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Abstract

In this thesis, we study the deformations of the canonical morphism ϕ : X →PN of irregular

surfaces X of general type with at worst canonical singularities, when ϕ is a finite Galois mor-

phism of degree 4 onto a smooth variety of minimal degree Y inside PN . These surfaces satisfy

K 2
X = 4pg (X )− 8, with pg being an even number bigger than of equal to 4. For each pg ≥ 6,

they are classified in [GP08] into four distinct irreducible families (if pg = 4, then they are clas-

sified into three distinct irreducible families). We show that, when X is general in its family, any

deformation of ϕ has degree greater than or equal to 2 onto its image. More interestingly, we

prove in addition that, with the exception of one of the families when pg = 4 and of another of

the families for each pg ≥ 8, a general deformation of ϕ is two–to–one onto its image, which

is a surface whose normalization is a ruled surface of appropriate genus, unless it is a prod-

uct of genus two curves. In the latter case, it follows that any deformation of ϕ is four–to–one

onto its image. We also show that the deformations of a general surface X of three of the four

families are unobstructed, and consequently, X belongs to a unique irreducible component of

the Gieseker moduli space, which we prove is uniruled. As a consequence of our results we

show the existence of the following moduli components containing irregular quadruple Galois

canonical covers as proper, locally closed subloci:

(1) for any m ≥ 1 and pg = 2m +2, a (8m +20)-dimensional, uniruled, irreducible compo-

nent of M8m,1,2m+2, whose general element is a canonical double cover of a non-normal surface

whose normalization is an elliptic ruled surface with invariant e = 0; in particular a general ele-

ment has a genus m +1 fibration over an elliptic curve.

(2) a 28-dimensional, uniruled irreducible component of M16,2,6, whose general element

is a canonical double cover of a (smooth) ruled surface over a curve of genus 2 with invariant

e =−2.
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Among other things, our results are relevant because they exhibit moduli components such

that the degree of the canonical morphism jumps up at proper locally closed subloci. This is in

contrast with the moduli of surfaces with K 2
X = 2pg −4 (which are double covers of surfaces of

minimal degree), studied by Horikawa (see [Hor76]) but is pleasingly similar to the moduli of

smooth curves of genus g ≥ 3.
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Chapter 1

Introduction

Canonical covers of varieties of minimal degree have a ubiquitous presence in the geometry

of algebraic surfaces and higher dimensional varieties. They appear as extremal cases in a va-

riety of geometric situations. The first, paradigmatic example of a canonical double cover is

the canonical morphism of a hyperelliptic curve. In the case of surfaces, Horikawa’s celebrated

work (see [Hor76]) shows that minimal surfaces of general type on the Noether line K 2
X = 2pg −4

are all canonical double covers of surfaces of minimal degree. Horikawa’s results imply that

the deformations of canonical double covers of surfaces of minimal degree are again canonical

double covers of surfaces of minimal degree, unlike what happens for canonical double cov-

ers in the case of curves of g ≥ 3. Therefore, a natural and intriguing question for an algebraic

surface, is:

Question 1.0.1. If n > 2, does the degree n of a canonical cover change when we deform the cover?

Canonical triple covers X of surfaces of minimal degree (these covers satisfy K 2
X = 3pg (X )−

6) are very few (their geometric genus pg (X ) is bounded by 5 and their images are singular sur-

faces; see [Hor77], [Hor82] and [Kon91]), and, when pg (X ) ≤ 4, their deformations are again

canonical triple covers of surfaces of minimal degree. In contrast, the geometry of canonical

quadruple covers of minimal degree (these covers satisfy K 2
X = 4pg (X )−8) display a wide range

of behaviors. Indeed, they act like general surfaces of general type from a number of geometric

perspectives (see for example [GP11]). They are the first case among low degree covers where

families of irregularity q(X ) ≥ 1 appear. Moreover, as Remark 1.0.2 below indicates, quadruple

canonical covers are the only ones, among covers of smooth surfaces of minimal degree, hav-
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ing both unbounded geometric genus and irregularity (see Theorem 1.1.1), with the possible

exception of degree 6 covers. All this makes canonical quadruple covers stands out as the most

interesting case among canonical covers and are natural candidates for testing Question 1.0.1.

Remark 1.0.2. It follows from a more general result (see [GP04], Theorem 3.2), that there are no

odd degree canonical covers of smooth surfaces of minimal degree other than P2. This together

with [Bea82] implies that, if χ(X ) ≥ 31, then the degree of a canonical cover of a smooth surface

of minimal degree could only be 2,4,6 or 8 (if χ(X ) ≤ 30, then q(X ) is bounded). Since the irreg-

ularity of degree 8 canonical covers is bounded above by 3 when pg ≥ 115 (see [Xiao86]), degree

4 canonical covers are the only ones, among covers of smooth surfaces of minimal degree, hav-

ing unbounded irregularity (and thus unbounded geometric genus, since pg (X ) ≥ 2q(X )−4 by

[Bea82]) except possibly the degree six canonical covers. One can show that there are no smooth

regular degree 6 abelian covers of smooth surfaces of minimal degree. We strongly believe that

there is no such irregular covers as well.

Thus, in this article we focus on the study of the deformations of irregular quadruple Galois

finite canonical covers of smooth surfaces of minimal degree. As the table of Theorem 1.1.1

shows, Galois covers capture by themselves the complexity of behavior mentioned above. We

completely figure out how the deformations are for all excepting one of the existing families for

which we have some partial results. From this study it follows that the answer to Question 1.0.1

(see Table 1 and Theorem 5.1.1) is, in general, positive. Regular quadruple Galois canonical

covers of surfaces of minimal degree also provide positive answers to Question 1.0.1, as the

authors will show in a forthcoming article. From all this we derive interesting consequences for

the moduli of surfaces of general type.
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1.1 Classification of irregular quadruple Galois canonical covers of surface

scrolls.

The classification of irregular quadruple Galois canonical covers of surfaces of minimal degree

was done by the first two authors in [GP08]. We need the technical details of their classification

results, for the purpose of this article, so we will summarize them here. The image of these

covers are smooth rational normal scrolls Y . Recall that a smooth rational normal scroll is a

Hirzebruch surface Fe (e ≥ 0), which is, by definition, P(E ), where E = OP1 ⊕OP1 (−e). Let p :

P(E ) →P1 be the natural projection. The line bundles on Fe are of the form OY (aC0+b f ) where

OY (C0) = OP(E )(1) and OY ( f ) = p∗OP1 (1). The line bundle OY (aC0 + b f ) is very ample if b ≥
ae +1.

Theorem 1.1.1. ([GP08], Theorem 0.1) Let X be an irregular canonical surface and let Y be a

smooth surface of minimal degree. If the canonical bundle of X is base-point-free and ϕ : X → Y

is a quadruple Galois canonical cover, then Y is the Hirzebruch surface F0, embedded by |C0 +
m f |, (m ≥ 1). Let G be the Galois group of ϕ.

(a) If G = Z4, then ϕ is the composition of two double covers p1 : X1 → Y branched along a

divisor D2 and p2 : X → X1, branched along the ramification of p1 and p∗
1 D1, where D1 is

a divisor on Y and with trace zero module p∗
1 OY (−1

2 D1 − 1
4 D2).

(b) If G = Z⊕2, then X is the fiber product over Y of two double covers of Y branched along

divisors D1 and D2, and ϕ is the natural morphism from the fiber product to Y .

More precisely, ϕ has one of the sets of invariants shown in the following table. Conversely, if

ϕ : X → Y is either

(1) the composition of two double covers p1 : X1 → Y , branched along a divisor D2, and p2 :

X → X1, branched along the ramification of p1 and p∗
1 D1, and with trace zero module

p∗
1 OY (−1

2 D1 − 1
4 D2), with D1 and D2 as described in rows 1 of the table below; or
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(2) the fiber product over Y of two double covers p1 : X1 → Y and p2 : X2 → Y , branched re-

spectively along divisors D2 and D1, as described in rows 2, 3, and 4 of the table below,

then ϕ : X → Y is a Galois canonical cover whose Galois group is Z4 in case 1 and Z⊕2 in case 2.

Type pg (X ) Y G D1 ∼ D2 ∼ q(X )

(1)m 2m +2 F0 Z4 (2m +4) f 4C0 1
(1′)m 2m +2 F0 Z⊕2

2 2C0 + (2m +4) f 4C0 1
(2)m (m ≥ 2) 2m +2 F0 Z⊕2

2 (2m +2) f 6C0 +2 f m
(3)m 2m +2 F0 Z⊕2

2 (2m +4) f 6C0 m +3

Table 1.1: Classification of irregular qudruple Galois canonical covers of smooth scrolls

The authors in [GP08] showed that the singularities of the general surfaces of each of these

families are as follows

Type (1)m (1′)m (2)m (3)m

Singularities of a general surface A1 smooth smooth smooth

Table 1.2: Singularities of a general element in the family

As previously noted, the above table shows the existence of families of quadruple Galois

canonical covers with unbounded irregularity. These covers carry irrational pencils:

Remark 1.1.2. (See also [GP11], Remark 3.4) Let X be as in Theorem 1.1.1.

(1) If X is of type (1)m or (1′)m , then X contains an elliptic pencil of genus m+1 hyperelliptic

curves.

(2) If X is of type (2)m , then X contains a genus m pencil of genus 2 curves.

(3) If X is of type (3)m , then X contains a genus m +1 pencil of genus 2 curves.

In addition, some of the families of Theorem 1.1.1 are extremal cases for several inequali-

ties concerning irregular surfaces of general type, such as K 2
X ≥ 2χ(X ), the slope inequality (see
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[LP12]), K 2
X ≥ 2pg (X ) (see [Deb82]) and pg (X ) ≥ 2q(X )−4 (see [Bea82]). Because of all of this,

quadruple Galois covers are interesting from the perspective of the geography of irregular sur-

faces.

Remark 1.1.3. Although the covers of Theorem 1.1.1 are simple iterated double covers in the

sense of [Man97], they are not good sequences. Moreover, the point of view of our article is to

study the deformation of canonical morphisms to projective spaces, rather than the deforma-

tion of finite morphisms between two surfaces. Therefore our study distinctly differs from the

study of simple iterated double covers carried out by Catanese and Manetti.

1.2 Statement of main results

Let X be a surface as in Theorem 1.1.1, and let ϕ be the canonical morphism of X . First we

present a description of our results about the algebraic formally semiuniversal deformation

space of ϕ (which exists by Remark 4.1.7) in the following table (see Theorem 5.1.1).

X is of type ∗
Degree of any
deformation

of ϕ

Description of ϕt

for a general t in the
deformation space of ϕ

Normalization of the image
of ϕt for a general t in the

deformation space of ϕ

(1)m ≥ 2
Double cover onto

a non-normal surface
Elliptic ruled surface

with invariant 0

(1′)m ≥ 2
Double cover onto

a non-normal surface
Elliptic ruled surface

with invariant 0

(2)2 ≥ 2
Double cover onto
a smooth surface

Ruled surface over
a curve of genus 2
with invariant −2

(2)m (m ≥ 3) ≥ 2 Unknown Unknown

(3)1 4
Quadruple cover onto

a smooth surface
P1 ×P1

(3)m (m ≥ 2) ≥ 2
Double cover onto
a smooth surface

Product of a curve of genus two
with a curve of genus m +1

Table 1.3: Deformations of irregular quadruple Galois canonical covers

∗ In Table 1.3, if X is of type (1)m , (1′)m or (2)m , then we ask X to be smooth or to have A1

singularities (these surfaces are general in the family as in Table 1.2).
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It is illustrative to compare the results summarized in the above table with the deformations

of lower degree canonical covers of surfaces. As already mentioned, any deformation of a de-

gree 2, canonical morphisms is of degree 2. More generally, deformations of double or triple

canonical covers of embedded projective bundles over P1 of arbitrary dimension are, respec-

tively, of degree 2 and 3 (see [GGP13b], [GGP16a] and [GGP16b]). Thus Theorem 5.1.1 is in

sharp contrast with these results and, as pointed out before, quadruple covers are the lowest

degree examples of canonical covers for which the degree of the canonical map of a general

deformation drops down, with the possible exception of degree 3 covers with pg = 5.

Remark 1.2.1. We remark that the usual obstruction spaces of Defϕ and DefX are non-zero, but

still we show that these functors are smooth for general surfaces of types (1)m and (1′)m and (2)2

(see Remark 5.2.4).

1.3 Consequences on moduli of surfaces with K 2 = 4pg −8

We outline the description of the moduli components of the surfaces in Table 1.1

X is general
of type

Obstructions to
deformations

of X

Geometry of
unique moduli

component M[X ]

containing X

Canonical morphism
of a general surface

in M[X ]

Normalization of
the image of the

general canonical
morphism

(1)m or (1′)m Unobstructed
Uniruled of
dimension

8m +20

Double cover onto
a non-normal surface

Elliptic ruled surface
with invariant 0

(2)2 Unobstructed
Uniruled of
dimension

28

Double cover onto
a smooth surface

Ruled surface over
a curve of genus 2
with invariant −2

(3)1

see also [Ops05]
Unobstructed

Uniruled of
dimension

6

Quadruple cover onto
P1 ×P1 P1 ×P1

(3)m

see also [Ops05]
Unobstructed

Uniruled of
dimension

3m +3

Double cover onto
P1 ×C2

g (C2) = m +1
P1 ×C2

Table 1.4: Moduli of irregular quadruple Galois canonical covers
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For a given m, there is a unique component of moduli of surfaces of general type that con-

tains all surfaces of type (1)m and (1′)m (see Theorem 5.2.1). There is also a unique moduli

component that contains all surfaces of type (2)2.

The fact that general surfaces X as described in the above table lie on a unique component

of the moduli of surfaces of general type is a consequence of the unobstructedness of X . For

general surfaces X of type (2)m , we can prove the unobstructedness only when m = 2 as Table 2

shows (see Theorem 5.2.2).

If X is a surface of type (3)m , we can say the following: the surface X is a product of smooth

hyperelliptic curves of genus 2 and m + 1. Consequently, DefX is smooth, and for a fixed m,

the surfaces of type (3)m lie on a unique irreducible, uniruled and connected component of

the moduli space of surfaces of general type of dimension 3m +3 (see for example [Ops05]). If

m , 1, then the canonical morphism of a surface C1 ×C2, general in the moduli component,

is of degree 2, and its image is isomorphic to P1 ×C2. If m = 1, the canonical morphism is a

quadruple cover of P1 ×P1 that remains quadruple upon deformation.

It is indeed interesting to note that the obstruction spaces of Defϕ and DefX are non-zero,

but still these functors are smooth for general surfaces of types (1)m and (1′)m (see Remark

5.2.4).

1.4 Comparison with known results on unobstructedness and persistence

of genus two fibrations

The classification of quadruple canonical covers shows the existence of fibrations in all genus,

as is illustrated in Remark 1.1.2. Thus, the results in this article apply to fibrations of all genus.

Deformation and moduli of genus two fibrations have been studied in [Sei95] and [GGP13a].

Therefore, for the special case of genus two fibrations, namely, the surfaces of type (1)1, (1′)1

and (2)m , their results on unobstructedness and persistence of genus two fibrations upon de-

formation do apply. But in this article we show uniruledness not only of these moduli compo-
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nents but also of the moduli components of fibrations of all genus. We make this precise in the

following remark

Remark 1.4.1. We compare our results with the existing results along this direction and high-

light a few consequences.

(1) By Remark 1.1.2, our results show for any genus g , existence of moduli components

whose general element has a genus g fibration over an elliptic curve.

(2) The moduli of surfaces of general type fibered by genus 2 curves have been studied by

Seiler in [Sei95]. The surfaces of type (1)1, (1′)1 and (2)m are fibred by genus 2 curves as we

noted in Remark 1.1.2. In Seiler’s notation ([Sei95], p. 774), surfaces of types (1)1 and (1′)1

have invariant (1,0,4) and surfaces of type (2)m have invariant (m,0,4). Consequently,

one can directly see the unobstructedness of X using [Sei95], Theorem 3.11, for smooth

X of type (1′)1 or (2)2.

(3) A general point of the moduli component of M8,1,4 produced in Theorem 5.2.1 is a surface

with invariant (1,0,4) in Seiler’s notation ([Sei95], p. 774). Consequently, this is compo-

nent of type I described in [Sei95], p. 809. We prove that this component is uniruled, and

the image of the canonical morphism is non-normal for a general surface of this compo-

nent.

(4) A general point of the moduli component of M16,2,5 produced in Theorem 5.2.2 is a sur-

face with invariant (2,−2,4) in Seiler’s notation ([Sei95], p. 774). This is also a component

of type I described in [Sei95], p. 809, and we prove that this component is uniruled.

(5) Notice that smooth surfaces X of type (1′)1 and (2)m satisfy q(X ) = q(C ) where C is the

base curve of the genus 2 fibration described in Remark 1.1.2. By [GGP13a], Theorem

2.7, the genus 2 fibration persists for any deformation of X . In this article, we reprove

this result. Moreover, it is fairly straightforward to see that the normalization of the image
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of the canonical morphism of a general surface of the component of M8,1,4 produced in

Theorem 5.2.1 is in fact the image of its bicanonical morphism.

1.5 Techniques and brief sketch of method of proof.

In the course of our proofs, we will carry out a combination of the following seven steps (not

necessarily in this order).

(1) We show that for a generic surface X of each of the four families described in Theorem

1.1.1, any deformation of X is locally trivial by Corollary 4.1.9 (this is obvious except when X is

of type (1)m). Consequently, we do not need to distinguish between the functors Def and Def′

(see Notations and conventions below).

(2) To show the existence of a component in the formally semiuniversal algebraic defor-

mation space of a generic quadruple Galois canonical cover ϕ of one of the four families, the

degree of whose general element is ≤ 2, we deform ϕ to a double cover. The technique involves

two main steps.

Step 1. We show that for a generic irregular quadruple Galois canonical cover ϕ : X → Y ,→ PN ,

excepting when X is of type (3)1, one can find a smooth intermediate coverϕ′ : Y ′ → Y ,→
PN such thatϕ factors as X → Y ′ → Y ,→PN , andϕ′ can be deformed to a finite birational

morphism. This is achieved by deforming the double structure on Y induced by a first

order deformation of ϕ′ to a reduced (but possibly non-normal) scheme. This is done

with the aid of a fundamental theorem of the deformation theory of finite morphisms,

i.e., Theorem 2.7.11, proved by the first two authors and González in [GGP10].

Step 2. We then show that each such deformation of the intermediate cover Y ′ is the base of a

deformation of the morphism p : X → Y ′ with varying target.

Consequently, there is a component in the algebraic formally semiuniversal algebraic deforma-

tion space of ϕ the degree of whose general element is ≤ 2.
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(3) Next we show with the aid of Proposition 4.1.5 (a consequence of a result of Wehler; see

[Weh86]) that the degree of any deformation of ϕ is ≥ 2, in fact it factors through a deformation

of Y ′.

(4) We describe the image of a general element of this component using the results of Seiler

(see [Sei92]).

(5) Let X be a generic surface of types (1)m , (1′)m or (2)2 . To show the smoothness of Defϕ

and DefX , we first show that Defϕ′ is smooth. Then we show that under some assumption-

swhich are satisfied in our case, the following chain of implications holds;

Defϕ′ is smooth
Thm. 4.2.1=⇒ Defp/PN is smooth

Cor. 4.2.3=⇒ Defϕ is smooth
Cor. 4.2.4=⇒ DefX is

smooth

(6) The uniruledness of the moduli component of X essentially follows from the uniruled-

ness of the algebraic formally semiuniversal deformation space of Defp/PN which we construct

in Theorem 4.2.1.

1.6 Notation and conventions

• We will always work over the field of complex numbers C and a variety is an integral sep-

arated scheme of finite type over C.

2. The symbols ‘∼’ denotes linear equivalence and ‘≡’ denotes numerical equivalence.

3. We will use the multiplicative and the additive notation of line bundles interchangeably.

Thus, for line bundles L1,L2, L1 ⊗L2 and L1 +L2 are the same. L−r , L⊗−r (or −r L) denotes

(L∨)⊗r .

4. If Li is a line bundle on the variety Xi for i = 1,2, L1�L2 is by definition, the line bundle

p∗
1 L1 ⊗p∗

2 L2 on X1 × X2 where pi : X1 × X2 → Xi is the i -th projection for i = 1,2. When

Xi =P1 for i = 1,2, then OP1×P1 (a,b) :=OP1 (a)�OP1 (b).
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5. For a morphism X → Y between algebraic schemes,ΩX /Y (orΩ1
X /Y ) is the sheaf of relative

differentials and TX /Y =H om(ΩX /Y ,OX ) is the relative tangent sheaf. By convention,ΩX

(or Ω1
X ) and TX is obtained by taking Y = Spec(C).

6. For an alegbraic scheme X , let T i (X ) and T i (X ) be the local and global cohomology of

the cotangent complex respectively. It is well known that when X is a projective variety,

the first cotangent sheaf T 1
X = E xt1(ΩX ,OX ) and T 1(X ) = Ext1(ΩX ,OX ).

7. For an algebraic scheme, DefX (resp. Def′X ) is the functor of deformations (resp. locally

trivial deformations) of X .

8. For an algebraic scheme X and a line bundle L on it, Def(X ,L) (resp. Def′(X ,L)) is the functor

of deformations (resp. locally trivial deformations) of the scheme and the line bundle i.e.

the pair (X ,L).

9. For a morphismϕ : X → Z between algebraic schemes, Defϕ (resp. Def′ϕ) is the functor of

deformations (resp. locally trivial deformations) of ϕ with fixed target.

10. For morphism X
π−→ Y → Z of algebraic schemes, Defπ/Z (resp. Def′π/Z ) is the functor of

Z -deformations (resp. locally trivial Z -deformations) of π with varying target.

For a scheme X , if DefX = Def′X , then Def(X ,L) = Def′(X ,L), Defϕ = Def′ϕ and Defπ/Z = Def′π/Z

respectively in the situation of 9, 10 and 11.
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Chapter 2

Deformation and moduli: basic results

2.1 Functor of Artin rings

Let k be an algebraically closed field. Let

(1) A be category of local artinian k− algebras with residue field k.

(2) Â be the category of complete local noetherian k−algebras with residue field k.

(3) A ∗ be the category of local noetherian k− algebras with residue field k.

Definition 2.1.1. A functor of artin rings is a covariant functor

F : A → (Sets)

For A ∈A , an element ζ ∈ F (A) is called an infinitesimal deformation of ζ0 ∈ F (k).

Example 2.1.2. An important class of examples of functors of artin rings hR are obtained by

fixing R ∈ Â and setting

hR (A) = HomÂ (R, A)

Definition 2.1.3. A functor of Artin rings F is called prorepresentable if if F is isomorphic as a

functor to hR for some R ∈ Â .

Remark 2.1.4. A prorepresentable functor F = hR satisifies the following properties

(H0) F (k) consists of one element (the canonical quotient R → R/mR = k where mR is the

unique maximal ideal of R.)
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Let
A′ A"

A

Φ

be a diagram in A and consider the natural map

α : F (A′×A A") → F (A′)×F (A) F (A")

(2.1)

induced by the commutative diagram

F (A′×A A") F (A")

F (A′) F (A)

then

(Hl (left exactness) α is bijective

(H f ) F (k[ε]) has the structure of a finite dimensional k− vector space where k[ε] is the ring of

dual numbers.

A property weaker than Hl that is satisfied by a prorepresentable functor F is the following

(Hε) α is surjective when A = k and A" = k[ε].

Lemma 2.1.5. ([Ser06], Lemma 2.2.1) Let F be a functor of Artin rings satifying conditions H0

and Hε then the set F (k[ε]) has the structure of a k− vector space in a functorial way. This vector

space is called the tangent space of the functor F and is denoted by tF . If F = hR then let tR := tF .

Definition 2.1.6. Every functor of Artin rings F can be extended to a functor

F̂ : Â → (sets)
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by letting, for every R ∈ Â :

F̂ (R) = lim←−−F (R/mn+1
R )

and for every ϕ : R → S:

F̂ (ϕ) : F̂ (R) → F̂ (S)

induced by the maps

F (R/mn
R ) → F (R/mn

R ), n ≥ 1.

An element û ∈ F̂ (R) is called a formal element of F . By definition û can be represented by

a system of elements {un ∈ F (R/mn+1
R )}n≥0 such that for every n ≥ 1, the map

F (R/mn+1
R ) → F (R/mn

R )

induced by

R/mn+1
R → R/mn

R

sends

un 7→ un−1

Lemma 2.1.7. ([Ser06], Lemma 2.2.2) Let R ∈ Â. Then there is a 1− 1 correspondence between

elements of F̂ (R) and the set of morphisms of functors

hR → F .

Definition 2.1.8. Let F → G be a morhism of functors of Artin rings. f is called smooth if for

every surjection µ : B → A in A the natural map

F (B) → F (A)×G(A) G(B)
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induced by the commutative diagram

F (B) G(B)

F (A) G(A)

is surjective. The functor F is called smooth if the morphism from F to the constant functor

G(A) = {one element} for all A ∈A

is smooth; equivalently, if

F (µ) : F (B) → F (A)

is surjective for every surjection µ : B → A in A .

Definition 2.1.9. ([Ser06], Definition 2.2.6) Let F be a functor of Artin rings. A formal element

û ∈ F̂ (R) for some R ∈ Â , is called versal if the morphism defined hR → F defined by û is smooth;

û is called semiuniversal if it is versal and moreover the differential tR → tF is bijective.

Definition 2.1.10. ([Ser06], Section 1.1.1) Let A → R be a ring homomorphism. An A− extension

of R (or of R by I ) is an exact sequence

(R ′,ϕ) : 0 → I → R ′ ϕ−→ R → 0

The set of isomorphism classes of such extensions is denoted by ExA(R, I ). It has a natural R−
module structure. Let A = k. Then the isomorphism classes of extensions

0 → (t ) → R ′ ϕ−→ R → 0

such that t ∈ mR ′ is annihilated by mR ′ (so that (t ) is a k− vector space of dimension one) is

denoted by Exk (R,k).

Definition 2.1.11. ([Ser06], Definition 2.2.9) Let F be a functor of Artin rings. Suppose that v(F )

is a k− vector space such that for every A ∈ A and for evry object ζ ∈ F (A), there is a k− linear

map
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ζv : Ex(A,k) → v(F )

with the following property: ker(ζv ) consists of isomorphism classes of extensions (Ã,ϕ) such

that

ζ ∈ Im[F (Ã) → F (A)]

Then v(F ) is called an obstruction space for the functor F . If F has (0) as an obstruction space

then it is called unobstructed.

2.2 Algebraic deformations and Kodaira-Spencer map

Definition 2.2.1. Let X be a projective scheme and consider a flat family of deformations η of

X parametrized by an affine scheme S = Spec(B), where B is a noetherian k− algebra, namely a

cartesian diagram as follows

X X

Spec(k) Spec(B)

f

π

s

where π is projective and flat and Spec(k) maps to a point s ∈ S. The triple (S, s,η) is called an

algebraic deformation of X .

Given such a deformation, (S, s,η), letηn be the infinitesimal deformation induced by pulling

back η under the natural closed embedding

Spec(OS,s/mn+1) → S.

We have OS,s/mn+1 = ˆOS,s/m̂n+1 and therefore it follows that ( ˆOS,s ,ηn) is a formal deformation

of X defined by η.

Definition 2.2.2. ([Ser06], Definition 2.5.7) A deformation (S, s,η) is called formally universal

(resp. formally semiuniversal, formally versal) if the formal deformation ( ˆOS,s ,ηn) is universal

(resp. formally semiuniversal, formally versal)
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Proposition 2.2.3. ([Ser06], Proposition 2.5.8) Let (S, s,η) be an algebraic deformation of X . Then

(1) Ifη is formally versal (resp. formally semiuniversal or formally universal), then the Kodaira-

Spencer map

kπ,S : TsS → DefX

is surjective (resp. an isomorphism)

(2) If S is nonsingular at s and the Kodaira-Spencer map kπ,S is surjective (resp. an isomor-

phism) then η is formally versal (resp. formally semiuniversal) and X is unobstructed, i.e,

the functor DefX is smooth.

2.3 Algebraization and theorems of Grothendieck and Artin

Definition 2.3.1. ([Ser06], Definition 2.5.9) A formal deformation (Ā, η̂ = {ηn}) is called alge-

braizable if there exists an algebraic deformation (S, s,ζ) and an isomorphism ˆOS,s � Ā sending

ηn → ζn for all n. The deformation (S, s,ζ) is called an algebraization of (Ā, {ηn}).

Definition 2.3.2. ([Ser06], Definition 2.5.10) Let X be an algebraic scheme and Ā ∈ Â . A formal

deformation (Ā, {ηn}) is called effective if there exist a deformation η̄:

X X

Spec(k) Spec(Ā)

π

such that η̂ is the formal deformation associated to η̄.

Theorem 2.3.3. ([Ser06], Theorems 2.5.13, 2.5.14)

(1) (Grothendieck) Let π̄ : X → Specf(Ā) be a formal deformation of X . Assume that there

exist a closed embedding of formal schemes j : X ⊂Pr
Ā

such that π̄= p j where p : Pr
Ā
→

Specf(Ā) is the projection. Then π̄ is effective.
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(2) (Artin) Let X be a projective scheme and (Ā, η̂) be an effective formal versal deformation of

X . Then (Ā, η̂) is algebraizable.

2.4 Deformations of schemes

For a scheme X over an algebraically closed field k, define the functor DefX and Def′X of local

artin k− algebras as follows:

Definition 2.4.1. DefX (A) consists of isomorphism classes of cartesian squares as below with

X → Spec(A) a flat morphism.

X X

Spec(k) Spec(A)

Two deformations X and X ′ are isomorphic if there is an isomorphism of deformations

f : X →X ′ such that we have the following cartesian square

X X X ′

Spec(k) Spec(A) Spec(A)

f

i d

A deformation X is said to be trivial if X � X ×Spec(A). A deformation X is said to be locally

trivial if for every point x ∈ X there exist an open neighbourhood x ∈ Ux ⊂ X such that the

induced deformation of Ux given by X satisfying

Ux X |Ux

Spec(k) Spec(A)

is the trivial deformation of Ux . Let Def′X be the subfunctor of DefX consisting of locally trivial

deformations of X .

An affine scheme Spec(B) is called rigid if any infinitesimal deformation is trivial.

Theorem 2.4.2. ([Ser06], Theorem 1.2.4) Every smooth k− algebra is rigid. In particular, every
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nonsingular affine algebraic variety is rigid.

This shows any infinitesimal deformation of a nonsingular algebraic variety is locally trivial.

Theorem 2.4.3. ([Ser06], Theorem 2.4.1, Proposition 2.4.6, 2.4.8)

(i) For any algebraic scheme X , the functors DefX and Def′X satisfy conditions H0, H̄ and Hε

of Schlessinger’s theorem. Therefore if DefX (k[ε]) (resp. Def′X (k[ε])) is finite dimensional,

then DefX (resp. Def′X ) has a semiuniversal formal element.

(ii) There is a canonical identification of k− vector spaces

Def′X (k[ε]) = H 1(TX )

In particular if X is nonsingular then

DefX (k[ε]) = Def′X (k[ε]) = H 1(TX )

(iii) If X is an arbitrary algebraic scheme then we have a natural identification

DefX (k[ε]) = Exk (X ,OX )

and an exact sequence

0 → H 1(X ,TX ) → DefX (k[ε]) → H 0(X ,T 1
X ) → H 2(X ,TX )

In particular, DefB0 (k[ε]) = T 1
B0

if X = Spec(B0) is affine.

(iv) If X is a reduced algebraic scheme then there is an isomorphism

DefX (k[ε])� Ext1
OX

(Ω1
X ,OX )
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and the previous exact sequence in (i i i ) is isomorphic to the local to global exact sequence

for E xts:

0 → H 1(X ,TX ) → Ext1
OX

(Ω1
X ,OX ) → H 0(X ,E xt1

OX
(Ω1

X ,OX )) → H 2(X ,TX )

(v) If X is an arbitrary algebraic scheme then then H 2(TX ) is an obstruction space for the func-

tor Def′X .

(vi) Let X be a reduced local complete intersection algebraic scheme and char(k = 0), then

Ext2
OX

(Ω1
X ,OX ) is an obstruction space for DefX

2.5 Deformations of line bundles

For a scheme X over an algebraically closed field k, define the functor Def(X ,L) and Def(X ,L) of

local artin k− algebras as follows :

Definition 2.5.1. Def(X ,L)(A) consists of isomorphism classes of the set of pairs (X ,L ) such

that we have the following cartesian square with X → Spec(A) a flat morphism.

X X

Spec(k) Spec(A)

and L is an invertible sheaf on X such that L |X = L. Def′(X ,L)(A) is the subfunctor of Def(X ,L)(A)

consisting of isomorphism classes of pairs (X ,L ) such that X is a locally trivial deformation

of X . Two deformations (X ,L ) and (X ′,L ′) are isomorphic if there is an isomorphism of de-

formations f : X →X ′ and an isomorhism L → f ∗(L ′).

For any scheme X , there is a natural map O∗
X →ΩX defined by u 7→ du/u. For a line bun-

dle L on X , the natural map induced between the cohomology groups H 1(O∗
X )

c−→ H 1(ΩX ) �
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Ext1(OX ,ΩX ) gives an extension

eL : 0 →ΩX →QL →OX → 0.

We set EL :=H om(QL ,OX ), and we obtain the following exact sequence which is known as the

Atiyah exact sequence when X is smooth:

0 →OX → EL → TX → 0. (2.2)

Altmann and Christophersen has generalized [Ser06], Theorem 3.3.11 and showed that H 1(EL)

parametrizes first order locally trivial deformations of (X ,L) when X is reduced.

Theorem 2.5.2. ([AC10], Theorem 3.1 (ii), [Ser06], Theorem 3.3.11) If X is a reduced projective

scheme and L is an invertible sheaf on X , Then

(i) Both DefX ,L and Def′X ,L have a semiuniversal formal element.

(ii) DefX ,L(k[ε]) = Ext1(QL ,OX ) and Def′X ,L(k[ε]) = H 1(EL) and there exists an exact sequence

of k− vector spaces

0 → H 1(EL) → Ext1(QL ,OX ) → H 0(T 1
X ) → H 2(EL)

(iii) The obstructions for DefX ,L lie in H 0(T 2
X ), H 1(T 1

X ) and H 2(EL). The obstructions for Def′X ,L

lie in H 2(EL)

(iv) Given a first order deformation of X with isomorphism class ζ ∈ Ext1(ΩX ,OX ), there exists

a first order deformation of L along ζ if and only if in the Yoneda product

Ext1(ΩX ,OX )×Ext1(OX ,ΩX ) → Ext2(OX ,OX ) = H 2(OX )
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we have ζ · c(L) = 0

(v) If L is very ample and H 1(L) = 0, then any formal deformation of the pair (X ,L) is effective.

It follows from (i ) and (v) and a theorem of Artin ([Ser06], Theorem 2.5.14) that under

conditions in (v), DefX ,L has an algebraic versal deformation.

2.6 Deformations of sections

One can follow the treatment of [Ser06], Section 3.3.4 to define a map M : EL → H 0(L)∨⊗L that

fits into the following commutative diagram where the left vertical map is the one obtained in

(2.2).

OX H 0(L)∨⊗L

EL H 0(L)∨⊗L

m

M

(2.3)

The proof of the following follows by repeating the argument of [Ser06], Proposition 3.3.14 word

by word.

Proposition 2.6.1. Let X be a reduced projective scheme and let L be a line bundle on X . Assume

(X ,L ) is a first order locally trivial deformation of (X ,L) defined by a cohomology class η1 ∈
H 1(EL) according to Theorem 2.5.2. Let s ∈ H 0(L) be a section of L. Then s lifts to a section L if

and only if s ∈ ker(M1(η1)), where M1 : H 1(EL) → Hom(H 0(L), H 1(L)) is induced by M.

When L is base point free, in order to verify the above section-lifting-criterion, we will make

use of [Ser06], (3.39) diagram with exact rows and columns, which is given for smooth case, and

whose existence is a routine computation when X is reduced and projective. In particular, we

have the exact sequence

0 → EL → H 0(L)∨⊗L →NϕL → 0, (2.4)

where ϕL : X →P(H 0(L)∨) is the morphism induced by |L|.
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2.7 Deformations of morphisms

In this section, we provide the main technical results regarding the deformations of morphisms

that are essential to carry out our study.

2.7.1 Preliminaries on deformations of morphisms

Given a morphism ϕ : X → Z of algebraic schemes, we define the functor of local artin k−
algebras Defϕ of deformations of ϕ with fixed target.

Definition 2.7.1. Defϕ(A) consists of the set of isomorphism classes of cartesian diagrams as

shown below with X → Spec(A) a flat morphism.

X X

Y Z ×Spec(A)

Spec(k) Spec(A)

Denote by Def′ϕ the subfunctor consisting of isomorphism classes of cartesian diagrams as

above where X is a locally trivial deformation of X . Two deformations X → Z ×Spec(A) and

X ′ → Z ×Spec(A), are isomorphic if there exist an isomorphism Φ

X

X X

Spec(k)

Φ

which makes the following diagram commutative

X X

Z ×Spec(A)

Φ
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2.7.2 Preliminaries on normal sheaves

Locally trivial deformation theory of a morphism is governed by the normal sheaf that we define

below.

Definition 2.7.2. ([Ser06], 3.4.5) To a morphism ϕ : X → Z of algebraic schemes there exists an

exact sequence of coherent sheaves which defines the sheaf Nϕ called the normal sheaf of ϕ;

0 → TX /Z → TX → Hom(ϕ∗ΩZ ,OX ) →Nϕ→ 0.

The morphism ϕ is called non-degenerate if TX /Z = 0.

A morphism being non-degenerate is equivalent to being unramified in an open dense set.

Theorem 2.7.3. ([Ser06], Theorem 3.4.8) Supposeϕ : X → Z be a morphism of algebraic schemes

with X projective. If ϕ is non-degenerate, then Def′ϕ has a formal semiuniversal deformation. Its

tangent space Def′ϕ(k[ε] = H 0(Nϕ) and H 1(Nϕ) is an obstruction space for Def′ϕ.

Thus, a finite flat morphism between normal Cohen-Macaulay varieties is non-degenerate

and so is the composition of non-degenerate morphisms between normal Cohen-Macaulay

varieties. The following is the general version of [Gon06], Lemma 3.3 whose proof we omit.

Lemma 2.7.4. Let X ,Y , Z be normal Cohen-Macaulay varieties. Letπ : X → Y be a non-degenerate

morphism for which π∗ is an exact functor (this happens if π is finite and flat) and let ψ : Y → Z

be a non-degenerate morphism. Suppose ϕ :=ψ◦π. Then there is an exact sequence;

0 →Nπ→Nϕ→π∗Nψ→ 0.

2.7.3 Normal abelian covers of smooth varieties

Our objects of study are canonical morphisms that factor through abelian covers. We recall

some basic facts about these covers, see [Par91] for further details.
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Definition 2.7.5. Let Y be a variety and let G be a finite abelian group. A Galois cover of Y with

Galois group G is a finite flat morphism π : X → Y together with a faithful action of G on X that

exhibits Y as a quotient of X via G .

Let π : X → Y be a Galois G cover of a smooth variety Y with X normal. Then π∗OX splits as

a direct sum indexed by the characters. More precisely,

π∗OX = ⊕
χ∈G∗

L−1
χ .

Let D be the branch divisor of π. Let C be the set of cyclic subgroups of G and for all H ∈ C ,

denote by SH the set of generators of the group of characters H∗. Then, we may write

D = ∑
H∈C

∑
ψ∈SH

DH ,ψ

where DH ,ψ is the sum of all the components of D that have inertia group H and character ψ.

The sheaves Lχ and the divisors DH ,ψ is called the building data of the cover. For every pair

χ,χ′ ∈ G∗, for every H ∈ C and for every ψ ∈ SH , one may write χ|H = ψiχ and χ′|H = ψiχ′ ,

iχ, iχ′ ∈ {0, . . . ,mH −1} where mH is the order of H . Let Sχ = {(H ,ψ) :χ|H ,ψmH−1}.

Recall that for a variety Z , TZ denotes its tangent sheaf. Furthermore, if Z is smooth and D

is a divisor on Z ,Ωp
Z (logD) denotes the sheaf of logarithmic differential p–forms. The following

is a generalization of [Par91], Corollary 4.1 to the case X normal.

Proposition 2.7.6. Let π : X → Y be an abelian cover with Galois group G, X normal and Y

smooth. Assume the branch divisor D of π is normal crossing. Then,

(π∗Nπ)χ �
⊕

(H ,ψ)∈Sχ

ODH ,ψ(DH ,ψ)⊗L−1
χ .

Proof. We have an exact sequence

0 → TX →π∗TY →Nπ→ 0.
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Now since π is finite and all sheaves in the exact sequence are quasi-coherent we have that the

pushforward is an exact functor and consequently we get the following exact sequence.

0 →π∗TX →π∗π∗TY →π∗Nπ→ 0

Now observe that (π∗π∗TY )χ = TY ⊗L−1
χ . Also note that π∗TX is a reflexive sheaf and hence it is

enough to determine π∗TX in an open subset of codimension ≥ 2. Consider the set S which is

the image of the singular locus of X underπ. Since X is normal we have that S is of codimension

at least two in Y . Removing S and π−1(S) (which is also of codimension 2 in X since π is finite)

from X and Y respectively, we can assume that X and Y are smooth hence by [Par91], Proposi-

tion 4.1(b) we have that (π∗TX )χ = TY (−log DH ,ψ; (H ,ψ) ∈ Sχ)⊗L−1
χ . Since Y is smooth and DH ,ψ

is a normal crossing divisor (since D is normal crossing) we have that TY (−log DH ,ψ; (H ,ψ) ∈ Sχ)

is locally free and the conclusion follows. ä

2.7.4 Multiple structrues on reduced connected schemes

One of the central technique for deforming a finite morphism to a morphism of smaller degree

is to construct a suitable multiple structure on the image of the morphism which are called

ropes.

Definition 2.7.7. Let Y be a reduced connected scheme and let E be a vector bundle of rank

m −1 on Y. A rope of multiplicity m on Y with conormal bundle E is a scheme Ỹ with Ỹred = Y

such that I 2
Y /Ỹ

= 0, and IY /Ỹ = E as OY modules. If E is a line bundle then Ỹ is called a ribbon

on Y .

A rope Ỹ on Y with conormal bundle E is parametrized by its extension class [eỸ ] ∈ Ext1(ΩY ,E )
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of its restricted cotangent sequence, the lower exact sequence in the following diagram

0 E OỸ OY 0

0 E ΩỸ |Y ΩY 0

Let ϕ be a morphism from an integral cohen macaulay variety X to a smooth irreducible

variety Z . Let Y be the scheme theoretic image of ϕ. Let Y
i
,−→ Z denote the closed embedding.

Assume that Y is smooth andϕ induces a finite morphism from X
π−→ Y . Under these conditions

π is surjective and flat. π∗(OX ) is a locally free OY module of some rank n. The trace map gives

a splitting of the injective map OY → π∗(OX ). Hence π∗(OX ) is a direct sum of OY and a locally

free OY module E of rank n −1.

Proposition 2.7.8. ([Gon06], Proposition 3.7) Let X be an integral Cohen-Macaulay projective

variety and let Z be a smooth irreducible variety. Let ϕ : X → Z be a morphism that factors as

ϕ= i ◦π, where π is a finite cover of a smooth variety Y and i : Y ,→ Z is an embedding. Let E be

the trace zero module of π and let I be the ideal sheaf of i (Y ). There exists a homomorphism

H 0(Nϕ)
ψ−→ Hom(π∗(I /I 2),OX )

that appears when taking cohomology on the commutative diagram [Gon06] (3.3.2). Since

Hom(π∗(I /I 2),OX ) = H 0(NY /Z )⊕H 0(NY /Z ⊗E ),

the homomorphism ψ has two components;

H 0(Nϕ)
ψ1−−→ H 0(NY /Z ) and H 0(Nϕ)

ψ2−−→ H 0(NY /Z ⊗E ).

Proposition 2.7.9. ([Gon06], Proposition 2.1) Let Y be a smooth irreducible closed subvariety of
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a smooth irreducible variety Z . Let Y
i
,−→ Z be the closed immersion. Let E be a locally free sheaf

of rank n −1 on Y . Then

(i) There is a 1−1 correspondence between pairs (Ỹ , ĩ ) where Ỹ is a rope on Y with conormal

bundle E and ĩ : Ỹ → Z is a morphism that extends i and elements τ ∈ H 0(NY /Z ⊗E )

(ii) ĩ is a closed immersion if and only if τ is surjective.

2.7.5 Two fundamental theorems of Gallego-González-Purnaprajna

Theorem 2.7.10. ([Gon06], Theorem 3.8) Letϕ be a morphism from an integral cohen macaulay

variety X to a smooth irreducible variety Z . Let Y be the scheme theoretic image ofϕ. Assume that

Y is smooth and ϕ induces a finite morphism from X
π−→ Y with trace zero module E . Let (X̃ ,ϕ̃)

be a first-order locally trivial infinitesimal deformation of X
ϕ−→ Z defined by a global section ν of

Nϕ.

X X̃

Z Z ×Spec(k[ε])

Spec(k) Spec(k[ε])

ϕ ϕ̃

Taking image of ϕ̃ inside Z ×Spec(k[ε]) we have a cartesian diagram

Z Z ×Spec(k[ε])

(Im(Φ))0 Im(Φ)

Spec(k) T

Then

(i) The central fibre (Im(Φ))0 contains Y and is contained in the first order infinitesimal neigh-

bourhood of Y and is equal to the image of the morphism Ỹ → Z obtained from Ψ2(ν).

More precisely the ideal of both the central fibre of the image of ϕ̃ and the image of Ỹ → Z
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inside Z is the kernel of the composite homomorphism

IY ,Z →IY ,Z /I 2
Y ,Z

Ψ2(ν)−−−−→ E

(ii) The image of ϕ̃ is the scheme theoretic union of its central fibre and the flat deformation of

Y defined by Ψ1(ν).

We will make use of the the following theorem of the deformation theory of finite morphisms

to reduce the degree of a general deformation of the canonical morphism.

Theorem 2.7.11. ([GGP10], Theorem 1.4) Let X be a smooth irreducible projective variety and let

ϕ : X → PN be a morphism that factors through an embedding Y ,→ PN with Y smooth and let

π : X → Y be the induced morphism which we assume to be finite of degree n ≥ 2. Let ϕ̃ : X̃ →PN
∆

(∆= Spec
(
C[ε]
ε2

)
) be a first order infinitesimal deformation of ϕ and let ν ∈ H 0(Nϕ) be the class of

ϕ̃. If

(a) the homomorphism ψ2(ν) has rank k > n
2 −1 (resp. ψ2(ν) is a surjective homomorphism ),

and

(b) there exists an algebraic formally semiuniversal deformation of Defϕ and Defϕ is smooth,

then there exists a flat family of morphisms, Φ : X →PN
T over T , where T is a smooth irreducible

algebraic curve with a distinguished point 0, such that

(1) Xt is a smooth irreducible projective variety,

(2) the restriction of Φ to the first order infinitesimal neighbourhood of 0 is ϕ̃, and

(3) for t , 0,Φt is finite and one-to-one onto its image inPN (resp. for t , 0,Φt is an embedding

inside PN ) .
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(4) If ψ2(ν) is a surjective homomorphism, then the central fibre Im(Φ)0 of Im(Φ) given by the

following cartesian diagram

(Im(Φ))0 Im(Φ)

Spec(k) T

is a rope Ỹ with Ỹred = Y with conormal bundle E .

We shall use the theorem above to study the deformations of the canonical morphisms of

the varieties we are interested in. However, we are also interested in the degree of the canonical

morphisms of the moduli components of these varieties. We remark that a general deformation

of the canonical morphism of a regular variety remains canonical by [GGP10], Lemma 2.4 (the

statement requires smoothness, but it holds for varieties with canonical singularities as well,

see [BCG21], proof of Proposition 2.9). Since the varieties we are interested in are not regular,

we need the following proposition.
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Chapter 3

Deformations and moduli of covers of rational normal scrolls

3.1 Varieties of minimal degree and rational normal scrolls

We recall that a subvariety X ⊆ Pr is called non-degenerate if it is not contained in any hyper-

plane. For any non-degenerate variety X ⊆Pr , we have the inequality

deg(X ) ≥ 1+codim(X ).

Definition 3.1.1. A non-degenerate variety X ⊆ Pr is said to be a variety of minimal degree if it

satisfies the equality deg(X ) = 1+codim(X ).

If codim(X ) = 1 then of course the variety X is a quadric hypersurface. One can completely

classify the varieties of minimal degree, but before doing so, we define the rational normal

curves and rational normal scrolls.

Definition 3.1.2. Consider the morphism P1 → Pr defined by (s, t ) 7→ (sr , sr−1t , · · · , st r−1, t r ).

The image of this map is called the standard rational normal curve in Pr . A rational normal

curve in Pr is any curve that is obtained from the standard rational normal curve by an auto-

morphism.

As it turns out that one may generalize this construction and define rational normal scrolls.

Definition 3.1.3. A rational normal scroll X ⊆ Pr of dimension n is the image of a projective

bundle π : P(E ) → P1 through the morphism given by the tautological line bundle OP(E )(1)

where the vector bundle E =O (a1)⊕·· ·⊕O (an) satisfies 0 ≤ a1 ≤ a2 ≤ ·· · ≤ an and deg(X ) =∑
ai .
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In the situation above, if a1 = a2 = ·· · = al = 0 for some 0 < l < n then X is singular and

it is a cone over a smooth rational normal scroll. The vertex or singular locus V of this cone

has dimension l − 1 and let XS = X \V be the smooth part of X . Moreover, X is normal and

X̃ = P(E ) → X is a rational resolution of singularity which is called the canonical resolution of

the rational normal scroll X .

The following theorem provides a complete classification of the varieties of minimal degree.

Theorem 3.1.4. ([EH85], Theorem 1) Let X ⊆Pr is a variety of minimal degree. Then X is a cone

over a smooth such variety. Moreover, if X is smooth and codim(X ) > 1 then X ⊆ Pr is either a

rational normal scroll or a Veronese surface P2 ⊆P5.

3.2 Canonical morphism of smooth projective curves of genus g ≥ 2 and

their deformations

We recall a classical situation.

Theorem 3.2.1. (known classically) For a smooth projective curve C of genus g ≥ 2, the canonical

bundle KC is ample and base point free. Letϕ : C →PN be the morphism induced by the complete

linear series |KC | (hence N +1 = h0(KC ) = g ). Then one of the following happens :

(1) KC is very ample and hence ϕ is an embedding. Then C is called non-hyperelliptic.

(2) ϕ is a double cover of its image Y which is a rational normal curve, i.e, Y �P1, ϕ factors as

C

Y Pg−1

ϕ
π

i

where deg (π) = 2. Then C is called hyperelliptic.

Theorem 3.2.2. (known classically)

(1) Since very ampleness is an open condition, for a non-hyperelliptic curve, a general defor-

mation of ϕ is an embedding.
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(2) Any curve of genus g = 2 is hyperelliptic, which means for any deformation

C CT

PN P
g−1
T

ϕ ΦT

Φt : Ct →Pg−1 is a two-to-one morphism onto its image for t , 0

(3) For a hyperelliptic curve of genus g > 2, there exist a deformation

C CT

PN P
g−1
T

ϕ ΦT

Φt : Ct →Pg−1 is an embedding t , 0.

(4) (known classically and can be seen more systematically using Theorem 2.7.11) that one can

choose ΦT such that (Im(ΦT ))t satisfying

(Im(ΦT ))0 Im(ΦT )

Spec(k) T

satisfies,

(i) (Im(ΦT ))t is canonically embedded non-hyperelliptic curve

(ii) (Im(ΦT ))0 is an embedded rope Ỹ of multiplicity two on Y � P1 where the latter is

embedded as a rational normal curve. Such a double structure is also known as a

rational ribbon. These are proper and local complete intersection schemes over k and

hence by [Kle80], (7, pg 46,), [Har66], (V , 9.3,9.7, V I I , 3.4) and [Con00], (pg 157) has

a dualizing sheaf which is very ample which in fact gives the embedding in this case.

Remark 3.2.3. Hence a general deformation of a hyperelliptic curve of genus g ≥ 3 is non-

hyperelliptic and it hence it forms a proper locally closed loci in the moduli Mg of smooth curves

of genus g .
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3.3 Canonical morphisms of surfaces of general type and their deforma-

tions

We look at the analogous situation for surfaces of general type.

3.3.1 Noether’s inequality and Beauville’s result

A minimal surface of general type X satisfies an important inequality

K 2
X ≥ 2pg −4

known as Noether’s inequality. Together with Bogomolov-Miyaoka-Yau inequality the geogra-

phy looks like the following

Figure 3.1: Geography of surfaces of general type

Theorem 3.3.1. Let X be a smooth minimal complex surface of general type and let ϕ|KX | : X d

Ppg (X )−1 be its canonical map

(i) ([Bea82]) If the image of ϕ|KX | is a surface, then the degree d of the canonical map is less

than or equal to 36 and for χ(X ) ≥ 31 geometric genus it is bounded by 9.
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(ii) ([Xiao86]) Xiao showed that if pg (X ) ≥ 132, the degree is bounded by 8.

3.3.2 Deformations and moduli of surfaces of general type

In [Gie77], David Gieseker showed the existence of a quasiprojective coarse moduli of canonical

models of surfaces of general type.

Theorem 3.3.2. ([Gie77])

(i) For any pair of positive integers (x, y) there exist a (possibly empty) quasiprojective variety

M = Mx,y which is a coarse moduli space of canonical models X of surfaces of general type

with χ(OX ) = x and K 2
X = y.

(ii) Two minimal surfaces of general type are deformation equivalent if and only if the isomor-

phism classes of their canonical models belongs to the same connected componenets of the

moduli space.

Let X the canonical model of a surface of general type. Then X has a formally universal

algebraic deformation with base Def(X ) and finite automorphism group Aut(X )

Theorem 3.3.3. ([Man97], Corollary 2.4) Let X be the canonical model of a surface of general

type. Then the germ of M at [X ] is analytically isomorphic to the quotient Def(X )/Aut(X )

3.3.3 Canonical double covers, moduli of surfaces with K 2
X = 2pg − 4 and

Horikawa’s results

Horikawa in his well-known work [Hor76] (Annals of Mathematics, 1976) showed

Theorem 3.3.4. ([Hor76]) Let X be the canonical model of a smooth minimal algebraic surface

of general type with K 2
X = 2pg −4, then KX is base point free and the morphism induced by |KX |

is a ramified double cover over a surface of minimal degree inside Ppg−1.
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Surfaces on the Noether line are also called Horikawa surfaces. In the same paper Horikawa

classified the deformation types and studied the moduli of surfaces on the Noether line.

Theorem 3.3.5. (Deformations of Horikawa surfaces, [Hor76]) A general deformation of a Horikawa

surface (resp. its canonical model) is again a Horikawa surface (resp. the canonical model of a

Horikawa surface).

Remark 3.3.6. The result in fact holds for more general "Horikawa varieties" or "hyperelliptic

varieties" in higher dimensions (by the work of Fujita, Kobayashi, Bangere, Chen, Gallego , see

[Fu83], [Ko92], [BCG21]).

Remark 3.3.7. One can see that deformations of canonical morphisms of Horikawa surfaces or

for more general Horikawa varieties are similar to those of smooth curves of genus g = 2 .

3.3.4 Canonical covers of rational normal scrolls and non-existence of triple

covers

Set-up 3.3.8. Suppose X is a projective surface with worst canonical singularities and ample

and base point free canonical bundle KX . Let ϕ : X →Ph0(KX )−1, be the morphism induced by the

complete linear series of KX . Let Im(ϕ) = Y be smooth. Assume that ϕ induces a finite morphism

π : X → Y and that i : Y ,→Ph0(KX )−1 be an embedding of minimal degree.

X

Y PN

ϕ
π

We want to study deformations of ϕ.

Theorem 3.3.9. ([Kon91]) There exist no canonical triple cover over a smooth surface of minimal

degree.

Theorem 3.3.10. ([GP04], Theorem 3.2) There are no odd degree canonical covers over a smooth

surface of minimal degree other than P2
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3.3.5 Quadruple Galois canonical covers over smooth scrolls and moduli of

surfaces with K 2
X = 4pg −8

Our aim is to study deformations of ϕ when ϕ is as in Set-up 3.3.8 and

(i) X is irregular and

(ii) ϕ is a degree four Galois cover onto its image

Remark 3.3.11. As the first two authors show in [GP08], there exist both irregular and regular

surfaces satisfying the above conditions unlike Horikawa surfaces. We refer to section 1.1 for a

detailed discussion on irregular quadruple Galois canonical covers of smooth rational normal

scrolls.
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Chapter 4

Deformations of iterated double covers of embedded varieties

4.1 Deformations of iterated double covers of embedded varieties

Throughout this subsection, we will work with the following diagram where X , Y and Z are

normal local complete intersection (abbreviated as lci) projective varieties, i : Z ,→ PN is an

embedding, and g : X → Z is a twice iterated double cover:

X Y Z ,→PNπ

g

p

We set ψ := i ◦ p, and ϕ := ψ ◦π. Notice that Def′ϕ has a formal semiuniversal deformation

space by [Ser06], Theorem 3.4.8, and our objective is to determine the degree of a general locally

trivial deformation of ϕ. We will show that under suitable hypothesis, ϕ can be locally trivially

deformed to a two-to-one morphism onto its image. We first need the following technical fact

that we will put as a remark for future reference.

Remark 4.1.1. Let Y be a normal lci projective variety. Let L be a line bundle on Y and B be

a divisor in H 0(L). Assume H 1(L) = 0. Let f : Y → T be a deformation of Y over a smooth

projective pointed variety (T,0) ( f is assumed to be proper and flat). Assume that L lifts to a line

bundle L on Y . Then (possibly after shrinking T ) f∗(L ) is locally free of rank h0(L) on T . We
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have a Cartesian diagram as shown below.

Y ×T P( f∗(L )) P( f∗(L ))

Y T

p

q g

f

Consequently, p : Y ×T P( f∗(L )) → P( f∗(L )) is a deformation of Y with q∗(L ) and the inci-

dence divisor B ∈ H 0(q∗(L )) giving natural lifts of L and B respectively on Y ×T P( f∗(L )). Now

since f∗(L ) is locally free, by shrinking T , we can always construct a section s : T → P( f∗(L ))

and B×P( f∗(L )) T is a lift of the divisor B to Y . Conversely any lift B of B on Y is obtained by a

pullback induced by a section s : T →P( f∗(L )). ■

Remark 4.1.2. Let X and Y be normal lci projective varieties with Y smooth and consider mor-

phisms X
π−→ Y

ψ−→ PN . Let π be a finite 2 : 1 morphism with trace zero module L∗ on Y . Let

ϕ=ψ◦π. Let L∗ =ωY ⊗ψ∗(OPN (−1)). Then ϕ∗(OPN (1)) =ωX . ■

Theorem 4.1.3. Let X be a normal lci projective variety and let Y and Z be smooth projective

varieties. Let π : X → Y be a finite, flat morphism of degree two onto Y with trace zero module

Eπ = L∗ and branched along a divisor B ∈ H 0(L⊗2), and let p : Y → Z be a finite (hence flat)

morphism of degree two onto Z with trace zero module Ep . Let i : Z ,→ PN be an embedding,

ϕ= i ◦p ◦π and ψ= i ◦p. Suppose

(a) H 2(OY ) = 0,

(b) Defψ is smooth,

(c) ψ2 : H 0(Nψ) → H 0(NY /PN ⊗Ep ) is non-zero.

(d) H 1(L⊗2) = 0

Then there exist a flat family X → T of deformations of X over a smooth pointed affine algebraic

curve (T,0) and a T -morphism Φ : X →PN
T satisfying:
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(1) Φ =Ψ ◦Π, where Y → T is a flat family, Ψ : Y → PN
T , and Π : X → Y are T -morphisms

with Y0 = Y , Π0 =π, and Ψ0 =ψ,

(2) Πt is a finite morphism of degree 2 for all t , and Ψt is birational onto its image for all

t ∈ T − {0},

(3) Suppose thatϕ is the canonical morphism of X and that Eπ = L∗ =ωY ⊗ψ∗(OPN (−1)), then

Φt can be taken to be the canonical morphism of Xt

Proof. We will prove the assertions (1) and (2) in two steps.

Step 1. In this step, we deform ψ into a birational morphism. Notice that Defψ is unobstructed,

and has an algebraic formally semiuniversal deformation by [BGG20], Proposition 1.5. More-

over, ψ2 is non-zero, hence we apply Theorem 2.7.11 and one gets that there exists a family

Y of smooth projective varieties, proper and flat over a smooth pointed affine algebraic curve

(T,0) and a T -morphism Ψ : Y →PN
T with:

(1) Ψ0 =ψ,

(2) Ψt is birational onto its image for all t ∈ T − {0},

Step 2. We construct a deformation X →Y →PN
T → T of ϕ. For this we need to construct a de-

formation Π : X →Y → T of the finite morphism π : X → Y . Let q : Y → T be the deformation

obtained by applying the forgetful map to Y → PN
T → T . We need to construct lifts L ⊗2 and

B of the line bundle L⊗2 and the divisor B respectively on Y . Note that since H 2(OY ) = 0, we

have that the map Def(Y ,L) → DefY is smooth by ([Ser06], Proposition 2.3.6). Hence by [Ser06],

Proposition 2.2.5, (iv), we have a lift L of L on Y . The conclusion follows from Remark 4.1.1.

This proves statements (1) and (2).

For part (3) we note thatωY /T⊗Ψ∗(OPN
T

(−1)) is a deformation of L∗, since L∗ =ωY ⊗ψ∗(OPN (−1)).

Hence −2(ωY /T ⊗Ψ∗(OPN
T

(−1)) is a lift of L⊗2. Now we apply Remark 4.1.1 to construct a relative

cover using a lift B ∈ H 0(−2(ωY /T ⊗Ψ∗(OPN
T

(−1)))) of the divisor B ∈ H 0(L⊗2). Since for each
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t , the trace zero module L∗
t = ωYt ⊗Ψ∗

t (OPN
t

(−1)), we have that for each t , Φt is the canonical

morphism of X t by Remark 4.1.2. ä

Remark 4.1.4. Let X be a normal lci projective variety with ample and base point free canonical

bundle K . Let T be a smooth affine curve and Y
Φ−→ PN

T → T be a deformation of the canonical

morphism of X , i.e, for all t ∈ T , Φt is given by the complete linear series ωYt . Suppose that

the degree of the finite morphism Φt is d for a general t ∈ T . Then there exist an irreducible

component UX of the universal deformation space of X such that for a general closed point

u ∈UX , the canonical morphism of the fibre Xu of the universal family over UX has degree less

than or equal to d .

Proof. Choose an irreducible component UX containing T . Since T is smooth this embedding

factors through the reduced induced structure U 0
X of UX . Consider the pullback X

p−→ U 0
X of

the universal family to U 0
X . Since pg (Xs) is constant for s ∈ U 0

X , we have that p∗(ωX /U 0
X

) is

locally free of rank h0(ωX ). Then X
Ψ−→ P(p∗(ωX /U 0

X
)) →U 0

X is a deformation of the canonical

morphism of X such that for each s ∈ U 0
X , Ψs is the canonical morphism of Xs . Since U 0

X is

integral, we have that degree of Ψs is upper semicontinuous. Now Y
Φ−→PN

T → T is obtained by

pulling back X
Ψ−→P(p∗(ωX /U 0

X
)) →U 0

X to T by the embedding T ,→U 0
X . This shows that degree

of Ψs is less than or equal to d for a general s ∈U 0
X . Since closed points of UX are the same as

closed points of U 0
X , we are done. ■

Now we will find the the condition following the proof of [Weh86], Proposition 1.10, under

which any deformation of ϕ factors through a deformation of π (with varying target).

Proposition 4.1.5. Let π : X → Y be a finite, flat morphism with trace zero module E between

projective varieties with X normal lci, and Y smooth. Let ψ : Y → Z be a non-degenerate mor-

phism to a smooth projective variety Z . Let ϕ =ψ◦π be the composed morphism. Assume that

any deformation of X is locally trivial (e.g. when X is smooth) and H 0(Nψ⊗E ) = 0. Then the

natural map between the functors Defπ/Z → Defϕ is smooth.
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Proof. Note that Defπ/Z and Defϕ has formal semiuniversal deformations. Because of the fol-

lowing diagram

.. . H 0(Nπ) T 1(π/Z ) H 0(Nψ) H 1(Nπ) T 2(π/Z ) H 1(Nψ) . . .

. . . H 0(Nπ) H 0(Nϕ) H 0(π∗Nψ) H 1(Nπ) H 1(Nϕ) H 1(π∗Nψ) . . .

α1 β1 α2 β2

the map between the functors Defπ/Z → Defϕ is smooth ifα1 is surjective andα2 is injective (see

[Ser06], Proposition 2.3.6). But that happens if β1 is surjective and β2 is injective. The assertion

follows since β2 is always injective and β1 is surjective if H 0(Nψ⊗E ) = 0. ä

The following is the main result that we will use to prove Theorem 5.1.1. The prove of this

result is an immediate consequence of Theorem 4.1.3 and Corollary 4.1.5.

Corollary 4.1.6. Assume the hypotheses (a), (b), (c) and (d) of Theorem 4.1.3. Furthermore,

assume Defϕ has an algebraic formally semiuniversal deformation space, any deformation of X

is locally trivial, and H 0(Nψ ⊗E ) = 0. Then a general deformation of ϕ is a composition of a

double cover over a deformation Y ′ of Y followed by a morphism of Y ′ → PN that is birational

onto its image, consequently, it is a two-to-one morphism onto its image.

Remark 4.1.7. Let X be a surface with ample and globally generated canonical bundleωX with

at worst canonical singularities. Let ϕ be the canonical morphism of X . Then H 0(TX ) = 0.

Furthermore, DefX , Defϕ, and Def(X ,ωX ) have algebraic formally universal deformation spaces.

■

We have assumed in Proposition 4.1.5 and Corollary 4.1.6 that any deformation of X is

locally trivial. This hypothesis is satisfied if X is smooth. We will show the hypothesis to be true

in more generality, namely, if we allow X to have A1 singularities. We shall establish this fact

using a corollary of the following proposition.

Proposition 4.1.8. Let X be a normal lci projective variety. Assume π : X → Y is double cover of

a smooth projective variety Y with ramification divisor R and branch divisor B ∈ H 0(L⊗2). Then
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we have the following four-term exact sequence

0 → H 0(Nπ) → H 0(π∗OY (B)|R ) → H 0(T 1
X ) → H 1(Nπ) (4.1)

Proof. Let Y ′ := V(L−1) := Spec(Sym(L−1)) denote the total space of the line bundle L. Let p ′ :

Y ′ → Y be the projection. We have an embedding of i : X ,→ Y ′ as a divisor in Y ′ such that

π = p ′ ◦ i . The conormal sheaf N ∗
X /Y ′ := I /I 2 of X in Y ′ is given by π∗(−OY (B)) (since X

is defined as the scheme of zeroes of t n − p∗B where t ∈ p∗(L)). Since X is a local complete

intersection, we have an exact sequence

0 →π∗(−OY (B)) →ΩY ′ ⊗OX →ΩX → 0. (4.2)

Now since p ′ : Y ′ → Y is a smooth morphism, we have that ΩY ′/Y is an invertible sheaf isomor-

phic to p ′∗(−L) and we have an exact sequence

0 →π∗(ΩY ) →ΩY ′ ⊗OX →π∗(−L) → 0. (4.3)

We also have another exact sequence as follows

0 →π∗(−OY (B)) →π∗(−L) →π∗(−L)⊗OR → 0. (4.4)

Now apply snake lemma to the following diagram where the first row is (4.2)

0 π∗(−B) ΩY ′ ⊗OX ΩX 0

0 π∗(−L) π∗(−L) 0 0

and use the previous two short exact sequences (4.3) and (4.4) to get the following exact se-

quence.

0 →π∗(ΩY ) →ΩX →π∗(−L)⊗OR → 0
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Since π is non-degenerate, we get that TX /Y = 0 and hence by dualizing the above sequence we

have the following exact sequence

0 → TX →π∗TY → E xt1(π∗(−L)⊗OR ,OX ) →T 1
X → 0. (4.5)

Notice that E xt1(π∗(−L)⊗OR ,OX ) = π∗(L ⊗OR (R)) = π∗(OY (B))⊗π∗OR = π∗(OY (B))⊗OR , and

consequently (4.5) becomes

0 → TX →π∗TY →π∗(OY (B))⊗OR →T 1
X → 0. (4.6)

The exact sequence of the proposition follows from the fact that Nπ = ker(π∗(OY (B))⊗OR →TX ).

ä

Corollary 4.1.9. In the set-up of Proposition 4.1.8, assume that B has normal crossing and

H 1(Nπ) = 0. Then Def′X = DefX .

Proof. Since B has normal crossing, it follows from Proposition 2.7.6 that H 0(Nπ)�H 0(π∗OY (B)|R ).

Consequently, H 0(T 1
X ) = 0 by the exact sequence of Proposition 4.1.8. The assertion then fol-

lows from the five-term exact sequence

0 → H 1(TX ) → Ext1(ΩX ,OX ) → H 0(T 1
X ) → H 2(TX ) → T 2(X )

associated to the spectral sequence E p,q
2 = H p (T q

X ) =⇒ T p+q (X ) and general deformation the-

ory. ä

Remark 4.1.10. Assume all the hypotheses of Corollary 4.1.9. Further assume X is a surface

with at worst canonical singularities and DefX is smooth. Then it follows from the work of

Burns and Wahl (see [BW74]) that if X ′ is the minimal resolution of X , then DefX ′ is smooth.
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4.2 Geometry of deformation spaces of iterated double covers

One of our objective is to describe the moduli components of surfaces of type (1)m and (1′)m .

We will see that for a fixed m, there is a unique component of the moduli space that contains all

surfaces of both types, and that this component is uniruled. The proof of this fact is based on

the following result.

Theorem 4.2.1. Assume the hypothesis (a), (b) and (d) of Theorem 4.1.3. Further assume B is

normal crossing (in particular any deformation of X is locally trivial by Proposition 2.7.6 and

Corollary 4.1.9). Then Defπ/PN has a smooth uniruled algebraic formally semiuniversal defor-

mation space Vπ/PN .

Proof. We construct an algebraic formally semiuniversal family of deformations of the functor

Defπ/PN

Xπ/PN →PN
V
π/PN

→Vπ/PN

over a smooth pointed irreducible base (Vπ/PN ,0).

Let Yψ → PN
Uψ

→Uψ be the algebraic formally semiuniversal family of deformations of the

functor Defψ (this space exists, see for example the proof of Theorem 4.1.3).

Let (YL ,L ) →UL be the algebraic formally semiuniversal deformation space of the functor

Def(Y ,L). Let Y →U be the algebraic formally semiuniversal deformation space of the functor

DefY . Forgetful maps between functors induce a cartesian diagram, which in turn induces a

cartesian diagram of algebraic formally semiuniversal deformation spaces as shown below.

Defψ×DefY Def(Y ,L) Def(Y ,L)

Defψ DefY

//
Uψ×U UL UL

Uψ U

Since H 2(OY ) = 0, we have that the forgetful map Def(Y ,L) → DefY is smooth (see [Ser06],

Proposition 2.3.6) and hence the map Defψ×DefY Def(Y ,L) → Defψ is smooth. Now using the fact

that Defψ is smooth, we have that Defψ×DefY Def(Y ,L) is smooth and hence Uψ×U UL is smooth.

We set U(ψ,L) :=Uψ×U UL . The semiuniversal families form the follow form the following carte-
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sian diagram

(Yψ×Y YL →PN
U(ψ,L)

,Lψ) (YL ,L )

(Yψ→PN
Uψ

) Y

Hence (Yψ×Y YL →PN
U(ψ,L)

→U(ψ,L),Lψ) is a smooth algebraic formally semiuniversal deforma-

tion of Defψ×DefY Def(Y ,L) where Lψ is the pullback of L under the morphism Yψ×Y YL →YL .

Let the map Yψ,L := Yψ×Y YL →U(ψ,L) be denoted by p(ψ,L). Since H 1(L⊗2) = 0, we have that

p(ψ,L)∗(Lψ
⊗2) is free after possibly shrinking U(ψ,L). Let Vπ/PN :=P(p(ψ,L)∗(Lψ

⊗2)) and consider

the Cartesian diagram

Yψ,L ×Uψ,L Vπ/PN Vπ/PN

Yψ,L Uψ,L

Choose a basis
M⊕

i=0
OU(ψ,L) si of p(ψ,L)∗(Lψ

⊗2). Let Xi ∈ H 0(OV
π/PN (1)) = H 0(p(ψ,L)∗(Lψ

⊗2)∗), with

0 ≤ i ≤ M be the dual basis. Now on Yψ,L×U(ψ,L) Vπ/PN , consider the divisor B =
M∑

i=0
Xi si . One can

construct a relative Galois double cover Xπ/PN →Yψ,L×U(ψ,L) Vπ/PN given by the equation t 2−B

in the total space of q∗(Lψ) where t is the tautological section of q∗(Lψ) and q : Yψ,L ×U(ψ,L)

Vπ/PN →Yψ,L . The fibre of this relative double cover over a point (u, [r ]) ∈Vπ/PN with u ∈U(ψ,L)

and r ∈ H 0(L ⊗2
ψ,u) is the double cover Xπ/PN ,u → Yψ,L,u given by the line bundle Lψ,u and the

divisor r ∈ H 0(L ⊗2
ψ,u). This is therefore a smooth algebraic deformation of the functor Defπ/PN .

Now note that given a flat family of polarized schemes f : (C ,M ) → S over an affine scheme

S with f∗(M ) free, giving a divisor D ∈ H 0(M ) flat over S is equivalent to giving a unique S

- valued point in P( f∗(M )) and hence a section S → P( f∗(M )). This along with the fact that

U(ψ,L) is formally semiuniversal implies that Vπ/PN is a smooth algebraic formally semiuniversal

deformation of the functor Defπ/PN . Also since it is a projective bundle over a smooth affine

scheme, it is uniruled. ä

Remark 4.2.2. Under the assumptions of Theorem 4.2.1, it is easy to prove the smoothness of

Defπ/PN only using the existence of a formally semiuniversal deformation, without the explicit

46



construction. Indeed, since H 1(Nπ) = 0 by Proposition 2.7.6, and the assumptions H 1(L⊗2) =
H 2(OY ) = 0, it follows from the following exact sequence

· · ·→ H 0(Nπ) → T 1(π/PN ) → H 0(Nψ) → H 1(Nπ) → T 2(π/PN ) → H 1(Nψ) →···

Since H 1(Nπ) = 0, and [Ser06], Proposition 2.3.6 that the forgetful map Defπ/PN → Defψ is

smooth. Consequently Defπ/PN is smooth as Defψ is smooth by hypothesis. ■

The following corollary shows that if Defϕ has an algebraic formally universal deformation

space, then that space is also smooth and uniruled under suitable assumptions. In fact, one can

also expect to determine the degree of a general deformation of ϕ.

Corollary 4.2.3. Assume the hypotheses (a), (b), (c), and (d) of Theorem 4.1.3. Further assume B

is normal crossing, and

(a) Defϕ has an algebraic formally universal deformation space,

(b) H 0(Nψ⊗Eπ) = 0.

Then the the following happens:

(1) the natural forgetful map Defπ/PN → Defϕ is smooth,

(2) the algebraic formally universal deformation space of Defϕ is smooth and uniruled, and

(3) a general deformation of ϕ is a composition of a double cover over a deformation Y ′ of Y

followed by a morphism of Y ′ →PN that is birational onto its image.

Proof. The smoothness of Defπ/PN → Defϕ is a consequence of Proposition 4.1.5, thanks to

assumption (b). Moreover, Defϕ is smooth since Defπ/PN is smooth (see [Ser06], Proposition

2.2.5 (iii)), thanks to Theorem 4.2.1.

Now we show that the algebraic formally semiuniversl deformations space of Defϕ, which

we denote by Uϕ, is uniruled. In the notation of Theorem 4.2.1, after possibly shrinking Vπ/PN
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we can assume that Vπ/PN =U(ψ,L)×Pm where over a point u ∈U(ψ,L), the fibre which is a projec-

tive space that parametrizes the divisors in the linear system of Lψ,u which are branch divisors

of the finite morphism Xu → Yu . The conclusion follows since a branch divisor is uniquely de-

termined by the finite morphism.

Finally, part (3) follows from Corollary 4.1.6. ä

Now we provide the consequences of the above results on the deformations of X .

Corollary 4.2.4. Assume all the hypotheses of Corollary 4.2.3. Furthermore assume DefX has an

algebraic formally semiuniversal deformation space. If the natural forgetful map Defϕ → DefX

has surjective differential map then DefX is smooth and the algebraic formally semiuniversal

deformation space of X is uniruled.

Proof. Since Defϕ is smooth by Corollary 4.2.3, the smoothness of DefX follows from [Ser06],

Proposition 2.3.7. Composing by the smooth surjection Vπ/PN →Uϕ, we have a smooth surjec-

tion Vπ/PN →U where U is the algebraic formally universal deformation space of DefX . Lastly,

U is uniruled since X is normal and for a normal abelian cover, the branch divisors are uniquely

determined by X . ä
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Chapter 5

Deformations and moduli of irregular quadruple Galois

canonical covers

5.1 Deformations of irregular quadruple Galois canonical covers of surface

scrolls

The objective of this section is to study the deformations of the canonical morphisms of sur-

faces of each of the four types (1)m , (1′)m , (2)m and (3)m (general in the first three cases and

arbitrary in the fourth) described in Theorem 1.1.1. In particular, we aim to prove the following

Theorem 5.1.1. Let X be an irregular surface with at worst canonical singularities. Assume

the canonical bundle ωX is ample and globally generated, and the canonical morphism ϕ is a

quadruple Galois cover onto a smooth surface of minimal degree, i.e, X belongs to one of the

four families described in Theorem 1.1.1. If X is of type (1)m , (1′)m or (2)m , assume furthermore

that X is smooth or has A1 singularities. Then we have the following description of the algebraic

formally semiuniversal deformation space of ϕ (that exists by Remark 4.1.7).

(1) If X belongs to the family of type (1)m (m ≥ 1), (1′)m (m ≥ 1), (2)2 or (3)m (m ≥ 2), then there

exist an irreducible component in the algebraic formally semiuniversal deformation space

of ϕ, such that its general element is a two-to-one morphism onto its image

(I) which is a non-normal variety whose normalization is an elliptic ruled surface with

invariant e = 0, if X is a surface of type (1)m or (1′)m (we will show in Theorem 5.2.1

that in this case ϕ is unobstructed and hence this is the only component);
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(II) which is a smooth surface ruled over a smooth curve of genus 2 with invariant e =−2,

if X is a surface of type (2)2 (we will show in Theorem 5.2.1 thatϕ is unobstructed and

hence this is the only component);

(III) which is a product of a smooth curve of genus 2 with a smooth non-hyperelliptic curve

of genus m +1 if X is a surface of type (3)m (m ≥ 2);

and is induced by the complete linear series of a line bundle numerically equivalent to ωX .

(2) If X is of type (3)1, any deformation of ϕ is a morphism of degree four onto its image which

is F0 and is induced by the complete linear series of a line bundle numerically equivalent to

ωX .

(3) Any deformation of ϕ is of degree ≥ 2. In particular, there do not exist any irreducible com-

ponent in the algebraic formally semiuniversal deformation space of ϕ, such that its gen-

eral element is birational onto its image.

First we fix the notations that we are going to use throughout this section. It follows from

Theorem 1.1.1 that if π : X → Y is an irregular quadruple Galois canonical cover of a smooth

variety of minimal degree Y with trace zero module E , then i : Y = P1 ×P1 ,→ PN and the em-

bedding is given by the complete linear series |OY (C0+m f )|. We have N = 2m+1 and we iden-

tify OY (C0) with OY (1,0) and OY ( f ) with OY (0,1). Notice that TY = OY (2,0)⊕OY (0,2), whence

h0(TY ) = 6. One has the following two exact sequences;

0 →OY (2,0)⊕OY (0,2) → TPN |Y →NY /PN → 0, (5.1)

0 →OY →OY (1,m)⊕N+1 → TPN |Y → 0. (5.2)

Lemma 5.1.2. Let Y = P1 ×P1 ,→ PN be the embedding is given by the complete linear series

|OY (C0 +m f )|.
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(1) H 0(TPN |Y ) = (N +1)2 −1, H 0(NY /PN ) = (N +1)2 −7.

(2) H 1(TPN |Y ) = 0, H 1(NY /PN ) = 0.

Proof. Since Y is regular with H 2(OY ) = 0, the assertions about H j (TPN |Y ) for j = 0,1 follows

from (5.2). Consequently, it is easy to compute H j (NY /PN ) for j = 0,1 using (5.1). ä

Now we fix our notations for nonrational ruled surfaces. A nonrational ruled surface over

a nonrational smooth curve C of genus g , 0 is by definition a projective bundle W = P(E ′)

where E ′ is a rank 2 vector bundle on C . We will always assume that E ′ is normalized, i.e., E ′ has

sections, but any twist of E ′ by any line bundle of negative degree has no section. By definition

e := −deg(det(E ′)) is the invariant of W . A section of p ′ : W → C determines a sectional curve

C ′
0 with self intersection −e, and let f ′ be the numerical class of a fiber of p ′. It is known that

Pic(W ) =ZC ′
0 ⊕p ′∗Pic(C ). In particular, the Néron-Severi group NS(W ) =ZC ′

0 ⊕Z f ′ satisfying

C ′2
0 =−e, C ′

0 f ′ = 1, f ′2 = 0.

If a is a divisor on E ′, a f ′ denotes the pull-back p ′∗a. The canonical bundle ωW = −2C ′
0 + (e+

ωC ) f ′, where e := det(E ′), consequently

ωW ≡−2C ′
0 − (e +2−2g ) f ′.

5.1.1 Deformations of canonical morphisms for types (1)m and (1′)m

For these surfaces, we have the following diagram.

X X1 Y
i
,→PNπ1

π

p1

We also know that p1∗OX1 = OY ⊕OY (−2C0). Since we have identified OY (C0) with OY (1,0), we

can write p1∗OX1 =OY ⊕OY (−2,0). It is easy to see that X1 = E×P1 whereψ : E →P1 is a smooth
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double cover, withψ∗OE =OP1 ⊕OP1 (−2), i.e. E is a smooth elliptic curve. We setϕ1 := i ◦p1 and

call B the branch divisor of π1.

Proposition 5.1.3. Let X be a surface of type (1)m or (1′)m . Then the following happens:

(1) h1(OX1 ) = 1 and h2(OX1 ) = 0,

(2) h0(Np1 ) = 4 and h1(Np1 ) = 0,

(3) h0(TPN |Y ⊗OY (−2,0)) = 1 and h1(TPN |Y ⊗OY (−2,0)) = 0,

(4) h0(NY /PN ⊗OY (−2C0)) = 3 and h1(NY /PN ⊗OY (−2C0)) = 0,

(5) h0(Nϕ1 ) = (N +1)2 and h1(Nϕ1 ) = 0; consequently ϕ1 is unobstructed.

Proof. (1) Follows from h j (OX1 ) = h j (OY )⊕h j (OY (−2,0) and Künneth formula.

(2) We apply Proposition 2.7.6. Since Y is regular, it follows that h0(Np1 ) = h0(OY (4,0))−1 =
4. Furthermore, since H 2(OY ) = 0, we obtain h1(Np1 ) = h1(OY (4,0)) = 0.

(3) Tensor (5.2) by OY (−2,0) to obtain the following exact sequence

0 →OY (−2,0) →OY (−1,m)⊕N+1 → TPN |Y ⊗OY (−2,0) → 0.

It follows that h0(TPN |Y ⊗OY (−2,0)) = 1, h1(TPN |Y ⊗OY (−2,0)) = 0.

(4) This is a consequence of the long exact sequence associated to the exact sequence (5.1)

tensored by OY (−2,0) and part (3).

(5) We have the following short exact sequence by lemma 2.7.4

0 →Np1 →Nϕ1 → p∗
1 NY /PN → 0. (5.3)

It follows that h0(Nϕ1 ) = h0(Np1 )+h0(p∗
1 NY /PN ) = h0(Np1 )+h0(NY /PN )+h0(NY /PN⊗OY (−2C0)),

since h1(Np1 ) = 0 by part (2). We obtain h0(Nϕ1 ) = (N +1)2 thanks to part (2) and Lemma 5.1.2.

The fact h1(Nϕ1 ) = 0 follows from the vanishings of h1(Np1 ) (proven in part (2)), h1(NY /PN )

(proven in Lemma 5.1.2), and h1(NY /PN ⊗OY (−2C0)) (proven in part (4)). ä
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Corollary 5.1.4. Let X be a surface of type (1)m or (1′)m . If X is smooth or has A1 singularities,

then there exists a smooth, affine irreducible algebraic curve T for which the following happens;

(a) Φt : Xt → P2m+1 is a morphism of degree two from a normal projective surface with at

worst canonical singularities for all t ∈ T−{0}. Further for any t ∈ T−{0}, the normalization

of Im(ϕt ) is an elliptic ruled surface which is the projectivization of a rank two split vector

bundle on the elliptic curve and has invariant e = 0. Further one can take Φt to be the

canonical morphism of Xt .

(b) Φ0 : X0 →P2m+1 is the canonical morphism ϕ : X →PN .

Moreover the forgetful map from Defπ1/PN → Defϕ is smooth and hence any deformation ofϕ is a

morphism of degree ≥ 2, and a general deformation ofϕ is a morphism of degree 2 onto its image.

Hence in particular ϕ cannot be deformed to a birational morphism.

Proof. We check the hypotheses of Theorem 4.1.3. Hypothesis (a) has been checked in Propo-

sition 5.1.3 (1). To check hypothesis (b), we need to prove that Defϕ1 is smooth, which we

have showed in Proposition 5.1.3 (5). To check hypothesis (c), we need to check H 0(Nϕ1 ) →
H 0(NY /PN ⊗OY (−2,0)) is non-zero. This is a consequence of the long exact sequence associ-

ated to (5.3), and the facts that h1(Np1 ) = 0 (proven in Proposition 5.1.3 (2)), and h0(NY /PN ⊗
OY (−2,0)), 0 (proven in Proposition 5.1.3 (4)). The fact that Xt is a normal projective surface

with at worst canonical singularities follow thanks to [Kaw99]. Now note that since h1(TPN |Y ⊗
OY (−2,0)) = h1(TPN |Y ) = 0 (by Proposition 5.1.3 (3) and Lemma 5.1.2 (2)), we have that h1(ϕ∗

1 (TPN )) =
0 and Defϕ1 → DefX1 is smooth. Hence the map H 0(Nϕ1 ) → H 1(TX1 ) is surjective. By [Sei92],

Lemma 12, there exist an open set in H 1(TX1 ) such that for a smooth curve along a first order

deformation belonging to the open set a general deformation of X1 along the curve is an elliptic

ruled surface which is the projectivization of a split rank two vector bundle with invariant e = 0.

Also H 0(Nϕ1 ) → H 0(NY /PN ⊗OY (−2,0)) is surjective and there exist an open set of non-zero

elements in H 0(NY /PN ⊗OY (−2,0)). Hence one can choose an element (in fact an open set of

elements) from H 0(Nϕ1 ) such that it maps to a non-zero element in H 0(NY /PN ⊗OY (−2,0)) and
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the general induced deformation X1t of X1 is an elliptic ruled surface which is the projectiviza-

tion of a split rank two vector bundle with invariant e = 0. Finally to check hypothesis (d), note

that H 1(L⊗2) = H 1(B) = 0 by Proposition 5.2.3, (1).

Note that Eπ1 = p∗
1 (OY (−C0 − (m +2) f )). Let Ep1 =OY (−2C0). Then

ωX1 = p∗
1 (ωY ⊗OY (2C0)) = p∗

1 (OY (−2C0 −2 f )⊗OY (2C0)) = p∗
1 (−2 f ).

Thus, we obtain ωX1 ⊗ϕ∗
1 (OPN (−1)) = p∗

1 (−2 f )⊗p∗
1 (−C0−m f ) = p∗

1 (OY (−C0− (m+2) f )) = Eπ1 .

Hence by Theorem 4.1.3, we can take Φt to be the canonical morphism of X t .

The second assertion follows from Corollary 4.1.6. The existence of an algebraic formally

semiuniversal deformation space of ϕ follows from Remark 4.1.7. Since X has at worst A1

singularities, B has normal crossings, so it is easy to check that H 1(Nπ1 ) = 0 (which we have

verified Proposition 5.2.3 (1)). Consequently, Corollary 4.1.9 shows that any deformation of X

is locally trivial. To finish the proof, we need to show that H 0(Nϕ1 ⊗Eπ1 ) = 0 where Eπ1 is the

trace zero module of π1. We make use of the fact that X1 = E ×P1 for an elliptic curve E . Recall

thatψ : E →P1 is the morphism induced by the restriction of p1, satisfiesψ∗OE =OP1 ⊕OP1 (−2).

We have

π1∗OX =OX1 ⊕ (ψ∗OP1 (−1)�OP1 (−m −2)).

Also recall that TX1 = (OE �OP1 (2))⊕OX1 and Eπ1 =ψ∗OP1 (−1)�OP1 (−m −2). It is easy to check

that H 1(TX1 ⊗Eπ1 ) = 0. One has the following pullback of the Euler sequence;

0 →OX1 → p∗
1 OY (1,m)⊕N+1 →ϕ∗

1 TPN → 0. (5.4)

We tensor (5.4) by Eπ1 and take the long exact sequence of cohomology. Notice that H 1(Eπ1 ) =
0, and H 0(p∗

1 OY (1,m)⊗Eπ1 ) = 0, consequently H 0(ϕ∗
1 TPN ⊗Eπ1 ) = 0. Now consider the exact

sequence;

0 → TX1 →ϕ∗
1 TPN →Nϕ1 → 0. (5.5)
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It follows from the long exact sequence of cohomology that H 0(Nϕ1 ⊗Eπ1 ) = 0. ä

Before moving on to the next case, we make a remark, that will help us to see that for these

surfaces H 1(Nϕ), 0.

Remark 5.1.5. It follows from the vanishing of H 1(TX1 ⊗Eπ1 ) and the long exact sequence asso-

ciated to (5.5) that h1(Nϕ1⊗Eπ1 ) ≥ h1(ϕ∗
1 TPN ⊗Eπ1 ) ≥ h1(TPN |Y ⊗OY (−1,−m−2)) = N+1, where

the last equality follows from (5.2). ■

Corollary 5.1.6. Let X be a surface of type (1)m or (1′)m . If X is smooth or has A1 singularities,

then there exists an irreducible component Uϕ of the of the algebraic formally semiuniversal de-

formation space of ϕ (that exists by Remark 4.1.7) whose general elements are two-to-one mor-

phisms onto their image whose normalization is an elliptic ruled surface with invariant e = 0.

Further, there does not exist any component of the algebraic formally semiuniversal deformation

space of ϕ whose general elements are morphisms that are birational onto their image.

Proof. Since the curve constructed in Corollary 5.1.4 is irreducible, it is contained in an irre-

ducible component. Now the assertion follows by applying semicontinuity to the reduced in-

duced structure of the irreducible component (note that a general closed point of an irreducible

scheme is the same as a general closed point of its reduced induced structure). ä

The corollary of the following proposition show that the image of a general morphism in

the irreducible component Uϕ constructed above is necessarily non-normal. We remark that

what we prove in the following proposition is a slightly stronger statement than what we need

in order to prove Corollary 5.1.8; to prove Corollary 5.1.8, we only need the conclusion of the

following proposition for e = 0.

Proposition 5.1.7. There does not exist a surface of general type X ′ with at worst canonical sin-

gularities and K 2
X ′ = 4pg (X ′)−8 that satisfies both of the following properties.

(1) There exist an ample and base point free line bundle K ≡ωX ′ with h0(K ) = pg (X ′).
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(2) The morphism ϕ′ induced by the complete linear series |K | is two-to-one onto its image

which is a smooth elliptic ruled surface with invariant e ≥ 0.

Proof. Suppose there exist such a surface X ′ with a numerically canonical bundle K satisfying

the properties in the proposition. Let the image of the morphism ϕ given by |K | be W so that

the morphism ϕ factors as

X ′ π′
−→W ,→PN ′

where N ′+1 = pg (X ′). Let the very ample line bundle on W be denoted by aC ′
0+b f ′. Note that

we have ϕ′∗(O
PN ′ (1)) = K . The morphism is induced by the complete linear series and hence

h0(K ) = h0(aC ′
0 +b f ′)+h0((aC ′

0 +b f ′)⊗Eπ′) = N ′+1,

where Eπ′ is the trace zero module of π′. But now Eπ′ ≡ KW ⊗ (−aC ′
0 −b f ′). Hence h0((aC ′

0 +
b f ′)⊗Eπ′) = 0 which gives h0(aC ′

0 +b f ′) = pg (X ′). Since hi (aC ′
0 +b f ′) = 0 for i = 1,2 (see for

example [GP96], Proposition 3.1), we obtain by Riemann-Roch

1

2
(−a2e −ae +2ab +2b) = pg (X ′).

Now note that K =ϕ∗(OPN (1)) =π∗(aC ′
0+b f ′). Hence K 2 = 2(aC ′

0+b f ′)2 = 2(−a2e+2ab). Using

the relation K 2 = 4pg (X ′)−8, we obtain

2(−a2e +2ab) = 2(−a2e −ae +2ab +2b)−8.

This gives 2b −4 = ae. But very ampleness of aC ′
0 +b f ′ implies a ≥ 1, b ≥ ae +3 which implies

−ae ≥ 2 which is a contradiction if e ≥ 0. ä

Corollary 5.1.8. Consider the irreducible component Uϕ obtained in Corollary 5.1.6. There exist

an open set U 0
ϕ ⊆Uϕ such that for a closed point t ∈U 0

ϕ, Im(ϕt ) is non-normal, whose normaliza-

tion is an elliptic ruled surface with e = 0 which is the projectivization of a rank two split vector
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bundle on the elliptic curve.

Proof. Since we are concerned with closed points t ∈ Uϕ, we can take the reduced induced

structure of Uϕ and consider the pullback of the formally semiuniversal family. Thus, without

loss of generality, one can assume that Uϕ is integral. Let X
Φ−→ PN

Uϕ
→ Uϕ be the algebraic

formally semiuniversal family ofϕ. Since the forgetful map Defπ1/PN → Defϕ is smooth we have

that the above deformation factors as X
Π1−→ X1

Φ1−−→ PN
Uϕ

→Uϕ (Φ = Π1 ◦Φ1). Let Y = Im(Φ) =
Im(Φ1). Since X is integral, Y is integral. Since Uϕ is integral, we have by generic flatness that

Y →Uϕ is flat (after possibly shrinking Uϕ). Consider the induced deformation X1 →Uϕ. By

our choice of Uϕ, we have that there exist t ∈Uϕ such that X1t is an elliptic ruled surface which

is the projectivization of a rank two split vector bundle on the elliptic curve with invariant e = 0.

Then by [Sei92], Lemma 12, we have that for a general t ∈Uϕ, X1t has the same property. Now

for a general t ∈Uϕ, Im(Φt ) = Im(Φ1t ) =Yt . Also for a general t ∈Uϕ, we have that X1t → Yt is

the normalization map. Assume for a general t , that Yt is smooth. Then Yt �X1t = Im(ϕt ). But

this is contradiction to Proposition 5.1.7. ä

5.1.2 Deformation of canonical morphism for type (2)m (m ≥ 2)

Now we do analogous calculations for surfaces type (2)m . In this case, We have the following

diagram where p1∗OX1 =OY ⊕OY (−3,−1) and p2∗OX2 =OY ⊕OY (0,−m −1).

X X1

X2 Y PN

π1

π2 p1

p2 i

(5.6)

Notice X2 = P1 ×C for a smooth curve C that is a double cover ψ : C → P1 with ψ∗OC = OP1 ⊕
OP1 (−m −1). Set ϕ j = p j ◦ i for j = 1,2 and call B the branch divisor of π2.

Proposition 5.1.9. Let X be a surface of type (2)m (m ≥ 2). Then the following happens;

(1) h1(OX2 ) = m and h2(OX2 ) = 0,
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(2) h0(Np2 ) = 2m +2 and h1(Np2 ) = 0,

(3) h0(TPN |Y ⊗OY (0,−m −1)) = h1(OY (0,−m −1)) = m and h1(TPN |Y ⊗OY (0,−m −1)) = 0,

(4) h0(NY /PN ⊗OY (0,−m −1)) = 5m −2 and h1(NY /PN ⊗OY (0,−m −1)) = 0,

(5) h0(Nϕ2 ) = (N +1)2 +7m −7 and h1(Nϕ2 ) = 0 where ϕ2 = p2 ◦ i ; consequently, ϕ2 is unob-

structed.

Proof. (1) Follows from h j (OX2 ) = h j (OY )⊕h j (OY (0,−m −1) and Künneth formula.

(2) We apply Proposition 2.7.6. Since Y is regular, it follows that h0(Np0 ) = h0(OY (0,2m +
2))−1 = 2m +2. Furthermore, since H 2(OY ) = 0, we obtain h1(Np2 ) = h1(OY (0,2m +2)) = 0.

(3) The assertion follows by tensoring the exact sequence (5.2) by OY (0,−m −1) and taking

the long exact sequence of cohomology.

(4) This is obtained by tensoring (5.1) by OY (0,−m −1) and taking cohomology.

(5) As before, the assertion follows from the following exact sequence (see Lemma 2.7.4)

0 →Np2 →Nϕ2 → p∗
2 NY /PN → 0.

Since h1(Np2 ) = 0, we obtain h0(Nϕ2 ) = h0(Np2 )+h0(NY /PN )+h0(NY /PN ⊗OY (0,−m −1)). We

get the value of h0(Nϕ2 ) from part (2), (4) and Lemma 5.1.2. Finally, h1(Nϕ2 ) = 0 by part (2), (4)

and Lemma 5.1.2. ä

Corollary 5.1.10. Let X be a surface of type (2)m (m ≥ 2), which is smooth or has A1 singularities.

(1) Suppose m = 2, then there exists a smooth, affine algebraic curve T for which the following

happens;

(a) Φt : Xt → P5 is a morphism of degree two from a normal projective surface with at

worst canonical singularities for all t ∈ T −{0}. Further for any t ∈ T −{0}, the normal-

ization of Im(ϕt ) is a ruled surface over a smooth curve of genus 2 and has invariant

e =−2. Further one can take Φt to be the canonical morphism of Xt .
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(b) Φ0 : X0 →P5 is the canonical morphism ϕ : X →PN .

(2) The forgetful map from Defπ2/PN → Defϕ is smooth and hence any deformation ofϕwill be

a morphism of degree ≥ 2 onto its image. Hence in particular

(a) ϕ cannot be deformed to a birational morphism;

(b) a general deformation of ϕ is a morphism of degree 2 onto its image if m = 2.

Proof. (1) The existence of the curve T so that for a general t ∈ T , Φt has degree two follows

from Theorem 4.1.3, Proposition 5.1.9 and [Kaw99]. Note that since h1(TP5 |Y ⊗OY (0,−3)) =
h1(TP5 |Y ) = 0 (by Proposition 5.1.9 (3), Lemma 5.1.2 (2)), we have that h1(ϕ∗

2 (TP5 )) = 0 and

Defϕ2 → DefX2 is smooth. Hence the map H 0(Nϕ2 ) → H 1(TX2 ) is surjective. By [Sei92], Lemma

12, there exist an open set in H 1(TX2 ) such that for a smooth curve along a first order deforma-

tion belonging to the open set a general deformation of X2 along the curve is a ruled surface

over a smooth curve of genus 2 with invariant e = −2. Also H 0(Nϕ2 ) → H 0(NY /P5 ⊗OY (0,−3))

is surjective and there exist an open set of non-zero elements in H 0(NY /P5 ⊗OY (0,−3)). Hence

one can choose an element (in fact an open set of elements) from H 0(Nϕ2 ) such that it maps to

a non-zero element in H 0(NY /P5 ⊗OY (0,−3)) and the general induced deformation X2t of X2

is a ruled surface over a smooth curve of genus 2 with invariant e =−2. The trace zero module

of the finite map π2 is Eπ2 =ωX2 ⊗ϕ∗
2 (OPN (−1)); the proof of this statement follows exactly as in

Proposition 5.1.3, (6). The fact thatΦt can be taken to be the canonical morphism of X t follows

from Theorem 4.1.3.

(2) Recall that X2 = P1 ×C for a smooth curve C that is a double cover ψ : C → P1 with

ψ∗OC =OP1 ⊕OP1 (−m −1). We have the following splitting of π2∗OX :

π2∗OX =OX2 ⊕ (OP1 (−3)�ψ∗OP1 (−1)).

Also, TX2 = (OP1 �ψ∗OP1 (1−m))⊕OP1 (2)�OC , and Eπ2 = OP1 (−3)�ψ∗OP1 (−1) is the trace zero

module of π2. It is easy to check that H 1(TX2 ⊗Eπ2 ) = 0. One has the following pullback of the
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Euler sequence;

0 →OX2 → p∗
2 OY (1,m)⊕N+1 →ϕ∗

2 TPN → 0.

By tensoring the above exact sequence by Eπ1 and taking cohomology, we obtain H 0(ϕ∗
2 TPN ⊗

Eπ2 ) = 0. Consequently, the exact sequence;

0 → TX2 →ϕ∗
2 TPN →Nϕ2 → 0.

shows that H 0(Nϕ2 ⊗Eπ2 ) = 0, and the assertion follows from Proposition 4.1.5 (and Corollary

4.1.6). ä

The following corollary is analogous to Corollary 5.1.6 and follows immediately from Corol-

lary 5.1.10.

Corollary 5.1.11. Let X be a surface of type (2)m (m ≥ 2) which is smooth or has A1 singularities.

(1) If m = 2, there exists an irreducible component Uϕ of the algebraic formally semiuniversal

deformation space of ϕ (that exists by Remark 4.1.7) whose general elements are a two-

to-one morphisms onto their image, whose normalization is a ruled surface over a smooth

curve of genus 2 and has invariant e =−2.

(2) There does not exist any component of the algebraic formally semiuniversal deformation

space of ϕ whose general elements ara morphisms that are birational onto their image.

The following propositions and corollary show that the image of a general morphism in the

irreducible component constructed above is smooth. It also shows that this open set intersects

the locally closed subloci where the deformed morphism is again the canonical morphism.

Recall that for a ruled surface X → C of invariant e over a smooth curve of genus g ≥ 1, we

denote C0 and f denote the numerical classes of a section and a fibre respectively satisfying

C ′2
0 =−e, f ′2 = 0 and C ′

0 · f ′ = 1.

Proposition 5.1.12. Suppose that there exist a flat family (X2 → T,L ) of polarized surfaces ruled

over a curve C of genus m over a smooth one dimensional base T with
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(1) X20 has invariant 0 and L0 ≡C ′
0 +2m f ′

(2) X2t has invariant −m or −(m −1) accordingly as m is even or odd.

Then after possibly shrinking T , Lt ≡C ′
0 + 3m

2 f ′ if m is even and Lt ≡C ′
0 + 3(m−1)

2 f ′ if m is odd.

Proof. We prove the statement for m even. The proof is identical for m odd. Let X20 = X2. Let

X2
q−→C be the smooth morphism. Consider the following commutative diagram.

. . . T 1(X2/C ) = H 1(TX2/C ) T 1(q) H 1(TC ) T 2(X2/C ) = H 2(TX2/C ) T 2(q) H 2(TC ) . . .

. . . T 1(X2/C ) = H 1(TX2/C ) H 1(TX2 ) H 1(q∗(TC )) T 2(X2/C ) = H 2(TX2/C ) H 2(TX2 ) H 2(q∗(TC )) . . .

α1 β1 α2 β2

Note that since q∗(OX2 ) =OC , H i (q∗(TC )) = H i (TC ) for i = 1,2. Hence the maps β1 is surjective

and the map β2 is injective and therefore α1 is surjective and α2 is injective. This implies that

the forgetful map Defq → DefX2 is smooth. Hence there exist a deformation of C → T of C

so that X2 → T factors as X2
Q−→ C → T . Fix a line bundle OC (1) of degree one on C . Since

H 2(OC ) = 0, we have that the line bundle OC (1) lifts to a line bundle OC (1). Now the numerical

class of Q∗(OC (1)) restricts to the numerical class of f ′ on the central fibre and it is the pullback

of a degree one line bundle on Ct on a general fibre. Hence the numerical class of f ′ on X2

deforms to the numerical class of f ′ on X2t . Now suppose that a line bundle of numerical class

C ′
0 in X2 deforms to a line bundle of numerical class aC ′

0 +b f ′ on X2t for t , 0. Using the fact

that their self intersections are the same and noting that C ′2
0 = 0 on X2 while C ′2

0 = m on X2t ,

we have that a2m +2ab = 0. Suppose that a = 0. Then for sufficiently large k, C ′
0 +k f ′ which is

very ample on X20 deforms to (k +b) f ′ which is not ample. Hence a , 0 and b = −am
2 . Then C ′

0

on X20 deforms to a(C ′
0 − m

2 f ′) on X2t . Considering that on X20, C ′
0 · f ′ = 1, we have that a = 1.

Hence our statement is proven. ä

We prove a slightly stronger version of a result we need to prove Corollary 5.1.14. More

precisely we will use the result proven below for m = 2.

Proposition 5.1.13. Suppose X is a ruled surface over a curve C of genus m with invariant −m
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or −(m −1) accordingly as m is even or odd. Then a line bundle L ≡C0 + 3m
2 f is very ample if m

is even and a line bundle L ≡C0 + 3(m−1)
2 f is very ample if m is odd.

Proof. We use the following criterion for very ampleness (see [LM05] Corollary 2.13): let |H | be

the complete linear series of a line bundle H ≡ C0 +b f . Then |H | is very ample if and only for

any two points P and Q on C , h0(H − (P +Q) f ) = h0(H)−4.

Let m be even and consider L ≡C0 + 3m
2 f on a ruled surface with invariant −m over a curve

of genus m with m ≥ 2. We need to show, for any two points P and Q on C ,

h0(L− (P +Q) f ) = h0(L)−4.

Let X = P(E ) where E is normalized and since e < 0, we have that E is stable. Since higher

pushforward of any bundle of numerical equivalence class C0 +b f is zero we can compute the

above cohomology by pushing forward to the base curve of genus m. Notice that L−(P +Q) f ≡
C0 + ( 3m

2 −2) f . Hence it is enough to show that for any two line bundles L1 and L2 on C with

degree 3m/2−2 and 3m/2 respectively, we have

h0(L1 ⊗E ) = h0(L2 ⊗E )−4.

For simplicity, let us denote L1 by OC ( 3m
2 −2), and L2 by OC ( 3m

2 ). Applying Riemann-Roch to the

vector bundles OC ( 3m
2 −2)⊗E and OC ( 3m

2 )⊗E and taking subtracting we get

h0
(
E

(
3m

2

))
−h0

(
E

(
3m

2
−2

))
= h1

(
E

(
3m

2

))
−h1

(
E

(
3m

2
−2

))
+c1

(
E

(
3m

2

))
−c1

(
E

(
3m

2
−2

))
.

Since E is of rank two we have that c1(E ( 3m
2 )− c1(E ( 3m

2 −2)) = 4. Hence we are done if we show

h1
(
E

(
3m

2

))
= h1

(
E

(
3m

2
−2

))
= 0.

Note that h1(E ( 3m
2 )) = h0(E ∗( m

2 −2). Now the slope of the vector bundle µ(E ∗( m
2 −2)) =−2.
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Also since E is stable we have that E ∗( m
2 −2) is stable. Since its slope is negative we have that

h0(E ∗( m
2 −2)) = 0.

Now note that h1(E ( 3m
2 − 2)) = h0(E ∗( m

2 )). Note that deg(E ∗( m
2 )) = 0 and E ∗( m

2 ) is stable

since E is stable. Then h0(E ∗( m
2 )) = 0 since for degree 0 vector bundles the existence of a section

contradicts stability. The proof for the case m odd follows exactly along the same lines. ä

Corollary 5.1.14. In Corollary 5.1.10 (1), we can choose the curve T so that after possibly shrink-

ing T , for t ∈ T , t , 0, Im(Φt ) is smooth and Φt can be taken to be the canonical morphism of

Xt .

Proof. We resume notations of Corollary 5.1.10. Consider the factorization X
π2−→ X2

p2−→ Y
i−→PN .

Let ϕ2 = i ◦p2. Note that since X2 =C ×P1, where C is a smooth curve of genus 2, we have that

it is a ruled surface over C and has invariant e = 0. Consider L =ϕ∗
2 (OPN (1)) = p∗

2 (OY (C0 +2 f ))

(recall C0 and f are the classes of a section and fibre of Y ). Since X2 is a double cover branched

along 8 f , we have that p∗
2 (OY (C0)) ≡ aC ′

0 and p∗
2 (OY ( f )) ≡ b f ′. We have ab = 2. Then setting

h0(p∗
2 OY (C0)) = 2 we have that a = 1 and hence b = 2. Hence p∗

2 (OY (C0 +2 f )) ≡C ′
0 +4 f ′.

Note that the pair (X2,L) is unobstructed since h2(EL) = 0 (since h2(OX2 ) = h2(TX2 ) = 0).

Also since h2(OX2 ) = 0, Def(X2,L) → DefX2 is smooth. Choose a smooth curve T from the smooth

versal deformation space of (X2,L). Let (X2
σ−→ T,L ) be the family obtained. Then for a gen-

eral such curve, for t , 0, X2t has invariant −2. By Proposition 5.1.12, Lt ≡ C ′
0 +3 f ′ which is

very ample by Proposition 5.1.13. Since H 1(L) = 0, (easy to check by projection formula) we

have that (after shrinking T ), σ∗(L ) is locally free of rank h0(L) and we get a morphism X2
Φ2−−→

P(σ∗(L )) → T which is an embedding for t , 0 since it is given by the complete linear series of a

line bundle numerically equivalent to C ′
0+3 f ′, which is very ample. Note that Eπ2 =ωX2⊗ϕ∗

2 (L∗)

and let B ∈ H 0(−2(ωX2 ⊗ϕ∗
2 (L∗))) be the divisor giving π2. Note that −2(ωX2/T ⊗Φ∗

2 (OPN
T

(−1)))

is a lift of −2(ωX2 ⊗ϕ∗
2 (L∗)). Then by Remark 4.1.1 one can construct a lift B of B and hence a

relative double cover Π2 since H 1(OX2 (B)) = 0 (easy to check, see the proof of Proposition 5.2.5

(1)). Consider Φ=Π2 ◦Φ2. For t , 0, Φt is the composition of a double cover Π2t followed by an

embeddingΦ2t of a smooth surface given by the complete linear series of a very ample line bun-
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dle Lt . Moreover Π2t is branched along −2(ωX2t ⊗L ∗
t ). Hence Φt is the canonical morphism

of Xt (by Remark 4.1.2) and its image is smooth. ä

5.1.3 Deformation of canonical morphism for type (3)m

Note that the surfaces of type (3)m are of the form C1 ×C2 where C1 is a smooth hyperelliptic

curve of genus 2 and C2 is a smooth hyperelliptic curve of genus m +1. Let ψ1 and ψ2 be the

canonical morphisms of C1 and C2 respectively. Notice that the morphism ϕ is the morphism

ψ : C1 ×C2 −→P1 ×Pm , where ψ=ψ1 ×ψ2, composed by the Segre embedding P1 ×Pm ,→P2m+1

given by the complete linear series |OP1 (1)�OPm (1)|. Thus, we have the following diagram.

X =C1 ×C2

Y =P1 ×P1 Z =P1 ×Pm PN

ψ
π

i1 i2

(5.7)

We have ψ1∗OC1 =OP1 ⊕OP1 (−3). Further, ψ2 = i ′ ◦ψ′
2 where ψ′

2 : C2 →P1 is a double cover sat-

isfying ψ′
2∗OC2 =OP1 ⊕OP1 (−m −2), and i ′ :P1 ,→Pm is embedding. We also have the following

diagram

X
π2−→ X2

p2−→ Y ,→PN . (5.8)

Notice that X2 =P1 ×C2, and set ϕ2 := i ◦p2.

Corollary 5.1.15. Let X be a (smooth) surface of type (3)m and let Uϕ is the algebraic formally

semiuniversal deformation space of Defϕ.

(1) Assume m = 1. Then any deformation of ϕ is morphism of degree 4 onto its image which is

isomorphic to P1 ×P1.

(2) If m ≥ 2 then there exists a smooth, affine algebraic curve T for which;

(a) Φt : Xt → P2m+1 is a morphism of degree 2 onto its image which is isomorphic to

P1 ×C for a smooth non-hyperelliptic curve C of genus m +1 for all t ∈ T − {0},
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(b) Φ0 : X0 →P2m+1 is the canonical morphism ϕ : X →PN .

Moreover, the forgetful map from Defπ2/PN → Defϕ is smooth and hence any deformation

of ϕ will be a morphism of degree ≥ 2 onto its image.

Proof. (1) Notice that when m = 1, Y is a quadric hypersurface in P3 (i.e., N = 3), and NY /P3 =
OY (2,2). Notice that Defϕ has an algebraic formally semiuniversal deformation space. It is

enough to prove that Defπ/P3 →Defϕ is smooth. By Proposition 4.1.5, we just need the vanishing

of H 0(NY /P3 ⊗E ). It is easy to see this vaninishing since E =OY (−3,0)⊕OY (0,−3)⊕OY (−3,−3).

(2) Choose a smooth algebraic curve T for which there is a deformation Ψ : C →Pm
T satisfy-

ing the following two conditions (it exists because m ≥ 2);

(a) Ψt : Ct → Pm is the canonical embedding of a smooth non-hyperelliptic curve of genus

m +1 for t , 0.

(b) Ψ0 : C0 →Pm is the canonical morphism ψ : C2 →Pm .

We define Φ to be the composition C1 ×C
ψ1×Ψ−−−−→ P1 ×Pm

T → P2m+1
T where the last morphism is

given by the relatively very ample line bundle OP1 (1)�OPm
T

(1), and the first assertion follows.

To see the second assertion, we need to show that the map Defπ2/PN →Defϕ is smooth, which

follows (thanks to Proposition 4.1.5) if H 0(Nϕ2⊗Eπ2 ) = 0, where Eπ2 =OX2 (−3,0) is the trace zero

module of π2. Notice that we have the following exact sequence

0 → TX2 →ϕ∗
2 TPN →Nϕ2 → 0.

Identify TX2 with (OP1 (2)�OC2 )⊕ (OP1� (ψ′∗
2 OP1 (−m))). One checks that H 1(TX2 ⊗Eπ2 ) = 0 using

Künneth formula.

Now we aim to show that H 0(ϕ∗
2 TPN ⊗Eπ2 ) = 0. By projection formula, we need to check

the vanishings of H 0(TPN |Y ⊗OY (−3,0)) and H 0(TPN |Y ⊗OY (−3,−m − 2)). Let C be a general

hyperplane section of Y ; it is enough to show that H 0(TPN |Y ⊗OY (−3,0)|C ) and H 0(TPN |Y ⊗
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OY (−3,−m −2)|C ). We have the following diagram with exact rows.

0 OPN−1 OPN−1 (1)⊕N TPN−1 0

0 OPN−1 OPN−1 (1)⊕N+1 TPN |PN−1 0

By snake lemma and the splitting of the middle vertical map, we obtain TPN |PN−1 = TPN−1 ⊕
OPN−1 (1). Since hyperplane section of Y is a rational normal curve of degree N −1, we get

TPN |C =OP1 (N )⊕N−1 ⊕OP1 (N −1).

Thus, we have the following to equalities:

(I) TPN |Y ⊗OY (−3,0)|C =OP1 (N −3m)⊕N−1 ⊕OP1 (N −3m −1), and

(II) TPN |Y ⊗OY (−3,−m −2)|C =OP1 (N −4m −2)⊕N−1 ⊕OP1 (N −4m −3).

The conclusion follows since N = 2m +1. The proof is now complete. ä

Corollary 5.1.16. Let X be a (smooth) surface of type (3)m .

(1) If m = 1, a general element of any irreducible component of Uϕ is a four to one morphism

onto its image which is P1 ×P1.

(2) If m ≥ 2, there exist a component in the algebraic formally semiuniversal deformation

space ofϕwhose general element is a two-to-one morphism onto its image which is a prod-

uct of a smooth curve of genus 2 with a smooth non-hyperelliptic curve of genus m + 1.

Further, there does not exist any component in the algebraic formally semiuniversal defor-

mation space of ϕ whose general element is a morphism birational onto its image.

Proof. Since the curve constructed in Corollary 5.1.15 is irreducible, it is contained in an ir-

reducible component. Now the assertion follows by applying semicontinuity to the reduced

induced structure of the irreducible component. ä
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Proof of Theorem 5.1.1. It follows immediately from Corollary 5.1.6, Corollary 5.1.8, Corollary

5.1.11, Corollary 5.1.14, and Corollary 5.1.16. ä

5.2 Moduli of quadruple Galois canonical covers

In this section we will study the moduli components of irregular quadruple covers of minimal

degree. Furthermore, if the cover is unobstructed, we know that there is a unique component

of the moduli of surfaces of general type; in that case we would like to understand the geometry

of this moduli component. Regarding surfaces X of type (1)m and (1′)m , our result is as follows.

Theorem 5.2.1. Let X be a surface of type (1)m or (1′)m . If X is smooth or has A1 singularities then

Defϕ and DefX are smooth, whereϕ is the canonical morphism of X , in particular X is contained

in a unique irreducible component of the moduli of surfaces of general type. Furthermore, for a

given m,

(1) There exists a unique irreducible component of the moduli of surfaces of general type M8m,1,2m+2

containing all surfaces of both types. This component is uniruled of dimension 8m+20, and

(2) the canonical morphism of a general element of this component is a two-to-one morphism

onto its image which is a non-normal variety whose normalization is an elliptic ruled sur-

face which is the projectivization of a rank two split vector bundle over an elliptic curve

and has invariant e = 0.

The situation is not as clean as the previous theorem for general surfaces of type (2)m for

m ≥ 3, even though the result is neat for m = 2. In particular, we show the following.

Theorem 5.2.2. Let X be a surface of type (2)m . If X is smooth or has A1 singularities, then the

following happens.

(1) If m = 2, then Defϕ and DefX are smooth, in particular X is contained in a unique irre-

ducible component of the moduli of surfaces of general type. Furthermore,
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(a) there exists a unique irreducible component of the moduli space of surfaces of general

type M16,2,6 containing X (and all other surfaces of type (2)2). This component is

uniruled of dimension 28, and

(b) the canonical morphism of a general element in that component is double cover onto

its image whose normalization is a ruled surface over a smooth curve of genus 2 and

has invariant e =−2.

(2) If m ≥ 3, there do not exist an irreducible component of the moduli of surfaces of general

type M8m,m,2m+2 containing X , such that the canonical morphism of a general element in

that component is birational onto its image.

This section is devoted to the proofs of Theorem 5.2.1 and Theorem 5.2.2.

5.2.1 Description of moduli components of surfaces of types (1) and (1′)

First we aim to prove Theorem 5.2.1. Throughout this subsection, we work with the notations

of § 5.1.1. Let B ∈ |ψ∗OP1 (2)⊗OP1 (2m +4)| be the branch divisor of π1. In order to do that, we

need the following cohomology computations.

Proposition 5.2.3. Let X be a surface of type (1)m or (1′)m . If X is smooth or has A1 singularities,

then the following happens:

(1) h0(OX1 (B)) = h0(Nπ1 ) = 8m +20, h1(OX1 (B)) = h1(Nπ1 ) = 0 and h2(OX1 (B)) = h2(Nπ1 ) = 0,

(2) h0(π∗
1 TX1 ) = 4, h1(π∗

1 TX1 ) = 4 and h2(π∗
1 TX1 ) = 4m,

(3) h1(TX ) = 8m +20, h2(TX ) = 4m,

(4) h0(Nϕ) = 4m2 +16m +24, h1(Nϕ) ≥ 2m +2.

Proof. (1) It is easy to see from Künneth formula, and projection formula that

h0(OX1 (B)) = 4m +20, h1(OX1 (B)) = 0, and h2(OX1 (B)) = 0.

68



The remaining assertions follow from the following exact sequence

0 →OX1 →OX1 (B) →OB (B) → 0

Proposition 2.7.6 and Proposition 5.1.3 (1).

(2) One checks this readily by Proposition 5.1.3 (1), Künneth formula, and projection for-

mula since h j (π∗
1 TX1 ) is nothing but the following sum

h j (OX1 )+h j (OE �OP1 (2))+h j (ψ∗OP1 (−1)�OP1 (−m −2))+h j (ψ∗OP1 (−1)�OP1 (−m)).

(3) We use the following two exact sequence

0 → TX →π∗
1 TX1 →Nπ1 → 0. (5.9)

Since h0(TX ) = 0, and h1(Nπ1 ) = h2(Nπ1 ) = 0 by part (1), we get the following two exact se-

quences:

0 → H 0(π∗
1 TX1 ) → H 0(Nπ1 ) → H 1(TX ) → H 1(π∗

1 TX1 ) → 0,

0 → H 2(TX ) → H 2(π∗
1 TX1 ) → 0.

The conclusion now follows from part (2).

(4) We get the following exact sequence from Lemma 2.7.4:

0 →Nπ1 →Nϕ→π∗
1Nϕ1 → 0. (5.10)

We first compute h0(Nϕ. From part (1), we get h1(Nπ1 ) = 0. It follows from projection for-

mula that

h0(Nϕ) = h0(Nπ1 )+h0(Nϕ1 )+h0(Nϕ1 ⊗Eπ1 ).
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Recall that we have checked the vanishing of h0(Nϕ1⊗Eπ1 ) in the proof of Corollary 5.1.4. Thus,

h0(Nϕ) = 8m +20+ (N +1)2

by part (1) and Proposition 5.1.3 (5). The conclusion follows since N +1 = 2m +2.

Notice that h2(Nπ1 ) = 0 by part (1). From (5.10), we obtain that h1(Nϕ) = h1(Nϕ1 )+h1(Nϕ1⊗
Eπ1 ). The conclusion follows from Remark 5.1.5. ä

Proof of Theorem 5.2.1. We resume the notations of § 5.1.1. Fix a surface X of type (1)m or (1′)m

smooth or with A1 singularities; then B has normal crossing. First note that Defϕ and DefX has

algebraic formally semiuniversal deformation space by Remark 4.1.7.

We apply Corollary 4.2.3. All the hypotheses have been verified in the proofs of Proposition

5.2.3 and Corollary 5.1.4. It follows that Defϕ is unobstructed.

To show DefX is unobstructed, we use Corollary 4.2.4. It remains to verify that the differen-

tial of the map Defϕ → DefX is surjective. Since the canonical bundle ωX lifts to any first order

deformation of X , it is enough to show that any section of ωX lifts to any first order deforma-

tion of (X ,ωX ). We aim to use the section lifting criterion (Proposition 2.6.1). Consider the

generalized Atiyah extension (2.2)

0 →OX → EωX → TX → 0. (5.11)

Since the canonical bundle ωX lifts to any first order deformation of X , H 1(EωX ) → H 1(TX ) is

surjective. This, together with H 0(TX ) = 0 implies that

h0(EωX ) = 1 and h1(EωX ) = h1(OX )+h1(TX ) = 8m +21

where the last equality follows from Proposition 5.2.3 (3). Now consider the following exact

sequence (2.4)

0 → EωX → H 0(ωX )∨⊗ωX →Nϕ→ 0. (5.12)
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Recall that a section in H 0(ωX ) lifts to a first order deformation η ∈ H 1(EωX ) of the pair (X ,ωX )

if and only if its image under the map H 1(EωX ) → Hom(H 0(ωX ), H 1(ωX )) induced from (5.12)

is zero (see Proposition 2.6.1). Thus, it is enough to show that the map H 1(EωX ) → H 0(ωX )∨⊗
H 1(ωX )) induced from (5.12) is zero. Now, (5.12) gives rise to the following exact sequence

0 → H 0(EωX ) → H 0(ωX )∨⊗H 0(ωX ) → H 0(Nϕ) → H 1(EωX ). (5.13)

Thus, the dimension of the image of H 0(Nϕ) → H 1(EωX ) is

h0(EωX )− (h0(ωX ))2 +h0(Nϕ) = 1− (2m +2)2 +4m2 +16m +24 = 8m +21

where the last equality follows from Proposition 5.2.3. But this dimension is same as h1(EωX ).

This shows that (5.13) is surjective on the right, and consequently any section of ωX lifts to any

first order deformation of (X ,ωX ). Thus the differential of Defϕ→ DefX is surjective. Thus DefX

is unobstructed, and the algebraic formally semiuniversal (in fact universal) deformation space

UX of this functor is smooth, irreducible and uniruled.

(1) We show that there exist a unique component of moduli of surfaces of general type con-

taining all surfaces of both types (1)m and (1′)m . We do this by the following few steps.

Step 1. We claim that all bidouble covers i.e, the family (1′)m is contained in an irreducible

component of the moduli. We will show this by showing that the bidouble covers in (1′)m are

parametrized by an open set of P(H 0(2C0 + (2m +4) f ))×P(H 0(4C0)) which is irreducible.

Let L1 =−C0 − (m +2) f and L2 =−2C0 on Y =P1 ×P1. Note that Y is rigid and consider the

following Cartesian square.

Y ×P(p∗(L⊗−2
1 ))×k P(p∗(L⊗−2

2 )) P(p∗(L⊗−2
1 ))×k P(p∗(L⊗−2

2 ))

Y Spec(C)

q

p

Furthermore, consider the divisor B1 = {(x,r, s) ∈ Y ×P(p∗(L⊗−2
1 ))×k P(p∗(L⊗−2

2 ))|r (x) = 0} =

71



q∗(L⊗−2
1 ) and B2 = {(x,r, s) ∈ Y ×P(p∗(L⊗−2

1 ))×k P(p∗(L⊗−2
2 ))|s(y) = 0} = q∗(L⊗−2

2 ). Let

T = Y ×P(p∗(L⊗−2
1 ))×k P(p∗(L⊗−2

2 )).

Let L ⊗−1
1

f1−→ T and L ⊗−1
2

f2−→ T denote the total space of the line bundles q∗(L⊗−1
1 ) and q∗(L⊗−1

2 )

on T . Moreover, let t1 ∈ H 0( f ∗
1 q∗(L⊗−1

1 )) and t2 ∈ H 0( f ∗
2 q∗(L⊗−1

2 )) be the corresponding tauto-

logical sections. Then one can consider relative double covers on T given as the zero locus of

t 2
i − f ∗

i Bi inside L ⊗−1
i .

T1 = (t 2
i − f ∗

i Bi )0 L ⊗−1
i

T

Now consider the fibre product of the relative double covers T1 and T2 over T . Consider the flat

family T1 ×T T2 → T → P(p∗(L⊗−2
1 ))×k P(p∗(L⊗−2

2 )). Pulling back the composed morphism at a

point (r, s) ∈P(p∗(L⊗−2
1 ))×k P(p∗(L⊗−2

2 )) we have the following Cartesian square

Yr ×Y Ys T1 ×T T2

Y T

(r, s) P(p∗(L⊗−2
1 ))×k P(p∗(L⊗−2

2 ))

where Yr and Ys denote the double covers constructed by r ∈ H 0(L⊗−2
1 ) and s ∈ H 0(L⊗−2

2 ). We

now know by classification of bidouble canonical covers that smooth bidouble covers are parametrized

an open set of P(p∗(L⊗−2
1 ))×k P(p∗(L⊗−2

2 )).

Step 2. In this step we note that there is an unique irreducible component, say D , of the moduli

containtaing all surfaces of type (1′)m . This comes from Step 1 and the unobstructedness of the

smooth surfaces of type (1′)m .

Step 3 We claim that any cyclic cover in (1)m can be can be deformed to a smooth bidouble

cover along an irreducible curve whose general fibre parametrizes smooth surfaces of general
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type. In particular given any cyclic cover, there exist an irreducible component D ′ containing

the cyclic cover and a smooth bidouble cover. Indeed, take the cyclic cover X . Its intermediate

cover X1 is smooth. The cyclic cover is obtained by a (special) choice of branch divisor from

p∗
1 (2C0 +2(m +2) f ). Since X1 is smooth, by a different (special) choice of branch divisor, one

can construct a smooth bidouble cover over X1. Since P(H 0(p∗
1 (2C0+2(m+2) f ))) is irreducible

and a general member is smooth by Bertini, we have that one can deform the cyclic cover to

a smooth bidouble cover along a curve whose general member is a smooth surface of general

type (in this case a smooth double cover over an elliptic ruled surface).

Step 4. We claim that D ′ = D . Indeed, if D ′ ,D , the smooth bidouble cover lies in both D and

D ′ contradicting its unobstructedness.

The dimension of the moduli component containing surfaces of type (1)m and (1′)m follows

from Proposition 5.2.3 (3) and the unobstructedness of DefX . That completes the proof of part

(1).

(2) Since there is a unique component of the moduli space containing all surfaces of type

(1)m and (1′)m , therefore to describe the canonical morphism of a general surface in this com-

ponent, it is enough to start with a general surface X of either types. It follows from Corollary

5.1.4, Remark 4.1.4, and the fact that X is unobstructed, that a for a general surface of the al-

gebraic formally universal deformation space of X , the canonical morphism is of degree two

onto its image which is non-normal and whose normalization is an elliptic ruled surface which

is the projectivization of a split vector bundle over an elliptic curve with invariant e = 0. Since

X is a smooth surface with ample canonical bundle we have that the same holds for its unique

irreducible moduli component. That completes the proof. ä

Remark 5.2.4. It is interesting to note that H 1(Nϕ) , 0 by Proposition 5.2.3, but Defϕ is still

unobstructed by the above proof. Another example of such an instance is when φ : H → PL is

a morphism that is finite onto its image where H is a hyperkähler variety. It has been proven

in [MR20], Lemma 3.1, that in this case Defφ is unobstructed but H 1(Nφ) � H 2(TH ) which is

non-zero in general. ■
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5.2.2 Description of moduli components of surfaces of type (2)m

Now we aim to prove Theorem 5.2.2. Throughout this subsection, we work with the notations

of § 5.1.2. Recall that B ∈ |OP1 (6)⊗ψ∗OP1 (2)| is the branch divisor of π2. In order to do that, we

need the following cohomology computations.

Proposition 5.2.5. Let X be a surface of type (2)2. If X is smooth or has A1 singularities, then the

following happens:

(1) h0(Nπ2 ) = 22 and h1(Nπ2 ) = 0,

(2) h0(π∗
2 TX2 ) = 3 and h1(π∗

2 TX2 ) = 9,

(3) h1(TX ) = 28,

(4) h0(Nϕ) = 65.

Proof. (1) It is easy to see from Künneth formula, and projection formula that

h0(OX2 (B)) = 21, and h1(OX2 (B)) = 0.

The remaining assertions follow from the following exact sequence

0 →OX2 →OX2 (B) →OB (B) → 0

Proposition 2.7.6 and the fact that h1(OX2 ) = 2 (see Proposition 5.1.9 (1)).

(2) This one follows from Proposition 5.1.9 (1), Künneth formula, and projection formula

since h j (π∗
2 TX2 ) is is the following sum

h j (OP1 (2)�OC )+h j (OP1 �ψ∗OP1 (−1))+h j (OP1 (−1)�ψ∗OP1 (−1))+h j (OP1 (−3)�ψ∗OP1 (−2)).
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(3) We use the following two exact sequence

0 → TX →π∗
2 TX2 →Nπ2 → 0. (5.14)

Since h0(TX ) = 0, and h1(Nπ2 ) = 0 by part (1), we get the following exact sequence:

0 → H 0(π∗
2 TX2 ) → H 0(Nπ2 ) → H 1(TX ) → H 1(π∗

2 TX2 ) → 0.

The conclusion now follows from part (2).

(4) We get the following exact sequence from Lemma 2.7.4:

0 →Nπ2 →Nϕ→π∗
2Nϕ2 → 0. (5.15)

We first compute h0(Nϕ). From part (1), we get h1(Nπ2 ) = 0. It follows from projection

formula that

h0(Nϕ) = h0(Nπ2 )+h0(Nϕ2 )+h0(Nϕ2 ⊗Eπ2 ).

The vanishing of h0(Nϕ2 ⊗Eπ2 ) has been shown in the proof of Corollary 5.1.10. Thus,

h0(Nϕ) = 22+36+7 = 65

by part (1) and Proposition 5.1.9 (5). ä

Proof of Theorem 5.2.2. It is enough to show that show that, for a surface X of type (2)2 such

that B has normal crossings, any section of H 0(ωX ) lifts to any first order deformation of X . The

remaining argument is identical to the Proof of Theorem 5.2.1; all the cohomological criteria

have been verified in Proposition 5.1.9, Corollary 5.1.10 and in Proposition 5.2.5. The proof of

assertion 1 (b) and (2) are consequences of Corollary 5.1.10, Remark 4.1.4 and the unobstruct-

edness of X .

Using the generalized Atiyah sequence (5.11), and arguing as in the proof of Theorem 5.2.1,
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we obtain

h0(EωX ) = 1 and h1(EωX ) = h1(OX )+h1(TX ) = 30

thanks to Proposition 5.2.5 (3). Now, arguing as in the proof of Theorem 5.2.1, we get that the

dimension of the image of H 0(Nϕ) → H 1(EωX ) is

h0(EωX )− (h0(ωX ))2 +h0(Nϕ) = 1−36+65 = 30

thanks to Proposition 5.2.5 (4). Thus, the map H 1(EωX ) → H 0(ωX )∨⊗H 1(ωX ) is zero. ä

We end this section by asking the following natural questions, concerning the deformations

of surfaces of type (2)m , as it is evident that our technique of showing unobstructedness does

not work for them.

Question 5.2.6. Let X be a smooth surface of type (2)m .

(1) Are Defϕ and DefX unobstructed if m ≥ 3? The problem that we face for these surfaces

is that H 1(Nπ2 ) , 0. Thus, for these surfaces, we know that the forgetful map Defπ2/PN →
Defϕ is smooth; however the smoothness of Defπ2/PN is unknown despite knowing the smooth-

ness of Defϕ2 , since the forgetful map Defπ2/PN → Defϕ2 is not smooth.

(2) Can surfaces of type (2)m , for m ≥ 3 be deformed to canonical double covers over surfaces

ruled over smooth curves of genus m ?

5.3 Description of non-general locus

Remark 5.3.1. In order to compare with the hyperelliptic loci in the moduli of smooth curves of

genus g ≥ 3, it is interesting to know the dimension of the locally closed sublocus in the moduli

of X , where the canonical morphism is once again a quadruple cover onto its image. Note that

they are indeed subloci of M[X ] because of the unobstructedness of X . The following table gives

the dimension of MG
[X ] := the locally closed sublocus in the moduli of X , where the canonical
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morphism is once again a quadruple Galois cover onto its image with Galois group G and also

that of M Nat
[X ] (G), a subspace of M[X ] containing MG

[X ] called natural deformations where the

canonical morphism is again four–to–one but not Galois in general (see [Par91], Definition 5.1).

Both of these loci are uniruled and we present their dimensions below. We omit the proof as it

follows using methods same as Theorem 4.2.1 from under some vanishing conditions .

Proposition 5.3.2. In the notation of Theorem 1.1.1, let

(1) For family (1)m , let D1 ∈ |L⊗2
1 ⊗L⊗−1

2 |, D2 ∈ |L⊗2
2 |. Then

(i) MG
[X ] is a uniruled subvariety of dimension h0(NY /PN )+

2∑
i=1

h0(ODi (Di ))− (N +1)2

(ii) M Nat
[X ] is an uniruled subvariety of dimension h0(NY /PN )+(h0(OD1 (D1))+h0(OY (D1−

L2)))+ (h0(OD2 (D2))+h0(OY (D2 −L2))+h0(OY (D2 −L1)))− (N +1)2

(2) For family (1′)m and (2)2, let D2 ∈ |L⊗2
1 |, D1 ∈ |L⊗2

2 | Then

(i) MG
[X ] is a uniruled subvariety of dimension h0(NY /PN )+

2∑
i=1

h0(ODi (Di ))− (N +1)2

(2) M Nat
[X ] is an uniruled subvariety of dimension h0(NY /PN )+

2∑
i=1

(h0(ODi (Di ))+h0(OY (Di−
Li )))− (N +1)2

TABLE 3. Dimension estimates

X is general
of type

Dimension of MG
[X ] Dimension of M Nat

[X ] (G)

(1)m 2m +1 2m +4
(1′)m 6m +13 6m +18
(2)2 25 25

Table 5.1: Non-general locus in the moduli
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Chapter 6

Infinitesimal Torelli Theorem

The goal of this section is to prove the infinitesimal Torelli theorem for some smooth families

of quadruple covers. Let X be a smooth algebraic variety of dimension n with ample canonical

bundle ωX = Ωn
X . Let p : X → UX be a semiuniversal deformation of X , and we assume that

S is smooth. The infinitesimal Torelli problem for weight n Hodge structure asks how far the

complex structure of X is determined by the decreasing Hodge filtration

(
F p = ⊕

i≥p
H n−i (X ,Ωi

X )

)
p∈N

.

The Hodge filtrations on the fibres glue together to give a subbundle F p of OUX ⊗Rn p∗ZX and

define the period map Φn : UX → Dn to the space Dn parametrizing Hodge filtrations of weight

n. The tangent map TΦn at the special point is the composition of an injective map and the

sum of the linear maps

λi : H 1(X ,TX ) → Hom(C; H n−i (X ,Ωi
X ), H k−i+1(X ,Ωi−1

X )), n ≥ i ≥ 1

induced by from the contraction maps. Hence TΦn is injective if λi is injective for some i , in

which case Φn is an immersion. We say that

(1) the infinitesimal Torelli theorem holds (for weight n Hodge structures) for X if Φn is an

immersion;

(2) the infinitesimal Torelli theorem for periods of n forms holds for X if λn is an injection.
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The infinitesimal Torelli theorem for periods of n forms holds for X if and only if the following

map is a surjection

H n−1(X ,ΩX )⊗H 0(X ,Ωn
X ) → H n−1(ΩX ⊗Ωn

X ).

Classically, a curve of genus g ≥ 2 satisfies the infinitesimal Torelli theorem if and only if

g = 2 or it is non-hyperelliptic. When n = 2 i.e., when X is a surface, the infinitesimal Torelli

theorem for periods of 2 forms holds for X if and only if the infinitesimal Torelli theorem for

weight 2 Hodge structures holds for X . The infinitesimal Torelli problem for abelian covers

were studied by Pardini in [Par98] in a very general setting. We refer to the article of Catanese

(see [Cat84]) for counterexamples of Torelli problems, the article of Bauer and Catanese (see

[BC04]) for counterexamples of the infinitesimal Torelli theorems with ωX quasi-very ample.

The following criterion under which the infinitesimal Torelli theorem for weight n Hodge

structures holds for X was developed by Flenner.

Theorem 6.0.1. ([Fle86], Theorem 1.1) Let X be a compact n-dimensional Kähler manifold and

assume the existence of a resolution of ΩX by vector bundles

0 →G →F →ΩX → 0.

If both conditions are satisfied:

(a) H j+1(S j G ⊗∧n− j−1 F ⊗ω−1
X ) = 0 for all 0 ≤ j ≤ n −2;

(b) The pairing H 0(Sn−pG−1⊗ωX )⊗H 0(Sp−1G−1⊗ωX ) → H 0(Sn−1G−1⊗ω⊗2
X ) is surjective for

a suitable p ∈ {1,2, . . . ,n}

then the canonical map λp : H 1(X ,TX ) → Hom(C; H n−p (X ,Ωp
X ), H n+1−p (X ,Ωp−1

X )) is injective.

Notice that if X is a smooth quadruple Galois canonical cover of a smooth surface of mini-

mal degree with irregularity one, then X is necessarily of type (1′)m . In order to prove the theo-

rem, we are going to invoke the theorem of Flenner i.e., Theorem 6.0.1.
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Theorem 6.0.2. Let X be a smooth surface with irregularity one. Assume the canonical bundle

ωX is ample and globally generated, and the canonical morphismϕ is a quadruple Galois canon-

ical cover onto a smooth surface of minimal degree. Then the infinitesimal Torelli theorem holds

for X .

Proof. We work with the notations of § 5.1.1. We have the following commutative diagram

X Z

X1 = E ×P1

j

π1
p

where Z = V(Eπ1 ) is the affine bundle over X1 with the natural projection p. We have the fol-

lowing short exact sequence (4.2)

0 →π∗
1E⊗2

π1
→ΩZ |X →ΩX → 0.

We will use the criterion of Flenner (Theorem 6.0.1).

(a) Since dim(X ) = 2, we need to check H 1(ΩZ |X ⊗ω−1
X ) = 0. We also have the following exact

sequence (4.3)

0 →π∗
1ΩX1 →ΩZ |X →π∗

1Eπ1 → 0. (6.1)

Now, ΩX1 = (OE �OP1 (−2))⊕ (OE �OP1 ). Consequently, we obtain:

H 1(π∗
1ΩX1 ⊗ω−1

X ) = H 1(π∗
1 (ΩX1 ⊗ (ψ∗OP1 (−1)�OP1 (−m))))

Now, the last term by projection formula is just

H 1(ψ∗OP1 (−1)�OP1 (−m −2))⊕H 1(ψ∗OP1 (−1)�OP1 (−m))⊕

H 1(ψ∗OP1 (−2)�OP1 (−2m −4))⊕H 1(ψ∗OP1 (−2)�OP1 (−2m −2)).
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This term is zero by Künneth formula and the projection formula. Notice that we also have

H 1(π∗
1Eπ1 ⊗ω−1

X ) = H 1(π∗
1 (ψ∗OP1 (−2)�OP1 (−2m −2)))

This term is just H 1(ψ∗OP1 (−2)�OP1 (−2m−2))⊕H 1(ψ∗OP1 (−3)�OP1 (−3m−4)) which is zero by

Künneth formula and the projection formula. Thus, it follows from (6.1) that H 1(Ω1
Z |X ⊗ω−1

X ) =
0.

(b) Now we check the surjection corresponding to p = 1, i.e.,

H 0(π∗
1 (E ∗

π1
)⊗2 ⊗ωX )⊗H 0(ωX ) → H 0(π∗

1 (E ∗
π1

)⊗2 ⊗ω⊗2
X ).

Thus we need to check the surjection of

H 0(π∗
1 (ψ∗OP1 (2)�OP1 (2m +4))⊗ωX )⊗H 0(ωX ) → H 0(π∗

1 (ψ∗OP1 (2)�OP1 (2m +4))⊗ω⊗2
X ).

To check this surjection, we use Castelnuovo-Mumford regularity (see [Mum70]). By projection

formula,

H 1(π∗
1 (ψ∗OP1 (2)�OP1 (2m +4))) = H 1(ψ∗OP1 (2)�OP1 (2m +4))⊕H 1(ψ∗OP1 (1)�OP1 (m +2))

and it is easy to check that both terms are zero by Künneth formula and the projection formula.

Now we compute the following cohomology group

H 2(π∗
1 (ψ∗OP1 (2)�OP1 (2m +4))⊗ω−1

X ) = H 2(ψ∗OP1 (1)�OP1 (m +4))⊕H 2(ψ∗OP1 �OP1 (2))

and one checks that both terms are zero. That concludes the proof. ä

Remark 6.0.3. Let X be a surface of type (3)m . It is easy to see in these cases that infinitesimal

Torelli theorem holds only if X is a surface of type (3)1. We give a brief explanation following

[BC04] for the sake of completeness. We resume the notations of § 5.1.3. Since dim(X ) = 2,
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infinitesimal Torelli theorem holds ⇐⇒ infinitesimal Torelli theorem for periods of 2 forms

holds ⇐⇒ H 1(Ω1
X )⊗H 0(Ω2

X ) → H 1(Ω1
X ⊗Ω2

X ) is surjective.

Using Ω1
X = (Ω1

C1
�OC2 )⊕ (O1

C1
�ΩC2 ), Ω2

X =Ω1
C1
�Ω1

C2
, and Künneth formula, we have

H 1(Ω1
X ) =

(
H 0(Ω1

C1
)⊗H 1(OC2 )

)
⊕

(
H 1(OC1 )⊗H 0(Ω1

C2
)
)

,

H 0(Ω2
X ) = H 0(Ω1

C1
)⊗H 0(Ω1

C2
),

H 1(Ω1
X⊗Ω2

X ) = H 1((Ω1
C1

)⊗2�Ω1
C2

)⊕H 1(Ω1
C1
�(Ω1

C2
)⊗2) =

(
H 0((Ω1

C1
)⊗2)⊗H 1(Ω1

C2
)
)
⊕

(
H 1(Ω1

C1
)×H 0((Ω1

C2
)⊗2)

)
,

where the last equality is obtained by using the fact that H 1((Ω1
C j

)⊗2) = 0 for j = 1,2. Notice

also that H 1(O1
C j

)⊗H 0(Ω1
C j

) → H 1(Ω1
C j

) is surjective for j = 1,2 by the non-degeneracy of Serre

duality. Thus, H 1(Ω1
X )⊗H 0(Ω2

X ) → H 1(Ω1
X ⊗Ω2

X ) is surjective if and only if

H 0(Ω1
C j

)×H 0(Ω1
C j

) → H 0(Ω⊗2
C j

) (6.2)

is surjective for j = 1,2. Notice that (6.2) is surjective for j = 1 since C1 is a hyperelliptic curve

of genus 2. Since C2 is also hyperelliptic, (6.2) is surjective only when m = 1. ■

We end this article by asking the natural question regarding the infinitesimal Torelli theorem

for smooth surfaces of type (2)m .

Question 6.0.4. Let X be a smooth surface of type (2)m . Does the infinitesimal Torelli theorem

hold for X ? Let us resume the notations of § 5.1.2. Let Z :=V(Eπ2 ) be the affine bundle over X2. It

is easy to verify that H 1(Ω1
Z |X ⊗ω−1

X ) = 0. However, to apply the criterion of Flenner (i.e., Theorem

6.0.1), we need the surjectivity of the following multiplication map:

H 0(π∗
2 (E ∗

π2
)⊗2 ⊗ωX )⊗H 0(ωX ) → H 0(π∗

2 (E ∗
π2

)⊗2 ⊗ω⊗2
X ).

It follows from [GP11], Lemma 2.1 that this map is not surjective.
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