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Abstract

The Volume-to-Point (VP) Heat Conduction Problem is concerned with the op-

timal distribution of conductive material over a heat generating domain. This

thesis begins with an overview of the heat equation and its discretization us-

ing the Finite Volume Method. We proceed to give a summary of the topic of

mathematical optimization and optimization techniques. After completing this

brief presentation of background information we proceed to present the appli-

cation of the Solid Isotropic Material with Penalization (SIMP) method to the

VP heat conduction problem to create designs with optimal conductive material

placement which minimize average temperature.
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Chapter 1

Background

1.1 PDE Discretization

Multidimensional topological optimization problems often involve the use of partial differen-

tial equations (PDEs) which model the physical properties of the materials involved. Most of

these PDEs cannot be uniquely solved analytically, so we turn to numerical methods in order

to approximate their solutions. The first step in many of these methods is to discretize our

domain; that is, we want to choose some scheme to divide our continuous domain into a finite

number of pieces over which we will apply a particular method to approximate solutions to

the PDE.

The implementation of the SIMP method introduced in §2.1 uses the Finite Volume

Method to discretize and approximate solutions to the heat equation for the heat generating

medium. We will introduce the Heat Equation and then proceed to give an overview of the

Finite Volume Method.

1.1.1 The Heat Equation

Consider heat flow through a stationary, inhomogeneous object. The temperature at any

point in the interior of the object will depend on the spatial position chosen as well as the

time we measure the temperature at that point. Therefore, the temperature (T ) at any point

in such an object is a function of both space (x) and time (t) coordinates: T (x, t). Physical
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principles require that such a temperature function must satisfy the equation

∂T

∂t
= ∇ ·

(
k(x)∇T

)
, (1.1)

where ∇ is the gradient operator and the function k represents the thermal diffusivity at a

point in our object.

Equation (1.1) is commonly referred to as the Heat or Diffusion Equation. If we were

to have a constant thermal diffusivity throughout our object on a simple domain (such as a

square or circle), it would be possible to analytically find a solution to this partial differential

equation. However, as in the VP heat conduction problem, when k is not constant we must

turn to numerical methods to find approximate solutions for the function T .

1.1.2 The Finite Volume Method

For the numerical approximations of PDEs in this paper the Finite Volume Method (FVM)

was implemented, which will be described in this section.

As with many other numerical method to solve PDEs, we must first discretize our domain

by creating a mesh. One major advantage of the finite volume method is that it allows for

a great amount of freedom in mesh choice. When using FVM the domain can be discretized

into a mesh of arbitrary polygons, but uniform squares or rectangles were chosen in our work

to simplify the resulting calculations.

Given a mesh of polygons on a domain Ω with sample points at {xi} ⊂ Ω, we create

a set of control volumes around each xi. The resulting set of control volumes will be used

to discretize the partial differential equation. The finite volume method has us integrate

our PDE over each control volume and then use the Divergence Theorem (Theorem 1) to

convert volume integrals into surface integrals involving the fluxes across the boundaries of

the control volumes. We then approximate those fluxes across the boundaries to calculate

approximate solutions to the PDE of interest, such as (1.1).

2



Figure 1.1: Heatmap for a 0.1 m × 0.1 m object with uniform heat generation and a heat-sink
at the center of its west boundary. This map was produced via the Finite Volume Method
using 100 × 100 uniform control volumes.
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Theorem 1 (The Divergence Theorem). Suppose that V is a compact subset of Rn that has

a piecewise smooth boundary S (i.e. ∂V = S) with outward pointing normal vectors. If F is

a continously differentiable vector field defined on a neighborhood of V, then

˚
V

(∇ · F) dV =
‹

S
(F · n̂) dS (1.2)

where n̂ is the outwards pointing normal vector to the boundary.

The divergence theorem is the key component in the finite volume method because it

allows us to look at fluxes across the boundaries of each control volume, rather than the

control volume itself.

Let us look at the finite volume method applied to the heat equation in two dimensions.

Suppose we have discretized our space by dividing it up into a mesh of control volumes {Vi}.

We integrate (1.1) over each control volume, using the divergence theorem to convert the

volume integral into a surface integral:

ˆ
Vi

∂T

∂t
dx =

ˆ
Vi

∇ ·
(
k(x)∇T

)
dx =

(1.2)

ˆ
∂Vi

k(x)∇T · n̂ ds, (1.3)

where s represents the curves that form the boundary of the control volume. Then, applying

an approximation scheme to this result, we obtain a sparse and structured linear system.

For example, one could apply what is called a “two-point flux approximation” scheme which

uses finite differences of function values from neighboring cells to the control volume to

approximate the flux through the control volume faces [7].

In a square grid there are only four neighboring cells which we can label as North, South,

East, West. For a control volume Vi we’ll label the North boundary as ∂VN , the South

boundary as ∂VS, the East boundary as ∂VE, and the West boundary as ∂VW . Additionally,

let ∆x be the length of the North and South boundaries, and ∆y the length of the East and
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West boundaries. We can discretize (1.3) as

ˆ
∂Vi

k(x)∇T · n̂ ds =
ˆ

∂VN

k(x)∇T · n̂N ds +
ˆ

∂VS

k(x)∇T · n̂S ds

+
ˆ

∂VE

k(x)∇T · n̂E ds +
ˆ

∂VW

k(x)∇T · n̂W ds

≈ kN
TN − Ti

∥xN − xi∥
∆x + kS

TS − Ti

∥xS − xi∥
∆x

+kE
TE − Ti

∥xE − xi∥
∆y + kW

TW − Ti

∥xW − xi∥
∆y

=⇒ ∆x∆y
dTi

dt
=

(
kN

TN − Ti

∥xN − xi∥
+ kS

TS − Ti

∥xS − xi∥

)
∆x

+
(

kE
TE − Ti

∥xE − xi∥
+ kW

TW − Ti

∥xW − xi∥

)
∆y

(1.4)

The process in (1.4) is repeated for all control volumes i to produce a system of ordinary

differential equations which is used to solve for the values of Ti.

One other major advantage of the finite volume method is that boundary conditions

can easily be taken into account on general domains. For example, adding a heat-sink by

applying a Dirichlet boundary condition can be thought of as zeroing out our algebraic

equations by introducing a ghost cell that, when interpolated with the boundary cell, causes

the temperature across the boundary to be zero.

1.2 The Optimization Problem

We now move on to an overview of mathematical optimization and a survey of optimization

methods.

5



1.2.1 Optimization Problem Definition

Definition 1. An optimization problem (in standard form) has the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

(1.5)

where

• x = (x1, . . . , xn) are the optimization variables,

• f0 : Rn → R is the objective function,

• fi : Rn → R are the inequality constraint functions, and

• hi : Rn → R are the equality constraint functions.

If there are no constraints (m = p = 0), then the problem is called unconstrained. [1, p.

127]

We call a vector x⋆ globally optimal if it has the smallest objective value among all

vectors that satisfy the constraints. That is, for any z with f1(z) ≤ 0, . . . , fm(z) ≤ 0, then

f0(z) ≥ f0(x⋆). A vector x that is in the domains of each function fi and hi is called feasible

if it satisfies all the constraints. Finally, the optimal value p⋆ of the problem is defined as

p⋆ =
{
f0(x) | fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p

}
.

Therefore, p⋆ = f0(x⋆), the objective function value at a feasible and globally optimal vector

x⋆.

A vector is locally optimal if it has the smallest objective value among all feasible can-

didates within a neighboring set. The global optimum is also a local optimum, but a local

optimum need not be the global optimum.
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Notice that the optimization problem in standard form is a minimization problem. We

can easily change it into a maximization problem by minimizing the objective function −f0

subject to the same constraints.

The optimization problem is linear or called a linear program if the objective and con-

straint functions are all linear. An optimization problem involving a quadratic objective

function and linear constraints is quadratic or a quadratic program. If the optimization

problem is not linear or quadratic, it is referred to as a nonlinear program.

There are exists efficient methods for solving linear programming and many quadratic

programming problems.

1.2.2 Convex Optimization

A set C is convex if the line segment between any two points in C lies within C. That is, C

is convex if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have θx1 + (1 − θ)x2 ∈ C.

A function f : Rn → R is convex if the domain of f is a convex set and if for all x, y in

the domain of f , and θ with 0 ≤ θ ≤ 1, we have

f
(
θx + (1 − θ) y

)
≤ θf(x) + (1 − θ)f(y). (1.6)

A convex optimization problem, therefore, is an optimization problem of the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m

aT
i = bi, i = 1, . . . , p

(1.7)

where f0, . . . , fm are convex functions.

Notice that there are three requirements that differentiate a convex optimization problem

from a general optimization problem:

• The objective function must be convex.
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• The inequality constraint functions must be convex.

• The equality constraint functions must be affine.

In a convex optimization problem we minimize a convex objective function over a convex

set and any locally optimal point is also globally optimal. This is a very useful fact!

Why might local optimality implying global optimality be useful? Consider a situation

where we have a convex objective function. If we are able to find any minimum value for

the objective function, then we know this value is not just a local minimum, but indeed a

global minimum. If we do not have a convex function, we cannot be as assured that we have

found the global optimal value. For example, consider a function such as the one shown in

Figure 1.2. An optimization strategy may find the local minimum near x = 1, but since

the function is not convex everywhere on its domain, we cannot conclude that this value is

the globally optimal value. In fact, we see that the global minimum, and hence the actual

optimal value, is between x = −1 and x = −0.5. On the other hand, if we have a function

that is everywhere convex, as soon as we find a local minima, we can be assured that it is

also the global minima!

So we can see that convexity is a very powerful and useful property in terms of optimiza-

tion problems. As a result, any time we can take advantage of convexity or approximate

functions using convex functions, we often do so.

1.3 Optimization Methods

In this section I will present a few optimization algorithms for unconstrained optimization.

These algorithms follow a general blueprint:

1. Choose an initial “guess” for the optimal value x.

2. Find a descent direction ∆x.

8



Figure 1.2: A graph of the non-convex function f(x) = x4 − x3 − x2 + x + 1. Notice it has
two local minima and that the right local minima is not equal to the global minimum.

3. Use a line search method to determine an appropriate step-size (t) in the descent

direction.

4. Compute new approximation value x + t∆x.

Each method uses a line search, but how the descent direction is chosen is the main

differentiating factor in each method.

1.3.1 Line Search Methods

The line search is a strategy that selects the step size (commonly represented by t) that

determines where along the line
{
x + t∆x | t ∈ R+

}
the next iterate in the descent method

will be. Line search strategies can either be exact or inexact.

9



Exact Line Search

An exact line search chooses the value t along the ray
{
x + t∆x | t ∈ R+

}
that exactly

minimizes the function of interest f :

t = arg min
s≥0

f(x + s∆x)

An exact line search is almost never practical. In very special cases, such as some quadratic

optimization problems where an explicit formula is available, one might employ an exact line

search.

Backtracking Line Search

Most often in practice inexact line searches are used. In an inexact line search, we choose t

such that f is approximately minimized or reduced “enough” along
{
x + t∆x | t ∈ R+

}
.

One inexact line search strategy is the Backtracking Line Search.

Algorithm 1 Backtracking Line Search [1]
given a descent direction ∆x for f at x ∈ domf, α ∈ (0, 0.5), β ∈ (0, 1).

t := 1.

while f(x + t∆x) > f(x) + αt∇f(x)T ∆x do

t := βt

end while

“Backtracking” in the name is refers to the fact that the method starts with a unit step

size (t = 1) and then reduces the step size (“backtracks”) by the factor β until we meet the

stopping criterion f(x + t∆x) ≤ f(x) + αt∇f(x)T ∆x.

Notice that the backtracking search will find a step size t such that f(x + t∆x) is smaller

relative to f(x). The step size chosen may not exactly be the minimum of the function, but

we have funneled it down closer to the minimum of f .

10



1.3.2 Gradient Descent

The gradient descent method chooses the search direction to be the negative gradient. That

is, in this method we set ∆x = −∇f(x), where f is the function we seek to optimize. Since

the gradient of a function gives the direction of greatest increase, naturally the negative

gradient will give the direction of the most rapid decline.

Algorithm 2 Gradient Descent Method [1]
given a starting point x ∈ domf .
repeat

1. ∆x := −∇f(x).
2. Line search. Choose step size t via exact or backtracking line search.
3. Update. x := x + t∆x.

until stopping criterion is satisfied.

Notice that Algorithm 2 essentially employs a line search to determine a step size and

then updates the iterate in the direction of the steepest descent. This is repeated until some

sort of stopping criterion is met, typically something of the form ∥∇f(x)∥2 ≤ η, where η is

small and positive. Another common stopping criterion is to stop the algorithm when no

significant progress is made between iterates by stopping the algorithm once ∥fk+1 −fk∥ < η.

An implementation of the gradient descent algorithm in the Julia language can be found

in ??.

1.3.3 Nonlinear Conjugate Gradient

The Nonlinear Conjugate Gradient method works similarly to the gradient descent algorithm,

but adds the additional requirement that in each iteration the descent direction is conjugate

to those of each previous iteration.

Suppose we have a function f(x) of N variables. Let x0 be an initial guess value for the

minimum. The opposite of the gradient will give the direction of steepest descent. Therefore,

start off by setting ∆x0 = −∇f(x0).

11



Set an adjustable step length α and perform a line search in the direction d0 = ∆x0 until

a minimum of f is reached:

α0 := arg min
α

f(x0 + α∆x0),

x1 = x0 + α0∆x0.

Suppose we were to simply iterate this process and for each step i the following was

repeated:

1. Set ∆xi = −∇f(xi).

2. Calculate αi = arg min
α

f(xi + α∆xi).

3. Compute xi+1 = xi + αi∆xi.

However, there is an issue with this proposed iterative scheme: We have moved αi in

direction ∆xi to find the minimum value in that direction, but by moving αi+1 in direction

∆xi+1 we may have accidentally undone the progress made in the previous iteration so

that we no longer have a minimum value in direction ∆xi. This problem can be fixed by

making sure that successive direction vectors have no influence in the directions of previous

iterations. That is, we require our directions in each iteration to be conjugate (with respect

to the matrix of coefficient for our system) to one another. Therefore, rather than taking

∆xi+1 to be −∇f(xi), we compute a direction conjugate to all previous directions by some

pre-chosen methodology. This suggests the following iterative scheme:

After the first iteration, the following steps constitute one iteration along a conjugate

direction:

1. Calculate the new steepest descent direction: ∆xi = −∇f(xi),

2. Compute βi using some formulation. Two options are below:

• Fletcher–Reeves: βF R
i = ∆xT

i ∆xi

∆xT
i−1∆xi−1

12



• Polak–Ribière: βP R
i = ∆xT

i (∆xi−∆xi−1)
∆xT

i−1∆xi−1

3. Update the conjugate direction: di = ∆xi + βidi−1,

4. Line search: Optimize αi = arg min
α

f(xi + αdi),

5. Update iterate value: xi+1 = xi + αidi.

Algorithm 3 uses the Newton-Raphson method to find the values of αi.

Algorithm 3 Nonlinear Conjugate Gradient Using Newton-Raphson [4]
Given a function f , a starting value x, a maximum number of CG iterations imax, a CG error
tolerance ϵ < 1, a maximum number of Newton-Raphson iterations jmax, and a Newton-
Raphson error tolerance ε < 1:

i ⇐ 0
k ⇐ 0
r ⇐ −f ′(x)
d ⇐ r
δnew ⇐ rT r
δ0 ⇐ δnew
while i < imax and δnew > ϵ2δ0 do

j ⇐ 0
δd ⇐ dT d
while true do

α ⇐ − [f ′(x)]T
d

dT f ′′(x)d
x ⇐ x + αd
j ⇐ j + 1
j < jmax and α2δd > ε2 OR Break

end while
r ⇐ −f ′(x)
δold ⇐ δnew
δnew ⇐ rT r
β ⇐ δnew

δold
d ⇐ r + βd
k ⇐ k + 1
if k = n or rT d ≤ 0 then

d ⇐ r
k ⇐ 0

end if
i ⇐ i + 1

end while

13



1.4 The Method of Moving Asymptotes (MMA)

The Method of Moving Asymptotes (MMA) is a method of nonlinear programming, originally

developed for structural optimization [6]. In contrast to the methods presented above, MMA

is designed for constrained optimization problems. The method uses an iterative process

which creates a convex subproblem that is solved in each iteration. Each of these subproblems

is an approximation of the original problem with parameters that change the curvature of

the approximation. These parameters act as asymptotes for the subproblem and moving the

asymptotes between iterations stabilizes the convergence of the entire process.

1.4.1 General Method Description

Consider an optimization problem of the following general form

P : minimize f0(x) (x ∈ Rn)

subject to fi(x) ≤ f̂i, for i = 1, . . . , m

xj ≤ xj ≤ xj, for j = 1, . . . , n

(1.8)

where

• x = (x1, . . . , xn)T is the vector of variables

• f0(x) is the objective function

• fi(x) ≤ f̂i are behavior constraints

• xj and xj are given lower and upper bounds on the variables

The general approach for solving such optimization problems is to split it up and solve a

sequence of subproblems using the following iteration:

Step 0: Choose a starting point x(0), and let the iteration index k = 0.

Step 1: Given an iterate x(k), calculate fi(x(k)) and the gradients ∇fi(x(k)) for i = 0, 1, . . . , m.

14



Step 2: Generate a subproblem P (k) by replacing, in (1.8), the functions fi by approximat-

ing functions f
(k)
i , based on calculations from Step 1.

Step 3: Solve P (k) and let the optimal solution of this subproblem be the next iteration

point x(k+1). Let k = k + 1 and go to Step 1.

In MMA, each f
(k)
i is obtained by a linearization of fi in variables of the type

1
xj − Lj

or 1
Uj − xj

dependent on the signs of the derivatives of fi at x(k). The values of Lj and Uj are normally

changed between iterations and are referred to as moving asymptotes.

Defining The Functions f
(k)
i

Given the iteration point x(k) at an iteration k, values of the parameters L
(k)
j and U

(k)
j are

chosen, for j = 1, . . . , n, such that L
(k)
j < x

(k)
j < U

(k)
j .

For each i = 0, 1, . . . , m, f
(k)
i is defined by

f
(k)
i (x) = r

(k)
i +

n∑
j=1

 p
(k)
ij

U
(k)
j − xj

+
q

(k)
ij

xj − L
(k)
j


where

p
(k)
ij =


(

U
(k)
j − x

(k)
j

)2
if ∂fi

∂xj
> 0

0 if ∂fi

∂xj
≤ 0

q
(k)
ij =


0 if ∂fi

∂xj
≥ 0

−
(

x
(k)
j − L

(k)
j

)2
∂fi

∂xj
if ∂fi

∂xj
< 0

r
(k)
i = fi(x(k)) −

n∑
j=1

 p
(k)
ij

U
(k)
j − x

(k)
j

+
q

(k)
ij

x
(k)
j − L

(k)
j


and where all ∂fi

∂xj
are evaluated at x = x(k).
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Notice that f
(k)
i is a first-order approximation of fi at x(k). Additionally, by construction,

f
(k)
i is a convex function.

Looking at the second derivatives, the closer L
(k)
j and U

(k)
j are chosen to x

(k)
j , the larger

the second derivatives become and hence the more curvature is given to the approximating

function f
(k)
i . This means that the closer L

(k)
j and U

(k)
j are chosen to x

(k)
j , the more conser-

vative the approximation of the original problem becomes. If L(k) and U (k) are chosen “‘far

away”’ from x(k), then the approximation f
(k)
i becomes close to linear.

We always choose the values of L
(k)
j and U

(k)
j to be finite. As a result each f

(k)
i becomes

strictly convex except when ∂fi

∂xj
= 0 at x = x(k).

Now, with the approximating functions f
(k)
i as defined earlier, we have the following

subproblem P (k):

P (k): minimize
n∑

j=1

(
p

(k)
oj

U
(k)
j −xj

+ q
(k)
oj

xj−L
(k)
j

)
+ r(k)

o

subject to
n∑

j=1

(
p

(k)
ij

U
(k)
j −xj

+ q
(k)
ij

xj−L
(k)
j

)
+ r

(k)
i ≤ f̂i, for i = 1, . . . , m

and max{xj, α
(k)
j } ≤ xj ≤ min{xj, β

(k)
j }, for j = 1, . . . , n

(1.9)

(The parameters α
(k)
j and β

(k)
j are called move limits.)

α
(k)
j and β

(k)
j should at least be chosen such that L

(k)
j < α

(k)
j < x

(k)
j < β

(k)
j < U

(k)
j .

General Rule for how to choose L
(k)
j and U

(k)
j :

(a) If the process tends to oscillate, then it needs to be stabilized and this can be accom-

plished by moving the asymptotes closer to the current iteration point.

(b) If, instead, the process is monotone and slow, it needs to be “relaxed”. This can be

accomplished by moving the asymptotes away from the current iteration point.
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1.4.2 The Dual Problem

P (k) is a convex, separable problem, so we can create a dual problem using a Lagrangian

function. The Lagrangian function corresponding to P (k) is given by

ℓ(x, y) = f
(k)
0 (x) +

m∑
i=1

yif
(k)
i (x)

Letting y be the vector of Lagrange multipliers (or “dual variables”) and doing some

derivations, we get the dual objective function W defined (for y ≥ 0), as below:

W (y) = min
x

{ℓ(x, y); αj ≤ xj ≤ βj for all j}

= r0 − yT b +
n∑

j=1
Wj(y)

where Wj(y) = min
xj

{lj(xj, y); αj ≤ xj ≤ βj}

This formulation is beneficial since it “eliminates” x.

The dual problem corresponding to P (k) is given as follows:

D: maximize W (y)

subject to y ≥ 0
(1.10)

D is a “nice” problem which may be solved by an traditional gradient method.

Once the dual problem has been solved the optimal solution of the primal subproblem P (k)

is directly obtained by substituting the optimal dual solution y into the following expression:

xj(y) =

(
p0j + yT pj

)1/2
Lj +

(
q0j + yT qj

)1/2
Uj(

p0j + yT pj

)1/2
+
(
q0j + yT qj

)1/2 .

For our implementation of the SIMP method, the MMA algorithm was employed within

the NLopt optimization package in Julia.
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Chapter 2

SIMP Optimization

2.1 Solid Isotropic Material with Penalization (SIMP)

Volume-to-Point (VP) Heat Conduction Problem

Consider a finite-size volume in which heat is being generated at every point, and which

is cooled through a small patch (the heat sink) located on its boundary. Suppose that we

have a finite amount of high-conductivity (k+) material available. Our goal is to determine

the optimal distribution of the k+ material through the given volume such that the average

temperature is minimized.

Solid Isotropic Material with Penalization (SIMP) is a method based on topology op-

timization that can be used to solve the VP Heat Conduction Problem. In each step of

the SIMP method we increase or decrease the proportion of high-conductivity material by a

small quantity. This allows us to apply methods designed for continuous optimization prob-

lems to the discrete VP problem as it transforms the binary 1—0 problem into a sequence

of continuous problems [3].

2.1.1 Preliminary Parameters

Assumptions

In order to develop the method, we need to make a couple of assumptions.

First of all, the energy differential equation driving the heat-flux inside the finite-volume

requires:
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1. All calculations are run under steady-state conditions. That is, we seek a stable solution

where quantities are independent of time.

2. All heat produced in the volume is evacuated through the heat-sink.

3. Low-conductivity materials (k0) and high-conductivity materials (k+) are treated as

homogeneous and isotropic on their respective conductivities.

We also set the following conditions:

• Thermal conductivities depend only on the material, and therefore are constant:

k0 = 1 W
m2 K and k+ = 100 W

m2 K .

• All structures have a square aspect ratio with L = H = 0.1m.

• The heat-sink is located on the middle of the west side of the structure.

• The heat-sink has Dirichlet boundary conditions: TS = 0°C.

• All other boundaries are adiabatic (Neumann boundary conditions): ∇T · n = 0.

Notation

We use the following notation to describe the sets involved in the VP-problem:

• x ∈ Ω = two-dimensional spatial field.

We set Ω = Ω0 ∪ Ω+ where

– Ω0 = portion of Ω that has conductivity k0.

– Ω+ = portion of Ω with conductivity k+. This is the portion of the space with

high-conductivity material.
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2.1.2 The Optimization Problem

Using the above established notation, we develop the following optimization problem:

minimize f(T ) for Ω+

subject to ∇ · (k∇T ) + q = 0

x ∈ Ω

(2.1)

The objective function f(T ) varies depending on desired design outcomes. Some possible

objective functions include average temperature (used in the implementation in this paper),

temperature variance, and maximum temperature.

Additionally, we create a constraint upon this problem to limit the quantity of k+ material

available.

ˆ
Ω+

dx =
ˆ

Ω
δ+ dx ≤ V where


δ+ = 0 if x ∈ Ω0

δ+ = 1 if x ∈ Ω+

(2.2)

Inequality (2.2) imposes a cap on the maximum volume (V ) of Ω+ and hence limits

the available amount of high-conductivity material that can be applied to the domain. If

we did not have this constraint, the optimal solution would be to set Ω+ = Ω, making

the entire domain have high conductivity material. However, this is not an interesting or

realistic problem and applying the new constraint turns the problem into optimization of

the distribution of Ω0 and Ω+ regions to minimize the chosen objective function.

Penalization Process

The problem of whether to place high conductivity material in a particular location or not

is discrete in nature. This is unfortunate as continuous optimization problems are generally

easier to solve. In particular, we cannot apply some of the optimization methods described

earlier, such as gradient descent, to a discrete optimization problem as they require the
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optimization variables to be continuous.

The SIMP method has a clever way of getting around this particular issue of discrete

variables: create a continuous function that allows for a “mix” of the two conductive materi-

als. This function turns our discrete variables into a continuous one, allowing us to apply the

methods used in continuous optimization problems. However, in reality, we cannot actually

mix the two conductive materials and therefore need a solution that produces a binary 1—0

structure. That is, our final result needs to either have conductivity k0 or k+ at each point,

not some fraction of each. Therefore, in each iteration of the SIMP process, we penalize the

mixing of the material. Keeping this in mind we introduce a design parameter η ∈ [0, 1] that

controls the amount of mixing of the two materials:

k (η) = k0 + (k+ − k0) ηp with 0 ≤ η ≤ 1 and p ≥ 1. (2.3)

An added bonus of this formulation of k(η) is that it is of the form (1.6), and hence a convex

function! Notice that when η = 0, k (0) = k0 and when η = 1, k (1) = k+. The value p in

(2.3) is the penalization parameter. p aids in the convergence process; without p the SIMP

method converges to a structure that is not 1—0: a composite structure where finite-volumes

are made up of different proportions of k0 and k+ materials.

To converge to a binary 1—0 structure, we gradually increase p beginning from p = 1.

Increasing p larger than 1 puts the objective function in (2.1) at a disadvantage if η ̸= 1.

Once p gets much larger than 1, the second term in k(η) of (2.3) becomes much smaller

than k0 and hence k(η) ≈ k0 for values of η ̸= 1. As a result, when trying to optimize f(T ),

values of η in (0, 1) are penalized which leads to design parameters taking on values of 0 or

1, creating a 1—0 structure.

We can think of increasing p as increasing the cost of adding k+ material to the design.

The volume constraint (2.2) caps the amount of k+ material we may add, and as p increases,

the optimizer needs to choose between placing ever more expensive k+ material or opting for
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k0 material, which caries with it no cost. Therefore, as the process continues, conductivity

of the control volumes is either firmly k+ (1 in the 1—0 terminology) or decreased to k0 (the

0 in 1—0) and intermediate values are phased out, producing a binary design.

2.1.3 Finite Volume Method Discretization

Many discretization methods could be used to numerically solve the heat equation (1.1). In

our implementation of the SIMP algorithm, the Finite Volume Method (described earlier in

§1.1.2) was used. FVM is used to discretize the formation of the heat equation in (2.1):

∇ · (k∇T ) + q = 0. (2.4)

We create a rectangular grid of NT = m × n temperature control volumes of size ∆x × ∆y

(solid squares in Figure 2.1). Each element is indexed by 1 ≤ i ≤ m and 1 ≤ j ≤ n, where i

refers to the row and j the column of the control volume. The volume indexed (i, j) = (1, 1)

is located in the upper-left and (i, j) = (m, n) in the bottom-right corner of the object. The

temperature over the area of the temperature control volume (i, j) is considered to be T i,j.

Around the upper left corner of each temperature control volume we create a correspond-

ing design element (dashed squares in Figure 2.1). (Staggering the control volume and design

grids helps avoid checkerboard solutions, discussed in §3.1.1.) The area within each (i, j)

design element has conductivity ki,j = k(ηi,j) as evaluated by (2.3).

In this staggered grid scheme, one of the grids contains the information related to the

temperature scalars and the other stores information related to the design parameters, η.

In order to employ the finite volume method, it is necessary to be able to calculate the

temperature fluxes along the boundaries of each control volume. To do this, we need to have

a value for the conductivity along the faces of each control volume. Notice that the faces of

the temperature control volumes lie within two adjacent design regions, which implies that

there are two different conductivites along that face. To create a consistent conductivity
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C
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N
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W
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Figure 2.1: Overlayed Temperature ( ) and Design ( ) grids with 4 × 4 Design Element
(ηi,j) and 3 × 3 Temperature Control Volume (Ki,j

C ) nodes. Ki,j
N and Ki,j

W indicate nodes at
the North and West boundaries, respectively, of each Temperature Control Volume. Each
Temperature control volume is numbered beginning in the upper left and continuing column-
by-column, left-to-right.
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along the control volume wall, we average (using either an arithmetic or harmonic mean)

the conductivity of the two adjacent design nodes. Hence, the conductivity along the West

face of control volume (i, j), denoted by ki,j
W , is given by

Arithmetic Mean: ki,j
W = ki,j + ki+1,j

2 or Harmonic Mean: ki,j
W = 2

(
1

ki,j
+ 1

ki+1,j

)−1

.

(2.5)

Similarly, the conductivity along the North face of control volume (i, j), denoted by ki,j
N , is

given by

Arithmetic Mean: ki,j
N = ki,j + ki,j+1

2 or Harmonic Mean: ki,j
N = 2

(
1

ki,j
+ 1

ki,j+1

)−1

.

(2.6)

For temperature control volume (i, j), the finite volume method discretizes (2.4) into the

following linear equation

Ki,j
C T i,j = Ki,j

W T i,j−1 + Ki,j+1
W T i,j+1 + Ki,j

N T i−1,j + Ki+1,j
N T i+1,j + ∆x∆yQi,j, (2.7)

where the Ki.j terms represent the diffusive flux coefficients, T i,j the temperature of control

volume (i, j), and Qi,j the heat generation of volume (i, j).

The value of the flux at the center node of the control volume is equal to the total flux

through the volume faces, so we have an additional equation to pair with (2.7):

Ki,j
C = Ki,j

W + Ki,j+1
W + Ki,j

N + Ki+1,j
N (2.8)

The KW and KN coefficients are dependent on the thermal conductivity and cross-

sectional area of their corresponding faces:

Ki,j
W = ki,j

W ∆y

∆x
and Ki,j

N = ki,j
N ∆x

∆y
(2.9)
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The domain has Neumann boundary conditions everywhere except for the heat sink.

This is very easy to implement with the finite volume method: there is no flux through

these boundaries, so the flux coefficients are 0. To account for the heat-sink in the middle of

the left boundary of the domain, which has Dirichlet boundary conditions, we add a “ghost

cell” to the other side of the boundary that has temperature opposite the cell along the

heat-sink in the domain. Adding this ghost cell in this way averages out the temperature on

the boundary to zero.

Putting together (2.5), (2.6), (2.7), (2.8), (2.9), and considering boundary conditions for

all NT control volumes gives us a system of equations that discretize (2.4). Collecting the

coefficients K into a matrix, representing the T and Q values as vectors, and doing a little

reorganizing, we can represent the system of equations as a matrix equation:

KT = ∆x∆yQ. (2.10)

Let us take a moment to analyze the structure of the matrix K, as it might not be

immediately evident to the reader what the elements of this matrix represent. (It took the

author some time to interpret the meaning of this matrix.) K is a sparse, symmetric, and

pentadiagonal mn × mn matrix.

The entries in the matrix K indicate the coefficient of diffusive flux between numbered

temperature control volumes. Notice in Figure 2.1 how the temperature control volumes

are numbered down the columns. We can convert between volume index (i, j) and control

volume number, #, using a simple function:

#(i, j) = i + m(j − 1). (2.11)

Entry K[α, β] is the flux coefficient between volumes number α and β. Since the flux

coefficient between volumes α and β is the same as that between β and α, K[α, β] = K[β, α],

producing the symmetry of matrix K. Since a particular control volume only interfaces with
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adjacent cells (and itself), each row/column will have (up to) five non-zero entries (all other

entries are zero since there is no flux between cells that are not in contact with one another),

which produces the pentadiagonality and sparsity of K. The ith elements of the size mn

vectors T and Q are the values of the temperature and heat generation of control volume

number i.

Equation (2.10) is solved for T using any appropriate method, such as LU factorization.

In our implementation we used the standard “\” operator in Julia: T = K\Q.

2.1.4 Discretized Optimization Problem

Now that we have been able to discretize (2.4), we can update the optimization problem

(2.1):

minimize f(T)

subject to KT = ∆x∆yQ
1

NT

1T η ≤ ϕ

k = k01 + (k+ − k0)ηp

0 ≤ η ≤ 1 and p ≥ 1

(2.12)

Here η represents the vector of design parameter values for each control volume. Addi-

tionally, we introduce the variable ϕ which represents the maximum porosity, the maximal

fraction of high-conductivity material allowed within the domain. NT equals the total num-

ber of temperature control volumes.

For our implementation of the SIMP method for this problem, the average temperature

was chosen as the objective function:

fav (T) = 1
NT

1T T. (2.13)

Additionally, we opted to have constant and uniform heat generation for each control
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volume. Specifically, in our implementation we set the heat generation for each volume to

be 1:

Q = 1. (2.14)

We use the Method of Moving Asymptotes (MMA) to update the design parameters

η throughout the optimization process. To create a local and convex approximation of

the problem (see §1.4), MMA requires both function and constraint evaluations, as well as

evaluations of the respective gradients. Hence, we need to calculate the gradients of the

average temperature function and porosity constraint. The gradients of the functions with

respect to the design parameters indicate the sensitivity of those functions to changes in η,

and hence analysis of these derivatives is called sensistivity analysis.

Sensitivity Analysis

We seek to find the partial derivatives of fav (the objective function) and ϕ (the constraint)

with respect to an arbitrary design element ηℓ so that we can form the gradients. That is,

we are looking to find expressions for

∂fav

∂ηℓ

and ∂ϕ

∂ηℓ

.

The adjoint method is employed to make the calculation of the partial derivative of fav

easier to find. By assuming (2.10) is true, we add a clever form of 0 to the objective function

fav:

fav (T) = 1
NT

1T T + λT (KT − Q)︸ ︷︷ ︸
=0

. (2.15)

The new variable, λ =
(
λ1, λ2, . . . , λNT

)
, is called the adjoint vector and behaves like a

Lagrange multiplier [2]. Differentiating (2.15) with respect to an arbitrary design variable

ηℓ gives
∂fav

∂ηℓ

= 1T

NT

∂Ti

∂ηℓ

+ λT

(
∂K
∂ηℓ

T + K
∂T
∂ηℓ

− ∂Q
∂ηℓ

)
. (2.16)
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The heat-generation rate is assumed to be homogeneous over design volumes and inde-

pendent of the conductive material, so it does not depend on the design parameters:

∂Q
∂ηℓ

= 0. (2.17)

Factoring terms including the partial derivative of T and taking into account (2.17), (2.16)

becomes
∂fav

∂ηℓ

=
(

λT K + 1T

NT

)
︸ ︷︷ ︸

(⋆)

∂T
∂ηℓ

+ λT ∂K
∂ηℓ

T. (2.18)

Hence ∂T
∂ηℓ

is eliminated from the expression if λ is taken such that (⋆) in (2.18) equals 0:

λT K + 1T

NT

= 0 ⇐⇒ Kλ = − 1
NT

1T . (2.19)

(2.19) is solved the same way as (2.10). Thus, using the values for λ from solving (2.19),

∂fav

∂ηℓ

= λT ∂K
∂ηℓ

T. (2.20)

λ and T are found by solving (2.19) and (2.10), respectively. Thus, it remains to find ∂K
∂ηℓ

.

Recall that matrix K contains the coefficients of control volume boundary conductivities,

which depend on the penalization equation k(η) (2.3). Hence, using the chain rule,

∂K
∂ηℓ

= ∂K
∂k

∂k
∂ηℓ

. (2.21)

By (2.3)

∂k
∂ηℓ

=


p (k+ − k0) ηp−1

ℓ for the ℓth element,

0 otherwise.

(2.22)

Using (2.5), (2.6), (2.8), and (2.9) one is able to find ∂K
∂k , the form of which will vary slightly
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based on whether an arithmetic or harmonic mean is chosen. For the arithmetic mean

∂K
∂k

=



−1
2

∆y
∆x

if k corresponds to a kW face,

−1
2

∆x
∆y

if k corresponds to a kN face,

−
(

∆y
∆x

+ ∆x
∆y

)
if k corresponds to a kC node.

(2.23)

It is now possible to compute ∂fav

∂ηℓ

using the above. We still require ∂ϕ

∂ηℓ

.

The porosity function is

ϕ(η) = 1
Nη

1T η (2.24)

where Nη indicates the number of design elements. The optimizer used in the implementation

(NLopt) requires constraints to be in the form of a function less than or equal to zero, so we

reorganize the form of (2.24) in (2.12):

1T η − NT ϕ ≤ 0 (2.25)

Therefore, we set the left-hand side of this inequality to be our porosity function:

ϕ̃ (η) = 1T η − NT ϕ (2.26)

Therefore,
∂ϕ̃

∂ηℓ

= 1 (2.27)

Now, we update the optimization problem one last time with the results from (2.13), (2.14),

and (2.25).
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minimize fav (T) = 1
NT

1T T

subject to KT = ∆x∆y1

1T η − NT ϕ ≤ 0

k = k01 + (k+ − k0)ηp

0 ≤ η ≤ 1 and p ≥ 1

(2.28)

(2.28) is finally in a form that we can input into the NLopt optimizer using the MMA

algorithm and produce possible design solutions to the VP heat conduction problem.
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Chapter 3

Implementation and Results

3.1 SIMP Implementation in Julia

The SIMP algorithm consists of two main loops. The inner-loop consists of the optimization

process facilitated by the Method of Moving Asymptotes while the outer-loop increases the

penalization parameter p after each inner-loop has completed. The whole process is repeated

until a desired threshold is met, such as a small enough norm between successive minimal

objective function evaluations. The algorithm implementation in the Julia language can be

found in A.4 and is available for download on GitHub.

Figure 3.1 shows design results for domains of varying numbers of control volumes. Notice

in Figures 3.1b and 3.1c that the ends of the “tentacles” contain some control volumes with

η ̸= 1. This is due to the cap put on p in the algorithm. It became necessary to impose a

maximum value for p as the number of control volumes increased in order to complete the

algorithm within a reasonable amount of time. With higher resolutions (i.e. more control

volumes), it appears that the algorithm continuously is trading high conductivity material

between the ends of the symmetric branches above and below the horizontal midline.

It is interesting to note the symmetry in the designs. In [3] the authors chose to take

advantage of this symmetry and compute only the upper half of the domain and then reflect

that design across the central horizontal axis. While 3.1a is certainly symmetric across the

central horizontal axis, we notice some variations in 3.1b and 3.1c in the central branches.

As we move away from square grids, we see a bit less symmetry. Figures 3.2 and 3.4 are

designs over rectangular control volumes and have asymmetric central branches.
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(a) 20 × 20 control volumes (b) 40 × 40 control volumes (Max p = 20)

(c) 60 × 60 control volumes (Max p = 20)

Figure 3.1: Final design outputs of SIMP algorithm for domains with varying numbers of
control volumes.
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Figure 3.2: 50 × 40 control volumes (Max p = 20)

Notice the alternating pattern in the conductivities of control volumes at the center of

Figure 3.1c. This phenomenon is known as “checkerboarding” and is a consequence of our

discretization scheme.

3.1.1 “King Me”: Avoiding the Checkerboard Problem

If one were to optimize conductive material placement to increase heat transfer on a standard

rectangular grid, a simplistic solution would be to create a grid of alternating material types

in each adjacent rectangle, like a checkerboard. This way, the heat is always flowing to

adjacent cells. While this may indeed increase heat transfer, it doesn’t necessarily decrease

the average temperature in our object (or transfer the heat towards the heat-sink). Hence,

avoiding this non-physical checkerboard solution is of concern.

In order to solve the heat equation (1.1), we employ the Finite Volume Method (described

earlier). This involves splitting up our space into a finite number of control volumes. The

checkerboard pattern emerges when the solution of our optimization process converges to a

1—0 structure which has some meshes that successively belong to the Ω0 and Ω+ sets (i.e.:
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Figure 3.3: A checkerboard pattern result on a 3-by-3 control volume grid. The black spaces
represent areas where η = 1 and the white spaces represent areas where η = 0 in (2.3). This
design results in adjacent regions of alternating thermal conductivites k+ and k0, artificially
maximizing heat transfer between control volumes.

Figure 3.4: Output of SIMP algorithm for 30 × 40 temperature control volumes. Notice the
local checkerboarding around (0.05, 0.015).

34



adjacent grid volumes have alternating thermal conductivites). As a result, the heat transfer

within the structure between k+ and k0 regions is maximized, artificially increasing the

impact of adding k+ material on the temperature T , which in turn minimizes the objective

function in (2.1) [7]. Typically, this pattern occurs locally but then spreads throughout

the entire structure through successive iterations of the optimization process. However, in

the real world, these checkerboard placements of our conductive materials do not actually

have the effect of lowering the average temperature in structures. In fact, the checkerboard

example in Figure 3.3 doesn’t even direct heat towards the heat-sink on the left wall of the

structure.

In order to avoid obtaining checkerboard solutions from our optimization process, we

employ two separate staggered grids for our temperature and design variables (see Figure

2.1). We need to employ some extra equations in order to translate between design and

temperature variables, but this strategy helps solve the issue of convergence to checkerboard

solutions.

Available literature on topology optimization propose other solutions as well, such as using

a weighted average over neighboring nodes when finding design sensitivities and introducing

constraints on the norm of the design gradients [5]. These are methods that would be of

interest to implement in future work.

3.1.2 Algorithm Results

In our implementation, the algorithm is initialized with η = 0.05 for each control volume,

the maximal porosity ϕ was 10%, and p was increased in steps of 0.05 beginning at p = 1

for each outer-loop iteration. We can see in Figure 3.5 that after one outer-loop iteration,

the algorithm has already zeroed the design parameters for many of the control volumes.

With each outer-loop iteration and increasing p, the objective function values for the

average temperature increases quite rapidly until it begins to level off. For a 60 × 60 control

volume design, the temperature values begin to converge around p = 5 (Figure 3.6). The
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Figure 3.5: Design after one outer-loop iteration for a 60 × 60 control volumes.

increase in temperature is due to concentration of the k+ material and penalizing fractional

portions of η.

In general, the number of inner-loop iterations seems to quickly decrease as p increases,

but there are fluctuations that occur occasionally (Figure 3.7). It is not clear as to why the

inner-loop converges after a small number of iterations (often 2 or 3) for one p-value and

then will require over 100 iterations for a following p-value. Other literature on the VP heat

conduction problem did not have an explanation for this behavior either [3].

It is interesting to note that the fluctuations in the number of inner-loop iterations seem

to be of greater magnitude for the rectangular control volume examples tested. (See Figure

3.7a versus Figure 3.7b.)

The algorithm was also run with high initial p-values. Rather than starting with p = 1,

Figure 3.8a shows the resulting design for initializing the algorithm with p = 5. In this

case, the algorithm converged very quickly: one outer-loop iteration. Here, the algorithm

determines that it is best to densely place the expensive k+ material around the heat-sink.

If the initial penalization parameter is too high, the algorithm appears to stall at the initial
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Figure 3.6: p-value plotted against Average Temperature Evaluation for 60 × 60 control
volumes with a maximum p-value of 20.

guess. In Figure 3.8b the algorithm was initialized with p = 19. The algorithm ran 3 outer-

loop iterations, but the final design is the same as the initial input design. It appears that

with such a high penalization parameter it costs too much to change the conductivity at any

control volume and the solution the optimizer outputs is the initial guess.

For the designs tested, it appears that the total algorithm runtime increases quadratically

with the total number of control volumes in the design (Figure 3.9).
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(a) p-value plotted against the number of inner loop iterations for 60×60 control
volumes with a maximum p-value of 20.

(b) p-value plotted against the number of inner loop iterations for 50×40 control
volumes with a maximum p-value of 20.

Figure 3.7: p-value vs. Number of Inner Loop Iterations for Square and Rectangular Control
Volumes
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(a) 60 × 60 Control Volumes with Initial p = 5. (b) 60 × 60 Control Volumes with Initial p = 19.

Figure 3.8: SIMP Algorithm design outputs for initial p-values greater than 1.

Figure 3.9: Plot of runtime for SIMP algorithm for various numbers of control volumes.
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Conclusion

The Volume-to-Point (VP) heat conduction problem seeks to find the optimal placement

of high-conductivity material to minimize a property of the design, such as average tem-

perature. In order to understand this problem and its solutions, we needed to study the

partial differential heat equation (1.1) and its discretization via the Finite Volume Method.

Furthermore, knowledge of optimization problems and the optimization algorithm of the

Method of Moving Asymptotes was needed to implement the Solid Isotropic Material with

Penalization (SIMP) algorithm to find solutions to the VP problem. We managed to write a

working implementation of the SIMP method in the Julia language that can be easily mod-

ified to different sized rectangular design domains and is able to be run on a simple desktop

computer. Areas of future investigation include implementing the harmonic average filtering

scheme in (2.5) and (2.6) into the program. Additionally, we began investigations concerning

the use of the SIMP method to maximize the eigenvalue band-gap in acoustic materials, but

there was not enough time to produce results. I am also interested in investigating the use

of the SIMP method for designing efficient packaging materials.
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Appendix A

Julia Codes

A.1 Backtracking Line Search

Implementation of the Backtracking Line Search in Julia with default values for the param-

eters being α = 0.25 and β = 0.5.

� �
function ln_srch(d_dir,x,f,fx,dfx;alpha=0.25,beta=0.5)

t = 1

x1 = x+t*d_dir

y1 = f(x1)

y2 = fx+alpha*t*(dfx)'*d_dir

while y1 > y2

t = beta*t

x1 = x+t*d_dir

y1 = f(x1)

y2 = fx+alpha*t*(dfx)'*d_dir

end

return t

end� �

A.2 Gradient Descent

� �
using LinearAlgebra

#Function to Optimize
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f(x)=(x[2])ˆ3-x[2]+(x[1])ˆ2-3x[1]

#Gradient of Function

df(x)=[2x[1]-3,3x[2]ˆ2-1]

#Initial Point

x=[0,0]

#Line Search Algorithm

function ln_srch(d_dir,x,f,fx,dfx;alpha=0.25,beta=0.5)

t = 1

x1 = x+t*d_dir

y1 = f(x1)

y2 = fx+alpha*t*(dfx)'*d_dir

while y1 > y2

t = beta*t

x1 = x+t*d_dir

y1 = f(x1)

y2 = fx+alpha*t*(dfx)'*d_dir

end

return t

end

#Gradient Descent Algorithm

function grad_d(f,df,x)

d_dir = -df(x)

t = ln_srch(d_dir,x,f,f(x),df(x))

x = x + t*d_dir

return x

end

#Compute Minimum for Defined Tolerance

while norm(df(x))>0.00001

global x = grad_d(f,df,x)

end

display(x)� �
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A.3 Nonlinear Conjugate Gradient

� �
using LinearAlgebra

i = 0

k = 0

#Function to Optimize

f(x)=(x[2])ˆ3-x[2]+(x[1])ˆ2-3x[1]

#Gradient of Function

df(x)=[2x[1]-3,3x[2]ˆ2-1]

#Hessian of Function

hf(x)=[2 0; 0 6x[2]]

#Initial Point

x = [0,0]

n = size(x)[1]

r = -df(x)

d = r

delta_new = (r')*r

delta_0 = delta_new

#Choose Max Iterations

i_max = 100

#Choose Max Newton-Raphson Iterations

j_max = 10

#Set CG Error Tolerance

epsilon_CG = 0.5

#Set Newton-Raphson Error Tolerance
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epsilon_NR = 0.5

while (i < i_max) && (delta_new > (((epsilon_CG)ˆ2)*(delta_0)))

global j = 0

global delta_d = (d')*d

while true

global alpha = -((df(x))'*d)/((d')*hf(x)*d)

global x = x + alpha*d

global j = j + 1

(j < j_max) && ((alpha)ˆ2*(delta_d) > (epsilon_NR)) || break

end

global r = -df(x)

global delta_old = delta_new

global delta_new = (r')*r

global beta = (delta_new)/(delta_old)

global d = r + beta*d

global k = k + 1

if (k == n) || (((r')*d) <= 0)

global d = r

global k = 0

end

global i = i + 1

end

display(x)� �

A.4 SIMP Method for Volume-to-Point Heat Conduction Prob-

lem on 60x60 Control Volume Grid

� �
using NLopt, SparseArrays, LinearAlgebra, LaTeXStrings, Plots

pyplot()

##########################

## Fixed Variable Input ##

##########################
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p = 1

p_max = 20

p+ = 0.05

m = 60

n = 60

k0 = 1.0

k+ = 100.0

xlen = 0.1

ylen = 0.1

ε0 = 1e-3 # Outer loop error tolerance

ε i = 1e-4 # Inner Loop error tolerance

q = 1e4

##########################

## Compute size of each ##

## control volume ##

##########################

∆x = xlen / n

∆y = ylen / m

###########################################

## Create Optimization Problem Structure ##

## Using MMA with dimentions (m+1)*(n+1) ##

###########################################

opt = Opt(:LD_MMA, (m + 1) * (n + 1))

#########################

46



## Average Temperature ##

## Objective Function ##

#########################

function av_temp(

η::Vector,

grad::Vector,

p,

m,

n,

xlen = 0.1,

ylen = 0.1,

k0 = 1.0,

k+ = 100.0,

)

#######################

## Assemble K Matrix ##

#######################

##########################

## Compute size of each ##

## control volume ##

##########################

∆x = xlen / n

∆y = ylen / m

η = reshape(η, m + 1, n + 1)

# Define Conductivity Penalization Function for design parameters eta

k = k0 .+ (k+ - k0) .* η .ˆ p

# Control Volumes are designated based on matrix-type coordinates, so that

volume [i,j] is the control volume in the i-th row and j-th column from

the upper left.

# Compute conductivites of temperature control volume boundaries

# k_W[i,j] = conductivity of "West" boundary of [i,j] control volume

k_W = 0.5 * (k[1:end-1, :] + k[2:end, :])
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# k_N[i,j] = conductivity of "North" boundary of [i,j] control volume

k_N = 0.5 * (k[:, 1:end-1] + k[:, 2:end])

# Initialize K matrix

K = spzeros((m * n), (m * n))

# Number control volumes based on node coordinates, going column-by-column,

for m rows and n columns

function cord2num(i, j, m)

cv_num = i + (j - 1) * m

return cv_num

end

# Construct K matrix

# K[x,y] tells the heat flux from temperature volume number x to volume

number y

for i = 1:m, j = 1:(n-1)

K[cord2num(i, j, m), cord2num(i, j + 1, m)] = -k_W[i, j+1] * (∆y / ∆x)

K[cord2num(i, j + 1, m), cord2num(i, j, m)] = -k_W[i, j+1] * (∆y / ∆x)

end

for i = 1:(m-1), j = 1:n

K[cord2num(i, j, m), cord2num(i + 1, j, m)] = -k_N[i+1, j] * (∆x / ∆y)

K[cord2num(i + 1, j, m), cord2num(i, j, m)] = -k_N[i+1, j] * (∆x / ∆y)

end

# Diagonal elements of K balance out column sums

for j = 1:(m*n)

K[j, j] = -sum(K[:, j])

end

######################

## Add in effect of ##

## Heat Sink ##

######################

# Add heat sink in middle of left side of material by adding conductivity

to diagonal element of K in corresponding row

if iseven(m)
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# Nearest half integer

hm = m ÷ 2

K[cord2num(hm, 1, m), cord2num(hm, 1, m)] += k_W[hm, 1] * (∆y / ∆x)

K[cord2num(hm + 1, 1, m), cord2num(hm + 1, 1, m)] += k_W[hm+1, 1] * (∆y / ∆

x)

else

hm = m ÷ 2 + 1

K[cord2num(hm, 1, m), cord2num(hm, 1, m)] += k_W[hm, 1] * (∆y / ∆x)

end

#######################

## Assemble Q Matrix ##

#######################

# Input vector of Heat-Generation rates

Q = ∆x*∆y*q*ones(m, n)

######################

## Compute T Vector ##

######################

# Solve KT = Q

T = K \ vec(Q)

###########################

## Gradient Computations ##

###########################

if length(grad) > 0

grad = reshape(grad, m + 1, n + 1)

############################

## Compute λ vector ##

## (Dual Vector for f_av) ##

############################

λ = K \ (-ones((m * n), 1) * (1 / (m * n)))

#########################

## Create ∂k/∂η Matrix ##
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#########################

dk = (p * (k+ - k0)) .* η .ˆ (p - 1)

###########################

## Assemble ∂K/∂η Matrix ##

###########################

for i = 1:m+1, j = 1:n+1

###########################

## Assemble ∂K/∂k Matrix ##

## for each (i,j) ##

###########################

dK = spzeros((m * n), (m * n))

if 2 <= j <= n

for a = max(1, i - 1):min(i, m)

dK[cord2num(a, j, m), cord2num(a, j - 1, m)] = -0.5 * (∆y /

∆x)

dK[cord2num(a, j - 1, m), cord2num(a, j, m)] = -0.5 * (∆y /

∆x)

end

end

if 2 <= i <= m

for b = max(1, j - 1):min(j, n)

dK[cord2num(i, b, m), cord2num(i - 1, b, m)] = -0.5 * (∆x /

∆y)

dK[cord2num(i - 1, b, m), cord2num(i, b, m)] = -0.5 * (∆x /

∆y)

end

end

for a = max(1, i - 1):min(i, m), b = max(1, j - 1):min(j, n)

dK[cord2num(a, b, m), cord2num(a, b, m)] = -sum(dK[cord2num(a,

b, m), :])

end

######################

## Add in effect of ##

## Heat Sink ##
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######################

if iseven(m)

hm = m ÷ 2

if j == 1 && (hm ≤ i ≤ hm + 1)

dK[cord2num(hm, 1, m), cord2num(hm, 1, m)] += 0.5 * (∆y / ∆

x)

end

if j == 1 && (hm + 1 ≤ i ≤ hm + 2)

dK[cord2num(hm + 1, 1, m), cord2num(hm + 1, 1, m)] += 0.5 *

(∆y / ∆x)

end

else

hm = m ÷ 2 + 1

if j == 1 && (hm ≤ i ≤ hm + 1)

dK[cord2num(hm, 1, m), cord2num(hm, 1, m)] += 0.5 * (∆y / ∆

x)

end

end

###########################

## Find Nonzero elements ##

## of ∂K/∂η_{i,j} and ##

## Assemble ∂f_av Matrix ##

###########################

grad[i, j] = 0.0

A, B, Va = findnz(dK)

for k = 1:nnz(dK)

a = A[k]

b = B[k]

v = Va[k]

grad[i, j] += λ[a] * v * T[b]

end

#############################

## (∂K/∂k)*(∂k/∂η) = ∂K/∂η ##

#############################

grad[i, j] *= dk[i, j]

end

end
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##########################

## Compute f(T) = T_avg ##

##########################

f_avg = sum(T) / (m * n)

########################

## Debugging Messages ##

########################

#println("fav = $f_avg\n", "grad = $grad\n") #Output for Debugging Purposes

return f_avg

end

##################################

## Porosity Constraint Function ##

##################################

function por(x::Vector, grad::Vector, m, n)

if length(grad) > 0

grad .= 1.0

end

con = sum(x) - 0.1 * (m + 1) * (n + 1)

#println("con = $con\n", "grad = $grad\n") #Output for Debugging Purposes

return con

end

###################################

## Add Objective and Constraints ##

## to opt structure ##

###################################

min_objective!(opt, (x, g) -> av_temp(x, g, p, m, n))

inequality_constraint!(opt, (x, g) -> por(x, g, m, n), 1e-8)

opt.lower_bounds = 0

opt.upper_bounds = 1
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opt.xtol_rel = ε i

η = 0.05 .* ones((m + 1) * (n + 1))

f_0 = 10.0 * av_temp(η, [], p, m, n)

p_vec = []

iter_vec = []

f_av_vec = []

total_iterations = 0

total_iter_vec = []

while true

(minf, minx, ret) = optimize!(opt, η)

numevals = opt.numevals # the number of function evaluations

println("$p: $minf for $numevals iterations (returned $ret)")

global total_iterations += numevals

global total_iter_vec = push!(total_iter_vec, total_iterations)

global p_vec = push!(p_vec, p)

global f_av_vec = push!(f_av_vec, minf)

global iter_vec = push!(iter_vec, numevals)

global p += p+

err = norm(minf - f_0)

global f_0 = minf

((err <= ε0) || (p > p_max)) && break

end

η = reshape(η, m + 1, n + 1)

η_map = heatmap(

0:∆x:xlen,

0:∆y:ylen,

η,

yflip = true,

xmirror = true,

aspect_ratio = :equal,

fontfamily = "serif",

font = "Computer Modern Roman",

colorbar_title = "η",

title = "η for each Design Volume",

)� �
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