relative expression of MlCYC1 (C) and MlCYC2 (D) across floral organs (sepals, petals, stamens and carpels) at two developmental stages (15 mm flower buds and pre-anthesis pendant flowers). Relative expression of MlCYC1 (E) and MlCYC2 (F) in dorsal compared to ventral halves of flowers at three developmental stages (5 mm flower bud, 15 mm flower bud, and flowers at anthesis), color shading indicates dorsal (darker) and ventral (lighter) samples. All tissues were normalized to the 5 mm whole flower bud stage. (T-test; *, 5% significance level; ${ }^{* *}, 1 \%$ significance level).

We performed qRT-PCR to determine the patterns of MlCYC1 and MlCYC2 expression across flower development in M. lewisii LF10. We selected five developmental stages that broadly span early to late flower development ($5 \mathrm{~mm}, 15 \mathrm{~mm}$, and 25 mm flower buds, pendant flowers just before anthesis, and open flowers at anthesis). In addition to flowers, we included leaf and stem node tissues. Across flower development, MlCYC1 and MlCYC2 showed similar patterns of relative expression (Figure 7). We found expression of both genes at early stages of development (5 mm), persisting to anthesis with both paralogs peaking in expression at the 25 mm flower bud stage (Figure 7A, B). Levels of relative expression of MlCYC1 in leaf and stem node tissue are negligible (Figure 7A). Levels of relative expression of MlCYC2 are similarly negligible in leaf tissue, however, low MlCYC2 expression was observed in stem node tissue (Figure 7B).

We expanded floral expression comparisons of $M l C Y C 1$ and $M l C Y C 2$ to determine expression patterns specific to floral organs (sepals, petals, stamens, and carpels) for two developmental stages (15 mm flower buds and pendant flowers). We found high expression of MlCYC1 and MlCYC2 in petal tissue at both developmental stages (Figure 7C, D). The relative expression of MlCYC2 decreased in petals at the pendant flower stage (Figure 7D), while MlCYC1 maintained higher relative expression at this stage (Figure 7C). We observe a striking difference in carpel expression between paralogs. In 15 mm flower buds, MlCYC1 displayed high expression in carpel tissue, with a drastic decrease in expression at the pendant flower stage (Figure 7C). By contrast, MlCYC2 displayed low to negligible expression in carpels at both stages (Figure 7D). Both MlCYC1 and MlCYC2 showed low expression in sepals and stamens at both developmental stages (Figure 7C, D).

To determine if MlCYCl and MlCYC 2 expression is restricted to the dorsal region of developing flowers, we isolated dorsal and ventral floral tissues from 5 mm flower buds, 15 mm flower buds and from flowers at anthesis. We found that both MlCYC1 and MlCYC2 have significantly higher expression in dorsal tissues at most stages of development (MlCYC1:5 mm, $P=8.7 \times 10^{-6} ; 15 \mathrm{~mm}, P=0.099$; anthesis, $P=3.1 \times 10^{-6} ; M l C Y C 2: 5 \mathrm{~mm}, P=1.1 \times 10^{-5} ; 15 \mathrm{~mm}, \mathrm{p}$ $=0.050$; anthesis, $P=8.2 \times 10^{-5}$; Figure 7E, F). Expression of both MlCYC1 and MlCYC2 was variable in ventral tissues across different stages of development. However, most stages exhibited very low expression except $M l C Y C 1$ at the 15 mm stage (Figure 7E), which was not significantly different from dorsal expression (Figure 7E). This relatively higher level of MlCYCl expression in 15 mm ventral flower buds may be due to relatively high but likely symmetric MlCYCl expression in same stage carpels (Figure 7C).

MIRAD5 but not MIRAD4 shows dorsal perianth expression with additional carpel expression

Figure 8. Relative expression of MIRAD4 and MIRAD5 across flower developmental stages and floral tissue types in M. lewisii LF10. Relative expression of MIRAD4 (A) and MIRAD5 (B) in whole flowers (15 mm to anthesis), leaves and node sections of stems. Relative expression of MlRAD4 (C) and MlRAD5 (D) across floral organs (sepals, petals, stamens and carpels) at two developmental stages (15 mm flower buds and pre-anthesis pendant flowers). Relative expression of MlRAD4 (E) and MlRAD5 (F) in dorsal compared to ventral halves of flowers at three developmental stages (5 mm flower bud, 15 mm flower bud, and flowers at anthesis), color shading indicates dorsal (darker) and ventral (lighter) samples. All tissues were normalized to the 5 mm whole flower bud stage. (T-test; *, 5% significance level; ${ }^{* *}, 1 \%$ significance level).

MlRAD4 and MlRAD5 are the closest M. lewisii homologs to A. majus RAD (Sengupta \& Hileman, 2018). We performed qRT-PCR to determine the patterns of MlRAD4 and MlRAD5 expression across flower development in M. lewisii LF10, and to determine which $R A D$ paralog (or both) likely functions similarly to A. majus $R A D$ in regulating bilateral flower symmetry. We used the same tissue samples as described for MlCYC expression analyses. We found that MIRAD5 is expressed from early through late stages of flower development (Figure 8B), peaking at the pendant flower bud stage (Figure 8B). MlRAD4 expression peaks in early flower development (Figure 8A). We found negligible expression of MlRAD4 and MlRAD5 in leaf and stem node tissue (Figure 8A, B).

We found a difference in expression patterns between the MlRAD paralogs across floral organs and between the dorsal/ventral regions of flowers. MlRAD5 expression was high in 15 mm stage petals and carpels (Figure 8D), persisting just in carpels to the pendant stage (Figure 8D). MlRAD4 expression was low to negligible across all floral organs at the 15 mm stage (Figure 8C) with increased expression just in sepals at the pendant stage (Figure 8C). We found that the relative expression of MlRAD4 is not significantly different between the dorsal and ventral sides of flowers for any of the three developmental stages tested ($5 \mathrm{~mm}, P=0.19 ; 15$ $\mathrm{mm}, P=0.46$; anthesis, $P=0.48$; Figure 8 E). We did find that expression of MlRAD5 is significantly higher in dorsal tissues versus ventral tissues at the 5 mm flower bud stage ($P=$ 0.0035 ; Figure 8 F). This pattern is consistent with MIRAD5 contributing to dorsal flower differentiation similar to A. majus $R A D$ (Corley et al., 2005). However, at the 15 mm and open flower stages we find similar MIRAD5 relative expression levels in dorsal and ventral tissues, possibly due to relatively high but likely symmetric levels of MIRAD5 expression in carpels at later stages of flower development ($15 \mathrm{~mm}, P=0.88$; anthesis, $P=0.67$; Figure 8 F).

MlCYC1_RNAi and MlCYC2_RNAi lines are partially ventralized with stronger phenotypes in MlCYC1_RNAi lines

We generated 16 MlCYCl and $12 \mathrm{MlCYC2}$ independent RNAi transgenic lines, confirmed by PCR screens for insertion of the transgene in gDNA (data not shown). Of these, we selected 4 MlCYCl _RNAi and $6 \mathrm{MlCYC} 2 _$RNAi lines for further expression and phenotypic analyses (MlCYCl_{-}RNAi-13, 14, 15, 16; MlCYC2_RNAi-1, $\left.3, ~ 4, ~ 5, ~ 8, ~ 11\right) . ~_{\text {. }}$.

Figure 9. Relative expression of $M l C Y C 1$ and $M l C Y C 2$ in RNAi lines. (A) MlCYC1 and MlCYC2 expression in 4
 expression in $4 \mathrm{MlCYCl}: \mathrm{MlCYC2}$ _RNAi lines. All expression data were collected from 15 mm stage flower buds. All relative expression is normalize to the wild-type. (T-test; ${ }^{*}, 5 \%$ significance level; ${ }^{* *}, 1 \%$ significance level).

We confirmed MlCYC1 and MlCYC2 expression knockdown in MlCYC1_RNAi and $M l C Y C 2 _$RNAi lines, respectively, by qRT-PCR. For all 10 independent RNAi lines, target gene expression levels were significantly reduced ($M 1 C Y C 1 _$RNAi: P ranges from $2.2 \times 10^{-5}-0.00067$; MlCYC2_RNAi: P ranges from $7.6 \times 10^{-6}-0.028$; Figure 9A, B). Downregulation ranged from 64
 lewisii LF10.

Figure 10. Characterization of nectar guide ridge count of RNAi lines compared to wild-type M. lewisii. Dissected corolla tubes exposing interior surface and side view of wild-type (A), MlCYC2 (B), MlCYCl (C), and MlCYC1:MlCYC2 (D) RNAi line flowers; (white arrow indicates constriction at base of corolla tube; pink arrow indicates in-pocketing of the nectar guide ridge); (scale bars, 1 cm). Counts of nectar guide ridges for MlCYC2 (E), MlCYCl (F), MlCYCl:MlCYC2 RNAi lines (G); (grey, wild-type; blue, MlCYC2_RNAi; purple, MlCYC1_RNAi; yellow, MlCYC1:MlCYC2_RNAi); (T-test; *, 5% significance level; ${ }^{* *}, 1 \%$ significance level).

Figure 11. Characterization of petal shape of RNAi lines compared to wild-type M. lewisii. Face view of wild-type, MlCYC2, MlCYC1, and MlCYC1:MlCYC2 RNAi line flowers (A), (scale bar, 1 cm). Boxplots of dorsal petal width:length ratios for $M l C Y C 2$ (B), MlCYC1 (C), MlCYC1:MlCYC2 RNAi lines (C); lateral petal width:length ratios for MlCYC2 (E), MlCYC1 (F), MlCYC1:MlCYC2 RNAi lines (G); ventral petal width:length ratios for MlCYC2 (H), MlCYC1 (I), MlCYC1:MlCYC2 RNAi lines (J); (grey, wild-type; blue, MlCYC2_RNAi; purple, MlCYC1_RNAi; yellow, MlCYC1:MlCYC2_RNAi); (T-test; *, 5% significance level; ${ }^{* *}, 1 \%$ significance level).

Figure 12. Characterization of the divergence angle between petals of RNAi lines compared to wild-type M. lewisii. Face view of wild-type, $M l C Y C 2, M l C Y C 1$, and $M l C Y C 1: M l C Y C 2$ RNAi flowers (A), (scale bar, 1 cm). Boxplots of dorsal-dorsal petal angle for $M l C Y C 2$ (B), MlCYC1 (C), MlCYC1: MlCYC2 RNAi lines (C); dorsal-lateral petal angle for MlCYC2 (E), MlCYC1 (F), MlCYC1:MlCYC2 RNAi lines (G); ventral-lateral petal angle for MlCYC2 (H), MlCYCl (I), MlCYCl:MlCYC2 RNAi lines (J); (grey, wild-type; blue, MlCYC2_RNAi; purple, MlCYC1_RNAi; yellow, $\left.M l C Y C 1: M l C Y C 2 _R N A i\right) ; ~(T-t e s t ; ~ *, 5 \% ~ s i g n i f i c a n c e ~ l e v e l ; ~ * *, ~ 1 \% ~ s i g n i f i c a n c e ~ l e v e l) . ~$

Figure 13. Characterization of the corolla tube flare of RNAi lines compared to wild-type M. lewisii. Side view of wild-type, $M l C Y C 2, M l C Y C 1$, and $M l C Y C 1: M l C Y C 2$ RNAi flowers (A), (scale bar, 1 cm). Boxplots of dorsal corolla tube flare for $M l C Y C 2$ (B), $M l C Y C 1$ (C), $M l C Y C 1: M l C Y C 2$ RNAi lines (C); ventral corolla tube flare for MlCYC2 (E), MlCYC1 (F), MlCYC1:MlCYC2 RNAi lines (G); (grey, wild-type; blue, MlCYC2_RNAi; purple, MlCYC1_RNAi; yellow, MlCYC1:MlCYC2_RNAi); (T-test; *, 5% significance level; ${ }^{* *}, 1 \%$ significance level).

To test for changes in floral morphology we characterized flower phenotypes from MlCYCl and MlCYC2 RNAi lines compared to M. lewisii LF10 wild-type. We focused on development of nectar guides, petal shape which was determined by taking the ratio of petal width to length to minimize variation resulting from plasticity in flower size, the divergence angles between petals, and the extent of corolla tube flare based on the angle of divergence between the dorsal and ventral petal lobes to tubes (Figures 10-13; Table A6). We found that both MlCYC1_RNAi lines and MlCYC2_RNAi lines exhibited floral phenotypes that trended towards ventralization of the flower, with stronger patterns of ventralization in MlCYCl_RNAi
lines. Qualitatively, we did not identify any vegetative differences between MlCYC RNAi lines and LF10 wild-type.

The most diagnostic trait for assessing ventralization was the number of nectar guide ridges (Figure 10). Wild-type M. lewisii LF10 flowers developed 2 nectar guide ridges on the ventral corolla (Figure 10A; Table A6). MlCYC2_RNAi lines showed some variation in this trait with a trend towards increased nectar guide ridge number, but rarely a significant difference from wild-type (P ranges from 0.016-0.39; Figure 10B, E; Table A6). All MlCYCl_RNAi lines showed significant increase in nectar guide ridge production with two additional nectar guides on lateral petals ($P=6.0 \times 10^{-12}$ for all lines; Figure 10C, F; Table A6), a clear indication of ventralization of lateral flower identity in MlCYCl _RNAi lines.

In addition to nectar guide ridge differences, we found that $\mathrm{MlCYC1}$ _RNAi and MlCYC2_RNAi lines showed changes in petal dimensions, the angle between petals, and corolla tube flare that together indicated partial flower ventralization. In both MlCYCl and MlCYC 2 RNAi lines we saw a trend towards increased lateral petal width:length ratio (MlCYC1_RNAi: P ranges from 0.0039-0.59; MlCYC2_RNAi: P ranges from 0.021-0.93; Figure 11E, F; Table A6) and decreased dorsal petal width:length ratio (MlCYC1_RNAi: P ranges from 0.0067-0.39; $M l C Y C 2 _$RNAi: P ranges from $0.00078-0.80$; Figure 11B, C; Table A6). In both MlCYC1 and MlCYC2 RNAi lines we saw a trend towards increase in the angle between dorsal petals ($M 1 C Y C 1 _$RNAi: P ranges from 0.00027-0.69; $M l C Y C 2 _$RNAi: P ranges from $1.8 \times 10^{-12}-0.63$; Figure 12B, C; Table A6), decrease in the angle between dorsal and lateral petals (MlCYCl _RNAi: P ranges from $2.8 \times 10^{-7}-0.00090 ;$ MlCYC2_RNAi: P ranges from 6.4×10^{-5} 0.0076; Figure 12E, F; Table A6), and increase in the angle between ventral and lateral petals (MlCYCl_{1} RNAi: P ranges from $1.8 \times 10^{-6}-0.60 ; \mathrm{MlCYC2}$ _RNAi: P ranges from $0.00027-0.61$;

Figure 12H, I; Table A6). In both MlCYC1 and MlCYC2 RNAi lines we saw a trend towards increase angle in the dorsal corolla tube flare ($\mathrm{MlCYC1}$ _RNAi: P ranges from 0.092-0.72; MlCYC2_RNAi: P ranges from $1.1 \times 10^{-5}-0.20$; Figure 13B, C; Table A6), and increase angle in the ventral corolla tube flare (MlCYCl _RNAi: P ranges from 0.0091-0.85; MlCYC2_RNAi: P ranges from 0.0.0030-0.73; Figure 13E, F; Table A6). These trends bring lateral and dorsal petals closer to wild-type ventral petal dimensions.

MlCYC1:MICYC2 RNAi lines develop fully radialized flowers

By cross-pollinating single $\mathrm{MlCYC1} 1$ RNAi with $\mathrm{MlCYC2}$ _RNAi lines we generated double silenced MlCYC1:MlCYC2 RNAi lines. We selected four independent crosses confirmed by PCR (data not shown) for expression analysis and phenotypic characterization. The parental contributions of these crosses include: line MlCYC1_RNAi-13 for all four crosses; three crosses have unique $\operatorname{MlCYC} 2$ parents ($M l C Y C 2 _$RNAi-3, $M l C Y C 2 _$RNAi-5, $\left.M l C Y C 2 _R N A i-8\right)$; and two of these crosses are reciprocals (MlCYC1_RNAi-13:MlCYC2_RNAi-5, MlCYC2_RNAi5: $M l C Y C 1 _$RNAi-13). We determined knockdown of $M l C Y C 1$ and $M l C Y C 2$ in double RNAi lines by performing qRT-PCR. We found transcript levels of MlCYC1 and MlCYC2 in MlCYC1:MlCYC2_RNAi lines were significantly downregulated by 75 to 83% and 73 to 85%, respectively, compared to wild-type (P ranged from $1.3 \times 10^{-6}-0.00014$ for MlCYCl and 1.2×10^{-6} 8.3×10^{-5} for MlCYC 2 across all lines; Figure 9C).

Across MlCYC1:MlCYC2_RNAi lines, we found flowers to be nearly or fully radialized through expansion of ventral identity into the lateral and dorsal regions of the flower. Qualitatively, we did not identify any vegetative differences between these double lines and LF10 wild-type. As with the single RNAi lines, nectar guide ridges provided the clearest indication of ventralization. In all $\mathrm{MlCYCl}: \mathrm{MlCYC2}$ _RNAi lines we observed a significant gain
of 2 to 3 additional nectar guide ridges (P ranging from $5.6 \times 10^{-39}-8.4 \times 10^{-26}$; Figure 10D, G; Table A6); flowers with 5 nectar guide ridges were fully radialized. These additional nectar guide ridges developed between the dorsal and lateral petals as well as between the two dorsal petals. In fully-formed nectar guide ridges, we observed carotenoid pigment with anthocyanin pigment spots and increased trichome density. Formation of nectar guide ridges were additionally visible from the outside of the flower as in-pocketings along the corolla tube (Figure 10D).

In addition to nectar guide ridge differences, we found that MlCYC1:MlCYC2 RNAi lines showed changes in petal dimensions, the angle between petals, and corolla tube flare consistent with complete or nearly complete ventralization of flowers. In all double RNAi lines compared to wild-type, we found significantly smaller width:length ratio for dorsal petals (P ranged from $2.1 \times 10^{-14}-2.5 \times 10^{-7}$; Figure 11D; Table A6), significantly larger width:length ratio for lateral petals (P ranges from $7.4 \times 10^{-10}-3.1 \times 10^{-5}$; Figure 11 G ; Table A6), and no change to ventral petal shape (P ranges from 0.13-0.53; Figure 11J; Table A6). In all double RNAi lines compared to wild-type, the angle between dorsal petals and the ventral-lateral petals increased significantly (dorsal-dorsal: P ranges from $3.9 \times 10^{-36}-2.5 \times 10^{-25}$, and ventral-lateral: P ranges from $7.1 \times 10^{-11}-$ 3.0×10^{-8} across lines; Figure 12D, J; Table A6), while the angle between dorsal and lateral petals decreased significantly (P ranges from $1.2 \times 10^{-21}-4.9 \times 10^{-16}$ across lines; Figure 12G; Table A6).

In double RNAi lines compared to wild-type, we found the dorsal and ventral corolla tube flare significantly increased in angle, resulting in a decrease in flare for both regions (dorsal: P ranges from 1.9x10-14-9.8×10-8 all lines; ventral: P ranges from $0.0026-0.17$ most lines; Figure 13D, G; Table A6). In addition, the corolla tube in double lines was straight compared to wild-
type, with a pronounced constriction at the base of the corolla tube accompanied by increased carotenoid pigment (Figure 10D).

MIRAD5 is downregulated in both petals and carpels of the MlCYC1:MlCYC2 RNAi Background.

Figure 14. Relative expression of MIRAD5 in MICYCI:MICYC2 RNAi lines. (A) MIRAD5 expression in petal+attached stamens in 4 MlCYCl:MlCYC2_RNAi lines. (B) MIRAD5 expression in carpels in 4 MlCYC1:MICYC2_RNAi lines. All expression data were collected from 15 mm stage flower buds. All relative expression is normalize to the wild-type. (T-test; $*, 5 \%$ significance level; $* *, 1 \%$ significance level).

To determine if MlCYC1 and/or MlCYC2 positively regulate MIRAD5, similar to AmCYC/AmDICH positive regulation of $A m R A D$, we performed qRT-PCR to quantify transcript levels of MlRAD5 in floral tissues of MlCYCl:MlCYC2_RNAi lines. We found that MlRAD5 was marginally to significantly downregulated in both petal+stamen and gynoecium tissues, by 45 to 61% and 27 to 52%, respectively (petal+stamen tissues: P ranges from 0.032-0.072; gynoecium tissue: P ranges from 0.0055-0.039; Figure 14).

DISCUSSION

Expression of MlCYC1, MlCYC2 and MlRAD5 is consistent with roles in both dorsal perianth and carpel development

In M. lewisii, the expression of MlCYC1 and MlCYC2 was present in whole flower buds from early to late flower development stages with strong and specific expression in dorsal
perianth tissue (Figure 7). This is similar to CYC expression in other Lamiales, including other species of Mimulus, with bilateral flower symmetry (Luo et al., 1996, 1999; Zhong et al., 2017; Zhong \& Kellogg, 2015b). This overall pattern of dorsal-specific perianth expression supports the conclusion that these genes, after duplication, are conserved in patterning bilateral flower symmetry in M. lewisii.

Both MIRAD4 and MIRAD5 are closely related to the dorsal flower identity gene, $R A D$ in A. majus (Sengupta \& Hileman, 2018). Whether one or both play a role in M. lewisii dorsal flower development is an open question. Here, we found that MlRAD5, but not MlRAD4 (Figure 8) has dorsal-specific perianth expression, similar to A. majus, where $A m R A D$ expression is restricted to the dorsal region of developing flowers (Corley et al., 2005). This provides strong evidence that only MIRAD5 retained the flower symmetry developmental function following the duplication that led to MIRAD4 and MIRAD5 paralogous gene lineages.

In addition to these expected patterns of dorsal-specific $C Y C$ and $R A D$ expression in M. lewisii, we found high expression in carpels for MlCYCl (the CYC2B paralog; Figure 7C) and MIRAD5 (Figure 8D). This pattern of $C Y C 2 B$ lineage and $R A D 5$ lineage gene expression was previously identified in M. guttatus (Zhong et al., 2017), but little was made of the pattern. Our findings, coupled with those of Zhong et al. (2017) suggest that the CYC-RAD regulatory module may have an additional function outside of establishing perianth symmetry. Specifically, this module may function in a previously un-identified aspect of carpel and/or ovule development as hypothesized by Sengupta and Hileman (in review).

MICYC1 and MICYC2 function redundantly to regulate dorsal flower identity in M. lewisii

Using an RNAi stable transformation approach, we found that MlCYC1 and MlCYC2 exhibit extensive, but not fully redundant functions in establishing dorsal flower identity (Figures

10-13). MlCYCl can completely compensate for loss of MlCYC2 function. MlCYC2_RNAi lines are, nearly always, not significantly different from wild-type in aspects of petal and stamen development. On the other hand, MlCYC 2 cannot completely compensate for loss of MlCYC1 function. $\mathrm{MlCYCl} _$RNAi lines are nearly always significantly different from wild-type in aspects of petal and stamen development. These lines exhibit a trend towards flower ventralization, for example, an increase to four nectar guide ridges (Figure 10C, F; Table A6). It is unlikely that lack of phenotype in MlCYC2_RNAi lines is due to lack of endogenous MlCYC2 downregulation. $\operatorname{MlCYC} 2$ expression is similarly downregulated in $M l C Y C 2 _$RNAi lines as MlCYCl is in MlCYC1_RNAi lines (Figure 9A, B), and these levels of downregulation are also comparable to previous RNAi knockdown experiments in M. lewisii LF10 (LaFountain et al., 2017; Yuan, Sagawa, Young, et al., 2013).

This pattern of paralog redundancy is similar to CYC and DICH redundancy in A. majus where CYC can largely compensate for loss of DICH function, but DICH cannot compensate for loss of CYC function (Luo et al., 1996, 1999). However, in A. majus the DICH paralog has clearly evolved a novel function in specifying the internal asymmetry of dorsal petals in addition to retaining partial function of specifying dorsal flower identity (Luo et al., 1999). Our characterization of individual $\mathrm{MlCYC1}$ _RNAi and $\mathrm{MlCYC2}$ _RNAi lines did not provide evidence of any clear novel roles for either MlCYC1 or MlCYC2. This includes no clear defects in carpel development despite strong expression of MlCYCl in carpels. We did not fully characterize all aspects of carpel development (e.g., carpel wall width, septum patterning), nor did we fully characterize ovule phenotypes. If carpel or ovule development is disrupted in MlCYC1_RNAi lines (or MlCYC1:MlCYC2_RNAi lines), it will require further detailed characterization to uncover.

Together, MlCYC1 and MlCYC2 are sufficient to specify dorsal M. lewisii flower development. $M l C Y C 1: M l C Y C 2 _$RNAi flowers revealed a radialized phenotype compared to M. lewisii LF10 flowers. In double lines, we identified changes in dorsal and lateral petals that strongly trended towards ventral characteristics, including the addition of extra nectar guide ridges and changes in petal shape. In all MlCYC1:MlCYC2 RNAi lines there was a gain of two to three additional nectar guide ridges found in the dorsal and lateral corolla tube (Figure D, G). In these lines, dorsal petals narrowed and lateral petals widened. The average dorsal and lateral petal width:length ratios were within the range of that of the wild-type ventral petals (Table A6). We found that as double lines trended towards radialization, all angles between petal lobes converged towards similar and often overlapping values, with the dorsal-dorsal petal angle and ventral-lateral petal angles widened, and dorsal-lateral petal angles narrowed. This is expected in radialized flowers as equal angles between all petals is a characteristic of naturally radially symmetric flowers. Changes to the corolla tube flare of the dorsal region trended towards that of the ventral region as well (Figure 13A, D), with an increased angle such that the dorsal petals reduced their banner petal appearance.

Wild-type M. lewisii flowers have four fertile stamens and no stamen in the dorsal position of the flower (highly reduced so as not to be evident, but presumed aborted during flower development). We observed a gain of one additional stamen in the dorsal position across multiple MlCYC1:MlCYC2_RNAi plants, increasing the whorl from four to five fertile stamens. Therefore, similar to A. majus, the dorsal identity $C Y C$ genes control both corolla and androecium dorsal identity in M. lewisii. However, the gain of one stamen was not consistent in any one line. Unlike in A. majus cyc:dich double mutants where flowers often increase from five to six organs per whorl (Luo et al., 1999), we did not find any changes to overall merosity in

MlCYCl:MlCYC2_RNAi flowers. Sepal, petal and stamen whorls consistently developed five organs with a bi-carpelate ovule. In M. guttatus VIGS experiments, increases in petal and stamen merosity were reported in double $\mathrm{MgCYC1}: \mathrm{MgCYC} 2$ silenced lines, though highly variable (Preston et al., 2014). In these same $\mathrm{MgCYCl}: \mathrm{MgCYC} 2$ silenced lines, there were reported instances of one additional carpel (Preston et al., 2014). Given the rarity of these phenotypes in the VIGS experiments, it is not clear that suppression of both MgCYCl and MgCYC 2 paralogs in M. guttatus consistently leads to changes in merosity similar to A. majus. Determining whether CYC genes uniquely control merosity in A. majus, or more broadly control merosity with loss of this function in M. lewisii, requires more detailed functional studies using stable transformation or mutagenic studies which provide consistent loss-of-function phenotypes, both in M. guttatus and in other HCL.

MlCYC1 and/or MICYC2 regulate MIRAD5

In A. majus, the expression pattern of $A m R A D$ mirrors that of $A m C Y C$ and, to some extent, $A m D I C H$, beginning at 'flower stage two', just after initiation of AmCYC and AmDICH expression (Corley et al., 2005). Also, AmRAD expression is not observed in the cyc:dich mutant and the rad mutant has a near-complete radialized floral phenotype, approaching the cyc:dich mutant phenotype (Corley et al., 2005). These lines of evidence, along with the identification of multiple conserved TCP binding sites in the putative $R A D$ promoter (Sengupta \& Hileman, 2018), strongly suggest that $A m C Y C$ and $A m D I C H$ are direct activators of $A m R A D$ (Corley et al., 2005). Our data suggest that $M l C Y C 1$ and/or MlCYC2 positively regulate MlRAD5 during M. lewisii flower development. In our MlCYC1:MlCYC2_RNAi lines we found downregulation of MIRAD5 in both carpel and petal tissues, where both floral organs had high MIRAD5 expression
in wild-type (Figure 14). Further research is required to verify the influence of MlCYCl versus MlCYC2 in the positive regulation of MIRAD5 during both petal and carpel development.

Both MlCYC1 and MlCYC2 are retained following an ancient duplication event

MlCYC1 and MlCYC2 belonging to the HCL ECE-CYC2B and ECE-CYC2A gene lineages, respectively. Therefore, these paralogs derive from a relatively ancient duplication event which occurred before the radiation of the HCL, between 40.1-71.3 Mya (Zhong \& Kellogg, 2015b). Yet both paralogs persist. Duplicated genes are proposed to have one of three primary fates (Force et al., 1999; Ganko et al., 2007; Lynch \& Force, 2000): 1) neofunctionalization, one paralog evolves a novel function, while the other retains the ancestral function; 2) subfunctionalization, paralogs partition the ancestral function or 3) nonfunctionalization, one paralog accumulates deleterious mutations that lead to pseudogene formation. While pseudogene formation is expected to be the most likely outcome (Force et al., 1999; Lynch \& Force, 2000), in plant genomes we find large numbers of paralogs are retained (Panchy et al., 2016). Studies suggest that the fate of duplicated genes depends on the mechanism of duplication (e.g. whole genome duplication or small-scale duplication) (Rensing, 2014), as well as selective constraints (Mondragón-Palomino \& Theißen, 2009) and the influence of molecular and biological functions (Hanada et al., 2008; Maere et al., 2005). Here, we can just begin to speculate on the mechanisms underlying maintenance of both MlCYC1 and MlCYC2 paralogs.
$M L C Y C 1$ is selectively retained, at least in part, due its role in establishing dorsal flower identity. Loss of MlCYCl function in MlCYCl _RNAi lines leads to subtle changes in flower shape. Specifically, slight expansion of ventral identity into lateral regions of the flower. We hypothesize that naturally occurring variants for loss of MlCYCl function would have reduced
fitness due to reduced pollinator visitation or inefficient pollen transfer. While MlCYC1_RNAi lines were able to undergo seed set and fruit development following self- and cross-fertilization, it is also possible that the high levels of MlCYC1, and downstream MIRAD5 expression that we observed in M. lewisii carpels is associated with a specific and as yet unidentified function for these genes in fruit, ovule or seed development. Therefore, there could be appreciable fitness consequences due to carpel, ovule or seed developmental defects in naturally occurring loss of MlCYCl variants.

On the other hand, we did not see observable defects in flower development across multiple $\mathrm{MlCYC} 2 _$RNAi lines. Therefore, natural variants defective in MlCYC 2 function should presumably have similar fitness to wild-type, and MlCYC2 loss-of-function mutations could drift to fixation. That this has not occurred suggests that MlCYC2 is selectively maintained for reasons we have not identified. It is possible that residual expression of $M l C Y C 2$ in $M l C Y C 2 _$RNAi lines is sufficient for MlCYC2 function and therefore we are not capturing true loss-of-function phenotypes. This is unlikely given that $\operatorname{MlCYC} 2$ downregulation in MlCYC2_RNAi lines is similar to MlCYCl downregulation in MlCYCl_{1} RNAi lines (Figure 9A, B). More likely is that there are fitness effects for loss of $M l C Y C 2$ that we have not captured in this study. This is different from the situation in A. majus where $D I C H$, which does function redundantly with $C Y C$ to establish dorsal flower identity, has clearly adopted a novel function in specifying the internal shape of the dorsal petals (Luo et al., 1999). It is possible that the only way to confirm MlCYC2 loss-of-function fitness effects would be through field experiments comparing fitness of MlCYC2_RNAi lines to wild-type. This is because it is not clear what the expected phenotypic effects to loss of MlCYC2 function might be given our current understanding of MlCYC2 spatial and temporal patterns of expression.

CONCLUSION

Bilateral flower symmetry is an adaptive flower trait that has evolved independently numerous times across the angiosperm phylogeny. The ECE-CYC2 gene lineage has been repeatedly recruited in the genetic control of bilateral flower symmetry development. Additionally, the ECE-CYC2 gene lineage has undergone extensive duplications, with many duplication events linked to transitions in flower symmetry. In this study we tested for conservation of the bilateral flower symmetry developmental program between A. majus and M. lewisii, where both genomes contain independent duplications of the ECE-CYC2 gene lineage. We demonstrate the expression and function of $M l C Y C$ and $M I R A D$ genes are similar to those previously determined for A. majus $C Y C, D I C H$, and $R A D — M l C Y C$ paralogs show a high degree of functional redundancy in patterning dorsal flower development, and these genes positively regulate MIRAD5 similar to the program in A. majus. However, maintenance of MlCYC2 is less clear since we found no evidence for novel function of this gene in addition to its apparent complete redundancy with MlCYC1 in establishing dorsal flower identity. Unique to Mimulus is the strong expression of MlCYC1 and MIRAD5 during early carpel development. Future studies should focus on determining the function of these canonical symmetry genes in carpel, ovule and/or seed development.

References

Almeida, J., Rocheta, M., \& Galego, L. (1997). Genetic control of flower shape in Antirrhinum majus. Development, 124, 1387-1392.

Bartlett, M. E., \& Specht, C. D. (2011). Changes in expression pattern of the teosinte branched1like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order. American Journal of Botany, 98(2), 227-243. https://doi.org/10.3732/ajb. 1000246

Bergbusch, V. (1999). A Note on the Manipulation of Flower Symmetry inAntirrhinum majus. Annals of Botany, 83(5), 483-488. https://doi.org/10.1006/anbo.1998.0844

Broholm, S. K., Tähtiharju, S., Laitinen, R. A. E., Albert, V. A., Teeri, T. H., \& Elomaa, P. (2008). A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proceedings of the National Academy of Sciences, 105(26), 9117-9122. https://doi.org/10.1073/pnas.0801359105

Busch, A., Horn, S., Muhlhausen, A., Mummenhoff, K., \& Zachgo, S. (2012). Corolla Monosymmetry: Evolution of a Morphological Novelty in the Brassicaceae Family. Molecular Biology and Evolution, 29(4), 1241-1254. https://doi.org/10.1093/molbev/msr297

Busch, A., \& Zachgo, S. (2007). Control of corolla monosymmetry in the Brassicaceae Iberis amara. Proceedings of the National Academy of Sciences, 104(42), 16714-16719. https://doi.org/10.1073/pnas. 0705338104

Chapman, M. A., Leebens-Mack, J. H., \& Burke, J. M. (2008). Positive Selection and Expression Divergence Following Gene Duplication in the Sunflower CYCLOIDEA Gene Family. Molecular Biology and Evolution, 25(7), 1260-1273. https://doi.org/10.1093/molbev/msn001

Citerne, H. L., Le Guilloux, M., Sannier, J., Nadot, S., \& Damerval, C. (2013). Combining Phylogenetic and Syntenic Analyses for Understanding the Evolution of TCP ECE Genes in Eudicots. PLoS ONE, 8(9), e74803. https://doi.org/10.1371/journal.pone. 0074803

Citerne, H. L., Luo, D., Pennington, R. T., Coen, E., \& Cronk, Q. C. B. (2003). A Phylogenomic Investigation of CYCLOIDEA-Like TCP Genes in the Leguminosae. Plant Physiology, 131(3), 1042-1053. https://doi.org/10.1104/pp.102.016311

Citerne, H. L., Reyes, E., Le Guilloux, M., Delannoy, E., Simonnet, F., Sauquet, H., Weston, P. H., Nadot, S., \& Damerval, C. (2017). Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry. Annals of Botany, 119(3), 367-378. https://doi.org/10.1093/aob/mcw219

Citerne, H., Pennington, R. T., \& Cronk, Q. C. B. (2006). An apparent reversal in floral symmetry in the legume Cadia is a homeotic transformation. Proceedings of the National Academy of Sciences, 103(32), 12017-12020. https://doi.org/10.1073/pnas. 0600986103

Corley, S. B., Carpenter, R., Copsey, L., \& Coen, E. (2005). Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences of the United States of America, 102(14), 5068-5073. https://doi.org/10.1073/pnas. 0501340102

Cubas, P., Lauter, N., Doebley, J., \& Coen, E. (1999). The TCP domain: A motif found in proteins regulating plant growth and development. The Plant Journal, 18(2), 215-222. https://doi.org/10.1046/j.1365-313X.1999.00444.x

Dellinger, A. S. (2020). Pollination syndromes in the 21st century: Where do we stand and where may we go? New Phytologist, 228(4), 1193-1213. https://doi.org/10.1111/nph. 16793

Dilcher, D. (2000). Toward a new synthesis: Major evolutionary trends in the angiosperm fossil record. Proceedings of the National Academy of Sciences, 97(13), 7030-7036. https://doi.org/10.1073/pnas.97.13.7030

Ding, B., \& Yuan, Y. (2016). Testing the utility of fluorescent proteins in Mimulus lewisii by an Agrobacterium-mediated transient assay. Plant Cell Reports, 35(4), 771-777. https://doi.org/10.1007/s00299-015-1919-1

Doebley, J., Stec, A., \& Hubbard, L. (1997). The evolution of apical dominance in maize. Nature, 386(6624), 485-488. https://doi.org/10.1038/386485a0

Donoghue, M. J., Ree, R. H., \& Baum, D. A. (1998). Phylogeny and the evolution of flower symmetry in the Asteridae. Trends in Plant Science, 3(8), 1360-1385. https://doi.org/10.1016/S1360-1385(98)01278-3

Doyle, J. J., \& Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19(1), 11-15.

Endress, P. K. (1994). Diversity and evolutionary biology of tropical flowers. Cambridge University Press.

Endress, P. K. (1999). Symmetry in Flowers: Diversity and Evolution. International Journal of Plant Sciences, 160(S6), S3-S23. https://doi.org/10.1086/314211

Endress, P. K. (2001). Origins of flower morphology. Journal of Experimental Zoology, 291(2), 105-115. https://doi.org/10.1002/jez. 1063

Endress, P. K. (2012). The Immense Diversity of Floral Monosymmetry and Asymmetry Across Angiosperms. The Botanical Review, 78(4), 345-397. https://doi.org/10.1007/s12229-012-9106-3

Feng, X., Zhao, Z., Tian, Z., Xu, S., Luo, Y., Cai, Z., Wang, Y., Yang, J., Wang, Z., Weng, L., Chen, J., Zheng, L., Guo, X., Luo, J., Sato, S., Tabata, S., Ma, W., Cao, X., Hu, X., ... Luo, D. (2006). Control of petal shape and floral zygomorphy in Lotus japonicus. Proceedings of the National Academy of Sciences, 103(13), 4970-4975. https://doi.org/10.1073/pnas. 0600681103

Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R., \& Thomson, J. D. (2004). Pollination Syndromes and Floral Specialization. Annual Review of Ecology, Evolution, and Systematics, 35(1), 375-403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347

Fernández-Mazuecos, M., Blanco-Pastor, J. L., Juan, A., Carnicero, P., Forrest, A., Alarcón, M., Vargas, P., \& Glover, B. J. (2019). Macroevolutionary dynamics of nectar spurs, a key evolutionary innovation. New Phytologist, 222(2), 1123-1138. https://doi.org/10.1111/nph. 15654

Flagel, L. E., \& Wendel, J. F. (2009). Gene duplication and evolutionary novelty in plants. New Phytologist, 183(3), 557-564. https://doi.org/10.1111/j.1469-8137.2009.02923.x

Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., \& Postlethwait, J. (1999). Preservation of duplicate genes by complementary, degenerative mutations. Genetics, 151(4), 1531-1545.

Friedman, W. E. (2009). The meaning of Darwin's "abominable mystery." American Journal of Botany, 96(1), 5-21. https://doi.org/10.3732/ajb.0800150

Galego, L., \& Almeida, J. (2002). Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes \& Development, 16(7), 880-891. https://doi.org/10.1101/gad. 221002

Ganko, E. W., Meyers, B. C., \& Vision, T. J. (2007). Divergence in Expression between Duplicated Genes in Arabidopsis. Molecular Biology and Evolution, 24(10), 2298-2309. https://doi.org/10.1093/molbev/msm158

Garcês, H. M. P., Spencer, V. M. R., \& Kim, M. (2016). Control of Floret Symmetry by RAY3, SvDIV1B , and $S v R A D$ in the Capitulum of Senecio vulgaris. Plant Physiology, 171(3), 2055-2068. https://doi.org/10.1104/pp.16.00395

Gómez, J. M., Perfectti, F., \& Camacho, J. P. M. (2006). Natural Selection on Erysimum mediohispanicum Flower Shape: Insights into the Evolution of Zygomorphy. The American Naturalist, 168(4), 531-545. https://doi.org/10.1086/507048

Gubitz, T., Caldwell, A., \& Hudson, A. (2003). Rapid Molecular Evolution of CYCLOIDEAlike Genes in Antirrhinum and Its Relatives. Molecular Biology and Evolution, 20(9), 1537-1544. https://doi.org/10.1093/molbev/msg 166

Hanada, K., Zou, C., Lehti-Shiu, M. D., Shinozaki, K., \& Shiu, S.-H. (2008). Importance of Lineage-Specific Expansion of Plant Tandem Duplicates in the Adaptive Response to Environmental Stimuli. Plant Physiology, 148(2), 993-1003. https://doi.org/10.1104/pp.108.122457

Herrera, J. (2009). Visibility vs. biomass in flowers: Exploring corolla allocation in Mediterranean entomophilous plants. Annals of Botany, 103(7), 1119-1127. https://doi.org/10.1093/aob/mcp046

Hervé, C., Dabos, P., Bardet, C., Jauneau, A., Auriac, M. C., Ramboer, A., Lacout, F., \& Tremousaygue, D. (2009). In Vivo Interference with AtTCP20 Function Induces Severe Plant Growth Alterations and Deregulates the Expression of Many Genes Important for

Development. Plant Physiology, 149(3), 1462-1477.
https://doi.org/10.1104/pp.108.126136
Hileman, L. C. (2014). Trends in flower symmetry evolution revealed through phylogenetic and developmental genetic advances. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1648), 20130348. https://doi.org/10.1098/rstb.2013.0348

Hileman, L. C., \& Baum, D. A. (2003). Why Do Paralogs Persist? Molecular Evolution of CYCLOIDEA and Related Floral Symmetry Genes in Antirrhineae (Veronicaceae). Molecular Biology and Evolution, 20(4), 591-600. https://doi.org/10.1093/molbev/msg063

Hileman, L. C., Kramer, E. M., \& Baum, D. A. (2003). Differential regulation of symmetry genes and the evolution of floral morphologies. PNAS, 100(22), 12814-12819. https://doi.org/www.pnas.org cgi doi 10.1073 pnas. 1835725100

Howarth, D. G., \& Donoghue, M. J. (2005). Duplications in CYC -like Genes from Dipsacales Correlate with Floral Form. International Journal of Plant Sciences, 166(3), 357-370. https://doi.org/10.1086/428634

Howarth, D. G., \& Donoghue, M. J. (2006). Phylogenetic analysis of the "ECE" (CYC/TB1) clade reveals duplications predating the core eudicots. Proceedings of the National Academy of Sciences, 103(24), 9101-9106. https://doi.org/10.1073/pnas. 0602827103

Howarth, D. G., Martins, T., Chimney, E., \& Donoghue, M. J. (2011). Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales). Annals of Botany, 107(9), 1521-1532. https://doi.org/10.1093/aob/mcr049

Hsin, K.-T., Lu, J.-Y., Möller, M., \& Wang, C.-N. (2019). Gene duplication and relaxation from selective constraints of GCYC genes correlated with various floral symmetry patterns in Asiatic Gesneriaceae tribe Trichosporeae. PLOS ONE, 14(1), e0210054. https://doi.org/10.1371/journal.pone. 0210054

Hsin, K.-T., \& Wang, C.-N. (2018). Expression shifts of floral symmetry genes correlate to flower actinomorphy in East Asia endemic Conandron ramondioides (Gesneriaceae). Botanical Studies, 59, 24. https://doi.org/10.1186/s40529-018-0242-x

Jabbour, F., Cossard, G., Le Guilloux, M., Sannier, J., Nadot, S., \& Damerval, C. (2014). Specific Duplication and Dorsoventrally Asymmetric Expression Patterns of CycloideaLike Genes in Zygomorphic Species of Ranunculaceae. PLoS ONE, 9(4), e95727. https://doi.org/10.1371/journal.pone. 0095727

Juntheikki-Palovaara, I., Tähtiharju, S., Lan, T., Broholm, S. K., Rijpkema, A. S., Ruonala, R., Kale, L., Albert, V. A., Teeri, T. H., \& Elomaa, P. (2014). Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae). The Plant Journal, 79(5), 783-796. https://doi.org/10.1111/tpj. 12583

Kerschen, A., Napoli, C. A., Jorgensen, R. A., \& Müller, A. E. (2004). Effectiveness of RNA interference in transgenic plants. FEBS Letters, 566(1-3), 223-228. https://doi.org/10.1016/j.febslet.2004.04.043

Kosugi, S., \& Ohashi, Y. (1997). PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. The Plant Cell, 9(9), 1607-1619. https://doi.org/10.1105/tpc.9.9.1607

LaFountain, A. M., Chen, W., Sun, W., Chen, S., Frank, H. A., Ding, B., \& Yuan, Y. (2017). Molecular Basis of Overdominance at a Flower Color Locus. G3 Genes|Genomes|Genetics, 7(12), 3947-3954. https://doi.org/10.1534/g3.117.300336

Landis, J. B., Bell, C. D., Hernandez, M., Zenil-Ferguson, R., McCarthy, E. W., Soltis, D. E., \& Soltis, P. S. (2018). Evolution of floral traits and impact of reproductive mode on diversification in the phlox family (Polemoniaceae). Molecular Phylogenetics and Evolution, 127, 878-890. https://doi.org/10.1016/j.ympev.2018.06.035

Li, C., Potuschak, T., Colon-Carmona, A., Gutierrez, R. A., \& Doerner, P. (2005). Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proceedings of the National Academy of Sciences, 102(36), 12978-12983. https://doi.org/10.1073/pnas. 0504039102

Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J., \& Coen, E. (1999). Control of Organ Asymmetry in Flowers of Antirrhinum. Cell, 99(4), 367-376. https://doi.org/10.1016/S0092-8674(00)81523-8

Luo, D., Carpenter, R., Vincent, C., Copsey, L., \& Coen, E. (1996). Origin of floral asymmetry in Antirrhinum. Nature, 383(6603), 794-799. https://doi.org/10.1038/383794a0

Lynch, M., \& Force, A. (2000). The Probability of Duplicate Gene Preservation by Subfunctionalization. Genetics, 154(1), 459-473. https://doi.org/10.1093/genetics/154.1.459

Madrigal, Y., Alzate, J. F., González, F., \& Pabón-Mora, N. (2019). Evolution of RADIALIS and DIVARICATA gene lineages in flowering plants with an expanded sampling in noncore eudicots. American Journal of Botany, 106(3), 334-351. https://doi.org/10.1002/ajb2.1243

Maere, S., De Bodt, S., Raes, J., Casneuf, T., Van Montagu, M., Kuiper, M., \& Van de Peer, Y. (2005). Modeling gene and genome duplications in eukaryotes. Proceedings of the National Academy of Sciences, 102(15), 5454-5459. https://doi.org/10.1073/pnas.0501102102

Martin-Trillo, M., \& Cubas, P. (2009). TCP genes: A family snapshot ten years later. Cell Press, 15(1), 31-39.

Mondragón-Palomino, M., \& Theißen, G. (2009). Why are orchid flowers so diverse? Reduction of evolutionary constraints by paralogues of class B floral homeotic genes. Annals of Botany, 104(3), 583-594. https://doi.org/10.1093/aob/men258

Neal, P. R., Dafni, A., \& Giurfa, M. (1998). Floral symmetry and its role in plant-pollinator systems: Terminology, Distribution, and Hypotheses. Annual Review of Ecology and Systematics, 29(1), 345-373. https://doi.org/10.1146/annurev.ecolsys.29.1.345

Panchy, N., Lehti-Shiu, M., \& Shiu, S.-H. (2016). Evolution of Gene Duplication in Plants. Plant Physiology, 171(4), 2294-2316. https://doi.org/10.1104/pp.16.00523

Pang, H.-B., Sun, Q.-W., He, S.-Z., \& Wang, Y.-Z. (2010). Expression pattern of CYC-like genes relating to a dorsalized actinomorphic flower in Tengia (Gesneriaceae). Journal of Systematics and Evolution, 48(5), 309-317. https://doi.org/10.1111/j.17596831.2010.00091.x

Peirson, S. N., Butler, J. N., \& Foster, R. G. (2003). Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Research, 31(14), e73. https://doi.org/10.1093/nar/gng073

Preston, J. C., Barnett, L., Kost, M., Oborny, N., \& Hileman, L. C. (2014). Optimization of virus-induced gene silencing to facilitate evo-devo studies in the emerging model species

Mimulus guttatus (Phrymaceae). Annuals of the Missouri Botanical Garden, 99, 301312.

Preston, J. C., \& Hileman, L. C. (2009). Developmental genetics of floral symmetry evolution. Trends in Plant Science, 14(3), 147-154. https://doi.org/10.1016/j.tplants.2008.12.005

Preston, J. C., \& Hileman, L. C. (2012). Parallel evolution of TCP and B-class genes in Commelinaceae flower bilateral symmetry. EvoDevo, 3(1), 6. https://doi.org/10.1186/2041-9139-3-6

Preston, J. C., Martinez, C. C., \& Hileman, L. C. (2011). Gradual disintegration of the floral symmetry gene network is implicated in the evolution of a wind-pollination syndrome. Proceedings of the National Academy of Sciences, 108(6), 2343-2348. https://doi.org/10.1073/pnas. 1011361108

Raimundo, J., Sobral, R., Bailey, P., Azevedo, H., Galego, L., Almeida, J., Coen, E., \& Costa, M. M. R. (2013). A subcellular tug of war involving three MYB-like proteins underlies a molecular antagonism in Antirrhinum flower asymmetry. The Plant Journal, 75(4), 527538. https://doi.org/10.1111/tpj. 12225

Ree, R. H., \& Donoghue, M. J. (1999). Inferring Rates of Change in Flower Symmetry in Asterid Angiosperms. Systematic Biology, 48(3), 633-641.

Reeves, P., \& Olmstead, R. (2003). Evolution of the TCP gene family in Asteridae: Cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution. Molecular Biology and Evolution, 20(12), 19972009. https://doi.org/10.1093/molbev/msg211

Rensing, S. A. (2014). Gene duplication as a driver of plant morphogenetic evolution. Current Opinion in Plant Biology, 17, 43-48. https://doi.org/10.1016/j.pbi.2013.11.002

Reyes, E., Sauquet, H., \& Nadot, S. (2016). Perianth symmetry changed at least 199 times in angiosperm evolution. Taxon, 65(5), 945-964. https://doi.org/10.12705/655.1

Rodriguez, I., Gumbert, A., Hempel de Ibarra, N., Kunze, J., \& Giurfa, M. (2004). Symmetry is in the eye of the "beeholder": Innate preference for bilateral symmetry in flower-naive bumblebees. Naturwissenschaften, 91(8). https://doi.org/10.1007/s00114-004-0537-5

Sagawa, J. M., Stanley, L. E., LaFountain, A. M., Frank, H. A., Liu, C., \& Yuan, Y. (2016). An R2R3- MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers. New Phytologist, 209(3), 1049-1057. https://doi.org/10.1111/nph. 13647

Sargent, R. D. (2004). Floral symmetry affects speciation rates in angiosperms. Proceedings of the Royal Society B: Biological Sciences, 271(1539), 603-608.

Sauquet, H., von Balthazar, M., Magallón, S., Doyle, J. A., Endress, P. K., Bailes, E. J., Barroso de Morais, E., Bull-Hereñu, K., Carrive, L., Chartier, M., Chomicki, G., Coiro, M., Cornette, R., El Ottra, J. H. L., Epicoco, C., Foster, C. S. P., Jabbour, F., Haevermans, A., Haevermans, T., ... Schönenberger, J. (2017). The ancestral flower of angiosperms and its early diversification. Nature Communications, 8(1), 16047. https://doi.org/10.1038/ncomms16047

Sengupta, A., \& Hileman, L. C. (2018). Novel traits, flower symmetry, and transcriptional autoregulation: New hypotheses from bioinformatic and experimental data. Frontiers in Plant Science, 9, 1561. https://doi.org/10.3389/fpls.2018.01561

Spencer, V., \& Kim, M. (2017). Re"CYC"ling molecular regulators in the evolution and development of flower symmetry. Seminars in Cell \& Developmental Biology, 79, 16-26. https://doi.org/10.1016/j.semcdb.2017.08.052

Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688-2690. https://doi.org/10.1093/bioinformatics/bt1446

Stanton, K. A., Edger, P. P., Puzey, J. R., Kinser, T., Cheng, P., Vernon, D. M., Forsthoefel, N. R., \& Cooley, A. M. (2017). A Whole-Transcriptome Approach to Evaluating Reference Genes for Quantitative Gene Expression Studies: A Case Study in Mimulus. G3 Genes|Genomes|Genetics, 7(4), 1085-1095. https://doi.org/10.1534/g3.116.038075

Vamosi, J. C., \& Vamosi, S. M. (2010). Key innovations within a geographical context in flowering plants: Towards resolving Darwin's abominable mystery: Ecological limits vs. key innovations. Ecology Letters, 13(10), 1270-1279. https://doi.org/10.1111/j.14610248.2010.01521.x
van der Niet, T., \& Johnson, S. D. (2012). Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology \& Evolution, 27(6), 353-361. https://doi.org/10.1016/j.tree.2012.02.002

Wang, J., Wang, Y., \& Luo, D. (2010). LjCYC genes constitute floral dorsoventral asymmetry in Lotus japonicus. Journal of Integrative Plant Biology, 52(11), 959-970. https://doi.org/10.1111/j.1744-7909.2010.00926.x

Wang, Z., Luo, Y., Li, X., Wang, L., Xu, S., Yang, J., Weng, L., Sato, S., Tabata, S., Ambrose, M., Rameau, C., Feng, X., Hu, X., \& Luo, D. (2008). Genetic control of floral zygomorphy in pea (Pisum sativum L.). Proceedings of the National Academy of Sciences, 105(30), 10414-10419. https://doi.org/10.1073/pnas.0803291105

Wessinger, C. A., \& Hileman, L. C. (2020). Parallelism in flower evolution and development. Annual Review of Ecology, Evolution, and Systematics, 51(1), 387-408. https://doi.org/10.1146/annurev-ecolsys-011720-124511

Wessinger, C. A., Rausher, M. D., \& Hileman, L. C. (2019). Adaptation to hummingbird pollination is associated with reduced diversification in Penstemon. Evolution Letters, 3(5), 521-533. https://doi.org/10.1002/evl3.130

Xu, S., Luo, Y., Cai, Z., Cao, X., Hu, X., Yang, J., \& Luo, D. (2013). Functional Diversity of CYCLOIDEA-like TCP Genes in the Control of Zygomorphic Flower Development in Lotus japonicus. Journal of Integrative Plant Biology, 55(3), 221-231.
https://doi.org/10.1111/j.1744-7909.2012.01169.x
Yuan, Y. (2018). Monkeyflowers (Mimulus): New model for plant developmental genetics and evo-devo. New Phytologist. https://doi.org/10.1111/nph. 15560

Yuan, Y., Sagawa, J. M., Stillo, V. S. D., \& Bradshaw, H. D. (2013). Bulk segregant analysis of an induced floral mutant identifies a MIXTA-like R2R3 MYB controlling nectar guide formation in Mimulus lewisii. Genetics, 194, 523-528.
https://doi.org/10.1534/genetics.113.151225/-/DC1.
Yuan, Y., Sagawa, J. M., Young, R. C., Christensen, B. J., \& Bradshaw, H. D. (2013). Genetic Dissection of a Major Anthocyanin QTL Contributing to Pollinator-Mediated Reproductive Isolation Between Sister Species of Mimulus. Genetics, 194(1), 255-263. https://doi.org/10.1534/genetics.112.146852

Zhang, W., Kramer, E. M., \& Davis, C. C. (2010). Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proceedings of the National Academy of Sciences, 107(14), 6388-6393. https://doi.org/10.1073/pnas. 0910155107

Zhang, W., Kramer, E. M., \& Davis, C. C. (2012). Similar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes. PLoS ONE, 7(4), e36033. https://doi.org/10.1371/journal.pone. 0036033

Zhang, W., Steinmann, V., Nikolov, L., Kramer, E., \& Davis, C. (2013). Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors. Frontiers in Plant Science, 4, 302. https://doi.org/10.3389/fpls.2013.00302

Zhao, Y., Pfannebecker, K., Dommes, A. B., Hidalgo, O., Becker, A., \& Elomaa, P. (2018). Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). New Phytologist, 220(1), 317-331. https://doi.org/10.1111/nph. 15289

Zhao, Z., Hu, J., Chen, S., Luo, Z., Luo, D., Wen, J., Tu, T., \& Zhang, D. (2019). Evolution of CYCLOIDEA-like genes in Fables: Insights into duplication patterns and the control of floral symmetry. Molecular Phylogenetics and Evolution, 132, 81-89. https://doi.org/10.1016/j.ympev.2018.11.007

Zhong, J., \& Kellogg, E. A. (2015a). Stepwise evolution of corolla symmetry in CYCLOIDEA2like and RADIALIS-like gene expression patterns in Lamiales. American Journal of Botany, 102(8), 1260-1267. https://doi.org/10.3732/ajb. 1500191

Zhong, J., \& Kellogg, E. A. (2015b). Duplication and expression of CYC2 -like genes in the origin and maintenance of corolla zygomorphy in Lamiales. New Phytologist, 205(2), 852-868. https://doi.org/10.1111/nph. 13104

Zhong, J., Preston, J. C., Hileman, L. C., \& Kellogg, E. A. (2017). Repeated and diverse losses of corolla bilateral symmetry in the Lamiaceae. Annals of Botany, 119(7), 1211-1223. https://doi.org/10.1093/aob/mcx012

Zhou, X.-R., Wang, Y.-Z., Smith, J. F., \& Chen, R. (2008). Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphy in Bournea (Gesneriaceae). New Phytologist, 178(3), 532-543. https://doi.org/10.1111/j.1469-8137.2008.02384.x

Appendix A: Supplementary figures and tables

A) Mimulus lewisii CYC1

1	ATGTTCAACA	AGAACACATA	CATGATTCCT	CAGGGTTCTG	CTCCCTCCAC	TTCTGTTCTT
61	GATCTCAACG	GCAATGAAAT	TTTGCTCCAC	CACCACAATG	TGTTTTCTGG	CCACTACTTA
121	GCCACTAACG	CTCCACCTGT	CGAAGCTGCT	GCCGCATTGT	TCAATCAAGA	TATCGGAGAA
181	ACTTCAGGAA	CCCTAAACAC	GTGTCCAAGA	ACTCCGAAAA	GAGATCGACA	CAGCAAAATC
241	GACACTGCTC	AAGGACCAAG	GGACAGAAGA	GTCAGGCTCT	CGATAGGCGT	CGCTCGAAAA
301	TTCTTCGATC	TCCAGGAAAT	GCTCGGTTTT	GACAAGCCGA	GCAAAACACT	CGATTGGCTC
361	CTCACAAAAT	CGAAAACCGC	CATTAAGGAC	CTCGTCAACA	CAACGAAGCA	AAGCTCGACT
421	GGAGCTGTTG	TTTCCTCTCC	TACTCCTTCG	GACGAATGCG	AGGTAGAAAA	TGACGACTAT
481	GCCCTCGAAA	AAGGGCCGTT	TCTCGGTGCC	GATTCGAAAG	GGAAATCGGT	GATGACGAGT
541	GGTAATAGCA	AATTGCAGTA	TAAAGGAGGT	GCGAAGGATT	TGATCGCGAA	GGAGTCCAGG
601	GTTAAGGCGA	GGGCGAGGGC	GAGAGAAAGA	ACGAGAGAGA	AAATGTGCAT	CAAGCAGCTC
661	AGTGAAACAA	GAAACACTAC	TACAGGCTAT	TATGATCTGA	TCAACCCTTC	AAATAATAAT
721	ATCCCAATTC	AGTACATGAA	TAATCAGCTC	GAGTATTGCA	GAATATCGGG	ATCGAGTGGA
781	AAATTATCGG	GAATAAATTA	TGCGATGAAT	TATCAAGAAT	GTGGAGGTGG	AGACCTAATT
841	AATCAAGAAC	CAGTGGTGAT	CAAGAGGAAG	GTGAAGCATC	ATCCATCACC	AATCTTGGGA
901	TTCCAGCCGA	ATCTTATCCT	TTCGAGAGAT	TTGGGATCGA	ACTACGGTTA	TAGTAATGCC
961	ACTGATGATC	AGAATTGGGA	TCATATTAGT	AGCTTTAATT	CGTCACAATC	CAACATATCT
1021	GCCATTTTGG	ATCAGCACAA	GTTCAACAAT	AGTTGTTCAA	GGAAAACTAG	GAAAAAGTAC
1081	TATTGCATTA	TTGATGCTGT	AATTGTATGT	TCTGCTACCT	TTGATCTTCA	GCAATCTGAG
1141	ATTTCAAAGG	TTGCATAA				

B) Mimulus lewisii CYC2

1 ATGTTCAGCA CGAACAATTA CCTGCTTCCT CAGTACTTTT CATCATCATC ATCATCATCA CCATCATCTC TATACCCTCG CCCAAATGCT TCTCTTGTTG ACCTAAACAG CGTCGAATTC TTGTTCCACC ACCACCCGGA AATGTTCTCC GGCCACTATT TAGCTGCTGC CGCCAACGCT CAGCCGTTCA TCCACGCTGC TGCTCTGCTC AATCAAGACG ACAGCAGAAC ACTAAACGGA GAAGCCCCTT CTGCCACCAC AGTGGCGGCA AACTCGCTTC AAAGAAAGCA ACCCGTGAAA AAGGACCGCC ACAGTAAGAT ATTCACTGCT CAAGGTCCGA GGGATCGAAG AGTACGGCTC

361	TCCATCGGCA	TTGCTCGAAA	GTTCTTCGAC	CTTCAAGAAA	TGCTAGGTTT	CGACAAGCCA
421	AGCAAAACCC	TCGATTGGCT	GCTCACGAAG	TCGAAAGCCG	CCATTAAAGA	GCTCGTGCAG
481	ATGAAAGAAA	ACGCTAGTTG	CGCTAATAAG	AGCGCTTCTT	CTCCCTCCGA	ATGTGAGCTT
541	ATCTCTTCGG	AATCGAACGG	TGAGGCTTTT	GAAATCGGGG	CGGACACGAA	GAAGAAATTT
601	GTTAAGGAAT	CGAGGGCGAA	GGCGAGAGCT	AGGGCTAGGG	AAAGAACAAA	AGAGAAAATG
661	AGCATCAAGA	ATAACATGGG	TTCTGATGAT	TTGAACCCTT	TACCAGTCCC	AATTCAATAT
721	AGAAATAATC	AAGTTGACTT	ATTCCAATCA	TCAGCTGCAG	GTGCTCAAGA	CCCGAGTTCG
781	AACTACGGTG	TCCTAATTCA	AGAATCTATT	GTGGTCAAAA	GGAAGATGAA	GAGCCCTTCG
841	TTTTTCGGGT	TTCAGCAAAA	CGTTTCTGTT	TCGAGAGATT	CGAGTTCGAA	CTACGGTGTC
901	CCGTCTGCTA	ATAATGCCGC	TGAAAATTGG	GATATTTGCA	GCTTCACTTC	TCAGTCCAAC
961	TTGTGTGCTA	CTTTGGATCA	GCACAAGTTC	ATCAATAGGT	AA	

Figure A1. Coding sequence and RNAi target sequences for $M l C Y C 1$ and $M l C Y C 2$. (A) $M l C Y C 1$ coding sequence, 270 bp used to construct MlCYC1 RNAi hairpin highlighted. (B) MlCYC2 coding sequence, 180 bp used to construct MlCYC2 RNAi hairpin highlighted.

Table A1. M. lewisii qRT-PCR primers (5' to 3^{\prime}).

Gene	Forward primer	Reverse primer
MlCYC1	AGGAGGTGCGAAGGATTTGATC	AGTAGTGTTTCTTGTTTCACTGAGCT
MlCYC2	TTTGAAATCGGGGCGGACAC	TTGGGACTGGTAAAGGGTTCAAA
MlRAD4	ACGGAGGAAGAAGTCAAACGG	TACTTACGATCGGCACCACTTTT
MlRAD5	GCAAAACCGCCGAAGAAGTC	CCATTAGTGGTAGTTGAGGTGGTCC
MlIFA	GAAGCCTATGACGCACCCAC	GCCCTCCTCCCACTCATCAT

Table A2. M. lewisii PCR primers with restriction sites (5' to 3^{\prime}).

Gene	Forward primer	Reverse primer
MlCYC1_424_RE	GTTCTAGACCATGGCGAGT	GTGGATCCGGCGCGCCGGCAGA
	ATTGCAGAATATCGGGA	TATGTTGGATTGTAGTGACG
$M l C Y C 2 _2324 _$RE	GTTCTAGACCATGGTCCAA	GTGGATCCGGCGCGCCGCGGCA
	TCATCAGCTGCAGGT	TTATTAGCAGACGG

Table A3. Vector specific PCR primers (5^{\prime} to 3'). Primer pair pFGC5941_2372-F and pFGC5941_3082-R were used to amplify the left insert and primer pair $\mathrm{pFGC} 5941 _3930-\mathrm{F}$ and $\mathrm{pFGC} 5941 _4430-\mathrm{R}$ were used to amplify the right insert.

Primer ID	Primer	Target fragment
pFGC5941_2372-F	CTTCATCGAAAGGACAGTAGAA	Left arm T-DNA
pFGC5941_3082-R	CCAAACAGGCTCATAGATACT	Left arm T-DNA
pFGC5941_3930-F	TGTACATCAGAATGTTTCTGAC	Right arm T-DNA
pFGC5941_4430-R	CGCTCTATCATAGATGTCGCTA	Right arm T-DNA

Table A4. M. lewisii insert and vector specific PCR primers (5' to 3^{\prime}) for screening double RNAi lines. Primer pair MlCYC1_424-R and pFGC5941_2372-F were used to amplify the MlCYC1 insert and primer pair MlCYC2_2324-R and pFGC5941_4430-R were used to amplify the MlCYC2 insert.

Primer ID	Primer	Target fragment
MlCYC1_424-R	GGCAGATATGTTGGATTGTGACG	MlCYC1
pFGC5941_2372-F	CTTCATCGAAAGGACAGTAGAA	MlCYC1
MlCYC2_2324-R	GCGGCATTATTAGCAGACGG	MlCYC2
pFGC5941_4430-R	CGCTCTATCATAGATGTCGCTA	MlCYC2

Table A5. Accession numbers for ECE-CYC2 genes used in ortholog analysis.

Species	Gene	NCBI Accession \#
Antirrhinum majus	AmCYC, AmDICH	Y16313, AF199465
Mimulus guttatus	$M g C Y C 2 A, M g C Y C 2 B$	H00528, K00858
Mimulus ringens	$M r C Y C 2 A, M r C Y C 2 B$	KM526894, KM526920
Phryma leptostachya	PlCYC2A, PlCYC2B	KM526895, KM526921

Table A6. Table of floral trait measurements for M. lewisii LF10 and RNAi lines.

0
0
+
+
oi
i
o
o

 0
0
∞
∞
∞

 $\varepsilon ゅ 9200^{\circ} 0$ $\begin{array}{ll}0 & 0 \\ 8 & 0 \\ 0 & A \\ \text { it } & \end{array}$ 0
N
N O
O
U్
on 0
$\stackrel{0}{a}$
a \circ
$\stackrel{O}{亏}$
$\vec{\omega}$ $\begin{array}{cc}0 & 0 \\ = & \mathrm{N} \\ \cdots & 0\end{array}$ $\begin{array}{ll}0 & 0 \\ \text { N } & \text { O } \\ 0 & \underset{\sim}{7}\end{array}$ $\underset{\underset{1}{2}}{\stackrel{2}{7}}$ 0
8
0
0
0
0 \qquad ∞
0
8
8
0
0
∞ $\begin{array}{ll}0 & 0 \\ 8 & \infty \\ 8 & \stackrel{0}{0} \\ 0 & \infty \\ \infty & \end{array}$ 86780

乙\＆I60000 | 0 |
| :--- |
| |
| | SIZ $80^{\circ} 0$ 0

8
0
0
0
0
च অ い ت

