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Abstract

This thesis is the culmination of two distinct branches of research during my time as a graduate

student. First, with my advisor Milena Stanislavova, I studied the theory of one-parameter semi-

groups of bounded linear operators acting on a Banach space. We used aspects of this theory to

derive optimal (depending on the eigenvalue structure) L2 bounds on the semigroup solutions to

certain Hamiltonian linearized partial differential equations when it is assumed that the spectrum

of the Hamiltonian linearized operator is purely imaginary. Without this assumption, our methods

allowed us still to infer a priori bounds on spectrum of the linearized operator. The first chapter of

this thesis is an introduction to semigroup theory and the second chapter details how we applied

these methods (specifically, the Gomilko Lemma which allows us to distinguish uniform and expo-

nential decay for the semigroup solution) to certain Hamiltonian linearized nonlinear Schródinger

and Korteweg-De Vries equations.

Next, I pursued independently a research project in the geometry of Banach spaces. A Banach

space X is said to have the Property of Lebesgue or to be a “PL-space" if every Riemann-integrable

function f : [0,1]→ X is Lebesgue almost everywhere continuous. The problem of characterizing

PL-spaces in terms of their asymptotic geometry is still open. I believe that the solution to this

problem will come with the advent of stronger local results which more easily allow for the infer-

ence of some amount of global asymptotic structure of X . Upgrading local asymptotic results to

global ones is in general a difficult and ongoing problem in the geometry of Banach spaces.

Whether or not X is a PL-space is intimately linked to its asymptotic proximity (both global

and local) to `1. In 2008, K.M. Naralenkov proved that every Banach space that is asymptotic-

`1 with respect to a basis is a PL-space and he also provided details to an unpublished result of

A. Pelczyński and G.C. da Rocha Filho that every spreading model of a PL-space is equivalent

to `1. I generalized both of these results in my recent paper [9] so that every Banach space that
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is asymptotic-`1 in a coordinate-free sense (i.e. it need not have a basis so this would include

non-separable spaces) is a PL-space, and every so-called SP-asymptotic model of a PL-space is

equivalent to `1. SP-asymptotic models directly generalize spreading models, and the few local-to-

global results that do exist are often framed in terms of asymptotic models. The last chapter of this

thesis provides some background about PL-spaces, details these new contributions to their theory,

and closes with some specific ideas for future research on this topic.
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Chapter 1

Preliminary Information about Semigroups

Abstract

This chapter establishes a basic theoretical framework about one-parameter operator semi-

groups acting on a Banach space. These objects are important with respect to applications

because they can be used to represent the solutions to various linearized PDE that are “evo-

lution equations."

1.1 What is an Operator Semigroup?

A one-parameter family of bounded linear operators on a Banach space X is said to be an operator

semigroup if, loosely speaking, it interacts well with the forward or backward evolution of the

parameter. It is assumed throughout that X is a Banach space over F ∈ {R,C} and that L (X) is

the set of bounded linear operators from X into itself, that is:

L (X) = {T : X → X | T is linear and ∃c > 0 such that ‖T (x)‖ ≤ c‖x‖ ∀x ∈ X} .

The set L (X) is itself a Banach space with respect to the operator norm:

‖T‖op = sup
x 6=0

‖T (x)‖
‖x‖

= sup
‖x‖≤1

‖T (x)‖= sup
‖x‖=1

‖T (x)‖= inf{c > 0 | ‖T (x)‖ ≤ c‖x‖ ∀x ∈ X} .

The boundedness of T ∈L (X) is equivalent to its continuity with respect to the given norm ‖ · ‖

on X and the precise definition of an operator semigroup on X is now given below.
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Definition 1.1.1. The one-parameter family {T (t)}t≥0 ⊂L (X) is an operator semigroup on X if

the following two conditions:

1. T (0) = I, where I is the identity map on X

2. T (t + s) = T (t)◦T (s) for all t,s≥ 0

are met. If, in addition, limsupt→0 ‖T (t)x− x‖ = 0 for all x ∈ X , then {T (t)}t≥0 is said to be a

strongly continuous, or C0-semigroup.

Every C0-semigroup induces another linear map, called its infinitesimal generator (or simply

its generator), which is more or less its “derivative at zero" subject to initial data.

Definition 1.1.2. Let {T (t)}t≥0 be a C0-semigroup on X . The generator of {T (t)}t≥0 is the linear

map A : D(A)⊂ X → X defined by:

D(A) =
{

x ∈ X
∣∣∣∣ lim

t→0

T (t)x− x
t

exists
}

where Ax = limt→0
T (t)x−x

t for all x ∈ D(A).

It is worth noting that the concept of a generator makes sense only for semigroups that are

at least strongly continuous because x /∈ D(A) if limsupt→0 ‖T (t)x− x‖ > 0. On the other hand,

limsupt→0 ‖T (t)x− x‖= 0 does not guarantee that x ∈ D(A) so D(A) might well be a proper sub-

space of X and A : D(A)⊂ X → X might well be unbounded even if {T (t)}t≥0 is a C0-semigroup.

As noted in the chapter abstract, semigroups can be used to represent solutions to linearized

PDE whose “Abstract Cauchy Problem" (to be defined later) has a suitable form. The classical

example is the heat equation, namely,


(∂t−∆)u(x, t) = 0 for x ∈ R and t > 0

u(x,0) = u0(x) for x ∈ R and t = 0

for u0 ∈ D(A) = H2(R) fixed. In this case, the operator A = ∂xx : H2(R)→ L2(R) generates the

2



C0-semigroup {T (t)}t≥0 on L2(R) that is defined by T (0) = I and

u(x, t) = T (t)u0(x) =
1√
4πt

ˆ
R

e
−|x−y|2

4t u0(y)dy t > 0

where we recall that u0 = u(x,0) and that the solution to the heat equation for x ∈ R at time t > 0

is given by the convolution of the heat kernel Kt(x− y) = 1√
4πt

e
−|x−y|2

4t with u0(y). It is a standard

exercise to check that {T (t)}t≥0 as above satisfies the conditions of being a C0-semigoup on L2(R)

that is generated by ∂xx.

The next subsection collects the basic properties of C0-semigroups that follow easily from

Definitions 1.1.1 and 1.1.2. Notational conventions hereafter include that N0 is the set of non-

negative integers and N= N0∩ [1,∞).

1.2 Basic Properties of C0-Semigroups

The most basic property of a C0-semigroup is that the parameter-to-orbit map is, for every fixed

initial datum x ∈ X , continuous.

Theorem 1.2.1. Let {T (t)}t≥0 ⊂ L (X) be a C0-semigroup. Then, the function κx : [0,∞)→ X

defined by κx(t) = T (t)x is, for all x ∈ X, continuous.

Proof. Let x ∈ X be arbitrary and fix t0 ∈ [0,∞). If h > 0, then

‖κx(t0 +h)−κx(t0)‖= ‖T (t0 +h)x−T (t0)x‖= ‖T (t0)(T (h)x− x)‖ ≤ ‖T (t0)‖op‖T (h)x− x‖

and taking limsup as h→ 0 of both sides proves the right-continuity of κ . Left-continuity follows

similarly if t0 > 0 and hence, κ is continuous at t0 ∈ [0,∞).

If {T (t)}t≥0 is a C0-semigroup, then the continuity of the parameter-to-orbit maps is more

or less the assertion of pointwise boundedness for any subfamily {T (t)}t∈I where I ⊂ [0,∞) is

compact. The Principle of Uniform Boundedness then leads to the following result.
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Theorem 1.2.2. Let {T (t)}t≥0 ⊂L (X) be a C0-semigroup. Then, ‖T (t)‖op ≤ Mωeωt for some

ω ∈ R and for some Mω ≥ 1.

Proof. Suppose, for all n ∈ N, that there exists a real number tn ∈ [0, 1
n ] such that ‖T (tn)‖op > n.

Consider the subfamily:

{T (tn) | n ∈ N}

and note that, for each x ∈ X , ‖T (tn)(x)‖ ≤ supt∈[0,1] ‖T (t)x‖ < ∞ by the continuity (and hence

boundedness) of the parameter-to-orbit map κx on [0,1]. It follows by the Principle of Uniform

Boundedness that supn∈N ‖T (tn)‖op < ∞ and this contradicts ‖T (tn)‖op > n for all n ∈ N. There is

then a positive integer n0 such that ‖T (t)‖op ≤ n0 for every t ∈ [0, 1
n0
]

Let t ≥ 0 be arbitrary and note that t = k 1
n0
+ r for some k ∈ N0 and for some r ∈ [0, 1

n0
). This

obtains the estimate:

‖T (t)‖op =

∥∥∥∥T
(

k
1
n0

+ r
)∥∥∥∥

op
≤
∥∥∥∥T
(

1
n0

)∥∥∥∥k

op
‖T (r)‖op

≤ nk+1
0 = n0ek ln(n0) = n0eln(n0)(t−r)n0 ≤ n0en0 ln(n0)t

so defining ω = n0 ln(n0) and Mω = n0 completes the proof.

It is worth noting that the constants ω and Mω in the above proof of Theorem 1.2.2 depend

solely on n0 ∈ N. However, the notation Mω is suggestive and will be explained shortly. The final

theorem of this subsection provides a “toolbox" of sorts for manipulating C0-semigroups and their

generators.

Theorem 1.2.3. Let {T (t)}t≥0 ⊂ L (X) be a C0-semigroup and let A : D(A) ⊂ X → X be its

generator. Then,

1. For all x ∈ X and for all t ≥ 0:

(a) limh↓0
1
h

´ t+h
t T (s)xds = T (t)x

(b)
´ t

0 T (s)xds ∈ D(A) and A
(´ t

0 T (s)xds
)
= T (t)x− x
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2. For all x ∈ D(A) and for all t ≥ 0:

(a) T (t)x ∈ D(A) and d
dt [T (t)x] = AT (t)x = T (t)Ax

(b) For all s ∈ [0, t],
´ t

s T (w)Axdw =
´ t

s AT (w)xdw = T (t)x−T (s)x.

3. A : D(A)⊂ X → X is densely-defined and closed.

Proof. Fix x ∈ X and let t ≥ 0 be arbitrary. Let ε > 0 be given and choose h > 0 so small that

‖T (s)x−T (t)x‖< ε for s ∈ [t, t +h] by the continuity of κx at t. Then,

∥∥∥∥∥1
h

ˆ t+h

t
T (s)xds−T (t)x

∥∥∥∥∥=
∥∥∥∥∥1

h

(ˆ t+h

t
T (s)x−T (t)x

)
ds

∥∥∥∥∥
≤ 1

h

ˆ t+h

t
‖T (s)x−T (t)x‖ds≤ 1

h

ˆ t+h

t
εds = ε

so 1. (a) follows. The assertion 1. (b) is an application of 1. (a). Finally, the assertion 2. (a) is

an application of the semigroup property (i.e. the second condition of Definition 1.1.1) and the

assertion 2. (b) is nothing but the fundamental theorem of calculus.

The third assertion is perhaps the most far-reaching consequence of Theorem 1.2.3 and. For a

fixed x ∈ X , define the vectors: xn = n
´ 1

n
0 T (t)xdt for all n ∈ N. It is immediate that xn ∈ D(A) by

1. (b) and it is also not difficult to see that x = limn→∞ xn by an estimate similar the one given for

the proof of 1. (a). Namely,

‖x− xn‖=

∥∥∥∥∥x−n
ˆ 1

n

0
T (t)xdt

∥∥∥∥∥≤ n
ˆ 1

n

0
‖x−T (t)x‖dt ≤ sup

0≤t≤ 1
n

‖x−T (t)x‖

and the RHS goes to zero as n→ ∞, so that D(A) is a dense subset of X . If (xn)
∞
n=1 ∈ [D(A)]N,

xn→ y ∈ X , and A(xn)→ z, then it lastly follows that for a fixed h > 0 and for all t ∈ [0,h],

‖T (t)A(xn)−T (t)z‖= ‖T (t)[A(xn)− z]‖ ≤Mωeωh‖A(xn)− z‖

5



so that T (t)A(xn)
unif→ T (t)z on [0,h] as n→ ∞. In particular, this implies that:

T (h)y− y
h

= lim
n→∞

T (h)xn− xn

h
= lim

n→∞

1
h

ˆ h

0
T (t)A(xn)dt

=
1
h

ˆ h

0
lim
n→∞

T (t)A(xn)dt =
1
h

ˆ h

0
T (t)zdt

so, in turn, limh↓0
T (h)y−y

h = limh↓0
1
h

´ h
0 T (t)zdt = T (0)z = z because the above equality holds for

all h > 0. It follows that y ∈ D(A) and that A(y) = z, meaning that A is closed.

One-parameter operator semigroups are purely mathematical objects that interact in a desirable

manner with the forward and backward evolution of their parameter and, if they are strongly con-

tinuous, have some additional properties that are worth noting. The reason, however, for defining

these objects is application-based. Namely, the “Abstract Cauchy Problem" (ACP) for the linear

operator A : D(A)⊂ X → X is the initial value problem:


d
dt [u(t)] = A(u(t)) for all t ≥ 0

u(0) = u0 where u0 ∈ D(A)
. (1.2.1)

The ACP (1.2.1) is well-posed (i.e. it has a unique solution depending continuously on the initial

data) if and only if A is the generator of a C0-semigroup {T (t)}t≥0. The solution, in this case, is

given by the “semigroup representation" u(t) = T (t)u0. This raises an important question: when

is A : D(A)⊂ X → X the generator of a C0-semigroup?

1.3 Necessary and Sufficient Conditions for C0-Semigroup Generation

The theory of ordinary differential equations (ODE) suggests that the semigroup {T (t)}t≥0 whose

semigroup represntation u(t) = T (t)u0 solves (1.2.1) ought to behave much like the collection of

6



linear operators {etA}t≥0 where etA is defined by its Taylor series:

etA =
∞

∑
j=0

(tA) j

j!
(1.3.1)

which converges when A ∈ L (X) (so ‖A‖op < ∞). This leads to a preliminary question: under

what condition(s) is T (t) = etA for all t ≥ 0?

Theorem 1.3.1. Let {T (t)}t≥0 ⊂ L (X) be a C0-semigroup and let A : D(A) ⊂ X → X be its

generator. Then, A ∈L (X) if and only if limsupt→0 ‖T (t)− I‖op = 0.

Proof. Suppose first that A ∈L (X) and define, for t ≥ 0, the linear operators etA as in (1.3.1). It

is clear that if ‖x‖= 1, then

‖etAx‖=

∥∥∥∥∥
(

∞

∑
j=0

(tA) j

j!

)
x

∥∥∥∥∥=
∥∥∥∥∥
(

N

∑
j=0

(tA) j

j!
+

∞

∑
j=N+1

(tA) j

j!

)
x

∥∥∥∥∥
≤

∥∥∥∥∥ N

∑
j=0

(tA) jx
j!

∥∥∥∥∥+
∥∥∥∥∥ ∞

∑
j=N+1

(tA) j

j!

∥∥∥∥∥
op

≤ ε +
N

∑
j=0

(t‖A‖op)
j

j!
≤ ε + et‖A‖op

for a given ε > 0 and N = N(t,A) ∈ N chosen sufficiently large. It follows that etA ∈L (X) for

each t ≥ 0 and that ‖etA‖op ≤ et‖A‖op . In addition, e0A = I (the identity on X) and:

etA ◦ esA =

(
∞

∑
j=0

(tA) j

j!

)
◦

(
∞

∑
k=0

(sA)k

k!

)
=

∞

∑
i=0

i

∑
l=0

(tA)l

l!
(sA)i−l

(i− l)!

=
∞

∑
i=0

Ai

i!

i

∑
l=0

i!
l!(i− l)!

t lsi−l =
∞

∑
i=0

((t + s)A)i

i!
= e(t+s)A

by applying the Cauchy product formula (i.e. discrete convolution) and the binomial theorem so

{etA}t≥0 is clearly a semigroup on X by Definition 1.1.1. It remains to prove that this semigroup

is strongly continuous and generated by A. If x ∈ X is fixed, then

limsup
t→0

‖etAx− x‖= ‖e0x− x‖= 0 (1.3.2)

7



so {etA}t≥0 is, in fact, a C0-semigroup. Finally,

∥∥∥∥etAx− x
t
−Ax

∥∥∥∥= ∥∥∥∥1
t
(etA− I− tA)x

∥∥∥∥=
∥∥∥∥∥1

t

(
∞

∑
j=2

(tA) j

j!

)
x

∥∥∥∥∥=
∥∥∥∥∥
(

∞

∑
j=2

t j−1A j

j!

)
x

∥∥∥∥∥
=

∥∥∥∥∥
(

N

∑
j=2

t j−1A j

j!
+

∞

∑
j=N+1

t j−1A j

j!

)
x

∥∥∥∥∥≤ ε +

∥∥∥∥∥
(

N

∑
j=2

t j−1A j

j!

)
x

∥∥∥∥∥ (1.3.3)

where once again ε > 0 is given and N = N(t,A) ∈ N is chosen sufficiently large. It follows that

{etA}t≥0 is generated by A upon taking limsupt→0 of both sides of (1.3.3). In other words, the

bounded linear operator A ∈ L (X) generates the truly exponential C0-semigroup {etA}t≥0 and

what is more, (1.3.2) can be improved in the following sense:

‖etA− I‖op =

∥∥∥∥∥ ∞

∑
j=1

(tA) j

j!

∥∥∥∥∥
op

≤

∥∥∥∥∥ N

∑
j=1

(tA) j

j!

∥∥∥∥∥
op

+ ε (1.3.4)

where, for a third time, ε > 0 is given, N = N(t,A) ∈ N is chosen sufficiently large, and applying

limsupt→0 on both sides of (1.3.4) yields limsupt→0 ‖etA− I‖op = 0.

Suppose conversely that limsupt→0 ‖T (t)− I‖op = 0 note that for a sufficiently small r > 0,

∥∥∥∥I− 1
r

ˆ r

0
T (t)dt

∥∥∥∥
op
≤ 1

r

ˆ r

0
‖I−T (t)‖opdt

and this implies that I−
(
I− 1

r

´ r
0 T (t)dt

)
= 1

r

´ r
0 T (t)dt ∈L (X) is invertible. Let x ∈ X and fix
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h ∈ (0,r). Then,

T (h)x− x
h

=

[ˆ r

0
T (t)dt

]−1[ˆ r

0
T (t)dt

]
T (h)− I

h
x =

[ˆ r

0
T (t)dt

]−1[1
h

ˆ r

0
T (t)[T (h)− I]xdt

]
=

[ˆ r

0
T (t)dt

]−1[1
h

ˆ r

0
T (t +h)xdt− 1

h

ˆ r

0
T (t)xdt

]
=

[ˆ r

0
T (t)dt

]−1
[

1
h

ˆ r+h

h
T (t)xdt− 1

h

ˆ r

0
T (t)xdt

]

=

[ˆ r

0
T (t)dt

]−1
[

1
h

(ˆ r+h

r
T (t)xdt +

ˆ r

h
T (t)xdt

)
− 1

h

ˆ r

0
T (t)xdt

]

=

[ˆ r

0
T (t)dt

]−1
[

1
h

ˆ r+h

r
T (t)xdt− 1

h

ˆ h

0
T (t)xdt

]
(1.3.5)

and taking h ↓ 0 on both sides of (1.3.5) implies that limh↓0
T (h)x−x

h =
[´ r

0 T (t)dt
]−1

(T (r)x− x).

Then, A : D(A) ⊂ X → X is not only closed, but is also everywhere-defined so it follows that

A ∈L (X) as required.

The upshot of Theorem 1.3.1 is that if limsupt→0 ‖T (t)−I‖op = 0, then the semigroup {T (t)}t≥0

is generated by a bounded linear operator and is therefore truly exponential. This knowledge is the

first step towards a complete characterization of C0-semigroup generators.

Definition 1.3.2. The resolvent set of a closed linear operator A : D(A) ⊂ X → X is the subset of

the complex plane defined by ρ(A) = {λ ∈ C | (λ I−A) : D(A)⊂ X → X is bijective}.

The only assumption on A : D(A) ⊂ X → X beyond its linearity is that it must be closed. In

particular, D(A) need not be dense in X . The reason for this assumption is to ensure that, for all

fixed λ ∈ ρ(A), the inverse (so-called resolvent) linear operator (λ I−A)−1 : X → D(A) is closed

and therefore bounded as a consequence of the closed graph theorem (because it is everywhere-

defined). The resolvent operator at λ ∈ ρ(A) is commonly and hereafter denoted by R(λ ,A). The

cornerstone and, in some sense, first nontrivial result of basic semigroup theory is the following

theorem for contraction semigroups (i.e. a C0-semigroup satisfying ‖T (t)‖op ≤ 1 for all t ≥ 0).

9



Theorem 1.3.3. The linear operator A : D(A) ⊂ X → X generates a contraction semigroup on X

if and only if it is closed, densely-defined, and ‖R(λ ,A)‖op ≤ 1
λ

for all λ ∈ (0,∞).

Proof. Suppose first that A : D(A) ⊂ X → X generates a contraction semigroup {T (t)}t≥0. It is

immediately clear from Theorem 1.2.3 that A is closed and densely-defined. Next, define for a

fixed λ ∈ (0,∞) the linear function Rλ : X → X by:

Rλ x =
ˆ

∞

0
e−λ tT (t)xdt (x ∈ X)

and notice that for every x ∈ X with ‖x‖ = 1, ‖Rλ x‖ ≤
´

∞

0 e−λ tdt = 1
λ

. It remains to show that

λ ∈ ρ(A) and that Rλ = R(λ ,A). For a fixed x ∈ X , consider

T (h)Rλ x−Rλ x
h

=
1
h

T (h)
ˆ

∞

0
e−λ tT (t)xdt− 1

h

ˆ
∞

0
e−λ tT (t)xdt

=
1
h

ˆ
∞

h
e−λ (t−h)T (t)dt− 1

h

ˆ
∞

0
e−λ tT (t)xdt

=
eλh−1

h

ˆ
∞

h
e−λ tT (t)xdt− 1

h

ˆ h

0
e−λ tT (t)xdt (1.3.6)

and taking h ↓ 0 on both sides of (1.3.6) implies that Rλ x ∈ D(A) with A(Rλ x) = λRλ x− x. This

means in particular that for x ∈ X ,

(λ I−A)Rλ x = λRλ x−A(Rλ x) = λRλ x−λRλ x+ x = x

and on the other hand for x ∈ D(A),

Rλ (λ I−A)x = λRλ x−Rλ Ax = λRλ x−ARλ x = λRλ x−λRλ x+ x = x

because A is closed and commutes with T (t) (and hence with Rλ ) for x ∈ D(A). It follows that

λ ∈ ρ(A), Rλ = R(λ ,A), and that ‖R(λ ,A)‖op ≤ 1
λ

as required.

Suppose conversely that A : D(A)⊂ X → X is closed, densely-defined, and that ‖R(λ ,A)‖op ≤

10



1
λ

for all λ ∈ (0,∞). Define, for all λ ∈ (0,∞), the linear operator

Aλ = λAR(λ ,A) = λ
2R(λ ,A)−λ I

and observe that:

1. For x ∈ D(A), ‖λR(λ ,A)x− x‖= ‖AR(λ ,A)x‖ ≤ ‖Ax‖
λ

so that limλ→∞ λR(λ ,A)x = x. What

is more, limλ→∞ λR(λ ,A)x = x for all x ∈ X by the density of D(A) in X .

2. For λ ∈ (0,∞), Aλ ∈ L (X) and thus generates the truly exponential semigroup {etAλ }t≥0

with ‖etAλ ‖op = ‖et(λ 2R(λ ,A)−λ I)‖op = ‖etλ 2R(λ ,A)e−tλ I‖op ≤ e−tλ etλ 2‖R(λ ,A)‖op = 1.

Let x ∈ D(A), λ ,µ > 0, and note that by the fundamental theorem of calculus:

‖etAλ x− etAµ x‖=
∥∥∥∥ˆ 1

0

d
ds

[
etsAλ et(1−s)Aµ

]
xds
∥∥∥∥

=

∥∥∥∥ˆ 1

0

d
ds

[
etsAλ+t(1−s)Aµ

]
xds
∥∥∥∥= ∥∥∥∥ˆ 1

0
etsAλ et(1−s)Aµ (tAλ − tAµ)xds

∥∥∥∥
≤
ˆ 1

0
‖etsAλ et(1−s)Aµ (tAλ − tAµ)x‖ds≤ t‖Aλ x−Aµx‖

= t ‖A(λR(λ ,A)x−µR(µ,A)x)‖ (1.3.7)

for a fixed t ≥ 0. It follows by 1. that the RHS of (1.3.7) converges to zero as λ ,µ → ∞ so it is

allowable to define:

T̃ (t)x = lim
λ→∞

etAλ x

for each x ∈ D(A). This implies that the family {T̃ (t) : D(A)→ X | t ≥ 0} ⊂L (D(A),X) is an

operator semigroup whose strong continuity is due to the fact that s 7→ T̃ (s)x is continuous for

s ∈ [0, t] as the uniform limit of continuous functions on this interval. In turn, the same is true

for the continuous extensions T (t) ∈ L (X) of each T̃ (t) so that the family {T (t)}t≥0 is a C0-

semigroup on X and clearly ‖T (t)‖op ≤ 1. It remains to prove that this semigroup is generated by

11



A. Assume to that end that {T (t)}t≥0 is generated by G : D(G)⊂ X → X and x ∈ D(A). Then,

T (h)x− x
h

=
1
h

lim
λ→∞

(etAλ x− x) =
1
h

lim
λ→∞

ˆ h

0
etAλ Aλ xdt =

1
h

ˆ h

0
T (t)Axdt (1.3.8)

because etAλ Aλ x unif→ T (t)Ax on [0,h]. It follows that Gx = Ax by taking h ↓ 0 on both sides of

(1.3.8) so A ⊂ G as operators. Finally, 1 ∈ ρ(A) by assumption so that (I−A) : D(A)→ X and

(I−G)|D(A) : D(A)→ X are both invertible (with range X by Definition 1.3.2) so that:

(I−G)|D(A)[D(A)] = (I−A)[D(A)] = X

and thus D(A) = (I−G)|−1
D(A)[X ] = (I−G)−1[X ] = D(G) so A = G as required.

Theorem 1.3.3 is the Hille-Yosida Theorem for contraction semigroups. It is the workhorse of

basic semigroup theory in the sense that C0-semigroup generators can now be fully characterized

by means of rescaling and renorming arguments alone. This is the content of the full Hille-Yosida

Theorem, stated below.

Theorem 1.3.4. The linear operator A : D(A)⊂ X → X generates a C0-semigroup {T (t)}t≥0 sat-

isfying ‖T (t)‖op ≤Mωeωt if and only if A is closed, densely-defined, and for all λ ∈ C that lie in

the right half-plane ℜ(λ )> ω the estimate ‖R(λ ,A)‖op ≤ Mω

(ℜ(λ )−ω)n holds for all n ∈ N.

The full Hille-Yosida Theorem is of theoretical significance but is impractical due the need to

verify ‖R(λ ,A)‖op ≤ Mω

(ℜ(λ )−ω)n for all n ∈N. Indeed, infinitely-many conditions must be checked.

This difficulty is, however, largely overcome in the context of PDE because numerous linearized

operators have the desirable property of dissipativity. It is a straightforward consquence of the

Hahn-Banach Theorm that the set

∆(x) = { f ∈ X∗ | ‖ f (x)‖2
op = ‖x‖2 = f (x)}

is nonempty for all x ∈ X (where X∗ denotes the continuous dual space of X). A linear operator

12



A : D(A)⊂ X → X is then dissipative if, for all x ∈ D(A), ℜ[ f (Ax)]≤ 0 for some f ∈ ∆(x). More

advanced functional analytic arguments show that this dissipativity is equivalent to the condition

that ‖(λ I−A)x‖ ≥ λ‖x‖ for all λ > 0 and for all x ∈ D(A). The Lumer-Philips Theorem forges a

connection between dissipative operators and contraction semigroup generators.

Theorem 1.3.5. Let A : D(A) ⊂ X → X be densely-defined. If A is the generator of a contraction

semigroup, then A is dissipative and (λ I−A) is a linear surjection onto X for all λ > 0. Con-

versely, A is the generator of a contraction semigroup if it is dissipative and if there exists λ0 > 0

such that (λ0I−A) is a linear surjection onto X.

The proof of Theorem 1.3.5 is omitted but can be found in [25] Once again, this theorem can

be adapted for general (i.e. non-contraction) C0-semgroups by rescaling/renorming arguments.

1.4 Asymptotic Theory of Semigroup Solutions

Recall that the notation Mω from Theorem 1.3.1 is suggestive despite the fact that the constant

Mω ≥ 1 produced by this theorem does not actually depend on ω ∈ R. The reason is for this

notation is that it is advantageous to discuss the set of all ω ∈ R for which there exists some

constant Mω and to then associate these Mω with their respective real numbers ω .

Definition 1.4.1. Let {T (t)}t≥0 be a C0-semigroup and let A : D(A)⊂ X→ X be its generator. The

growth bound of this semigroup is the constant ωA = inf{ω ∈ R | ∃Mω ≥ 1 such that ‖T (t)‖op ≤

Mωeωt ∀t ≥ 0}.

It is worth noting that ωA = −∞ is allowable, for example if T (t) = 0 for all t ≥ 0. More

importantly, the hope is to prove that ωA < 0 if (1.2.1) is well-posed in which case the semigroup

solution u(t) = T (t)u0 decays exponentially. The growth bound of a semigroup can be represented

in several different ways as a consequence of Fekete’s Lemma, stated below.

Theorem 1.4.2. Let η : (0,∞)→ (0,∞) be bounded on compact subsets and subadditive. Then,

inft>0
η(t)

t = limt→∞
η(t)

t where the existence of this limit is part of the claim.
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This lemma is well-known and a proof can be found, for instance, in [6] An immediate corol-

lary is the following theorem that yields several different characterizations of ωA in terms of the

semigroup.

Theorem 1.4.3. Let {T (t)}t≥0 be the C0-semigroup generated by A : D(A)⊂ X → X. Then,

ωA = inf
t>0

ln(‖T (t)‖op)

t
= lim

t→∞

ln(‖T (t))‖op)

t
=

ln(rad(T (t0)))
t0

for all t0 > 0, where rad(·) denotes the so-called spectral radius of a bounded linear operator.

Proof. Define η : (0,∞)→ (0,∞) by η(t) = ln(‖T (t)‖op) for t > 0. it follows that η is bounded

on compact subsets of (0,∞) and is subadditive so by Theorem 1.4.2,

inf
t>0

η(t)
t

= inf
t>0

ln(‖T (t)‖op)

t
= lim

t→∞

ln(‖T (t))‖op)

t
= lim

t→∞

η(t)
t

.

Write v = inft>0
η(t)

t and note that for all ω > ωA and for all t0 > 0,

v≤ η(t0)
t0
≤ ln(Mωeωt0)

t0
=

ωt0 + ln(Mω)

t0
= ω +

ln(Mω)

t0
.

Taking t0→ ∞ implies v ≤ ω for every ω > ωA and then taking ω ↓ ωA proves v ≤ ωA. For the

opposite inequality, let d > v be given and note that there is a t0 > 0 so that v ≤ η(t)
t < d for all

t ≥ t0 because v = inft>0
η(t)

t = limt→∞
η(t)

t . This implies that ‖T (t)‖op ≤ edt for all t ≥ t0 and

because t 7→ ‖T (t)‖op is bounded on [0, t0], it follows that ‖T (t)‖op ≤M0edt for some M0 ≥ 1. In

all, this yields that v ≤ ωA ≤ d and because d > v is arbitrary, it follows that v is not strictly less

than ωA so v = ωA as required. Finally,

ln(rad(T (t0)))
t0

=
ln(limn→∞ ‖[T (t0)]n‖

1
n
op)

t0
= lim

n→∞

ln(‖T (nt0)‖op)

nt0
= ωA

where rad(L) = limn→∞ ‖Ln‖
1
n
op is Gelfand’s formula for the spectral radius of an L ∈L (X). It is

worth noting that this formula in fact holds for the members of any Banach algebra.
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Recall that the hope is to show ωA < 0 whenever (1.2.1) is well-posed. The following theorem

provides several useful characterizations of this quality.

Theorem 1.4.4. Let {T (t)}t≥0 be the C0-semigroup generated by A : D(A) ⊂ X → X. Then, the

following conditions are equivalent:

1. ωA < 0

2. limt→∞ ‖T (t)‖op = 0

3. There exists t0 > 0 such that ‖T (t0)‖op < 1

4. There exists t0 > 0 such that rad(T (t0))< 1

Proof. The implications 1. =⇒ 2. =⇒ 3. =⇒ 4. =⇒ 1. are all either immediate in and of

themselves or are trivial consequences of Theorem 1.4.3.

Theorem 1.4.4 is a non-exhaustive list of conditions that are equivalent to ωA < 0 (for example,

there is also the well-known Datko-Pazy Theorem). It is, however, more than sufficient to help

prove what is essentially the second workhorse of basic semigroup theory and the main result of

Section 1.4: the Gearhart-Prüss Theorem. Some basic spectral theory is also required.

1.4.1 Basic Spectral Theory of Semigroup Generators

Recall that the linear function A : D(A)⊂ X → X is assumed to be closed in Definition 1.3.2. The

resulting fact that R(λ ,A) ∈L (X) for all λ ∈ ρ(A) is essential for the following properties.

Theorem 1.4.5. Let A : D(A)⊂ X → X be a closed linear operator. Then,

1. The resolvent set ρ(A) ⊂ C is open and, for each fixed λ0 ∈ ρ(A), the resolvent operator at

µ ∈
{

λ ∈ C
∣∣∣ |λ −λ0|< 1

‖R(λ0,A)‖op

}
is given by R(µ,A) = ∑

∞
j=0(λ0−µ) jR(λ0,A) j+1.

2. The function δ : ρ(A)→L (X) defined by δ (λ ) = R(λ ,A) is analytic in the sense that it is

locally expressable by means of a power series and ∂ n
λ
[δ (λ )] = (−1)nn![δ (λ )]n+1.

3. A fixed λ0 ∈ C is a member of C \ ρ(A) if and only if liminfk→∞ ‖R(λk,A)‖op = ∞ for all

sequences (λk)
∞
k=1 ∈ [ρ(A)]N convergent to λ0.
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Proof. Let λ0 ∈ ρ(A) be given and observe that:

λ I−A = (λ0I−A)+(λ −λ0)I = [I− (λ0−λ )R(λ0,A)](λ0I−A). (1.4.1)

It follows that I− (λ0−λ )R(λ0,A) is invertible (by means of Von Neumann) if the operator norm

of (λ0−λ )R(λ0,A) is strictly less than 1 and because

‖(λ0−λ )R(λ0,A)‖op ≤ |λ0−λ | · ‖R(λ0,A)‖op

this is guaranteed to occur if |λ0− λ | < 1
‖R(λ0,A)‖op

. In particular, this proves that the open ball

centered at λ0,
{

λ ∈ C
∣∣∣ |λ −λ0|< 1

‖R(λ0,A)‖op

}
, is a subset of ρ(A) and, in turn, this means that

ρ(A) is an open subset of C because λ0 is fixed arbitrarily. Note also that for any λ ∈ C that

satisfies |λ −λ0|< 1
‖R(λ0,A)‖op

, the identity

R(λ ,A) = R(λ0,A)[I− (λ0−λ )R(λ0,A)]−1

= R(λ0,A)
∞

∑
j=0

(λ0−λ ) jR(λ0,A) j =
∞

∑
j=0

(λ0−λ ) jR(λ0,A) j+1 (1.4.2)

follows by taking the inverse on both sides of (1.4.1) and expressing the more complicated inverse

as a Neumann series.

The second assertion follows immediately from (1.4.2) and differentiating n times with respect

to λ . Now, fix λ0 ∈ C and suppose that liminfk→∞ ‖R(λk,A)‖op = ∞ for all sequences (λk)
∞
k=1 ∈

[ρ(A)]N convergent to λ0. If λ0 ∈ ρ(A), then the set {λk | k ∈ N} is a compact subset of ρ(A) for

all sequences (λk)
∞
k=1 ∈ [ρ(A)]N convergent to λ0. The analytic function δ : ρ(A)→L (X) defined

by δ (λ ) = R(λ ,A) is therefore bounded on this set meaning liminfk→∞ ‖R(λk,A)‖op = ∞ cannot

be true. Conversely,

|λk−λ0| ≥
1

‖R(λk,A)‖op

for all sequences (λk)
∞
k=1 ∈ [ρ(A)]N convergent to λ0 if λ0 ∈ C \ ρ(A) (else λ0 is a member of
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ρ(A)). It follows that ‖R(λk,A)‖op ≥ 1
|λk−λ0| and taking the liminfk→∞ of both sides proves that

liminfk→∞ ‖R(λk,A)‖op = ∞ since λk→ λ0.

The set C \ ρ(A) is typically denoted by σ(A) and is called spectrum of the closed operator

A : D(A)⊂ X → X . The set σ(A)⊂ C is always closed (because ρ(A) is open) and, if A ∈L (X),

bounded (a less trivial consequence of Liouville’s Theorem) and, as the set of λ ∈C where λ I−A

fails to be invertible, it loosely represents the eigenvalues of A. This set can be decomposed by

looking at exactly how λ I−A fails to be bijective.

Definition 1.4.6. Let A : D(A) ⊂ X → X be a closed linear operator. Then, the point spectrum of

A is the set

Pσ(A) = {λ ∈ σ(A) | λ I−A is not 1−1}

consisting of true eigenvalues in the sense that ker(λ I−A) 6= /0. The approximate point spectrum

of A is the set:

APσ(A) = {λ ∈ σ(A) | λ I−A is not 1−1 or the range of λ I−A is not closed in X}.

It is clear that Pσ(A)⊂ APσ(A) and, in addition, the members of APσ(A) are approximate in the

sense that for each fixed λ ∈ APσ(A), there exists a sequence of vectors (xn)
∞
n=1 ∈ [D(A)]N such

that 0 = limsupn→∞ ‖(λ I−A)xn‖. The residual spectrum of A is the set:

Rσ(A) = {λ ∈ σ(A) | the range of λ I−A is not dense in X}

and it is evident that σ(A) = APσ(A)∪Rσ(A), though this union need not be disjoint.

Returning to the asymptotic theory of C0-semigroup generators, it is clear from Theorem 1.3.4

that sA = sup{ℜ(λ ) | λ ∈ σ(A)} ≤ ωA. There is then hope to ascertain the decay of the semi-

group solution by investigating the spectrum of the generator, particularly if the opposite inequal-

ity s(A)≥ ωA holds. Whether or not sA = ωA holds can be investigated through so-called spectral
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mapping theorems. For instance, it can be shown that if {T (t)}t≥0 is the C0-semigroup generated

by A : D(A)⊂ X → X , then

etσ(A) = {etλ ∈ C | λ ∈ σ(A)} ⊂ σ(T (t))

and moreover, that etPσ(A) = Pσ(T (t))\{0} and etRσ(A) = Rσ(T (t))\{0} for all t ≥ 0.

1.4.2 The Gearhart-Prüss Theorem

It turns out that there exist necessary and sufficient conditions to guarantee ω(A)< 0 based on the

decay of ‖R(λ ,A)‖op for λ ∈ C+ = {λ |ℜ(λ )> 0} if X is a Hilbert space. This is what might be

considered the cornerstone of the asymptotic theory of strongly continuous semigroups. Let X be

a Hilbert space with inner product 〈·, ·〉 for this and the next subsection.

Theorem 1.4.7. Let {T (t)}t≥0 be the C0-semigroup generated by A : D(A) ⊂ X → X. It follows

that ωA < 0 if and only if C+ ⊂ ρ(A) and M = supλ∈C+
‖R(λ ,A)‖op < ∞.

Proof. Suppose first that ωA < 0 and fix ω ∈ (ωA,0). It follows by the definition of ωA that there

exists a constant Mω ≥ 1 such that ‖T (t)‖op ≤ Mωeωt and applying Theorem 1.3.4, this implies

that C+ ⊂ {λ |ℜ(λ )> ω} ⊂ ρ(A) and that

‖R(λ ,A)‖op ≤
Mω

(ℜ(λ )−ω)n

for all n ∈ N and for all λ in the half-plane ℜ(λ )> ω . Taking n = 1 yields that

‖R(λ ,A)‖op ≤
Mω

(ℜ(λ )−ω)
≤ Mω

−ω

for all λ ∈ C+ and therefore that supλ∈C+
‖R(λ ,A)‖op ≤ Mω

−ω
< ∞.

Suppose conversely that C+ ⊂ ρ(A) and M = supλ∈C+
‖R(λ ,A)‖op < ∞. These hypotheses in

concert with Theorem 1.4.5 3 imply that iR = {λ | ℜ(λ ) = 0} ⊂ ρ(A) so it follows that, in fact,
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iR∪C+ ⊂ ρ(A) and the uniform bound on the operator norm of the resolvent at λ ∈ C+ extends

to λ ∈ iR by continuity. Now, define ω = |ωA|+1 and note that the shifted semigroup:

T−ω(t) = e−ωtT (t) t ≥ 0

is strongly continuous, is generated by A−ωI, and has a negative growth bound. The key to this

proof is then to represent the resolvent operator of A along a vertical line in C+ in terms of the

resolvent operator of A−ωI. Namely,

R(ω + is,A)x =
ˆ

∞

0
e−(ω+is)tT (t)xdt =

ˆ
∞

0
e−istT−ω(t)xdt = R(is,A−ωI)x

for all s ∈ R and for all x ∈ X . This is to say (setting T−ω(t) = 0 for all t < 0) that R(ω + is,A)x is

the Fourier Transform of T−ω(t)x ∈ L2(R,X). Plancharel’s Theorem then obtains:

ˆ
∞

−∞

‖R(ω + is,A)x‖2ds = 2π

ˆ
∞

−∞

‖T−ω(t)x‖2dt ≤ L‖x‖2

where the constant L ≥ 0 is derived by means of the negative growth bound on the shifted semi-

group. The resolvent identity shows that R(is,A) = [I−ωR(is,A)]R(ω + is,A) so that

ˆ
∞

−∞

‖R(is,A)x‖2ds≤ (1+ωM)2
ˆ

∞

−∞

‖R(ω + is,A)x‖2ds≤ (1+ωM)2L‖x‖2

and an identical estimate follows for the adjoint semigroup {[T (t)]∗}t≥0 on X that is generated by

A∗. Applying the semigroup inversion formula established by [6] in the case j = 2 now obtains:

|〈tT (t)x,y〉|=
∣∣∣∣〈 1

2πi
lim

N→∞

ˆ N

−N
e(ω+is)tR(ω + is,A)2xds,y

〉∣∣∣∣
=

1
2π

lim
N→∞

∣∣∣∣ˆ N

N
e(ω+is)t〈R(ω + is,A)2x,y〉ds

∣∣∣∣ (1.4.3)

for all x ∈ D(A2), for all t > 0, and for all y ∈ X , where viewing the inner product against a fixed
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y ∈ X as a bounded linear functional on X allows for the limit to be pulled out of the inner product

and for the inner product to be pushed under the integral. Cauchy’s Formula now asserts that

(1.4.3)≤ 1
2π

limsup
N→∞

∣∣∣∣ˆ N

−N
eist〈R(is,A)2x,y〉ds

∣∣∣∣
+

1
2π

limsup
N→∞

∣∣∣∣ˆ ω

0
er+iN〈R(r+ in,A)2x,y〉dr

∣∣∣∣
+

1
2π

limsup
N→∞

∣∣∣∣ˆ ω

0
er−iN〈R(r− in,A)2x,y〉dr

∣∣∣∣ (1.4.4)

and noting that ‖R(λ ,A)x‖= 1
|λ |‖λR(λ ,A)x‖= 1

|λ |‖R(λ ,A)Ax+x‖ ≤ M‖Ax‖+‖x‖
|λ | for all x ∈D(A2)

and for all nonzero λ ∈ iR∪C+,

(1.4.4)≤ 1
2π

limsup
N→∞

∣∣∣∣ˆ N

−N
eist〈R(is,A)2x,y〉ds

∣∣∣∣+ limsup
N→∞

Mω‖y‖etω(M‖Ax‖+‖x‖)
Nπ

=
1

2π
limsup

N→∞

ˆ N

−N
|〈R(is,A)x,R(−is,A∗)y〉|ds≤ ‖‖R(is,A)x‖ · ‖R(−is,A∗)y‖‖L1

s (R) (1.4.5)

because ]R(is,A)]∗ = R(−is,A∗). Finally, an application of Hölder’s Inequality shows that

(1.4.5)≤ ‖‖R(is,A)x‖‖L2
s (R) ‖‖R(−is,A∗)y‖‖L2

s (R)

≤ 1
2π

√
(1+ωM)L‖x‖2

√
(1+ωM)L‖y‖2 (1.4.6)

and because D(A2) is dense in X , it follows from (1.4.6) that

‖tT (t)‖op = sup
x,y∈D(A2)
‖x‖=‖y‖=1

|〈tT (t)x,y〉| ≤ (1+ωM)L
2π

which implies that ‖T (t)‖op ≤ (1+ωM)L
2πt → 0 as t→ ∞ so ωA < 0 by Theorem 1.4.4.

The difficulty with using Theorem 1.4.7 directly in applications is that iR⊂ ρ(A) as a byprod-

uct of the hypotheses. Many interesting PDEs are not “spectrally stable" in this sense so there is

the need for a finer tool that distinguishes between semigroups that decay exponentially and those
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that merely satisfy a uniform bound of the form supt>0 ‖T (t)‖op < ∞ and may have some purely

imaginary spectrum. The result that accomplishes this task is the Gomilko Lemma.

1.4.3 The Gomilko Lemma

The proof of the Gomilko Lemma follows closely that of Theorem 1.4.7.

Theorem 1.4.8. Let {T (t)}t≥0 be the C0-semigroup generated by A : D(A) ⊂ X → X. It follows

that ‖T (t)‖op ≤M < ∞ for all t ≥ 0 if and only if C+ ⊂ ρ(A) and the estimate

sup
δ>0

δ

ˆ
∞

−∞

(
‖R(δ + is,A)x‖2 +‖R(δ + is,A∗)x‖2)ds <C‖x‖2

is valid for all x ∈ X.

Proof. Suppose first that ‖T (t)‖op ≤M < ∞ for all t ≥ 0. Notice that M = M0e0t so ωA ≤ 0. This

implies as in the proof of Theorem 1.4.7 that C+ ⊂ ρ(A) and as before, write

R(ω + is)x =
ˆ

∞

0
e−(ω+is)tT (t)xdt =

ˆ
∞

0
e−istT−ω(t)xdt = R(is,A−ωI)x

where T−ω(t) = e−ωtT (t) for each t ≥ 0, and where ω > 0 and s ∈ R are arbitrary. Plancharel’s

Theorem then obtains

ˆ
∞

−∞

‖R(ω + is,A)x‖2ds = 2π

ˆ
∞

−∞

‖T−ω(t)x‖2dt ≤ 2π

ˆ
∞

0

M2‖x‖2

eωt dt =
2πM2‖x‖2

ω

for all x ∈ X where T−ω(t) = 0 for all t < 0 as in Theorem 1.4.7. An identical estimate holds for

the 2-norm of the resolvent of the adjoint A∗ so that

ω

ˆ
∞

−∞

(
‖R(ω + is,A)x‖2 +‖R(ω + is,A∗)x‖2)ds≤ ω

(
4πM2‖x‖2

ω

)
=C‖x‖2 (1.4.7)

where C = 4πM2 ≥ 0. Taking the supremum over all ω > 0 of (1.4.7) then produces the desired

estimate.
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Suppose conversely that C+ ⊂ ρ(A) and that the estimate

sup
δ>0

δ

ˆ
∞

−∞

(
‖R(δ + is,A)x‖2 +‖R(δ + is,A∗)x‖2)ds <C‖x‖2

is valid for all x ∈ X . Consider, for a fixed x ∈ X , the function fx : C+→ X defined by fx(λ ) =

R(λ ,A)x. Complex differentiating yields

d
dλ

[ fx(λ )] =−R(λ ,A)2x =
d

dλ

ˆ
∞

0
e−tλ T (t)xdt =−

ˆ
∞

0
e−tλ tT (t)xdt =−L(tT (t)x)

where L denotes the Laplace Transform, by applying Theorem 1.4.5 2 and moving the derivative

under the integral. In particular, L can be inverted at the function tT (t)x by the formula:

tT (t)x = L−1[R(λ ,A)2x] =
1

2πi

ˆ
∞

−∞

e(α+is)tR(α + is,A)2xds

where α = ℜ(λ ). It follows that for all t > 0 and for all y ∈ X ,

|〈T (t)x,y〉|=
∣∣∣∣〈 1

2πit

ˆ
∞

−∞

e(α+is)tR(α + is,A)2xds,y
〉∣∣∣∣

=
1

2πt
lim

N→∞

∣∣∣∣ˆ N

−N
e(α+is)t〈R(α + is,A)2x,y〉ds

∣∣∣∣ (1.4.8)

by the same logic as in the proof of Theorem 1.4.7. Then,

(1.4.8)≤ etα

2πt
limsup

N→∞

ˆ N

−N
|〈R(α + is,A)2x,y〉|ds

=
etα

2πt
limsup

N→∞

ˆ N

−N
|〈R(α + is,A)x,R(α− is,A∗)y〉|ds

≤ etα

4πt
limsup

N→∞

ˆ N

−N

(
‖R(α + is,A)x‖2 +‖R(α− is,A∗)y‖2)ds (1.4.9)

where the Cauchy-Schwarz inequality is used, followed by Young’s inequality (2ab≤ a2 +b2 for

a,b ≥ 0). Now, because ‖R(α − is,A∗)y‖ = ‖R(α + is,A)y‖ and because (1.4.9) is valid for all
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α = ℜ(λ ) with λ ∈ C+, take y = x and α = 1
t to obtain

(1.4.9)≤ α

4π
limsup

N→∞

ˆ N

−N

(
‖R(α + is,A)x‖2 +‖R(α + is,A)x‖2)ds

≤ 1
4π

sup
α>0

ˆ
∞

−∞

(
‖R(α + is,A)x‖2 +‖R(α + is,A)x‖2)ds (1.4.10)

which finally implies that

|〈T (t)x,x〉| ≤ C‖x‖2

4π
= C̃‖x‖2

for all x ∈ X so that ‖T (t)‖op ≤ C̃. This estimate is valid for all fixed t > 0 so the semigroup is

uniformly bounded as required.

1.5 Closing Remarks

The projects outlined in the next two chapters detail attempts to derive uniform bounds on the L2

norms of the semigroup solutions to certain linearized PDEs by means of Theorem 1.4.8. Recall

that Theorem 1.3.5 is the tool most frequently used in practice to ascertain whether or not a closed

linear operator generates a C0-semigroup. In particular, if X is a Hilbert space and if x ∈ X , then

fx = 〈·,x〉 ∈ ∆(x) ⊂ X∗ and the densely-defined linear operator A : D(A) ⊂ X → X is dissipative

provided that

0≥ℜ[ fx(Ax)] = 〈Ax,x〉 (1.5.1)

for all x ∈ D(A). It follows from (1.5.1) and density arguments that 0≥ 〈A∗x,x〉 for all x ∈ D(A∗)

so that A∗ : D(A∗)⊂ X→ X is dissipative as well and this is sufficient by [25, Corollary 4.4, Ch. 2]

to conclude that A generates a contraction semigroup by Theorem 1.3.5. An immediate corollary

is that if B : D(B)⊂ X → X satisfies the estimate

ω‖x‖2 ≥ℜ[ fx(Bx)] = 〈Bx,x〉

23



for all x ∈ D(B) (dense in X), then 0 ≥ 〈Bx,x〉−ω‖x‖2 = 〈Bx,x〉−ω〈x,x〉 = 〈(B−ωI)x,x〉 so

it follows by the above logic that (B−ωI) : D(B) ⊂ X → X generates a contraction semigroup.

Then, [25, Theorem 1.1, Ch. 3] (the bounded perturbation theorem) implies that B : D(B)⊂ X→ X

generates a C0-semigroup with growth bound ωB ≤ ω .

Chapter 1 of this thesis offers only the briefest of introductions to the basic theory of operator

semigroups. There exist a number of important classes of semigroups (e.g. analytic, differentiable,

compact, etc..) that are not discussed here because they are not necessarily relevant to the material

of Chapters 2 and 3. Additional information regarding these semigroups and semigroup/operator

theory in general can be found in [6] and additional information regarding underlying functional

analytic concepts can be found in [4].
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Chapter 2

L2 Operator Norm Estimates for Semigroup Solutions to

Certain Linearized NLS and KdV Equations

Abstract

This chapter shows that the spectrum away from iR for certain nonlinear Schrödinger (NLS)

and Korteweg-de Vries (KdV) linearizations is necessarily contained in a strip. If, moreover,

the spectrum is assumed to be purely imaginary, then it is possible to derive optimal L2

operator norm bounds on the semigroups generated by these linearizations. The latter result

is achieved by using the Gomilko Lemma and splitting the integral into “high" and “low"

energy pieces, each of which admits (by different methods) a suitable upper bound.

2.1 Introduction

There is some hope to use Theorem 1.4.8 if the generator A : D(A) ⊂ X → X of a C0-semigroup

{T (t)}t≥0 can be decomposed as the composition of linear operators whose adjoints have desirable

properties. In particular, the methods of this (and the next) chapter are meant to address PDEs

whose linearizations about known standing wave solutions (i.e. solutions of the form Φ(x, t) =

eiωtφ(x) where φ is real-valued) or travelling wave solutions can be expressed as

∂t [v(x, t)] = J L v(x, t)
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where J is anti-self-adjoint (i.e. J ∗ = −J ) and L is self-adjoint (i.e. L ∗ = L ), and where

(in the standing wave case) u(x, t) = eiωt(φ(x)+v(x, t)) is a perturbation of the ansatz wave. Prob-

lems of this sort (particularly with Hamiltonian generators) have been well-studied, for example,

by Grillakis, Shatah, and Strauss in [15]. Of course, GSS methods cover far more than the J L

operators covered here and in our paper [27], though the spectral symmetry in both cases is impor-

tant. Later, in [18] and its addendum, Kapitula, Kevrekidis, and Sandstede introduced eigenvalue

counting methods to study the generalized eigenvalue problem and therefore spectral stability for

these sorts of nonlinear waves. There were also concurrent studies of the orbital stability of nonlin-

ear waves for Hamiltonian systems, such as [11, 12] for NLS. However, standard energy methods

fail in this case for subharmonic perturbations, so additional techniques including inverse scatter-

ing methods and making use of other conserved quantities is needed. The goal of [27] was not

to repeat the techniques of these various studies but, under the assumption of spectral stability,

determine optimal bounds for the semigroups generated by certain J L operators. The most

straightforward situation in which this is possible is the NLS equation in the form

iut(x, t)+∆u(x, t)+ f (|u(x, t)|2)u(x, t) = 0 (2.1.1)

where t > 0, x ∈ [−π,π], and u ∈H2
per[−π,π]⊂ L2[−π,π]. A brief integration-by-parts shows that

∆ is in this situation self-adjoint (with respect to the L2 inner product), and linearization of (2.1.1)

about the standing wave eiωtφ(x) obtains a system of the form

∂t

v1(x, t)

v2(x, t)

=

 0 1

−1 0


L1 0

0 L2


v1(x, t)

v2(x, t)

 := J L

v1(x, t)

v2(x, t)

 (2.1.2)

where v = v1 + iv2 ∈ C and where L1,2 =−∆−V1,2 for some potentials V1,2. The next subsection

is devoted to providing an a priori bound on the location of σ(J L ) for J L as in (2.1.2) and,

if σ(J L ) ⊂ iR is assumed, an optimal upper bound for the L2 operator norm of the semigroup

et(J L ) as well. It should be noted that these methods still work if the semigroup acts on the
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more general domain H2
per[−M,M]d for any M > 0 or on the unbounded domain H2(Rd). Finally,

linearization of the KdV equation

ut(x, t)+uxxx(x, t)+∂x[ f (u2)u] = 0 (2.1.3)

where t > 0, x ∈ [−π,π], and u ∈H3
per[−π,π]⊂ L2[−π,π] about a known travelling wave solution

φ(x−ωt) produces a system of the form vt = J L v where J = ∂x and where L =−∆−V for

some potential V . After dealing with NLS, we will show that there are analogous results for this

linearized PDE and, as in the NLS setup, these results can be extended to slightly more general

domains, but we consider the basic cases only in this work.

Finally, we hope to be able to apply similar methods to the Dirac equation in the form:

i∂tu(x, t) =

 1 ∂x

−∂x −1

u(x, t)− f

ū(x, t)

1 0

0 −1

u(x, t)


1 0

0 −1

u(x, t) (2.1.4)

where x∈ [−π,π], t ≥ 0, u(x, t)= (u1,u2)∈C2, and f ∈C∞(R). This is a simple (low-dimensional)

version of the Dirac J L system found in [5]. We proceeded in a manner similar to (2.1.1) where

we re-wrote (2.1.4) in an equivalent and more manageable form, at which point we were able to

derive suitable Gomilko bounds for the constant coefficient case. We believe that it is possible to

determine similar bounds for not only small, but actually bounded potentials, as is the situation

for NLS and KdV in our first paper [27]. This has proved more difficult than anticipated and is

an ongoing project. In particular, the behavior at the Fourier mode level of the “bad" part of the

linearized operator is not as straightforward as in the previous two situations.
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2.2 NLS

Consider the closed linear operator J L : H2
per[−π,π]2→ L2[−π,π]2 defined by:

J L =

 0 1

−1 0


L1 0

0 L2


where L1,2 =−∆−V1,2 for some bounded potentials V1.2. First, it is not difficult to show that the

operator J

−∆ 0

0 −∆

 generates a C0-semigroup on L2[−π,π]2 with dense domain H2
per[−π,π]2

and consequently, J L itself (as a bounded perturbation) generates a C0-semigroup on the same

ambient space with the same dense domain. Now, the application of Gomilko’s Lemma requires

suitable bounds on the resolvents of J L and (J L )∗ and, because

((δ + iµ)−J L )−1 = (J (−(δ + iµ)J −L ))−1 = (L +J (δ + iµ))−1J

((δ + iµ)− (J L )∗)−1 = ((δ + iµ)+L J )−1

= ((−(δ + iµ)J +L )J )−1 =−J (L −J (δ + iµ))−1

where J ∗ = J −1 =−J and L ∗ = L , it suffices to ascertain the invertibility of L ±J (δ +

iµ), along with a suitable bound.

2.2.1 Construction of NLS Resolvent

The goal of this subsection is, for δ > 0 and µ ∈ R, to invert the operator L ±J (δ + iµ). Write

formally that z = (L ±J (δ + iµ))−1 f where f ∈ L2[−π,π]2 and note then that

f = (L ±J (δ + iµ))z

=


−∆−V1 0

0 −∆−V2

±S

−i 0

0 i

S−1(δ + iµ)

z
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where S =

 i −i

1 1

 diagonalizes J . This is equivalent to the system

f =

−∆−V ± (µ−δ i) −V

V −∆−V ∓ (µ−δ i)

z

after taking V = 1
2(V1 +V2). It is enough (by symmetry) to consider now only the case:

f =

−∆−V −µ + iδ −V

V −∆−V +µ− iδ

z (2.2.1)

where µ > 0. This is equivalent to the system


f1 = (−∆−V −µ + iδ )z1−V z2

f2 = (−∆−V +µ− iδ )z2 +V z1

(2.2.2)

and let us now write H0 =−∆−V where, being self-adjoint, σ(H0)⊂ R. It follows that

z2 = (H0 +µ− iδ )−1( f2−V z1)

and plugging this into the first equation, there is

f1 = (H0−µ + iδ )z1−V (H0 +µ− iδ )−1( f2−V z1)

or, equivalently,

[(H0−µ + iδ )+V (H0 +µ− iδ )−1V ]z1 = f1 +V (H0 +µ− iδ )−1 f2 (2.2.3)
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Now, (H0+µ)−1 = ((−∆−V )− (−µ))−1 exists for µ > ‖V‖∞ because σ(H0) is not only real but

is in fact a subset of [−‖V‖∞,∞), so from the resolvent identity, there is

R(H0, iδ −µ)−R(H0,−µ) = (iδ −µ− (−µ))R(H0, iδ −µ)R(H0,−µ)

or, equivalently,

(H0 +µ− iδ )−1 = (H0 +µ)−1 + iδ (H0 +µ− iδ )−1(H0 +µ)−1

so that (2.2.3) reads

(H0 +V ((H0 +µ)−1 + iδ (H0 +µ− iδ )−1(H0 +µ)−1)V −µ + iδ )z1 = f1 +V (H0 +µ− iδ )−1 f2

or, equivalently,

(H0+V (H0+µ)−1V +µ− iδ )z1 = f1− iδV (H0+µ− iδ )−1(H0+µ)−1V z1+V (H0+µ− iδ )−1 f2.

Finally, taking H = H0 +V (H0 + µ)−1V (so that H is also self-adjoint), there is the following

system of equations for z1 and z2:


(H +µ− iδ )z1 = f1− iδV (H0 +µ− iδ )−1(H0 +µ)−1V z1 +V (H0 +µ− iδ )−1 f2

z2 = (H0 +µ− iδ )−1( f2−V z1)

(2.2.4)

where H exists for µ > ‖V‖∞ and also (H +µ− iδ )−1 exists because σ(H)⊂ R. Then, (2.2.4) is

equivalent to the system


(I + iδ (H +µ− iδ )−1V (H0 +µ− iδ )−1(H0 +µ)−1V )z1 = (H +µ− iδ )−1( f1 +V (H0 +µ− iδ )−1 f2)

z2 = (H0 +µ− iδ )−1( f2−V z1)

30



and, in particular, note that because ‖R(λ ,A)‖op ≤ 1
dist(λ ,σ(A)) if A is a bounded and self-adjoint

operator on a Hilbert space, it follows that

‖(H +µ− iδ )−1‖op ≤
1

dist(iδ −µ,σ(H))
≤ 1

δ

‖(H0 +µ− iδ )−1‖op ≤
1

dist(iδ −µ,σ(H0))
<

1
µ−‖V‖∞

≤ 1
‖V‖∞

‖(H0 +µ)−1‖op ≤
1

dist(−µ,σ(H0))
<

1
µ−‖V‖∞

≤ 1
‖V‖∞

for µ > 2‖V‖∞. Then, the operator applied to z1 in the above system is invertible (by Von Neu-

mann) and it follows that

‖z1‖2 ≤
1

1− r
‖(H +µ− iδ )−1( f1 +V (H0 +µ− iδ )−1 f2)‖2 ≤

C1(‖ f1‖2 +‖ f2‖2)

δ

where 0 ≤ ‖iδ (H + µ − iδ )−1V (H0 + µ − iδ )−1(H0 + µ)−1V‖2 < r < 1 for µ > 2‖V‖∞. In par-

ticular, it is possible to solve for z1 and for z2 (with ‖z2‖2 ≤ C2(‖ f1‖2+‖ f2‖2)
δ

) if µ > 2‖V‖∞ and this

leads to the following observation.

Theorem 2.2.1. Let J L be as in Section 2.2. Then, either ℜ(λ ) = 0 or ℜ(λ ) 6= 0 and |ℑ(λ )| ≤

2‖V‖∞ if λ ∈ σ(J L ).

Proof. The operator J L − (δ + iµ) is invertible if L ±J (δ + iµ) is invertible and this is the

case (by the above argument) if µ > 2‖V‖∞ and δ > 0.

It remains to control the Gomilko quantities (under the assumption that σ(J L )⊂ iR) in order

to ascertain an optimal L2 bound on the semigroup generated by J L . The next section begins by

showing that it is enough to consider these bounds for small δ .
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2.2.2 Optimal L2 Bounds for the NLS Semigroup

Assume that J L is spectrally stable in the sense that σ(J L ) ⊂ iR and consider the shifted

generator J L −δ0 for some δ0 > 0. Clearly, it follows that C+ ⊂ ρ(J L −δ0) and, moreover,

sup
µ∈R
‖R(iµ,J L −δ0)‖ ≤ sup

|µ|≤4‖V‖∞

‖R(iµ,J L −δ0)‖+ sup
|µ|≥4‖V‖∞

‖R(iµ,J L −δ0)‖

≤C∗+ sup
|µ|≥4‖V‖∞

‖R(iµ−δ0,J L )‖

≤C∗+
Cµ,V

δ0
(‖ f1‖2 +‖ f2‖2)

where C∗ ≥ 0 is the supremum of the (continuous) resolvent of the operator J L − δ0 on the

compact set {iµ ∈ C | |µ| ≤ 4‖V‖∞} and where limsupµ→∞Cµ,V < ∞. It follows from Theorem

1.4.2 (Gearhart-Prüss, where we note that establishing the uniform resolvent bound on iR is equiv-

alent to the given statement in this work) that the semigroup generatd by J L −δ0 has a negative

growth bound and is therefore also bounded uniformly in time. Applying the sufficient condition

from Gomilko’s Lemma then obtains the bound:

sup
δ≥δ0

δ

ˆ
∞

−∞

(
‖R(δ + iµ,J L ) f‖2

2 +‖R(δ + iµ,(J L )∗) f‖2
2
)

dµ ≤Cδ0‖ f‖2
2

so it remains, as promised, to control this integral for small δ , say 0 < δ < 1. To do this, it is

enough to establish control in the form:

ˆ
∞

−∞

(‖z1(µ)‖2
2 +‖z2(µ)‖2

2)dµ ≤ C
δ
(‖ f1‖2

2 +‖ f2‖2
2) (2.2.5)

and, of course, this reduces to control for µ ≥ 0 only. Splitting the resulting integral into “low"

and “high" energies, it follows that (2.2.5) is bounded above by:

ˆ
µ≤µ∗

(‖z1(µ)‖2
2 +‖z2(µ)‖2

2)dµ +

ˆ
µ>µ∗

(‖z1(µ)‖2
2 +‖z2(µ)‖2

2)dµ := Ilow + Ihigh
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where µ∗ := max{2+‖V‖∞,2‖V‖∞}. Note that in the high energies case, there is:

Ihigh =

ˆ
∞

µ∗
‖z1(µ)‖2

2dµ +

ˆ
∞

µ∗

‖z2(µ)‖2
2dµ

=

ˆ
∞

µ∗

‖z1(µ)‖2
2dµ +

ˆ
∞

µ∗

‖(H0 +µ−δ )−1( f2−V z1)‖2
2dµ

.
ˆ

∞

µ∗

‖z1(µ)‖2
2dµ +

ˆ
∞

µ∗

‖(H0 +µ− iδ )−1 f2‖2
2dµ +

ˆ
∞

µ∗

‖V‖2
∞

(µ−‖V‖∞)2‖z1(µ)‖2
2dµ

and control of the middle integral in the form C
δ

follows because the self-adjoint operator iH0

generates (by Stone’s Theorem) the group of isometries ‖eitH0‖op = 1, to which the backwards

implication from Gomilko’s Lemma can then be applied. The derivation of a suitable bound for

Ihigh therefore reduces to control in the form

ˆ
∞

µ∗

‖z1(µ)‖2
2dµ ≤ C

δ
(‖ f1‖2

2 +‖ f2‖2
2)

because ‖V‖2
∞

(µ−‖V‖∞)2 < 1 for µ > µ∗. Note that:

ˆ
∞

µ∗

‖z1(µ)‖2
2dµ

=

ˆ
∞

µ∗

‖(I+iδ (H+µ−iδ )−1V (H0+µ−iδ )−1(H0+µ)−1V )−1(H+µ−iδ )−1( f1+V (H0+µ−iδ )−1 f2)‖2
2dµ

and, since µ > µ∗, this integral is bounded above by

2
ˆ

∞

µ∗

‖(H +µ− iδ )−1( f1 +V (H0 +µ− iδ )−1 f2)‖d
2dµ

.
ˆ

∞

µ∗

‖(H +µ− iδ )−1 f1‖2
2dµ +

ˆ
∞

µ∗

‖(H +µ− iδ )−1V (H0 +µ− iδ )−1 f2‖2
2dµ

where control in the form C
δ
‖ f1‖2

2 is established for the first of these integrals by means of the

Stone’s Theorem→Gomilko argument used above, and where similar control of the second of
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these integrals requires somewhat more care to be taken. Note that if n∗ = bµ∗c, then

ˆ
∞

µ∗

‖(H +µ− iδ )−1V (H0 +µ− iδ )−1 f2‖2
2dµ

≤
∞

∑
n=n∗

ˆ n+1

n
‖(H +µ− iδ )−1V (H0 +µ− iδ )−1 f2‖2

2dµ

and, in particular, consider the orthonormal basis {e j} j∈N of eigenvectors of H with eigenvalues

µ j ∈ C. If P[n,n+1] is the projection onto the closed subspace spanned by the eigenvectors corre-

sponding to the (finitely-many) eigenvalues µ j ∈ [n,n+1], then the above integral admits (modulo

a fixed constant) the upper bound:

∞

∑
n=n∗

(ˆ n+1

n
‖P[n−1,n+2](H +µ− iδ )−1V (H0 +µ− iδ )−1 f2‖2

2dµ

+

ˆ n+1

n
‖(P<n−1 +P>n+2)(H +µ− iδ )−1V (H0 +µ− iδ )−1 f2‖2

2dµ

)
.

Looking at the second integral first, note that:

‖(P<n−1 +P>n+2)(H +µ− iδ )−1V (H0 +µ− iδ )−1 f2‖2
2

= ∑
j:µ j /∈[n−1,n+2]

|〈(H +µ− iδ )−1V (H0 +µ− iδ )−1 f2,e j〉|2

and, because (H +µ− iδ )−1 is also self-adjoint (with eigenvalues 1
µ j−µ+iδ ), this is equal to

∑
j:µ j /∈[n−1,n+2]

|〈V (H0 +µ− iδ )−1 f2,(H +µ− iδ )−1e j〉|2

≤ ∑
µ /∈[n−1,n+2]

1
|µ j−µ + iδ |2

|〈V (H0 +µ− iδ )−1 f2,e j〉|2

meaning that the second integral boils down to estimating

‖V‖2
∞

ˆ n+1

n
∑

j:µ j /∈[n−1,n+2]
|〈(H0 +µ− iδ )−1 f2,e j〉|2 .

ˆ n+1

n
‖(H0 +µ− iδ )−1 f2‖2

2
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and it follows from the Stone’s Theorem→Gomilko argument that

∞

∑
n=n∗

ˆ n+1

n
‖(H0 +µ− iδ )−1 f2‖2

2dµ ≤
ˆ

∞

−∞

‖(H0 +µ− iδ )−1 f2‖2
2dµ ≤ C

δ
‖ f2‖2

2

so it remains to control the quantity

∞

∑
n=n∗

ˆ n+1

n
‖P[n−1,n+2](H +µ− iδ )−1V (H0 +µ− iδ )−1 f2‖2

2dµ

by C
δ
‖ f2‖2

2.As in the previous case, this integral is equal to

ˆ n+1

n
∑

j:µ j∈[n−1,n+2]
|〈V (H0 +µ− iδ )−1 f2,e j〉|2

1
|µ j−µ + iδ |2

dµ

due to the fact that (H +µ− iδ )−1 is self-adjoint with eigenvalues 1
µ j−µ+iδ . Now, Theorem 1.4.5

(1) and the fact that 1
‖R(iδ−n,H0)‖op

> n−‖V‖∞ ≥ n∗−‖V‖∞ ≥ 1 > |µ−n| give that:

(H0 +µ− iδ )−1 =
∞

∑
l=0

(n−µ)l[(H0 +n− iδ )−1]l+1

which, in turn, implies that

|〈V (H0 +µ− iδ )−1 f2,e j〉|2 =

∣∣∣∣∣
〈

V

(
∞

∑
l=0

(n−µ)l[(H0 +n− iδ )−1]l+1

)
f2,e j

〉∣∣∣∣∣
2

=

∣∣∣∣∣ ∞

∑
l=0

〈(
V (n−µ)l[(H0 +n− iδ )−1]l+1

)
f2,e j

〉∣∣∣∣∣
2

≤

(
∞

∑
l=0

∣∣∣〈V [(H0 +n− iδ )−1]l+1 f2,e j

〉∣∣∣)2

=

(
∞

∑
l=0

(1+ l2)
1
2 (1+ l2)−

1
2

∣∣∣〈V [(H0 +n− iδ )−1]l+1 f2,e j

〉∣∣∣)2
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and this last quantity is, from Cauchy-Schwarz, bounded above by the product:

(
∞

∑
l=0

(1+ l2)
∣∣∣〈V [(H0 +n− iδ )−1]l+1 f2,e j

〉∣∣∣2)( ∞

∑
l=0

(1+ l2)−1

)

so, defining Fn,l = V [(H0 + n− iδ )−1]l+1 f2, it follows that ‖Fn,l‖2 ≤ ‖V‖∞

(n−‖V‖∞)l+1‖ f2‖2 and that

there is control of the desired integral in the form

∞

∑
n=n∗

ˆ n+1

n
∑

j:µ j∈[n−1,n+2]

∞

∑
l=0

(1+ l2)|〈Fn,l,e j〉|2
∞

∑
l=0

(1+ l2)−1 1
|µ j−µ + iδ |2

dµ

.
∞

∑
l=0

(1+ l2)
∞

∑
n=n∗

∑
j:µ j∈[n−1,n+2]

|〈Fn,l,e j〉|2
ˆ n+1

n

1
|µ j−µ + iδ |2

dµ (2.2.6)

where we have used the fact that ∑
∞
l=0(1 + l2)−1 < ∞, the independence from µ of ∑

∞
l=0(1 +

l2)|〈Fn,l,e j〉|2, and also Fubini’s Theorem to move the integral inside the sum in j. Now, for each

of the (finitely-many) j such that µ j ∈ [n−1,n+2], there is

ˆ n+1

n

1
|µ j−µ + iδ |2

dµ ≤
ˆ

∞

0

1
(µ j−µ)2 +δ 2 dµ ≤ π ≤ π

δ

and consequently, we have

2.2.6≤ C
δ

∞

∑
l=0

(1+ l2)
∞

∑
n=n∗

∑
j:µ j∈[n−1,n+2]

|〈Fn,l,e j〉|2

≤ C
δ

∞

∑
l=0

(1+ l2)
∞

∑
n=n∗
‖Fn,l‖2

2

≤ C
δ

∞

∑
l=0

(1+ l2)
∞

∑
n=n∗

‖V‖2
∞‖ f2‖2

2
(n−‖V‖∞)2l+2 ≤

C′‖ f2‖2
2

δ

∞

∑
l=0

(1+ l2)
∞

∑
n=n∗

1
(n−‖V‖∞)2l(n−‖V‖∞)2

≤
C′‖ f2‖2

2
δ

∞

∑
l=0

(1+ l2)

22l

∞

∑
n=n∗

1
(n−‖V‖∞)2 =

C′′

δ
‖ f2‖2

2

so it follows finally that we have control in the form Ihigh ≤ C
δ
(‖ f1‖2

2 + ‖ f2‖2
2) where C ≥ 0 is a

fixed constant independend of δ . It remains to derive similar control of Ilow =
´

µ∗
0 (‖z1(µ)‖2

2 +

‖z2(µ)‖2
2)dµ where we recall that that the resolvent z = (z1,z2) exists for such µ by means of the
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spectral stability assumption σ(J L ) ⊂ iR. Now, fix N > µ∗ and such that ±iN /∈ σ(JL) (this

is possible because all of the eigenvalues of J L are isolated). In particular, there are finitely-

many paired eigenvalues±iµ j of the Hamiltonian J L operator that are contained by the interval

[−iN, iN], say, {±iµ j}JN
j=1. Define for each pair ±iµ j the Riesz projection

Pj =
1

2πi

ˆ
γ j

R(z,J L )dz

where γ j is a closed curve of index one the encircles both eigenvalues ±iµ j but no other spectrum

of J L . The operator Pj can be represented as a matrix of dimension n j whose Jordon canonical

form has l j distinct blocks, each of dimension nl
j for l = 1, . . . , l j. It is a well-known fact that

Pj commutes with J L and also that ‖Pjet(J L )‖op ≤ Ctn
l j
j −1. Define then the operators PN =

∑
JN
j=1 Pj and QN = I−PN , and note that

‖etJ L PN‖op = ‖etPNJ L ‖op = ‖PNetJ L ‖op ≤Ctmax1≤ j≤JN {n
l j
j −1}.

In addition, QNJ L has no spectrum in a neighborhood of [−iN, iN] so that limsupδ→0 ‖R(δ +

iµ,QNJ L )−R(iµ,QNJ L )‖op = 0 by the continuity of the resolvent of QNJ L = J L QN

and then

limsup
δ→0

ˆ N

−N
‖R(δ + iµ,J L )QN f‖2

2dµ =

ˆ N

−N
‖R(iµ,J L )QN f‖2

2dµ ≤CN‖ f‖2
2

by dominated convergence. Note that CN ≥ 0 depends on the choice of N only, and thus, ultimately

only on ‖V‖∞. Taken together with the high energies estimate which still holds for QN f , there is

limsup
δ→0

ˆ
∞

−∞

‖R(δ + iµ,J L )QN f‖2
2dµ ≤ C

δ
‖QN f‖2

2
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and applying the Gomilko Lemma to the semigroup etJ L restricted to its invariant subspace

QN(L2[−π,π]2), it follows that supt>0 ‖etJ L Qn f‖2 ≤C‖ f‖2
2, and consequently,

‖etJ L f‖2 = ‖etJ L (PN +QN) f‖2 ≤ ‖etJ L PN f‖2 +‖etJ L QN f‖2

≤Ctmax1≤ j≤JN {n
l j
j −1}‖ f‖2

2 +C‖ f‖2
2 ≤Ctmax1≤ j≤JN {n

l j
j −1}‖ f‖2

2

because the semigroup clearly admits a uniform bound for t ∈ [0,1]. We have therefore shown

the main result for the NLS semigroup generated by J L under the assumption σ(J L ) ⊂ iR,

stated formally below.

Theorem 2.2.2. Let J L be as in Section 2.2 and suppose that V1,V2 are bounded and real-valued

potential functions with V := 1
2(V1 +V2). The spectrum of J L consists only of eigenvalues with

finite multiplicity, accumulating only at infinity, and assume in addition that σ(J L ) ⊂ iR. It

follows that

‖etJ L f‖2 ≤Ctmax1≤ j≤JN {n
l j
j −1}‖ f‖2

2 (2.2.7)

where there are JN possibly non-simple eigenvalue pairs ±iµ j in [−iN, iN] for N sufficiently large

(depending on ‖V‖∞. Note that if all the eigenvalues of J L are simple, then the bound in (2.2.7)

is uniform.

Let us now in the next section demonstrate analogous results for the KdV equation (2.1.3).

2.3 KdV

Recall that we are interested in the KdV equation (2.1.3), which reads:

ut(x, t)+uxxx(x, t)+∂x[ f (u2)u] = 0

where t > 0, x ∈ [−π,π], and u ∈ H3
per[−π,π] ⊂ L2[−π,π]. Linearizing about a known travelling

wave solution φ(x−ωt) produces a system of the form vt = J L v where J = ∂x and where
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L = −∆−V for some potential V . It is convenient at this point to remind the reader of the

following standard facts from Fourier analysis:

• f ∈ L2[−π,π] =⇒ f (x) = ∑
∞
k=−∞

eikx f̂ (k) where f̂ (k) = 1
2π

´
π

−π
e−ikx f (x)dx

• ‖ f‖2
2 = ∑

∞
k=−∞

| f̂ (k)|2. This result is called Parseval’s Theorem and it was actually used im-

plicitly in the previous NLS section.

• The projection operator Pk( f ) = eikx f̂ (k) is well-defined and, as a result, so are the operators

P6=k = I−Pk and P|k| = Pk +P−k.

and now, we consider the closed operator J L = ∂x(−∆−V ) : H3
per[−π,π]→ L2

per[−π,π]. This

operator is densely-defined and generates C0-semigroup due to the bounded perturbation theorem

(see Section 1.5). As before, let f = [∂x(−∆−V )− (δ + iµ)]−1g and note that an application of

the Gomilko Lemma will require an estimate of the form

sup
0<δ<1

δ

ˆ
∞

−∞

‖ f (µ)‖2
2dµ ≤C‖g‖2

2

for some fixed C ≥ 0, and where the estimate boils down (again, as before) to small δ . Let us now

construct the resolvent f (µ) starting from the fact that

g = [∂x(−∆−V )− (δ + iµ)] f (2.3.1)

and looking at the Fourier coefficients on both sides. Note first that

ĝ(k) = [−(ik)3− ikV̂ (k)− (δ + iµ)] f̂ (k) =⇒ ĝ(0) =−(δ + iµ) f̂ (0)

or, in other words, it suffices to assume that g and f are mean-free (i.e. ĝ(0) = f̂ (0) = 0). Next,

take ∂−1
x (which exists on L2

per[−π,π]) on both sides of (2.3.1) to obtain that

∂
−1
x g = (−∆−V −δ∂

−1
x − iµ∂

−1
x ) f (2.3.2)
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and it is worth noting that the operators −∆−V − iµ∂−1
x and δ∂−1

x are self-adjoint and skew-

symmetric, respectively, on H3
per[−π,π]. Let ν3 = µ ∈R for convenience and note that the disper-

sion of the first operator −∆−V − iµ∂−1
x is of the form

k2− µ

k
=

1
k
(k3−ν

3) =
1
k
(k−ν)(k2 + kν +ν

2)

where we are ignoring the potential V for the moment. This shows that the modulus of kth dis-

persion mode is small only if k is close to ν . We will exploit this fact in our calculations. Let

k0 = k0(ν) be the integer closest to ν ∈ R and note that for k 6= k0, there is |k−ν | ≥ 1
2 so that

∣∣∣k2− µ

k

∣∣∣≥ 1
2k

(k2 + kν +ν
2)≥ 1

4k
max{k2,ν2} (2.3.3)

where the k = 0 case is irrelevant since f ,g are mean-free. It follows that −∆−V − iµ∂−1
x should

be invertible mode-by-mode for all k 6= k0. The aim, then, is to deal with both the critical (k = k0)

and non-critical modes of (2.3.2) to invert the operator on the RHS and obtain suitable Gomilko

bounds for f .

2.3.1 Construction of KdV Resolvent

Note that ∂x and ∂−1
x both commute with the projection Pk, and let us first deal with the non-critical

Fourier modes of (2.3.2). Evidently, for a fixed δ > 0 and ν ∈ R, there is

P6=k0[∂
−1
x g] = P6=k0[(−∆−V − iµ∂

−1
x −δ∂

−1
x ) f ]

and this is equivalent, by commutativity and the fact that Pk[V f ] =Pk[V (Pk+P6=k) f ] =Pk[V Pk( f )]+

Pk[V P6=k( f )] for any integer k, to the equation

∂
−1
x P6=k0 [g] = (−∆− iµ∂

−1
x −δ∂

−1
x )P6=k0[ f ]−P6=k0[V f ]

= (−∆− iµ∂
−1
x −δ∂

−1
x )P6=k0[ f ]−P6=k0[V Pk0( f )]−P6=k0 [V P6=k0( f )]
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so consequently,

∂
−1
x P6=k0[g]+P6=k0[V Pk0( f )] = (−∆− iµ∂

−1
x −δ∂

−1
x )P6=k0 [ f ]−P6=k0 [V P6=k0( f )] (2.3.4)

which is expressable in the form

∂
−1
x P6=k0[g]+P6=k0[V P6=k0( f )]+δ∂

−1
x P6=k0[ f ] = (−∆− iµ∂

−1
x −P6=k0[V P6=k0(·)])P6=k0[ f ].

Now, the operator M = MV,ν =−∆− iµ∂−1
x −P6=k0[V P6=k0(·)] is self-adjoint and acts invariantly

on the subspace P6=k0

(
H3

per[−π,π]
)
. Moreover, one has

M = (−∆− iµ∂
−1
x )(I− (−∆− iµ∂

−1
x )−1P6=k0[V P6=k0(·)])

implying that it is invertible (as the product of invertible operators) if there is the upper bound

‖(−∆− iµ∂−1
x )−1P6=k0[V P6=k0(·)]‖< 1. Note that from (2.3.3), there is

‖(−∆− iµ∂
−1
x )−1P6=k0[V P6=k0(·)]‖ ≤

Ck‖V‖∞

max{k2,ν2}
≤ C‖V‖∞

ν
<

1
2

for ν > C‖V‖∞ where C ≥ 0 is a fixed constant, and consequently, M−1 has the Von Neumann

expansion

M−1 =
∞

∑
l=0

[(−∆− iµ∂
−1
x )−1P6=k0[V P6=k0(·)]]

l(−∆− iµ∂
−1
x )−1 (2.3.5)

where ‖M−1‖op≤ Ck
max{k2,ν2} as a result. Analogous to the non-critical mode equation (2.3.4) there

is the projection onto the critical mode k0 expressable as:

(−∆− iµ∂
−1
x −δ∂

−1
x )Pk0[ f ]−Pk0[V Pk0( f )] = ∂

−1
x Pk0[g]+Pk0[V P6=k0( f )]. (2.3.6)
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Now under the “high energies" assumption ν ≥ C‖V‖∞ from before, M−1 exists and we may

apply it in (2.3.4) to obtain that

P6=k0[ f ] = δM−1
∂
−1
x P6=k0[ f ]+M−1

∂
−1
x P6=k0[g]+M−1P6=k0[V P6=k0( f )] (2.3.7)

which we may then plug back into (2.3.6) to find:

(−∆− iµ∂
−1
x −Pk0 [V Pk0(·)]−Pk0 [V P6=k0M

−1P6=k0(V Pk0(·))]Pk0[ f ]

= δ∂
−1
x Pk0 [ f ]+∂

−1
x Pk0[g]+Pk0V (δM−1(∂−1

x P6=k0[ f ]))+Pk0VM−1(∂−1
x P6=k0[g])

after re-arranging. Let Q = (−∆− iµ∂−1
x −Pk0 [V Pk0(·)]−Pk0[V P6=k0M

−1P6=k0(V Pk0(·))] which is

self-adjoint and acts invariantly on Pk0

(
H3

per[−π,π]
)
⊂ Pk0

(
L2[−π,π]

)
. The above equation then

has the form:

(Q+ i
δ

k0
)Pk0 [ f ] = δ∂

−1
x Pk0[ f ]+∂

−1
x Pk0[g]+Pk0V (δM−1(∂−1

x P6=k0[ f ]))+Pk0VM−1(∂−1
x P6=k0[g])

and, because Q is self-adjoint, the LHS resolvent operator is invertible with ‖R(−i δ

k0
,Q)‖op ≤ k0

δ

so putting everything from this section together there is the following result.

Theorem 2.3.1. The resolvent f = [∂x(−∆−V )− (δ + iµ)]−1g can now be constructed mode-by-

mode. In particular, we have that

• P6=k0[ f ] = δM−1∂−1
x P6=k0[ f ]+M−1∂−1

x P6=k0 [g]+M−1P6=k0[V P6=k0( f )]

• Pk0 [ f ] =
(
Q+ i δ

k0

)−1 (
δ∂−1

x Pk0[ f ]+∂−1
x Pk0[g]+Pk0V (δM−1(∂−1

x P6=k0[ f ]))+Pk0VM−1(∂−1
x P6=k0[g])

)
or, equivalently, f = R f +T g = Pk0[R f +T g]+P6=k0[R f +T g] where

• Pk0 [R f ] =
[

δ

(
Q+ i δ

k0

)−1
Pk0V P6=k0M

−1∂−1
x P6=k0

]
f

• Pk0[T g] =
[(

Q+ i δ

k0

)−1
∂−1

x Pk0 +
(
Q+ i δ

k0

)−1
Pk0V P6=k0M

−1∂−1
x P6=k0

]
g

• P6=k0[R f ] = (I−δM−1∂−1
x P6=k0)

−1M−1P6=k0[V Pk0(·)] f

• P6=k0[T g] = [(I−δM−1∂−1
x P6=k0)

−1M−1∂−1
x P6=k0(·)]g
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where the final two bullet points folow from (2.3.7). Moreover, we have from the above formulae

that

• ‖P6=k0[R f ]‖2 ≤ C‖V‖∞‖ f‖2
ν

• ‖P6=k0[T g]‖2 ≤ C‖g‖2
ν2

• ‖Pk0[R f ]‖2 ≤ C‖V‖∞‖ f‖2
ν

and finally, that ‖Pk0[T g]‖2 ≤ C‖g‖2
δ

from the bound on M−1 from (2.3.5).

|It follows that ‖R‖2 < 1 for µ � µ∗ = max{‖V‖3
∞,1} so we may write in this case f =

(I−R)−1T g by Von Neumann. In particular, there is ‖ f‖2 ≤ C‖g‖2
δ

by looking at the k0 and 6= k0

cases for T so that the resolvent f not only exists for µ � µ∗ but it also satisfies the estimate

supµ∈R ‖R(δ + iµ,∂x(−∆−V ))‖op ≤ C
δ

. This of course shows an absence of spectrum for this

KdV generator if µ is large enough, but the bound blows up as δ → 0. Let us now assume spectral

stability σ(J L )⊂ iR and derive proper Gomilko bounds to obtain an optimal L2 estimate on the

KdV semigroup.

2.3.2 Optimal L2 Bounds for the KdV Semigroup

Note that the assumption ∂x(−∆−V ) := J L : H3
per[−π,π]→ L2

per[−π,π] has purely imaginary

spectrum taken together with the (uniform in µ) estimate supµ∈R ‖R(δ + iµ,∂x(−∆−V ))‖2 ≤ C
δ

implies that

sup
µ∈R
‖R(δ + iµ,∂x(−∆−V )‖2 ≤Cδ

for all δ > 0. It follows by continuity of µ 7→ R(δ + iµ,∂x(−∆−V )) on compact intervals that

there is a uniform bound along the vertical line {ℜ(z) = δ} for each δ > 0, and consequently, there

are sub-exponential bounds of the form ‖etJ L ‖2 ≤Cδ eδ t for each δ > 0. We will now proceed

as in the NLS case, where we show uniform Gomilko bounds for the “high energies" and project

away from isolated imaginary eigenvalues for the “low energies." Looking at the high energies
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first, this amounts to bounds of the form:

δ

ˆ
|µ|>N3

‖∂x(−∆−V )− (δ + iµ))−1g‖2
2dµ ≤C‖g‖2

2 (2.3.8)

δ

ˆ
|µ|>N3

‖(−∆−V )∂x− (δ + iµ)−1g‖2
2dµ ≤C‖g‖2

2 (2.3.9)

by considering both J L and (J L )∗ for the Gomilko estimates with N > max{‖V‖3
∞,1}. An

analogous argument to the NLS case shows that we need only establish the above bounds for

0 < δ < 1. The cases ±µ are symmetric so we need only consider µ > 0, and first:

ˆ
∞

1
| f̂ (0)|2dµ ≤

ˆ
∞

1

|ĝ(0)|2

|δ + iµ|2
dµ ≤

ˆ
∞

1

|ĝ(0)|2

δ 2 +µ2 ≤C‖g‖2
2 ≤

C
δ
‖g‖2

2

because 0 < δ < 1. It then suffices as previously to assume that f ,g are mean-free. Letting ν3 = µ

as before, the integral to control (2.3.8) becomes (for mean-free f ,g)

δ

ˆ
ν>N
‖(∂x(−∆−V )− (δ + iν3))−1g‖2

2ν
2dν

and because ν is so large that f = R f +T g = (I−R)−1T g, this integral is equal to

ˆ
ν>N
‖(I−R)−1P6=k0[T g]‖2

2ν
2dν +

ˆ
ν>N
‖(I−R)−1Pk0[T g]‖2

2ν
2dν .

These two integrals may be controlled as follows: first,

ˆ
ν>N
‖(I−R)−1P6=k0[T g]‖2

2ν
2dν ≤C

ˆ
ν>N

ν
−2‖g‖2

2dν ≤C‖g‖2
2 ≤

C
δ
‖g‖2

2

and for the critical mode, we note that the operator Pk0[T g] has the form (mode-by-mode):

(
Q+ i

δ

k0

)−1

Pk0[T g] =
1

k2
0−

ν3

k0
− cν + i δ

k0

T̂ g(k0)eik0x.
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Looking at the real part of the dispersion with k̃ = k3
0− cνk0, it follows that

k2
0−

ν3

k0
− cν =

k̃−ν3

k0
= (k̃−ν)

k̃2 + k̃ν +ν2

k0
∼ (k̃−ν)ν

as cν = O(1) and k̃ = k0 +O(ν−1). Now, it suffices for Pk0 [T g] to bound:

ˆ
ν>N

∥∥∥∥∥
(

Q+ i
δ

k0

)−1

∂
−1
x Pk0 [g]

∥∥∥∥∥
2

2

ν
2dµ ≤C

∞

∑
l=N

ˆ l+ 1
2

l− 1
2

∥∥∥∥∥
(

Q+ i
δ

l

)−1

∂
−1
x Pk0[g]

∥∥∥∥∥
2

2

ν
2dν

because k0 = k0(ν) = l for ν ∈ (l− 1
2 , l +

1
2). Let gl = ∂−1

x Pk0 [g] and partition the interval (l−
1
2 , l +

1
2) as

(
l− 1

2
, l +

1
2

)
⊂
{

ν

∣∣∣∣ |ν− k̃|< δ

l2

}
∪

(
∞⋃

m=1

{
ν

∣∣∣∣ |ν− k̃| ≥ δ

2ml2

})
:= A0∪

∞⋃
m=1

Am

Then, ν ∈A0 implies 1
|k2

0−
ν3
k0
+cν+i δ

k0
|
∼ l

δ
and ν ∈Am implies 1

|k2
0−

ν3
k0
+cν+i δ

k0
|
∼ l

2mδ
so that

ˆ l+ 1
2

l− 1
2

∥∥∥∥∥
(

Q+ i
δ

l

)−1

∂
−1
x Pk0 [g]

∥∥∥∥∥
2

2

ν
2dν ≤C

∞

∑
m=0

2−2ml2
δ
−2‖gl‖2

2

ˆ
Am

dν

≤ C
δ
‖gl‖2

2

∞

∑
m=0

2−m ≤ C
δ
‖g‖2

2

because ∑l ‖gl‖2
2 ≤ ‖g‖2

2. The adjoint Gomilko integral (2.3.9) is handled in a completely analo-

gous manner (with some addition steps to favorably manipulate the resolvent of (J L )∗), so the

high energy bounds µ > max{‖V‖3
∞,1} are completed. The “low energy" Gomilko bounds work

in the same way (projecting away from small and purely imaginary eigenvalues) as the NLS case

and, in all, we have the following result.

Theorem 2.3.2. Let J L = ∂x(−∆−V ) bet he linearized KdV operator associated to (2.1.3) and

assume that σ(J L )⊂ iR. Then, there is the bound

‖etJ L f‖2 ≤CtN−1‖ f‖2
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where N is the size of the largest Jordan block associated to any purely imaginary eigenvalue of

J L . As before, this bound is uniform in time if all the eigenvalues are simple (i.e. N = 1).
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Chapter 3

Towards a Characterization of the Property of Lebesgue in

Banach Spaces

Abstract

This chapter provides basic background information about the so-called Property of Lebesgue

in Banach spaces. Moreover, it details two new generalizations of exist results concerning the

asymptotic structure of these spaces. These results bring us closer to solving the problem of

characterizing Banach space that have the Property of Lebesgue in terms of their asymptotic

geometry.

3.1 Introduction to PL-Spaces

Let µ be the usual Lebesgue measure. A time-honored analysis exercise is to prove, for real-valued

functions on [0,1], that boundedness and µ-almost everywhere (µ-a.e.) continuity is equivalent to

both Riemann and Darboux integrability. It is interesting to note, as L.M. Graves did in his 1927

paper [14], that this is not in general true for functions of the form f : [0,1]→ X where X is an

infinite-dimensional Banach space. Indeed, if r1,r2, . . . is a listing of Q∩ [0,1] and if p > 1, then

f : [0,1]→ `p defined by f (s) = 0 for s irrational and f (rn) = en where e1,e2, . . . is the canonical
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unit vector basis has Riemann sums of the form

∥∥∥∥∥ d

∑
i=1

(pi− pi−1) f (ti)

∥∥∥∥∥
p

p

=
d

∑
i=1
|(pi− pi−1) f (ti)|p

≤
d

∑
i=1

(pi− pi−1)
p =

d

∑
i=1

(pi− pi−1)(pi− pi−1)
p−1

≤ max
1≤i≤d

(pi− pi−1)
p−1

d

∑
i=1

(pi− pi−1) = max
1≤i≤d

(pi− pi−1)
p−1

and this quantity goes to zero as we take finer and finer partitions of [0,1]. In other words, this

above f : [0,1]→ `p is Riemann-integrable with integral zero whenever p > 1, yet it is clearly

everywhere discontinuous on [0,1] at the same time. A similar argument applies for X = c0.

However, it is crucial to see that this argument will not work for X = `1. This is because there

is no “extra" of the quantity (pi− pi−1) to take outside the sum if p = 1 and consequently, this

discontinuous function is not Riemann-integrable if X = `1. In fact, `1 is the prototypical Banach

space for which boundedness and µ-a.e. continuity is equivalent to Riemann integrability. This

was first proved in the1970s by Nemirovskiĭ, Očan, and Redžuani in [22], and independently also

by G.C. da Rocha Filho in [7]. The existence of such a Banach space made it necessary to define

the class of Banach spaces with this property.

Definition 3.1.1. The Banach space X is said to have the Property of Lebesgue (i.e. to be a “PL-

space") if every Riemann-integrable function f : [0,1]→ X is µ-a.e. continuous.

The problem of characterizing PL-spaces in terms of their intrinsic geometry is still open, but

the field of Banach space geometry began in the 1970s to exhibit objects and techniques that have

helped to make considerable progress in this area. At the time, Banach space geometers were

interested in whether or not there existed a Banach space containing no isomorphic copy of either

`p (1 ≤ p < ∞) or c0. This problem was solved in 1974 when B.S. Tsirelson constructed such a

space. Soon after, Figiel and Johnson published a useful construction of the continuous dual to

Tsirelson’s original space and today, one normally refers to this dual space itself as Tsirelson’s

space. Both Tsirelson’s original space and its Figiel-Johnson dual T contain no isomorphic copy
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of either `p (1≤ p < ∞) or c0.

Another key open problem in the geometry of Banach spaces between roughly 1980 and the

mid-1990s was to determine the distortability of the `p spaces for 1 < p < ∞. This was solved by

E. Odell and Th. Schlumprecht in their famous paper [24], but they left unanswered the question

of whether or not there is a distortable Banach space that is not arbitrarily distortable. The Banach

space T is still the prime candidate for such a space, and one of the early papers in trying to

address this problem was the seminal work [20] by N. Tomczak-Jaegermann and V. Milman. In

this work, they introduced the concept of a Banach space that behaves in a limiting sense like `p.

Definition 3.1.2. Let X be a Banach space with the basis (ei)
∞
i=1. If there exist α1,α2 > 0 such that

for every N ∈ N, there is an M = MN ∈ N so that

α1

(
N

∑
i=1
‖xi‖p

) 1
p

≤

∥∥∥∥∥ N

∑
i=1

xi

∥∥∥∥∥≤ α2

(
N

∑
i=1
‖xi‖p

) 1
p

(3.1.1)

for all block sequences (xi)
N
i=1 of the basis with supp(x1)≥M, then X is said to be asymptotic-`p

with respect to (ei)
∞
i=1.

It is well-known that T and a number of its arbitrarily distortable variants are asymptotic-`1

with respect to their canonical bases. What is more, R. Gordon proved in his survey paper [13] that

T is a PL-space and his argument was precisely the same the one used in the `1 case, but it also

made it clear that a global estimate of the form (3.1.1) was likely required for a Banach space to

be a PL-space. The nature of the proofs for `1 and T led to the 2008 proof by K.M. Naralenkov

that every asymptotic-`1 Banach space is a PL-space, again by essentially the same argument.

Concurrently with the distortability and embedding problems of the 1970s, A. Brunel and L.

Sucheston in [3] initiated the study of local asymptotic structure in Banach spaces with their de-

velopment of spreading models. Spreading models are local in the sense that they correspond to

specific normalized basic sequences in a Banach space X in the following asymptotic manner.

Definition 3.1.3. Let (xi)
∞
i=1 be a normalized basic sequence in X and let (vi)

∞
i=1 be a normalized
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1-spreading basis for a Banach space (V,‖ · ‖V ). If there exist εN ↓ 0 such that

∣∣∣∣∣
∥∥∥∥∥ N

∑
k=1

λkxik

∥∥∥∥∥−
∥∥∥∥∥ N

∑
i=1

λivi

∥∥∥∥∥
V

∣∣∣∣∣< εN

for all N ≤ i1 < i2 < .. . < iN and for all scalars |λi| ≤ 1, then (vi)
∞
i=1 is said to be a spreading model

of X that is generated by (xi)
∞
i=1.

The result of A. Brunel and L. Sucheston is that every normalized basic sequence in X has a

subsequence that generates a spreading model of X . This was the first of many deep applications

of infinitary combinatorics (Ramsey theory) to the geometry of Banach spaces. In the same paper

[21] as his asymptotic-`1 theorem, K.M. Naralenkov gave a proof that every spreading model of

a PL-space is equivalent to the canonical `1 unit vector basis (though he credited the proof to A.

Pelczyński and G.D. da Rocha Filho as an unpublished result). PL-spaces therefore necessitate

at least some form of local `1 asymptotic structure. Unfortunately, Schur spaces also have this

spreading model property and even they need not be PL-spaces (see [21]) despite their structural

proximity to `1.

Until recently, the asymptotic results of K.M. Naralenkov represented essentially what was

known about the asymptotic geometry of PL-spaces. Where these local and global asymptotic

results “meet in the middle" to fully characterize PL-spaces is still not clear, however, I was able

to generalize both them in my paper [9] that is scheduled to appear later this year in Real Analysis

Exchange. In what follows, I will introduce some preliminary information about PL-spaces, prove

in detail my generalizations of the K.M. Naralenkov results, and then discuss what realistically

can be done on this problem in the near future. The language and proofs (where included) of the

following sections are taken essentially verbatim from [9].

3.2 Preliminary Information

Let us begin with a familiar definition. All of the proofs of this section are more or less analysis

exercises and can be found in [9, 13], for example.
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Definition 3.2.1. A finite and strictly increasing sequence of real numbers P = (pi)
d
i=0 is said to

be a partition of [0,1] if p0 = 0 and if pd = 1.

A partition P = (pi)
d
i=0 of [0,1] specifies, for every i∈ {1, . . . ,d}, the non-negative real number

∆P(i) = pi− pi−1 = µ([pi−1, pi]) = µ((pi−1, pi)) and the maximum π(P) of these numbers is said

to be its mesh size. If ∆P(i) = ∆P( j) = ∆P for all i 6= j, then P is said to be regular. Any partition

of [0,1] whose range contains ran(P) = {p0, . . . , pd} as a subset is said to refine P and to every

finite collection of partitions of [0,1], there corresponds a unique coarsest partition of [0,1] called

the common refinement that refines all of them simultaneously.

The Darboux integrability of a real-valued function on [0,1] is characterized by the convergence

of its upper and lower Darboux sums to the same value (e.g. [26, Theorem 6.6]). These sums can

be defined only if it makes sense to discuss infima and suprema, and this is not necessarily the case

for subsets of X . If, however, f : [0,1]→ R is bounded, then

sup
s∈I

f (s)− inf
s∈I

f (s) = sup
s,s′∈I
| f (s)− f (s′)|

for all non-empty and compact sub-intervals I ⊂ [0,1]. This motivates a more nuanced approach to

Darboux integrability. For convenience, let B([0,1],X) =
{

f : [0,1]→ X
∣∣∣ sups∈[0,1] ‖ f (s)‖< ∞

}
be the collection of bounded X-valued functions on [0,1].

Definition 3.2.2. Let f ∈B([0,1],X), s0 ∈ [0,1], and δ > 0. The non-negative real number defined

by

ω f [Nδ (s0)] = sup
{
‖ f (s)− f (s′)‖

∣∣ s,s′ ∈Nδ (s0)]
}

is said to be the oscillation of f with respect to the sub-interval Nδ (s0) = [s0−δ ,s0 +δ ]∩ [0,1].

This definition now offers a natural generalization of [26, Theorem 6.6].

Definition 3.2.3. Let f ∈B([0,1],X). If, for all ε > 0, there exists a partition Pε = P = (pi)
d
i=0 of

[0,1] such that
d

∑
i=1

∆P(i)ω f [Nδi(si)]≤ ε (3.2.1)
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where δi =
∆P(i)

2 and si = pi−1+δi for each i ∈ {1, . . . ,d}, then f is said to be Darboux-integrable.

The above definition reduces to [26, Theorem 6.6] if X = R and is in this case equivalent to

boundedness in µ-a.e. continuity. If f ∈B([0,1],X), then:

• infδ>0 ω f [Nδ (s)] = 0 if and only if f is continuous at s

• Ω f (λ )=
{

s ∈ [0,1]
∣∣ infδ>0 ω f [Nδ (s)]<

1
λ

}
is a relatively open (and therefore µ-measurable)

subset of [0,1] for all λ > 0

• If H ⊂ R, then µ(H) = 0 if and only if, for all ε > 0, there exist open intervals U1,U2, . . . that

both cover H and satisfy ∑
∞
j=1 µ(U j)< ε

permit now a characterization of the Darboux-integrable X-valued functions on [0,1], D([0,1],X),

that mirrors the real-valued situation.

Theorem 3.2.4. Let f ∈B([0,1],X). Then, f ∈D([0,1],X) if and only if it is µ-a.e. continuous.

The proof of this theorem is the same as in the usual real-valued situation and it does not require

the completeness of X . On the other hand, the assumption that X is a Banach space is essential for

defining the actual Darboux integral of a given f ∈D([0,1],X). This can be done by means of the

Riemann integral, and note lastly that D([0,1],X)⊂B([0,1],X) as a subspace.

The Riemann integrability of a real-valued function on [0,1] is characterized by the conver-

gence of its Riemann sums to the same value (e.g. [17, Definition 11.56]). Recall that the ordered

pair (P,T ) is said to be a tagged partition (resp. interior tagged partition) of [0,1] if P = (pi)
d
i=0

is a partition of [0,1] and if T = (ti)d
i=1 is such that ti ∈ [pi−1, pi] (resp. ti ∈ (pi−1, pi)) for all

i ∈ {1, . . . ,d}. In the case that f : [0,1]→ X , the vector ∑
d
i=1 ∆P(i) f (ti) = S f (P,T ) is said to be the

Riemann sum of f with respect to (P,T ) and the Riemann integrability of f may be assessed in the

following familiar manner.

Definition 3.2.5. A function f : [0,1]→ X is Riemann-integrable if there exists a vector x f ∈ X

such that for all ε > 0, there is a δ = δε > 0 so that

‖x f −S f (P,T )‖ ≤ ε
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for all tagged partitions (P,T ) of [0,1] that satisfy π(P)< δ .

The set R([0,1],X) of Riemann-integrable X-valued functions on [0,1] is quite clearly a sub-

space of B([0,1],X) and the vector x f ∈ X is also uniquely determined. It follows that f 7→ x f is a

well-defined linear function and this function is called the Riemann integral of the X-valued func-

tions on [0,1]. What is more, Definition 3.2.5 is independent of the distinction between tagged and

interior tagged partitions by means of a straightforward argument. The following straightforward

lemma proved in [9, 21] asserts this fact.

Lemma 3.2.6. A function f : [0,1]→ X is Riemann-integrable if and only if there exists an x f ∈ X

such that for all ε > 0, there is a δ = δε > 0 so that

‖x f −S f (P,T )‖ ≤ ε

for all interior tagged partitions (P,T ) of [0,1] that satisfy π(P)< δ .

Definition 3.2.5 now admits several more equivalent reformulations, where the only non-triviality

is the notion of the convex hull of a general subset of X .

Theorem 3.2.7. Let f : [0,1]→ X. Then, the following claims are equivalent.

(i) The function f is Riemann-integrable.

(ii) There exists a vector x f ∈ X such that for all ε > 0, there is a partition Pε of [0,1] so that

‖x f −S f (P,T )‖ ≤ ε for all tagged partitions (P,T ) of [0,1] where P refines Pε .

(iii) For all ε > 0, there exists a partition Pε of [0,1] such that ‖S f (P1,T1)−S f (P2,T2)‖ ≤ ε for all

tagged partitions (P1,T1) and (P2,T2) where P1 and P2 refine Pε .

(iv) For all ε > 0, there exists a partition Pε of [0,1] such that ‖S f (P1,T1)−S f (P2,T2)‖ ≤ ε for all

tagged partitions (P1,T1) and (P2,T2) where P1 = P2 = Pε .

The implications 1 =⇒ 2 =⇒ 3 =⇒ 4 are obvious, and the convex hull argument is only

required for 4 =⇒ 3. Then, 3 =⇒ 2 is simple but requires the completeness of X , and 2 =⇒ 1

53



is straightforward as well. Finally, it can be seen in the proof of Theorem 3.2.7 and Lemma

3.2.6 that the same statements where tagged partitions are replaced by interior tagged partitions

are also equivalent to Riemann integrability. The inclusion D([0,1],X) ⊂R([0,1],X) is now an

obvious corollary of Theorem 3.2.7 (iv) and Definition 3.2.3. This begs the question: when is this

inclusion strict? In other words, when does X have the property that every f ∈R([0,1],X) is µ-a.e.

continuous?

3.3 Asymptotic Geometry of PL-Spaces

To say that D([0,1],X) ⊂ R([0,1],X) holds with equality is to say that X has the Property of

Lebesgue. This condition can be equivalently formulated in terms of Theorem 3.2.4 as is noted in

the introduction to this chapter and restated below.

Definition 3.3.1. The Banach space X is said to be a PL-space if every f ∈R([0,1],X) is µ-a.e.

continuous.

All finite-dimensional normed vector spaces are PL-spaces while infinite-dimensional Banach

spaces may or may not have the Property of Lebesgue. The direct proof that a Banach space X is

a PL-space ordinarily consists of showing that f ∈B([0,1],X) is not Riemann-integrable if it is

discontinuous on a set of positive Lebesgue measure, and this is the strategy that is used by [13,

Theorems 26 and 27], [21, Theorem 6], and by [9, Theorem 1.0.2]. It is used once more here by

the generalization of these asymptotic results that is proved in the following subsection.

3.3.1 A Global Result

The concept of X being asymptotic-`p with respect to a basis (Definition 3.1.2) is a global one.

However, it is restricted to those Banach spaces that have bases and therefore cannot apply to say,

non-separable Banach spaces. This was remedied shortly after the original paper by N. Tomczak-

Jaegermann and V. Milman by means of a coordinate-free generalization that can be defined in

terms of an asymptotic game of two players. Let S denote the “subspace" player, V denote the
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“vector" player, and let cof(X) = {Y ⊂ X | Y a closed subspace and dim(X/Y ) < ∞}. For every

N ∈ N, we may define the game G(S,V,N) as follows:

Turn 1: S chooses Y1 ∈ cof(X) and V chooses any y1 ∈ Y1

Turn 2: S chooses Y2 ∈ cof(X) and V chooses any y2 ∈ Y2

...

Turn N: S chooses YN ∈ cof(X) and V chooses any yN ∈ YN

and S wins G(S,V,N) if it is possible to force the inequality

α1

(
N

∑
i=1
‖y1‖p

) 1
p

≤

∥∥∥∥∥ N

∑
i=1

yi

∥∥∥∥∥≤ α2

(
N

∑
i=1
‖yi‖p

) 1
p

for some α1,α2 > 0 (i.e. (yi)
N
i=1 ∼ `N

P ). Now, if the constants α1,α2 > 0 are uniform for all N ∈N,

then we can make a definition.

Definition 3.3.2. The Banach space X is said to be coordinate-free (CF) asymptotic-`p if there

exist α1,α2 > 0 (uniform in N) such that S wins G(S,V,N) for every N ∈ N.

The definition in terms of an asymptotic game of X being CF-asymptotic-`p is indispensible

because it allows for the direct generalization of Definition 3.1.2 where the chosen subspaces of

finite codimension are of the form span{ei | i≥M}. Choosing subspaces and vectors alternately

allows one to recover (3.1.1) as the winning outcome of G(S,V,N) in an asymptotic-`p space. It is

also important to note that every Y ∈ cof(X) is complemented in X , that is,

Y ∈ cof(X) =⇒ X = Y ⊕Z where Z ∼= X/Y and dim(Z)< ∞

and there are consequently (bounded linear) projections PY and PZ from X onto Y and Z respec-

tively, such that every x ∈ X can be uniquely represented by x =PY (x)+PZ(x). This brings us to

the generalization of Naralenkov’s Theorem that I recently proved, and I will include the detailed
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proof below.

Theorem 3.3.3. Every CF-asymptotic-`1 Banach space is a PL-space.

Proof. Let f ∈B([0,1],X) and suppose that it is discontinuous on a set H ⊂ [0,1] that has positive

Lebesgue measure. It suffices as noted to prove that f /∈ R([0,1],X) and this can be done by

showing that there exists a constant c f > 0 so that for every partition P of [0,1],

‖S f (P,T1)−S f (P,T2)‖ ≥ c f

for some sequences T1 and T2. Define, for all N ∈ N, the subspaces {Y N
i }N

i=1 ⊂ cof(X) as in

Definition 3.3.2 and consider the subsets

GN
i = {s ∈ [0,1] | (PZN

i
◦ f ) : [0,1]→ ZN

i is discontinuous at s}

where X = Y N
i ⊕ ZN

i for all i ∈ {1, . . . ,N}. Note that (PZN
i
◦ f ) /∈ R([0,1],ZN

i ) if µ(GN
i ) > 0

because

sup
s∈[0,1]

‖(PZN
i
◦ f )(s)‖ ≤ ‖PZN

i
‖X→X sup

s∈[0,1]
‖ f (s)‖< ∞

since f is bounded and PZN
i

is a bounded linear projection, and because ZN
i is a PL-space (being

finite-dimensional). It follows that f /∈ R([0,1],X) in this situation either, otherwise its compo-

sition with PZN
i

is Riemann-integrable. Assume then that µ(GN
i ) = 0 for all N ∈ N and for all

i ∈ {1, . . . ,N}. This implies that µ(G) = 0 where G =
⋃

∞
N=1

⋃N
i=1 GN

i as it is the countable union

of µ-null sets. Next, observe that there exists n0 ∈ N so that

Hn0 =

{
s ∈ [0,1]

∣∣∣∣ inf
δ>0

ω f [Nδ (s)]≥
1
n0

}

has positive Lebesgue measure, or else µ(H) = 0 as in Theorem 3.2.4 also as the countable union
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of µ-null sets. Let P = (pk)
d
k=0 be a partition of [0,1] and consider the non-empty set

An0 = {k | µ((pk−1, pk)∩ (Hn0 \G))> 0}

whose members are k1, . . . ,kr (r≤ d). Note that (PZr
i
◦ f ) is continuous on Hn0 \G by construction

and let ε > 0 be given.

Let s1 ∈ (pk1−1, pk1)∩ (Hn0 \G) and, as infδ>0 ω f [Nδ (s1)] ≥ 1
n0

, it follows that there exist

u1,v1 ∈Nδ1(s1) so that

‖z1‖ ≥
1

2n0
and ‖PZr

1
(z1)‖< ε

where z1 = f (u1)− f (v1) and δ1 > 0 is sufficiently small. Next, let s2 ∈ (pk2−1, pk2)∩ (Hn0 \G)

and note that there exist u2,v2 ∈Nδ2(s2) so that

‖z2‖ ≥
1

2n0
and ‖PZr

2
(z2)‖<

ε

2

where z2 = f (u2)− f (v2) and δ2 > 0 is sufficiently small. It follows in particular that for all

i ∈ {1, . . . ,r}, there exist ui,vi ∈Nδi(si) so that

‖zi‖ ≥
1

2n0
and ‖PZr

i
(zi)‖<

ε

2i−1

where zi = f (ui)− f (vi) and δi > 0 is sufficiently small. Define the sequences T1 = (t1,k)d
k=1 and

T2 = (t2,k)d
k=1 such that t1,ki = ui and t2,ki = vi for all i ∈ {1, . . . ,r} and such that t1,k = t2,k ∈

[pk−1, pk] for all k /∈ An0 . It now follows that (P,T1) and (P,T2) are tagged partitions of [0,1] such

that

‖S f (P,T1)−S f (P,T2)‖=

∥∥∥∥∥ r

∑
i=1

∆P(ki)zi

∥∥∥∥∥
=

∥∥∥∥∥ r

∑
i=1

∆P(ki)[PY r
i
(zi)+PZr

i
(zi)]

∥∥∥∥∥
≥

∥∥∥∥∥ r

∑
i=1

∆P(ki)PY r
i
(zi)

∥∥∥∥∥−
∥∥∥∥∥ r

∑
i=1

∆P(ki)PZr
i
(zi)

∥∥∥∥∥
(3.3.1)
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and (3.3.1) is then bounded below by

∥∥∥∥∥ r

∑
i=1

∆P(ki)PY r
i
(zi)

∥∥∥∥∥− r

∑
i=1

∆P(ki)
ε

2i−1 ≥

∥∥∥∥∥ r

∑
i=1

∆P(ki)PY r
i
(zi)

∥∥∥∥∥−2ε

and this quantity is, in turn, bounded below by

ζ1

r

∑
i=1

∆P(ki)‖PY r
i
(zi)‖−2ε = ζ1

r

∑
i=1

∆P(ki)‖zi−PZr
i
(zi)‖−2ε (3.3.2)

with the CF-asymptotic-`1 condition. Finally, (3.3.2) is bounded below by

ζ1

r

∑
i=1

∆P(ki)(‖zi‖−‖PZr
i
(zi)‖)−2ε ≥ ζ1µ(Hn0 \G)

2n0
−2ε(ζ1 +1)

=
ζ1µ(Hn0 \G)

4n0
= c f > 0

for ε =
ζ1µ(Hn0\G)

8n0(ζ1+1) > 0, and this completes the proof of Theorem 3.3.3

This generalization of [21, Theorem 6] is noteworthy because there are CF-asymptotic-`1 Ba-

nach spaces that do not have a basis (e.g. `1(Γ), Γ uncountable). Note, however, that the inescapa-

bility of the asymptotic-`1 condition persists in the sense that it is necessary to bound from below

those arbitrary sequences of the form yi ∈ Yi where {Yi}N
i=1 ⊂ cof(X) is as in Definition 3.3.2.

It is reasonable to think that perhaps this global asymptotic requirement cannot be relaxed as a

sufficient condition for the Property of Lebesgue.

3.3.2 A Local Result

The Property of Lebesgue conversely influences the local asymptotic structure of X . An easy result

is [10, Theorem 4.0.2] which asserts that certain unconditional spreading models of a PL-space are

necessarily equivalent to the canonical `1 unit vector basis. This result depends fundamentally

upon the well-known dichotomy theorem that an unconditional (and non-trivial) spreading model

is either equivalent to the canonical `1 unit vector basis or it is norm-Cesáro summable to zero. The
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use of this dichotomy theorem can with some effort seen to be superfluous, as is described in [21].

Similar techniques are now used below to replicate the results of [21] for 1-spreading asymptotic

models. If, for all k ∈ N, the sequence (xk
i )

∞
i=1 ∈ XN is normalized and L-basic and if, in addition,

the diagonal sequence (xk
ik)

∞
k=1 ∈ XN is L-basic for all k ≤ i1 < i2 < .. ., then (xk

i )
∞
i=1,k∈N is said to

be an L-basic array and there is the following analogue of Definition 3.1.3.

Definition 3.3.4. Let (xk
i )

∞
i=1,k∈N be an L-basic array in X and let (vi)

∞
i=1 be a normalized basis for

a Banach space (V,‖ · ‖V ). If there exist positive real numbers εN ↓ 0 such that for all

∣∣∣∣∣
∥∥∥∥∥ N

∑
k=1

λkxk
ik

∥∥∥∥∥−
∥∥∥∥∥ N

∑
i=1

λivi

∥∥∥∥∥
V

∣∣∣∣∣< εN

for all N≤ i1 < .. . < iN and for all scalars (λi)
N
i=1 ∈ [−1,1]N , then (vi)

∞
i=1 is said to be an asymptotic

model of X generated by (xk
i )

∞
i=1,k∈N.

The L-basic array (xk
i )

∞
i=1,k∈N is said to be good if it generates an asymptotic model (vi)

∞
i=1

and, as in the spreading model case, there is limi1→∞

∥∥∥∑
N
k=1 λkxk

ik

∥∥∥ =
∥∥∑

N
i=1 λivi

∥∥
V for all scalar

sequences (λi)
N
i=1. However, the asymptotic model (vi)

∞
i=1 need not be 1-spreading and, while

there is limi1→∞

∥∥∥∑
N
j=1 λk jx

k j
ik j

∥∥∥ = ∥∥∑
N
i=1 λkivki

∥∥
V for the column sub-array (xk j

i )∞
i=1, j∈N, this sub-

array need not be good because the integers N ≤ i1 < .. . < iN can be selected “above the diagonal"

so that a bound of the form given in Definition 3.3.4 need not exist. These diagonal sequences

also need not even be L-basic anymore. If in contrast (xk j
i )∞

i=1, j∈N is good, then it automatical-

lly generates (vki)
∞
i=1 as an asymptotic model but with respect to a sequence εN ↓ 0 of positive

real numbers that is perhaps different from the analogous sequence for the original good array

(xk
i )

∞
i=1,k∈N. These observations lead directly to the stipulation that the good array (xk

i )
∞
i=1,k∈N

generates an SP-asymptotic model if:

• The asymptotic model (vi)
∞
i=1 is 1-spreading

• Every sub-array of the form (xk j
i )∞

i=1, j∈N is good (and consequently generates (vki)
∞
i=1 as an

asymptotic model) and is also L-basic
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• sup
{

ε1 = ε1

(
(xk j

i )∞
i=1, j∈N

) ∣∣∣ k1 < k2 < .. .
}
< ∞

which is to say that finite diagonal sequences of sufficiently high index are close to the corre-

sponding finite linear combinations of a fixed spreading sequence. As a concrete example, if

(xk
i )

∞
i=1 = (x j

i )
∞
i=1 for all k 6= j, then (vi)

∞
i=1 is an SP-asymptotic model and is also the spreading

model generated by this single column sequence. Now, let dy(Q) be as in [21] the set of dyadic

rational numbers, that is, real numbers of the form a
2b where a ∈ Z and b ∈N, and note that the set

Λ = dy(Q)∩ (0,1) =
{

rk j =
2 j−1

2k

∣∣∣∣ k ∈ N and j ∈ {1, . . . ,2k−1}
}

is enumerable by rk j = r2k−1+ j−1 = rN specifically. Consider now a technical lemma that relates

Riemann integrability to SP-asymptotic models.

Lemma 3.3.5. Let (vi)
∞
i=1 be an SP-asymptotic model of X generated by the good L-basic array

(xk
i )

∞
i=1,k∈N. Then,

limsup
n→∞

‖v1− v2 + . . .− v2n‖V
2n = δ0 > 0 (3.3.3)

if f : [0,1]→ X defined by f (rn) = xn2

4n− xn2+1
4n+1 and f (s) = 0 otherwise is not Riemann-integrable.

Proof. Let ε > 0 be given and choose N = Nε ∈N such that CL
2N < ε and such that, for a contradic-

tion, ‖v1−v2+...−v2N ‖V
2N < ε . Next, let (pk)

2N

i=0 be a regular partition of [0,1] (that is, ∆P(k) =∆P = 1
2N )

and let (tk)2N

k=1 be such that (P,T ) is an interior tagged partition of [0,1]. Then,

‖S f (P,T )‖=
1

2N

∥∥∥∥∥∑
k∈A

f (tk)

∥∥∥∥∥= 1
2N

∥∥∥∥∥∑
k∈A

x
n2

k
4nk
− x

n2
k+1

4nk+1

∥∥∥∥∥≤ L
2N

∥∥∥∥∥ 2N

∑
k=1

x
n2

k
4nk
− x

n2
k+1

4nk+1

∥∥∥∥∥
where A = {k | tk ∈Λ∩(pk−1, pk)} and where rn1 = rl j ∈

(k−1
2N , k

2N

)
is such that n1 = 2l−1+ j−1≥

2N−1 because ran(P)∩ (0,1) = {rl j ∈ Λ | l ≤ N} so in particular, 4n1 ≥ 2N+1. That is to say, the

first 2N enumerants of Λ are precisely the partition points of P so, by restricting our attention to

an interior tagged partition, the tags are guaranteed to be “farther than 2N+1” down their columns.

What is more, n2
k +1 < n2

k+1 necessarily so that the members of the above sum form an alternating
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signs diagonal sequence of 2N+1 terms in some sub-array of the original good array. The hypothesis

that (vi)
∞
i=1 is an SP-asymptotic model then implies that this norm quantity admits the upper bound:

L
2N

(
ε2N+1 +

∥∥∥∥∥ 2N

∑
i=1

vn2
i
− vn2

i +1

∥∥∥∥∥
V

)
≤ CL

2N +
2‖v1− v2 + . . .− v2N‖V

2N < ε +2ε = 3ε

where we have used the fact that (vi)
∞
i=1 is 1-spreading as well. It follows that f is Riemann-

integrable with integral zero so the proof is complete.

The above proof follows closely the analogous proof in [21] for spreading models, and specifi-

cally we needed to impose the SP requirement on (vi)
∞
i=1 so that it would not only be 1-spreading,

but also so that an estimate of the form found in Definition 3.3.4 can be used - interior tags ensure

that the diagonal sequence in the Riemann sum starts far enough down the array, but there is a

priori no guarantee that this sequence is close to the corresponding linear combination of vi’s or is

even L-basic. Finally, it is well-known (see [2, 9, 21]) that limsupn→∞

‖v1−v2+...−v2n‖V
2n = δ0 > 0 is

a sufficient condition for a 1-spreading sequence (vi)
∞
i=1 to be equivalent to the canonical `1 unit

vector basis, so the argument that every SP-asymptotic model of a PL-space is equivalent to the

canonical `1 unit vector basis is complete, omitting further details.

3.4 Future Research

The problem of deriving a full characterization of the Property of Lebesgue in Banach spaces is

still open, and future research on it will likely center around upgrading local results to the global

condition of being CF-asymptotic-`1. A recent result due to C. Krause in [19] already makes this

possible in Banach spaces that have well-behaved bases with respect to their blocking structure.

Namely, it is a corollary of his results that: if X is a Banach space with a basis (ei)
∞
i=1 such that

every normalized block basis of (ei)
∞
i=1 generates a spreading model of X , then X is a PL-space if

and only if it is asymptotic-`1 with respect to (ei)
∞
i=1. A proof of this result can be found in [9],

along with examples showing that this result applies not only to `p (1≤ p < ∞) and c0, but also to
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the sequence Lorentz space d(w,1).

An alternative approach was suggested by B. Sari and Th. Schlumprecht at the end of my recent

Banach space webinar talk, where they noted that methods similar to those used in Lemma 3.3.5

can likely be used to prove that reflexive and separable PL-spaces satisfy so-called asymptotic-

(`1, `1) estimates on normalized weakly null trees (see [23]) and consequently embed as a subspace

into a Banach space that is asymptotic-`1 with respect to a basis. This is probably the most imme-

diate and feasible direction for future research, but unfortunately, the most it can tell us is whether

or not a PL-space embeds into an asymptotic-`1 space and it also only applies to PL-spaces such

as T that are known to be both reflexive and (because it has a basis) separable. Of course, it is

well-known due to P. Enflo that not every separable Banach space has a basis, and it is not clear

how the Property of Lebesgue interacts with such spaces.

I believe that a full asymptotic characterization of PL-spaces will require the development suf-

ficient local conditions (e.g. spreading models, asymptotic models, normalized weakly null trees,

etc...) for X itself to be CF-asymptotic-`1. This is an extremely difficult problem and the subject

of recent research due to Argyros et. al. in [1] where it was shown that even if every normalized

weakly null good array in X generates an asymptotic model (vi)
∞
i=1 ∼ `1, it is not guaranteed that

X itself will be CF-asymptotic-`1. In fact, they constructed a reflexive space X with a basis such

that the closed linear span of every infinite subsequence of the basis is not CF-asymptotic-`1, while

X itself has the property that every normalized weakly null good array generates an `1 asymptotic

model. This is not to say that all hope for upgrading local asymptotic results to global ones is lost.

In particular, D. Freeman et. al. proved in [8] that if X is separable, contains no isomorphic copy

of `1, and has the property that every normalized weakly null good array generates an asymptotic

model (vi)
∞
i=1∼ c0, then X itself must be CF-asymptotic-`∞ (that is, the estimate of Definition 3.3.4

holds with the usual c0 norm rather than ‖ ·‖p). The solution (if it exists) to the problem of finding

an asymptotic characterization of the Property of Lebesgue will no doubt be uncovered by means

of future work done on the subtle and varied local asymptotic structure of Banach spaces.
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