
Topics on Coherent Sheaves for Deligne-Mumford Stacks

©2021

Promit Kundu

Submitted to the graduate degree program in Department of Mathematics and the Graduate
Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of

Doctor of Philosophy.

Committee members

Professor Yunfeng Jiang, Chairperson

Professor Purnaprajna Bangere, Co-Chair

Professor Satya Mandal

Professor Yuanqi Wang

Professor Kyoungchul Kong

Date defended: June 14, 2021



The Dissertation Committee for Promit Kundu certifies
that this is the approved version of the following dissertation :

Topics on Coherent Sheaves for Deligne-Mumford Stacks

Professor Yunfeng Jiang, Chairperson

Date approved: June 14, 2021

ii



Abstract

The problems studied in this thesis are problems concerned with Vafa-Witten theory in Physics

which gives a relationship between Physics and mathematics through a deep relationship called

S-duality and providing new relationships between various invariants. This deep study intertwines

number theory, arithmetic geometry and representation theory and algebraic geometry enabling us

to recover beautiful interesting formulas. Sheaves on Deligne-Mumford stacks are related to this

study [16] following a large body of work of several people in the related fields [33], [32].

In this thesis we mainly study two important problems concerned with sheaves on Deligne-

Mumford stacks. We mainly study sheaves on smooth toric Deligne-Mumford stacks and Bogomolov-

Gieseker inequality for modified semi-stable sheaves on tame smooth Deligne-Mumford projective

stacks in any dimension.

In chapter 2 we recall the definitions and preliminaries on Deligne-Mumford stacks. Then we

recall the important notion of semi-stability modified to the setting of projective Deligne-Mumford

stacks. We restate the notions of modified slope and define semi-stability analogously. We impose

a condition §4.1.2, with which we work in the rest of chapter 4 and chapter 5.

In chapter 3 we first study toric Deligne-Mumford stacks and torsion free toric sheaves on

them. We give examples of toric Deligne-Mumford stacks, torus actions on Deligne-Mumford

stacks and prove a gluing formula for torsion free toric sheaves on a Toric Deligne-Mumford stack

generalising [20], [9], [36] on any arbitrary toric Deligne-Mumford stack.

In chapter 4 we generalize the Bogomolov-Gieseker inequality for semistable coherent sheaves

on smooth projective surfaces to smooth Deligne-Mumford surfaces. We work over positive char-

acteristic ? > 0 and generalize Langer’s method to smooth Deligne-Mumford stacks.

In chapter 5 we generalize the Bogomolov inequality formula to higher dimensions and to

Simpson Higgs sheaves on tame Deligne-Mumford stacks.
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Chapter 1

Introduction

We study two important concepts on Sheaves on Deligne-Mumford stacks in this thesis. The

problems we study have deep connections to Physics and have been useful in computing Vafa-

Witten invariant [33],[32]. These ideas are very useful in proving powerful relations between

generating functions and modularity properties connecting number theory and algebraic geometry.

We concentrate mainly on semi-stability and recall the setting as in [28]. We fix a condition

and work with it as the assumption on generating sheaves in chapter 2 handy for uses in chapter

four and five.

In chapter three we discuss about Smooth Toric Deligne-Mumford stacks which are very im-

portant algebro-geometric objects as their geometric properties translate into the combinatorics of

their fan structure. They provide important testing grounds for various physical theories and con-

jectures motivated from Physics. For introduction to Smooth Toric Deligne-Mumford stacks we

refer to [4],[8]. The Torus fixed locus is important in the context of computing DT invariants and

Vafa-Witten invariants [35], serving as a motivation to investigate our case. We give conditions for

a �;D8=6 )ℎ4>A4< handy for our purposes to compute 4@D8E0A80=C %820A3 �A>D?B.

We obtain a 2ℎ0A02C4A8BC82 5 D=2C8>= similar to [20] by defining the dimension of the fine

graded pieces of each {� (<),< ∈ - ())}, which will be instrumental in the construction of the

pure equivariant sheaves with a fixed characteristic function ( see [9] ).

Extending the work of Klyachko, Perling, Kool, we develop a combinatorial method to describe

the pure equivariant sheaves of any rank and on an arbitrary smooth projective Toric Deligne-

Mumford stack of any dimension. Following the methods of [20], one can construct the moduli
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stack of equivariant pure sheaves on - (Σ) with fixed characteristic function j. The torus action

extends to the moduli stack of Gieseker stable sheaves on the Deligne-Mumford stack with respect

to a Modified Hilbert polynomial ( i.e, w.r.t a generating sheaf ).

For torsion free sheaves equivariant under torus action with fixed characteristic function, we

hope to match GIT semi-stability and Gieseker semi-stability . This lets us have a stratification

of the stable locus of torus fixed points of Gieseker stable sheaves in terms of the stable locus of

torus fixed points with fixed characteristic function which are very combinatorial in nature. Using

that we hope to obtain a combinatorial description of the torus fixed `-modified stable torsion

free coherent sheaves on the Deligne-Mumford stack purely in terms of moduli stacks of pure

equivariant sheaves with fixed characteristic function.

Using this decomposition as in [20], we can compute generating functions of Euler character-

istics of moduli spaces of modified `- stable sheaves with respect to a modified Hilbert polynomial

on smooth proper Toric Deligne-Mumford stacks ( See [36] for analogous applications on smooth

projective toric �8AI41AD2ℎ >A18 5 >;3B. ).

In the fourth chapter we discuss about the 38B2A8<8=0=C of a 2>ℎ4A4=C Bℎ40 5 and conditions

enabling its positivity. Let - be a smooth projective surface over an algebraically closed field ^ of

characteristic zero. The Bogomolov-Gieseker inequality is a famous formula for slope semistable

torsion free coherent sheaves on - , which says that the discriminant Δ(�) = 2rk(�)22(�) −

(rk(�) − 1)21(�)2 ≥ 0 if � is slope semistable. This formula has many important applications

such as the construction of Bridgeland stability conditions for surfaces.

If the base field ^ is of positive characteristic ? > 0, and - is a smooth projective surface over

^. Let � : - → - be the absolute Frobenius morphism of - . A torsion free coherent sheaf � is

called strongly slope semistable if any Frobenius pullback �∗� is slope semistable. For a strongly

slope semistable torison free coherent sheaf � on - , the Bogomolov-Gieseker inequality

Δ(�) = 2rk(�)22(�) − (rk(�) −1)21(�)2 ≥ 0
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still holds, see [22, Theorem 3.2]. In general if � is just slope semistable, the inequality has

a correction term depending on the prime number ?, see [22, Theorem 3.3]. The Bogomolov

inequality formula in positive characteristics has applications to prove the boundedness for the

moduli functor of semistable coherent sheaves on - , and the restriction theorem of slope stable

torsion free coherent sheaves on - to a divisor � inside - .

In this thesis we prove the Bogomolov-Gieseker inequality for slope semistable torsion free co-

herent sheaves on a smooth two dimensional Deligne-Mumford stack X (called a surface Deligne-

Mumford stack). See for instance [17]. We work on tame surface Deligne-Mumford stacks which

means that the orders of the local stabilizer groups of X are all coprime to the character ?. We use

the modified slope semistability of Nironi [28] defined by generating sheaves Ξ onX. One motiva-

tion for our study on the Bogomolov-Gieseker inequality for slope semistable torsion free coherent

sheaves is the Vafa-Witten theory for projective surfaces and surface Deligne-Mumford stacks in

[33], [16], where the Bogomolov-Gieseker inequality for the modified semistable sheaf � will

make the moduli space of Gieseker stable sheaves on a root stack surface X empty for 22(�) < 0.

The Vafa-Witten theory for surface Deligne-Mumford stacks has applications to prove the S-duality

conjecture in [35] which is a functional duality for the generating functions counting SU(A) and

!SU(A) = SU(A)/ZA-instantons, see [14], [15]. On the other hand, the Bogomolov-Gieseker in-

equality for slope semistable torsion free coherent sheaves on a surface Deligne-Mumford stack X

is interesting in its own since it will prove some restriction theorem of slope semistable sheaves

on X to a large degree divisor inside X. This will have applications to the reduction of the moduli

of stable Higgs bundles on surfaces to the moduli space of stable Higgs bundles on curves, which

is related to the Langlands duality and mirror symmetry between the moduli spaces of SLA and

PGLA-Higgs bundles on curves.

Let us first state our main result. We fix X to be a surface Deligne-Mumford stack, and a

polarization (Ξ,O- (1) = �) where Ξ is a generating sheaf on X and O- (1) a polarization on

the coarse moduli space - . We choose the generating sheaf Ξ to satisfy the condition that its

restriction to any codimension one component in �X1 is a direct sum of locally free sheaves of the
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same rank. Here �X1 ⊂ �X is the components in the inertia stack �X consisting of codimension

one components. Then in this case the modified slope of a torsion free coherent sheaf � is given

by:

`Ξ(�) =
deg(�)

rk(Ξ) rk(�)

where deg(�) = 21(�) ·�. The modified slope semistability of a torsion free sheaf � is equivalent

to the orbifold semistability of the surface Deligne-Mumford stack X where the slope is given by

`(�) = deg(�)
rk(�) .

We can not prove a Bogomolov-Gieseker inequality formula for a modified slope semistable

torsion free sheaf � for a arbitrary general generating sheaf Ξ, where the modified slope `Ξ(�) is
rk(Ξ) deg(�)

rk(�) plus the contributions from codimension one components �X1 ⊂ �X. We do not know

if such an inequality holds for general modified slope semistable torsion free sheaves, except that

we can show it holds for root stacks and a special choice of generating sheaf. This has applications

to the calculation of Vafa-Witten invariants for root stack surfaces in [16]. For a root stack X

(associated to a pair (-,�) where � ⊂ - is a normal crossing divisor) over a smooth surface - , a

choice of generating sheaf will gives the equivalence between the category of coherent sheaves on

X and the category of rational parabolic sheaves on (-,�).

Our main result is:

Theorem 1.0.1. (Theorem 4.1.9) Let X be a two dimensional smooth tame projective Deligne-

Mumford stack and let Ξ be a generating sheaf such that its restriction to every component in �X1

is a direct sum of locally free coherent sheaves of the same rank. Then if � is a strongly modified

slope semistable torsion free sheaf on X, we have

Δ(�) ≥ 0.

We prove Theorem 1.0.1 by a method of Moriwaki which is generalized to surface Deligne-

Mumford stacks, plus the calculation using orbifold Grothendieck-Riemann-Roch formula for the

surface Deligne-Mumford stack. In order to prove the theorem we review the basic knowledge of
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coherent sheaves over a tame Deligne-Mumford stack X, the Frobenius morphisms and the basic

properties of slope modified semistable torsion free sheaves on X. In particular we generalize one

of Langer’s inequality involving maximal and minimal modified slopes in the Harder-Narasimhan

filtration of a torsion free sheaf � to smooth Deligne-Mumford stacks.

As the first application of the Bogomolov-Gieseker inequality in Theorem 1.0.1, the Bogomolov-

Gieseker inequality for surface Deligne-Mumford stacks in characteristic zero holds by the stan-

dard method of taking limit. The second application is to prove the Bogomolov-Gieseker inequality

for rational parabolic semistable torsion free sheaves on (-,�) by relating the rational parabolic

sheaves on (-,�) to torsion free sheaves on the root stack X associated with (-,�).

We generalize Langer’s results (the four theorems in [22, §3]) for higher dimensional smooth

Deligne-Mumford stacks X for a special choice of generating sheaf such that the modified slope

is equivalent to the orbifold slope of X. We also provide one restriction theorem for slope stable

torsion free sheaves to a large degree divisor in X. The proof is similar to [22, §3], and we put

these arguments in chapter five. The restriction theorem will have applications to the reduction of

the moduli space of Higgs sheaves on a surface or a surface Deligne-Mumford stack to the moduli

space of Higgs bundles to a large degree curve inside the surface or the surface Deligne-Mumford

stack.

We also prove the Bogomolov inequality for semistable Simpson Higgs sheaves on tame Deligne-

Mumford stacks in chapter five 5.2 generalizing the method in [24]. We should point out the Higgs

sheaves here are not the Higgs sheaves in [33], [16], where the Bogomolov inequality may involve

correction terms.

1.1 Outline

Here is the short outline for the thesis. In chapter two we review the definitions of stacks and def-

initions of modified slope stability for torsion free sheaves on a tame projective smooth Deligne-

Mumford stack X.

In chapter three we define Toric Deligne-Mumford stacks and discuss toric torsion free coherent
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sheaves on Toric Deligne-Mumford stacks. We prove a gluing formula analogous to [20] for arbi-

trary smooth toric Deligne-Mumford stack

In chapter four we prove the Bogomolov-Gieseker inequality formula Theorem 1.0.1 in §4.1, and

the Bogomolov inequality for rational parabolic sheaves for (-,�). Finally in chapter five we

generalize the results in [22, §3, §5] to higher dimensional smooth tame Deligne-Mumford stacks.

We also prove the Bogomolov inequality for Simpson Higgs sheaves on tame Deligne-Mumford

stacks in chapter five, 5.2.

1.2 Convention

In the third chapter we work on C.

While working with a torus we use ) to denote orbifold torus and T to denote a Deligne-Mumford

torus. We mention the use of ) for both the cases later in chapter three explicitly stating it. �

denotes an affine algebraic group and - (�) denotes the character group of �.

In the second fourth and fifth chapter, we work over an algebraically closed field ^ of characteristic

? > 0 throughout of the paper unless otherwise mentioned. All Deligne-Mumford stacks are tame.

We denote by Gm the multiplicative group over ^.

6



Chapter 2

Preliminaries on stacks and modified stability

2.1 Preliminaries on stacks

2.1.1 Stacks

Definition 2.1.1. Let � be a B8C4, ([Sta] for definitions). A category 5 814A43 in 6A>D?>83B, ? :

� ↦→ � is a BC02: if for every object . ∈ � and covering { 5 : - ↦→ . }, the functor � (. ) ↦→

� ({ 5 : - ↦→ . }) is an equivalence of categories [Sta]. The functor can be described as (�) ↦→

( 5 ∗(�),f20=).

2.1.2 Algebraic Stacks

Denote a scheme by (.

Definition 2.1.2. A stack X/( is an 0;641A082 BC02: if the following are satisfied.

i) The diagonal Δ : X ↦→ X×(X is representable.

ii) There exists a smooth surjective morphism c : / ↦→ X with / a scheme.

Often we mention �AC8= BC02:B to relate to �;641A082 (C02:B.

2.1.3 Quotient Stacks

Let - be a scheme, � be a smooth group scheme over B?42(C). Define [X/G] to be the stack

whose objects are given by the following.

• Let ) be a scheme over B?42(C).
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Define triples (),%, c : %→ - ×)) where c is a �) − 4@D8E0A80=C morphism of schemes and % is

a �) − C>AB>A on the big etale site of ).

• The morphisms between two triples (),%, c) and () ′, %′, c′) are given by a pair of morphisms

( 5 :) ′→), 5 ∨ : %′→ 5 ∗%) and 5 ∨ being a compatible isomorphism of pullback of�) ′− C>AB>AB.

• Examples include [-/�] where - is a scheme and � acts on -.

2.1.4 Smooth Algebraic Stacks

We say X is B<>>Cℎ if there exists a smooth scheme / as in condition ii) which is B<>>Cℎ.

• Examples of main interest include:

• Smooth Artin stacks of the form [-/�] where - is a smooth quasi-projective scheme and � is

an affine algebraic group in characteristic 0, with a � action on - .

2.1.5 Deligne-Mumford Stacks

We say X is �4;86=4−"D< 5 >A3 if the following is satisfied.

• In condition ii) we assume the c to be an etale covering.

• Examples of interest include the following.

• Global Quotient stacks of the form [-/�] .

• In particular, let - be a Noetherian scheme of finite type and let smooth � be acting on - with

finite reduced stabilisers then [-/�] is Deligne-Mumford.

2.1.6 Tame projective Deligne-Mumford stacks

Let X be a B<>>Cℎ �" BC02: over an algebrically closed field :, with 5 8=8C4 3806>=0;, which is

equipped with a ?A> 942C8E4 2>0AB4 <>3D;8 which is a B2ℎ4<4 denoted by (-, c). Such stacks

are described as ?A> 942C8E4 BC02:B.

If c∗ :&2>ℎ(X) ↦→&2>ℎ(-) is exact then we say X is a C0<4 �" BC02:.
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• Examples of interest include '>>C (C02: X where 623 (A, ?) = 1 on a field of 2ℎ0A ?, obtained

from A − Cℎ root construction.

2.2 Preliminaries on modified stability

In this section we review the modified semistability for Deligne-Mumford surfaces in characteristic

?. Using these some new results of Shapherd-Barron for Deligne-Mumford surfaces are proved in

chapter 4.

2.2.1 Notations

We fix some notations for a smooth projective Deligne-Mumford stack X of dimension 3. The

Deligne-Mumford stack X is called C0<4, if the stabilizer groups of the Deligne-Mumford stack

X are all linearly reductive groups. Equivalently this means the order of the stabilizer group at any

geometric point of c : X → - is relatively prime to ?.

Let I be the index set of the components of the inertia stack �X such that

�X =
⊔
6∈I
X6 .

We always use X0 = X to represent the trivial component. For example if X = [//�] is a global

quotient stack, where / is a quasi-projective scheme and � is a finite group acting diagonally on

/ , then �X = ⊔
(6) [/6/� (6)]. Any component X6 ⊂ X in the inertia stack �X is a closed substack

of X. We denote by �X1 ⊂ �X be the substack of �X consisting of components X6 such that their

codimension in X is one. Let pr : �X →X be the map from the inertia stack �X to X.

For X, we write

�∗CR(X) = �
∗(�X) =

⊕
6∈I

�∗(X6)

to be the Chen-Ruan cohomology with Q-coefficients. For any torsion free coherent sheaf � on X,

we use 28 (�) to represent the Chern classes of � on X, and 28 (�) ∈ �28 (X).
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On the component X6 ⊂ �X, at a point (G, 6) ∈ X6, let

)GX =
⊕

0≤ 5 <1
()GX)6, 5

be the eigenspace decomposition of )GX with respect to the stabilizer action and 6 acts on ()GX)6, 5

by 42c8 5 .

Let � ∈ Coh(X) be a coherent sheaf on X, we have an eigenbundle decomposition of pr∗� and

on pr∗� |X6 we have

pr∗� |X6 =
⊕

0≤ 5 <1
(pr∗�)6, 5

with respect to the action of the stabilizer of X6, where the element 6 acts on (pr∗�)6, 5 by 42c8 5 .

Then the orbifold Chern character is:

C̃h(�) =
⊕
6∈I

∑
0≤ 5 <1

42c8 5 Ch((pr∗�)6, 5 ), (2.1)

where Ch is the general Chern character. Let ;6, 5 be the rank of (pr∗�)6, 5 . The orbifold Todd class

of )X is given by

T̃d()X) =
⊕
6∈I

∏
0≤ 5 <1

1≤8≤A6, 5

1
1− 4−2c8 5 4−G6, 5 ,8

∏
5=0

G6,0,8

1− 4−G6,0,8 , (2.2)

where (pr∗)X)6, 5 has rank A6, 5 and G6, 5 ,8 are Chern roots.

For any coherent sheaf � on X, orbifold Riemann-Roch theorem [34] gives:

j(X, �) =
∫
�X

C̃h(�) · T̃d()X). (2.3)

2.2.2 Modified stability

Let X be a smooth tame projective Deligne-Mumford stack of dimension 3. We choose the polar-

ization O- (1) on its coarse moduli space c : X → - . Let � := 21(O- (1)). Recall from [28],
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Definition 2.2.1. A locally free sheaf Ξ on S is ?-very ample if for every geometric point of S the

representation of the stabilizer group at that point contains every irreducible representation of the

stabilizer group. We call Ξ a generating sheaf.

Let Ξ be a locally free (generating) sheaf on X. We define a functor

�Ξ : �CohX→ �Coh-

by

� ↦→ c∗ℋ><O- (Ξ, �)

and a functor

�Ξ : �Coh- → �CohX

by

� ↦→ c∗� ⊗Ξ.

From [30], the functor �Ξ is exact since the dual Ξ∨ is locally free and the pushforward ?∗ is exact.

The functor �Ξ is not exact unless ? is flat. For instance, if ? is a flat gerbe or a root stack, it is

flat.

Let us fix a generating sheaf Ξ on X. We call the pair (Ξ,O( (1)) a polarization of X. Let �

be a coherent sheaf on X, we define the support of � to be the closed substack associated with the

ideal

0→I→ OX→ℰ=3OX (�).

So dim(Supp�) is the dimension of the substack associated with the ideal I ⊂ OX since X is a

Deligne-Mumford stack. A pure sheaf of dimension 3 is a coherent sheaf � such that for every

non-zero subsheaf �′ the support of �′ is of pure dimension 3. For any coherent sheaf � , we have

the torsion filtration:

0 ⊂ )0(�) ⊂ · · · ⊂ ); (�) = �

11



where every )8 (�)/)8−1(�) is pure of dimension 8 or zero, see [11, §1.1.4].

Definition 2.2.2. The modified Hilbert polynomial of a coherent sheaf � on X is defined as:

�Ξ(�,<) = j(X, � ⊗Ξ∨ ⊗ c∗O- (<)) = � (�Ξ(�) (<)) = j(-,�Ξ(�) (<)).

Let � be of dimension ;, then we can write:

�Ξ(�,<) =
;∑
8=0
UΞ,8 (�)

<8

8!

which is induced by the case of schemes. The modified Hilbert polynomial is additive on short

exact sequences since the functor �Ξ is exact. If we don’t choose the generating sheaf Ξ, the

Hilbert polynomial � on X will be the same as the Hilbert polynomial on the coarse moduli space

(. The reduced modified Hilbert polynomial for the pure sheaf � is defined as

ℎΞ(�) =
�Ξ(�)
UΞ,3 (�)

.

Let � be a pure coherent sheaf. We call � Gieseker semistable if for every proper subsheaf �′ ⊂ � ,

ℎΞ(�′) ≤ ℎΞ(�).

We call � stable if ≤ is replaced by < in the above inequality.

Definition 2.2.3. ([28, Definition 3.13]) We define the slope of � by

`Ξ(�) =
UΞ,;−1(�)
UΞ,; (�)

.

Then � is modified slope (semi)stable if for every proper subsheaf � ⊂ � ,

`Ξ(�) (≤) < `Ξ(�).
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The notion of `-stability and semistability is related to the Gieseker stability and semistability

in the same way as schemes, i.e.,

`− stable⇒ Gieseker stable⇒ Gieseker semistable⇒ `− semistable

Remark 2.2.4. Recall that �X1 ⊂ �X is the substack of �X consisting of components such that

the codimension of X6 ⊂ X is one. If our Deligne-Mumford stack X is a global quotient stack,

which means X = [//�] where / is a quasi-projective scheme and � is a group scheme acting

diagonally. Assume that we can choose the generating sheaf Ξ onX such that its restriction on any

component in �X1 is a sum of locally free sheaves of the same rank. If the sheaf � has dimension

3, then [28, Proposition 3.18] shows that

degΞ(�) =
1

rk(Ξ)UΞ,3−1(�) −
rk(�)
rk(Ξ) UΞ,3−1(OX).

Here UΞ,3−1(�) =
∫
X 21(�) ·�.
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Chapter 3

Toric Deligne-Mumford Stacks

3.1 Toric Deligne-Mumford stacks

Toric Deligne-Mumford stacks are generalisations of smooth toric varieties. We recall the con-

struction of the Toric Deligne-Mumford stacks after reviewing basic materials on group actions

[4].

3.1.1 Algebraic Group Actions on Deligne-Mumford stacks

Let X be a �4;86=4−"D< 5 >A3 stack and let � be an algebraic group variety acting linearly on

X. We skip the definitions as they can be recalled from [9].

We mention that apart from the group acting on a stack q : � ×X → X, we have two natural

transformations given by:

U : q ◦ (83� ×q) → q ◦ (`× 83X)

and

U : q ◦ (4× 83X) → 83X

where ` is the group multiplication satisfying various compatibility conditions [9].

14



3.1.2 Definition and Construction using Gale Duality

Let X be a Deligne-Mumford stack.

Let q : �0→ �1 be a group homomorphism of finitely generated abelian groups with free :4A=4;

and finite 2>:4A=4;.

Applying the contravariant functor �><( ,C∗) one obtains a group homomorphism given by:

[q� : ��1 → ��0] .

One can associate an algebraic stack (%820A3 (C02:) to this construction given by [��0/��1] . If

q has finite 2>:4A=4; then this is a Deligne-Mumford stack. Let us recall the notion of �4;86=4−

"D< 5 >A3 )>A8, which will be denoted as �4;86=4−"D< 5 >A3 )>A8 [8].

Definition 3.1.1. A Deligne-Mumford torus ) is a Picard Stack over B?42(C) which is obtained

as a quotient [��0/��1], where q is the above mentioned group homomorphism with free kernel

and finite cokernel.

Example 3.1.2. Consider q : Z2 → Z ⊕ Z6 given by
©«
2 3

4 0

ª®®¬ . One can compute the �4;86=4 −

"D< 5 >A3 torus to be isomorphic to [(C∗)2/C∗× `6] � C∗×�`2.

Remark 3.1.3. Deligne Mumford tori of dimension = is always of the form ) × �� where � is

a finite abelian group and ) = (C∗)= is the coarse moduli space of the Deligne-Mumford torus.

A Deligne-Mumford torus acts on itself by the multiplication map obtained from the Picard stack

structure.

.

Definition 3.1.4. A smooth toric Deligne Mumford stack is a smooth separated Deligne Mumford

stack X together with an open immersion of a Deligne-Mumford torus 8 : )→X. with dense image

such that the action of ) on itself extends to an action 0 : ) ×X →X .
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To a )>A82 �4;86=4−"D< 5 >A3 BC02: one can associate a BC02:H− 5 0= (#,Σ, V) as follows

[8]:

Let (#,Σ, V) be a triple consisting of.

• a finitely generated abelian group # of rank 3.

• a rational simplicial fan Σ inside Q⊗ #, consisting of = one-dimesnsional cones called rays and

; top dimensional cones.

Let {d8}8=1(1)= be the A0HB given by integral lattice points E8 such that the rays span # ⊗Q.

• V : Z=→ # consisting of finite cokernel and free kernel.

The element �V(48) in # ⊗Q is the image of V(48) in # ⊗Q and is on the ray d8 where (41, .., 4=) is

the canonical basis for Z=, and the natural map #→ # ⊗Q sends <→ < ⊗ 1.

Choose a projective resolution of # with two terms that is given below.

0→ ZA → Z3+A → #→ 0.

The first map is given by a matrix & resolving the torsion part of #.

Let � : Z=→ Z3+A be a lift of V.

Consider [�&] : Z=+A → Z3+A .

Consider, �� (V) := 2>:4A ( [�&]∗)

Denote the composition mentioned below:

0→ (Z=)∗→ (Z=+A)∗→ �� (V)

which we denote as:

(V)∨ : (Z=)∗→ �� (V). (3.1)

as the �0;4 �D0; of V. Now consider /Σ := (C)= −+ (�Σ), where �Σ = (
∏

d8⊄f
I8 |f ∈ Σ) and

C[I1, I2, .., I=] is the affine-co-ordinate ring of C=.
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Applying �><(,C∗) to the above, one obtains

�V : �Σ→ (C∗)=

where, (C∗)= acts on /Σ by diagonal action.

We define the quotient stack X := [/Σ/�Σ] the )>A82 �4;86=4−"D< 5 >A3 BC02: associated to

the triple (#,Σ, V).

From [4] we know that X is a smooth, Deligne-Mumford stack with coarse moduli space the

C>A82 E0A84CH - (Σ) associated to X(Σ) := X.

Example 3.1.5. • X is a C>A82 >A18 5 >;3 if and only if # is 5 A44.

•Consider V :Z2→Z given by (<,=) with (<,=) = 1.We obtain [(C)2−0/(C)∗] as the)>A82 �4;86=4−

"D< 5 >A3 BC02: associated to (Z,Σ, V) where Σ is the rational simplicial fan formed by two A0HB

given by <,−= ∈ Z. This is a toric orbifold with (C)∗ acting by (<,=).

3.1.3 GIT data

Here we mention the construction of the Toric Deligne-Mumford stack from a ��) − 30C0 [7].

We associate a ��) − 30C0 as follows.

• Let  � (C)∗ be a connected torus of rank A.

• Let ! := �><((C)∗, ) be the 2>− 2ℎ0A02C4A ;0CC824.

• Let �1, �2, .., �< ∈ !∨ � �><( , (C)∗).

The characters define a map from  to (C)∗ and hence defines a map to the torus (C)m and hence

defines an action on (C)< .

For a subset � ⊂ {1,2, ..,<} denote the set complement of � by �̄ .

Then we denote

L� := {
∑
8∈�
08�8, 08 ∈ ',08 > 0} ⊂ !∨ ⊗ ',

(C∗) � × (C) �̄ = {(I1, I2, ., I<), I8 ≠ 0 5 >A 8 ∈ �} ⊂ (C)< .
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Set, Lq := {0}.

We define the following objects in order to associate a toric Deligne-Mumford stack to the follow-

ing data. Fix a stability condition F ∈ !∨ ⊗ '. Set,

Definition 3.1.6.

�F := {� ⊂ (1,2, ..,<) : F ∈ L�},

*F :=
⋃
�∈�F
(C∗) � × (C) �̄ ,

-F := [*F/ ] .

Note that *F is invariant under  and hence one can form the stack quotient denoted by -F .

We denote -F to be the associated toric stack associated to the data ( , !,�1, .., �<,F). with

particular assumptions on �F and � [7] one can ensure that -F is a Deligne-Mumford stack.

Let ( ⊂ {(1,2,3..,<)} denote the set of indices 8 such that {1,2, .,<} − {8} ∉ �F . The characters

{�8 : 8 ∈ (} are linearly independent and every element of �F contains ( ⊂ �F .

Thus one can obtain,

�F = {�
∐

( : � ∈ �F′},

*F � *F′ × (C∗) |( |,

where we have,

�F′ = 2{1,2.,<}−{(}

and

*F′ ⊂ (C)<−|( | .

Finally one obtains:

-F = [*F′/�],
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where*F′ is an open subset of (C)<−|( | and

� = :4A{ → (C∗) |( |}.

Compare this with the construction using Gale duality discussed here and in [4].

3.1.4 Example

Consider, the following as in the previous discussion. Then,

 = (C)∗, �1 = �2 = 2,F = 1 ∈ '.

One obtains the weighted projective stack denoted as %(2,2) as the stack quotient -F [7].

3.1.5 Extended Stacky Fans

An (− 4GC4=343 stacky fan consists of the following data.

Definition 3.1.7. An (− 4GC4=343 stacky fan consists of the following Σ := (#,Σ, V, ().

• Let # be a finitely generated abelian group.

• Let Σ be a rational simplicial fan in # ⊗ '.

• Let V : (Z)<→ #, where we denote V8 and Ṽ8 to be the images of canonical bases of (Z)< under

V in # and # ⊗ ' respectively.

• Let ( ⊂ {1,2, .,<} with the following conditions. • Each one-dimensional cone of Σ is spanned

by Ṽ8 for a unique 8 ∈ {1,2.,<} − (, each spanning a one-dimensional cone of Σ.

• For each 8 ∈ (, we have 1̃8 lies in the support of support of Σ which we denote as |Σ|.

The vectors 18, 8 ∈ ( are called 4GC4=343 E42C>AB. Taking ( = q, one obtains the Toric Deligne-

Mumford stack of [4].There is a one-one correspondence between GIT data and Extended stacky

fans. For the one-one correspondence we site [7]. For extended stacky fans we refer to [13].
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3.1.6 Inertia stack of a Toric Deligne-Mumford Stack

So, from now on let us fix a BC02:H− 5 0= (#,Σ, V). Let us denote see [4]

Definition 3.1.8. The �=4AC80 BC02: (�X) of X as:

∐
E∈�>G(X)

X(Σ/f(Ẽ))

where f(Ẽ) is the minimal cone containing E.

Define,

�>G(X) =
⋃

38<(f)=3,f∈Σ
�>G(f)

f being a top dimensional cone of dimension 3.

For each 3 dimensional 2>=4 f we define

�>G(f) = {E ∈ # |Ẽ := E ⊗ 1 =
∑
d8⊂f

@8 1̃8, @8 ∈ [0,1)}

where # → # ⊗Q given by E→ Ẽ := E ⊗ 1 is the association and 1̃8 is the image of V(8) ∈ # ⊗&

and lies on the ray d8 .

3.1.7 Open substacks of a Toric Deligne-Mumford stack

Here we mention the >?4= BD1BC02: corresponding to a C>? 38<4=B8>=0; 2>=4 f is given by

Uf := [(C)3/(�f)]

where Vf : (Z)3 → (Z)3 given by the 3 × 3 matrix formed by the columns of V, and �f :=

�><(�� (Vf), (C)∗) � #f .

We define #f := #/#f, where #f is the lattice generated by V8 8Cℎ column of the matrix �.
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We denote the

Uf1,f2,..,f; :=*f1 ×X*f2 , ..×X*f;

is the �4;86=4−"D< 5 >A3 )>A8 ) which is the dense open substack of X, extending the action

of itself on the whole X, ; being the number of C>? 38<4=B8>=0; 2>=4B in Σ.

Example 3.1.9. Let us the take the example of P(1,2). The global quotient description gives us an

action of (C)∗ on (C)2− (0) given by

(C, (G, H)) = (CG, C2H).

On further investigation one finds the two open substacks correspond to {(2), (−1)} are given by

[(C)/`2] and (C) respectively. �4;86=4−"D< 5 >A3 C>A8 in this case is given by (C)∗. This is an

example of a C>A82 >A18 5 >;3.

3.1.8 Torus Actions

Let ) � (C∗)3 be the torus of dimension 3 and assume it acts linearly on (C)3 . By ;8=40A ac-

tion we mean that there exists 2> − >A38=0C4B given by G1, G2, .., G3 and 2ℎ0A02C4AB given by

j(<1), j(<2), ..j(<3) such that

_.G8 = j(<8) (_)G8

for all 8 = 1,2, .., 3 and _ ∈ ). We say ) acts =>= 3464=4A0C4;H if j(<8) where 8 = 1(1)3 forms a

linearly independent set in - ()) = (Z)3 . Moreover if this set does not span - ()) then we have a

non-?A8<8C8E4 action of ) on (C)3 .

From now on, ) means the �4;86=4 −"D< 5 >A3 C>A8, we stick to the use of torus to mean

�4;86=4−"D< 5 >A3 )>A8.

In order to uniquely represent the elements of - ()) we introduce the notion of 1>G �) . Each

top dimensional 2>=4 corresponds to a maximal open substack in X and let j(<8) be the elements
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in - ()) that generates the non-degenerate, non-primitive action. We define

�) (f) := {E ∈ (Z)3 |E =
3∑
8=1
@8j(<8) |@8 ∈ [0,1)}.

Thus we have:

0 = 1 +
3∑
8=1
;8j(<8)

0, 1 ∈ - ()), ;8 ∈ Z. Without loss of context we mention j(<8) for <8 interchangeably.

Remark 3.1.10. We highlight that �>G(f) and �>G) (f) may or may not be the same. Take

V : (Z)=+1→ (Z)=

given by
©«
3 −2 0

0 2 −1

ª®®¬ . The :4A=4; is given by (2,3,6)Z.

On computing the �0;4 �D0; of V one obtains:

V∨ : (Z)=+1→ Z

and hence obtains the map given by (2,3,6). We can associate the stack P(2,3,6) to this construc-

tion. )−F486ℎC for each cone can be found out to be {(3,0), (0,6)}, {(0,−6), (3,−3)}, {(−2,0), (−6,6)}.

Each of these �) (f) have 20A38=0;8CH larger than 3. But cardinality of �>G(f) is 3 where f is

given by {(3,0), (0,−1)}.

Let us assume that q : � ×X →X be an action on X.

Given a sheaf � on X we want to understand a � − 4@D8E0A80=C structure associated to � denoted

by (�,Φ)

Definition 3.1.11. Let � be a quasi-coherent sheaf on X. Denote by ?2 : � × - →X and ?23 :

�×�×-→�×- projection on the second and last two factors. A �− 4@D8E0A80=C structure on

F is an 8B><>A ?ℎ8B<

Φ : f∗(�) → ?∗2(�)
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satisfying the following 2>− 2H2;4 condition:

?∗23Φ◦ (83� ×f)
∗Φ = (`× 83X)∗Φ

where, ` is the multiplication in �.

Assume � and � are 3806>=0;8B01;4 0;641A082 6A>D?B. with 2ℎ0A02C4A groups denoted by

- (�) and - (�) respectively. Let X be a given global quotient Deligne-Mumford stack i.e given

by [-/�] where � acts on - with reduced and finite stabilisers and - is a B2ℎ4<4. Then [-/�]

is a Deligne-Mumford-stack.

Any � action on - commuting with the action of � induces a canonical action on Deligne-

Mumford stack X.

3.2 Coherent sheaves on Toric Deligne-Mumford Stacks

Let � be a coherent sheaf on [-/�] . See [9] for the next proposition.

Proposition 3.2.1. The category of quasi-coherent sheaves on [-/�] is equivalent to the category

of � − 4@D8E0A80=C coherent sheaves on -.

We come to the problem of describing � − 4@D8E0A80=C sheaves on [-/�] where � action

commutes with �. Then,

Proposition 3.2.2. The category of�−4@D8E0A80=C sheaves on [-/�] correspond to the category

of coherent sheaves on - with commuting �,� − 4@D8E0A80=C structures.

Now, we look at the previous setting with - = B?42(') where ' is a 2><<DC0C8E4 #>4Cℎ4A80= A8=6,

equipped with a �,�− 4@D8E0A80=C action. Then the action can be extended to a linear �,� com-

muting action on �0(-,�). Then

�0(-,�) =
⊕
j∈- (�)

�0(-,�)j
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yielding a - (�) graded decomposition into � − 4864=B?024B. Each �0(-,�)j has an induced �

action and can be further written down into � − 4864=B?024B :

�0(-,�)j =
⊕
k∈- (�)

�0(-,�)j,k

The 5 D=2C>A �0(-, .) gives a decomposition of a �,� − 4@D8E0A80=C coherent sheaf on B?42(')

into:

�0(-,�) =
⊕
j∈- (�)

⊕
k∈- (�)

�0(-,�)j,k .

Proposition 3.2.3. Let X = [B?42(')/�], then the category of quasi-coherent sheaves on X is

equivalent to - (�), - (�)− graded ' <>3D;4B.

3.2.1 S-family of Toric Sheaves on [(C)3/�]

We fix a toric Deligne-Mumford stack X and ) acts on it A46D;0A;H. If � is a ) − 4@D8E0A80=C

sheaf on X then we denote it as a C>A82 Bℎ40 5 . From the previous discussion as in [9], [20], we

obtain a description of a coherent C>A82 Bℎ40 5 in terms of vector spaces and morphisms between

them. Let ) act on (C)3 non-degenerately, then for �0((C)3 ,$C3 ) we obtain its decomposition

into 4864=B?024B with 38<4=B8>= 1 and 0 otherwise.

Let () = {< ∈ - ()) |�0((C)3 ,$C3 )< ≠ 0} be the set of F486ℎCB for which the F486ℎC B?024B are

non-zero. () forms a semi-group in - ()).

If ) acts with the abovesaid characters <8 then () is generated by {<8}8=1(1)3 . Given a ) −

4@D8E0A80=C quasi-coherent sheaf � on (C)3 we have,

�0((C)3 , �) =
⊕
<∈- ())

� (<)
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be the graded-module decomposition. This lets us associate E42C>A B?024B given by � (<) and G8

being the co-ordinates we get the <D;C8?;820C8>= 1H G8 gives by denoting j8 (<) := G8:

j8 (<) : � (<) → � (< +<8).

These maps satisfy:

j 9 (< +<8) ◦ j8 (<) = j8 (< +< 9 ) ◦ j 9 (<).

We define an (− 5 0<8;H associated to �.

Definition 3.2.4. An S-family of � is given by.

• � (<)<∈- ()) a collection of E42C>A B?024B.

• Morphisms given by j8 (<) satisfying the above 2>− 2H2;4 condition.

• Morphisms between ( − 5 0<8;84B are given by: Let �̂ and �̂ be two ( − 5 0<8;H then, it is a

family of morphisms:

{q(<) : � (<) → � (<)}<∈- ())

commuting with j8, 8, 9 = 1(1)3

3.2.2 Stacky S-family on [(C)3/�]

In the same way as above we obtain a BC02:H (− 5 0<8;H associated to a ) −4@D8E0A80=C coherent

sheaf �. In this section we take care of the 5 8=4−6A038=6 involved due to the action of � through

its 2ℎ0A02C4AB on each ) −F486ℎC B?024.

Let � act through {=8}8=1(1)3 ∈ - (�).

We associate a decomposition on each

� (<) =
⊕
Ψ∈- (�)

� (<)k .
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and <D;C8?;820C8>= as above gives us:

G8 =: j< : � (<)=→ � (< +<8)=+=8 .

We associate a collection �̂ to denote the Stacky-s family associated to � containing the following

information.

Definition 3.2.5. Associate to � the following data.

• A collection of vector spaces (� (<)=)<∈- ()),=∈- (�) .

• A collection of linear morphisms between vector spaces given by

j8 (<) : � (<) → � (< +<8)

satisfying

j8 (<) : � (<)=→ � (< +<8)=+=8

and satisfying the 2>− 2H2;4 condition:

j 9 (< +<8) ◦ j8 (<) = j8 (< +< 9 ) ◦ j 9 (<)

for all 8, 9 = 1(1)3,< ∈ - ()), = ∈ - (�).

• Morphisms are analogously defined as in the case of (− 5 0<8;H.

3.2.3 Gluing Formula for torsion free sheaves on X(Σ)

In this section we precisely prove the conditions for which a C>AB8>= 5 A44 coherent sheaf � admits

the gluing conditions on each open BD1BC02: given by the cones of <0G8<0; 38<4B=B8>= 3. So

we fix f1 and f2. Let the cones match on 3− ? rays denoted by _1,_2, ..,_3−? and the other ? rays

are different.

Let us first state the �;D8=6 �>A<D;0 given by:
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Proposition 3.2.6. Let X be a Deligne-Mumford stack with � − 02C8>= and let *8 be a � −

8=E0A80=C cover by >?4= BD1BC02:B. Let (�8, q8) be a collection of�−4@D8E0A80=C quasi-coherent

sheaves on the*8 and assume there are � − 4@D8E0A80=C 8B><>A ?ℎ8B<B given by

q8 9 : �8 |8 9 → �9 |8 9

satisfying q88 = 83 and the 2>2H2;4 834=C8CH given by:

q8: |8 9 : = q 9 : |8 9 : ◦q8 9 |8 9 : .

Then there exists a unique � − 4@D8E0A80=C quasi-coherent sheaf (�,Φ) on X together with � −

4@D8E0A80=C 8B><>A ?ℎ8B<B given by:

q8 : � |8→ �8

satisfying

q 9 |8 9 = q8 9 ◦q8 |8 9 .

Denote the >?4= BD1BC02:B correspondingly byUf1 andUf2 . Denote the fiber product

Uf1×X(Σ)Uf2 := [/12/(�f1 ×�f2)],

where from [4] one can show that

Uf8 = [/1/�f1)] := [(C)3/�f1)], /12 = (C∗)? × (C)3−? .

where /1 := (C3) The open immersion k12 :Uf12 →Uf1 is given by ) − 4@D8E0A80=C map from

q1 : /12→ /1
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which is also 4@D8E0A80=C under the projection given by:

?8 : �f1 ×�f2 → �f8 ,

for 8 = 1,2.

The ) −F486ℎCB can be computed on each /8 from the ) −02C8>= of it onto itself. 6 ∈ �Σ belongs

to �f1 , iff 6./1∩ /1 is non-empty. This gives the �f1 action on /1.

In order to glue sheaf � we try to produce a gluing formula in terms of the BC02:H (− 5 0<8;84B �̂

purely in terms of �� (Vf1) ×�� (Vf2) representations.

Let us denote for 8 = 1(1)2

�>G) (f8) = [0, 21,8] × [0, 21,8] × ...[0, 21,8] .

Let ) act on /8 by (<1,8, ..<3,8).

We denote �1 and �2 to denote the restrictions of � on each open toric substack. Next we denote

by �1,12 the pullback of �1 to /12. We want to compute the associated (− 5 0<8;H �̂ (<) where we

give

< = ( 81
21
+ ;1)<1,8 + (

82
22
+ ;2)<2,8 + ..(

83

23
+ ;3)<3,8

where,

0 ≤ 8 9 < 2 9 , 9 = 1(1)3, 8 = 1,2

We want to compute

1 �̂1,12(;1, ;2, .., ;3) := �1,12(1 + ;1<1,1 + ..+ ;3<3,1)

In this notation we describe

� (<) = � (( 81
21
+ ;1)<1,8 + (

82
22
+ ;2)<2,8 + ..(

83

23
+ ;3)<3,8)

28



We define the restriction of

�1 |q1 (/12) := �1.

Let us fix a 1>G− 4;4<4=C 1 := ( 81
21
,
82
22
..,

83
23
) ∈ - ()) � (Z)3 .

We first restrict �1 to (C∗)? × (C)3−? ⊂ (C)3 .

For a fixed (;?+1, .., ;3) we have 1�1(;1, , ;3) stabilise for ;1, ;2, , , ;? >> 0.

Thus <D;C8?;820C8>= by G8 (being co-ordinates of /1) is 8B><>A ?ℎ8B< for 8 = 1(1)?, altering the

5 8=4−6A038=6. We denote the limit by identifying the 8B><>A ?ℎ8B< as equality. Thus, identify-

ing �1 |q(/12) := �1 we obtain using graded tensor products a (− 5 0<8;H given by �̂1, where:

1�1(;1, .., ;3) =1 �1(∞,∞, .., ;?+1, , ;3).

For all ;1, ;2, .., ;? >> 0 such that

1�1(;1, ;2, ..;3) =1 �1(∞,∞, .., ;?+1, ..;3),

we have

1�1(∞,∞, ;?+1, ;3); =1 �1(;1, ;2, ..;3); ,

where we have ; ∈ �� (Vf1).

We observe that the 5 8=4−6A038=6 of 1�1(;1, ..;3); is determined by that of 1�1(0,0, .., ;?+1, , ;3)

given by:

1�1(;1, ..;3); =1 �1(0, ..;?+1, ., ;3);−∑?

8=1 ;8 (=8)
⊗ ?∏

8=1
(j);8=8

where (j);8=8 ∈ �� (Vf1), for 8 = 1(1)?.

The action of �� (Vf1) on /1 is given by (=1,8, =2,8, , =3,8), 8 = 1(1)2. We shall suppress the 8 in this

notation in the calculation of the first part.

We define the 5 8=4−6A038=6 of the limit vector space by 1�1(∞, ., ;?+1, .;3); :=1 �1(0, .., ;?+1, ., ;3); .
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Next we compute the (− 5 0<8;H for the C>A82 sheaf

1�1,12(;1, ;2, .;3).

This can be computed by using the graded tensor product on q1 and the C[G±1
1 , G±1

2 , G±1
? , G?+1.., G3]

module�1 one obtains an unique expression in the module�1⊗C[W±1
1 , ., W±1

? , W?+1., W3], given by:

⊕
'

E8′ ⊗U8′,

where,

8′ := (
8′1
21
,
8′2
22
, ..,

8′?
2?
,
8?+1
2?+1

, .
83

23
) ∈ ',

' = [0, 21] × [0, 22] × ..[0, 2?],

E8′ ∈( 8
′
1
21
,
8′2
22
,..,

8′?
2?
,
8?+1
2?+1

,.
83
23
)
�1(;1, ..;3); ,

U8′ = (
8′1− 81
21

, .
8′? − 8?
2?

, .0,0),

the weight of the element

U8′ ∈ C[W±1
1 , ., W±1

? , , W
1
?+1, W

1
3],

satisfies such that

FC (E8′) +FC (U8′) = 1 + ;1<1, ..;3<3 ∈ - ()).

Next we determine the 5 8=4−6A038=6.Denoting the�f1×�f2 action on U8′ by (C8′, B8′) ∈ - (�� (Vf1))×

- (�� (Vf2)), and assuming that the F486ℎC of E8′ given by

; + C8′ ∈ �� (Vf1)

we obtain that the 5 8=4−6A038=6 of ⊕
'

E8′ ⊗U8′
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is given by:

(;, B8′) ∈ �� (Vf1) ×�� (Vf2).

Thus the 5 8=4−6A038=6 of ˆ�1,12 at the point (1 + ;1<1 + ..+ ;3<3) ∈ - ()) is equal to:

⊕
8′∈'

;∈- (�� (Vf1 ))
(
8′1
21
,
8′2
22
,..,

8′?
2?
,
8?+1
2?+1

,.
83
23
)
�1(;1, ;2, , ;3);−C8′ ⊗ C8′ ⊗ B8′

and then using the earlier definition of fine grading one obtains,

⊕
8′∈'

;∈- (�� (Vf1 ))
(
8′1
21
,
8′2
22
,..,

8′?
2?
,
8?+1
2?+1

,.
83
23
)
�1(∞, .∞, , ;?+1, ;3);−C8′ ⊗ C8′ ⊗ B8′

⊗ ?∏
8=1
(j) (;8=8) .

We have suppressed the notation so far but now to find the �;D8=6 5 >A<D;0 we have to make

them resurface. So to denote the final formula where we use index 1 and 2 in the subscript to

denote the cones,(_1, .._3−?) the rays on which they match, we have to observe that �1,12 lives on

11 (;1, ;2, ..;3) and �2,21 lives on 12 (;1, ;2, .;3). So multiplying by the element in C[W±1
1 , W±1

2 , W?+1, W3]

of F486ℎC

11−12 (
3∑
8=1
;8 (<1,8 −<2,8)) ∈ - ()))

let us denote its fine grading by

(A1, A2) ∈ �� (Vf1) ×�� (Vf2)

one finally obtains the desired �;D8=6−�>A<D;0. We finally obtain,

Theorem 3.2.7. Let � be a torsion free toric sheaf on X. Then the category of torsion free toric

sheaves is equivalent to category of ;-tuples of (C02:H (− 5 0<8;H given by {�̂8}, with 8, 9 = 1(1);
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satisfying the following equality of �� (Vf8 ) ×�� (Vf9 ) representations:

⊕
8′∈'1

;∈- (�� (Vf1 ))

8′�1(∞, .∞, , ;?+1, ;3);−C8′ ⊗ B8′⊗ �8′,1 �
⊕
8′∈'2

;∈- (�� (Vf2 ))

8′�2(∞, .∞, , ;?+1, ;3);−C8′ ⊗ (C8′+A1) ⊗ �8′,2

where

�8′,1 :=
?∏
8=1
(j) (;8=8,1+C8′) ∈ - (�� (Vf1))

,

�8′,2 :=
?∏
8=1
(j) (;8=8,2+B8′+A2) ∈ - (�� (Vf1))

and 8′ defined as before.

As a final application in our upcoming work we compute the ) − 4@D8E0A80=C %820A3 �A>D?B

of C>A82 �4;86=4 −"D< 5 >A3 stacks. Note that the ) − 4@D8E0A80=C group is different from

%820A3 �A>D?. See for instance [36].
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Chapter 4

Bogomolov Gieseker Inequality

4.1 Bogomolov-Gieseker inequality

We generalise Bogomolov’s Inequality to the case of higher dimensional �4;86=4 −"D< 5 >A3

stacks. We start from a few results in characteristic 0 concerning <>38 5 843 BCA>=6;H B4<8 −

BC01;4 sheaves. Let, denote a modified semi-stable sheaf and semi-stable here refers to<>38 5 843

under condition *, §4.1.2 [28],[21] and B4<8− BC01;4 for projective varieties is defined as in [11].

Theorem 4.1.1. Let X be a smooth projective generically tame Deligne-Mumford stack with finite

diagonal. Let us fix a polarisation satisfying the above condition *, §4.1.2, and let, be a ` semi-

stable torsion free coherent sheaf on X. There exists a smooth projective scheme ., and a finite flat

cover of the Deligne-Mumford stack X which we denote by ? :. ↦→ X. Then ?∗, is ` semi-stable

on . if and only if, is ` semi-stable.

Remark 4.1.2. We observe that the proof runs for X normal, projective.

On observation one finds that in characteristic 0, ` semi-stable sheaves are closed under tensor

products. Hence from the above theorem we have, semi-stable sheaves on X are also closed under

tensor product.

In characteristic p, strongly `−semi-stable coherent sheaves are defined to be those whose �A>14=8DB

CF8BCB denoted as �< (,) for a coherent sheaf ,, are `−semi-stable. From the proof we also

find that if , is strongly `−semi-stable sheaf then ?∗(,) is again strongly `−semi-stable where

we use Frobenius commutes with pullback. Thus one can establish the semi-stability of strongly

semi-stable tensor products of coherent torsion free sheaves to be so on smooth Deligne-Mumford
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stacks of any rank. Neitherless we generalise [27] method to our case in this chapter where we

prove Bogomolov-Gieseker inequality for surface Deligne-Mumford stacks.

We first fix some notations in characteristic ? > 0. We assume X a smooth tame projective

Deligne-Mumford stack of dimension 3. Let

X (8) = X×Spec ^ Spec(^)

be the Deligne-Mumford stack obtained from X by applying the 8-th power of absolute Frobenius

morphism on Spec ^. The geometric Frobenius morphism �6 : X → X (1) is defined by the fiber

product X (1) = X×Spec ^ Spec(^) and the absolute Frobenius morphism � : X →X.

We review a bit on the coherent sheaves with connections in [18], where the theory is for

schemes, but in étale topology it works for Deligne-Mumford stacks. Following N.Katz [18], a

connection on a quasi-coherent sheaf � is a homomorphism

∇ : �→ � ⊗ΩX

such that ∇(64) = 6∇(4) + 4 ⊗ 36 where 6 and 4 are sections of OX and � respectively over an

open subset of X, and 36 denotes the image of 6 under the canonical exterior differentiation 3 :

OX → ΩX . The kernel  :=  (�,∇) of ∇ is the OX-linear map  = ∇1 ◦∇ : � → � ⊗Ω2
X where

∇1 : � ⊗ΩX → � ⊗Ω2
X is the map defined by ∇1(4 ⊗ l) = 4 ⊗ 3l − ∇(4) ∧l. A connection

∇ : � → � ⊗ΩX is 8=C46A01;4 if its kernel  = 0. Then let MIC(X) be the category of pairs

(�,∇) where � is a quasi-coherent OX-module and ∇ is an integrable connection.

The ?-curvature of an integrable connection ∇ is given by a morphism

k : Der^ (X) → End(�),

by

k(�) = (∇(�))? −∇(� ?),
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where � is a section of Der^ (X).

For the geometric Frobenius morphism �6 : X → X (1) , in [18, Theorem 5.1], N. Katz con-

structed a canonical connection ∇can on �∗6� which is determined in the following Cartier theorem:

There is an equivalence of categories between the category of quasi-coherent sheaves on X (1)

and the full subcategory of MIC(X) consisting of objects (�,∇) whose ?-curvature is zero. The

equivalence is given by: � ↦→ (�∗6�,∇can) and (�,∇) ↦→ �∇. Here the unique ∇can on �∗6� makes

� � (�∗6�)∇can , and for a sheaf � , �∇ is the kernel ker(∇) of ∇.

We first have a result of generating sheaves under Frobenius pullbacks:

Lemma 4.1.3. Let �6 :X→X (1) be the geometric Frobenius morphism. Then a locally free sheaf

Ξ is a generating sheaf on X (1) if and only if �∗6Ξ is a generating sheaf on X.

Proof. That Ξ is a generating sheaf means it contains all the irreducible representations of the

stabilizer group of X (1) . Then the pullback �∗6Ξ contains all the irreducible representations of the

stabilizer group of X since ? is prime to all the orders of the stabilizer groups of X. �

Thus from the Cartier’s theorem above, the following is a generalization of [22, Proposition

2.2]:

Proposition 4.1.4. A coherent sheaf � on X (1) is slope semistable with respect to (�,Ξ) if and

only of �∗6� is slope semistable with respect to (�∗6�,�∗6Ξ).

Proof. This is from the modified slope of � is the product of some ?-th power with the modified

slope of �∗6� . �

The following lemma is the generalization of [22, Lemma 2.3]. We recall that a sheaf � is ∇-

semistable if the inequality of modified slopes is satisfied for all nonzero ∇-preserved subsheaves

of � .

Lemma 4.1.5. Consider a torsion free sheaf � on X with a ^-connection ∇, and assume that � is

∇-semistable. Let 0 = �0 ⊂ �1 ⊂ · · · ⊂ �< = � be the usual Harder-Narasimhan filtration, then the

induced morphisms �8→ (�/�8) ⊗ΩX are nonzero OX-morphisms.
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Proof. If the induced morphisms �8→ (�/�8) ⊗ΩX are zero, then it induces a Harder-Narasimhan

filtration for ∇-connections which contradicts the ∇-semistability. �

Now we fix some notations for the slopes of a coherent sheaf � on X with respect to the

polarization (Ξ, �). Let

0 = �0 ⊂ �1 ⊂ · · · ⊂ �< := �

be the Harder-Narasimhan filtration of � with respect to modified slope stability. We denote by

`Ξ,max(�), `Ξ,min(�) the maximal and minimal modified slope of � respectively. We let

!Ξ,max(�) = lim
:→∞

`Ξ,max((�: )∗�)
?:

; !Ξ,min(�) = lim
:→∞

`Ξ,min((�: )∗�)
?:

.

The sequence `Ξ,max ((�: )∗�)
?:

is weakly increasing and `Ξ,min ((�: )∗�)
?:

is weakly decreasing. Also

!Ξ,max(�) ≥ `max(�) and !Ξ,min(�) ≤ `min(�). Suppose that � is slope semistable, then !Ξ,max(�) =

`Ξ(�) (or !Ξ,min(�) = `Ξ(�)) if and only if � is strongly slope semistable.

First we have:

Lemma 4.1.6. Let � be a slope semistable torsion-free sheaf on X such that �∗� is unstable.

Then in the Harder-Narasimhan filtration 0 = �0 ⊂ �1 ⊂ · · · ⊂ �< := �∗� , the OX-morphisms

�8→ (�∗�/�8) ⊗ΩX induced by ∇can are nonzero.

Proof. Note that this is Proposition 1 in 2.2.1 where Shepherd-Barron dealt with general slope

stability for schemes. The result for modified slope stability is from Proposition 4.1.4 and Lemma

4.1.5. �

For any divisors �, �, �8 · �3−8 denotes the integration
∫
X�

8 · �3−8. Here We still denote �

and � for c∗�,c∗� where c : X → - is the map to its coarse moduli space.

Corollary 4.1.7. Let us define

UΞ(�) :=max(!Ξ,max(�) − `Ξ,max(�), `Ξ,min(�) − !Ξ,min(�)).
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Then let � be a nef divisor for - such that c∗()- ⊗
∑<
:=1(!: )) (�) is globally generated, ! is c

ample line bundle on X, with index < ∈ %82(X) and we have

UΞ(�) ≤
rk(�) −1
?−1

(<0G1≤:≤<−1(`Ξ(�⊗ (!: )))).

Proof. This is the proof we modify [22, Cor 2.5]. We modify our case by observing that
∑<−1
:=1 !

:

is a generating sheaf on X. So we have

c∗(c∗()X ⊗
<−1∑
:=1

!: )) ⊗
<−1∑
:=1

!−: ↦→ )X

which is a surjection. From our assumption c∗()X ⊗
∑<−1
:=1 !

: ) (�) is globally generated. Using

the right exactness of pullback we obtain,

(($X (−�))A ⊗
<−1∑
:=1

!−: ) ↦→ c∗c∗()X ⊗
<−1∑
:=1

!: ) ⊗
<−1∑
:=1

!−: ↦→ )X

which is again a surjection.

Dualising we obtain,

0 ↦→ΩX ↦→ (($X (�))A ⊗
<−1∑
:=1

!: )

Tensoring by �∗(�)/�8 and taking `Ξ,<0G we obtain,

`Ξ,<0G ((�∗(�)/�8) ⊗ΩX) ≤ `Ξ,<0G (((�∗(�)/�8) ⊗ ($X (�))A ⊗
<−1∑
:=1

!: ))

We now use

`Ξ,<0G (� ⊕ �) = <0G(`Ξ,<0G (�), `Ξ,<0G (�))

where �,� are torsion free coherent sheaves.
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Using the above the right hand side reduces to,

<0G1≤:≤<−1(`Ξ,<0G (�∗(�)/�8 ⊗ �⊗ !: )).

Now we estimate,

`Ξ,<0G (�∗�/�8 ⊗ �⊗ !: ) = `Ξ(�8+1/�8) + `Ξ(�⊗ !: ).

Taking max we obtain,

<0G1≤:≤<−1(`Ξ,<0G (�∗(�)/�8 ⊗ �⊗ !: )) = <0G1≤:≤<−1(`Ξ(�⊗ !: )) + `Ξ(�8+1/�8).

Rest of the proof follows [22, Cor 2.5]. �

4.1.1 fdHN property

As in [22, §2.6], a torsion free coherent sheaf � on X has an fdHN property (finite determi-

nacy of the Harder-Narasimhan filtration) if there exists a :0 such that all quotients in the Harder-

Narasimhan filtration of (�:0)∗� are strongly modified slope semistable with respect to Ξ. � is

fdHN of it has an fdHN property. Similar to the proof in [22, Theorem 2.7], we have

Proposition 4.1.8. Let � be a torsion free sheaf on X, the � is fdHN.

Proof. Let

0 = �0 ⊂ �1 ⊂ · · · ⊂ �< = �

be the Harder-Narasimhan filtration of � . We have the HNP (Harder-Narasimhan polygon) asso-

ciated with � defined by connecting the points ?(�0), ?(�1), · · · , ?(�<) by successively line seg-

ments and connecting the last one with the first one. Here ?(�) = (UΞ,3−1(�), UΞ,3 (�)). Since the

base field ^ has characteristic ? > 0, there is a sequence of polygons �#%: (�), where �#%: (�)

is defined by contracting �%# ((�: )∗�) along the UΞ,3−1 axis by the factor 1/?: . All of the poly-
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gons are bounded and �#%: (�) is contained in �#%:+1(�). Then the proof of [22, Theorem

2.7] goes through without major changes. We omit the details. �

In this section we always fix X as a smooth tame projective Deligne-Mumford stack of dimen-

sion 2. Interesting two dimensional Deligne-Mumford stacks are reviewed in [16], where the name

surface Deligne-Mumford stack is used. We always fix a generating sheaf Ξ on X and talk about

modified semi-stable sheaves in characteristic p and assume the existence of a c ample line bundle

on X.

4.1.2 Condition ★

We say a generating sheaf Ξ on X satisfying Condition ★ if either Ξ = OX or its restriction on any

component in �X1 is a sum of locally free sheaves of the same rank as in [28, Proposition 3.18]

and Remark 2.2.4.

We have

degΞ(�) =
1

rk(Ξ)UΞ,3−1(�) −
rk(�)
rk(Ξ) UΞ,3−1(OX).

Here deg(�) =
∫
X 21(�) ·�3−1 =UΞ,3−1(�). Also UΞ,3 (�) = rk(�) rk(Ξ)�3 . Since rk(�)

rk(Ξ)UΞ,3−1(OX)

is constant for a fixed polarization O- (1) = �,Ξ, it is reasonable to use `Ξ(�) = rk(Ξ) degΞ (�)
rk(�) as the

definition of modified slope.

For any torsion free coherent sheaf � on X of rank rk, recall the Chern character morphism in

(2.1), we rewrite it here

C̃h(�) =
⊕
6∈I

∑
0≤ 5 <1

42c8 5 Ch((pr∗�)6, 5 ).

We set:

Δ(�) := Ch1(�)2−2Ch0(�) ·Ch2(�) = 2rk(�)22(�) − (rk(�) −1)22
1(�).

Let � : X → X be the absolute Frobenius map and it is identity in characteristic zero. Note that

a coherent sheaf � on X is strongly modified slope semistable if and only if it is semistable un-
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der Frobenius pullbacks. From [31] we know !Ξ,max(�) and !Ξ,min(�) are well defined rational

numbers. Also we choose a nef divisor � on the scheme - such that c∗()X ⊗Ξ∨) (�) is globally

generated, and let:

Vrk(�) (�,�) = (
A: (�).(A: (�) −1) (<0G1≤:≤<−1(`Ξ((�) ⊗ !: ))

?−1
)2

• ! being the c− ample line bundle on X.

• < denotes the index of the torsion element ! ∈ %82(X).

• � is a nef divisor in - such that c∗() (X) ⊗
∑<−1
8=1 !−8) (�) is globally generated on -.

4.1.3 Two dimensional case

In this section we prove the following result:

Theorem 4.1.9. Let X be a two dimensional smooth projective Deligne-Mumford stack. Then if �

be a strongly modified slope semistable torsion free sheaf on X, we have

Δ(�) ≥ 0.

We use the method of [27]. Let us first prove a lemma.

Lemma 4.1.10. Suppose that � is strongly modified slope semistable torsion free coherent sheaf

of rank rk(�) on X and 21(�) ·� = 0. Let ! be a line bundle on X, then there exists a positive

number " such that

ℎ0(X, (�=)∗(�) ⊗ !) ≤ " · ?=

for sufficiently large integers =.

Proof. First we take a positive integer< such that ! ·�−<�2 < 0. Therefore we have 21((�=)∗(�) ⊗

!⊗�−<) < 0. Since (�=)∗(�) ⊗ !⊗�−< is modified slope semistable, we have �0(X, (�=)∗(�) ⊗

! ⊗ �−<) = 0 (otherwise it will contradicts with the modified semistability). Then we choose a
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general element � ∈ |<� | and consider C = c−1(�), and the exact sequence

0→OX (−C) −→ OX −→ OC→ 0.

Tensor with (�=)∗(�) ⊗ ! we get an inequality

ℎ0(X, (�=)∗(�) ⊗ !) ≤ ℎ0(C, (�=C)
∗(� |C) ⊗ ! |C)

where �C is the absolute Frobenius morphism of C, and � |C , ! |C are the restrictions to C.

We show that there exists a positive number " such that

ℎ0(C, (�=C)
∗(� |C) ⊗ ! |C) ≤ " · ?=.

We prove it for any vector bundle � on C of rank rk(�) and a line bundle ! on C. The rank one

case of � is obvious since (�=)∗� = �⊗?= and by orbifold Riemann-Roch theorem [34]. General

case is proved by induction on the rank rk(�). Consider an exact sequence

0→ �→ �→&→ 0

where � is a line bundle and & is a rank rk−1 vector bundle, and the exact sequence:

0→ (�=)∗� ⊗ ! −→ (�=)∗� ⊗ ! −→ (�=)∗& ⊗ !→ 0.

Thus we have

ℎ0(C, (�=C)
∗(�) ⊗ !) ≤ ℎ0(C, (�=C)

∗(�) ⊗ !) + ℎ0(C, (�=C)
∗(&) ⊗ !).

We are done. �
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Proof of Theorem 4.1.9

We claim that we can assume 21(�) = 0. Let rk := ; · ? 9 for some integers ; and 9 , then ; is

prime to ?. Then from [3, Lemma 2.1], since - is a scheme, there is a separable finite morphism

q : . → - such that 21(q∗�) is divisible by ;. Note that [3, Lemma 2.1] proved the statement for

smooth schemes, but since we are in two dimensional, the argument works for surfaces with at

most of quotient singularities. The coarse moduli space - always has quotient singularities. Let

5 := q ◦� 9 , then 21( 5 ∗�) is divisible by rk. We form the cartesian diagram:

Y 5̃ //

c.
��

X
c

��
.

5 // -

(4.1)

where Y is the fibre product. Then Y is a Deligne-Mumford stack with the stacky locus all

pullback from the stacky locus of X. We set:

�̃ := 5̃ ∗(�) ⊗ OY

(
−21( 5̃ ∗(�))

rk

)
.

Then we calculate

21(�̃) = 0; 22(�̃) = 5̃ ∗
(
22(�) −

rk−1
2rk

21(�)2
)
.

Since � is strongly modified slope semistable with the slope given by `Ξ(�) = deg(�)
rk(�)·rk(Ξ) , from

[10, Lemma 1.1], 5̃ ∗� is modified slope semistable. Therefore 22(�̃) ≥ 0 implies that Δ(�) ≥ 0.

Then we assume 21(�) = 0. By Lemma 4.1.10, there exists positive numbers "1, "2 such that

ℎ0(X, (�=)∗(�)) ≤ "1 · ?=; ℎ0(X, (�=)∗(�∨) ⊗lX) ≤ "2 · ?=

for sufficiently large integers =. In the inertia stack �X, I1 denotes the index set such that X6 ⊂ X

has codimension one for 6 ∈ I1. We let I2 denotes the index set such that X6 ⊂ X has codimension

two, i.e., the stacky locus consisting of points inX. Then by orbifold Riemann-Roch theorem (2.3)
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from [34],

j(X, (�=)∗(�)) =
∫
�X

C̃h((�=)∗(�)) · T̃d()X)

=

∫
X

Ch((�=)∗(�)) ·Td()X)+

+
∑
6∈I1

∫
X6

∑
0≤ 5 <1

42c8 5 Ch((�=)∗(�)6, 5 ) ·Td()X)6, 5

+
∑
6∈I2

∫
X6

∑
0≤ 5 <1

42c8 5 Ch((�=)∗(�)6, 5 ) ·Td()X)6, 5

= −22((�=)∗(�)) +
∫
X

rk ·Td()X)

+
∑
6∈I1

©«
∫
X6

∑
0≤ 5 <1

42c8 5 21((�=)∗(�)6, 5 ) +
∫
X6

∑
0≤ 5 <1

42c8 5 ·Td()X)6, 5
ª®¬

+
∑
6∈I2

∫
X6

∑
0≤ 5 <1

42c8 5 ·Td()X)06, 5

where Td()X)06, 5 is the constant term of Td()X)6, 5 . By the Frobenius pullback property of Chern

classes we have

j(X, (�=)∗(�)) = −?2=22(�) +
∫
X

rk ·Td()X)

+
∑
6∈I1

©«?=
∫
X6

∑
0≤ 5 <1

42c8 5 21((�)6, 5 ) +
∫
X6

©«
∑

0≤ 5 <1
42c8 5 ª®¬ ·Td()X)6, 5

ª®¬
+

∑
6∈I2

∫
X6

©«
∑

0≤ 5 <1
42c8 5 ª®¬ ·Td()X)06, 5

≤ ("1 +"2)?=

Hence for large =, to ensure the above inequality we must have 22(�) ≥ 0. We are done. �.

Remark 4.1.11. If the base field ^ has character zero, and � is a modified semistable torsion free

sheaf on X, then the Bogomolov inequality Δ(�) ≥ 0 also holds by the standard method of taking

limit, see [22]. We omit the details here, and note that in the character zero case Bogomolov
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inequality for orbifold semistable torsion free sheaves is proved in [19, Lemma 2.5] for surface

Deligne-Mumford stacks with only isolated quotient singularities.

4.2 Bogomolov inequality for parabolic sheaves

In this section we give an application of the Bogomolov inequality in Theorem 4.1.9 to rational

parabolic sheaves on a surface - .

4.2.1 Root surfaces

Let - be a smooth projective surface and � ⊂ - is a simple normal crossing Cartier divisor. Let

A ∈ Z>0 be a positive integer. The line bundle with the section (O- (�), B�) defines a morphism

(→ [A1/Gm] .

Let ΘA : [A1/Gm] → [A1/Gm] be the morphism of stacks given by the morphism

G ∈ A1 ↦→ GA ∈ A1; C ∈ Gm ↦→ CA ∈ Gm,

which sends (O- (�), B�) to (O- (�)⊗A , BA�).

Definition 4.2.1. Let X := A
√
(-,�) be the stack obtained by the fibre product

A
√
(-,�) //

c

��

[A1/Gm]
ΘA
��

-
(O- (�),B�)// [A1/Gm] .

We call X = A
√
(-,�) the root stack obtained from - by the A-th root construction.

The stack X = A
√
(-,�) is a smooth Deligne-Mumford stack with stacky locus D := c−1(�),

and D→ � is a `A-gerbe over - coming from the line bundle O( (�) |� .
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Remark 4.2.2. The general root stacks over a logarithmic scheme - is constructed in [5], and the

pair (-,�) defines a canonical log structure on - . Since we don’t need the abstract language of

log schemes we refer the reader to [5] for details.

Theorem 4.1.9 implies the following result:

Proposition 4.2.3. LetX = A
√
(-,�) be the A-th root stack corresponding to the pair (-,�), and let

� be a strongly slope semistable torsion free coherent sheaf on X with respect to the polarization

(OX ,O- (1)). Then we have

Δ(�) = 2rk(�)22(�) − (rk(�) −1)21(�)2 ≥ 0.

4.2.2 Parabolic sheaves

Definition 4.2.4. ([25]) Let � be a torsion-free coherent sheaf on - . A parabolic structure on � is

given by a length 3-filtration

� = �1(�) ⊃ �2(�) ⊃ · · · ⊃ �A (�) ⊃ �A+1(�) = � (−�),

together with a system of weights

0 ≤ U1, U1, · · · , UA < 1.

We call �• = (�,�8 (�)) a rational parabolic sheaf associated with the divisor � if all the weights

U1, U1, · · · , UA are all rational. Let �8 (�) = �8 (�)/�8+1(�). The Hilbert polynomial j(�8 (�) (<))

is called the 8-th multiplicity polynomial of the weight U8.

As in [25, Definition 1.8], the parabolic Euler characteristic pa−j(�•) of �• is defined as:

j(� (−�)) +
3−1∑
8=0
U8j(�8). (4.2)
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The polynomial pa−j(�•(<)) is called the parabolic Hilbert polynomial of �• and the polynomial

pa−j(�•(<))/rk(�) is denoted by pa−?�• (<).

Definition 4.2.5. The parabolic sheaf of �• is said to be parabolic Gieseker stable (resp. parabolic

semistable) if for every parabolic subsheaf �• of �• with

0 < rk(�) < rk(�)

we have

pa−?�• (<) < pa−?�• (<), (resp.pa−?�• (<) ≤ pa−?�• (<)).

The parabolic degree pa-deg(�•) is defined by

pa-deg(�•) =
∫ 1

0
deg(�U)3U+ rk(�) ·deg(�).

We set the parabolic slope as pa−`(�•) = pa-deg(�•)
rk(�) . Then �• is parabolic slope stable (resp.

parabolic semistable) if for every parabolic subsheaf �• ⊂ �• with

0 < rk(�) < rk(�)

we have

pa−`(�•) < pa−`(�•), (resp.pa−`(�•) ≤ pa−`(�•).

4.2.3 Equivalence of categories

For the root stack X = A
√
(-,�), we choose the generating sheaf Ξ = ⊕A

8=0OX (D
8
A ). Let Coh(X)

be the abelian category of coherent sheaves on X, and Par 1
A
(-,�) the abelian category of rational

parabolic sheaves on (-,�) with length A. There exist two functors:

FX : Coh(X) → Par 1
A
(-,�); � ↦→ FX (�)
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where FX (�); = c∗(E⊗OX (−;D)); and

�X : Par 1
A
(-,�) → Coh(X); �• ↦→

∫ Z

6X (�•) (;, ;)

where
∫ Z

6X (�•) (;, ;) is the colimit of wedges:

6X (�•) (;,<)
53,< //

ℎ;,<
��

6X (�•) (;, ;)
F(;)
��

6X (�•) (<,<)
F(<) // G

where

1. 6X (�•) : Z0×Z→ Coh(X) is a map given by:

(;,<) ↦→ OX (;D) ⊗ ?∗�<;

2. < ≥ ; is an arrow in Z, and the arrow ℎ;,< is induced by the canonical section of the divisor,

the arrow 5;,< is induced by the filtration ?∗�•, the arrow F(;) is a dinatural transformation

and G is a sheaf in Coh(X).

We define that a parabolic sheaf �• ∈ Par 1
A
(-,�) to be torsion free if �0 is torsion free. Then

we have:

Theorem 4.2.6. ([5, Theorem 6.1]) The functor �X maps torsion free sheaves on - to torsion

free sheaves on X. Moreover, FX and �X are inverse to each other when applied to torsion free

sheaves.

4.2.4 Parabolic Bogomolov inequality

In this section we apply Proposition 4.2.3 and Kawamata cover of (-,�) constructed in [2] to

deduce the parabolic Bogomolov inequality for parabolic semistable sheaves.
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Let.→ - be the Galois cover with Galois group� =Gal(Rat(. )/Rat(-)) as in [2]. Let A | |� |,

then by base change of the root stack in the fibre product diagram

Y 5̃ //

c.
��

X
c

��
.

5 // -

in Diagram 4.1, the Deligne-Mumford stackY is the root stack of the pullback line bundle ( 5 ∗O- (�), 5 ∗B�).

Since the degree of 5 ∗O- (�) is divided by A, the root stack associated this line bundle is trivial.

Therefore we have Y � . is a scheme and we have the following diagram:

X
c
��

.

5̃
??

5 // -

and the quotient stack [./�] � X.

We are ready to state the parabolic Bogomolov inequality. We set up some notations. First

let , be a coherent sheaf on X. Then from Theorem 4.2.6, there exists a rational parabolic sheaf

(�,�∗, U∗) such that �8 = c∗(, ⊗OX (−8D)) and U8 = 8
A
.

Let � =
∑ℎ
_=1�_ be the decomposition of � into smooth irreducible components. Let �̃ =

( 5 ∗�)red which is normal crossing. Then 5 ∗�_ = :_A ( 5 ∗�_)red, where 1 ≤ _ ≤ ℎ, and :_ ≥ 1

are integers. The torsion free coherent sheaf , on X = [./�] gives a �-equivariant torsion free

coherent sheaf on . which we still denote by, . Let

] : �̃→ .

be the inclusion and ]_ : �̃_ → . be the inclusion of the component �̃_, where �̃_ = ( 5 ∗�_)red.

Let �8 = � |�/�8 (� |�) be the sheaf on �. Then

� 9 =

ℎ⊕
_=1

]_∗�
_
9 ,
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where ]_ : �_ ↩→ � denotes the inclusion. Define �8,_ = �_8 /�_8+1 and

�̃8,_ := ( 5 ]_)∗�8,_.

Then from [2, Formula (3.15)] we have:

, = 5 ∗� +
A∑
8=1

ℎ∑
_=1

:_<8∑
9=1

]_∗

(
�̃8,_ ⊗ # 9

�̃_

)
(4.3)

in the K-theory  0(. ), where #
�̃_
= O. (�̃_) |�̃_ is the normal bundle to the divisor �̃_.

From equivalence between the categories Coh(X) and Par 1
A
(-,�) in Theorem 4.2.6, the the

main result in [5], by choosing the generating sheaf Ξ =
⊕A

8=0OX (8D), , is modified semistable

if and only if the corresponding rational parabolic sheaf (�,�∗, U∗) is parabolic semistable. But

from [2, Lemma 3.13], the rational parabolic sheaf (�,�∗, U∗) is parabolic semistable with respect

to O- (1) if and only if the corresponding sheaf, is orbifold semistable with respect to 5 ∗O- (1).

From Proposition 4.2.3, if, is strongly semistable, then

Δ(,) ≥ 0.

Thus we have

Theorem 4.2.7. ([2]) Let , be an orbifold strongly semistable torsion free coherent sheaf on the

root stack X such that its corresponding rational parabolic sheaf (�,�∗, U∗) is parabolic strongly

semistable, then we have

22(�) + 21(�) ∪
(
A∑
8=1

ℎ∑
_=1

U8 · A8_ [�_]
)
+ 1

2

(
A∑
8=1

ℎ∑
_=1

U8 · A8_ [�_]
)2

−
A∑
8=1

ℎ∑
_=1

(
U2
8
· A8_ ·�_ ·�_

2
+U8 · 38_

)
≥ rk(�) −1

2rk(�)

(
21(�) +

A∑
8=1

ℎ∑
_=1

U8 · A8_ · [�_]
)2
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where A8_ = rk(�8,_) and 38_ = deg(�8,_).

Proof. The Chern class formula 22(,), 21(,) are calculated in [2, §4]. Plug these into the in-

equality Δ(,) ≥ 0 we get the formula in the theorem. �

Remark 4.2.8. [2] proves that the orbifold semistability of , is equivalent to the parabolic

semistability of the corresponding parabolic sheaf (�,�∗, U∗), and the parabolic semistability is

equivalent to the modified semistability of, again for the generating sheaf Ξ = ⊕A
8=0OX (D

8
A ).

4.3 A  theoretic decomposition of W on root stack X

We end this topic by trying to derive a  − Cℎ4>A4C82 decomposition of a ;>20;;H− 5 A44 coherent

sheaf, on the root stack X. We denote the 20=>=820; ;8=4 1D=3;4 on X by #.

Denote by ', the `A − 64A14 over a simple divisor � in -, the coarse moduli which is a smooth

surface in our case. Denote by c and c' the corresponding coarse moduli maps to - and �

respectively. Denote the ?0A01>;82 1D=3;4 underlying by �∗ [12]. This construction does not

depend on the dimension and can be extended to (#� case. As in [12] we introduce an elementary

transformation on the bundle, on the root stack X. We note that ' is a `A gerbe on � and hence

, |' decomposes into the disjoint sum of weight spaces,8,' that is:

, |' =
A−1⊕
8=0

,8,' =

A−1⊕
8=0

�><$' ((#')8, c∗'c',∗(, |' ⊗ (# 8')
∨)) (4.4)

where 8 varies from 1 to r and #' = $ (') |'. The twisted sectors corresponding to 1 corresponds

to the fixed part as in [12] and the other summands are the twisted sectors of this bundle, |' over

'. We write this as

, |' =,', 5 8G

⊕
,',E0A

where,

,', 5 8G = c
∗
'c',∗(, |')

50



We introduce the exact sequences as:

0 ↦→ #−(;+1) ↦→ #−; ↦→ #−;' ↦→ 0 (4.5)

where # is the line bundle on the root stack serving as to the r-th root to c∗� where,

#' =$ (') |'

Tensoring with , and taking push forward is exact ( c is a finite map in the etale topology) we

obtain

0 ↦→ �(;+1) ↦→ �(;) ↦→ 6A; (�) ↦→ 0 (4.6)

where 6A; (�) is the ; th grade of the parabolic bundle with weight ;.

Observing and denoting c' as the coarse moduli map for ' we have ,

A−1⊕
;=0

c∗'6A [;] (�)
⊗

# ;' ','

which agrees with the decomposition of the vector bundle, restricted to the gerbe in terms of the

primitive characters of Z/AZ obtaining a decomposition of, in  0,4C (') in terms of the parabolic

components.

In order to obtain a  − Cℎ4>A4C82 decomposition of, in  0,4C (X) in terms of the parabolic bundle

{�∗,1/A}, we follow [12] in order to do the necessary computations. In order to do so we use the

following exact sequence:

0 ↦→ (#−(1+8) ⊗,) ↦→ (#−8 ⊗,) ↦→ (# 8+1' ⊗, |') ↦→ 0 (4.7)
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4.3.1 Elementary Transformation of Vector Bundles

We follow [12] to construct a  theoretic decomposition of the bundle ,. and mention the neces-

sary exact sequences:

0 ↦→ 4(,) ↦→, ↦→, |',E0A ↦→ 0 (4.8)

0 ↦→, |',E0A ⊗ #∨' ↦→ 4(,) |' ↦→, |', 5 8G ↦→ 0 (4.9)

where, |', 5 8G and, |',E0A are the components of, |' on the gerbe over �.

Define d(,) to be the largest non-zero integer : such that

((#'): ⊗ c∗'c',∗(, |' ⊗ (# :')
∨))

is non-zero.

We also we observe from [12] that if,

d(,) = 0,

then

, ' c∗(c∗(,))

on X.

We begin with a lemma, If d(,) > 0, then d(4(,)) < d(,).

We further observe applying c∗, and using the fact that

c∗,',E0A = 0,

for any coherent sheaf, on X and hence obtain:

[4A (,)] = [4A−1(,)] = [4A−2(,)] ... = [(,)]

where [+] := c∗(+) is the corresponding push-forward on -.
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For a torsion free coherent sheaf + on X if d(+) = 0, then + descends i.e

+ ' c∗c∗+.

and the fact that d(,) decreases on application of it at most A− times one obtains:

4A (,) = c∗c∗, = c∗(�)

where � = �0 is the torsion free coherent sheaf underlying {�∗,1/A}. One obtains the  group

decomposition of, as:

Denoting [+] for the isomorphism class of+ in  0,4C (X), we denote 48 (,) by the 1− BC elementary

transformation applied to 48−1(,) which is 8− Cℎ iteration on, :

[48 (,)] = [48−1(,)] + 9∗( [
A−1∑
8=0
48 (,) |',E0A]),

where [+] ∈  0,4C (X) corresponding to a coherent sheaf + on X (X 8B B<>>Cℎ) and 9 : ' ↦→ X

being the inclusion of the reduced divisor and 9∗ :  0,4C (') ↦→  0,4C (X).

Summing over 8, one obtains the required  group decomposition of, :

[,] = [4A (,)] +
A−1∑
8=0

9∗( [48 (,) |',E0A]).

Hence,

[,] = [c∗(�)] +
A−1∑
8=0

9∗( [48 (,) |',E0A]).

4.3.2 Example

Define d(,) to be the largest non-zero integer : such that

((#'): ⊗ c∗'c',∗(, |' ⊗ (# :')
∨))
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is non-zero.

We also we observe from [12] that if,

d(,) = 0,

then

, ' c∗(c∗(,))

on X.

Let us compute d(, ⊗ #−A) using the decomposition abovesaid.

We compute,

(, ⊗ #−A)',E0A

=

A−1⊕
8=1

c∗'c',∗(, |' ⊗ #−A' ⊗ #−8' ) ⊗ #
8
'

=

A−1⊕
8=1

c∗'c',∗((, |', 5 8G ⊕, |',E0A) ⊗ #−A' ⊗ #−8' ) ⊗ #
8
' .

=

A−1⊕
8=1

c∗'c',∗((, |', 5 8G) ⊗ #−A' ⊗ #−8' ) ⊕ (, |',E0A ⊗ #
−A
' ⊗ #−8' )) ⊗ #

8
' .

Using, the decompositions of,', 5 8G and observing c∗
'
($ (−�) |�) = #−A' on ', one obtains for the

first summand:
A−1⊕
8=1

c∗'c',∗((, |', 5 8G) ⊗ #−A' ⊗ #−8' ) ⊗ #
8
' .

=

A−1⊕
8=1

c∗'c',∗(c∗'c',∗(, |') ⊗ #−A' ⊗ #−8' ) ⊗ #
8
' .

=

A−1⊕
8=1

c∗'c',∗(c∗'c',∗(, |') ⊗ c∗' ($ (−�) |�) ⊗ #−8' ) ⊗ #
8
' .

=

A−1⊕
8=1

c∗'c',∗(c∗' (c',∗(, |') ⊗ ($ (−�) |�)) ⊗ #−8' ) ⊗ #
8
' .
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Observing ' is a gerbe over B?42 C with coarse moduli scheme �, we have:

c',∗(#−8' ) = 0 (4.10)

for 8 > 0 ∈ N and using the projection formula we observe that the first summand is zero.

Let us treat the second summand. We observe:

A−1⊕
8=1

c∗'c',∗(, |',E0A ⊗ #−A' ⊗ #−8' ) ⊗ #
8
' .

=

A−1⊕
8=1

c∗'c',∗(
A−1∑
9=1
(c∗'c',∗(, |' ⊗ #

− 9
'
) ⊗ # 9

'
) ⊗ #−A' ⊗ #−8' )) ⊗ #

8
' .

=

A−1⊕
8=1

c∗'c',∗(
A−1∑
9=1
(c∗'c',∗(, |' ⊗ #

− 9
'
) ⊗ #−A' ⊗ #

9−8
'
)) ⊗ # 8' .

1) If 0 ≤ 9 − 8 ≤ A then 9 − 8− A ≤ 0, and hence using projection formula and the above discussion

we see that the summand is zero for the case mentioned.

2) In the other case when 9 − 8 ≤ 0 we have c∗
'
($ (−�) |�) = #−A' and using projection formula we

have the other term is also 0.

Hence we obtain, d(, ⊗ #−A) = 0 from which we conclude,

, ⊗ #−A = c∗(� (−�)).

4.3.3 K-theoretic decomposition in terms of Parabolic components

We compute

9∗(
A−1∑
8=0
48 (,) |',E0A)

in terms of the 6A8 (�) := �8
�8+1

on -, where 9 : '→X is the inclusion.

Following the argument of the above computation we establish a recurrence relation between a
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vector bundle + on the gerbe ' and (+',E0A ⊗ #∨' )',E0A .

(+',E0A ⊗ #∨' )',E0A

=

A−1∑
:=1

c∗'c',∗(+',E0A ⊗ #∨' ⊗ #−:' ) ⊗ #
:
'

=

A−1∑
:=1

c∗'c',∗(
A−1∑
9=1
c∗'c',∗(+' ⊗ #

− 9
'
) ⊗ # 9

'
⊗ #∨' ⊗ #−:' ) ⊗ #

:
'

=

A−1∑
:=1

c∗'c',∗(
A−1∑
9=1
c∗'c',∗(+' ⊗ #

− 9
'
) ⊗ # 9−1−:

'
) ⊗ # :' .

=

A−2∑
:=1

c∗'c',∗(+' ⊗ #
−(:+1)
'

) ⊗ # :' .

Thus, one obtains the recurrence relation:

(48 (+) |',E0A) 9 = (48−1(+) |',E0A) 9+1, (4.11)

1 ≤ 8 + 9 ≤ d(+),1 ≤ 9 ≤ (A −1),0 ≤ 8 ≤ (A −1).

We observe from the example that if 9 −1− : = 0 then the summand survives and contributes

to the bundle (+',E0A ⊗ #−1
'
)',E0A serving as an explanation for the recurrence relation. Replacing

, as the vector bundle on X and ,' being the restricted bundle on the gerbe ', d(,) = A −1 we

obtain:
A−1∑
8=0
48 (,) |',E0A =

A−1∑
9=1
(
A− 9−1∑
8=0

c∗' (6A8+ 9 (�) |�)) ⊗ #
9

'
. (4.12)

Thus we have:

[,] = [c∗(�)] +
A−1∑
9=1

9∗ [
A− 9−1∑
8=0
(c∗' (6A8+ 9 (�) |�)) ⊗ #

9

'
] (4.13)
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Chapter 5

Higher dimensional case of Bogomolov-Gieseker Inequality

5.1 Higher dimension case

In this last chapter, we generalize Langer’s argument to higher dimension case. For simplicity of

the calculation of modified slopes, we restrict to a special case of smooth Deligne-Mumford stacks

X = [//�] which is a quotient stack such that the action of � is diagonalizable. We still let the

generating sheaf Ξ on X satisfying Condition 4.1.2. Still let 3 = dim(X) be the dimension of X.

We state several theorems generalizing Langer [22, §3].

Theorem 5.1.1. Let �1 be a very ample divisor on - and D1 := c−1(�1) and D = c−1(�) for �

a general element � ∈ |�1 | . If the restriction of a coherent sheaf � on X to D is not modified

slope semistable with respect to � |� and Ξ|� , then let `Ξ,8, A8 denote the modified slopes and ranks

respectively in the Harder-Narasimhan filtration of � |� , we have

∑
8< 9

A8A 9 (`Ξ,8 − `Ξ, 9 )2 ≤ �3Δ(�) +2rk(�)2(!Ξ,max(�) − `Ξ(�), `Ξ(�) − !Ξ,min(�)). (5.1)

Theorem 5.1.2. If a torsion free sheaf � on X is strongly modified slope semistable, we have

Δ(�) ·�3−2 ≥ 0.

Theorem 5.1.3. If a torsion free sheaf � on X is just modified slope semistable, then we have

�3 ·Δ(�) ·�3−2 + rk(Ξ)2Vrk(�) ≥ 0.
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Before stating the last theorem, we introduce some notations. First for torsion free sheaves

�′,� on X, we set

bΞ� ′,� =
21(�′)

rk(Ξ) rk(�′) −
21(�)

rk(Ξ) rk(�) .

We also set

 + := {� ∈ Num(-) |�2�3−2 > 0, ��3−1 ≥ 0 for all nef �}.

where Num(-) = Pic(-) ⊗R/∼ and ∼ is an equivalence relation meaning !1 ∼ !2 if and only if

!1��
3−2 = !2��

3−2 for all divisors � on - .

Theorem 5.1.4. If we have

�3 ·Δ(�) ·�3−2 + rk(Ξ)2Vrk(�) < 0,

then there exists a saturated subsheaf �′ ⊂ � such that bΞ
� ′,� ∈  +.

We prove these theorems by induction on the rank rk(�), and following Langer’s method. We

only state the parts of the proof which are different to Langer’s method in smooth case and refer

to [22, §3] for detailed arguments in the proof which is the same as Langer. For the induction

process, let Thm8 (rk) represent the statement that Theorem 4.i holds for ranks ≤ rk for 8 = 1,2,3,4

and Thm5(rk) represents that Theorem 5.1.2 holds for rk(�) ≤ rk.

5.1.1 Thm1(rk) implies Thm5(rk)

Suppose that the torsion free sheaf � is strongly modified slope semistable with respect to (�,Ξ),

and Δ(�) · �3−2 < 0. We have !Ξ,max(�) = !Ξ,min = `Ξ(�). Theorem Thm1(rk) implies that

the restriction of � to � is still modified slope semistable. Since � is strongly modified slope

semistable, (�: )∗� is also strongly modified slope semistable, and its restriction to a very general

element in |� | is strongly modified slope semistable. Therefore by induction the restriction of

(�: )∗� to a very general element in �1 ∩ · · · ∩�3−1 for �1, · · · , �3−1 ∈ |� | is strongly modified

slope semistable. Therefore we are reduced to the two dimensional Deligne-Mumford stack case.
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Then this is Theorem 4.1.9.

5.1.2 Thm5(rk) implies Thm3(rk)

First note that in this case,

Vrk =

(
rk(rk(�) −1)

?−1

(
�3−1 · �
�3

))2

since " = 0. Our polarization is (�,Ξ), we first have the following inequality:

�3 ·Δ(�)�3−2 + rk(�)2 rk(Ξ)2(!Ξ,max(�) − `Ξ(�)) (`Ξ(�) − !Ξ,min(�)) ≥ 0 (5.2)

To prove this inequality, first from the finite property fdHPN in §4.1.8 there exists a positive integer

: such that all the quotients in the Harder-Narasimhan filtration of (�: )∗� are strongly modified

slope semistable. Consider the Harder-Narasimhan filtration

0 = �0 ⊂ �1 ⊂ · · · ⊂ �< = (�: )∗�

and let �8 = �8/�8−1, A8 = rk(�8), `8 = `Ξ(�8). The Hodge index theorem (holds for smooth Deligne-

Mumford stacks) implies that

Δ((�: )∗�)�3−2

rk(�) =
∑
8

Δ(�8)�3−2

A8
− 1

rk(�)
∑
8< 9

A8A 9

(
21(�8)
A8
−
21(�9 )
A 9

)2
�3−2

≥
∑
8

Δ(�8)�3−2

A8
− rk(Ξ)2
�3 rk(�)

∑
8< 9

A8A 9 (`8 − ` 9 )2

Thm5(rk) implies that Δ(�8)�3−2 ≥ 0. Therefore by [22, Lemma 1.4], we have

�3 ·Δ(�)�3−2

rk(�) ≥

− rk(�) rk(Ξ)2
(
`Ξ,max((�: )∗�) − `Ξ((�: )∗�)

) (
`Ξ((�: )∗�) − `Ξ,min((�: )∗�)

)
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Both sides are divided by ?2: , we get:

�3 ·Δ(�)�3−2 + rk(�)2 rk(Ξ)2(!Ξ,max(�) − `Ξ(�)) (`Ξ(�) − !Ξ,min(�)) ≥ 0.

It is ready to prove Thm3(rk). Suppose that � is just modified slope semistable. We aim to use

(5.2) and Corollary 4.1.7. The method is the same as in [22, §3.6], and we take an ample divisor �

on - and set � (C) = �+ C�. Similar method shows that the Harder-Narasimhan filtration of � with

respect to (� (C),Ξ) is independent of C when C is positively small. Let 0 = �0 ⊂ �1 ⊂ · · · ⊂ �< = �

be the Harder-Narasimhan filtration with respect to (� (C),Ξ). We have (since � is modified slope

semistable)

`Ξ,� (�) ≥ `Ξ,� (�1) = lim
C→0

`Ξ,� (C) (�1) ≥ lim
C→0

`Ξ,� (C) (�) = `Ξ,� (�).

Hence

lim
C→0

`Ξ,max,� (C) (�) = lim
C→0

`Ξ,max,� (C) (�1) = `Ξ,� (�),

and similarly,

lim
C→0

`Ξ,min,� (C) (�) = `Ξ,� (�).

Thus we can apply (5.2) and Corollary 4.1.7, and note " = 0, we get the result

�3 ·Δ(�)�3−2 + rk(Ξ)2Vrk(�) ≥ 0.

5.1.3 Thm3(rk) implies Thm4(rk)

If we have the condition in Thm4(rk), i.e., �3 ·Δ(�)�3−2+rk(Ξ)2Vrk(�) < 0. Then from Thm3(rk),

� is not modified slope semistable. Let �′ ⊂ � be the maximal destabilizing subsheaf of � and set

�′′ = �/�′, A′ = rk(�′), A′′ = rk(�′′). First we calculate:

Δ(�)�3−2

rk(�) +
AA′b2

� ′,��
3−2

A′′
=
Δ(�′)�3−2

A′
+ Δ(�

′′)�3−2

A′′
.
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We also have rk(Ξ)2 Vrk(�)
rk(�) ≥ rk(Ξ)2( VA ′

A ′ +
VA ′′
A ′′ ). Since �3 · Δ(�)�3−2 + rk(Ξ)2Vrk(�) < 0, and

we require �3 > 0, either b2
� ′,� > 0 or at least one of the �3 ·Δ(�′)�3−2 + rk(Ξ)2VA ′ and �3 ·

Δ(�′′)�3−2 + rk(Ξ)2VA ′′ is negative. Therefore the same argument as in [11, Theorem 7.3.3] gives

the result.

5.1.4 Thm4(rk) implies Thm2(rk)

Suppose that Δ(�)�3−2 < 0. The condition in Thm4(rk), applying to (� ;)∗� (since � is strongly

modified slope semistable by the condition in Thm2(rk)), is:

�3 ·Δ((� ;)∗�)�3−2 + rk(Ξ)2Vrk(�) < 0

which is equivalent to

; >
1
2

log?

(
−

rk(Ξ)2Vrk(�)

�3 ·Δ(�)�3−2

)
.

Then for large ;, there exists a saturated torsion free subsheaf �′ ⊂ (� ;)∗� such that b� ′,(�;)∗� ∈

 +. By “self-duality" property of  + we have b� ′,(�;)∗��3−1 > 0, which means that the sheaf � is

not strongly modified semistable, a contradiction.

5.1.5 Thm2(rk−1) implies Thm1(rk)

We use Π = |� | to denote the complete linear system, and let / := {(�,G) ∈ Π× - : G ∈ �} be the

incidence variety. Let

? : /→ Π; @ : /→ -

be the corresponding projections. For each B ∈ Π, let /B be the scheme theoretic fiber of ? over the

point B. Consider the following cartisian diagram:

Z
?◦c

��

@ //

c

��

X
c

��
Π /

?oo @ // -
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ThenZ is a Deligne-Mumford stack which is given by {(c−1(�), G) : (�,G) ∈ Π×-,G ∈ �}. The

generating sheaf Ξ on X is pullback under @ and gives a generating sheaf @∗Ξ on Z which is

relative to Π.

We work on the sheaf @∗� for a torsion free sheaf � on X, and let

0 = �0 ⊂ �1 ⊂ · · · ⊂ �< = @∗�

be the relative Harder-Narasimhan filtration with respect to ? ◦ c. This means that there exists an

open subset * ⊂ Π such that all �8 = �8/�8−1 are flat over * and for each B ∈* the fibers (�•)B is

the Harder-Narasimhan filtration of �B = @∗� |ZB forZB = c−1(/B). From the proof of in [22, §3.9],

the relative Harder-Narasimhan filtration is actually the Harder-Narasimhan filtration of @∗� with

respect to

(?∗OΠ(1)dim(Π)@∗�,@∗Ξ).

By the finite property in §4.1.1, for the sheaf @∗� , there exists a positive integer : such that

all the quotients in the Harder-Narasimhan filtration of (�: )∗(@∗�) = @∗((�: )∗�) are strongly

modified semistable. We will prove the inequality (5.1), and from [22, Lemma 1.5], when ap-

plying to the polygons of the Harder-Narasimhan filtration for modified slopes, we just prove

the case that all the graded pieces �8’s are strongly modified slope semistable with respect to

(?∗OΠ(1)dim(Π)@∗�,@∗Ξ).

We perform the same argument as in [22, §3.9], and let Λ ⊂ Π be a pencil. Set . = ?−1(Λ), and

Y = (? ◦c)−1(Λ) ⊂ Z. Since @ |. :. → - is the blow up of - along the base locus � of Λ, we can

view @ |Y :Y→X to be the stacky blow up of X along the locus B = c−1(�). If 3 ≥ 3, then � is a

smooth connected variety. So B is a smooth connected substack, and there is only one exceptional

divisor N for @ |Y . We write down

21(�8 |. ) = @ |∗YM8 + 18N
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whereM8 are divisors on X which are pullbacks of divisors "8 on - and 18 are rational numbers.

If the dimension 3 = 2, then � consists of # = �3 distinct points and B consists of # distinct

stacky points. Let N1, · · · ,N# be the exceptional divisors of @ |Y . There exist rational numbers 18 9

and divisorsM8 such that

21(�8 |. ) = @ |∗YM8 +
∑
9

18 9N9 .

Let 18 = (
∑
9 18 9 )/# . We have

`Ξ,8 =
21(�8 |. )?∗OΠ(1)@∗�3−2

A8 rk(Ξ)
=
M8 ·�3−1 + 18#

A8 rk(Ξ)
.

Thm2(rk−1) implies that Δ(�9 |. )?∗OΠ(1)@∗�3−2 ≥ 0 for every 9 . We calculate

#Δ(�)@ |∗Y�
3−2

rk(�) =
∑
8

#Δ(�8 |Y)@ |∗Y�
3−2

A8
− #

rk(�)
∑
8< 9

A8A 9

(
21(�8 |Y)

A8
−
21(�9 |Y)

A 9

)2
· @ |∗Y�

3−2

≥ #

rk(�)
∑
8< 9

A8A 9

(
#

(
18

A8
−
1 9

A 9

)2
−

(
M8

A8
−
M 9

A 9

)2
�3−2

)
≥ 1

rk(�)
∑
8< 9

A8A 9
©«(#)2

(
18

A8
−
1 9

A 9

)2
−

(
M8�

3−1

A8
−
M 9�

3−1

A 9

)2ª®¬ .
The last inequality is from Hodge index theorem for smooth Deligne-Mumford stacks, and from

the slope `Ξ,8, the last expression above gives

2
∑
8

#18`Ξ,8 −
1

rk(�)
∑
8< 9

A8A 9 (`Ξ,8 − `Ξ, 9 )2.

To prove the claim, first (@ |Y)∗(�8 |Y) ⊂ � implies that∑
9≤8M 9�

3−1

rk(Ξ)∑ 9≤8 A 9
≤ `Ξ,max(�)
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which gives the inequality:

∑
9≤8
1 9# ≥

∑
9≤8

rk(Ξ)A 9 (`Ξ, 9 − `Ξ,max(�)) (5.3)

Therefore

∑
8

#18`Ξ,8 =
∑
8

(∑
8< 9

#1 9

)
(`Ξ,8 − `Ξ,8+1)

≥
∑
8

(∑
9≤8

rk(Ξ)A 9 (`Ξ, 9 − `Ξ,max(�))
)
(`Ξ,8 − `Ξ,8+1)

= rk(Ξ) ·
∑
8< 9

A8A 9

rk(�) (`Ξ,8 − `Ξ, 9 )
2 + rk(�) (`Ξ(�) − `Ξ,max(�)) (`Ξ(�) − `Ξ,min(�)).

So we get:

#Δ(�)@ |∗Y�
3−2

rk(�) ≥
∑
8< 9

2rk(Ξ) −1
rk(�) A8A 9 (`Ξ,8−`Ξ, 9 )2+2rk(�) (`Ξ(�)−`Ξ,max(�)) (`Ξ(�)−`Ξ,min(�)).

We generalize the restriction theorem of Langer to smooth Deligne-Mumford stacks in higher

dimensions. We give a general statement for the (5.2). Recall from Corollary 4.1.7,

UΞ(�) :=max(!Ξ,max(�) − `Ξ,max(�), `Ξ,min(�) − !Ξ,min(�)).

Let � be a nef divisor for - such that c∗()X ⊗Ξ) (�) is globally generated, then there exists a large

number " > 0 (depending on the data (�,Ξ)) such that

UΞ(�) ≤
rk(�) −1
?−1

(
�3−1 · �
�3

+"
)
.

Theorem 5.1.5. Let � be a torsion free sheaf on a smooth Deligne-Mumford stack X. Then we

have

�3 ·Δ(�)�3−2 + rk(�)2 rk(Ξ)2(!Ξ,max(�) − `Ξ(�)) (`Ξ(�) − !Ξ,min(�)) ≥ 0 (5.4)
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and

�3 ·Δ(�)�3−2 + rk(�)2 rk(Ξ)2(`Ξ,max(�) − `Ξ(�)) (`Ξ(�) − `Ξ,min(�)) ≥ 0 (5.5)

Proof. The proof of (5.4) is the same as in Claim (5.2). The proof of formula (5.5) is the same as

[22, Theorem 5.1]. �

Theorem 5.1.6. Let � be a torsion free sheaf of rank rk(�) ≥ 2 on a smooth Deligne-Mumford

stack X. Suppose that � is slope modified stable with respect to (Ξ,O- (1) = �). Let � ⊂ |<� | be

a normal divisor such that � |D has no torsion where D = c−1(�)). If

< > b rk(�) −1
rk(�) Δ(�)�3−2 + 1

�3 rk(�) (rk(�) −1)
+ (rk(�) −1)Vrk

�3 rk(�)
c

then � |D is slope modified stable with respect to (Ξ|D , � |D).

Proof. The proof is the same as [22, Theorem 5.2]. �

5.2 Bogomolov’s inequality for Higgs sheaves

Let : be an algebraically closed field of characteristic ? ≥ 0 and X be a smooth tame projective

Deligne-Mumford stack of dimension 3 over : with coarse moduli space c : X → - . Let Ξ be a

generating sheaf on X satisfying Condition ★ in 4.1.2, and let � an ample divisor on - .

Definition 5.2.1. A Higgs sheaf (�, \) is a pair consisting of a coherent sheaf � ∈ Coh(X) and

an OX-homomorphism \ : � → � ⊗ΩX satisfying the integrability condition \ ∧ \ = 0. We say

a Higgs sheaf (�, \) a system of Hodge sheaves if there is a decomposition � = ⊕� 8 such that

\ : � 8→ � 8−1 ⊗OX ΩX

1. We say that (�, \) is slope semistable if `Ξ(�′) ≤ `Ξ(�) for every Higgs subsheaf (�′, \′)

of (�, \).

2. A system of Hodge sheaves (�, \) is slope semistable if the inequality `Ξ(�′) ≤ `Ξ(�) is

satisfied for every subsystem of Hodge sheaves (�′, \′) of (�, \).
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We recall the main results of Ogus and Vologodsky [29], where the theory is for schemes, but

in étale topology it works for Deligne-Mumford stacks.

Assume that ? > 0. Let ( be a scheme over : and 5 : X → ( be a morphism of stacks over

: . A lifting of X/( modulo ?2 is a morphism 5̃ : X̃ → (̃ of flat Z/?2Z-stacks such that 5 is the

base change of 5̃ by the closed embedding (→ (̃ defined by ?. Let MIC?−1(X/() be the category

of OX-modules with an integrable connection whose ?-curvature is nilpotent of level ≤ ?−1. Let

HIG?−1(X (1)/() denote the category of Higgs OX (1) -modules with a nilpotent Higgs field of level

≤ ?−1. We have the following theorem of Ogus and Vologodsky ([29, Theorem 2.8])

Theorem 5.2.2. If 5 : X → ( is a smooth morphism with a lifting X̃ (1) → (̃ of X (1) → ( modulo

?2, then the Cartier transform

�X/( : MIC?−1(X/() → HIG?−1(X (1)/()

defines an equivalence of categories with quasi-inverse

�−1
X/( : HIG?−1(X (1)/() →MIC?−1(X/().

Lemma 5.2.3. Let (�, \) ∈HIG?−1(X (1)/(). Then we have [�−1
X/( (�)] = �

∗
6 [�], where [·] denotes

the class of a coherent sheaf in the Grothendieck group  0(X).

Proof. See [24, Lemma 2]. �

Corollary 5.2.4. Assume ( = Spec : , and let (�, \) ∈ HIG?−1(X (1)/(). Then (�, \) is slope

semistable with respect to (�,Ξ) iff �−1
X/( (�) is slope ∇-semistable with respect to (�∗6�,�∗6Ξ).

Proof. The proof is the same as that of [24, Corollary 1]. �

Lemma 5.2.5. Let (�, \) be a torsion free slope semistable Higgs sheaf on X. Then there exists an

A1-flat family of Higgs sheaves (�̃ , \̃) on X×A1 such that the restriction (�̃C , \̃C) to the fiber over

any closed point C ∈ A1 is isomorphic to (�, \) and (�0, \0) is a slope semistable system of Hodge

sheaves.
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Proof. See [23, Corollary 5.7]. �

Proposition 5.2.6. Let + be a torsion free sheaf on X, then

�3−2Δ(+) ≥ − (rank+ rankΞ)2
�3

(!Ξ,max(+) − `Ξ(+)) (`Ξ(+) − !Ξ,min(+))

Proof. The proposition follows from Theorem 5.1.2 by the same arguments as in the proof of

Theorem 5.1.3. �

Theorem 5.2.7. Assume ? = 0. Let (�, \) be a slope semistable Higgs sheaf with respect to (�,Ξ).

Then we have �3−2Δ(�) ≥ 0.

Proof. Deforming (�, \) to a system of Hodge sheaves (see Lemma 5.2.5) we can assume that

(�, \) is nilpotent. Now we use the standard reduction to positive characteristic technique, which

we recall for the convenience of the reader (see [26, section 2]). There exists a finitely generated

Z-algebra ' ⊂ : and a tame smooth Deligne-Mumford stack X̃ → ( = Spec' such that X = X̃ ×(

Spec : . Let c̃ : X̃ → -̃ be its coarse moduli space. We can assume that - = -̃ ×( Spec : , c is

induced by c̃ after base change, and there exists an ample divisor �̃ on -̃ extending � and a

generating sheaf Ξ̃ on X̃ extending Ξ such that its restriction to every component in �X̃1 is a direct

sum of locally free coherent sheaves of the same rank. We can also assume that there exists an

(-flat family of Higgs sheaves (�̃ , \̃) on X̃ extending (�, \).

Shrinking (, by openness of semistability we can assume that (�̃B, \̃B) is slope semistable with

respect to (Ξ̃B, �̃B) for any B ∈ (. Choose a closed point B ∈ ( such that the characteristic @ of the

residue field : (B) is ≥ rank� . Then the stack X̃ ×( Spec('/<2
B ) is a lifting of X̃B modulo @2. By

Corollary 5.2.4, one can associate to (�̃B, \̃B) a slope ∇-semistable sheaf with integrable connection

(+B,∇B) with respect to (�∗6 �̃B, �∗6 Ξ̃B). From Lemma 5.2.3, it follows that

�̃3−2
B Δ(+B) = @2�̃3−2

B Δ(�̃B). (5.6)

Let 0 = +0 ⊂ +1 ⊂ · · · ⊂ +< = +B be the usual Harder-Narasimhan filtration of +B, then by [16,
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Lemma 2.7], the induced morphisms +8→ (+B/+8) ⊗ΩX̃B are nonzero $X̃B -morphisms. Take a nef

divisor � on -̃B such that c∗()X̃B ⊗ Ξ̃B) (�) is globally generated. From [16, Proposition 2.10 and

Corollary 2.11], it follows that

`
Ξ̃B ,max(+B) − `Ξ̃B ,min(+B) ≤ (rank+B −1)

(
�̃3−1
B �

�̃3
B

+"
)

and

max(!
Ξ̃B ,max(+B) − `Ξ̃B ,max(+B), `Ξ̃B ,min(+B) − !Ξ̃B ,min(+B)) ≤

rank+B −1
@−1

(
�̃3−1
B �

�̃3
B

+"
)
,

for some positive constant " . They imply that

(!
Ξ̃B ,max(+B) − !Ξ̃B ,min(+B)) ≤

rank+B −1
1− 1

@

(
�̃3−1
B �

�̃3
B

+"
)
.

Hence Proposition 5.2.6 gives

@2�̃3−2
B Δ(�̃B) = �̃3−2

B Δ(+B) ≥ −
(rank+B rankΞ)2

�̃3
B

( rank+B −1
1− 1

@

)2
(
�̃3−1
B �

�̃3
B

+"
)2

.

Taking sufficiently large @, one obtains

�3−2Δ(�) = �̃3−2
B Δ(�̃B) ≥ 0.

�

Using the same argument in [24, section 6], one can recover [6, Theorem 1.1]:

Theorem 5.2.8. Assume that ? = 0, 3 = 2, and the canonical line bundle  X is nef, then we have

22
1()X) ≤ 322()X).
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