
Possibilities and Limitations of IMERG Datasets for Estimating Probable 

Maximum Precipitation 

 

 

 

 

              By 

 

 

      

 

           Kenneth Okechukwu Ekpetere 

 

 

 

                © 2021 

 

 

 

Submitted to the graduate degree program in Geography and the Graduate 

Faculty of the University of Kansas in Partial fulfilment of the requirements for the 

degree of Master of Science. 

 

 

 

 

                                                                                    Chairperson: Dr. Xingong Li 

 

 

 

 

 

                                                                                       Co-Chair: Dr. Jude H. Kastens 

 

 

 

 

 

                                                                                                Dr. David B. Mechem 

 

 

 

 

 

Date Defended: July 26th, 2021 



Page | ii  
 

 

The Thesis Committee for Kenneth Okechukwu Ekpetere Certifies that this is the 

approved version of the following thesis: 

 

 

 

 

Possibilities and Limitations of IMERG Datasets for Estimating Probable Maximum 

Precipitation 

 

 
 

 

 

                                                                                   Chairperson: Dr. Xingong Li 

 

 

 

 

 

 

                                                                                Co-Chair: Dr. Jude H. Kastens 

 

 

 

 

 

 

                                                                                                Dr. David B. Mechem 

 

 

 

 

 

 
Date Approved: July 26th, 2021 

  



Page | iii  
 

ABSTRACT 

The probable maximum precipitation (PMP), which is conventionally derived based on 

precipitation gauge data, is an important input for hydrological models useful for accurate storm 

predictions, flood modeling, and general decision making. However, precipitation data are not 

readily available in most regions due to limited and failing gauges. This study assessed the 

possibilities and limitations of deriving PMP using  precipitation records from the Integrated 

Multi-satellite Retrievals for GPM (IMERG). PMPs for six durations were calculated with IMERG 

precipitation records (2000-2020) using Hershfield statistical technique built in R. The IMERG 

PMPs were further evaluated with NOAA-Atlas-14 station PMPs at 55 rain gauge locations in 

Kansas, USA, using coefficient of correlation, root mean square error, and relative bias as 

statistical metrics. Result of PMP evaluation for the six durations showed that, as durations 

increase from 30-mins to 24-hr, CC decreased from 0.956 to 0.854, RMSE increased from 4.41 

mm to 10.28mm, and RB increased from -3.77% to 7.82%. RB estimates ranged between -3.77% 

to -7.96% at shorter durations (30-min to 12-hr) depicting underestimation in IMERG PMP. 

Relationship between precipitation amount and PMP errors at the six durations showed that 

increase durations reduces PMP error. At the 24-hr durations, the most R-squared were estimated 

at 51.5% and 50.3% for total accumulated, and maximum precipitation respectively. Further 

exploration showed that IMERG has an average percentage missing value of 74.21% with a 2-hr 

average length of missing value. The relationship between Missing values and PMP errors were 

statistically significant at the 30-mins durations with p-values of 0.00287 and 0.00127 for both 

percentage missing values and length of missing values respectively, while the longer intervals 

showed decreasing relationship between the variables with p-values of 0.665 and 0.4213 

respectively. Overall assessment showed that IMERG estimate PMP better in wetter areas and 

longer intervals (e.g., 24-hr), while the estimated PMP errors may be influenced by missing values 

in IMERG datasets, with the greater influence at shorter durations (e.g., 30-min). 
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1 INTRODUCTION 

1.1  Background 

The challenges in flood hazard assessment caused by data insufficiency has become more 

pronounced in developing regions of the world. Poor data coverage problem has been linked to 

inadequate rain gauges, rain gauges equipment becoming obsolete and worn-out, poor 

maintenance of the equipment, and lack of skilled personnel to monitor and maintain the gauges.  

Flood disasters have been known to wreak havoc on communities around the world; ranging from 

property damages to deaths of hundreds to thousands of people annually (Bathrellos et al., 2016). 

Understanding the precipitation characteristics at a location became an important variable to model 

flood, hence the reliance on the Probable Maximum Precipitation (PMP). PMP is theoretically the 

greatest depth of precipitation for a given duration over a given size of storm area at a particular 

geographical location at a certain time of year (Dingman, 2014). It is used as inputs for 

hydrological models to estimate the largest flood that could occur in a drainage basin. This 

maximum flood derived from the PMPs is termed Probable Maximum Flood (PMF) (Dingman, 

2014), which can be used to determine the required capacity of the emergency spillway of a dam 

whose failure would cause massive economic damage and loss of lives.  

PMP is estimated either by examining rainfall data for the largest flood-producing storms in 

and near the region of interest and using meteorological reasoning to estimate the combination of 

conditions that could have produced the largest rainfall rates from those storms on the drainage 

basin of interest, or by statistically interpolating data from regions of similarities of the largest 

storms in a large region (Dingman, 2014). This implies that PMP can be derived in two ways, by 

either adopting a meteorological or statistical approach. However, the lack of reliable precipitation 

data for estimating PMP in many urban cities particularly in developing countries, has deterred 

significantly those measures to address flood vulnerabilities and adaptation (Kim et al., 2019). 
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Estimating PMPs requires rain gauge data on precipitation, which hinges on meteorological 

techniques to compute PMPs. But, when there exist insufficient/unreliable rain gauge data to 

compute the PMPs for those gauge, a statistical method that relies on precipitation record from 

remote sensing technologies are adopted (Yang et al., 2019). Hershfield statistical technique for 

generating PMPs is widely used in different countries such as Spain, Iran, India, Japan, Malaysia, 

etc., providing comparable PMP estimates to those obtained using the meteorological method 

(World Meteorological Organization, 2009). The World Meteorological Organization (WMO), 

recommends the use of the Hershfield statistical method for estimating PMP at stations with long 

periods of daily rainfall record, particularly those not less than 10 years (Alamri & Subyani, 2017).  

Satellite precipitation products (SPPs) have emerged as an alternative means of acquiring 

precipitation data remotely from which PMP can be estimated (Tan & Santo, 2018). Unlike 

ground-based measurements such as gauges and radars, SPPs cover the precipitation system at a 

global scale, irrespective of difficult terrain across the globe. Ground-based radar measurements 

are affected by factors such as signal attenuation, surface backscattering, and reflectivity-rain-rate 

relationship uncertainty issues. Hence, SPPs are widely relied upon for precipitation characteristics 

analysis, hydrological modeling, and drought monitoring (Tan & Santo, 2018). Several SPPs have 

been made available and free for public accessibility, including the Global Precipitation 

Measurement (GPM), Tropical Rainfall Measuring Mission (TRMM), and Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). 

The GPM satellite launched in 2014 was intended to substitute the TRMM satellite, which ended 

in April 2015 after serving for 17 years. Generally, the newly released Integrated Multi-satellite 

Retrievals for GPM (IMERG) products have improvements in both spatial and temporal resolution 

(Tan & Santo, 2018).  
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The Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) is a 

new dataset that provides global precipitation measurement. The IMERG consists of an 

international network of satellites that provide the next-generation global observations of rain and 

snow (Guo et al., 2016). The IMERG Core Observatory design is an extension of TRMM which 

focused primarily on heavy to moderate rain over tropical and subtropical oceans. It carries the 

first space-borne Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel 

GPM Microwave Imager (GMI). The DPR instrument provides three-dimensional measurements 

of precipitation structure over 78- and 152-mile (125 and 245 km) swaths, consists of a Ka-band 

precipitation radar (KaPR) operating at 35.5 GHz and a Ku-band precipitation radar (KuPR) 

operating at 13.6 GHz. The GMI instrument is a conical-scanning multi-channel microwave 

radiometer covering a swath of 550 miles (885 km) with thirteen channels ranging in frequency 

from 10 GHz to 183 GHz. With a 0.10 spatial grid and a temporal resolution of half-hour, the 

IMERG is expected to have better precipitation estimates over other SPPs when compared to data 

from the rain gauge (Su, Lü, Ryu, et al., 2019). IMERG applications range widely from disaster 

and risk management, ecological management, agricultural forecasting, energy infrastructure, 

development and public health, weather, and climate study.  

IMERG is calibrated with the actual rain gauge estimates from the Global Precipitation 

Climatology Center (GPCC) gauge data (Tapiador et al., 2020) as its main inputs. The GPCC 

database contains precipitation data of over ~80,000 rain gauges. Different gridded precipitation 

products are released monthly based on this data. GPCC Monitoring Product Version 6 (GPCC-

MP) is one of the GPCC products that provides monthly precipitation data at 1.00 x 1.00 in near 

real time used by IMERG (Schamm et al., 2014).  Other data sources used to adjust the IMERG 

estimates to attain precision includes, data from over 2,300 rain gauges obtained from the Spanish 

Meteorological Agency (AEMET), data from the Global Precipitation Climatology Project 
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(GPCP) developed by the World Climate Research Programme (WCRP) to measure the global 

distribution of precipitation. The Tropical Rainfall Measuring Mission (TRMM) Multisatellite 

Precipitation Analysis (TMPA) and ERA5 reanalysis are the additional data sources for calibrating 

IMERG estimates (Huffman et al., 2020). 

The GPCC itself with over 80,000 rain gauges spread globally and contained in its database, 

receives precipitation data from numerous agencies, organizations, and 190 member countries of 

the WMO (George J. Huffman, 2020). In a nutshell, some of the agencies includes meteorological 

organizations, hydrological service agencies, and other weather monitoring units such as, Nation 

Oceanic Atmospheric Administration (NOAA) in Washington D.C., Deutscher Wetterdienst 

(DWD) Offenbach Germany, United Kingdom Meteorological Office (UKMO) Exeter UK, Japan 

Meteorological Agency (JMA) Tokyo-Japan. Other data sources include, Global Historical 

Climatology Network (GHCN), Food and Agricultural Organization of the United Nations (FAO), 

Climate Research Unit (CRU), Global Energy and Water Exchanges (GEWEX), among 

others.(George J. Huffman, 2020).  

 Yang et al. (2017), investigated the conventional PMP estimation approach by using both in-

situ observations and mainstream satellite precipitation products in the Dadu River basin, where 

plenty of dams and reservoirs were built to serve the populace. Their work used several satellite 

precipitation products (CMORPH, PERSIAN-CDR, TRMM, and TMPA-3B42V7) with a coarse 

spatial resolution of 0.250. Their results showed that CMORPH and 3B42V7 had positive 

correlations of 0.68 and 0.71 respectively, compared to station data. Also, CMORPH and 3B42V7 

showed better performance for their magnitude and spatial distribution of 24-h PMP in complex 

terrains. PERSIAN-CDR showed an overestimation in the upstream and underestimation in the 

downstream. However, they used SPPs with coarse resolution (0.250), and this might have 

negatively impacted the result. Similarly, Tan & Santo (2018) compared SPP's from IMERG, to 
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those from TMPA 3B42 and PERSIAN-CDR over Malaysia. They performed an initial 

comparison of three IMERG products (IMERG_E, IMERG_L, and IMERG_F) with its 

predecessors- TMPA 3B42 and 3B42RT products, and a long-term PERSIAN-CDR over 

Malaysia. Their validation used 501 precipitation gauges spread across Malaysia from 12 March 

2014 to 29 February 2016. Their study adopted three widely used statistical metrics correlation 

coefficient (CC), root mean square error (RMSE), and relative bias (RB). Their study focused on 

validating precipitation amount instead of PMP. 

In summary, the existing research used; (1) satellite products with coarse resolution, (2) most 

evaluation was carried out between satellites with no reference to station data, (3) validations were 

done using precipitation amount which is not ideal for flood modeling. For flood modeling and 

prediction to proceed with confidence, the PMP must be accounted for as an input variable (Tan 

& Santo, 2018). As such, this study focused on evaluating IMERG derived PMPs by extracting 

IMERG precipitation data and estimating PMPs from those data. The approach was seen to be 

particularly useful in regions lacking adequate rain gauge data. Three widely used statistical 

metrics (CC, RMSE, & RB) were incorporated to evaluate the IMERG estimated PMPs against 

station based PMPs from the NOAA-Atlas-14 precipitation product. 

1.2 Research Questions and Objectives 

The goal of this research is to identify the possibilities and limitations of IMERG derived PMPs 

by evaluating them with those from NOAA-Atlas-14 station PMPs. Salient questions asked in 

this study include, how well does IMERG derived PMPs compare with those from station PMPs? 

does precipitation variability influence satellite based PMPs? does missing values influence PMP 

errors at different intervals? To meet the specific questions in this study, the following objectives 

were pursued: (i) compute PMPs using precipitation estimates from IMERG, (ii) evaluate IMERG 
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estimated PMPs using rain gauge based PMPs, (iii) determine the relationship between PMP 

errors and precipitation amount, (iv) Determine the impact of missing values on PMP errors. 

2 RESEARCH CONTEXT 

This section provides more understanding on the concepts of PMP estimations, a 

description of the IMERG satellite and properties. The operational modality of IMERG, data 

fusion mechanism, and technical issues are also covered in this section. 

2.1 Concepts and Definitions of PMP 

The PMP originated from what used to be called Maximum Possible Precipitation (MPP) 

referred to as an upper maximum bound value (Salas et al., 2014). The idea was to find a 

maximum value of precipitation for a given storm period over a basin that physically could 

take place in real life but would not be exceeded. In real life, such MPP values have been 

exceeded as reported by several literatures, leading to the renaming of “Maximum Possible 

Precipitation” to “PMP” (Salas et al., 2014). Consequently, the definition also changed to 

“theoretically the greatest depth of precipitation for a given storm duration that is physically 

possible over a given size storm area at a particular geographical location at a certain time of 

the year” (Salas et al., 2014). Salas et al., (2014) noted that the idea behind establishing the 

PMP have remained the same over the years, the PMP definition used by the WMO has been 

slightly changed during these periods. WMO definition highlights the PMP as a physical 

upper limit and a quantity that cannot be exceeded. Nevertheless, WMO acknowledges the 

fact that the value of the PMP that is estimated for a particular location is only an 

approximation hinging on the physical complexity of the phenomena and limitations in data 

and the meteorological and hydrological sciences (Salas et al., 2014). 

There are two general approaches to computing PMP endorsed by the WMO, categorized 

as hydrometeorological and statistical, which are also called direct and indirect PMP 

estimation approach respectively (Singh et al., 2018). Hydrometeorological methods include 
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storm transposition method, moisture maximization method, storm separation method, and 

generalized method. Statistical methods are the multifractal  method and Hershfield’s method. 

It’s important to note that PMP estimates are dependent on the years of data availability, 

watershed topography, region of interest, and adopted method for estimating the PMP (Singh 

et al., 2018). In storm transposition method for example, the relocation of storm precipitation 

within a homogenous region is accounted for, as well as the relationship of the storm with 

terrain and meteorological features that are important to the storm rainfall.  

The main idea of the storm transposition method is that a meteorological homogeneous 

region exists such that a major storm occurring in any particular place in the region could 

occur anywhere else in the region (Singh et al., 2018). The idea is that, the storm transported 

to a location could occur under similar meteorological conditions as the first location. The 

meteorological analysis of the storms to be transported, transposition limits, and the 

application of the appropriate adjustments factor for the change in storm location is accounted 

for by the storm transposition method. In the storm transposition method, it is believed that a 

major storm occurring somewhere in the region could occur elsewhere provided that the 

region is meteorologically homogenous (Singh & Singh, 2017). 

Storm separation method is adapted in orographic regions where storm transposition 

methods are not applicable, with the assumption that relief convergence rainfall amounts can 

be explicitly estimated. The free-atmospheric forced precipitation (FAFP)(HMR, 57) also 

called convergence rainfall is notably one of the earliest reports which discussed the 

development of PMP in terms of relief and convergence components (National Weather 

Service, 1994). Convergence precipitation is a kind of precipitation with known or established 

terrain effect acting independently, and orographic precipitation is the example of such 

associated rainfall from terrain effects. As a known fact, the atmosphere is not totally free 

from the impacts of terrain, but cases can be found where the terrain feedback is totally 
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negligible especially when macro atmospheric scale is considered in explaining the storm 

precipitation patterns, and in these cases, precipitation is classified as pure convergence or 

non-orographic precipitation (National Weather Service, 1994).   

The maximum recorded rainfall depths of rainstorms over extensive area are used in the 

generalized method. The generalized method adjusts the maximum recorded rain depths to a 

particular catchment (Singh & Singh, 2017). The generalized method has the benefit of using 

the maximum recorded rain depths in all intervals and areas combined, allowing for ease of 

transposition in space. Singh et al., (2018) noted how the generalized method were applied in 

estimating PMP values for catchments of four large dam basins in India. In the report, they 

assumed that an optimum combination of the available moisture in the atmosphere as well as 

the storm mechanism efficiency would aid in estimating PMP values  using observed 

precipitation which were not directly measured (Singh & Singh, 2017). 

In moisture maximization method, the assumption is that precipitation has a near perfect 

correlation with precipitable water such that the storm precipitation increases by values that 

are in accordance with the maximum moisture in the atmosphere for the storm location and 

month of occurrence. Precipitation efficiency remains constant as the storm moisture 

increases, and the record of high storms is adequately large to represent the most efficient 

storm mechanisms, but this do not inform for the optimum available moisture that would 

accompany a PMP event (Singh et al., 2018). In most PMP studies, important atmospheric 

conditions entail the efficiency  with which storm converts moisture into precipitation. In 

addition to the amount of considered moisture content, the moisture maximization approach 

when adopted, approximates the highest moisture potential in the storm. 

Multifractal analysis also known as multi-scaling have recently been used for PMP 

estimation. The multifractal analysis is generally used to describe the scaling behavior of 

precipitation and streamflow. This technique has also been used in the eastern United States 
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to calculate the physically meaningful estimates of maximum precipitation from observations 

(Singh & Singh, 2017). The multifractal analysis has an advantage as it provides a formal 

framework to infer the degree of extreme events (termed the fractal maximum precipitation 

(FMP)), that are suitable for orographic terrains and independent of empirical adjustments. It 

is worthy to note that, the multifractal method is constrained by the length of record, the spatial 

resolution of rain gauge network, and the lack of uncertainty estimates (Singh & Singh, 2017). 

The Hershfield statistical method proposed in 1961 is the most used approach when long 

term data is provided. While there are no exact years of precipitation record range, a good 

data range will be anywhere between 15-50 years of precipitation record (World 

Meteorological Organization, 2009). Yang et al., (2017) used a precipitation record range of 15-

years interval period (1998-2013), Gao et al., (2018) used 35 years of data range (1981-2015), 

Singh et al., (2018) used 30 years of precipitation record. The World Meteorological 

Organization (WMO) in its handbook proposed a good precipitation interval to fall between 

20 or more years, whereas the NOAA rain gauge records fall anywhere between 15years or 

precipitation records to over 100years. The Hershfield method have been used all over the 

world for estimating PMP values and for comparing with other methods. Singh et al., (2018) 

noted that estimating PMP estimates using the Hershfield method have proven successful. 

Hershfield technique is based on average precipitation and standard deviation of precipitation, 

for computing the frequency factor (Km) and PMP (see eq. 1 and 2 in the study research 

methods). Singh et al., (2018) noted that “in 1961 Hershfield initially used 15 as the maximum 

value of frequency factor for computing PMP, but later in 1965 Hershfield found an upper 

envelope of frequency factor which had the tendency to decrease with the increasing 

precipitation amount. In summary, the frequency factor decreases with increasing mean 

annual maximum precipitation (Singh et al., 2018)”. The value of Km varies from 5 to 20, 

depending upon the mean precipitation and the precipitation duration (Singh et al., 2018). This 
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research adopts the Hershfield technique for computing PMP using IMERG satellite 

precipitation record computed over a 20-years period (2000 to 2020). 

2.2  Integrated Multi-Satellite Retrievals for GPM (IMERG) 

The Integrated Multi-Satellite Retrievals for GPM (IMERG) emerged as a joint project 

between the United State (NASA) and Japan (JAXA) that began in 2014 as a replacement for 

TRMM. IMERG consists of a unified algorithm that provides the multi-satellite precipitation 

product for the GPM team. IMERG adopts the Goddard Profiling Algorithm (GPROF) for 

precipitation estimation from the different precipitation-relevant satellite passive microwave 

(PMW) sensors making up the GPM constellation. To create half-hour estimates, the GPROF 

is gridded, intercalibrated to the GPM Combined Radar Radiometer Analysis product (with 

GPCP climatology calibration) and combined into half-hourly 0.10 x 0.10 fields. This is done 

by using the Climate Prediction Center (CPC) Morphing-Kalman Filter (CMORPH-KF), 

quasi-Lagrangian time interpolation procedure, and the Precipitation Estimation from 

Remotely Sensed Information using Artificial Neural Networks  Cloud Classification System 

(PERSIANN- CCS) infrared (IR) re-calibration procedure (Huffman, 2020). The CMORPH-

KH Quasi-Lagrangian time interpolation procedure uses the MERRA2 and GEOS-FP 

vertically integrated vapor (TQV) fields in parallel, as well as the PMW and IR estimates 

(Huffman, 2020). IMERG system run twice in near-real time, Early multi-satellite product (4hr 

after observation time), and Late multi-satellite product (14-hr after observation time), and as 

soon as the monthly gauge analysis is received the final satellite-gauge product (3.5-months 

after the observation month) is generated (George J. Huffman, 2020). 
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2.2.1   IMERG Sensors and Observational Systems 

 The GPM Microwave Imager (GMI) (Figure 2.2) has a swath 550 miles (885 kilometers) 

wide, providing a wide view of extra-tropical cyclone observed off the coast of Japan on 

March 10, 2014 (NASA, 2021). The GMI instrument has 13 channels, each sensitive to 

different types of precipitation as shown in figure 2.1. Each channel is sensitive to a different 

frequency of microwave energy naturally emitted from or affected by precipitation. As 

depicted in figure 2.1, the five channels on the left are sensitive to heavy and moderate rainfall.  

The four channels in the center captures precipitation mixtures of both snow and ice within 

the clouds. The mixed layers are often the result of ice or snow melting into rain as it drops. 

The four channels on the right are sensitive to light rain and snowfall (NASA, 2021). NASA, 

(2021) noted that “the multiple channels in each category ensures that GMI captures as full a 

range as possible of precipitation types. The data from GMI is used as a reference standard 

for an international network of partner satellites that also measure precipitation. Data from the 

GPM Core Observatory and the partner satellites is unified into a single global precipitation 

data set” (NASA, 2021). 

 
Figure 2.1. IMERG GMI showing 13 channels, each sensitive to different types of precipitation. The left 

channels are sensitive to heavy and moderate rains, the middle channels are sensitive to snow and ice, while 

the right channels are sensitive to light rain and snow fall. (Image credit: NASA). 
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Figure 2.1 illustrates the GMI instrument as a conically scanning multi-channel 

microwave radiometer, with a swath width of 550 miles (885 km) and thirteen channels 

ranging in frequency from 10 GHZ to 183 GHZ. NASA, (2021) noted that “the GMI uses a 

set of frequencies that have been optimized over the past two decades to retrieve heavy, 

moderate and light precipitation using the polarization difference at each channel as an 

indicator of the optical thickness and water content and precipitation systems”. 

In addition to the multi-channel GPM Microwave Imager (GMI), the GPM Core 

Observatory carries the first space-borne Ku/Ka band Dual-frequency Precipitation Radar 

(DPR) (NASA, 2021). The Ka-band precipitation radar (KaPR) of the DPR has a frequency of 

35.5 GHZ, while the Ku-band precipitation radar (KuPR) operates at 13.6 GHZ. DPR 

provides three-dimensional estimates of precipitation structure and characteristics (fig. 2.2) 

(NASA, 2021). DPR originally had a swath width of 78 and 152 miles (125 and 245km) for 

the Ka and Ku band radars respectively prior to May 2018, but since May 2018 the swath now 

extends to 152 miles (245 km) for both the Ka and Ku radars (see figure 2.2) (NASA, 2021). 

 
Figure 2.2. IMERG DPR showing the Ka-band and Ku-band radars and their swath width at different 

epoch. (Image credit: NASA). 
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The DPR is able to provide estimates of drop size distributions at moderate precipitation 

intensities (NASA, 2021). According to NASA, (2021) “the DPR is expected to provide further 

insights into how precipitation processes may be affected by human activities, and not limiting 

its capabilities in complementing microphysical measurements such as cloud and aerosol 

observations” (NASA, 2021).  

Passive microwave (PMW) sensors provide the largest share of relatively accurate 

satellite-based precipitation measurements, only available from low-Earth-orbit (leo) 

platforms. IMERG is designed to make up for the scarce sampling available from single leo-

satellites by using as many leo-satellites as possible, and then augmenting with 

geosynchronous-Earth-orbit (geo) infrared (IR) estimates. First, the leo-PMW data are 

morphed (linear interpolation following the estimated precipitation feature motion). Second, 

geo-IR precipitation estimates are included using a Kalman filter when the leo-PMW are 

infrequent. Additionally, to provide necessary regionalization and bias correction to the 

satellite estimates, precipitation gauge analyses are used. Not all the satellites in the IMERG 

constellation follows the GPM direction, therefore, IMERG uses as many satellites as possible 

for accurate precipitation estimation and related observations (Huffman et al., 2007). 

The IMERG consists of assembled satellites that works together, such as the TRMM 

satellite and GPM Core Observatory which both serves as tool for calibration and evaluation 

of all PMW- and IR- based precipitation products combined in IMERG, providing proper 

comparison with all other Passive Microwave equipped leo-satellites and IR-equipped geo-

satellites (Huffman et al., 2007). Multi-channel, dual-polarization PMW sensors and active 

scanning radars are provided in both the TRMM and GPM satellites. The GPM satellites are 

better than the TRMM satellites in many ways, for example, the improvements in GPM orbital 

inclination which was increased from 350 in TRMM to 650 (affording coverage of important 

additional climate zones), GPM radar was upgraded to two frequencies, adding sensitivity to 
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light precipitation, and “high-frequency” channels (165.5 and 183.3 GHZ) were included in 

the GPM Microwave Imager (GMI), which provide key information for sensing light and 

solid precipitation” (Huffman et al., 2007). The higher inclination for the GPM orbit reduces 

the radiometer and radar sampling compared to TRMM in the latitude band covered by 

TRMM (Huffman et al., 2007). 

The GPM constellation also referred as PMW satellites consists of satellites of opportunity 

such as, GPM Core Observatory (owned by NASA/JAXA), Mega-Tropiques (CNES/ISRO), 

NOAA 18/19 (NOAA), GCOM-W1 (JAXA), DMSP F17/F18 (DoD), NOAA 20 (NOAA), 

MetOp A/B/C (EUMETSAT), and Suomi NPP (NASA/NOAA). The PMW satellites orbital 

characteristics, and operations are shown in figure 2.3. Channel selections and data policies 

are outside the control of NASA, apart from the GPM Core satellite (Huffman et al., 2007). 

For low-and mid-latitude use, the imager channels are considered best, while the sounding 

channels maintain same operational capability in cold and frozen-surface conditions. Three 

different organizations control the geo-IR satellites, by upholding the long-standing 

international agreements which ensured coordination of orbits and mutual aid in the event of 

an unexpected satellite failure. “The basic requirement is for full disk images every three hours 

at the major synoptic times (00, 03, …., 21 UTC)” (Huffman et al., 2007). Although piecing it 

together can be somewhat challenging, all satellites operators ensure this is possible by 

providing a great deal of imagery. These data are received as brightness temperatures (Tb) in 

the merged format developed at NOAA/CPC for CMORPH, and the dataset assembled at 

NOAA/CPC (Huffman et al., 2007). 
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Figure 2.3. PMW sensor Equator-crossing times for 12-24 local time (LT; 00-12 LT is the same) for the 

modern PMW sensor era. These are all ascending passes, except F08 is descending. Shading indicates that 

the processing TRMM, Megha-Tropiques, and GPM cover all times of the day. Image by Eric Nelkin (SSAI; 

GSFC), 30 January 2019; and adapted from the NASA Algorithm Theoretical Basis Document (ATBD); 

https://pmm.nasa.gov/sites/default/files/imce/times_allsat.jpg holds the current version. 

 

Creating global precipitation products for the Global Precipitation Climatology Project 

(GCPC) shows that precipitation estimated from satellite soundings using the Susskind (1997) 

algorithm contain useful information at scales such as 10 daily (Huffman, 2020). However, 

high-frequency channels on AMSU, ATMS, MHS, GMI, and SSMIS eventually provide high-

quality precipitation estimates at high latitudes, with an expectation that the cloud retrieval-

based measurements may still be needed to fill gaps in the collection of high-latitude 

derivatives. As well, CPC has shown some improvements in using IR data from the Advanced 

Very High Resolution Radiometer (AVHRR) from leo- satellites for estimating precipitation 

at high latitudes (Huffman et al., 2007). 
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2.2.2 IMERG Data Fusion and Inputs from Precipitation Gauges 

NASA’s TRMM and GPM missions have collected rain and snow data from space for 

more than 22 years, and in 2019 for the first time the datasets were fused into a single dataset 

(NASA, 2021). The Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm 

combines the information from every constellation of satellites operating around earth at a 

given time to measure precipitation over the majority of the earth’s surface (NASA, 2021). 

Improvement in the latest release (version 6) implies that the IMERG algorithm can now fuse 

the early precipitation estimates collected during past operation of the TRMM and present day 

GPM satellites.  NASA, (2021) stated that, “the longer the record, the more valuable it is, as 

researchers and application developers are currently attesting. The goal is to better understand 

normal and extreme rain and snowfall around the world, strengthen the applications for 

current and feature disasters, disease monitoring, resource management, energy production, 

and food security”. This is will help to compare and contrast past and present data (NASA, 

2021). 

NASA Algorithm Theoretical Basis Document (ATBD) has shown that incorporating a 

uniform precipitations gauges analyses is important for managing the biases that characterize 

satellite precipitation measurements. These observations (incorporated uniform 

precipitations) showed that for certain regions, monthly gauge analyses produce significant 

improvements (Schamm et al., 2014). The ATDB noted that, recent work at CPC proved 

remarkable improvements in the bias correction using daily gauge analysis for regions in 

which there is enough gauges (Schamm et al., 2014). The Deutscher Wetterdienst (DWD) 

Global Precipitation Climatology Center (GPCC) established in 1989, provides high-quality 

precipitation analyses over land based on conventional precipitation gauges (Schamm et al., 
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2014). NASA adopts two GPCC products, the V8 Full Data Analysis for the majority of the 

time (1998-2016), and the V6 Monitoring Product from 2017 till date (NASA, 2021). 

The monitoring product is made available two months after the time of observation and is 

based on surface synoptic observations (SYNOP) and monthly CLIMAT reports received in 

near-real time through GTS from over 80,000 stations world-wide reported through the 

following sources; “(1) monthly precipitation totals accumulated at GPCC from the SYNOP 

reports received at DWD, Offenbach, (2) monthly precipitation totals accumulated at 

NOAA/CPC from the SYNOP reports received at NOAA, Washington D.C., (3) monthly 

precipitation totals from CLIMAT reports received at DWD, Offenbach, Germany, (4) 

monthly precipitation totals from CLIMAT  reports received at the UK Met. Office (UKMO), 

Exeter, UK, and (5) monthly precipitation totals from CLIMAT reports received at Japan 

Meteorological Agency (JMA), Tokyo, Japan” (Schamm et al., 2014). Schamm et al., (2014) 

noted that, the GPCC’s full data analysis hinged on a data base that covers the period 1901 up 

to 2013 (current V7 released in late 2015). “Compared to the monitoring products, the full 

data analysis consists of additional data acquired from global data collections such as Global 

Historical Climatology Network (GHCN), Food and Agricultural Organization (FAO) of the 

United Nations, Climate Research Unit (CRU); datasets from the National Meteorological 

and/or Hydrological Services of about 190 countries of the world, and additional data from 

Global Energy and Water Exchanges (GEWEX)-related projects” (Schamm et al., 2014). 
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3 STUDY AREA AND DATA 

The IMERG PMP evaluation were carried out on 55 rain gauges sites in Kansas. Figure 

3.1 shows the map of Kansas with the 55 gauge sites spatially mapped, the county boundaries, 

and the average annual precipitation pattern unique to Kansas. Kansas is a mid-western state 

in the US, located at 38°30′N, 98°W, with an area coverage of 213,100 km2. Average 

precipitation pattern in Kansas is such that it increases from north-west to south-east, with 

an hourly rate of 0.05 mm/hr in the west to 0.15 mm/hr in the eastern part of Kansas. 

Evaluation were carried out using IMERG estimated PMPs against those from NOAA-Atlas-

14, which aligns with those 55 rain gauge sites. 

 

Figure 3.1. Rain gauge locations used for evaluating IMERG derived PMP, county boundaries in Kansas, and the 

hourly precipitation rate (mm/hr) between 2000 and 2020.   

 

3.1 Satellite Precipitation Dataset  

The precipitation dataset used in this study is the Merged Satellite-gauge precipitation 

estimate (Final Run- GPM_3IMERG V06), with a remarkable stretch of 65N/S of the equator. 

This dataset has a spatial resolution of 0.1, a temporal resolution of a half-hour interval, and the 

precipitation estimated recorded in mm. Google Earth Engine (GEE) is the platform used to 

extract the IMERG precipitation estimates before computing their PMPs. Extracting precipitation 

on IMERG can be done using either GIOVANNI or GEE. Geospatial Interactive Online 

https://en.wikipedia.org/wiki/37th_parallel_north
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Visualization And Analysis Infrastructure (Giovanni) is a Web based application developed by 

the Goddard Earth Sciences Data and Information Services Center (GESDISC),  for visualizing, 

analyzing, and accessing vast amounts of earth science remote sensing data without having to 

download the data (although data downloads are also supported) (NASA, 2021). GIOVANNI 

data visualization capability extends inter-annual time series of maximum precipitation from 2000 

to present date (Fig. 3.2) for every gauge or watershed within data coverage. The challenge with 

GIOVANNI is the lack of flexibility for extracting the maximum precipitation with user defined 

time windows. It only provides the maximum precipitation for the time periods of 1 hr., 24 hr., 

and 30 days. As such, users must rely on interpolation to fill the durations not provided by 

GIOVANNI. GIOVANNI data can be accessed at  https://giovanni.gsfc.nasa.gov/giovanni/. 

 
Figure 3.2. Average monthly precipitation (inch/month) for individual month in Kansas (2000-2020). Adapted 

from NASA GIOVANNI website: https://giovanni.gsfc.nasa.gov/giovanni/ 

GEE on the other hand is a cloud geospatial processing service, which can perform geospatial 

processing at scale, and is powered by Google Cloud Platform. GEE provides an interactive 

platform for geospatial algorithm development at scale, enabling high impact, data driven 

science (Gorelick et al., 2017). GEE uses either python or Java scripts to extract IMERG 

precipitation data at different durations and performs the analysis on the cloud (Mab et al., 2019). 

GEE’s ability to analyze global data rapidly lends itself to being a useful tool for data analysis 

and visualization, by using JavaScript and Python Application Programming Interfaces (APIs). 

https://giovanni.gsfc.nasa.gov/giovanni/
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This APIs allows user to develop scripts to access datasets in the cloud. This research uses the 

Java script built on GEE to extract IMERG precipitation estimates from GEE repository. 

3.2 Rain Gauge Based PMP 

The NOAA-Atlas-14 dataset is the reference data used for this research. The datasets are PMPs, 

which are derived using rain gauge data by the National Oceanic Atmospheric Administration 

(NOAA), prior to making the NOAA-Atlas-14 available for public use. The NOAA Precipitation 

Frequency Data Server (PFDS, https://hdsc.nws.noaa.gov/hdsc/pfds/index.html) provides the point 

and click interface developed to deliver NOAA-Atlas-14 precipitation frequency estimates and 

associated information. The PFDS provides estimates of PMPs for points, which can be 

extrapolated to derive PMPs for other locations within the NOAA coverage. PMP estimates from 

NOAA-PFDS can be obtained directly in table format or graphs.  

Table 3.1 shows the differences in specifications and characteristics between the NOAA station 

and the IMERG satellite data. Some of the highlighted characteristics include, the spatial resolution, 

length of data coverage, sensors (recording devices), area coverage, calibration method, ownership, 

amongst others. 

   Table 3.1. Differences between IMERG satellite data and NOAA station data 

Characteristics NOAA Station Data IMERG Satellite Data 

Spatial 

Resolution 

55 km (based on average 

distance between gauges in the 

study) 

0.10 (11.1 km) 

Data coverage 1857 – present  

(Gauge site varies) 

2000- 2020  

Sensor(s) Rain gauges GPMI (GPM Microwave Imager) 

DPR (Dual Precipitation Radar) 

Area coverage United States territories 650N/S (semi-global) 

Calibration 

method 

Observed estimates. ● TRMM & TMPA calibrated 

● GPCC Monthly adjusted  

Ownership NOAA-USA NASA & JAXA 

 

https://hdsc.nws.noaa.gov/hdsc/pfds/index.html
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4 RESEARCH METHOD 

4.1 Procedure for Calculating PMPs 

Computing PMPs from IMERG requires first extracting IMERG maximum precipitation, for 

different durations using GEE Java scripts at defined gauges. The output result is then imported 

into a python/R environment using additional script with built in statistical procedures to estimate 

the PMPs. The IMERG computed PMPs was then paired with NOAA-Atlas-14 using series of 

sorting techniques in Microsoft excel for proper evaluation purposes. Figure 4.1. below shows 

the workflow for extracting maximum precipitation, computing PMP, and the statistical 

evaluation in the study. 

 
Figure 4.1. Workflow for computing PMPs from IMERG data 

 

4.2    Calculate Maximum Precipitation Estimates  

The maximum precipitation for a given time-step was calculated for each pixel from the half-hour 

IMERG precipitation data using Google Earth Engine (GEE). The half-hour IMERG data for a 

given month were summed defined by a moving temporal window, the length of which includes 

the PMP return periods (30-min, 1-hr, 2-hr, 6-hr, 12-hr, and 24-hr), and the maximum value from 

that return period is treated as the maximum depth of precipitation needed to compute the PMP 

for that return period. The draw back to this approach is that provisional data contains missing 
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values due to IMERG technical issues and must be avoided (Tan & Santo, 2018), calibration and 

adjustment of IMERG data takes 1-3 months before the IMERG final product is made available 

to the public for research purposes. The advantage of using GEE to extract precipitation estimates 

is that, user can define specific window intervals for extracting the precipitation, which is not the 

case as seen in GIOVANNI. The Java script used for extracting IMERG data is available at 

https://code.earthengine.google.com/70fa7105be38bb993dc9e1b765f736b5?noload=1. 

4.3   Compute PMPs  

A second script was written using the R-programming language to automate the computation of 

PMPs from the maximum precipitation for various return periods. Hershfield statistical technique 

is the adopted approach used for the PMP computation. This technique relies on the mean of the 

durations, their standard deviation, and their frequency factor concerning maximum precipitation 

estimates for individual durations. Hershfield has been duly endorsed by the World Meteorological 

Organization (WMO) and widely used by researchers. One key benefits of the Hershfield technique 

is that, it allows PMP to be adjustable by a factor ranging from 1.13 up to 2.9, hence a good approach 

for calibrating data from satellite sensors (World Meteorological Organization, 2009).  

The approach involves first computing the frequency factor (Km) and then calculating PMPs. The 

frequency factor is a function of the largest value in the series of duration intervals, it is also 

dependent on the number of observations in the series. The frequency factor was calculated using 

the equation 1stated below: 

                   𝐾𝑚  =
𝑅𝑚𝑎𝑥−(

1

𝑛
∑ (𝑅𝑛−1)𝑛

𝑖=1  ) 

𝑆𝑛−1
                           (1) 

where,  

Km is the frequency factor of the series, 

Rmax is highest value in the series of individual duration intervals, 

Rn-1 is mean excluding the largest value in the series, and 

https://code.earthengine.google.com/70fa7105be38bb993dc9e1b765f736b5?noload=1
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Sn-1 is standard deviation excluding the largest value in the series. 

The PMPs were derived using equation 2 outlined below: 

𝑋𝑇 = (
1

𝑛
∑ 𝑋𝑛

𝑖=1 ) +  𝐾𝑚  ×  𝑆𝑛                                             (2) 

where,  

XT is estimated PMP value of the duration interval, 

X   is the Mean of the frequency, 

Km is the frequency factor which depends upon the number of observations, and  

Sn is standard deviation of the series. 

 

4.4   Statistical metrics for Evaluating IMERG derived PMPs 

The three statistical metrics used for the evaluating IMERG derived PMPs include, the 

coefficient of correlation (CC), root mean square error (RMSE) and relative bias (RB). A 

third linear regression model was fitted with a line of best fit, to ascertain the predictability 

of IMERG derived PMP from station PMPs at different time scales. The linear regression 

model was also used to ascertain the degree of linear relationships between IMERG PMPs 

and station PMPs at varying temporal scale. Table 4.1 below shows the formula of the three 

statistical metrics used for the evaluation. The statistical evaluation, data comparison, and 

plotting  were done using R-scripts. The study further applied the concepts: p-values, R-

Squared, and slope to ascertain the relationship between the PMP error and mean annual 

total accumulation, as well as PMP error and mean maximum precipitation at different 

precipitation intervals. Basically, the idea was to understand the error pattern with regards 

to durations, and precipitation regions. Finally, we applied the concept of trend analyses, 

helping to interpolate our error on the surface.  
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S is IMERG PMP, O is NOAA-Atlas-14 PMP, and n is the PMP interval period. 

CC is a unitless statistical metric used to determine the degree of linear agreement between IMERG 

estimated PMPs and NOAA PMPs, with values ranging from -1 to +1. A CC value of 0 indicates 

there is no correlations. On the other hand, a CC value of +1 and -1 shows perfect positive and 

negative correlations, respectively. RMSE measures the average absolute error magnitude of the 

IMERG PMP. The smaller the RMSE value, the closer the IMERG PMP to the station PMP. 

Statistically, RMSE assumes the unit of the variable measured (which in this case is mm for 

precipitation) for the evaluation. Positive values of RB indicate an overestimation of the IMERG 

PMP, while negative values show an underestimation (Tan & Santo, 2018). 
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5 EVALUATION OF IMERG PMP AND PMP ERRORS 

 An initial IMERG PMP assessment was conducted by using precipitation intervals as 

the criteria for assessment. The study aggregated PMPs from all 55 rain gauge sites and 

analyzed the correlation between IMERG derived PMP and NOAA station PMP at different 

intervals. Precipitation zones were not considered at this stage of assessment, instead the idea 

was to evaluate the relationship between IMERG derived PMP and NOAA station PMP, 

assess the PMP error at different precipitation durations, and to find any pattern between the 

PMP error at intervals and precipitation patterns in Kansas. In addition to the CC, RMSE, 

and RB for evaluating IMERG derived PMP and associated error at intervals, the linear 

regression model was used to confirm results from CC and justify any statistical relationship 

between IMERG PMP and NOAA PMP. 

 Result from the figure 5.1 showed that IMERG PMP recorded the highest CC at the 30-

mins interval with a value of 0.95 and returned the least value of 0.85 at the 24-hr (fig.5.1a). 

RMSE increased with every increment in durations (fig.5.1b), an estimate of 4.41 mm of 

RMSE at the 30-min duration and 10.28 mm of RMSE at the 24-hr duration. In figure 5.1c, 

-3.77% of RB was calculated for the 30-min interval depicting underestimation, while 

increasing to 7.82%  at the 24-hr interval to infer an overestimation. Figure 4 also showed 

that the non-linearity in the pattern of CC, RMSE, and RB. The early intervals (30-mins – 2-

hrs) saw a sharp decline in CC compared to the rest of the intervals. Similarly, RB declined 

during same interval prior to peaking with consistent trajectory. On the other hand, RMSE 

peaked sharply at the early intervals prior to maintaining a gentler increase in direction. This 

unique behavior at the short intervals only confirm the unreliability of PMP estimated at 

shorter intervals as residual errors at individual gauges were not evaluated at this stage of 

analysis. 
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Figure 5.1. Plots showing Statistical results from the evaluation of IMERG derived PMPs at different 

durations. (a) coefficient of Correlation (b) the root mean square error in mm(c) the relative bias in %. 

The X-axes shows the durations while the Y-axes represents the statistical metric used. 

 

Figure 5.1a implies that IMERG PMP had better correlation at the shorter durations 

compared to the longer periods, when assessment is focused on the durations and 

precipitation regions are ignored. An increase in RMSE as precipitation intervals increases 

(figure 5.1b) implied that there was more precipitation measured at longer intervals than the 

shorter intervals. Although the RMSE result were useful to measure errors at the intervals, 

they did not account for PMP errors with respect to precipitation pattern or zones. Findings 

in figure 5.1b were consistent with Tan & Santo, (2018). Result from the relative bias 

assessment (figure 5.1c) agrees with Yang et. al., (2017) whose RB assessment of IMERG 

fell between -10% and 10%, confirming the potential of IMERG to underestimates at lower 

intervals, while overestimating at higher intervals. Although, the statistical assessment of 

a 
b 

c 
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PMP at different durations failed to account for spatial distribution of the gauges as well as 

the precipitation regions (dry, mid, and wet regions), the analysis provided an insight on how 

PMP at different interval could be used for future study when precipitation pattern do not 

matter.  

Table 5.1 shows the summary of the results obtained from the statistical analysis 

conducted using the adopted statistical metrics. Similar to earlier assessment conducted, the 

precipitation regions were neglected, and the study treated the gauges as a unit precipitation 

zone. However, the results from the regression analyses confirm earlier observations made in 

the study (fig. 5.1). At the 30-min duration CC, RMSE, and RB were calculated 0.956, 

4.41mm, and -7.96 respectively, while the 24-hr duration recorded 0.854, 10.28 mm, and 

7.82% for CC, RMSE, and RB respectively.  The fitted linear regression model (fig.5) showed 

a decreasing R-squared with increasing durations. The coefficient of determination was 91.4% 

at the 30-min interval, but then decreased to 81.3% at the 24-hr duration. Similarly, the p-

value (at < 0.05 significance) confirmed a more linear relationship did exists at the 30-mins 

interval (0.0011) compared to the 24-hr interval (figure 5.2).   

Table 5.1: Statistical results from IMERG PMP assessment at different durations 

Duration (hr) 

                  Statistical Metrics 

CC RMSE (mm) RB (%) P-value R-Squared 

0.5 0.956 4.41 -3.77 0.00111 0.914 

1 0.952 6.48 -5.379 0.00147 0.904 

2 0.928 8.53 -7.228 0.00126 0.859 

6 0.915 9.42 -7.96 0.00103 0.838 

12 0.908 10.04 -4.77 0.00757 0.821 

24 0.854 10.28 7.82 0.0086 0.813 
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Figure 5.2. Shows the relationship between IMERG derived PMP and NOAA station PMP at different 

durations. Note that the y-axis represents the IMERG derived PMPs  while the x-axis represents NOAA 

PMP in mm. (a-f) represents the duration intervals; 30-mins, 1-hr, 2-hr, 6-hr, 12-hr, and 24-hr. the red line 

is the fitted line (line of best fit) across the intervals. R-squared is highest in shorter durations signifying 

high correlation but decreases with longer durations. The p-value across a-f suggest a high relationship 

exists between  IMERG derived PMP and NOAA PMPs. e is the residual error. 

 

Table 5.1 and figure 5.2 further justifies observed relationship between IMERG derived 

PMPs and NOAA station PMPs at different intervals of duration. At shorter interval (e.g. 

30min) the least precipitation was estimated, CC was highest, RMSE was lowest, whereas 

RB returned a negative value. However, at the longer interval (e.g. 24hr) CC was lowest, 
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RMSE were larger, while RB returned negative values all through. The regression model 

showed higher correlation between IMERG PMP and NOAA PMP at the lower interval with 

a coefficient of determination of 91.4%, inferring higher chances of predicting IMERG PMP 

using those from station. Analysis at intervals provided an insight on the characteristics of 

IMERG PMP when the gauge station were aggregated and analyzed as a unit, it is important 

to note here that, averaging PMPs from all 55 gauges has a tendency of creating a 

smoothening effect that concealed impacts of bias in the analyses. This part of the study 

analyses proved that; we may not know which exact gauge is exerting the most influence on 

our analyses due to the smoothening effects from the PMPs aggregation at different intervals. 

Further observation from the interval assessment shows that, aggregating the PMPs at all 

intervals resulted to underestimation of PMPs at all intervals, which is consistent with 

observation from Yang et. al., (2017).  

5.1   Spatial Variation of PMP Errors 

 To better understand how the PMP errors varies spatially, a spatial interpolation 

technique was adopted to evaluate the magnitude of the residual error at individual gauges 

in relation to precipitation zones. Unlike the assessment by return periods which aggregated 

PMPs in all gauges by their intervals for analyses, the PMP error assessment at the gauges 

treated every rain gauge independently by analyzing the residual errors between IMERG 

computed PMPs and those from NOAA PMP. The idea was to ascertain the pattern of 

residual errors distribution from the PMP differences in those gauges with regards to 

precipitation regions (wetness). In a nutshell, the study tried to determine where the most and 

the least residual errors occurred with regards to precipitation pattern in Kansas. This 

assessment helped to address lingering concerns such as, whether the PMP error has any 

relationship with precipitation pattern in the study area.  
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 The study extrapolated the residual errors from the PMPs on the surface, to determine 

any relationship or pattern between the residual error and the precipitation zones. The 

analyses were conducted using Trend (3D Analyst) tool, which explicitly uses a global 

polynomial interpolation that fits a smooth surface and defined by a mathematical function 

(a polynomial) to the inputs rain gauge sample points. As the trend technique interpolates a 

raster surface from points, the trend surface changes gradually and captures more coarse-

scale patterns in the data. When the order of the polynomials was increased, the fitted surface 

becomes progressively more complex. While the order of polynomial being an integer 

between 1 and 12, a value of 1 fit a flat plane to the points, and higher values fits more 

complex surface. A polynomial number of 2 were used for the analyses as the study area fits 

a gentle slope criterion. 

 Figure 5.3(a-f) illustrates the error distribution across different precipitation durations. 

A close observation showed that, at the shorter intervals (e.g., 30-min, 1-hr, 2-hr, & 6-hr) 

(figure 5.3a-d) surface error was largely distributed between the dry and mid regions, with 

patches in the eastern part (wet region), showing less consistency with precipitation pattern 

in Kansas. However, the 12-hr and 2-4hr interval (fig. 5.3e-f), correctly represented 

precipitation pattern in Kansas. The most residual surface errors were recorded in the dry 

region (western Kansas) while the least PMP errors were found to be recorded in the eastern 

Kansas. These results (fig. 5.3f) simply connotes in a single view how the errors are 

distributed in relation to precipitation intervals and precipitation regions.  
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Figure 5.3. Interpolated residual errors at the surface. a-f shows the error pattern at the durations 30-mins, 

1-hr, 2-hr, 6-hr, 12-hr, and 24-hr respectively. 

The result from the trend analyses (figure 5.3) showed that the longer the precipitation 

interval (fig. 5.3f) the better the PMP estimation. Similarly, the wetter the region the lesser 

the error from IMERG PMP. Results from the trend assessment were consistent with 

observations made by Tan & Santo, (2018). This implies that, for any application of IMERG 

PMP for further studies (such as flood modeling), Computed PMPs at the lower intervals 

must be treated with caution, as the level of confidences is lower at lower interval but higher 

at longer interval, further suggesting preference for PMP at longer intervals (e.g. 24-hr). The 

result from the trend assessment further justify earlier study by Su, et al., (2019), proving that 

IMERG derived PMPs have higher confidence and reliance in wet regions than the dry 



Page | 32  
 

regions. Su, et al., (2019) found the IMERG to record less errors and higher correlation in 

wetter areas. The study assessment so far has shown that PMPs are both interval dependent 

and precipitation region dependent and great care should be taken to accommodate both 

variables for a better PMP estimation and assessment. The result also showed that analysis 

at the intervals alone can be misleading and fraught with unreliable result as gauges within 

same interval may be from precipitation zones with differing degree of wetness.  

The study further explored the derived IMERG PMP and the station confidence interval 

to determine if the PMPs at the different durations were within the 90% confidence interval 

of NOAA station PMP (figure 5.4). Result showed that at the shorter intervals (30-min up to 

the 12-hr durations) IMERG derived PMPs fell outside the 90% confidence intervals of the 

NOAA of station PMP. However, at the 24-hr duration IMERG derived PMP fell within the 

upper and lower limits (77.391 mm and 67.309 mm) of NOAA 90% confidence interval. 

This observation further justifies those made earlier in figure 5.3, that IMERG estimates 

better PMP at the 24-hr durations with the least error measured.  

 
 Figure 5.4. Confidence interval assessment of IMERG PMP at different durations 
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6  PMP ERROR AND PRECIPITATION AMOUNT 

The study furthered the analysis by exploring the possible relationship between PMP error and 

precipitation amount within precipitation zones and at individual stations. The basic idea was to 

determine if the PMPs estimation were impacted by the errors (as we see in figure 5.3).  

6.1 PMP Error and Precipitation Zones 

Firstly,  precipitation criteria were used to zone the study area into 3 regions (dry, mid, and 

wet regions) (see figure 6.1d). Similarly, zoning was done using the PMP at the 24-hr duration as 

a criterion. Both zoning criteria produced similar number of gauges in each of the regions, hence 

the study adopted the zoning by mean annual precipitation. The three statistical metrics (CC, 

RMSE, and RB) were then applied in evaluating the relationship between IMERG derived PMPs 

using NOAA station PMP for all three regions. 

IMERG PMP at the dry region (fig. 6.1a) were consistent at the 30-mins and 

underestimates slightly as duration increases up to the 24-hr interval. At the Mid region, 

IMERG PMP were underestimated at the 30-mins interval and up to the 12-hr, although 

remained consistent with NOAA PMP between the 12-hr and the 24-hr with slight 

overestimation (fig. 6.1b). In wet regions (fig. 6.1c), IMERG underestimated PMP at the 

30min duration but overestimates PMP at the 24-hr. The result showed the inconsistencies 

associated with IMERG PMP at the various precipitation regions. Aggregating PMP was 

noted to create a smoothening effect as local influences from gauges were not accounted.  
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Figure 6.1 Visual assessment of IMERG and NOAA PMP by zones (a) dry region, (b) mid region, (c) wet 

region, (d) major regions. The vertical axes represent the PMP depths why the horizontal axes are the 

durations (a-c). 

The influence of precipitation zones on PMP was clearly depicted in figure 6.1, as subtle 

differences in the level of IMERG PMP estimation were revealed. Although in comparing 

PMP at the three zones, the result showed a distinct pattern of correlation moving from dry 

to wet regions, but we may not be able to tell how much of local influences from the gauges 

impacted our analyses, as the study showed in figure 5.3. One thing is certain, averaging all 

gauge PMP at the zonal assessment created a smoothening effect that belies the residual 

errors from individual gauges. Result of Figure 6.1 validates findings made by Yang et.al., 

(2017); that IMERG has the capability of underestimating PMP at the dry regions while 

overestimating PMP in wet regions. 

Table 6.1 showed the result from the assessment of IMERG computed PMP at the zones 

using the established statistical metrics. The analysis accounted for both precipitation 

b a 

c d 
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durations (intervals) and precipitation regions (zones).  In detail, CC decreased from 0.871 

at the 30-mins interval to 0.733 at the 24-hr interval for the dry region. At the mid region, 

CC decreased from 0.901 at the 30-min mark to 0.803 for the 24-hr interval, whereas the wet 

region saw highest CC value of 0.951 at the 30-min interval and 0.821 at the 24-hr interval. 

An assessment of the RMSE showed that highest values were at the dry region, with a value 

of 4.986 mm at the 30-mins interval, and 10.51 mm at the 24-hr interval, the mid region 

recorded 4.26 mm and 10.01 mm for the 30-min and 24-hr intervals respectively (table 6.1). 

The result further showed that the least RMSE were found at the wet region, with both 30-

min and 24-hr intervals returning 3.75 mm and 9.45 mm respectively (table 6.1). RB was 

calculated to be -10.23% and -0.912% for both 30-min and 24-hr intervals respectively for 

the dry region. RB at both mid and wet regions were (-9.58% and 4.2%) and (-8.14% and 

9.35%) respectively for the 30-min and 24-hr intervals. The negative RB that characterized 

the dry region connotes underestimation of PMP by the IMERG, while the Positive RB at 

the wet region represents overestimation in the PMP.  

Table 6.1: Results of IMERG PMP evaluation at the zones 

 

The statistical result across the dry, mid, and wet regions (figure 6.2), revealed interesting 

pattern similar to our result in table 6.1. CC were highest in wet region, while the dry region 

recorded the least CC (fig. 6.2a). The most RMSE were recorded in dry areas whereas wet 

Metrics CC RMSE (mm) RB (%) 

Durations (hr) 

/Regions Dry Mid Wet Dry Mid Wet Dry Mid Wet 

0.5 0.871 0.901 0.951 4.986 4.26 3.75 -10.23 -9.58 -8.14 

1 0.845 0.881 0.93 6.21 5.85 5.58 -8.395 -7.67 -4.983 

2 0.815 0.862 0.91 7.14 6.82 6.18 -5.231 -4.57 -2.13 

6 0.781 0.841 0.88 8.492 8.01 7.63 -3.35 -2.89 1.256 

12 0.752 0.822 0.851 9.243 8.75 8.34 -2.011 0.12 4.121 

24 0.733 0.803 0.821 10.51 10.01 9.45 -0.912 4.2 9.35 
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region saw the least RMSE (fig. 6.2b). The effect of relative bias was mostly felt in wet areas 

(underestimation at shorter intervals and underestimation at longer intervals) whereas dry 

zone had the least impact from RB (fig. 6.2c). This observation is consistent with Yang et. 

al., (2017) and Tan & Santo (2018). Results discussed so far inferred that IMERG has the 

tendency to underestimate PMP at shorter durations and dry regions, while overestimating 

PMP at longer durations and wetter regions, producing consistent pattern as seen in  Yang et 

al., (2017).  

  

 
Figure 6.2. Results of IMERG PMPs evaluation at three zones (dry, mid, and wet) for different durations. 

(a) coefficient of correlation (b) root mean square error in mm (c) relative bias in %. The horizontal axes 

show the durations while the vertical axes present the statistical metrics. 

 

Statistical evaluation of IMERG PMP at different precipitation zones (see table 6.1 and 

figure 6.2) showed that calculated CC ranged from 0.733 in dry region to 0.951 in wet areas, 

and were consistent with Tan & Santo (2018), whose CC result from earlier study stood at 

0.76. Tan and Santo (2018) showed that CC range between 0.7 to 1 were statistically 

a b 

c 



Page | 37  
 

significant for research, thus inferring that the relationship between IMERG computed PMP 

and NOAA PMP had a strong relationship in wetter regions. The study results also showed 

IMERG PMP had lesser error in wet region (3.75 mm at 30mins) than the dry region (4.99 

mm at 30mins), however an assessment of RMSE in relation to durations proved that the 

highest RMSE were calculated at the longer intervals. The calculated RMSE with regards to 

precipitation zones agree with findings from Yang et.al., (2017) suggesting that IMERG PMP 

were better adapted at the longer durations with lesser errors. Similarly, an assessment of 

RMSE with regards to precipitation intervals were found to be consistent with previous 

findings in figure 5.3, suggesting that IMERG were better for estimating PMP at longer 

intervals.  

The calculated RB (figure 6.2c) fell within the range -10% to 10%. The RB range were 

found to lie withing the significant threshold (-10% to 10%) as suggested by Tan & Santo 

(2018) and Yang et.al., (2017), inferring that the computed IMERG PMP were statistically 

within allowable limit of application with minimal error. The negative RB values connote an 

underestimation which characterized shorter precipitation intervals and the dryer regions, 

while the positive RB values fell within the longer precipitation intervals and wetter regions 

connoting overestimation. This observation further infers that IMERG derived PMPs were 

mostly underestimated at shorter durations and equally underestimated in dry areas, but at 

the longer intervals and wetter areas, IMERG tends to overestimate PMPs.  
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6.2  PMP Errors and Precipitation Amount at Individual Stations 

 The study evaluated the relationship between the PMP errors, total accumulated 

precipitation, and mean maximum precipitation estimates at different intervals. The annual 

total accumulation of precipitation (2000-2020) at different intervals were extracted and 

averaged to derive the mean annual total accumulation. This mean annual total accumulation 

were plotted against the residual error to determine their relationship PMP errors at different 

intervals.  Figure 6.3 showed the relationship between the mean annual total accumulatio and 

the residual error across varying intervals. The pattern of distribution of the relative errors 

depicts a weak correlation with mean annual total accumulation at shorter interval (figure 6.3a) 

and a stronger correlation at longer interval (figure 6.3f). As PMPs increases from shorter to 

longer intervals, residual errors reduce, and correlation becomes more linear in the presence of 

negligible outliers. At the 24-hr precipitation interval, the effect of underestimation and 

overestimation of precipitation would cancel out producing a more reliable precipitation 

estimates for computing PMP, this observation agrees with findings made by Tan & Santo, 

(2018).  

The p-value decreased from 0.311 at shorter interval (30-min) to 0.00031 at longer interval 

(24-hr), indicating increasing statistical significance. R-squared increased from 0.194 at the 

30-mins to 0.515 reaching the 24-hr interval (see figure 6.3). This observation validates those 

made earlier (in figure 5.3) inferring that PMP at the longer interval showed more reliability 

than those at shorter intervals. Further confirming that, IMERG PMPs are better suited for 

wetter regions with higher performance than dry regions. 
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Figure 6.3. Scatterplot showing the relationship between mean annual total accumulation and PMP errors at 

different intervals. (a-f) shows the relationships and correlation at the durations 30-mins, 1-hr, 2-hr, 6-hr, 

12-hr, and 24-hr respectively. 

 

In addition to evaluating the relationship between the PMP errors and the mean total 

annual accumulation, the mean maximum precipitation at the different intervals were 

analyzed against the PMP error to understand the error pattern across different precipitation 

interval, and to find any statistical relationship between precipitation and residual error 

(figure 6.4). The predicted residual errors produced much outliers at shorter interval (e.g., 

figure 6.4a) and less outliers at longer interval (e.g., figure 6.4f). The relationship between 

the two numerical variables for all six intervals were non-linear and inverse. However, the 
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result revealed a stronger correlation at longer interval and weaker correlation at shorter 

interval, agreeing with those in fig.8. The p-value at shorter interval (30-min) decreased 

from 0.201 to 0.00043 on nearing the longer interval (24-hr mark), R-squared increased 

from 0.136 at the 30-mins mark to 0.503 at the 24-hr interval, indicating an increase in 

significance relationship between the two variables as duration increases 

Like the mean annual total accumulation, the mean max precipitation estimates at various 

intervals showed that the 24-hr interval has measurements that are more reliable compared 

to shorter durations. This again can be attributed to both underestimation at shorter interval 

and overestimation at longer interval canceling out each other, there by producing results 

consistent with  Tan & Santo, (2018) at the 24-hr duration. The annual total accumulation 

and the mean maximum precipitation both buttress the fact that IMERG derived PMP at the 

longer interval are more reliable than those at the shorter intervals and agrees with Tan & 

Santo, (2018).  

 

 

 

 

 

 

 

 

 

 

 

 



Page | 41  
 

    

    

    

Figure 6.4. Scatterplot showing the relationship between mean maximum precipitation and relative error 

residual at different intervals. (a-f) shows the relationships and correlation at the durations 30-mins, 1hr, 

2hr, 6hr, 12hr, and 24hr respectively. There shorter intervals (b-c) showed abundance of outliers with 

weak correlation, while longer interval (f) showed a strong correlation between relative residual error as 

the predicted variable and the mean maximum precipitation. 

     

       The statistical results from figures 6.3 and figure 6.4 further justifies the interpolated 

PMP error trend analysis in figure 5.3. The results showed an inverse relationship, depicting 

a reduction in residual error as intervals increases. Although, the result from figures 6.3 and 

figure 6.4 showed that the coefficient of determination (R-squared) was quiet low for the 

longer interval (51.5% and 50.3% for the 24-hr intervals) the general trend depicts a case of 

an increasing statistical significance from shorter to longer precipitation intervals. These 

a b 

c 
d 

e f 

Slope = - 0.0952 

R
2 = 

0.136 
P-value = 0.201 

Slope = - 0.135 

R
2 = 

0.212 
P-value = 0.081 

Slope = - 0.28 

R
2 = 

0.267 
P-value = 0.0456 

Slope = - 0.134 

R
2 = 

0.378 
P-value = 0.0017 

Slope = - 0.3894 

R
2 = 

0.491 
P-value = 0.0012 

Slope = - 0.277 

R
2 = 

0.503 
P-value = 0.00043 



Page | 42  
 

observations buttressed the findings made earlier in figure 5.3, confirming that IMERG 

PMPs are more reliable at longer intervals than shorter intervals. This further infers that 

longer durations characterized by higher wetness have better estimated PMP with less errors. 

Therefore, results here clearly shown that estimated PMPs is a function of interval and 

precipitation patterns in the study. 
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7  IMPLICATION OF MISSING VALUES ON IMERG PMP ERRORS 

 IMERG satellite data is fraught with missing values also referred as data holes. To 

understand why the IMERG holes exists, it is therefore necessary to turn attention to towards 

the data providers (NASA), that explained why the holes existed in the first place through 

its technical documentation (Huffman, 2020). Huffman, (2020) attributed the continuous 

missing values to sensor technical problems which were constantly been reported. Such 

technical issues include: a malfunction in the AMSR2 data recorder onboard the GCOM-

W1 satellite resulting to loss of data, interruption of data from the Himawari-8 Geo satellite, 

DMSP F17 37V channel experiencing intermittent noisy values, Anomalous SAPHIR bad 

data being set to missing and included in all runs of version 06B. Furthermore, the Japanese 

GMS which is one of the IMERG satellite only provides hourly data for short periods, thus 

in the missing half-hours the adjacent METEOSAT and GOES-W IR values are used to the 

extent possible. According Huffman (2020), “all missing fields of IMERG product result 

from completely absent input data for the given time, if the input files are available, the 

product file is created, even if it lacks any valid data”. One of the concerns of this research 

was to determine, how much of an impact the missing values has on the PMP Errors.  

 This study sought to analyze the relationship between IMERG missing values and the 

calculated PMP errors. The ideas were to determine the magnitude of impact the missing 

the values contributes to the errors at the various intervals over the entire 55-gauge stations. 

The 30mins IMERG precipitation estimates for all the gauge stations in the study were 

extracted for the year 2000-2020 using java script built on GEE and made publicly available 

at  (https://code.earthengine.google.com/be56bc780193834519bdf89daeed8f5c). the study 

further obtained a summary statistic of each IMERG precipitation file for individual gauges 

using two statistical metrics written with a python script (see figure ii in appendix section). 

https://code.earthengine.google.com/be56bc780193834519bdf89daeed8f5c
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The statistical metrics used were, the percentage of missing values (known as PMV from 

hereon), also defined as percentage of records with holes or no data in each file, while the 

second variable computed was the average length of missing values (referred to as ALMV) 

and calculated in hours (see table 7.1).  

          Table 7.1. Summary result of calculated  IMERG missing value on the study gauges 

Statistics Estimates 

Minimum missing value interval 0.5 hr 

Maximum missing value interval 21.5 hr 

Average length of missing values (ALMV)   2.04 hr 

Standard deviation of ALMV 0.0416 hr 

Average Percentage Missing value (APMV) 74.21 % 

Standard deviation of APMV 1.08 % 

Length of data year 20 yrs. 

Interval of collection 30 mins 

Total length of record 360,816 

 

 The assessment was done in two ways, first the study analyzed the relationship between 

the PMP errors and the PMV for each duration. The R-squared metrics was used to define 

the extent of correlation between the PMP error and the PMV. Similarly, the relationship 

between the PMP error and the ALMV were analyzed for all durations and all gauges used 

in the study. A higher R-Squared depicts a higher correlation and implies Missing values 

had higher effect on the calculated PMP errors at those intervals. Result from figure 7.1 and 

table 7.1 showed that the average percentage of missing value was 74.21%, while the PMP 

errors were at the range of 0 to 20 mm, with standard deviation of error between 2.3 mm  at 

30-min duration and 8.5 mm at the 24-hr interval (see table 7.2). Correlation between the 

PMV and PMP error were highest at the 30-mins interval with p-value of 0.00287 (at 0.05 

confidence interval), while the least relationship was found at the 24-hr interval with a p-

value of 0.665 (figure 7.1).  
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Table 7.2. Summary result of calculated  PMP error and R-squared values for different durations 

 
Durations 

PMP Error Summary 30 min 1 hr 2 hr 6 hr 12 hr 24 hr 

Minimum Error (mm) 0.25 0 1.26 1.81 -12.59 -15.35 

Maximum Error (mm) 13.38 14.71 20.22 18.22 19.58 17.03 

Std. Error 2.325 3.652 4.563 4.525 7.99 8.5 

Mean PMP Error (mm) 3.766 5.378 7.241 7.024 6.184 1.33 

PMV R-squared (%) 0.532 0.482 0.324 0.194 0.044 0.036 

ALMV R-squared (%) 0.613 0.528 0.392 0.281 0.212 0.209 

 

  

  

  
Figure 7.1. PMP error relationship with percentage of missing values for different durations. a-f 

represents the intervals of duration from 30-mins to 24-hrs. The analysis shows a decreasing r-squared 

from a-f.  

 Result from figure 7. 1 implies that IMERG missing values had its most impacts at the 

shorter duration as the PMP errors at the 30-min intervals were mostly impacted. Whereas 
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at the longer interval (e.g., 24-hr), the PMP errors were less influenced by the missing values 

problems. The result from figure 7.1 further justifies earlier findings (see figure 5.3) that 

PMPs at longer intervals are better suitable for further research application such as PMF 

mapping. Observations from results presented in figure 7.1 showed that a great deal of 

underestimation was caused by the missing value problem in IMERG, this agrees with  Ning 

et al., (2017), whose IMERG dataset error assessment found that IMERG underestimates 

greatly at lower rain rate which is a characteristic of shorter intervals. 

 An assessment of relationship between the average length of missing values and the 

calculated PMP errors (see tables 7.1& 7.2) showed that average length of missing values 

was 2.04-hrs (table 7.1), with PMP errors ranged between 0 to 20mm, and standard deviation 

of error between 2.3 mm and 8.5 mm for the 30-min and 24-hr durations respectively (see 

table 7.2). The p-value increased from 0.00127 at shorter interval (30-min) to 0.4213 at 

longer interval (24-hr) (figure 7.2). Result from figure 7.2 agree with those in figure 7.1, 

implying a stronger relationship exist at the 30-min interval than the 24-hr interval. This 

further justifies earlier observation that IMERG missing values has stronger influence on 

calculated PMP errors estimated at shorter durations than longer duration. Figures 7.1 and 

7.2 have been consistent with figure 5.3 showing that both Missing values, precipitation 

pattern, intervals of estimation, and gauge zones have a significant impact on the amount of 

IMERG PMP computed.  
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Figure 7.2. Relationship between PMP error and average length of missing values for each duration. a-f 

represents 30-mins to 24-hrs intervals. The analysis shows a decreasing r-squared from a-f.  

 

 A post assessment of IMERG missing values on overall PMP computation proved that 

the observed underestimation in IMERG derived PMP were partly influenced by missing 

values in IMERG dataset. To determine how these missing values, impact the derived PMP, 

the study utilized an independent gauge station (University of Kansas field station) data not 

used by NOAA (available at http://kufs.ku.edu/resources/weather-station/) to compute PMP 

and evaluate them against derived PMP from IMERG. Two precipitation durations (daily 

and monthly intervals) were collected from the station (for the period 2000-2020) and the 

maximum precipitation for those durations compared against those collected from IMERG 

at same durations (see figure 7.3). The comparison in figure 7.3 showed that IMERG 
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underestimates precipitation for the daily and monthly durations throughout the 

precipitation period (2000-2020). These underestimations recorded in IMERG maximum 

precipitation is directly linked to the missing values in the IMERG dataset (explained in 

figures 7.1 and 7.2).  

 

 

 

Figure 7.3. Comparing KU station data and IMERG dataset. (a) maximum daily precipitation between 

IMERG and KU station data (2000-2020). (b) maximum monthly precipitation assessment between IMERG 

and KU station data (2000-2020).  

A further exploration showed that the derived PMP from those maximum precipitation at 

the durations results in underestimation of IMERG PMP at the six durations. Figure 7.4 

showed the NOAA PMP, calculated PMP from IMERG, and field PMP derived from KU 

field station data, using their maximum precipitation for individual durations. The results 

from figure 7.4 showed that IMERG derived PMP were underestimated in all durations. The 

result showed that calculated PMP from KU field station were higher than NOAA 

b 

a 
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interpolated PMP. The results confirm that missing values from IMERG datasets impacts 

both precipitation estimates and calculated PMPs and agrees with observations made by  

Ning et al., (2017). 

 
Figure 7.4. Comparing derived PMPs from IMERG, NOAA, and KU field station. 

  The study further determined that, IMERG PMPs between 30-mins and 12-hr fell 

outside the confidence interval of IMERG PMP. However, IMERG PMP at the daily 

durations (12-hr interval), were within the 90% confidence interval of the NOAA PMP 

(figure 7.5a) and KU field PMP (figure 7.5b). Results from figure 7.5 further shows that 

IMERG estimated PMPs are better adapted at the longer intervals. PMP at the shorter 

durations (30-mins up to 12-hr) proved to be unreliable for research due to high 

underestimation. Hence suggesting further calibration of IMERG data is necessary. 

  
 Figure 7.5. Verifying IMERG confidence interval using NOAA and KU station PMP CI limits. 

a b 
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  There are two ways to address problem associated with missing values in precipitation 

records. Huffman, (2020) noted that the datasets from IMERG containing missing values 

were constantly corrected by data filling approach after 3 months of data collection prior 

to making them available to the public. This method is termed Morphing and involves 

interpolating from rain gauge data made available by GPCC, GPCP, UKMET, NOAA, 

JAXA, and other meteorological agencies from over 190 countries with over 80,000 rain 

gauges. The second approach relies on Hershfield adjustment technique, The WMO 

recommends the Hershfield adjustment factor which uses values ranging from 0.13 to 2.9 

to adjusts the final PMP. Other approaches will include calibrating the derived PMP using 

gauge based PMP by a method of spatial interpolation.  
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8 CONCLUSION AND RECOMMENDATION 

In this section, the summary and major findings, concluding note, research limitation and 

recommendation from current findings were discussed in detail.  

8.1 Conclusions 

As storm events are not common but sparse, hydrologist and engineers have to either rely 

on extreme precipitation events with longer return periods for decision making or rely on 

hypothetical maximum possible precipitation, recently renamed Probable Maximum 

Precipitation (PMP) for same decision purposes. These PMPs which are precipitation depth 

at different time intervals have guided engineers in siting infrastructures such as dams, 

bridges, culverts, levees, etc. It has since become imperative to study the biases associated 

with PMP, particularly those derived from recent satellites such as IMERG. To study these 

possibilities and limitations associated with IMERG estimated PMP, this study critically 

evaluated the IMERG PMP taking into consideration the PMP intervals, precipitation 

pattern and zones, precipitation amount, and missing value. 

The study findings showed IMERG derived PMP at the 24 hr durations were within the 

90% confidence interval of NOAA PMP, while the lower intervals were found to be outside 

the 90% confidence interval of NOAA station PMP. In addition, IMERG derived PMP at 

the durations showed that the 30 mins interval returned 0.95 of CC, 4.41 mm of RMSE, -

3.77 % of RB, and 91.4% R-squared value between IMERG PMP and NOAA Station PMP. 

While the 24 hr interval recorded 0.854 of CC, 10.28 mm of RMSE, 7.82 % RB, and 81.3% 

of R-squared between IMERG PMP and NOAA Station PMP relationship. Relatively, the 

study found that IMERG underestimates PMP at shorter intervals with most errors, while 

the longer durations recorded the least errors. Further evaluation showed that IMERG 

estimates PMPs differently at varying precipitation zones (dry, mid, and wet precipitation 
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zone). The dry precipitation zone recorded the least CC (0.871 at 30-mins interval and 0.733 

at the 24-hr), the most RMSE (4.99 mm at the 30-mins durations and 10.51 mm at the 24-

hr), and least RB (-10.23% at the 30-min duration and -0.912% at the 24-hr), while the wet 

precipitation zone recorded the most CC (0.951 at the 30-mins duration and 0.821 at the 24-

hr), the least RMSE (3.75 mm at the 30-mins duration and 9.45 mm at the 24-hr), and the 

most RB (-8.14% at the 30-mins duration and 9.35 mm at the 24-hr). The result from the 

PMP assessment at the defined precipitation zones showed that IMERG PMP had better 

estimation capability in wet precipitation regions with lesser errors than dry regions. Further 

analysis at the gauges showed that the calculated PMP errors at the gauges were consistent 

with the precipitation pattern of the study area (see figure 5.3), with the last error (1 mm) 

found in wet zones and the most error (20 mm) occurring in the dry zone (see table 7.2). 

The study further determined the influence of precipitation amount and missing values 

on the PMP errors. It was observed that both mean maximum precipitation and the total 

accumulated precipitation had negatively weak correlation with PMP error. The calculated 

p-value decreased from  0.311 and 0.136 at the shorter duration (30-min interval) to 

0.000313 and 0.00043 at the longer duration (24-hr interval) for total accumulated 

precipitation and mean maximum precipitation and respectively. An assessment of IMERG 

missing value influence on the PMP error showed that both percentage missing value and 

average length of missing value (74.21% and 2-hrs respectively) had impacts PMP error, 

with more impact on the shorter interval than the longer interval. Findings made in this 

research showed that missing values, total accumulated precipitation, and precipitation 

pattern in the study area influences the IMERG PMP, with the greater influence at the 30-

mins duration. However, IMERG estimates better PMP in with areas with the least amount 

of errors. The findings showed a great deal of underestimation by the IMERG caused partly 
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by missing data and precipitation zones (dry) and were consistent with those from Ning et 

al., (2017), Yang et al., (2017), Tan & Santo, (2018), Tapiador et al., (2020), and Anjum et al., 

(2018). 

8.2 Research Limitation 

Contextually, this research will love to see an extension to other possible variable that 

could impact the estimation of IMERG PMP such as elevation. This study was solely focused 

on precipitation patterns, missing values impact on derived PMP across adapted gauges in 

Kansas, ignoring the elevation. This is partly because Kansas has more flat terrain with a 

polynomial order not more than 2. Question of how our results will turn out when analyses 

are extended to rugged terrains such as the Rockies, provides future research prospects and 

possible research extension. Spatially, the research was limited to Kansas, an extended 

evaluation across states in the US will further validate findings in this study at the macro-

scale. Length of data coverage also caused concerns; one wonders what results might look 

like if they were extended years of data coverage (e.g., 50-years of data). The IMERG data 

archived 20 years of precipitation record (2000-2020) and can only bring to mind the 

possibility of impacts on result if more years of data were made available. High frequency of 

missing values also showed that an extended analysis will need some data filling using spatial 

interpolation techniques. Future research will extend evaluation of IMERG PMP using 

independent rain gauge locations not used by NOAA-Atlas-14 for PMP estimation. 

8.3 Research Recommendation 

Although this study advanced the method of estimating PMP for different intervals of 

precipitation durations using IMERG satellite dataset with fine resolutions, it is important to 

note here that final PMP needs calibration before applying them for flood mapping. The 

Hershfield technique recommends using an adjustment factor ranging between 0.13 to 2.9 
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depending on the precipitation interval and the purpose of usage (Kappel, 2019). This research 

will be beneficial to flood impacted states, regions, and counties. The study will also benefit 

agencies such as FEMA, Kansas Water Office, Kansas Department of Agriculture’s Division 

of Water Resources, Bureau of Water – Kansas Department of Health and Environment, 

Kansas state agencies, flood agencies, other water related agencies from states, federal 

agencies, gauge scarce regions and states, insurance companies, engineers, hydrologists etc. 
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Appendix  

 
 Figure i: Java script to extract files and show missing values/holes at points of interests. 

 
            Figure ii: Python script to calculate the percentage of missing values in IMERG precipitation file 
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     Figure iii: Java script that extracts IMERG precipitation record and save them to asset. 
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                Figure iv: Java script that extracts precipitation records at points from asset cloud storage.  

  

 
       Figure v: Modeled R-script to compute PMP from precipitation record. 
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