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Abstract

For thousands of years, the human mind struggles to answer a simple question: what is

the universe made of? The majority of what composes our universe, dark matter and dark

energy, are just mysteries. Undoubtedly, dark matter is one of the most interesting funda-

mental puzzles of our universe. While we have accumulated sufficient cosmological evidence

supporting its existence, the character of the dark matter particle is still unknown. The

widely successful theory of elementary particles, the standard model, is incapable of provid-

ing an interpretation of the dark matter puzzle, pressing towards new theories. A myriad

of models have been proposed, the majority of which introduce a single dark matter candi-

date for simplicity. Though they provide testable hypotheses at various experiments, little

attempt has been made beyond single-candidate dark matter. In this thesis, we go beyond

single-candidate dark matter by focusing on two-component dark matter candidates. Sur-

prisingly, their phenomenology is very different from that of single-candidate, providing a

new avenue for dark matter experiments. In particular, we examine a novel thermal dark

matter scenario where present-day annihilation of dark matter in the galactic center or in the

Sun may produce subdominant but detectable boosted stable particles via neutral-current-

like interactions. We scrutinize various scenarios where such dark matter of spin 0 and

1/2 interacts with electrons via an exchange of vector, scalar, axial-vector or pseudo-scalar

mediators. Detailed detection prospects due to high or moderate Lorentz-boosted particles

are studied at deep neutrino experiments and traditional direct detection experiments. We

stress that the extension of dark matter models with more than one candidate beyond the

minimal dark matter model opens up a new window for various experiments. Such a the-

oretical investigation and multiple experimental probes will advance our knowledge about

dark matter and perhaps lead to its discovery in the near future.
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Chapter 1

Introduction

1.1 Dark Matter and its Evidence

The existence of dark matter as a major energy component in the universe is very well

established by various cosmological and astrophysical observations. Yet, its particle nature

is still a mystery. The fundamental characteristics such as its mass, spin and interactions

are unknown. An ongoing indefatigable theoretical and experimental pursuit to unveil its

particle nature has shown a null result so far.

There are many different pieces of cosmological evidence on the existence of dark matter

and its history is long and rich. Here, we do not attempt to provide a comprehensive historical

description but we refer the reader to review articles such as Refs. [1–3] and references

therein. We list a few examples that will help us illustrate the general idea of dark matter

and introduce the needed terminology for the rest of this thesis.

• Rotational Curves

The idea of dark matter existed around 1933 after the observation made by Fritz

Zwicky on the radial velocities of galaxies in the Coma cluster [4]. However, the term

“dark” or its equivalent existed long before that. In order to explain the peculiarity of a

motion of a particular astronomical object, astronomers, sometimes would hypothesize

the existence of an unobserved object that is faint or dark. If such an object exists,

the movement of the original object is no longer peculiar. A robust example on this

was the prediction made by Urbain Le Verrier and John Couch Adams, that a planet

1



later known as Neptune must exist in order to explain the movement of Uranus. Their

prediction was precise enough to allow the discovery of Neptune in only one day.

What Zwicky had observed was that the radial velocity of galaxies in the Coma cluster

was unexpectedly high. Considering the gravitational effect of the observed luminous

matter, the estimated radial velocities should be much smaller. This contradiction

between the observation and the prediction, especially when the observation has been

independently confirmed, naturally leads to the hypothesis that some sort of unknown

matter exists and its gravity would resolve the contradiction. This type of matter

is known as the dark matter. Unlike the discovery of Neptune that took only one

day, dark matter is not yet discovered for almost a century now! It is notable to

mention that Zwicky applied the virial theorem to estimate the velocity dispersion of

800 galaxies of 109 solar mass within a system of size 106 light year to be 80 km/s.

What he had observed on the other hand was an average velocity of 1000 km/s. Also,

in 1937 Zwicky [5] attempted to estimate the mass to light ratio of the Coma cluster

and he found a very high ratio of order 500. Today this ratio is smaller by roughly an

order of magnitude due to the improved calculation of the Hubble parameter.

Not only these high radial velocities had been observed in the Coma cluster, they were

also observed in the Virgo cluster by Sinclair Smith in 1936 [6]. Smith estimated the

average mass per galaxy in the Virgo cluster to be 2 × 1011 solar mass, a very high

value compared to Hubble’s estimate of 109 solar mass. Moreover, this discrepancy had

been observed on a galaxy scale rather than cluster scale. In 1939, Horace Babcock [7]

observed that the rotational velocity of the outer region of the Andromeda galaxy was

very high hinting towards unobserved mass in the galaxy. These kinds of observations

persisted with time. In fact, 21-cm line1 enabled one to study the rotational velocity

of objects far from the center of a certain galaxy. For example, in the 1970s it was

shown by Roberts and Whitehurst [8] that the rotation curve of the Andromeda galaxy

1A spectral line from hydrogen with wavelength of 21 cm.

2



remained constant up to distance 30 kpc2. A rotation curve is a relation between the

absolute distance of an object from the center of the galaxy and its rotational velocity

around the galaxy. If an extra component does not exist in the outer region of the

galaxy, one would observe a falling curve. However it was observed that these curves

remained stable for quite long distances. More than 30 years later, these rotational

curves of the Andromeda galaxy are in a very good agreement with more recent ob-

servations, see for example Ref. [9]. These observations were not limited to the the

Andromeda galaxy alone. For example, D. Rogstad and G. Shostak [10], studied five

different galaxies and concluded that their rotational curves remained constant up to

the largest observed radii.

• Gravitational Lensing

The general theory of relativity predicted that when light passes close to a massive

astronomical object, its path bends in response to the existence of the mass of the

object. This of course has been observed in the famous experiment by Eddington

during the total solar eclipse in 1919. This gravitational effect on light is called grav-

itational lensing and serves as further evidence on the existence of dark matter. Not

only gravitational lensing proves the existence of dark matter but it also helps to quan-

tify the distribution of dark matter in specific galaxies. There are different types of

gravitational lensing that are related to dark matter [11,12]. For example:

− strong lensing : it is a phenomenon where the source of light is deflected by an

intermediate object that is compact and dense enough to cause the original source

to appear as multiple images or even a ring-shaped image at the observer. This

ring is known as the Einstein ring and its size is related to the square root of the

mass inside it. In 2008, a team studied the spectroscopy of almost 100 elliptical

galaxies where a strong lensing effect was observed [13]. The total mass of an ellip-

2A kpc is one thousand parsec and a parsec is an astronomical unit of distance equivalent to 3.26 light
years.
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tical galaxy is contained within the geometrical lensed image. On top of that one

can use the dynamics inside the elliptical galaxy itself by looking at the dispersion

velocities. Together, a mass density distribution of these galaxies as a function of

distance is inferred. These densities are found to be more extended than expected

from luminous matter only, consequently supporting the dark matter hypothesis.

− weak lensing : the theory of weak lensing was developed in the early 1990s. In

contrast to strong lensing, weak lensing does not cause the original sources to

appear as multiple or ring-shaped images. However, it causes a distortion in the

image due to the relatively small mass density of the intermediate object. At first

order approximation, the distorted image is described by a linear transformation of

the original source image. This transformation takes into account magnification,

shear and rotation. Therefore, distorted images in the sky provide another probe

on dark matter and its density. By the the end of the 1990s weak lensing was

detected around many high mass clusters. In 2000, four independent research

groups [14–17] have examined random batches of the sky and were consistently

able to reach the same conclusion about the detected strength of weak lensing and

the amount of dark matter per unit volume. In fact, weak lensing was also used

to study dark matter on a much smaller scale, the scale of an individual galaxy.

For instance, it is now assumed that different galaxies are structured inside an

extended dark matter halo. Theoretically, these dark matter halos are responsible

for the extra gravitational effect that is observed far beyond the galactic disc. It

has been demonstrated that weak lensing can be used as a probe to constrain the

shape of the mass density profile of these dark halos [18].

− micro lensing : it is similar in theory to the previous two types however in appli-

cation it targets the gravitational effects due to much more compact and smaller

objects such as planets and stars. In fact, it is widely used to examine the fol-

lowing well-known dark matter hypothesis. What we know is that there exists

4



an unobserved gravitational component with unknown nature. In analogy to the

observed universe, one may simply assume that this unobserved component is

baryonic in nature. This assumption will naturally lead this component to form

structures that are similar to the observed universe. Moreover, one has to further

assume that these structures are not luminous for some reason. These structures

are known as massive astrophysical compact halo objects or MACHOs. A search

for MACHOs has been proposed by the end of the 1980s predicting that if the

dark matter halo is entirely made of MACHOs it will magnify bright stars in a

close galaxy. This magnification or micro lensing event will occur roughly within

a time equivalent to 130 days ×
√
M where M is the mass of one MACHO in

solar mass unit. It has been concluded that dark matter halos such as that of the

Milky Way do not favor MACHOs as its major component. In fact MACHOs are

not completely ruled out, an upper limit of 8% of the dark matter halo could be

made of MACHOs [19] within a detectable micro lensing mass range.

• Cosmic Microwave Background

The Big Bang model is very successful in describing the ratio of light abundant el-

ements to hydrogen. In the very early universe and during what is known as Big

Bang Nucleosynthesis, light elements such as helium and deuterium were formed due

to the fusion of protons and neutrons. In fact, the theoretical prediction of the ratio of

these abundant elements to hydrogen is in a great agreement with observation. More-

over, the deuterium to hydrogen ratio is related to the overall density of baryons in

the universe, ρb. The ratio of the baryonic density to the critical density of the uni-

verse, Ωb, multiplied by the reduced Hubble parameter squared, h2 is approximately:

0.021 < Ωbh
2 < 0.024 [20]. Note that this limit is predicted theoretically by the Big

Bang Nucleosynthesis and we should see in a moment how it agrees with observa-

tion very well! But how is this related to dark matter? The answer is in the cosmic

microwave background (CMB). In the late 1940s, Ralph Alpher and Robert Herman
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suggested that the early universe was dominated by radiation. Penzias and Wilson

discovered the CMB for the first time in 1964. In the early universe, charged particles

and photons were dense and hot. While the universe was expanding, particles started

to cool down and were able to recombine to form neutral atoms allowing photons to

stream more freely. These photons are what we refer to as the CMB. Later in 1989,

COBE (Cosmic Background Explorer) was launched and was able to get more charac-

teristics of the CMB. It has been found that the CMB is very uniform across the sky

with a temperature equivalent to 2.73 K. Despite being very uniform, the CMB was

shown to have an order of 10−5 temperature fluctuations around its average tempera-

ture. These fluctuations can be understood on two major cosmological scales. First, on

a very large scale, one can relate the fluctuations to the Sachs-Wolfe effect. Second, on

a small scale, the fluctuations are related to the acoustic oscillation that took place be-

fore the decoupling of photons. At that time, photons and baryons were approximated

as a fluid that compresses while falling into some gravitational well until it becomes

very dense. The pressure of the fluid then increases allowing the fluid to expand. Due

to the effect of the gravity of the potential well the fluid falls and compresses again.

This process repeats itself until photons decouple from baryons. Therefore the fluctu-

ations in the CMB can be attributed to the variation in the photon temperature due

to the different stages of the acoustic oscillation.

The magnitude of the temperature fluctuation is very small, this fluctuation is related

to the amount of baryonic matter in the universe. As cosmologists argue, if the mat-

ter in the universe is made up only from baryonic matter, the universe will not be

in the same form today! Due to electric force, it is hard for the baryonic matter to

start clumping in order to prepare for structure formation before the recombination

epoch. They must be neutral in charge to start clumping together and that happens

after recombination which consequently changes the time line of structure formation.

Now dark matter comes to rescue the situation once again. If an extra matter com-

6



ponent exists that is effectively neutral to the electromagnetic interaction, it would

form potential wells allowing the baryonic matter to fall into them. In 2001, WMAP

which stands for Wilkinson Microwave Anisotropy Probe was launched and it was

equipped with very high resolution capabilities to study CMB fluctuations. According

to WMAP [21], we now have an estimate on the total matter component in the uni-

verse to be Ωmh
2 = 0.1376 ± 0.0020, the baryonic matter Ωbh

2 = 0.02223 ± 0.00033

and the dark matter Ωdmh
2 = 0.1153 ± 0.0019. More recently, the Planck collab-

oration [22] reported improved measurements on the above parameters resulting in

Ωmh
2 = 0.1428 ± 0.0011, Ωbh

2 = 0.02233 ± 0.00015, and Ωdmh
2 = 0.1198 ± 0.0012.

That means dark matter is a major component accounting to a roughly 84% of the

total matter in the universe. What is remarkable is that, when we try to theoretically

explain the CMB power spectrum, we do not have much freedom on the values of the

above parameters. In fact, it has been shown that small deviations in the value of

these parameters will lead to a substantial difference in the shape of the CMB power

spectrum and hence lead to disagreement with observation3. In addition to providing

direct evidence on dark matter, CMB fluctuations helped us quantify the amount of

dark matter in the universe. The parameter Ωdm above leads to the local dark matter

density in the Sun’s neighborhood to be ρdm ≈ 0.3 GeV/cm3.

• The Bullet Cluster

A unique example on the existence of dark matter is what is known as the Bullet

Cluster. It is a cosmological event in which two different clusters approach each other

and subsequently collide or merge. Since the distance between the different galaxies

within one cluster is very large, the galaxies of the two clusters pass through without

any notable interaction. However, what is important in this case is the hot baryonic gas

that exists between galaxies which forms the major baryonic component of the cluster.

When the two clusters collide with each other at a relative velocity of a few million miles

3For an illustration, see figure 3 in Ref. [2].
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per hour the hot gas is compressed and heated more. During the collision, an enormous

amount of X-rays is emitted from the compressed baryonic gas. The location at which

these X-rays are emitted traces back the location of the majority of the baryonic matter

in the colliding system. Now, in order to determine the major gravitational component

of the system, weak lensing is used. It has been found that the location of the major

gravitational effect due to weak lensing is quite off from that corresponding to the

X-ray emission. The X-ray emissions are more central while the major gravitational

effect is located on both sides of the collision following the passing through galaxies.

The first observation of the bullet cluster was made in 2006 for a cosmological system

known as 1E 0657-56 [23]. Two years later another example was demonstrated on a

system known as MACS J0025.4-1222 [24]. What do these unique examples tell us?

They indicate that clusters are primarily made of a large non-luminous component

supporting the dark matter hypothesis.

As a matter of fact, the bullet cluster is also used to eliminate some ad hoc alternatives

to the dark matter hypothesis. One particular alternative is a version of Modified

Newtonian Dynamics (MOND) in which the acceleration is artificially scaled by an

overall factor that depends on the magnitude of the Newtonian acceleration. This

factor is equivalent to one for large accelerations and hence will not modify the general

picture we have for small scale structures such as the solar system. MOND is capable

of explaining the flatness of the rotation curves that we encountered above. Rotation

curves of different galaxies tend to be flat at high distances away from the center of

the galaxy. The artificially introduced factor by MOND, makes the rotation curves in

the outer region of a given galaxy more flat in contrast to Newtonian dynamics. In

practice, all one needs to do is to perform a fit of this theory to the observed rotation

curves and appropriately determine a numerical value of the factor. This had been

proven to work for rotational curves, but as one can easily expect, it completely fails

to describe the bullet cluster.
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In fact, the bullet cluster example is a key evidence on the dark matter hypothesis,

not only because it agrees with previous observation or manages to rule out some

other theories, but also because it somewhat sheds light on the nature of dark matter.

Physicists can now use it to set a limit on the strength of dark matter interaction, a

point that we will attempt to address later.

1.2 The Standard Model

In the previous section, we have explored observational evidence on the existence of dark

matter. We found that there is enough evidence on the existence of an extra major matter

component in the universe. All of what we have discussed so far still does not answer the

important fundamental questions about the nature of dark matter. Indeed, all evidence

tell us that dark matter does respond to the gravitational interaction, however we do not

yet know what other types of interaction it has. Moreover, we still lack other information

such as the mass, spin and quantum charges. In other words, we still do not know what

dark matter really is! The major questions we are concerned with here, are how can we

understand dark matter from the elementary particle physics point of view? and how can

we phenomenologically determine its properties in experiments?

To address the above questions, it is important to remind ourselves that we already have

a very successful model that describes the observed elementary particles in the universe

and their fundamental interactions. This model is known as the standard model (SM) of

elementary particles. The SM is a mathematical framework that utilizes quantum field theory

to explain all of the known elementary particles through their fundamental interactions: the

electromagnetic interaction, the weak nuclear interaction and the strong nuclear interaction.

The fourth fundamental interaction of nature, gravity, is not described by the SM. There

are 17 fundamental particles in the SM which so far give a complete interpretation to the

observed baryonic matter. In the SM, there are two fermionic sectors (spin-1/2 particles)

known as leptons and quarks. Each sector has six particles in three matter generations
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with masses increasing from one generation to the next. There are four gauge bosons (with

spin-1) carrying the fundamental interactions: the massless photon for the electromagnetic

interaction, the massive Z and W bosons for the weak interactions and the massless gluon

for the strong interaction. Finally, the Higgs boson (with spin-0) is theoretically introduced

to provide a natural explanation for the origin of masses in the SM and was the last piece

of the SM that was experimentally confirmed in 2012 at the large hadron collider (LHC).

The question we may ask here is, can we find at least one particle in the SM that could

serve as a dark matter candidate? According to the dark matter evidence we provided above

especially when we discussed CMB, a dark matter particle must be effectively neutral to the

electromagnetic interaction. Also, dark matter existed in the early universe until now which

means that it must have a very long lifetime or it must be a stable particle. Any particle

in the SM with a sizable electric charge or short lifetime will fail to be a candidate for dark

matter. In other words, we should exclude the 6 quarks, the 3 charged leptons and the three

massive bosons. Also we should exclude the photon and the gluon since in addition to being

massless they will have respectively sizable and strong interactions with baryonic matter.

We are only left with the neutrinos. Neutrinos are electromagnetically neutral, stable and

also have weak interaction strength since they interact through the weak gauge bosons only.

Is dark matter composed of neutrinos?

To answer this particular question, let us consider the structure formation in the universe

in view of two different types of dark matter. Let us characterize these two types by how

relativistic they are and denote one by being very relativistic, hot dark matter, and the other

as non-relativistic, cold dark matter. It turns out that, these two types will have diametrically

different patterns for the structure formation in the universe. Hot dark matter will result

in a “top-down” pattern while cold dark matter will lead to a“bottom-up” pattern [2, 3].

For example, simulations show that if dark matter is relativistic at the structure formation

epoch, large scale structures will form first and then fragment to form small structures such

as galaxies, “top-down”. On the other hand, cold dark matter will result in a “bottom-up”
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pattern in which small galaxies form first and then larger ones leading to clusters forming

much later. In fact, the latter pattern is more favored by observation such as surveys of

galaxy redshifts [25, 26]. Neutrinos are light mass particles that are produced in the early

universe with velocities that are very relativistic. Apparently, neutrinos, if considered as dark

matter, would serve as a hot dark matter component which will not lead to the structure

formation we know today. When comparing the numerical simulation to the observations,

it was evident that hot dark matter or neutrinos in particular can not account for the entire

dark matter in the universe [27]. Moreover, analysis of the WMAP data had set a limit on

the amount of SM neutrinos that could possibly contribute to the dark matter density in

the universe, Ωνh
2 < 0.0047 [21].

1.3 Necessity of Theories Beyond the Standard Model

What is dark matter then? Despite all the success of the SM, it seems impossible for the

SM alone to explain the dark matter. This indicates that the SM alone may not be the

ultimate theory for the universe. One can argue that the SM is an effective theory that is very

successful in the low energy limit but fails to explain physics at very high energies. Or maybe

the SM is just one corner of a much more global theory that can explain the dark matter

and beyond. With all of the cosmological and astrophysical evidence we mentioned above,

we have strong motivations to go beyond the SM framework. Additionally, by examining the

SM itself, we know that many questions remain unanswered. For example, why are there

only three matter generations? Why does symmetry need to be broken in order to explain

the masses of the elementary particles? Is the Higgs particle the only elementary scalar

particle in the universe? Why is there a huge mass difference between the different particles

within the SM? Indeed the SM is successful but not fully understood. Most of the theories

that try to answer these questions (and more) end up extending the SM by adding more

particles and interactions. Therefore, extension of the SM is based on both experimental

evidence and theoretical motivations.
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However, we should not abandon the SM at all! While questioning it, the SM should

work as an inspiration and a guideline in searching for new physics. In fact, the neutrino as

a candidate for dark matter, though it fails to be one, is a great example and does set the

ground rules for other candidates. Many studies and reviews had collected the properties of

dark matter particles to ensure a good candidacy, see for instance Refs. [28, 29]. Here we

summarize theoretical aspects of these properties and come back to the observational ones

when we talk about dark matter detection in the next chapter.

• abundance: any hypothesized particle species for the dark matter should always respect

the observational value of the amount of dark matter present in the universe. And if

these species were in thermal equilibrium with SM particles in the early universe, then

they have to follow what is known as the “freeze-out” process. In other words, when

the expansion rate of the universe becomes much greater than the interaction rate of

some particles, the probability of interaction drops significantly and leaves the particles

at some particular fixed amount. That means, the co-moving density 4 of dark matter

(and other particles) is dynamic based on the strength of their interactions while the

universe was hot and dense, however, it becomes fixed after the universe cools down.

This fixed co-moving density is called the relic abundance and is proportional to the

density Ωdm we introduced above. Note that this applies to any particle species which

follows the thermal history of our universe.

• cold : as we have learned from the neutrino example above, a major part of dark

matter has to be cold, i.e., non-relativistic. To be more precise, the hypothesized

particle species should respect the “bottom-up” structure formation pattern that is

favored by observation. In fact, the standard model of cosmology adapts a framework

where the universe is modeled by a cosmological constant, Λ, and cold dark matter,

CDM, collectively denoted by ΛCDM. The success of such a simple model and the

4It is a dynamical quantity for the number density of a given species that takes into account the expanding
universe.
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agreement of the numerical simulations with the observations favors the cold dark

matter hypothesis.

Generally, and without specifying any particular model, there are two other types of

dark matter one can consider when examining the temperature or how relativistic dark

matter is: hot and warm [30].

− hot : hot dark matter is any relativistic massive stable particle that decouples when

the universe was at temperature . Tqh ∼ ΛQCD [31]. The temperature at Tqh is

quark-hadron phase transition which defines the approximate boundary between

hot and warm dark matter. Above that temperature, the number of relativistic

particles increases due to the presence of different quark-antiquark pairs. One

particular example of hot dark matter is SM neutrinos. We have seen above how

the observational limit constraints the amount of relic neutrinos. In fact the relic

abundance of neutrinos is related to the sum of the masses of different neutrino

flavors, Ωνh
2 =

∑
mν

90eV
[29]. In Ref. [32], a combination of different observations is

performed to set a limit on the sum of neutrino masses as
∑
mν < 0.14 eV at 95 %

confidence level and a year later, the Planck collaboration [22] found
∑
mν < 0.12

eV. This limit is roughly three times stronger than that of WMAP [21]. In fact

these limits can be applied to any hot dark matter particle with a generic mass

and we can infer the ratio of hot dark matter density that may contribute to the

overall dark matter as Ων/Ωdm ∼ mass
10eV

. 0.014.

− warm: although cold dark matter is widely accepted, in terms of small scale

structures, it still has few problems such as “too big to fail” and “core vs cusp”

problems. We will discuss these issues in more details when we motivate strongly

interacting dark matter particles in chapter 3. One of the suggested solutions for

such problems is to use relatively warmer dark matter particles. These particles

have velocities between those of cold and hot dark matter and in contrast to hot
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dark matter they decouple at temperature above Tqh [31]. These particles lead to

a structure formation that is similar to cold dark matter on large scales however

it differs at small scales. Particularly, if the mass of warm dark matter is in the

keV scale, a suppression in the formation of dwarf galaxies should occur. This

suppression is inversely proportional to the mass of the warm dark matter particle

and hence a lower limit is obtained on the mass by several studies. For example,

results in Ref. [33] concluded that mass & 3.3 keV.

• stable: the dark matter has to be long-lived on a cosmological scale. But before we talk

about its stability, it might be interesting to consider the stability of the SM particles.

Most of the fundamental particles in the SM as well as composite particles are unstable,

heavy particles tend to decay to lighter ones while conserving quantities such as four-

momentum, electric charges, lepton number and baryon number. In the SM, there are

few examples where particles are stable. Stable particles are usually associated with

some sort of symmetry or particle content to protect their stability. For example, the

electron is the lightest charged particle in the SM and therefore it can not decay to

other charged particles. The photon is also stable and has an exact gauge symmetry

hence staying massless in contrast to massive gauge bosons which are unstable and

their gauge symmetries are spontaneously broken. The proton, a composite particle,

is also stable because it is the lightest baryon and its stability is protected by the

conservation of baryon number. The lesson we learn is that stable particles naturally

exist due to existing symmetries in the model [34]. Sometimes, when formulating a

particular model, one would impose an ad hoc symmetry to ensure stability of the dark

matter particle in the form of a discrete or a continuous global symmetry [35].

The dark matter particle does not have to be strictly stable but its lifetime should be

at least greater than the age of the universe. In fact, many well motivated dark matter

models allow dark matter to be unstable but with a long lifetime.
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• neutral : dark matter is electromagnetically neutral. Generally, it should not have a

sizable interaction with the photon, a justification for the term “dark” and an interpre-

tation for the CMB power spectrum as mentioned above. This on the other hand does

not totally prevent suppressed interactions with photons, eventually dark matter has

to interact with the SM model if we wish to detect it and study its particle nature. As

a matter of fact, and as we will discuss later, many models consider small interactions

between dark matter and the photon and consequently with charged SM particles.

• interaction strength: not only dark matter has to be effectively blind to the electromag-

netic interaction, its interaction strength with the rest of the SM must be be relatively

weak. By weak, we do not necessarily mean it has to be exactly similar to the weak

interaction in the SM though such a choice lead to a remarkable coincidence in repro-

ducing the right dark matter abundance in the early universe which we shall discuss

in the next chapter. By weak we generally mean that dark matter should not have an

interaction strength that is strong enough to contradict with the CMB observation.

As we discussed above, dark matter plays an important role in interpreting the CMB

power spectrum, and hence the size of the interaction between dark matter and neu-

tral baryons should be small in general. On the other hand dark matter could have a

sizable self interaction, a motivation that is used to alleviate some of the small scale

structure problems which we will discuss later.

In summary of this chapter, we learned that dark matter does exist in the universe

with a large amount and its gravitational interaction has been confirmed by various strong

cosmological evidence. The simulations based on the standard model of cosmology can not

be in a good agreement with observations unless dark matter is taken as a major component

in the universe. Though dark matter exists, its particle nature remains a mystery and the SM

of elementary particle physics, despite being successful, does not provide a suitable candidate

for dark matter physics. Additionally, many questions about the SM remain unanswered,

and therefore, both observation and theory necessitate the extension of the SM. We explored
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the general features that one needs to consider when postulating a new particle as a dark

matter candidate. We now know at least a major component of the dark matter is non-

baryonic, non-relativistic, effectively neutral, and its particle interaction with the SM, if it

exists, must not be strong.

In the next chapter we will review one of the highly motivated paradigms of dark matter

by introducing its general features and reviewing the “freeze-out” mechanism. Then, we will

briefly explore different types of dark matter models and discuss the enormous mass range

they occupy. Finally, we introduce different techniques of dark matter detection which all

show a null dark matter signal so far.
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Chapter 2

Dark Matter: Theory and Detection

2.1 Weekly Interacting Massive Particles

We have argued in the previous chapter the need for new theory beyond the SM to accom-

modate dark matter and explain its fundamental nature. Such a theory should be able to

explain both dark matter and the SM altogether or at least it should not contradict the

very-well tested SM. We have already listed the general features needed to be considered in

order to agree with the observational limits on dark matter properties such as temperature,

density and interaction strength.

2.1.1 Freeze-out

In this subsection we shall present a brief discussion on a dark matter particle species that

was in a thermal equilibrium with the SM in the early universe and then decoupled at some

time later. What motivates someone to do such a discussion is because of a very simple

and reasonable assumption. If dark matter has any sizable interaction with the SM (this is

precisely what one requires in order to detect dark matter) and it existed in the early universe

then it is reasonable to assume that dark matter was in thermal equilibrium with the SM in

the early universe. The thermal decoupling process considered is inspired by the SM ones

and its great agreement with the observation. We mentioned in the previous chapter how

the standard model of cosmology was very successful in determining the abundance of light

elements. The abundance of a particular species is set after the thermal decoupling or the

freeze-out. Therefore, a dark matter species will be treated on equal footing given that it
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was in thermal equilibrium.

Let us now assume that a stable dark matter species denoted generically by χ, has a

mass mχ and a number density nχ with an implicit dependence on the temperature, T . The

expansion rate of the universe is governed by the Hubble parameter, H = ȧ/a where a is the

the dimensionless scale factor. The rate of the interaction of dark matter with the SM, Γ,

is proportional to the pair annihilation cross section, σ, of dark matter into SM and to the

equilibrium number density, nχ,eq. The Boltzmann equation that describes the cosmological

evolution of nχ can be represented as

ṅχ + 3Hnχ = −〈σv〉 (n2
χ − n2

χ,eq), (2.1)

where 〈σv〉 is the thermally averaged cross section and v is the relative velocity between

interacting particles. Dark matter stays in equilibrium as long as Γ � H. However the

universe continues to expand and Γ will fall below H at some time. The equilibrium number

density eventually falls as nχ,eq ∝ exp (−mχ/T ). In other words, once T � mχ, the dark

matter annihilation rate drops far below the expansion rate and dark matter freezes-out. At

that time, dark matter decouples from the thermal bath and becomes a thermal relic. To

be able to validate this argument let us represent the above equation in a more convenient

form in which the number density nχ is replaced by the dimensionless co-moving density

Yχ ≡ nχ/s, the mass is related to the temperature as x ≡ mχ/T and the evolution in time

is replaced by the evolution in the parameter x. The quantity s is the entropy density

which is scaled as s ∝ T 3 while the Hubble parameter is scaled as H ∝ T 2 in a radiation

dominated universe and they are related as ṡ + 3Hs = 0. One can also factor out the

x-dependence as H(T ) = H(mχ)/x2 and s(T ) = s(mχ)/x3. Before, we rewrite the above

equation we also change the time variable by realizing that H = ȧ/a and a ∝ 1/T which

means dt = −dT/(HT ) = xdx/H(m). With all of this notation introduced we can now
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represent the evolution of the dark matter species as

dYχ
dx

= − 1

x2

s(m)

H(m)
〈σv〉 (Y 2

χ − Y 2
χ,eq). (2.2)

This is all one needs to study the evolution of a dark matter species in the early universe,

however it is not an easy equation to solve. In fact we do not attempt to solve this equation

here but rather highlight some of the important properties. First of all there exists no

general analytical solution given the complexity in the dependence on the parameter x, for

example both Yχ,eq and 〈σv〉 are x-dependent, see for instance Refs. [28, 36]. Instead of

solving the above equation let us examine its general behavior. Let us denote s(m)
H(m)

〈σv〉

by a parameter λ that is in fact mass and x-dependent. For simplicity, let us assume λ is

a free parameter that quantifies two major regimes: small and large λ. That means that

when λ is very large it represents the regime where Γ � H, that is the case where dark

matter is still in thermal equilibrium with the SM and simply, with decreasing x, Yχ follows

the equilibrium one, Yχ,eq, which falls exponentially. We can think about it by looking at

the left hand side of the above equation, when solution exists and its derivative is assumed

finite, the quantity (Y 2
χ − Y 2

χ,eq) should be very small to compensate the factor λ/x2 that

increases with decreasing x. Therefore, Y 2
χ ≈ Yχ,eq. Later after x > xf , λ starts decreasing

due to the fact that the universe expansion rate is much higher: H � Γ. At that time, Yχ

stops following the equilibrium one and fixes its value roughly at Yχ ∼ Yχ(xf ) i.e., freeze-out

occurs. Therefore, a key quantity that determines when dark matter decouples from the

thermal bath is 〈σv〉. Figure 2.1 represents our discussion very well, the higher the cross

section the later dark matter decouples. Moreover at high cross section the density of dark

matter becomes smaller. This is somewhat anticipated, when particles have high annihilation

cross section their amount will decrease. Certainly what we have discussed is incomplete

since we ignored the x-dependence in the parameter λ. In that case one can use some

numerical techniques to solve the differential equation fully. Even though our description
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Figure 2.1: Dark matter thermal decoupling at different cross section values. Taken from
Ref. [28].

is not complete, the full solution still follows similar behavior as in figure 2.1. One of the

numerical packages that is widely used in the literature and dedicated to determining dark

matter observables is known as microOMEGAs [37] and can be used to solve the dark matter

Boltzmann equation.

2.1.2 Weakly Interacting Massive Particles

Let us now try to relate what we have discussed so far to the abundance of dark matter and

see what one needs to match the one inferred from observation. The abundance is defined

as the ratio of dark matter density to the critical density of the universe Ωχ = ρχ/ρcr. The

critical density of the universe is defined as ρcr = 3H2M2
pl/8π where MPl is the Planck

constant. The density of dark matter can be related to the co-moving density that we

presented in the previous section as ρχ = mχYχs. Therefore, once we know Yχ, the solution

to equation (2.2), we can readily determine the abundance Ωχ. The co-moving density of
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dark matter at present day with temperature T0 is found semi-analytically in Ref. [36] as:

Yχ,0 '
√

π

45
MPl

[ˆ Tf

T0

g1/2
∗ 〈σv〉 dT

]−1

, (2.3)

where g∗ is the number of relativistic degrees of freedom that are present in the thermal bath.

Note that this equation is the integration of equation (2.2) from T0 to Tf after ignoring Yχ,eq

which is very suppressed and replacing s and H with their appropriate expressions. The

approximation sign is to indicate that the term 1/Yf is dropped given that it is very small

in comparison with Yχ,0. Now we can write the abundance as

Ωχh
2 ≈ 8.77× 10−11GeV−2

[ˆ Tf

T0

g1/2
∗ 〈σv〉

dT

mχ

]−1

. (2.4)

The question one asks now is what are the numerical values one needs to reproduce Ωdmh
2 =

0.12 which is favored by observation? Naively, and without focusing more on the temperature

dependence of both g∗ and the averaged cross section, if g∗ ∼ 100, 〈σv〉 ∼ 10−9 GeV−2 and

x ∼ 20 then one would reproduce the needed amount of dark matter, i.e., Ωχ ∼ Ωdm. Also

note that the abundance is inversely related to the cross section, something that would make

the interpretation of figure 2.1 straightforward.

So far, there is nothing so intriguing about the discussion we have done. But on the other

hand, we have not made any connection with particle physics that is required to generate

such a cross section value. In reality the interpretation of the cross section and its implication

on the SM is what makes this paradigm so attractive. From the previous discussion, it seems

like if we have a new physics that is able to produce an averaged annihilation cross section

with a numerical value in the neighborhood of 10−9 GeV−2 or 10−26 cm3/s, one would simply

reproduce the required abundance. As we have discussed before, dark matter should be

massive and has a very small interaction strength. If one proposes the interaction strength

similar to that of the electroweak theory in the SM and chooses a mass in the electroweak

scale, then the cross section is approximated by the Fermi 4-point interaction σ ≈ G2
FT

2
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with GF being the Fermi constant. Typically at freeze-out T ∼ mχ/20, then with a mass

of an electroweak scale ∼ 200 GeV one can reproduce the required abundance. These

types of particle are called Weakly Interacting Massive Particles (WIMPs). Let us pause

for a while and see what these choices of parameters offer. We have a dark matter particle

that is: massive to account for the gravitational effect, weakly interacting providing small

interaction strength, mχ/T ∼ 20 i.e., relatively cold, effectively neutral, stable by assumption

and most importantly agrees with the relic abundance of dark matter. This means that with

the WIMP paradigm we are able to incorporate the general features we introduced in the

previous chapter as “characteristics” of the dark matter particle.

What makes the WIMP paradigm so appealing is two coincidences, first, electroweak

physics as a natural choice for a generic dark matter remarkably reproduces the right amount

of dark matter in the universe. The second coincidence is the anticipation that some sort of

new physics is associated with the electroweak theory to interpret long standing problems in

the SM such as the hierarchy and naturalness.

2.2 Dark Matter Examples

Though the WIMP hypothesis has drawn great attention from both the theoretical and

experimental sides, it is only one scenario of dark matter. In fact, if we study the allowed

range of mass that dark matter may have, the WIMP regime is only few order of magnitudes

in a range spanned by ∼50 order of magnitudes, assuming an elementary particle. There

are other interesting theoretical scenarios that are used to probe the enormous range of dark

matter mass. Here, we do not attempt to discuss every single scenario, but we rather mention

some of the examples.

• Extremely Heavy Objects

We start by discussing cosmological objects as an illustration on extremely large mass

dark matter. We introduced MACHOs in the previous chapter as one hypothesis of
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dark matter and discussed how micro lensing can be used to limit such a hypothesis.

Another example of cosmological objects is primordial black holes (PBHs). Though

they are not fundamental particles but rather black holes which may have formed in

the early universe due to collapse of large density perturbations during inflation, they

serve as interesting dark matter candidates [38]. Because of their lifetime, PBHs must

have a mass greater than 3× 10−19 solar mass in order to exist to the present day. For

recent constraints on PBHs refer to Ref. [39].

• Thermal Dark Matter

Thermal dark matter generically refers to those dark matter particles which were in

thermal equilibrium in the early universe and were produced thermally through the

process of freeze-out. In the previous section we have introduced WIMP which has an

interaction scale comparable to the electroweak scale making its mass ranging from a

few GeV to a few TeV 5. This particular type of WIMP or sometimes known as the

standard WIMP is one of the most studied dark matter candidates. In fact WIMP

properties do not have to be associated with the electroweak scale, one can simply

assume that the annihilation cross section effectively proportional to g4/m2
χ allowing

a broader range of masses from an eV to 120 TeV, see for example Refs. [40, 41]. In

general, thermal dark matter can be achieved through various theoretical approaches.

One approach is through full and well defined models such as supersymmetry which

provides the lightest neutralino as a candidate, see Refs. [41, 42] for recent reviews. A

second approach would be through effective field theories (EFTs) which are assumed

effective at some energy scale and hence only care about the interaction of the dark

particle with the SM particle despite the origin and the details of the interaction which

on the other hand can be derived from a full theory [43, 44]. Additionally, one can

consider another approach known as simplified models where dark matter lives in the

5The driving factor for such a limit is not to overproduce dark matter, however this does not prevent
other mechanisms to lower the limit to order of 100 MeV, see for example Ref. [40].
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dark sector, the SM is another sector and there is a portal connecting the two sectors

together through interaction. Popular examples of this kind of model include the Higgs

portal and the dark photon portal where the former corresponds to the SM Higgs as

a mediator [45] while the latter adopts a new massive vector boson that kinetically

mixes with the SM photon which we will encounter in the next chapter.

• Non-thermal Dark Matter

In a roughly similar mass range as thermal dark matter, there is another type of dark

matter known as feebly interacting massive particles (FIMPs) [46] or sometimes known

as extremely weakly interacting massive particles (EWIMPs) or super-WIMPs. As the

names suggest, they account for particles whose interactions with the SM are much

weaker than that of the WIMP. In contrast to the WIMP, these types of particle are not

produced through the freeze-out mechanism but rather through a mechanism known

as the freeze-in. The process of FIMPs production assumes a negligible amount of dark

matter in the early universe. The process is described as follows: there exists a set of

particles which are in thermal equilibrium at a temperature T while the FIMP denoted

generically by X is effectively decoupled due to its extremely small interaction. Even

though the interaction is feeble, through a renormalizable interaction, and while the

universe temperature is dropping below the mass of X, the production of X is possible

such that its mass is heavier than those interacting with it.

Another example of non-thermal dark matter is the sterile neutrino that can not in-

teract with the electroweak force and can be achieved by extending the SM by a

right-handed singlet sector with mass in the range of keV to MeV. They mix with the

SM neutrinos and are highly constrained by X-ray observation due to their decay to

neutrinos and photons [47].

A very well motivated example of non-thermal dark matter is the QCD axion gener-

ically occupying a mass range of peV to meV. The original purpose of the axion is
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to solve the CP problem (charge-parity violation) of the SM strong interaction while

at the same time the axion provides a candidate for dark matter. The axion can be

produced by an explicit breaking of a U(1)PQ Peccei-Quinn symmetry [48] during the

QCD phase transition in the early universe leading to a pseudo Nambu Goldstone bo-

son serving as the axion. In fact, the phenomenon of breaking a U(1) symmetry is

general and not limited only to the QCD axion. Other theories can also produce axion

like particles (ALP) in a similar manner as QCD axions, see Ref. [49] for a review.

Finally there are a number of dark matter examples of a bosonic nature that have

extremely small masses known as ultra light dark matter (ULDM) which span a mass

range from 10−25 eV to an eV. One particular example of this type of dark matter is

fuzzy dark matter whose introduction is motivated to reconcile small scale problems

in ΛCDM [50,51], see Ref. [52] for a general review on ULDM.

2.3 Dark Matter Detection

Given the variety of dark matter models, the natural question now is how can we detect the

dark matter particle? Simply, all one needs is to observe an interaction of the dark matter

particle with the SM. Once an observation is achieved, a particular dark matter model can

be favored or disfavored based on the outcomes of the observation. Since all dark matter

experiments have not observed a signal yet, a limit on the viability of the theoretical model is

set based on the prediction given by the model. Phenomenologically, a particular dark matter

model with a certain set of parameters predicts a signal at a certain experiment. When the

experiment reports null results, a limit on the numerical values of the model parameters

such as couplings and masses are set. This is indeed the current status of all dark matter

experiments, the longer we run the experiment the more we tighten the parameter space of

the theoretical models. In what follows, we will briefly mention some of the different types of

dark matter detection techniques and what they can tell us about the dark matter particle.
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• Direct Detection

Direct detection experiments as an idea provides the most simple straightforward

probes for the dark matter particle. In a nutshell, if dark matter exists in our galaxy

with enough amount and an interaction with the SM is allowed, then we can build

a detector composed of some material and wait until a signal is observed upon the

traveling of dark matter particles around the galaxy. If we take a WIMP with mass

m = 100 GeV and non-relativistic velocity v = 10−3c as an example then one would

anticipate a kinetic energy of order 50 keV. Therefore, an experiment has to be sensi-

tive to this kind of energy in order to detect dark matter. Of course the energy changes

based on the velocity and the mass, a typical range would then be from a keV to a few

MeV. Usually, direct detection experiments are composed of relatively heavy nuclei

and focusing on elastic WIMP-nucleus scattering 6, where the dark matter signal is

anticipated as a nuclear recoil with energy, Enr, and a rate, R, given as [53]

dR

dEnr

=
ρdmM

mmN

ˆ
dv vf(v)

dσ

dEnr

. (2.5)

Here M is the mass of the detector, mN is the mass of the nucleus, ρdm ≈ 0.3 GeV/cm3

is the dark matter local density, f(v) is the normalized dark matter velocity distribution

in the galaxy and finally σ is the WIMP-nucleus scattering cross section. For a good

review on the basics of direct detection see for example Ref. [54]. What the above

equation tells us is the following: high mass/volume experiment is preferred and high

cross section is needed to enhance the signal rate. At the first look, it might be desired

to choose nuclei with smaller masses due to the presence of mN in the denominator,

however, the spin-independent cross section for example grows with the mass number

squared while decreasing the nuclear recoil energy making heavy nuclei more preferred.

But the rate corresponding to heavy nuclei falls rapidly at high nuclear recoil due to

6We will discuss later in this thesis the interaction of dark matter particle with electrons at direct detection
experiments.
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Figure 2.2: Current limits on WIMP dark matter assuming spin-independent cross section
from various direct detection experiments experiments. Taken from Ref. [55].

the presence of the nucleus form factor, see for example figure 3 in Ref. [53]. There are

many direct detection experiments facilitating different types of target materials such

as germanium, xenon, argon, silicon and sodium iodine, see table 2 in Ref. [53].

Before we discuss the current status of the direct detection experiments, we comment

briefly on the background at such experiments. Direct detection experiments gener-

ically provide a quiet environment however noise from background still exists in two

major forms. First there is nuclear recoil background, for example neutron-induced

nuclear recoils from spontaneous fission reactions or from cosmic ray muons is one

of the crucial backgrounds since it can not be distinguished from a WIMP. Second,

background from electron recoil due to photons in the surrounding environment or due

to β decays inside the detector. Once the background is understood an analysis is

carried out on the observed data testing the dark matter hypothesis or prediction as

in equation (2.5). The usual outcome of the analysis is presented as limit curves in

the cross section vs the mass space. Figure 2.2 shows the current limit in the mass
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vs cross section space for WIMP-nucleus scattering. The parameter space above the

curves should be excluded. Experiments such as XENON1T, LUX and PandaX-II

seem to have the most stringent limits for dark matter masses above a few GeV. As we

can see a great deal of the parameter space has been probed already with null results

despite some anomalies such as the DAMA/LIBRA one which is ruled out by other ex-

periments. Also notice the orange dashed line representing an irreducible background

known as the neutrino floor. This could be a challenge for dark matter discovery or

could be a great opportunity to deepen our understanding about the background and

hence design experiments accordingly.

• Indirect Detection

Indirect detection of dark matter is concerned with the dark matter annihilation or

decay into SM particles in the universe. Therefore, a survey or scan is performed to

the sky or sources in the sky attempting to observe an excess in some SM particles.

This excess can be studied by measuring the flux, Φ. In general for dark matter with

a mass m annihilating or decaying to neutral particles for example, the flux is given

by [56]

Φ(E, φ) =
Γ

4πma

dN

dE

ˆ
ρ(`, φ)a d`, (2.6)

where Γ is the rate of dark matter interaction which is inversely proportional to its

lifetime τ , dN
dE

is the energy spectrum of the resulting SM particles which depends on

the details of the process, a is 2 (1) for dark matter annihilation (decay) and finally the

integral is performed over the line of sight for the dark matter density at the source.

The idea of indirect detection seems very straightforward however one has to keep in

mind the significance of systematic error due to the background from astrophysical

sources. This leads one to explore scenarios where the rate can be enhanced, the

energy spectrum has a distinct feature distinguishing it from background or focusing

on regions of high dark matter densities.
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There are many different ways of searching for dark matter indirectly depending on the

resulting SM particles. One way is to search for neutrinos as a result of annihilating or

decaying dark matter at experiments with large volumes and quiet environment such as

Super-Kamiokande and IceCube or future deep underground neutrino experiment and

Hyper-Kamiokande 7. There are several sources to study neutrinos such as the galactic

center and the stars including the Sun. However the Sun provides a very unique

source due to its geometrical nature as a point like source, its closeness to Earth

and also the difficulty of particles other than neutrinos escaping it, see for example

Ref. [57] for neutrino searches. Another way of probing dark matter indirectly is

through observation of excess X-rays. This kind of probe can be used for example

to search for sterile neutrinos since they are assumed to decay to SM photons, see

for example Ref. [58]. Additional ways of dark matter indirect detection are through

searching for excess gamma rays which can be produced through a direct annihilation

of dark matter into gamma rays pair or through emission of hadronized particles as

a result of dark matter decay. Both X-ray and gamma ray searches can cover an

energy range from less than a keV to a 1000 TeV. All of the above indirect probes

commonly enjoy one thing, the particles for which they search are neutral and hence

are not subject to deflection due to astrophysical magnetic fields. In fact, indirect

detection can also be performed on charged particles such as charged cosmic rays with

experiments covering an energy range from tens of MeV to roughly 109 TeV. However

due to the complexity of modeling the astrophysical magnetic field, measurements will

suffer from systematic uncertainty. Various experiments had studied charged particles

such as positron and anti-proton and provided constraints on dark matter parameter

space. For reviews of indirect detection results please refer to references such as [56,59].

• Collider Physics

In contrast to direct and indirect detection of dark matter where the signal is produced

7More about these types of experiments in the next chapter.
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by the dark matter particle itself, collider physics provides a unique opportunity to

produce the dark matter particle from the SM. Depending on the mass scale and the

production mechanism (the model), dark matter can be produced from SM processes:

SM + SM→ nχ + X, where n indicates that the dark matter particle can be produced

in multiples and X could be any set of SM particles or could be just nothing. Just like

neutrinos at collider detectors, the dark matter signature will arise as missing energy.

Therefore search techniques for dark matter are generally devoted into missing energy

at colliders. Over the past, there have been efforts to study dark matter at colliders

such as LEP: large electron positron collider at CERN see for example Refs. [60, 61]

and the Tevatron (a proton collider) at Fermi Lab, see for example Ref. [62].

After its proven success in discovering the Higgs particle, the LHC with its high center

of mass energy provides a great opportunity to probe dark matter at masses that

have never been studied before at colliders. At the LHC, many types of dark matter

scenarios can be probed ranging from full theories with particular predictions such as

supersymmetry to EFTs and simplified models. After all, any dark matter process

that can be initiated by a proton-proton collision is potentially possible to be probed

by the LHC within its energy reach.

In efforts of searching for dark matter through complete models such as supersymmetry,

both CMS and ATLAS experiments (two major experiments at the LHC) had studied

different production mechanisms and various final states predicted by supersymmetry

and presented their results as limits on the cross section vs mass space [63,64]. Another

effort is studying dark matter production through new mediators of different spins as

in some simplified models. This could be done by pair producing dark matter leading

to large missing energy, associated production of dark matter and visible SM particle

leading to imbalance in the transverse component of the momentum of the observed

particles or by pair producing SM particles which could lead to the discovery of new

mediators. Since the LHC is a proton-proton collider, if produced, a new resonance
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will most likely decay back to jets. Therefore, one of the channels to search for such

resonances is through a pair of jets, see for examples [65, 66]. For more details of

collider searches for dark matter see for example Refs. [67–70].

In a summary of this chapter, we discussed one of the highly motivated dark matter the-

ory: the WIMP paradigm. We discussed how WIMPs can be produced in the early universe

through the mechanism of freeze-out and highlighted the fact that a WIMP could give rise

to the correct relic abundance of dark matter desired by observation if its interaction and

mass are somewhat described by the electroweak physics. We then briefly discussed the wide

mass range the dark matter particle may have and how other theories -other than WIMP-

provide interesting solutions. Finally, we quickly went through some of the techniques of

dark matter detection. In the next chapter, we will take a very specific model of dark matter

that manages to evade the direct detection constraints above and at the same time provides

a testable hypothesis at neutrino detectors.
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Chapter 3

Boosted Dark Matter at Large Volume Neutrino

Experiments: High Energy Electron Recoil

3.1 Introduction

With the stringent direct detection limits on “standard single-component” dark matter such

as a WIMP, it is important to introduce scenarios that are capable of evading such stringent

limits. In this chapter we are interested in studying a dark matter model that is non-

conventional in the sense that the dark sector is non-minimal. The amount of dark matter

in the universe is 6 times greater than the baryonic matter represented by the SM. The SM

on its own is complicated and has a rich phenomenology: 3 fundamental interactions, 17

fundamental particles and hundreds of composite particles. The dark matter on the other

hand is under no obligation to be minimal or single-component, it could be as complicated

as the SM or even more. Therefore, we wish to focus our attention for the rest of this chapter

on the simplest possible multi-component scenario: two-component dark matter with one

component being abundantly dominant and heavy and the other sub-dominant and light.

For concreteness we take a particular example model with a specific phenomenology in this

chapter and generalize in the next ones.

We will focus our attention on what is known as boosted dark matter (BDM) and its

detection at neutrino experiments while interacting with electrons. However, and before we

discuss the model, it is notable to mention the different efforts in studying BDM. A BDM

refers to a sub-dominant dark matter particle that acquired relativistic velocities due to an
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interaction in the dark sector while the dominant component is non-relativistic “conven-

tional”. The mechanism of producing such a relativistic velocity can be achieved through

annihilation [71, 72], decay [73, 74], semi-annihilation [75–79] or through number changing

self annihilation [80–82]. BDM can originate from different sources such as the center of the

galaxy [73, 83–85], the Sun [86–89] and Spheroidal galaxies [90]. Detection prospects have

been studied at various underground neutrino experiments.

In this chapter we begin by motivating the use of self interaction and discuss the basic

structure of the model. We then focus our efforts on BDM from the galactic center and

the Sun and discuss how BDM can be detected at large-volume deep underground neutrino

experiments via interaction with electrons.

We have briefly discussed in the first chapter how ΛCDM, the standard model of cos-

mology (which utilizes cold dark matter as an essential ingredient in the universe) is very

successful when it is compared to observation and simulation on large scale structures. De-

spite that, we know that there exists a tension between N-body simulation based on ΛCDM

and the observation. This tension reveals itself as problems in the cosmology of small struc-

tures. The authors of Ref. [91] summarize four problems with a caveat: the simulations are

generally based on models where the baryonic component of the universe is neglected. Also

there have been discussions on whether these problems can be solved by including the effects

from baryonic matter, see for example Refs. [92,93].

One of these problems is the core vs cusp: the simulations suggest that the dark matter

density of a galactic halo grows as 1/distance while approaching the center of the galaxy.

On the other hand, many observations suggest a contradictory behavior. For example, it has

been shown that the rotational velocities of dark matter dominated, low surface brightness

galaxies [94] and gas-rich, halo-dominated dwarf spirals [95] favor a flat density distribution

near the center. Another problem is the missing satellites: one of the predictions of ΛCDM

is the amount of dark matter sub-halos. For instance, it is predicted that the Milky-way

galaxy should have order of hundreds sub-halos which are capable of hosting smaller galaxies.
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However, the number of Spheroidal galaxies that are discovered so far are far less than

predicted [96]. This contradiction also exists in other galaxies as well, see for instance

Ref. [97]. More recently, another problem was raised, the too-big-to-fail, increasing the

tension between simulation and observation. It was realized that the most massive sub-halos

(from prediction) are in direct inconsistency with the dynamics of the most bright Spheroidal

galaxies (from observation) in the Milky-way. For example, as a result of simulation, the

maximum circular velocity of 10 sub-halos is greater than those of the dwarf Spheroidal

galaxies. This contradiction has also been shown in dwarf galaxies in Andromeda and the

Large Group field.

Even though the aforementioned problems are debatable it is an interesting practice to

see how these problems motivate new scenarios of dark matter and the phenomenological

implications they lead to. As we mentioned in the first chapter, warm dark matter is consid-

ered as a solution to these problems. On the other hand, self interacting dark matter (SIDM)

has been considered as another scenario to solve these problems [98]. For an excellent review

please refer to Ref. [91]. It has been shown by simulation that SIDM resolves the tension

with observation without altering the large scale structures if the ratio between its cross

section and its mass, σself
χχ /mχ is O(0.1−1) cm2/g [99,100]. The stringent limit on the SIDM

is provided by an analysis of the Bullet Cluster matter distribution as σself
χχ /mχ < 1.25cm2/g

at 68 % confidence level [101] .

Therefore we would like to study BDM while incorporating the fact that a certain amount

of self interaction is allowed. We will discuss the model and kinematic aspects first and then

we will explore the possibility of signal detection at various neutrino experiments. We will

study two main sources of dark matter and compare their signal detection.

3.2 Basic Model Setup

In this section we consider a specific dark matter model in which the dark sector is non-

minimal. For simplicity we focus on two dark matter particles that are assumed fermionic
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Figure 3.1: Feynman diagrams representing various interactions induced by the model. Self
interaction between heavy states in the left panel, heavy-light state interaction in the middle
and BDM interaction with electron in the right panel via a dark photon, V .

with a sufficient mass splitting between them. We denote the heavy state by χ0 with a mass

m0 while the lighter state is denoted by χ1 and mass m1. The stability of these two particles

can be achieved by two separate symmetries, for example discrete: Z2 ⊗ Z ′2 or continuous:

U(1)′ ⊗ U(1)′′, [71, 83, 88]. For now we assume that the dark matter in the universe is

dominated by the heavy component, χ0, which has no tree-level interaction with the SM

but rather interacts with the lighter one through a contact operator, L01 = 1
Λ2χ0χ1χ1χ0,

figure 3.1, center panel. We will see later how this is no longer an assumption but rather

a consequence. Since we are interested in incorporating the self interaction of dark matter

and since the heavy state is the dominant dark matter we will assume that the SIDM only

takes place among the heavy states for simplicity. Therefore, throughout this chapter we

will allow χ0 to acquire self interaction in the range: 0.1 cm2/g < σself
00 /m1 < 1 cm2/g which

is a favored range by simulation and observation as we argued in the previous section, figure

3.1, left panel. Moreover, due to the large mass splitting between the two dark states, when

the process χ0 χ0 → χ1 χ1 takes place, the particle χ1 acquires a large kinetic energy and

becomes relativistic or boosted.

The lighter component, χ1, on the other hand is charged under a gauge group U(1)V

that lives in the dark sector with a new massive vector gauge boson denoted by V that has

a mass mV . The dark gauge group then interacts with the SM through a kinetic mixing

term with the photon and is parameterized by ε, a mixing parameter: L = − ε
2
VµνF

µν where

Vµν and Fµν are respectively the field strength tensor for the dark gauge boson and the SM
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photon. The massive gauge boson V is widely known as the dark photon since it mixes

with the SM photon. In fact, this mixing is a consequence of an original mixing between

the dark gauge group and the U(1)Y of the SM. For full details of such mixing, please refer

to Refs. [102–108]. With this consideration, a tree-level interaction between χ0 and any

electrically charged particle in the SM is allowed though suppressed by the small parameter

ε. In this thesis we will focus our efforts on the interaction with the electrons only, this

process is diagrammatically represented in figure 3.1, right panel.

There are two important questions here. First: how the abundance of dark matter is

considered in such a model? In the previous chapter, we have reviewed how a generic dark

matter composed of only one species evolves and freezes out in the early universe. But our

scenario here is a little different, we have two species of dark matter instead. Therefore,

instead of describing the evolution only by one Boltzmann equation, one would solve two

coupled Boltzmann equations representing the two species. The differential equations are

coupled due to the interaction between the two dark states. Eventually both states do freeze

out through a mechanism known as assisted freeze out [71, 83]. It has been numerically

verified that as long as the annihilation cross sections: 〈σv〉11→SM SM � 〈σv〉00→11 then the

ratio Ωχ1/Ωχ0 is very small. For example the abundance of χ0 is estimated to be

Ωχ0 ' 0.2

(
5× 10−26cm3/s

〈σ00→11v〉

)
. (3.1)

In addition, the abundance of the lighter species could be a few orders of magnitude smaller

than the heavier one, see Ref. [71] for more details. We also remark that, indeed our model

satisfies 〈σv〉11→SM SM � 〈σv〉00→11 and hence the dark matter is dominated by the heavy

state naturally without a need for an assumption [88]. The other question is: how can

we probe this type of dark matter? By construction, the interaction, χ0 χ0 → SM SM, is

suppressed by loop process and mixing parameter making it almost impossible to be detected

directly. In fact, this is an excellent advantage. This way the heavy state which makes up
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the majority of dark matter in the universe remarkably evades the strong constraints from

direct detection. Therefore, in order to probe this model we would rely on the interaction

χ1 χ1 → SM SM.

As we mentioned before, we are interested in studying interaction with electrons only.

This interaction takes place as one t-channel diagram and can be represented by the following

operator

Lint =
(
gVe ēγ

µe+ gVχ1
χ̄1γ

µχ1

)
Vµ. (3.2)

The parameter gVe (gVχ1
) denotes the interaction coupling between the massive gauge boson,

V , and the electron (χ1). Let us remark that the electron coupling parameter is related to

the mixing parameter as gVe = εe where e is the electric charge. Therefore, any analysis or

conclusion drawn on the coupling parameter can be linearly recast on the mixing parameter.

We chose this convention to make generalization more straightforward when we consider

different models of dark matter later. The model has effectively 5 free parameters: the self

interaction, the couplings which always appear as a multiplication of each other and the

masses.

model parameters =
{
σself

00 , g
V
e g

V
χ1
,m0,m1,mV

}
. (3.3)

In fact there is also an additional parameter, Λ, the scale associated with the contact op-

erator. However its value is always adjusted to match the dark matter required abun-

dance as dictated by the annihilation cross section of the heavy states which we fix to:

〈σ00→11v〉 = 3 × 10−26cm3/s in the entire analysis of this chapter. To be specific, in this

chapter we only consider one particular mass hierarchy: m0 > m1 > mV and generalize

this case to more general scenarios later. As a benchmark point (BMP), we consider the

following:

BMP : gVe = 3× 10−5, gVχ1
= 0.5 and mV = 15 MeV. (3.4)

The self interaction is fixed to two values according to the favored range, σmin
00 = 0.1cm2/g

and σmax
00 = 1cm2/g.
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3.3 Experimental Details

We mainly consider detection prospects at the deep underground neutrino experiment (DUNE)

as well as Super-K(SK)/Hyper-K(HK) [89]. DUNE has a deep underground far detector in

Sanford South Dakota that is composed of 4 modules of liquid argon time projection cham-

bers (LArTPC). Though its primary mission is not dark matter detection, it is a great

experiment to probe such a dark matter model. As we will show in the next sections, DUNE

will prove capable of detecting a possible signal emerging from pair annihilation of two heavy

dark matter states into two lighter ones at the center of the galaxy or at the center of the

Sun. One great advantage of DUNE is the fact that it will utilize a very good angular

resolution as well as particle identification capability allowing it to probe smaller energies

while reducing background when signal has a specific direction. We will compare our results

with water based detectors that use Cherenkov radiation such as SK and HK. The basic

specifications of these three detectors that are relevant to our analysis are summarized in

table 3.1.

Generically, BDM at the detector will roughly behave like a neutrino due to the boost

factor coming from the mass splitting though its mass is higher. Therefore, any neutrinos

such as atmospheric, solar or from muon decay are potential background for BDM. Back-

ground from solar neutrinos dominate below 20 MeV, an energy that is already below the

experimental thresholds. Muons on the other hand do not radiate in SK/HK and subse-

quently decay into neutrinos leading to background in the 30 to 50 MeV range. Notice that

SK and HK have a greater energy threshold which can be lowered in general. However, this

in return will worsen the energy and angular resolution. In any way, we consider the thresh-

old energy to be 100 MeV to avoid muon decays [83]. The particle identification capability

helps DUNE in distinguishing muon background and hence we use an energy threshold of

Eth = 30 keV [111].

We use a conservative count on the number of background events at SK by considering

both sub-GeV and multi-GeV events for a period of time of 10.7 years resulting in 7,755
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Volume (kTon) Eth (MeV) θres Running Time (years)

SK [109] 22.5 100 3◦ ∼ 18
HK [110] 560 100 3◦

DUNE [111] 40− 50 30 1◦

Table 3.1: Comparison between the three different neutrino experiments in terms of volume,
Vexp, energy threshold, Eth and angular resolution, θres. In our analysis, we use two examples
of DUNE volume since its volume is planned to increase in 3 stages in increment of 10 kTon
starting with two modules of 10 kTon LAr [112], therefore we consider 20 kTon (DUNE20)
and 40 kTon (DUNE40).

events [113]. Then we can parameterize the background count as

Nall sky
BG,SK

∆T
=

923

year

Vexp

22.5 kTon
. (3.5)

This also applies to HK. On the other hand, according to the GENIE neutrino Monte-Carlo

software, the expected number of background events in DUNE is [90]

Nall sky
BG,DUNE

∆T
=

128

year

Vexp

10 kTon
. (3.6)

Since we are going to focus only on two sources of dark matter: the galactic center and

the Sun, we do not need to include the all-sky background. We therefore estimate the

background based on the geometrical size of the source in the sky. For example the Galactic

center corresponds to a cone with a half angle θC ∼ 10◦. The Sun in principle is a point

like source but conservatively we consider background within a cone of half angle θC = 1◦.

The detection of BDM from the Sun as an effectively point-like source is more pronounced

at DUNE since its angular resolution is θres = 1◦ in contrast to SK/HK whose angular

resolution is poor leading to a higher number of background events. We summarize the

estimated number of background events in table 3.2.
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DUNE20 DUNE40 SK HK

GC 2 with 10◦ 4 with 10◦ 7.01 with 10◦ 174 with 10◦

Sun 0.02 with 1◦ 0.04 with 1◦ 0.632 with 3◦ 15.7 with 3◦

Table 3.2: Estimated annual number of background events from two sources at the three
experiments.

3.4 The Galactic Center as a Source

In this section we study the detectors sensitivity for a signal emerging from the galactic

center (GC) as an annihilation of heavy states to lighter states, χ0 χ0 → χ1 χ1. The lighter

states, the BDM, will then travel through the galaxy and interact with electrons in the

detector according to χ1 e
− → χ1 e

−.

3.4.1 BDM Galactic Flux and Signal

The differential flux, ΦGC, with respect to a solid angle, Ω, and the energy of the BDM

particle, E1, from the GC is provided in Ref. [83] as

dΦGC

dΩ dE1

=
rSun

16π

(
ρ0

m0

)2

〈σ00→11v〉 J
dN1

dE1

, (3.7)

where rSun = 8.33 kpc is the distance from the GC to the Sun, ρ0 = 0.3 GeV/cm3 is the local

dark matter density and J is a factor defined as

J(θ) =

ˆ
l.o.s

ds

rSun

(
ρ(r(s, θ))

ρ0

)2

, (3.8)

which is responsible for integrating the dark matter density along the line of sight (l.o.s) from

the GC. The density, ρ(r(s, θ)), defines the dark matter profile for the galactic halo with

the coordinate distance r(s, θ) =
√
r2

Sun + s2 − 2 s rSun cos θ where θ is the angle between

the GC-Earth and the l.o.s direction and s is the l.o.s distance from earth to the GC. We

40



take the galactic halo profile to be the NFW profile 8 [115, 116]. Finally, the last factor

of equation (3.7), dictates the energy spectrum distribution of BDM particles after the

annihilation of heavy states. We assume it follows a mono-energetic spectrum governed by

the mass, m0, given that the two heavy states roughly annihilate with relatively low velocity,

dN1

dE1
= 2δ (E1 −m0). It has been estimated in Ref. [90] that the flux from the GC within a

cone of angle θC = 10◦ is

Φ10◦

GC ' 4.7× 10−8 cm−2 s−1 ×
(

〈σ00→11v〉
3× 10−26 cm3/s

)(
20 GeV

m0

)2

. (3.9)

Though this approximation is useful, we use the full expression in equation (3.7) in our

results later. Now that we know how to estimate the flux, we can now estimate the number

of BDM signal, NGC
sig ,

NGC
sig = ∆TNtargetΦ

θC
GC σ1e. (3.10)

The first three factors on the right hand side of the above equation are respectively the

exposure time of the experiment, the number of target electrons within the detector and the

GC flux due to a cone of angle θC . The quantity, σ1e, is the total cross section due to BDM

scattering off free-at-rest detector electrons: χ1 e
− → χ1 e

− which at tree level has only one

t-channel diagram depicted by the right panel of figure 3.1.

Before proceeding, it is important to note that the electrons within the detector are not

generically free particles. They indeed are bound to the detector atoms. However, there

are two reasons to justify free-at-rest treatment of electrons. First, in order to detect the

BDM, the scattered electron energy has to be sufficiently greater than the threshold energy

of detectors which are tens of MeV, far above the electron mass. The maximum electron

energy, Emax
e , can be derived from basic kinematics when the incoming BDM momentum is

8It might be more realistic to consider a profile that respects the fact that heavy states are SIDM particles.
However, it has been shown that profiles based on SIDM in the region of our interest is comparable to NFW,
see for example Ref. [114].
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parallel to the outgoing one as:

Emax
e = me

(E1 +me)
2 + (E2

1 −m2
1)

(E1 +me)2 − (E2
1 −m2

1)
. (3.11)

Note that, the energy E1 is fixed equal to the mass m0 due to tho mono-energetic assumption

above. Therefore the maximum electron energy is dictated by only two parameters. To

insure signal detection, Emax
e has to be sufficiently greater than Eth. That means, roughly,

m0/m1 > O(10) is needed for a minimal signal. The second reason is that the effects that

describe the ionization of electrons manifest itself on what is known as the ionization form

factor, which is relevant in the keV electron recoil region. In our case with a 10 MeV BDM

mass we have order of 100 MeV energy far above this scale. In a nutshell, the BDM we

are considering here leads to very high recoil electron energies and consequently to very

suppressed atomic effects. Finally, there are other scenarios in our model where interesting

low electron recoil signals are possible. We will delay the discussion of such scenarios until

the next chapter in which we provide a detailed study of the atomic physics effects such

as the ionization form factor and prove why such a free-at-rest electron assumption is valid

here.

3.4.2 Detection Prospects

In this subsection we focus on the sensitivity of the three detectors, SK, HK and DUNE in

detecting BDM from the GC. We do that by estimating the signal significance which we take

as 9

σ =

√
2 (Nsig +NBG) log

(
1 +

Nsig

NBG

)
− 2Nsig. (3.12)

Here the number of signal events is estimated by equation (3.10) and the background is

provided in table 3.2. However, before we explore what sensitivity is expected let us estimate

9This is a result of taking the log-likelihood ratio of signal and background assuming their number of
events follow a Poisson distribution, see for example Ref. [117].
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Figure 3.2: Annual number of BDM signal events expected from the GC at SK on the left
and DUNE20 on the right. The numerical label above each contour indicates the minimum
annual NGC

sig that any point in a parameter space enclosed by the same contour will produce.

the number of BDM signal events one would expect annually per detector. We will adopt

the BMP defined in equation (3.4) and we will compare SK (22.5 kTon of H2O) to DUNE20

(20 kTon of LAr). In terms of number of signal events, comparison with HK and DUNE40

is straightforward, for example events in HK are scaled by its volume ratio with respect to

SK and DUNE40 will be scaled by its volume ratio with respect to DUNE20.

In figure 3.2 we present the annual number of BDM signal events for SK and DUNE20

on the left and right panel respectively. We observe the similarity in the overall behavior of

the contour shapes. For example, the left side of the contours always respect the fact that

m1 > mV which we chose earlier as a case study. We will generalize this case in the next

chapter and explore some other interesting parameter space. The top edge of the contours

are related to the GC flux that decreases with increasing m0 mass. This also explains why the

number of signal events decreases while moving towards the outermost contour. The right

diagonal edge represents the mass splitting between heavy and light dark states, m0 > m1.

But as we can see the slope is greater than 1, which means in addition to m0 > m1, the

scattered electron should have an energy enough to cause a signal above the threshold energy

Eth. That means the maximum scattered energy which is solely determined by the masses m0
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Figure 3.3: Two-σ significance comparison between all four detectors considering TL1 and
TL2 on left and right panel respectively. SK, HK, DUNE20 and DUNE40 are represented
by solid blue, dashed black, solid red and dashed green respectively.

and m1 as described by equation (5.4) should be greater than Eth. As we argued before, m0

has to be roughly greater than O(10)m1 subject to the threshold energy of a given detector.

In fact, there is a slight difference in the slopes of contours representing DUNE20 and those

representing SK due to the difference in the threshold energies of the two detectors. Also,

the bottom corner in the right plot is smaller than that of the left one giving DUNE20 extra

advantage to probe the parameter space of small masses due to its smaller threshold energy.

Finally, both DUNE20 and SK are almost comparable with more possibility for DUNE20 to

probe a slightly wider parameter space due to its lower threshold energy. Now we turn to the

question of the signal sensitivity. DUNE and HK are future experiments which are compared

to SK that has been collecting data for almost 18 years now. According to Ref. [112], DUNE

will start collecting data in 2026 with 20 kTon volume i.e., DUNE20 and about 3 years

later DUNE40 will be available. That means, realistically, by the time DUNE20 starts data

collection, SK would have been collecting data for about 23 years. We would like to assume

two scenarios: timeline 1 (TL1) assumes DUNE20 starts collecting data as planned and runs

for 10 years. That means, we are comparing 10 years worth of data at DUNE20 vs 33 years

at SK. The second timeline (TL2) DUNE takes longer time to construct and less time to
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run, for example 10 years of construction and 3 years of running. That means DUNE20 will

have 3 years worth of data vs 31 years of data for SK. For straightforward comparison we

treat both HK and DUNE40 on an equal footing with DUNE20 in both timelines.

Figure 3.3 compares the sensitivity of the different detectors at the two timelines TL1

and TL2. The contours represent the 2-σ significance i.e., when equation (3.12) is equal to

2. Both plots show the great capability of DUNE in general when compared to SK/HK. The

left panel shows that DUNE20 with a running time less than one third of that of SK is more

capable of constraining the parameter space. This is certainly because of the comparability

of the annual number of signal events while background events are much smaller at DUNE20

due to its great angular resolution and particle identification capability. Even if we consider

TL2 on the right panel, DUNE20 provides a very comparable result to SK though they cover

two slightly different parts of the parameter space.

3.5 The Sun as a Source

In this section we focus on the BDM signal and take the Sun as a source. The Sun in fact

is a very interesting source, though the BDM flux may be suppressed due to its small mass

when compared to the GC, its shorter distance and geometrical consideration as a point-like

source provides a very unique signal. For example, when a detector has a great angular

resolution, all one needs to do is to point the detector into the direction of the Sun leading

to almost no atmospheric neutrino background.

3.5.1 BDM Solar Flux and Signal

The general treatment here is similar to that of the galactic center, for example the number

of signal events is estimated in a similar manner as in equation (3.10) however with different

flux this time. In contrast to GC whose dark matter halo profile is well-explored and hence

makes the flux estimation straightforward, one needs to study the BDM solar flux differently.
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We need to first study the evolution of dark matter in the Sun and quantify its presence by

properly accounting for the different effects such as capture rate, annihilation rate and self

interaction. According to Ref. [88], the BDM solar flux is considered as:

dΦSun

dE1

=
Γχ0

4πR2
Sun

dN1

dE1

, (3.13)

where RSun is the distance between Earth and the Sun and the last factor on the right

side is treated in a similar manner as before: dN1

dE1
= 2δ (E1 −m0). In order to estimate

the solar flux, we need to properly consider the BDM solar annihilation rate, Ca, which is

defined through Γχ0 = Ca

2
N2
χ0

(t�) where Nχ0 (t�) is the number of heavy state particles that

are captured inside the Sun and evolved throughout the age of the Sun, t�. According to

Ref. [118]

dNχ0

dt
= Cc + (Cs − Ce)Nχ0 − (Ca + Cse)N

2
χ0
. (3.14)

There are five parameters in the above equation that account for the different effects of

dark matter evolution in the Sun: first, Cc is the capture rate of dark matter due to the

gravitational potential of the Sun which depends on the amount of dark matter in the solar

neighborhood, the higher this parameter the higher the number of dark matter captured

inside the Sun. Second, Cs is the capture rate due to the fact that a sizable self interaction

is considered among χ0’s. Third Ce is an evaporation rate due to scattering of dark matter

with nuclei in the Sun and the minus sign is to indicate that dark matter will decrease

when this parameter is high. Fourth, Cse is the evaporation rate due to self interaction, the

opposite of Cc. Finally, Ca dictates the production of BDM in the Sun and hence it is a

crucial parameter to estimate the BDM solar flux. For definition of these parameters please

refer to Ref. [88] and references therein. The solution of such equation is achieved by an

initial condition Nχ0(t = 0) = 0 and characterized by a time scale at which dark matter

reach an equilibrium between accumulation (Cc and Cs) and dissipation (Ce, Cse and Ca).

It has been shown [88] that allowing a minimum amount of self interaction among heavy
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Figure 3.4: Annual number of BDM signal events expected from the Sun at SK on the left
and DUNE20 on the right with σmin

00 . The numerical label above each contour indicates the
minimum annual NSun

sig that any point in the parameter space enclosed by the same contour
will produce.

states increases the number of dark matter particles in the Sun by a few order of magnitudes

and it is increased even more if a maximum self interaction is considered. Once the flux is

estimated, the number of BDM signal events at detector has this familiar form as before

NSun
sig = ∆TNtargetΦSun σ1e. (3.15)

3.5.2 Detection Prospects

Let us now examine the annual number of BDM signal events we can expect from the Sun.

We will do this for SK and DUNE20 making generalization to HK and DUNE40 a matter of

volume scaling. In figure 3.4 we present the annual number of BDM signals for SK on the

left panel and for DUNE20 on the right panel. Overall both experiments are comparable

to each other and similar remarks can be made about their shapes as in subsection 3.4.2.

The major difference in the contour shapes between those of the GC and those here is in

the bottom edge. This is mainly related to the evolution of heavy states in the Sun. The

number of heavy states in the Sun, Nχ0 , is heavily dependent on the mass m0, see figure
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Figure 3.5: Two-σ significance comparison between all four detectors considering TL1 and
TL2 on left and right panel respectively in detecting BDM from the Sun. SK, HK, DUNE20
and DUNE40 are represented by solid blue, dashed black, solid red and dashed green respec-
tively. Here we assume minimum amount of self interaction.

2 in Ref. [88]. With a BMP similar to ours, Nχ0 drops significantly while decreasing m0

to somewhere around a few GeV which is consistent with what we see in figure 3.4. Note

that, we only assumed a minimum amount of self interaction, σmin
00 , in fact the annual signal

increases by roughly a factor of 100 if we use σmax
00 instead. Similarly as before, we estimate

the sensitivity reach to all of the four detectors considering two possible timelines. In figure

3.5 (3.6), we present the parameter space that would be reached with a 2-σ significance

by the four detectors assuming σmin
00 (σmax

00 ) self interaction. In both figures left panel and

right panel represent TL1 and TL2 respectively. What we observe generally is that DUNE20

could outperform SK even in a pessimistic scenario such as TL2. With only 3 years of

running, DUNE20 indeed proves better than SK with 31 years worth of data. This is mainly

attributed to DUNE’s excellent angular resolution which is a factor of 3 smaller than that of

SK/HK. This excellent resolution is very important in rejecting background when studying

point-like sources such as the Sun as we can see in table 3.2. This point can be more clearly

demonstrated by comparing HK (560 kTon) to DUNE40 (40 kTon). In the Sun case, DUNE

is always better than HK even though HK is 14 times greater in terms of volume. The

48



10 2 10 1 100 101 102

m1 [GeV]

100

101

102

103

104
m

0 [
Ge

V]
TL1: 2-  significance, max

00

SK:          33 years
HK:          10 years
DUNE20: 10 years
DUNE40: 10 years

10 2 10 1 100 101 102

m1 [GeV]

100

101

102

103

104

m
0 [

Ge
V]

TL2: 2-  significance, max
00

SK:        31 years
HK:          3 years
DUNE20: 3 years
DUNE40: 3 years
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effect of angular resolution proves significant in point-like sources. On the other hand, if we

consider GC such as in figure 3.3 we see that HK and DUNE40 are complementary to each

other since they cover slightly different parts of the parameter space.

3.6 Discussion

Before we summarize this chapter it is exciting to note that the SK collaboration had con-

ducted an analysis on experimental data to study and set limits on BDM in general [119].

The analysis was carried out on 161.9 kiloton-years worth of data. As a benchmark value,

the collaboration considered m1 = 200 MeV, gVχ1
= 0.5 and mV = 20 MeV. The results were

presented as a 90% confidence interval upper limit on the parameter space given by a (m0, ε)

plane which we roughly reproduce in figure 3.7.

In this chapter we studied a simple multi-component dark matter with two particles

having a mass splitting such that m0 > m1. The heavy particle was taken as a dominant

dark component in the universe. It has no direct interaction with the SM and hence evades
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Figure 3.7: A rough reproduction of the results presented by the SK collaboration based on
the discussion of the previous section.

the stringent limit from direct detection experiments. The annihilation of χ0’s into χ1’s makes

the latter boosted due to the sufficient mass difference between the two. We considered the

GC and the Sun as two possible sources of BDM and studied their detection prospects via

interaction with electrons at deep underground neutrino detectors. We took the current SK

and compared it to the future DUNE20, DUNE40 and HK detectors while considering two

timelines of data taking. When compared to SK, we found that DUNE20 is very comparable

(and sometimes better) even if we considered a very pessimistic timeline. DUNE in general

is capable of probing more parameter space than SK/HK due to its lower energy threshold,

excellent angular resolution and particle identification capabilities. These properties make

DUNE a great detector to study point like sources. For example, DUNE40 had proven to

outperform HK when studying BDM from the Sun even given that its volume is 14 times

smaller than that of HK.

In the next chapter, we will relax the condition that the mass difference: m0 > O(10)m1

to just m0 > m1. As we argued in subsection 3.4.1, this brings into the calculation important

atomic physics effects due to electron binding energy and atomic structure.
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Chapter 4

Low Energy Electron Recoil in the Dark Matter

Electron Scattering

Now that we showed in the previous chapter one particular scenario of BDM: m0 > m1 > mV ,

with one particular model: fermionic dark matter and vector mediator, it is of an interest to

generalize our discussion to broader scenarios. Our previous treatment is only valid if one

considers high electron recoil energy. In this chapter we provide a generalized treatment in

which atomic physics effects such as binding energy and atomic structures are taken into

consideration. Though our approach can be applied to any atom, we will take xenon (Xe) and

argon (Ar) as examples when presenting numerical results. We start by introducing the basic

kinematic setup and introduce our notation in section 4.1, we then discuss the differential

cross section including atomic effects in section 4.2 and finally provide the ionization form

factor in section 4.3 by comparing relativistic vs non-relativistic as well as studying different

potentials and different dark matter mediators.

4.1 Basic Kinematics Setup

Here, we discuss the kinematics of a generic dark matter particle denoted by DM of mass

m1 scattering off an electron that is bound to an atom. The kinematics is different from

that of free scattering and a special treatment should be carried out. We will attempt to

provide a general overview and derive some basic relations. The interaction is assumed to
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Figure 4.1: Relativistic electron momentum density, left: for 3s and 5p1/2 of Xe atom and
right: for 2s and 3p1/2 of Ar atom.

be an elastic scattering as follows:

DM(p) e(k)→ DM(p′) e(k′). (4.1)

Where the momenta are defined as

p = (E1; p), p′ = (E ′1; p′), k = (Ee; 0), and k′ = (E ′e; k′). (4.2)

How do we justify the choice of the electron being at rest? First of all electrons in the atom

have arbitrary momenta, k, and their magnitudes can be very high. However, the probability

of having very large momenta is very small. In fact, it can be shown by looking at the

momentum distribution density of electrons, ρ(k). This density is defined as the the product

of the bound electron wave function with its complex conjugate in momentum space. For

spherically symmetric potentials, the density turns out to be spherically symmetric as well,

ρ(k) = ρ(|k|). In figure 4.1 we show the momentum density as a function of the magnitude

of the electron momentum for two representative shells of the Xe and Ar atoms. We notice

that the momentum density falls rapidly around 10 keV and the majority of electrons have
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relatively small momenta. Therefore, if the dark matter particle has a momentum of MeV

order then |k|/|p| . 10−2 and such an assumption is valid.

Before scattering, the electron is bound to the atom with energy

Ee = me − |EB
n`|, (4.3)

where EB
n` is the atomic binding energy which depends on the principal (orbital) quantum

number n (`) 10. From energy conservation, we have

E ′1 = E1 + Ee − E ′e (4.4)

The momentum transfer is q = k′ − k and Mandelstam variable s = (p + k)2. We are

interested in finding a relation between the scattered electron energy, E ′e and the magnitude

of the momentum transfer vector, |q|. We do this by expressing the Mandelstam variable,

t, in two different ways. First:

t = q2 = (k′ − k)2 = m2
e + E2

e − 2EeE
′
e, (4.5)

and second:

t = q2 = E2
q − |q|2 = (E ′e − Ee)2 − |q|2. (4.6)

Equating the last two equations, we get

|q| =
√
E ′2e −m2

e. (4.7)

When the incoming dark matter particle is parallel to the outgoing one (p ‖ p′) the scattered

10As we will see later, in relativistic case, the binding energy depends also on the total angular momentum
j.
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electron energy reaches its maximum (minimum) according to

2m2
1 − 2E1E

′
1 + 2

√
E2

1 −m2
1

√
E ′1

2 −m2
1 = m2

e + E2
e − 2EeE

′
e. (4.8)

The scattering electron energy that solves the above equation is denoted by E ′e
max/min and

expressed as:

E ′e
max/min

=
(Ee + E1) (E2 +m2

e)±
√

(E2
1 −m2

1) [E2 −me(me + 2m1)] [E2 −me(me − 2m1)]

2(E2 +m2
1)

,

(4.9)

where we defined E2 ≡ Ee(Ee + 2E1). One may observe that if the electron is free before

scattering, namely if Ee = me, we get:

(
E ′e

max)
Ee=me

= me
(E1 +me)

2 + (E2
1 −m2

1)

(E1 +me)2 − (E2
1 −m2

1)
and

(
E ′e

min
)
Ee=me

= me (4.10)

in agreement with what we expressed in equation (3.11). Equation (4.9) can be complex when

the argument of the square root is negative. We would like here to extract the conditions

that ensure real values of E ′e
max/min. There are two cases:

• case 1: if m1 ≥ me
2

, the condition is

E2 ≥ me(me + 2m1). (4.11)

• case 2: if m1 <
me
2

, the condition is

E2 ≥ me(me + 2m1) or E2 ≤ me(me − 2m1). (4.12)

One thing we want to emphasize here is that these conditions on E2 are actually conditions

on the electron energy before scattering and hence applies on the Binding energy, |EB
n`|. In

other words, once the parameters such as masses and energies are fixed, one would find a set
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of allowed energy levels {n`}allowed that leaves equation (4.9) real.

4.2 Differential Cross Section

After introducing the kinematics, let us now focus on a particular case where the dark matter

particle is a fermion interacting with the electron through a t-channel exchange of a vector

boson of mass mV . The couplings of the vector boson to dark matter and electron are

respectively gV1 and gVe . The Lorentz-invariant matrix element is expressed in terms of the

Mandelstam variables as

|M|2 = 2
(
gV1 g

V
e

)2 2m4
1 + 2m4

e + 4m2
1(m2

e − s)− 4m2
es+ 2s2 + 2s t+ t2

(m2
V − t)2

. (4.13)

In what follows, we would like to discuss the differential cross section inspired by a similar

treatment as in Ref. [120]. But we have to remind our selves that whenever we refer to the

matrix element we are implying that it is expressed in terms of |q| using the kinematics

discussion above. For example the Mandelstam variable should appropriately be expressed

in |q| and the maximum/minimum scattering energy of the electron E ′e
max/min is translated

into a maximum/minimum condition on the magnitude of the momentum transfer vector

|q|max/min. With this in mind and in analogy with equation (31) in Ref. [120] we are equipped

to write

dσn`1e =
1

64π2E1E ′1EeE
′
e

|M|2

v1e

1

(2π)3
δ(E ′1 − (E1 + Ee − E ′e)) |fei→ef (q)|2 d3qd3k′. (4.14)

Where, |fei→ef (q)|2 is the factor that takes into account the transition from an initial bound

electron to a final free electron. It is clear that if both initial and final electron states are

free the following replacement |fei→ef (q)|2 → (2π)3 δ3(p + k− p′ − k′) will result in the free

elastic scattering case. We will discuss this factor in more detail shortly. But before going
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any farther, let us first integrate out the delta function. Note that

δ(E ′1 − (E1 + Ee − E ′e)) = δ(

√
m2

1 + |p|2 + |q|2 − 2|p||q| cos θ − (E1 + Ee − E ′e)). (4.15)

Taking the derivative of the argument of the delta function with respect to θ one can simplify

the above equation to

δ(E ′1 − (E1 + Ee − E ′e)) =
E ′1

|p||q| sin θ
δ(θ). (4.16)

Now, we can integrate out the delta function in (4.14) with the phase space element dq3

dσn`1e =
|q|d|q|

32πE1EeE ′e |p|
|M|2

v1e

1

(2π)3
|fei→ef (q)|2 d3k′. (4.17)

We now, would like to express the above relation as a differential cross section with respect

to the recoil energy Er = E ′e −me. To do so, let us use |k′| =
√

2meEr + E2
r and therefore

d3k′ = (me + Er) |k′| dΩk̂′ dEr. With this change of variable, we re-express equation (4.17)

dσn`1e

dEr
=

|q|d|q|
64πE1Ee |p| |k′|2

|M|2

v1e

[
2 |k′|3

(2π)3

ˆ
dΩk̂′ |fei→ef (q)|2

]
. (4.18)

The quantity in the square bracket above is the ionization form factor and will be denoted

by |fion(Er, |q|)|2. Finally, we write equation (4.18) in an explicit form as

dσn`1e

dEr
=

1

64πv1e

1

E1Er(2me + Er)(me − |EB
n`|)
√
E2

1 −m2
1

ˆ |q|max

|q|min
d|q| |q| |M|2 |fion(Er, |q|)|2.

(4.19)

Where v1e is the relative velocity between the incoming dark matter particle and the electron.

Eventually, one is interested in adding the different contributions from different shells of an

atom, therefore:

dσ1e

dEr
=
∑
n,`

dσn`1e

dEr
. (4.20)
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4.3 Atomic Ionization Form Factor

Here, we would like to discuss how we approached the estimation of the ionization form

factor. We review a few different approximations and categorize them into non-relativistic

and relativistic approximations. Let us first restate the dimensionless form factor

|fion(Er, |q|)|2 =
2 |k′|3

(2π)3

ˆ
dΩk̂′ |fei→ef (q)|2. (4.21)

We are now concern with how to estimate the transition factor, |fei→ef (q)|2. For now, let us

continue assuming that the dark matter mediator is a vector boson and will generalize the

discussion later for other types of mediators. Therefor,

fei→ef (q) = 〈ef |eiq·r|ei〉 =

ˆ
d3r 〈ef |r〉 eiq·r 〈r|ei〉 =

ˆ
d3rψ∗ef (r) eiq·r ψei(r). (4.22)

The approximations that we are about to discuss are similar in the fact that they all attempt

to estimate the above equation but different in the way they approach the bound and free

electron wave functions ψei(r) and ψef (r) respectively.

4.3.1 Non-relativistic Approximations

In the non-relativistic case we are considering two different approximations according to how

the ionized electron wave function is assumed.

• Plane Wave

The first simplest approximation is the case where the scattered or ionized electron is

described by a plane wave, such a case will be denoted by PW. In this case the final

electron wave function is simply characterized by its momentum, ψk′(r) = 〈r|k′〉 =

eik
′·r. The bound state electrons wave functions are taken to be Roothaan-Hartree-

Fock (RHF) wave functions whose radial components are given as linear combination

of Slater-type orbitals that are tabulated in Ref. [121]. In that case, the wave function
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must be characterized by the three quantum numbers as ψn`m(r) = 〈r|n`m〉. This

allows one to express equation (4.22) as

fPW
ei→ef (q) =

ˆ
d3r e−ik

′·r eiq·r ψn`m(r). (4.23)

Using plane wave expansion in terms of spherical Bessel function, jL, and spherical

harmonics, Y M
L :

eiQ·r = 4π
∑
L,M

iL jL(|Q|r)Y M∗

L (Q̂)Y M
L (r̂), (4.24)

equation (4.23) with ψn`m(r) = Rn`(r)Y
m
l (r̂) can be written as:

fPW
ei→ef (q) =

`′=∞∑
`′=0

m′=+`′∑
m′=−`′

L=∞∑
L=0

M=+L∑
M=−L

(4π)2(−1)m
′
(−i)`′iLF ``′L

× Y m′

`′ (k̂′)Y M∗

L (q̂)

ˆ
dΩr̂ Y

m
` (r̂)Y −m

′

`′ (r̂)Y M
L (r̂),

(4.25)

where we have used Y m′∗

`′ = (−1)m
′
Y −m

′

`′ and defined F ``′L as

F ``′L ≡
ˆ ∞

0

dr r2Rn`(r) j`′(|k′|r) jL(|q|r). (4.26)

The integration over the three spherical harmonics above can be performed in terms

of the Wigner 3j-symbol according to.

´
dΩY m1

`1
Y m2
`2

Y m3
`3√

(2`1+1)(2`2+1)(2`3+1)
4π

=

 `1 `2 `3

0 0 0


 `1 `2 `3

m1 m2 m3

 . (4.27)

If we return to equation (4.21), we are interested in the absolute square, |fPW
ei→ef (q)|2

as well as an integration over the solid angle of the outgoing electron 11 which takes

the form
´
dΩk̂′ |Y m′

`′ (k̂′)|2 = 1. With this in mind, we can now use equation (4.25) to

11Notice the major difference between the PW approximation and the other approximations below. In the
PW approximation, we showed that the transition factor squared is dependent on the angles of the outgoing
electron however the others are not.
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express equation (4.21) as

|fion(Er, |q|)|2PW = 32|k′|3
`′=∞∑
`′=0

L=`+`′∑
L=|`−`′|

M=+L∑
M=−L

L′=`+`′∑
L′=|`−`′|

M ′=+L′∑
M ′=−L′

(i)L(−i)L′ (2`+ 1) (2`′ + 1)

×
√

(2L+ 1) (2L′ + 1)F ``′LF `
∗

`′L′

 ` `′ L

0 0 0


 ` `′ L′

0 0 0


× Y M∗

L (q̂)Y M ′

L′ (q̂)
m=∑̀
m=−`

m′=+`′∑
m′=−`′

 ` `′ L

m −m′ M


 ` `′ L′

m −m′ M ′

 .

(4.28)

Notice the introduction of an extra factor of 2 to account for the spin and the sum-

mation over the magnetic quantum number for the initial electron. Also notice the

summation limit of the numbers L and L′ in the first line which are required by the

Wigner 3j-symbols in the second line to insure non-vanishing quantity. The orthogo-

nality of the 3j-symbol:

∑
m1,m2

 `1 `2 `

m1 m2 m


 `1 `2 `′

m1 m2 m′

 =
δ``′δmm′

(2`+ 1)
(4.29)

and the addition theorem of the spherical harmonics:
∑m=+`

m=−` Y
m
` Y

m∗

` = (2` + 1)/4π,

can be used in the third line to further simplify equation (4.28) to

|fion(Er, |q|)|2PW =
8|k′|3

π

`′=∞∑
`′=0

L=`+`′∑
L=|`−`′|

A``′L |F ``′L|2, (4.30)

where we have defined

A``′L ≡ (2`+ 1) (2`′ + 1) (2L+ 1)

 ` `′ L

0 0 0


2

. (4.31)

For ` = 0, we find our calculation for the PW approximation in a very good agree-
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Figure 4.2: The PW approximation for the ionization form factor for a representative shells
of Xe atom at different recoil energies. The solid curves represent equation (4.32) while the
dashed ones represent our calculation in equation (4.30).

ment with that used in the literature such as in Refs. [120, 122, 123], however for

higher `, a disagreement is observed. We illustrate this disagreement in figure 4.2 for

a representative shells of the Xe atom at different recoil energies. For the rest of this

thesis and in consistency with the current literature, instead of equation (4.30), we will

use [120,122,123]:

|fn`ion(Er, |q|)|2PW
=

(2`+ 1)|k′|2

4π3|q|

ˆ
d|k| |k||χn`(|k|)|2, (4.32)

with integration limit ||k′|± |q||. The momentum space wave function is related to the

radial component of the RHF wave function as, χn`(|k|) = 4πiL
´
drr2Rn`(r)jL(|k|, r),

for more details also see Ref. [124]. As a numerical cross-check of our implementation,

in figure 4.3 we consider Xe atom in the left panel and plot its 5p shell contribution

to the ionization factor at different recoil energies. We found that the red curve is in

a great agreement with figure 1 in Ref. [123]. For comparison, we also present Ar 3p

shell on the right panel.

• Schrödinger Continuum Energy
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Figure 4.3: The PW ionization factor contribution from 5p (3p) shell of the Xe (Ar) atom
on the left (right) panel. Different colors represent different examples of the electron recoil
energy: red, blue, black and green correspond to Er = 0.015 keV, 1 keV, 10 keV and 100 keV
respectively. We purposefully chose the red curve to represent Er = 0.015 keV to validate
against existing literature, see main text.

Second, we use the same RHF bound electron wave functions as in the PW case how-

ever the ionized electron is described by continuum energy solution of the Schrödinger

equation with a Coulomb-like potential [125], such a case will be denoted SCE. Even

though the ionized electron is free it is still obeys the Schrödinger equation and hence

carries angular quantum numbers that we will denote by `′m′. However, the energy

will be a free positive parameter that is denoted by Er. In this scenario we can write

ψEr`′m′(r) = 〈r|Er`′m′〉 and the transition factor is then

fSCE
ei→ef (q) =

ˆ
d3rψ∗Er`′m′(r) eiq·r ψn`m(r). (4.33)

Proceeding on similar manner as the PW, an expansion of eiq·r into a linear combi-

nation of spherical waves is performed and the wave functions are parameterized into

radial and angular component. For example ψEr`′m′(r) = REr`′(r)Y`′m′(θ, φ). In con-

trast to the PW approximation, it can be shown that the above expression is indeed

independent of the solid angle Ωk̂′ . Without going into much details on the derivation,

we rather refer the reader to the excellent aforementioned reference and instead write

61



100 101 102 103

|q| [keV]
10 11

10 9

10 7

10 5

10 3

10 1

101

103

|f5p io
n|2 SC

E

Er = 0.1 keV   or |k′| = 10.11 keV
Er = 1 keV      or |k′| = 31.98 keV
Er = 10 keV    or |k′| = 101.59 keV
Er = 100 keV  or |k′| = 334.96 keV

100 101 102 103

|q| [keV]
10 11

10 9

10 7

10 5

10 3

10 1

101

103

|f3p io
n|2 SC

E

Er = 0.1 keV  or |k′| = 10.11 keV
Er = 1 keV     or |k′| = 31.98 keV
Er = 10 keV   or |k′| = 101.59 keV
Er = 100 keV or |k′| = 334.96 keV

Figure 4.4: The SCE ionization form factor: 5p shell of Xe on the left panel and the 3p shell
of the Ar on the right panel. Different colors represent different examples of the electron
recoil energy: red, blue, black and green correspond to Er = 0.1 keV, 1 keV, 10 keV and 100
keV respectively.

down the final expression factoring out a general coefficient, A``′L for convenience. In

view of equation (4.21) we have

|fn`ion(Er, |q|)|2SCE
=
|k′|3

π2

∞∑
`′=0

`+`′∑
L=|`−`′|

A``′L
∣∣∣∣ˆ ∞

0

dr r2jL(|q|r)R∗Er`′(r)Rn`(r)

∣∣∣∣2 . (4.34)

Both bound and free electron radial functions are provided in the same reference above

and the coefficient is defined in equation (4.31). The summation over `′ is truncated

at `′max = 7 given that a convergence is achieved.

In figure 4.4 we cross check our numerical implementation by presenting the ionization

factor in equation (4.34) for 5p shell of Xe on the left and 3p shell of Ar on the right.

We compare these results with those of Ref. [125] and find that they agree with each

other overall. We emphasize here that equation (4.21) is conventionally different from

the corresponding one in Ref. [125], ours is greater by a factor of 2π.
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4.3.2 Relativistic Treatment: Dirac Continuum Energy

Since the previous two approximations are both non-relativistic, we are also considering

a third approximation in which both bound and ionized electron are described by wave

functions that are solutions to the Dirac equation in a spherically symmetric potential. We

will denote this case by DCE. In what follow we will briefly discuss how the Dirac Hamiltonian

is considered and in particular how did we choose the potential. For clarity, we are going to

denote the potential as an effective potential Veff(r) where r is the distance of the electron

from the center of the atom. The Hamiltonian that describes this approach is then

ĥ = ααα · p +me (β − 1) + Veff(r) (4.35)

where ααα and β are the Dirac matrices in the standard representation. The wave function in

general is decomposed into

ψnκm(r) =
1

r

 Pnκ(r) Ωκm(r̂)

iQnκ(r) Ω−κm(r̂)

 , (4.36)

Where Ω represents the two-component spherical spinor and Pnκ (Qnκ) is the large (small)

Dirac radial component. Note that the radial components depend on two integers n: the

principal quantum number and κ: the Dirac quantum number. In addition, it depends on

the absolute distance r and no spherical dependence is present. This decomposition of the

wave function allows one to remove the spherical dependence when solving the eigenvalue

problem. Therefore, it is safe to denote the wave function and the energy by only two

quantum numbers. One then would seek a solution to the eigenvalue problem

ĥψnκ = Enκψnκ. (4.37)
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This will lead to a coupled first order ordinary differential equation. It is important at

this level to remind our selves that the eigenvalue Enκ does not include the rest mass of

the electron as it is evident in the Hamiltonian above. The coupled differential equations

can be solved analytically for simple potential such as Veff(r) ∝ −1/r. However, we are

going to deal with potentials that take into account the nuclear size and structure of the

atom which naturally lead to more complicated potential. For, this reason we will seek a

numerical solution. We will consider two different approaches for the effective potential. We

remind the reader, for a full description please refer to the cited references below. First,

we consider a straightforward approach in which the effective potential is provided in a

parameterized formulae in which the parameters are optimized and determined through a

particular numerical method. We consider here two different methods.

i. EXP : this method [126] provides the potential in the following form

Veff(r) =

 −
Z
2R

(
3− r2

R2

)
r < R

−1
r
{Z −N + 1 + (N − 1)f(r)} r ≥ R

(4.38)

where Z, N and R are the atomic number, number of electrons and R = 2.2677×

10−5A1/3 in Bohr radius while A is the mass number. The coefficients and the

parameters of the function f given by f(r) =
∑nc

k=1 ckr
nke−βkr is then variationally

optimized by minimizing the expectation value of the Hamiltonian. A list of these

parameters are tabulated for different atoms Z ∈ [2, 88] and provided in Ref. [127]

ii. ERF : this method introduced in Ref. [128] provides another parameterized formu-

lae for an effective potential with the form

Veff(r) = −Z
r

+
n∑
i=1

ci
erf(
√
ai r)

r
, (4.39)

with the parameters are optimized by minimizing a particular measure. This mea-
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sure finds the difference between an effective density function based on the above

assumed potential and the Hartree-Fock density function. The optimized parame-

ters and the optimization procedure are provided in Ref. [128]. We would like to

note here that the first term in the above potential is our interpretation of what

the authors of the aforementioned reference denote by bare nuclear potential.

The naming of these two methods EXP and ERF does not reflect the physics behind them

but rather a convenient choice we make for later reference. Second, we consider the Dirac-

Hartree-Fock-Slater (DHFS) self consistent method provided in the package RADIAL [129].

The potential in this method consists of three different contributions:

Veff(r) = VDHFS(r) = Vnuc(r) + Vel(r) + Vex(r) (4.40)

The first term on the right side of the above equation is the nuclear potential which takes

care of the electrostatic interaction between the nucleus and the electron at a given distance

r. This potential is approximated by Fermi distribution to the proton density. The second

and third terms are the electric and exchange potential respectively. Both of these terms are

related to the electron density ρ(r) given by

ρ(r) =
∑
OS

= ψ†nκm(r)ψnκm(r), (4.41)

where OS stands for occupied orbitals. The method then is concerned with finding an

optimized form for the electric density which consequently gives an effective potential. The

way this optimization work is to assume an in initial electric density ρ(r) = ρ0 given by a

parameterization of Thomas-Fermi potential of neutral atoms. This initial density allows to

write an initial potential, V0, for equation (4.40) which then enables a numerical solution to

the eigenvalue problem in equation (4.37). Once the wave functions are determined a new

version ρ1 of the electric density, equation (4.41) is achieved and lead to a new version of

the potential, V1. Now the new potential that inters the eigenvalue problem is a weighted
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state Xe absolute ionization energy in atomic units (27.211 eV).
n`j n κ -Z/r [130] V ERF

eff [126,127] V EXP
eff [128] V DHFS

eff [129]

1s1/2 1 -1 1519 1277 1261 1263 1270

2s1/2 2 -1 383.8 202.5 196.4 196.2 199.1

2p1/2 2 1 383.8 189.7 184.5 184.2 187.6

2p3/2 2 -2 368.1 177.7 172.6 172.3 175.5

3s1/2 3 -1 168.8 43.01 40.39 40.36 41.24

3p1/2 3 1 168.8 37.66 35.44 35.43 36.37

3p3/2 3 -2 164.1 35.33 33.17 33.15 34.05

3d3/2 3 2 164.1 26.02 24.48 24.50 25.39

3d5/2 3 -3 162.7 25.54 24.00 24.03 24.89

4s1/2 4 -1 94.21 8.430 7.401 7.445 7.662

4p1/2 4 1 94.21 6.453 5.649 5.701 5.909

4p3/2 4 -2 92.25 5.983 5.203 5.251 5.438

4d3/2 4 2 92.25 2.711 2.368 2.425 2.566

4d5/2 4 -3 91.65 2.634 2.296 2.353 2.488

5s1/2 5 -1 59.97 1.010 0.851 0.869 0.869

5p1/2 5 1 59.97 0.493 0.465 0.479 0.454

5p3/2 5 -2 58.97 0.440 0.422 0.434 0.403

Table 4.1: The absolute values of the ionization energy of different shells for the Xe atom
comparing different types of method for estimating the potential.

average of V0 and V1. These steps are iterated until a convergence in the updated potentials

sequence is achieved. In what follows, we would like to compare the above three different

potentials V EXP
eff , V ERF

eff and V DHFS
eff in terms of the ionization energy of different orbitals of

Xe and Ar atom. We emphasize that all the subsequent calculations are made using the

package RADIAL which in addition to estimating the DHFS potential, it also solves the Dirac

equation for arbitrary input potential and provides a numerical values for the eigenvalues

and eigenfunctions. Therefore, for V EXP
eff and V ERF

eff we will use the parameterized form

as explained above and for V DHFS
eff we will rely on the pre-implemented DHFS method in

RADIAL. In table 4.1 we compare the absolute ionization energy of the Xe atom shells for

these three methods. Also for comparison we list out in the second column the results

provided in Ref. [130]. For numerical implementation consistency we also estimate in the
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first column the well-known analytically estimated energies when the potential is very simple.

For the third and fourth columns, we also cross checked our implementation by considering

another numerical package, dftatom [131], that is designed to solve the eigenvalue problem

in equation (4.37) and we found exact similar results. We also estimate the ionization energy

for Ar and present it in table 4.2.

state Ar absolute ionization energy in atomic units (27.211 eV).
n`j n κ -Z/r V ERF

eff [126,127] V EXP
eff [128] V DHFS

eff [129]

1s1/2 1 -1 162.7 114.5 114.3 116.8

2s1/2 2 -1 40.72 11.09 11.16 11.52

2p1/2 2 1 40.72 8.637 8.723 9.167

2p3/2 2 -2 40.54 8.556 8.644 9.080

3s1/2 3 -1 18.08 1.046 1.082 1.063

3p1/2 3 1 18.08 0.530 0.561 0.537

3p3/2 3 -2 18.03 0.524 0.555 0.530

Table 4.2: The absolute values of the ionization energy of different shells for the Ar atom
comparing different types of method for estimating the potential.

Our point of interest is to estimate the ionization form factor in a fully relativistic pic-

ture. The ionized electron is a free electron but still satisfies the eigenvalue problem (4.37),

however, the energy will be a free positive continuous parameter rather a discrete quantum

number. For clarity and in comparison with equation (4.36) we denote these states by the

recoil energy Er as follows:

ψErκm(r) =
1

r

 PErκ(r) Ωκm(r̂)

iQErκ(r) Ω−κm(r̂)

 , (4.42)

where PErκ (QErκ) is the large (small) Dirac radial component of the free state. Now, we

turn into the calculation of the ionization form factor, |fnκion(Er, |q|)|2. Before doing so, we

need to specify the form of transition factor as in equation (4.22) which will have a very
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similar form as SCE case in equation (4.33)

fDCE
ei→ef (q) =

ˆ
d3rψ†Er`′m′(r) eiq·r ψn`m(r). (4.43)

Keep in mind that the Dirac wave functions are four-dimensional vectors and the operator

in the middle decides the form of the interaction. In this current discussion we still assuming

that the dark matter mediator is a vector boson that interacts with electron through a

vector coupling. In this case the operator in the middle is just eiq·r times a 4-by-4 identity

matrix which will leave the large and small component unmixed when performing the dot

product above. Therefore, and without spending much time on how to factorize the angular

component that is coming either from the spherical spinors Ω or spherical wave expansion

of eiq·r, the transition factor squared is found in Ref. [130] as:

∣∣∣fDCE
ei→ef (q)

∣∣∣2
V

=
∑
κ′

∑
L

CL
κκ′ (RP +RQ)2, (4.44)

with subscript on the left denoting vector interaction and the radial integrals RP and RQ

given by

RP =

ˆ ∞
0

PErκ′PnκjL(|q| r)dr (4.45)

and

RQ =

ˆ ∞
0

QErκ′QnκjL(|q| r)dr, (4.46)

where CL
κκ′ defined in Ref. [130] is an overall angular coefficient that is independent of the

solid angle Ωk̂′ and κ (κ′) is the Dirac quantum number for bound (free) state. Note that the

summation over κ′ is in fact a summation over {`′j′} where for every value of `′ there is a set

of allowed values of j′. In estimating the radial integrals, the radial functions for free and

bound states are outputs of the package RADIAL. We then perform the integral numerically

over r starting from 0 and stops at some maximum value. For illustration, let us denote the

integrand generically by I(r). The free state radial functions tend to oscillate rapidly at high
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Figure 4.5: Transition factor for iodine 3s shell as a function of the momentum transfer at
∆E = 2keV. Left: we test the convergence of the summation over κ′ by fixing one potential
method. Right we compare the transition factor given different methods for the potential.

distances while the bound state ones approaches zero. This allows the peak of oscillation

of the overall integrand to become smaller with distances. We perform the integral over

segments of r such that each segment is given by one Bohr radius, a0, as

R =
imax∑
i=0

ˆ (i+1)a0

ia0

I(r)dr. (4.47)

This summation is truncated when the ratio between the term at which we truncate and the

entire summation is less than 10−5. In what follows we test our calculations by comparing

our results to [130]. For comparison we use the full deposited energy ∆E that is responsible

to free an electron with an absolute bound energy |EB
nκ| to a free state of energy Er. In figure

4.5 we consider the transition factor for iodine energy shell 3s and ∆E = 2keV as a function

of |q|. On the Left we show that by varying the upper limit `′max for the summation over

κ′ in equation (4.44) while fixing the potential V ERF
eff . On the right side we chose `′max = 7

and consider different methods for the potential. The unit aum stands for atomic unit

of momentum. We see a very good agreement with [130] and a consistency between the

different potential methods. In figure 4.6 on the left side we see the consistency between the

different potential methods persist for high momentum transfer values. On the right side

we see the different contributions of many energy shells of Xe using one potential method,
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Figure 4.6: Left iodine 3s transition factor as a function of the momentum transfer at ∆E =
4keV for different potential methods. Right: Xe ionization form factor with contributions
at ∆E = 2keV from different energy shells.

V ERF
eff . We notice that at high momentum transfer some deeper energy shells such as 3s has

higher contribution than others. In fact, we can also consider the case when the dark matter

mediator interacts with electron through scalar (γ0), axial-vector (γ5) or pseudo-scalar (γ0γ5)

with the matrices in the previous brackets replacing the identity matrix in equation (4.43)

as in Ref. [130]. They are respectively given as

∣∣∣fDCE
ei→ef (q)

∣∣∣2
S

=
∑
κ′

∑
L

CL
κκ′ (RP −RQ)2

∣∣∣fDCE
ei→ef (q)

∣∣∣2
A

=
∑
κ′

∑
L

DL
κκ′ (RPQ −RQP )2

∣∣∣fDCE
ei→ef (q)

∣∣∣2
P

=
∑
κ′

∑
L

DL
κκ′ (RPQ +RQP )2, (4.48)

with DL
κκ′ is an angular coefficient while RPQ and RQP are the radial integrals

RPQ =

ˆ ∞
0

PErκ′QnκjL(|q| r)dr (4.49)

and

RQP =

ˆ ∞
0

QErκ′PnκjL(|q| r)dr, (4.50)
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Figure 4.7: Different transition factors that correspond to different mediator types.

respectively. As may have been anticipated, the presence of the γ5 is responsible for the

mixing between the small and large Dirac component in the last two lines of equation (4.48).

In figure 4.7 we compare transition factors that correspond to different mediators. We

see that pseudo-scalar case has larger values when compared to others at high momentum

transfer. The one corresponds to the axial-vector is very suppressed while vector and scalar

are very similar. In fact, and in order to understand the differences between transition factors

corresponding to different mediators, one has to observe the radial integrals in equation

(4.46) and (4.50). The key is the relative contribution between the large (P ) and small (Q)

Dirac components. For example, in the case of the vector and scalar mediators, there are

two terms proportional to RPRQ and R2
Q where the former has Q2 and the latter has Q4

dependence. These terms are suppressed when compared to the last one that depends on

the large Dirac component, R2
P which has 4 powers of P . For the case of axial-vector and

pseudo-scalar all terms have same powers of P and Q and hence the suppression of axial-

vector case is attributed to relative minus sign. We would like to emphasize that, this was

a rough argument to understand the differences between the transition factors. One has to

keep in mind that things are much more complicated and a sophisticated analysis has to

be considered. For example, the role of the spherical Bessel function must be understood

since it tends to oscillate very rapidly at large qr. Moreover, the ionized electron whose wave
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Figure 4.8: Xe ionization form factor as a function of the momentum transfer at different
electron recoil energies represented by different colors. Left, center and right panels corre-
spond to 5p, 4d and 3s shells respectively. The dotted, dashed and solid line represent the
PW, SCE and DCE approximations restrictively. Different colors represent different exam-
ples of the electron recoil energy: red, blue, black and green correspond to Er = 0.1 keV, 1
keV, 10 keV and 100 keV respectively.

functions is a solution to the Dirac equation in the continuum positive energy oscillates very

rapidly at large radii.

To conclude the ionization form factor estimation, it is very important to compare the

aforementioned three approximations to each other. First, let us write the form factor in its

final form for relativistic case

∣∣fκ`ion(Er |q|)
∣∣2
DCE, i

=
|k′|3

π2

∣∣∣fDCE
ei→ef (q)

∣∣∣2
i
, (4.51)

where the subscript i corresponds to the different 4 mediators we considered above. Notice

that the DCE is similar to the SCE in which the transition factor squared is independent of

the angles of the outgoing electron in contrast to the PW.

Now in comparing the three approximation PW, SCE, and DCE we would like to focus on

the regions where the relativistic corrections are more pronounced and take vector mediator

as an example. These regions of course depend on the value of the recoil electron energy

and in our case they are roughly greater than |q| v 100 keV. In figure 4.8 we compare the

dependence of |fion(Er, |q|)|2 for the three approximations on the momentum transfer at

different values of recoil energies of the ionized electrons. We show this for the 5p, 4d and
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Figure 4.9: Ar ionization form factor as a function of the momentum transfer at different
electron recoil energies represented by different colors. Left (right) panel corresponds to 3s
(2p) shell. The dotted, dashed and solid line represent the PW, SCE and DCE approx-
imations restrictively. Different colors represent different examples of the electron recoil
energy: red, blue, black and green correspond to Er = 0.1 keV, 1 keV, 10 keV and 100 keV
respectively.

3s shells of Xe. The dotted, dashed and solid line respectively represents the PW, SCE

and DCE approximation while different colors represent different electron recoil energies.

We repeat the same thing in figure 4.9 but this time for 3s and 2p shells of Ar. In the

relativistic case, when referring to a shell by its principal and orbital angular momentum

quantum numbers, n`, we in practice assume the addition of contributions from different

total angular momentum quantum numbers. For example, 3p = 3p1/2 +3p3/2. We see overall

that the DCE approximation is more dominant at high momentum transfer. As has been

noted in Refs. [132, 133], we see in some cases such as those of small recoil energies, the

difference between the different approximations could be few order of magnitudes. This is a

very important point, especially when the physics of interest has high momentum transfer.

4.3.3 The Free Particle Limit of the Ionization Form Factor

In this subsection we are interested in the asymptotic form of the ionization form factor. This

will validate a very important assumption we made in the previous chapter when we treated
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Figure 4.10: The asymptotic behavior of the ionization form factor as the recoil energy is
increased. Different colors represent different examples of the electron recoil energy: red,
blue, black and green correspond to Er = 100 keV, 1 MeV, 10 MeV and 100 MeV respectively.
The dotted lines represent the corresponding |k′| values given by

√
2meEr + E2

r .

electrons as free particles. In equation (4.14) we started with a free scattering differential

cross section while making the following replacement

δ3(p + k− p′ − k′)→ |fei→ef (q)|2/(2π)3, (4.52)

to account for the atomic effects by introducing the transition factor, |fei→ef (q)|2. We later

defined the ionization form factor in equation (4.21). The above replacement is needed when

we lower the recoil energy, however as we increase the recoil energy the above replacement

is flipped:

as Er increases : |fei→ef (q)|2/(2π)3 → δ3(p + k− p′ − k′). (4.53)

That means the transition factor and consequently the ionization form factor should asymp-

totically behave as a delta function as we increase Er. To gain such high recoil energy the

incoming momentum p should be very high which allows one to effectively set k to zero, i.e.,

the delta function becomes δ3(q− k′). Therefore we anticipate:

as Er increases : |fion(Er, |q|)|2 → 8π |k′|3 δ3(q− k′). (4.54)
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In figure 4.10 we demonstrate the asymptotic behavior of the ionization form factor by taking

5p shell of Xe and using the PW approximation as an example. We see that as we increase

the recoil energy, indeed the form factor behave as a delta function centered at the |k′| as

expected by equation (4.54). This is on the other hand validates the assumption we made in

the previous chapter when we considered the electron as free particles given that a high recoil

energy is required because of the threshold energy of the experiments. Such an assumption

shall not be valid when we consider low recoil energy in the next chapters.

In this chapter, we have introduced a very general formalism for the elastic scattering

differential cross section of a generic dark matter particle with the electron. We incorporated

effects from binding energy as well as the atomic structure by introducing the transition

factor and hence the ionization form factor. We explored few different approximations for

the ionization form factor and categorized them into non-relativistic and relativistic ones.

When investigating the relativistic case, we have explored different ways of representing the

potential energy of the atoms and achieved great agreement between them as well as cross

checked against existing literature. We took the mediator of the dark matter to be a vector

boson as an example throughout the chapter and later generalized the discussion to other

mediators such as scalar, pseudo-scalar and axial-vector. We also compared the different

approximations for the ionization form factor to each other and observed the significant

corrections at high momentum transfer due to relativistic treatment. Finally, we presented

a short discussion on the asymptotic behavior of the ionization form factor by showing the

energy scale at which it behaves as a delta function justifying an assumption made earlier

in the previous chapter.
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Chapter 5

Boosted Dark Matter at Direct Detection

Experiments: Low Energy Electron Recoil

In this chapter, we generalize the discussion of BDM we had earlier on two fronts. First, we

relax the condition m0 > m1 > mV to just m0 > m1 and allow the degenerate scenario. Sec-

ond, we generalize dark vector mediator and fermionic BDM to a class of 7 different models.

We begin the chapter by introducing the models and study their energy spectral shapes in

terms of benchmark points which encapsulate different features of the kinematics. We then

incorporate the low recoil treatment introduced in the previous chapter and investigate the

impact of the ionization form factor on the BDM phenomenology. In terms of detection,

and complementary to chapter 3, we focus on low electron recoil experiments and take the

recent XENON1T excess as an example. We discuss how the interpretation of such an excess

can be explained by several BDM model and moreover how the ionization form factor can

severely change the results.

5.1 Shape Analysis

5.1.1 The Models

Since we are in place to discuss low electron recoil as a result of scattering by a fast moving

dark matter particle, it is of an interest to study the recoil energy spectrum of different

simple dark matter scenarios. These scenarios will be classified according to the particle

and interaction nature of both the dark matter particle and the mediator. We will begin our
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case mediator DM Lint |A|
2

VF Vµ χ1

(
gVe ēγ

µe+ gVχ χ̄1γ
µχ1

)
Vµ 8me {me (2E2

1 − 2E1Er + E2
r )− (m2

e +m2
1)Er}

VS Vµ ϕ1

(
gVe ēγ

µe+ gVϕϕ
∗
1∂

µϕ1 + h.c.
)
Vµ 8me {2meE1 (E1 − Er)−m2

1Er}

AF Aµ χ1

(
gAe ēγ

µγ5e+ gAχ χ̄1γ
µγ5χ1

)
Aµ 8me {me (2E2

1 − 2E1Er + E2
r ) + (m2

e +m2
1)Er}

+32m2
em

2
1

(
2E

2
rm

2
e

m4
A

+ 2Erme
m2
A

+ 1
)

PF a χ1

(
igae ēγ

5e+ igaχχ̄1γ
5χ1

)
a 4m2

eE
2
r

PS a ϕ1

(
igae ēγ

5e+ igaϕm1ϕ
∗
1ϕ1

)
a 8mem

2
1Er

SF φ χ1

(
gφe ēe+ gφχχ̄1χ1

)
φ 4me (Er + 2me) (2m2

1 +meEr)

SS φ ϕ1

(
gφe ēe+ gφϕm1ϕ

∗
1ϕ1

)
φ 8mem

2
1 (Er + 2me)

Table 5.1: Scenarios of simple dark matter interaction with electron.

description by considering a simple t-channel scattering of a dark matter particle that is either

a fermion χ1 or a complex scalar ϕ1. The exchange particle or the mediator is either vector

Vµ, axial-vector Aµ, pseudo-scalar a or scalar φ. We are concerned with only renormalizable

Lorentz invariant interactions. Therefor, from the set of two dark matter particles {χ1, ϕ1}

that interacts with electron e through the set of mediators {Vµ, Aµ, a, φ} there are 7 different

scenarios for the interaction that will be denoted generically by a Lagrangian Lint. For

clarity and for future reference, we abbreviate these 7 scenarios by two characters, the first

represents what type of mediator and the second represents what type of dark matter. For

example, AF, means that dark matter is considered to be a fermion while the mediator is

axial-vector. The coupling constants are denoted by g sub-scripted by the external particle

type and super-scripted by the mediator type. For example, the coupling constant of fermion

dark matter with the scalar mediator is denoted by gφχ. In table 5.1 we summarize these

different scenarios and provide a list of the corresponding interaction Lagrangian in the

fourth column. Note that we chose the dimensionful couplings of both PS and SS cases to

be normalized to the dark matter mass.
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For the purpose of the shape analysis, let us assume that the electron is free and at

rest given that dark matter is fast enough. In that case the differential cross section with

respect to the electron recoil energy is given by equation (4.19) with the free limit provided

in equation (4.54) and negligible binding energy:

dσ1e

dEr
=

1

64π

1

|k′|2me(E2
1 −m2

1)

ˆ |q|max

|q|min
d|q| |q| |M|2 8π|k′|3 δ(|q| − |k′|)

4π|q|2
, (5.1)

where we have used v1e =
√

1−m2
1/E

2
1 , |k′|2 = 2meEr + E2

r and the fact that the matrix

element squared is spherically symmetric in q. Using λ (s,m2
e,m

2
1) = 4m2

e(E
2
1 − m2

1), this

will lead to a familiar form

dσ1e

dEr
=

me |M|2

8π λ (s,m2
e,m

2
1)
. (5.2)

Finally, and to make comparison between different models transparent we use:

dσ1e

dEr
=

(
gijg

i
e

)2
me

8πλ (s,m2
e,m

2
1) (2meEr +m2

i )
2 |A|

2
, (5.3)

where i ∈ {V,A, a, φ}, j ∈ {χ, ϕ}, and λ(x, y, z) = (x−y−z)2−4yz. Where we have used |A|
2

to denote the averaged matrix element squared without the couplings and the propagator.

The differential cross section above has an end point that is given merely by the kinematics

according to

Emax
r =

2me|p|2

s
, (5.4)

where the Lorentz invariant variable s = m2
1 + m2

e + 2meE1 and |p| is the magnitude of

the incoming dark matter momentum that is given by the on-shell condition. Note that the

above equation is equivalent to (3.11) but written in a more compact form. Also note that

the λ factor in the denominator can be simplified as

λ
(
s,m2

e,m
2
1

)
= 4m2

e|p|
2. (5.5)
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We summarize the expressions for the amplitudes of the different scenarios in the last

column of table 5.1. Finally it is important to note that there are 4 free parameters for a

given model

model parameters = {gijgie, E1,m1,mi}. (5.6)

In fact, the number of independent parameters are 5, but because the couplings are always

a multiple of each other we consider them as one parameter. What we are interested in

now is to investigate the recoil electron spectral shapes of the aforementioned scenarios. For

simplicity, let us consider normalized differential cross section and hence we do not worry

about the couplings at least for now. In order to study all the physics aspects of a particular

model, a 4-dimensional scan over the model parameters should be performed. Since this is

a tedious and inefficient approach, we rather focus on a set of a representative benchmark

points (BMP) that reflects different physics aspects. Before deciding what these BMPs are,

it is helpful to think about some general kinematics such as the velocity of dark matter, v1e

and Emax
r . We are considering fast moving dark matter, i.e., v1e should be relatively close to

the speed of light, v1e & 0.1 c. In addition to this, we are interested in a relatively low recoil

electron energy and in particular those whose Emax
r & 1 keV for reasons that will become

obvious when we study dark matter detection phenomenology later. As can be easily verified,

both v1e and Emax
r are fully determined by two model parameters, m1 and E1. To illustrate

the parameter space of interest, in figure 5.1 we perform a scan over two model parameters

m1 and E1 by plotting the curves that correspond to Emax
r and v1e. The black dotted, dashed

and solid lines show the velocity of dark matter v1e/c = 0.1, 0.9 and 0.99 respectively while

solid blue, red and green show the Emax
r curves. The maximum recoil curves all exhibit some

linear asymptotic behavior that they become parallel to the v1e curves at high mass and

energy. Moreover, cases with relatively low Emax
r will asymptotically align with v1e = 0.1

c curve with a slope equivalent to one. These interesting regions are those corresponding

to the degeneracy between dark matter masses, i.e., m0/m1 ≈ 1. This ratio increases once

we start moving diagonally to the top left part of the parameter space away from the black
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Figure 5.1: Parameter space of m1 and E1 showing the curves that correspond to Emax
r = 1

keV, 10 keV and 10 MeV in solid blue, green and red respectively. Also shows the curves
that correspond to v1e/c = 0.1, 0.9 and 0.99 in black dotted, dashed and solid respectively.

dotted line. For our purpose and as we have discussed above, we will focus on the region

that is located roughly to the left of the blue curve to ensure both v1e & 0.1 c and Emax
r & 1

keV.

5.1.2 Case Studies: Vector Mediator and Fermionic Dark Matter

Since we are concerned with the normalized electron spectral shapes, in addition to m1 and

E1 we should also consider mi. Also remember E1 = m0. In the first two cases we investigate

the low-boosted region around the magenta star on the right side of figure 5.1 by looking at

different mediator masses. In the last case we explore the high-boosted territory around the

gray star on the left side of the same figure. This particular region is of a very important

interest since at first glance it may indicate that a low electron recoil is hard to achieve,
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however, and as we will show below that is not the case. We represent these three cases as:

BMP1 : m0 ≈ m1 � me, mi � me,

BMP2 : m0 ≈ m1 � me, mi < me, (5.7)

BMP3 : m0 � me > m1, mi < me.

In what follows, we present a summary of equation (5.3) for the models in table 5.1 in the

three limiting cases given by the BMPs above. Let us consider first the VF case and rewrite

equation (5.3) as

dσ1e

dEr
=

(
gVχ g

V
e

)2

32πme|p|2
|A|

2

(2meEr +m2
V )

2 . (5.8)

• BMP1: here we apply the first BMP conditions on equation (5.8). For convenience,

let us parameterize the squared amplitude as:

|A|
2

= 8m2
eE

2
1

{
2−

(
2
me

E1

+
m2
e

E2
1

+
m2

1

E2
1

)
Er
me

+
E2
r

E2
1

}
. (5.9)

In the same time, we can see that in the region around the magenta star in figure

5.1, a choice of the maximum recoil energy can easily be made such that Er � me.

Therefore, and with the help of the above parametrization, one can approximate the

numerator and the denominator of the second factor of equation (5.8) as

|A|
2
≈ 16m2

eE
2
1 , (5.10)

and (
2meEr +m2

V

)2 ≈ m4
V , (5.11)

where we have dropped out terms that are proportional to Er
me

and E2
r

E2
1

given that their

corresponding coefficients are smaller than or equal to 1. Eventually, we approximate
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the differential cross section by

dσ1e

dEr
≈
(
gVχ g

V
e

)2
meE

2
1

2π|p|2m4
V

. (5.12)

Which means that the spectrum should be approximately flat.

• BMP2: this case is very similar to BMP1, but the only difference here is that mV < me

which means that the mediator mass could be in the same order of recoil energy. There-

fore, one can not simply remove terms that are proportional to Er
mV

. That consequently

mean, the amplitude will be exactly the same as before while the denominator that is

coming from the propagator should not be approximated.

dσ1e

dEr
≈

(
gVχ g

V
e

)2
meE2

1

2π|p|2(2meEr +m2
V )2

. (5.13)

• BMP3: this case is kinematically different since it is located in the high boost region. In

fact, this case is still similar to BMP2 at least in the mediator mass in the denominator.

However it is different in the squared amplitude. Let us rewrite equation (5.9) as:

|A|
2

= 8m2
eE

2
1

{
2−

[
2 +

me

E1

+
m2

1

meE1

]
Er
E1

+
E2
r

E2
1

}
. (5.14)

According to the third line in equation (5.7), the square bracket is effectively approx-

imated by 2. Also notice that in this BMP, Emax
r is is relatively in the same order of

E1 though smaller. Therefore, we can approximate the differential cross section by

dσ1e

dEr
≈

(
gVχ g

V
e

)2
meE2

1

2π|p|2(2meEr +m2
V )2

[
1− Er

E1

]
, (5.15)

where we have dropped the term that is proportional to E2
r

E2
1
. In practice, if the differen-

tial cross section peaks at low Er and exhibits a falling behavior with increasing Er, it

is safe to drop the square bracket completely from the above equation. Which means
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that in some limit BMP3 becomes similar to BMP2.

5.1.3 Case Studies: all other Models

For each of the 7 models provided in table 5.1, we can repeat the same analysis we have

done above in three limiting cases given by the BMPs in equation (5.7). To avoid a lot

of repetition, we rather provide a summary of the final expressions of the differential cross

section as well as some general comments. We first remark that, for any given model with

mediator mass mi, the denominator of the propagator will always be approximated by m4
i

for BMP1 however no approximation is made for the other two BMPs. We also note that

the squared amplitude is different from a model to another. But it is helpful to see that as

long as it has no dependence on the mass of the mediator, |A|
2

has the same form for both

BMP1 and BMP2.

As done for the VF case in equation (5.12), (5.13) and (5.15), in table 5.2 we summarize

the final expressions of the differential cross section for all the 7 models we considered above.

We do that for the three limiting cases given by the BMPs in equation (5.7). We observe

the similarity between the vector, axial-vector and scalar mediators, 5 models in total. For

instance, in BMP1, all of them give rise to a flat distribution. They also have very similar

form for BMP2 and BMP3, for example when Er � m2
i /2me they all exhibit a falling

distribution with increasing Er. On the other hand, when Er � m2
i /2me they all tend to

have a flat distribution with decreasing Er. In figure 5.2 we show two examples of these

5 cases, namely VF (AF) case in the left (right) panel. For BMP1 (red solid curve), we

chose the numerical values of the parameters m1 and E1 in the degenerate regime to be in

the center of the magenta star in the right side of figure 5.1 with mi = 15 MeV. For BMP2

(green solid curve), we do the same as BMP1 but change the mass of the mediator to mi = 30

keV. For BMP3 (blue solid curve), we chose the value of the parameters m1 and E1 in the

highly boosted region to be in the center of the gray star on the left side of figure 5.1 with
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dσ1e
dEr
≈ (gijgie)

2
me

2π|p|2 ×

case BMP1 BMP2 BMP3
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1

m4
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1 (1−Er
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)}
(2meEr+m2

A)2
table 5.1

PF E2
r

4m4
a

E2
r

4(2meEr+m2
a)2

E2
r

4(2meEr+m2
a)2

PS
m2

1Er
2mem4

a

m2
1Er

2me(2meEr+m2
a)2

m2
1Er

2me(2meEr+m2
a)2

SF
m2

1

m4
φ

m2
1

(2meEr+m2
φ)2

m2
1

(
Er
2me

+
E2
r

4m2
1

)
(2meEr+m2

φ)2

SS
m2

1

m4
φ

m2
1

(2meEr+m2
φ)2

m2
1(1+ Er

2me
)

(2meEr+m2
φ)2

Table 5.2: Approximation of the differential cross section with respect to electron recoil
energy for the 7 model scenarios in table 5.1 estimated at the three BMPs given by equation
(5.7).

mi = 30 keV. For clarity, throughout our numerical analysis we use:

BMP1 : m0 = 1.002m1 = 10 MeV, mi = 15 MeV,

BMP2 : m0 = 1.002m1 = 10 MeV, mi = 30 keV, (5.16)

BMP3 : m0 = 103m1 = 10 MeV, mi = 30 keV.

We note that in making these plots, we used the full expressions as in table 5.1 rather than

the approximated expressions in table 5.2. As we have analyzed above, we see that indeed

the first BMP exhibits a flat distribution while the other tend to have a falling distributions.
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Figure 5.2: Differential cross section with respect to the electron recoil energy normalized to
the total cross section. Left (right) panel corresponds to the VF (AF) scenarios while red,
green and blue solid curves represent the first, second and third BMPs respectively.
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Figure 5.3: Differential cross section with respect to the electron recoil energy normalized to
the total cross section. Left (right) panel corresponds to the PF (PS) scenarios while red,
green and blue solid curves represent the first, second and third BMPs respectively.

Notice that red and green curves have an end point somewhere around 3.7 keV that is

because the first and second BMPs share the same kinematics as we explained in figure 5.1.

In other words the maximum recoil energy is solely determined by m0 and m1.

In contrast to other mediators, pseudo-scalar mediator (two cases) exhibits a rising dis-

tribution for the first BMP. More precisely, the distribution rise as a linear and quadratic

function in Er for scalar and fermionic dark matter respectively. For the second and third

BMPs, the PF case distribution rises with increasing Er in a quadratic form in the region

where Er � m2
a/2me. As Er continue increasing beyond m2

a/2me the distributions start
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to become flat. The PS case is also similar in the sense that its distributions rise, though

linearly, in the region where Er � m2
a/2me however it exhibits a falling distribution beyond

m2
a/2me. We show the pseudo-scalar mediator for fermionic and scalar dark matter in the

left and right panels of figure 5.3. Since the blue curve (BMP3) has an end point at extremely

large Er, we see that the normalized distribution in the PF case has a very slow increase

and has to be artificially enhanced.

5.2 Scattering Energy Spectrum at Low Electron Recoil

At this level of the analysis, it is very important to highlight the effects of the ionization

form factor we discussed in the previous chapter. Since all of the important details had been

worked out above, all one needs to do is to replace equation (5.1) with equation (4.19) which

takes care of low recoil effects. For direct comparison with the discussion in the previous

section, we will continue presenting the numerical results in view of the three BMPs as

in equation (5.17). These BMPs, spans 5 order of magnitudes in the transfer momentum,

|q|. In figure 5.4, we compare the three ionization form factors: PW (dotted black), SCE

(dashed black) and DCE (solid) with the latter having four types of mediators: V (black),

A (blue), S (green) and P (red). We notice the overall differences between non-relativistic

approximation and relativistic one. For example, at low |q|, non-relativistic approximations

has significantly high values in contrast to the relativistic case. On the other hand, at high

momentum transfer, the relativistic approximation is dominant. At momentum transfer

close to the |k′| value all approximation seem to overlap with each other.

Now we can numerically discuss theses effects and their implications on the normalized

differential cross section. We take the Xe atom and particularly the contribution from its 3

outermost shell as an example. We study how the shapes of the energy spectrum changes

when including different approximations for the ionization form factor and compare it to the

free scattering case as discussed in the previous section. In figure 5.5 we repeat the same

(solid curves) as in figure 5.2 in which we take the VF case on the left and the AF case on
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Figure 5.4: Top: Xe 3s and 5s shells in the left and right panels respectively. Notice the
wide range of interest for the momentum transfer, |q|. For first and second BMPs we are
interested in the region where |q| < 60 keV. For the third BMP, we are interested in the
entire range. Bottom: the same as the top panel but for Ar 1s and 2s in the left and right
panels respectively.

the right panel however this time we add the ionization form factor effects due to the PW

approximation (dashed curves) and the DCE approximation in (dotted curves). Generally,

we observe a very similar behavior between the free and PW cases. In other words, it appears

that the PW approximation does not dramatically deform the energy spectrum at least for

the 3 considered shell. We think that this is due to the PW behavior in the top right panel of

figure 5.4 which dominantly is flat with a sharp peak at |q| ∼ |k′| making it somehow similar

to a delta function behavior. On the other hand the DCE approximation highly depends

on the mediator type and can deform the shapes significantly. For example, BMP1 (red)
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Figure 5.5: Differential cross section with respect to the electron recoil energy normalized to
the total cross section. Left (right) panel corresponds to the VF (AF) scenarios while red,
green and blue solid curves represent the first, second and third BMPs respectively. The
solid curves correspond to the free scattering (the same as in figure 5.2), the dashed curves
includes the PW approximation and the dotted curves include the DCE approximation.

has exactly the same shape in VF and AF in free scattering however we observe that as a

result of the DCE approximation, the AF case transforms from a flat distribution to linearly

increasing one! Similar conclusion is drawn on the other BMPs (green and red). Also in

comparison with previous section, in figure 5.6 we repeat the same as in figure 5.5 but this

time for the PF case on the left and the PS on the right panel. We still observe the overall

similarity between the PW and the free case. However, the DCE is again case dependent.

For example, in the PS case, the peak of BMP2 distribution (green) shifts to the opposite

side after including the DCE approximation. In contrast to the previous figure, here the

mediator type is fixed but the DCE case still lead to different behavior in different models.

That means that the deformation in spectrum shape does not only depend on the mediator

type but it is also sensitive to the matrix element squared due to the convolution in equation

(4.19).

5.3 The XENON1T Excess

In application to the previous discussion so for and as a phenomenological example, we

would like to take the recent excess observed by the XENON1T experiment as a case study
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Figure 5.6: Differential cross section with respect to the electron recoil energy normalized to
the total cross section. Left (right) panel corresponds to the PF (PS) scenarios while red,
green and blue solid curves represent the first, second and third BMPs respectively. The
solid curves correspond to the free scattering (the same as in figure 5.3), the dashed curves
includes the PW approximation and the dotted curves include the DCE approximation.

for this section [134]. The excess was reported at electron recoil energy below 7 keV with

a noticeable excess (∼ 50 events) between 2 keV and 3 keV with 0.65 ton×year exposure.

Though unresolved β decays of tritium according to the XENON Collaboration and other

backgrounds [135] may explain the excess, it is still an interesting exercise to consider BDM

from the GC 12 as a source for the excess. And since this excess takes place at relatively

small recoil energies, it would be of a great importance to demonstrate the effects of the

ionization form factor. For dark matter interpretation to the XENON1T excess, see for

example Refs. [136–141].

In spirit of equation (3.10) we can readily write the differential distribution of the number

of expected BDM signal with respect to the electron recoil energy as

dNsig

dEr
= ∆T Φ1NXe ×


N eff
e

dσ1e
dEr

free scattering,∑
n,`

dσn`1e
dEr

PW, SCE and DCE.

(5.17)

Where the first three factors on the right side are respectively the exposure time of the

12There is nothing special about the GC, one can also consider other sources. We only take the GC as an
example.
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experiment, the BDM flux and the number of target atoms: there are roughly 4.6 × 1027

atoms in 1 ton of Xe. The top line corresponds to the free scattering with effective number of

electrons per Xe atom, N eff
e and the differential cross section is defined in equation (5.3). The

bottom line corresponds to differential cross section when including the ionization form factor

as in equation (4.19). Throughout the analysis of this section we will always fix the the BDM-

mediator coupling, gi1, to unity and adjust the electron-mediator coupling, gie, to produce

enough amount of events as desired by the XENON1T excess. For the other parameters,

we stick with three BMPs numerically defined in equation (5.17). We also consider detector

effects that are suitable for the XENON1T. For example we use a Gaussian, fres, for the

detector resolution and define it as:

fres

(
Er, Ẽr

)
=

1

σres

√
2π

exp

−
(
Er − Ẽr

)2

2σ2
res

 , (5.18)

with the tilde symbol indicating non-smeared quantities. For the parameter σres, we use the

energy dependent resolution defined in Ref. [134]. We use a detector efficiency, feff , [134]

and represent the differential cross section generically as

dσ1e

dEr
= feff (Er)

ˆ Emax
r

0

dẼrfres

(
Er, Ẽr

) dσ1e

dẼr
. (5.19)

In what follows, we show the number of BDM signal events (equation (5.17)) after applying

the detector effects above at the XENON1T detector normalized by ton×year of exposure.

We focus on examples that lead to tens of events in the region around 2-3 keV of electron

recoil. For comparison with the previous discussion of this chapter, we will present four

example models: VF, AF, PF and PS. In figure 5.7, top, we show the VF (AF) model in the

left (right) panel for free scattering assuming N eff
e = 18 electrons for three BMPs with the

parameter values and color representation as in the previous section. We report the total

cross section as well as the coupling value that is needed to generate the number of signal
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Figure 5.7: Number of dark matter signal at XENON1T for the two models: VF and AF in
the left and right panel respectively. Red, green and blue represent first, second and third
BMP respectively. The top row corresponds to the treatment explained in section 5.1 where
electron is assumed free with N eff

e = 18.. The bottom row consider the effects from binding
energy as well as atomic effects, i.e., including the ionization form factor. Where dashed
curves assume the PW approximation while dotted assume the DCE approximation. It only
counts contributions from the outermost 3 shells of the Xe atom.

excess desired by the XENON1T. In the bottom panel of the same figure, we repeat the same

as the top however we consider ionization form factor effects from the PW approximation

(dashed curves) and the DCE approximation (dotted curve). The curves solid, dashed and

dotted should be compared correspondingly for different models to that of figure 5.5, however,

this time we added the detector effects and plotted the number of signal events instead of

the cross section. We also observe the generic distortion in the shape of the distributions

due to the introduction of the ionization form factor. But the differences unfortunately are
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Figure 5.8: Number of dark matter signal at XENON1T for the two models: PF and PS in
the left and right panel respectively. Red, green and blue represent first, second and third
BMP respectively. The top row corresponds to the treatment explained in section 5.1 where
electron is assumed free with N eff

e = 18. The bottom row consider the effects from binding
energy as well as atomic effects, i.e., including the ionization form factor. Where dashed
curves assume the PW approximation while dotted assume the DCE approximation. It only
counts contributions from the outermost 3 shells of the Xe atom.

not very distinct in some cases due to the presence of the detector effects. For example, in

AF case of figure 5.5, we noticed that different ionization form factors dramatically lead to

different distributions in BMP1 and BMP2, however, due to detector effects this difference

is not so pronounced in figure 5.7. On the other hand, differences in BMP3 distributions still

persist even after detector effect due to the fact that BMP3 has much wider distribution.

Another thing that is very significant to highlight is the effect of the mediator type, see

figure 5.4. One major difference between the PW and DCE is that the latter is relativistic
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while the former is non-relativistic, additionally, the DCE, is capable of describing different

types of mediators while the PW is not. This makes the PW not suitable for mediators

such as pseudo-scalar or axial-vector because the different Lorentz structure they bring to

the transition factor of the previous chapter. In order to compare the PW to the DCE, in

figure 5.7, we artificially multiply the DCE case by an overall factor (see the legends of the

bottom panel). Notice that for the VF model, an order of 1 number is needed while 2 order

of magnitude is needed for the AF model. This highlights the fact that the PW is indeed

not suitable to mediators other than vector or scalar. In figure 5.8, we repeat the same thing

as in figure 5.7 however this time for model PF in the left panel and PS in the right panel.

Similar conclusions are drawn as above. For example, the pronounced shape difference in

the PS model between PW and DCE in figure 5.6 especially for BMP1 and BMP2 becomes

less pronounced due to detector effects while the difference still persist for BMP3 due to

its wider distribution. Also notice that the PW approximation overestimates the number

of signal events by more than 3 order of magnitudes making it unsuitable for pseudo-scalar

mediator. Finally, we intentionally dropped the third BMP from the left panel since it will

lead to a shape that raises over a long range of electron recoil causing an excess far beyond

the desired one by XENON1T, see figure 5.3.

By looking at the last two figures, we can say that different models of BDM are generally

capable of interpreting the XENON1T excess, however, the presence of the ionization form

factor can first severely change the shape of the expected distribution from free scattering

and second can reduce the number of expected signal events quite significantly.

Before concluding this section, it is important to highlight the effects of including all

allowed shells to our discussion above. We learned in section 4.1 that based on the kinematics,

there are allowed shells that contribute to the differential cross section denoted by {n`}allowed.

Since BMP1 and BMP2 generate relatively low electron recoil in contrast to BMP3, we

anticipate that the number of BDM signal should increase in BMP3 in comparison to the

others due to the possibility of exciting electrons deeper in the Xe atom. We demonstrate
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Figure 5.9: Number of dark matter signal at XENON1T for VF model including the ioniza-
tion form factor with allowed Xe shells where dashed curves assume the PW approximation
while dotted assume the DCE approximation. Red, green and blue represent first, second
and third BMP respectively.

this for the VF case in figure 5.9 by including all allowed shells: for BMP1 and BMP2,

{n`}allowed = {3p, 3d, 4s, 4p, 4d, 5s, 5p} while for BMP3 all shells are allowed. The curves of

this figure should be compared to those of the the bottom left panel of figure 5.7. As has

been anticipated, the number of BDM signal had increased overall with a higher increase in

BMP3. It is also noticeable to mention that the shapes had deformed slightly, for example,

the peak of BMP1 curve corresponding to the DCE approximation shifts slightly to the left

side. Moreover, we observe that the relative proportionality between the two approximation

has changed, see the artificial numerical factors in the legend, they are smaller when including

all allowed shells indicating the different behaviors of the ionization form factor shell by shell

for different approximations.

In summary of this chapter, we have considered a class of BDM models as a general-

ization to chapter 3 as well as relaxing the mass hierarchy condition to m0 > m1 only and

allowing degenerate cases. While studying the parameter space, we noticed the need of some

special treatment at low electron recoil energies. We did apply the ionization form factor

treatment developed earlier in chapter 4 by first deriving the free scattering limit, analyz-
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ing the parameter space into case studies and eventually study the electron recoil spectrum

for the different models. Additionally, we investigated how the ionization form factor can

dramatically change the shape of the energy spectrum not only by deforming it but in some

cases transforming it to totally different shape. Finally, we took the recent excess observed

by XENON1T as a proof of principle exercise to probe BDM at direct detection experiment

by scattering off an electron and showed the importance of the ionization form factor and

how different approximations could lead to very different conclusions.
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Chapter 6

Generic Fast Moving Dark Matter

As we have demonstrated in the previous chapters, BDM provides an interesting phenomenol-

ogy at different experiments. Though we were able to generalize our discussion from the very

particular scenario of chapter 3 (mass hierarchy and high electron recoil energy) to a class of

different models (while relaxing the hierarchy mass assumption) leading to a phenomenology

at low electron recoil energy in chapter 5, we are still considering a particular mechanism

to explain the high speed of dark matter. In this chapter we intend to generalize our dis-

cussion even more by considering somewhat simple mechanism independent scenario where

the speed of dark matter is not fixed to a particular mechanism as in BDM. Therefore, we

will generically refer to a dark matter with high speed to a fast moving dark matter without

focusing on the reasons why it is fast.

6.1 General Framework

With the formalism we have introduced in the previous chapters, we are in a position to

provide some general comments on fast moving dark matter. What we have done so far was

the case where the velocity, v1e, of the boosted dark matter particle was a consequence of the

mass difference between the heavy and light particles in the dark sector. As we have explained

above, the velocity is related to the energy, E1, and hence to the mass, m0, of the heavy state

in the dark sector. Moreover, an assumption on how the heavy states annihilate to the light

states was considered. This makes our approach somewhat mechanism dependent. However,

without a severe modification to our formalism, we can still introduce a general class of dark
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matter models irrespective of the interpretation of the dark matter velocity. Therefore, and

without focusing on any particular mechanism, we start by assuming that there exist a dark

matter particle with velocity v1e that can be relativistic in general. To make the transition

from our previous formalism more transparent and mechanism independent, we remove the

dependence on the heavy states parameters such as m0 from our formalism. We can do that

by re-writing equation (4.19) and instead parameterize it in the velocity v1e as follows

dσn`1e

dEr
=

1

64π

1− v2
1e

v2
1e

1

m2
1Er(2me + Er)(me − |EB

n`|)

ˆ |q|max

|q|min
d|q| |q| |M|2 |fion(Er, |q|)|2.

(6.1)

Sometimes, one is interested in estimating the cross section differential rate by factoring out

the momentum transfer dependence from the matrix element square in equation (4.13). As

in Refs. [120,122,123], this factorization takes the following form

|M|2 = |M|2|q|=αme × |FDM(|q|)|2, (6.2)

where |FDM(|q|)|2 is a dark matter form factor that carries the momentum transfer depen-

dence while the prefactor is related to the dark matter elastic scattering cross section with

the electron according to

σ̄1e =
µ2

1e

16πm2
em

2
1

|M|2|q|=αme , (6.3)

where µ2
1e is the dark matter electron reduced mass. With this modification, our expression

in equation (6.1) changes to

dσn`1e

dEr
=

σ̄1e

8µ2
1e

1− v2
1e

v2
1e

1

Er(1 + Er/2me)(1− |EB
n`|/me)

ˆ |q|max

|q|min
d|q| |q||FDM(|q|)|2|fn`ion(Er, |q|)|2.

(6.4)

Finally, in the limit where v2
1e � 1, Er � me and |EB

n`| � me we can immediately retrieve

dσn`1e v1e

dEr
≈ σ̄1e

8µ2
1ev1eEr

ˆ |q|max

|q|min
d|q| |q| |FDM(|q|)|2 |fn`ion(Er, |q|)|2, (6.5)
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which is the the same when ignoring the velocity averaging as in Refs. [120, 122, 123]. Note

that in this expression, the limits of integration over the momentum transfer shall be modified

to the non-relativistic ones, see for example Ref. [130]

|q|max/min = m1v1e ±
√
m2

1v
2
1e − 2m1(Er + |EB

n`|), (6.6)

and not those given in section 4.1.

6.2 The XENON1T Excess Revisited

At this stage it is important to note the major difference between what we are following

here and that used in references such as Refs. [133,136,142]. For example, in Ref. [136], the

equation that is equivalent to equation (6.5) has the form

(
dσn`1e v1e

dEr

)
∗

=
σ̄1e

2mev1e

ˆ |q|max

|q|min
d|q| a2

0 |q| |FDM(|q|)|2K, (6.7)

where K introduced in Ref. [130] as the “atomic kernel” is equivalent to the transition

factor |fei→ef (q)|2 of equation (4.21) which we know is a dimensionful quantity with units

= [momentum−3]. Since K is a dimensionless quantity in the above equation, we interpret

K = |fei→ef (q)|2 /a3
0. Therefore, while Er � me, we can re-express the above equation in

view of equation (4.21) as

(
dσn`1e v1e

dEr

)
∗
≈ 1

8(meEr)3/2

(2π)3α√
2

σ̄1e

v1e

ˆ |q|max

|q|min
d|q| |q| |FDM(|q|)|2 |fn`ion(Er, |q|)|2, (6.8)

where we have used a0 = 1/αme. Note that (2π)3α√
2

= O(1), an order of 1 number. Finally

we compare the expression in equation (6.5) to the above one and we find that the ratio

depends on the square root of the electron recoil energy:

dσn`1e v1e

dEr
/

(
dσn`1e v1e

dEr

)
∗
≈
√
Er/me. (6.9)
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In expressing this ratio we assumed µ1e can be approximated by me for dark masses way

above the electron mass. We think that this square root difference originated in equation

(6) of Ref. [133] which is similar to equation (6.7) but with velocity averaging. The authors

claimed that they used Ref. [143] whose equation (2) is similar to our equation (6.5) but with

velocity averaging. It is clear that in the original expression, equation (2) of Ref. [143], the

differential cross section with respect to Er (not logEr) depends explicitly on Er as |k′|3/Er

which grows as
√
Er. The reader can see that clearly by looking at equation (6.5) and (4.21).

On the other hand, equation (6) of Ref. [133] does not explicitly depend on Er.

As a cross check, Ref. [130] states that a Born approximation of a fermionic dark matter

scattering off an electron via a vector mediator can be approximated by a Yukawa-type

interaction. The matrix element squared of such an interaction can be written as

|M|2VF, non−rel. =
16 g4m2

em
2
1

(|q|2 +m2
V )2

, (6.10)

where g represents a generic coupling. Now we use the above expression as well as the limit

v2
1e � 1, Er � me and |EB

n`| � me to rewrite equation (6.1)

dσn`1e

dEr
=

4α2
χ

π

me

√
2meEr
v2

1e

ˆ |q|max

|q|min
d|q| |q|

(|q|2 +m2
V )2
|fei→ef (q)|2. (6.11)

Note that we have used equation (4.21) and the expression for |k′|. The above equation is

in exact agreement with equation (8) in Ref. [130] when using g =
√

4παχ and ignoring

velocity averaging, it shows also the explicit dependence on
√
Er. For clarity, Ref. [130] uses

∆E which in our notation is Er + |EB
n`|.

Finally, we briefly visit the XENON1T excess example once again, see section 5.3 for

details. In order to highlight the discrepancy we observe between equation (6.5) and that in

Ref. [136] i.e., equation (6.7), we would like to first reproduce some of the results presented

in Ref. [136]. We do that by plotting the expected dark matter rate at the XENON1T based

on equation (6.7) when the dark matter form factor is set to unity for two cases in the left
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Figure 6.1: The dark matter rate at XENON1T based on Ref. [136] where left panel adopts
equation (6.7) while right panel adopts equation (6.5). The background in grey and data
points correspond to those reported by the XENON1T collaboration [134]. Detector effects
such as resolution and efficiency are discussed in section 5.3.

panel of figure 6.1. We note that we are able to reproduce similar results given that the

rates are normalized based on the first 4 bins of the observed data. The ionization form

factor we considered here is the one given by the DCE approximation and the contribution

to the cross section was taken only from 3s and 4s shells. Both of the two cases: red

(m1 = 1 GeV, v1e = 0.1 c) and green (m1 = 3 MeV, v1e = 0.05 c) give rise to rates desired by

the observed excess. On the right panel, we repeat the same however this time we use our

derived equation (6.5) and notice the discrepancy pointed out above especially with the case

represented by the red curve. Therefore, we think that the allowed parameter space that is

concluded to fit the XENON1T excess should be reconsidered with proper treatment.

This example motivates us to have a much generalized discussion (apart from the XENON1T

excess) where in the next section we take into account the full calculation based on the generic

equation (6.1) as well as contribution from various energy shells.
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6.3 Prospects at Direct Detection Experiments

Now let us express the rate,R, of a generic fast moving dark matter interacting with electrons

as

dRn`
1e

dEr
= nT nDM

dσn`1e v1e

dEr
, (6.12)

where nT is given by the the number density of the target electrons and nDM is the number

density of fast moving dark matter which we parameterize by

nDM = f1
ρDM

m1

, (6.13)

with ρDM ≈ 0.3 GeV
cm3 is the dark matter local density. The factor, f1, is the “fraction” that

dictates the amount of fast moving dark matter and we take it as a free constant parameter

for simplicity. Eventually we are interested in the total rate, Rtot, which corresponds to the

sum over all shells in a given atom and integration over the recoil energy range of equation

(6.5). In this case we have 5 effective parameters: the mass of dark matter, m1, the mass of

the mediator mi, the velocity of dark matter v1e, the couplings gie × gi1 and the fast moving

fraction of dark matter f1. We are more concerned with the shape of the total rate rather

than the amount of the rate itself. For this reason, we are going to present the numerical

results in terms of the rate normalized to the couplings and the factor f1 i.e., Rtot/(gieg
i
1)2/f1.

We will then perform a 2 dimensional scan over the mass and the velocity of the dark matter

while fixing the mass of the mediator. We consider a Xe based detector and take detector

effects of the XENON1T experiment as an example, see section 5.3.

In the subsequent figures of this section we show log [Rtot/(gieg
i
1)2/f1 × (ton× year)] as

contours in (m1, v1e) plane. In figure 6.2 we consider the VF model with mV = 15 MeV and

compare the total rate of fast moving dark matter in four different considerations. The top

left panel assumes free electron scattering while the others take into account the ionization

form factor effects: PW approximation in top right panel, SCE approximation in left bottom

panel and finally the DCE in the right bottom panel. We only consider contribution from
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Figure 6.2: The log total rate of fast moving dark matter represented by colored contours
for the VF model with mediator mass of 15 MeV. The four panels respectively represent the
free scattering, PW, SCE and DCE cases. Only contributions from Xe 3 outermost shells
are considered.

the three outermost shells of Xe atom for now. The black contours are there to indicate

that we only select points with 0.1 keV < Emax
r < 175 keV13. We observe that total rate

always increase towards the high speed but low mass region as anticipated from equation

(6.12). But we shall keep in mind that there is always suppression in the total rate around

Emax
r = 0.1 keV due to detector effects. Additionally, we also see the deformation of the

contour shapes due to the inclusion of the ionization form factor and we notice that the

non-relativistic cases (PW and SCE) share very similar shapes while the relativistic one is

13In principle one can go beyond this region, however due to the detector effects of XENON1T, we chose
to restrict the analysis to this range since the detector efficiency drops significantly below 1 keV and to avoid
extrapolation beyond ∼ 200 keV recoil energy.
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Figure 6.3: The log total rate of fast moving dark matter represented by colored contours
for the PF model with mediator mass of 15 MeV. The four panels respectively represent the
free scattering, PW, SCE and DCE cases. Only contributions from Xe 3 outermost shells
are considered.

different. It is interesting to observe that, the contours shape of the relativistic case at high

velocities has a great resemblance to that of free scattering, an indication of an asymptotic

behavior of the cross section at high energies. Finally, notice when including ionization form

factor, the contour lines have a clear cut-off near the bottom edge due to the fact that the

incoming dark matter particle does not have enough energy to excite electrons. The kinks

in the contours (except free scattering case) are due to the opening of different shells of Xe

atom. In figure 6.3 we repeat the same as the previous one however this time we consider

PF as the model with the mediator mass ma = 15 MeV. In addition to the same remarks
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Figure 6.4: Comparison between VF and PF models in the left and right panel respectively
with the mediator mass changing from 15 MeV in the top panel to 30 keV in the bottom
panel. We only consider relativistic ionization form factor and contribution from all Xe atom
shells.

as the VF case, notice the overall suppressed rate and its enormous range. As we noted in

the previous chapter, we should keep in mind that the PW and the SCE are not suitable to

the pseudo-scalar mediator since they are defined for vector and scalar mediators. Of course

the above two figures can be repeated for all of the different models we considered in the

previous chapter but to avoid repetition we limited ourselves to the above two cases only.

One other thing that may be worth considering is the inclusion of all allowed shells as

well as different mediator masses. In figure 6.4 we include all contributing shells (using

DCE approximation) of Xe atom and compare VF in the left panel to PF in the right panel
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with mediator mass of 15 MeV in the top panel and 30 keV in the bottom panel. We

see that the shape of the rates in the VF case is not highly affected by different mediator

masses. On the other hand, in the PF case, it is clear that there is substantial difference

when considering different mediator masses in a considerable region of the parameter space.

As evident in the bottom panel, the rate in general can be significantly enhanced when

considering mediator masses well below the electron mass. Depending on the model details

such as coupling parameters and the factor f1, small mediator masses are more likely to be

probed at experiments than higher mediator masses.

6.4 Mechanism Dependence: BDM as an Example

The discussion in the previous section is generic up to a choice of the factor f1. It is generic

in the fact that any model of the 7 cases introduced in the previous chapter can be applied

as well as effects from the ionization form factors are properly accounted for. The only

thing that is left is the factor of the fast moving dark matter component which becomes

mechanism and velocity dependent based on how we interpret why dark matter gained such

a high velocity. For example in the BDM scenario, f1 can be recast from equation (3.9) as

fBDM
1 ' 5.2× 10−18

(
c

v1e

) ( m1

GeV

) ( 〈σ00→11v〉
3× 10−26 cm3/s

) (
20 GeV

m0

)2

. (6.14)

This will lead to fBDM
1 ' 10−12 for BMP1, fBDM

1 ' 10−12 for BMP2 and fBDM
1 ' 10−16 for

BMP3 of chapter 5. In this section, we will demonstrate how this factor can be included

in the BDM scenario allowing any fast moving dark matter to be treated in a very similar

manner. We will repeat similar analysis as in the previous section only this time we are

going to use equation (6.14) instead of normalizing to f1. In figure 6.5 we plot log
[
fBDM

1

]
and notice that contour values decrease while moving towards high velocity and high mass

region as anticipated by equation (6.14) given that m0 is related to the energy E1 and hence

to the velocity v1e as described in chapter 3. We now repeat figure 6.4 by multiplying its
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Figure 6.5: The log of the factor fBDM
1 that quantifies the amount of fast moving dark matter.

contour lines with those of figure 6.5. We also fix the couplings to: gieg
i
1 = 10−4 and show

the resulting total rate: log [Rtot × (ton× year)] in figure 6.6. First, we observe the overall

difference in the shape of the contours due to the inclusion of fBDM
1 . They are slightly

pushed to smaller mass values due to the effects observed in figure 6.5. Also, the rates are

decreased due to suppression from very small values of fBDM
1 and the coupling choice. As we

anticipated before, low mass mediators are more likely to be probed first due to their higher

rates. In addition, at higher mediator masses the VF case is more likely to be studied first

in comparison to the PF case which suffers from very small rates. For example, the PF case

could at best generate 0.01 event per ton per year. According to our discussion in table 5.2

and figure 5.4, we generically predict models VS, SF and SS to behave in similar manner as

the VF case (left panel of figure 6.6).

In summary of this chapter, we began by introducing a formalism for a generic fast moving

dark matter particle without focusing on the mechanism that interprets its velocity. We

derived a fully relativistic relation and showed that its non-relativistic limit is in agreement

with current literature targeting WIMP-like dark matter. We took a very simplified regime

in which the “high-speed” mechanism dependence is treated as an overall free constant

parameter related to the factor, f1. We then demonstrated how a specific mechanism, the

BDM, can be accounted for in an attempt to provide a full framework for other and future
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Figure 6.6: The same as figure 6.4 but this time considering BDM scenario by taking the
factor in equation (6.14) instead of a fixed constant parameter.

mechanisms to be treated in a similar manner. We found that in the case of BDM, models

with mediators that are either scalar or vector are more likely to be studied first at direct

detection experiments due to the different effects from the matrix element squared as well

as the ionization form factor.
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Chapter 7

Conclusions

The universe is an open stage filled with many fundamental mysteries, one of which is

the nearly century old dark matter puzzle. From fundamental theories to extraordinary

experiments, a series of tireless endeavors to divulge its particle nature concluded with a null

result so far. The tightened parameter space provided by direct detection experiments may

drive dark matter phenomenology into the beyond-WIMP era.

Encouraged by some cosmological tensions, we motivated a dark matter scenario that

remarkably evades the stringent direct detection constraints. Inspired by the sophistication

of the SM, an enriched, non-minimal but simple dark sector is considered with different

particles and interactions. We studied a model with two stable particles having a mass

difference between them identifying the heavier one as the dominant component. While the

lighter component is subdominant, we find that with a sufficient mass separation between

the two components, a potential signal can be observed at some large-volume but high

energy electron recoil experiments upon dark matter interaction with electrons. Because of

the sufficient mass difference, when the heavier states annihilate to the lighter states, the

lighter state will gain a high velocity “boost” hence named boosted dark matter. Since the

signal would originate from the annihilation of two heavy dark matter states, we investigated

two possible sources with different geometrical significance that are capable of hosting the

heavy state particles with enough abundance. We compare the galactic center with its large

geometrical size providing a high possible flux vs the Sun as a point-like source with lower flux

but rather precise directionality and closer proximity to detectors on Earth. The setup of our

model brings a very distinct but interesting phenomenology at deep underground experiments
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such as SK, HK and DUNE. For example we find that a unique signal emerging from the

Sun could provide a smoking-gun evidence on the dark matter nature. Moreover, we find

that the future DUNE detector with its better angular resolution and particle identification

capabilities serves as a perfect experiment to study these types of signal broadening its scope

beyond its current purpose as a neutrino experiment. Additionally, we conclude that, SK

and HK on one hand and DUNE on the other hand can potentially be complementary to

each other due to their different energy threshold.

Though it served as a proof of principle, the previous consideration was limited to a

specific mass hierarchy in the dark sector. For this reason, we also relaxed the sufficient

mass splitting condition as well as to assume an arbitrary mass for the dark mediator. Such

a setup allows one to probe dark matter scattering with electrons at low electron recoils,

a necessity for exploiting the full boosted dark matter parameter space. However, this on

the other hand brings important atomic physics effects into the picture due to the small

momentum transfer from dark matter to the electrons. We investigate this effect in the form

of the ionization form factor by exploring several approaches serving different relativistic

regimes. In contrast to WIMP-like dark matter, we stress that boosted dark matter must

be accompanied by relativistic treatment of the atomic physics effects. For this reason, in

the entire analysis of this thesis, we implemented a fully relativistic framework to describe

dark matter interaction with electrons while providing the necessary comparison with the

non-relativistic approach when needed. Moreover, in preparation for extending the previous

model into a class of models considering different spins of the dark particles, we highlight the

significance of the relativistic treatment. For instance, mediators such as pseudo-scalar and

axial-vector find their relativistic treatment more natural. As a case study, we find that the

recent XENON1T excess is a motivation and a concrete example of the capability of direct

detection experiments to probe such dark matter scenarios providing a complementary search

to large volume neutrino experiments.

After we generalized the specific boosted dark matter regime into multiple models and
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arbitrary mediator mass, we observed that our treatment could be generalized even more to

accommodate a generic fast moving dark matter, allowing a mechanism-independent frame-

work. Fully equipped with a relativistic treatment of the atomic physics effects on elec-

tron scattering, we derived a generic formula to estimate the dark matter rates and took

direct detection experiments as an example for detection prospects. We proved that the

non-relativistic limit of our framework results in a relation that agrees with existing ones

targeting WIMP-like dark matter. We also demonstrated how such a framework can be used

to study mechanism-dependent scenarios such as boosted dark matter. With this demon-

stration, we allow other and future mechanisms that provide an interpretation of fast moving

dark matter to be treated on equal footing.

Finally, extending dark matter to models beyond non-minimal scenarios does not only

provide a pathway towards new abstract ideas but rather sheds light on unexplored testable

hypotheses. A simple tweak in the assumptions of dark matter leads to an interesting new

phenomenology at various experiments. Given the current stringent experimental constraints

on traditional dark matter, new ideas of dark matter such as non-minimal scenarios could

be the way forward to discover dark matter in the near future.
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