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Abstract

In this thesis, we study projective normality and normal presentation of adjoint linear series

associated to an ample and globally generated line bundle on higher dimensional smooth pro-

jective varieties with nef canonical bundle. As one of the consequences of the main theorems,

we give bounds on very ampleness and projective normality of pluricanonical linear systems

on varieties of general type in dimensions three, four and five.

Next we concentrate on varieties with trivial canonical bundle. In the first part, we prove

an effective projective normality result for an ample line bundle on regular smooth four-folds

with trivial canonical bundle. In the second part, we emphasize on the projective normality of

multiples of ample and globally generated line bundles on certain classes of known examples

(up to deformation) of projective hyperkähler varieties. As a corollary we show that excepting

two extremal cases in dimensions 4 and 6, a general curve section of any ample and globally

generated linear system on the above mentioned examples is non-hyperelliptic.

This thesis is based on the articles [MR19] and [MR20] both of which are joint works with

Jayan Mukherjee.
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Chapter 1

Introduction

Equations defining the embedding of a projective variety in a projective space is a topic of great

interest. The study of projective normality and normal presentation dates back to the time of

Italian geometers. Castelnuovo first showed that a line bundle of degree greater than 2g on a

curve of genus g has a normal homogeneous coordinate ring and if the degree is greater than

2g +1 then the ideal of the curve is generated by quadrics. Fujita, Saint-Donat and Mumford,

among many others, rediscovered these results years later. Mumford and his school of mathe-

maticians carried on the study of these properties on an abelian variety of arbitrary dimensions.

In the early 80s, Green and Lazarsfeld showed that the results of these nature are special cases

of a general Np property (see [Gre84a], [Gre84b] and [Gre87]) for curves, projective normality

being the property N0 and normal presentation (i.e., when the ideal is generated by quadrics)

being the property N1.

It was Green who proved that a line bundle of degree ≥ 2g +p+1 on a smooth curve of genus

g satisfies the property Np . One of the most interesting questions on surfaces concerning the

Np property that has motivated lot of work is Mukai’s Conjecture that asserts that for an ample

line bundle A on a smooth projective surface S, KS + l A satisfies the Np property if l ≥ p + 4

where KS is the canonical bundle of S. This can be thought of as an analogue of Green’s result

on curves for surfaces. Mukai’s conjecture has not yet been proved even for p = 0.

Another very interesting and related conjecture is the conjecture by Fujita that asserts that

on a smooth projective variety of dimension n, KX +d A is globally generated for d ≥ n +1 and

KX +d A is very ample for d ≥ n+2 where A is an arbitrary ample line bundle. Fujita’s conjecture

has been verified for surfaces by Reider (cf. [Rei88]) using Bogomolov’s instability theorem (see
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[Bog78]) on rank two vector bundles. Fujita’s freeness conjecture has been proved by Ein and

Lazarsfeld (see [EL93a]) for n = 3, by Kawamata (see [Kaw97]) for n = 3,4 and by Ye and Zhu (see

[YZ20]) for n = 5. Conjecturally, the assertion of Mukai’s conjecture can be generalized in higher

dimension by asserting that for a smooth projective variety of dimension n and an ample line

bundle A, KX + l A satisfies the property Np for l ≥ n +p +2. Progress in this direction with A

just ample seems to be out of reach at this moment. A natural question to ask is what happens

to the above conjecture if A is taken to be ample and base point free instead. It is a standard

argument that if A is taken to be ample and base point free then Fujita’s conjecture follows in

its full generality by using induction and using known results for curves. Syzygies of adjunction

bundles with A ample and base point free were studied in quite some detail on surfaces in a

series of papers written by Gallego and Purnaprajna (see [GP01]–[GP98]).

1.1 Main result for adjoint linear series on smooth minimal varieties

In this thesis, we study the properties N0 and N1 of the adjoint bundle KX +lB with B ample and

base point free on arbitrary dimensional smooth projective varieties X with nef canonical bun-

dle KX by imposing mild conditions on the line bundle B apart from the assumptions of being

ample and globally generated. These are analogues for results known for surfaces. Our main

result regarding projective normality on a variety X with canonical divisor KX is the following.

Theorem 1.1.1. (= Theorem 3.1.7) Let X be a smooth projective variety of dimension n, n ≥ 3.

Let B be an ample and base point free line bundle on X . We further assume:

(a) KX is nef, KX +B is base point free,

(b) h0(B) ≥ n +2,

(c) h0(KX +B) ≥ h0(K )+n +1,

(d) B −KX is nef and effective.

Then KX + l B is very ample and it embeds X as a projectively normal variety for all l ≥ n.

2



Our result regarding normal presentation on regular varieties is the following.

Theorem 1.1.2. (= Theorem 3.2.4) Let X be a regular smooth projective n-fold, n ≥ 3. Let B be an

ample and base point free line bundle on X . We further assume the following four conditions:

(a) KX is nef, KX +B is base point free,

(b) h0(B) ≥ n +2,

(c) h0(KX +B) ≥ h0(KX )+n +1,

(d) (n −2)B − (n −1)KX is nef and non-zero effective divisor.

Then KX + l B will satisfy the property N1 for l ≥ n.

We also prove a slightly weaker theorem regarding the N1 property of adjoint bundles on

irregular varieties (see Theorem 3.2.5). We will also briefly discuss the situation when the variety

is Gorenstein and has at worst canonical singularities (see Section 3.3). Once we have these

theorems, we can start looking for results using only an ample bundle if we know what multiple

of that bundle is globally generated. Here solution to Fujita’s freeness Conjecture comes to

play an important role. Precisely by doing so, we obtain consequences on the positivity for

pluricanonical series as we shall describe in the next section.

1.2 Consequences for pluricanonical linear series

The geometry of pluricanonical maps is of great importance in projective algebraic geometry. It

was extensively studied by Bomberi, Catanese, Ciliberto, Kodaira (see [Bom73], [CC91], [CC93],

[Kod68]) and other mathematicians. For example, Ciliberto showed that for minimal surfaces of

general type nKX is projectively normal for n ≥ 5 (see [Cil84]), Purnaprajna produced very pre-

cise and optimal bounds for normal generation and normal presentation and higher syzygies of

pluricanonical series on surfaces of general type with ample canonical bundle (see [Pur05]). In

this thesis we obtain effective results on projective normality and normal presentation of pluri-

canonical series on smooth three-folds, four-folds and five-folds with ample canonical bundle.

3



Theorem 1.2.1. (= Corollaries 4.2.3, 4.2.4, 4.2.5, 4.2.6, and 4.2.7) Let X be a smooth projective

variety of dimension n with ample canonical bundle KX .

(1) If n = 3, then l KX is very ample and embeds X as a projectively normal variety for l ≥ 12

and normally presented for l ≥ 13.

(2) If n = 4, then l KX is very ample and embeds X as a projectively normal variety for l ≥ 24

and normally presented for l ≥ 25.

(3) If n = 5 and pg (X ) ≥ 1, then lKX is very ample and embeds X as a projectively normal

variety for l ≥ 35 and normally presented for l ≥ 36.

We will also show that the above result for smooth three-folds will generalize to Gorenstein

canonical three-folds (see Corollary 4.3.1).

1.3 Effective projective normality for varieties with trivial canonical bundle

Geometry of linear series on varieties X with trivial canonical bundle KX (i.e. KX = 0) is a topic

that has motivated a lot of research. The question of what multiple of an ample line bundle

on a K -trivial variety is very ample and projectively normal was extensively studied by many

mathematicians including Gallego, Oguiso, Peternell, Purnaprajna, Saint-Donat (see [GP01],

[Op95], [SD74]). Recall that a K 3 surface is defined as a smooth projective surface S with KS = 0

and H 1(OS) = 0. The following theorem is due to Saint-Donat.

Theorem 1.3.1. ([SD74]) Let S be a smooth projective K 3 surface and let B be an ample line

bundle on S. Then nB is very ample (in fact projectively normal) for n ≥ 3.

Gallego and Purnaprajna generalized Saint-Donat’s result on projective normality for smooth,

projective, regular (H 1(OX ) = 0) three-fold X with trivial canonical bundle (see [GP01], Corol-

lary 1.10). They showed that for an ample line bundle B on X , nB is projectively normal for

n = 8 and n ≥ 10. Moreover, if B 3 > 1 then nB is projectively normal if n = 6 and n ≥ 8. In or-

der to prove this theorem, Gallego and Purnaprajna studies the case when a regular, three-fold
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with trivial canonical bundle maps onto a variety of minimal degree by a complete linear series

of an ample and globally generated line bundle. They gave a classification theorem for such

situations and proved the projective normality result as a consequence by applying a theorem

of Green (see Theorem 2.7.1). We remark that the varieties that appear as covers of varieties of

minimal degree play an important role in the geometry of algebraic varieties. They are extremal

cases in a variety of situations from algebraic curves to higher dimensional varieties (see [GP01],

[Gre84a], [Gre84b], [Hor76]).

In this thesis, we prove an analogue of the classification theorem of Gallego and Purnaprajna

where we study the situation when a smooth regular four-fold X with trivial canonical bundle

maps to a variety of minimal degree by the complete linear system of an ample and globally

generated line bundle B (see Theorem 5.1.5) and provide upper bounds to the degree of such

morphisms. As a consequence of the classification theorem, Fujita’s base point freeness conjec-

ture that has been proved in dimension four by Kawamata (see [Kaw97]) and Green’s theorem

(c.f. Theorem 2.7.1), we prove the following effective projective normality result on regular four-

folds with trivial canonical bundle.

Theorem 1.3.2. (= Theorem 5.1.6) Let X be a smooth projective four-fold with trivial canonical

bundle and let A be an ample line bundle on X .

(1) n A is very ample and embeds X as a projectively normal variety for n ≥ 16.

(2) If X is regular (i.e., H 1(OX ) = 0) then n A is very ample and embeds X as a projectively

normal variety for n ≥ 15.

This theorem can be thought of as a higher dimensional analogue of Theorem 1.3.1 and

Corollary 1.10, [GP01]. We remark that the standard methods of Castelnuovo-Mumford regu-

larity (see Lemma 2.7.6) and Theorem 1.3, [GP01] yields in the situation above that n A satisfies

projective normality for n ≥ 21. One can lower this bound to 20 by using Lemma 5.1.3. On

the other hand, Mukai’s conjecture predicts that for a smooth projective variety X , KX +n A is

projectively normal for n ≥ dim(X )+2. Hence in our case we can expect n A to be projectively
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normal for n ≥ 6. We also remark that Theorem 1.3.2 (2) is a consequence of Corollary 5.1.2

that says that for a smooth regular projective variety X with trivial canonical bundle and for an

ample and base point free line bundle L on X , (dim(X )−1)L is projectively normal unless the

morphism induced by the complete linear series |L| maps X onto a variety of minimal degree.

In Example 3.1.10 we provide an example of a Calabi–Yau n-fold X (in the sense of Definition

5.2.1) and an ample and globally generated line bundle B which maps X to a variety of mini-

mal degree for which nB is not very ample. Consequently (n −1)B is not projectively normal,

thereby showing that the assumption on the degree of embedding of the image is sharp for

Corollary 5.1.2. The above example together with [Jia16], Example 1.6 show that one cannot

improve Theorem 1.3.2 beyond n = 5 in either the regular or irregular case.

The condition that a smooth regular surface S has trivial canonical bundle is equivalent to

the condition that S has a holomorphic symplectic form on it. However, in higher dimensions

these two notions do not coincide which is clear from the fact that existence of a holomorphic

symplectic form on a Kähler manifold demands that its dimension is even whereas there are ex-

amples of smooth projective algebraic varieties in odd dimensions with trivial canonical bundle

and H 1(OX ) = 0, for example smooth hypersurfaces of degree n +1 in Pn . So essentially we can

have two different kinds of generalizations of K 3 surfaces, namely Calabi–Yau and hyperkähler

varieties (see Definitions 5.2.1 and 5.2.2).

The theorem of Saint-Donat that we stated (see Theorem 1.3.1) deals with ample line bun-

dles. In the same paper, Saint-Donat proves the following theorem for ample and globally gen-

erated line bundles on K 3 surfaces.

Theorem 1.3.3. ([SD74]) Let S be a smooth projective K 3 surface and let B be an ample and base

point free line bundle on S. Then,

(1) 2B is very ample and |2B | embeds S as a projectively normal variety unless the morphism

given by the complete linear system |B | maps S, 2 : 1 onto P2.

(2) B is very ample and |B | embeds S as a projectively normal variety unless the morphism

6



given by the complete linear system |B | maps S, 2 : 1 onto P2 or to a variety of minimal

degree.

Gallego and Purnaprajna provide a generalization of this theorem for regular three-folds X

with trivial canonical bundle in [GP01] in which they proved for an ample and globally gener-

ated line bundle B , 3B is projectively normal unless the morphismϕB induced by the complete

linear series of B maps X , 2 : 1 onto P3. Moreover, they showed that 2B is projectively normal

unless ϕB maps X , 2 : 1 onto P3 or to a variety of minimal degree ≥ 2. They also proved that

4B is projectively normal on smooth, projective, regular, four-folds with trivial canonical bun-

dle when the morphism ϕB associated to the complete linear series of an ample and globally

generated line bundle B is birational onto its image and h0(B) ≥ 7 (see Theorem 1.11, [GP01]).

More recently, Niu proved an analogue of Theorem 1.3.3 in dimension four. In fact he proved a

general result for smooth, projective, regular, KX -trivial varieties in all dimensions (see [Niu19])

with an additional assumption of H 2(OX ) = 0 which in dimensions 2 and 3 recovers, and in

dimension 4 generalizes the results of Saint-Donat and Gallego-Purnaprajna.

We see that it is a natural question to ask whether and to what extent these theorems gen-

eralize to the other class of higher dimensional analogues of K 3 surfaces, namely hyperkähler

varieties. There are many families of examples for Calabi–Yau varieties but there are only few

classes of examples for hyperkähler varieties are known up to deformation. Hilbert scheme of

n points on a K 3 surface (we will denote them by K 3[n]), generalized Kummer varieties (we will

denote them by K n(T )) and two examples in dimension six and ten given by O’Grady (we shall

denote it by M6 and M10 respectively) are the only known classes of examples up to deforma-

tion. Our main theorem for hyperkähler varieties is the following.

Theorem 1.3.4. (= Theorem 5.2.17) Let X be a projective hyperkähler variety of dimension 2n ≥ 4

that is deformation equivalent to K 3[n], K n(T ) or M6. Let B be an ample and globally generated

line bundle on X . Then the following happens;

(1) lB is projectively normal for l ≥ 2n.

7



(2) (2n −1)B is projectively normal unless:

(a) n = 2, X = K 3[2] and ϕB maps X onto a quadric (possibly singular) inside P5. In this

case qX (B) = 2, deg(ϕB ) = 6, or

(b) n = 3, X = K 3[3] and ϕB maps X onto a variety of minimal degree inside P9 which

is obtained by taking cones over the Veronese embedding of P5 inside P5. In this case

qX (B) = 2, deg(ϕB ) = 30.

Hence if X is as above and B does not satisfy cases 2(a) or 2(b) then a general curve section of |B |
is non-hyperelliptic.

As before, the study of the situation when X maps onto a variety of minimal degree by the

complete linear series |B | is the main ingredient of our proof. We also use two key character-

istics of a hyperkähler variety which are the Riemann–Roch expression that comes from the

existence of a primitive integral quadratic form on the second integral cohomology group of

the variety and Matsushita’s theorem on fibre space structure of a hyperkähler manifold (see

Theorem 5.2.6).

1.4 Organization of this thesis

Now we provide the organization of the thesis and the description of the chapters.

In Chapter 2 we recall the basic definitions and results that we are going to use in the re-

maining chapters to prove our main theorems. Chapters 3, 4 and 5 contain the main results.

In Chapter 3 we study the properties N0 and N1 for adjoint bundles on minimal varieties.

For the most part, we consider the bundles on smooth projective varieties. In the last section,

we will see that the main results generalize to Gorenstein varieties with nef canonical bundle

that have at worst canonical singularities.

In Chapter 4 we study those properties for pluricanonical series on three, four and five-folds

using the Fujita freeness theorems. As before, we mostly deal with smooth varieties, but in the
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last section of this chapter, we prove a corollary for Gorenstein canonical three-folds using the

results of the last section of Chapter 3.

Finally in Chapter 5, we study the effective projective normality results for certain smooth

projective varieties with trivial canonical bundle. First we prove such results for smooth projec-

tive four-folds, and then we concentrate on projective hyperkähler varieties.

1.5 Notation and conventions

Throughout this thesis, we work exclusively over the field of complex numbers C. By a variety

we always mean an integral scheme of finite type over C. For any Gorenstein variety X (see

Definition 3.3.1), KX or K will denote its canonical bundle. We will use the multiplicative and

the additive notation of line bundles interchangeably. Thus, for a line bundle L, L⊗r and r L are

the same. We have used the notation L−r for (L∗)⊗r . We will use Lr to denote the intersection

product. The sign ‘≡’ will be used for numerical equivalence and the sign ‘∼’ will be used for

linear equivalence.
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Chapter 2

Background and preliminaries

In this chapter, we recall the preliminaries that we need to state and prove our main results. Sec-

tion 2.1 is devoted to discuss the basic notions of positivity of linear series on normal projective

varieties. In Sections 2.2 and 2.3 we define the varieties of minimal degree and the constructions

of cyclic covers respectively, and we briefly recall few related results. Section 2.4 introduces the

theory of Koszul cohomology groups, the most crucial object that is central to the study that

we will carry out in the later chapters. Section 2.6 introduces the projective normality, normal

presentation (and Np property), the main objects of our investigation. It will be clear from the

characterization of Np property that in order to study these properties, it is crucial to study the

multiplication maps of global sections of vector bundles. In Section 2.7 we recall a few impor-

tant criterions that ensures the surjectivity of such multiplication maps.

2.1 Positivity of linear series on projective varieties

We first recall the basics of linear series on normal projective varieties and we refer to [Laz04a]

for more details. Let X be a normal projective variety and let L be a line bundle on X . Further-

more, let V ⊆ H 0(L) be a non-zero linear subspace and we set |V | := P(V ), the projective space

of one dimensional quotients of V . We refer to |V | as a linear series and when V = H 0(L), one

obtains the complete linear series |L|. Evaluations of sections gives rise to a morphism of vector

bundles

ev : V ⊗OX → L.
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The base locus, denoted as Bs(|V |), is by definition the set of points where all sections of |V |
vanish. We say that |V | is base point free if the base locus Bs(|V |) is empty. When V = H 0(L) and

|V | is base point free, one says that L is base point free or L is globally generated.

Example 2.1.1. ([Har77], Chapter IV, Corollary 3.2 (a)) Let C be a smooth projective curve of

genus g . Then any line bundle L satisfying deg(L) ≥ 2g is globally generated. To see this, recall

that by [Har77], Chapter IV, Proposition 3.1, L is globally generated if and only if h0(L −P ) =
h0(L)−1 for all P ∈ X . The assertion follows from Riemann-Roch since H 1(L −P ) = H 1(L) = 0

for all P ∈ X . ♠

Given a linear series |V | (assume dimV ≥ 2), it defines a morphism

ϕ|V | : X \Bs(|V |) →P(V )

as follows: given x ∈ X \Bs(|V |), ϕ|V |(x) is the hyperplane in V consisting of sections vanishing

at x. In general, one may view ϕ|V | : X d P(V ) as a rational map. When |V | is base point free,

then ϕ|V | is a morphism.

Given a morphism ϕ : X → P(V ) from a normal projective variety X to the projective space

of one dimensional quotients of a vector space V and assuming that the image of ϕ is not con-

tained in any hyperplane (we say that ϕ(X ) is a non-degenerate subvariety of P(V )), the pull-

back of sections via ϕ realizes V as a subspace of H 0(ϕ∗OP(V )(1)) and |V | is a base point free

linear series on X . Further, one has ϕ=ϕ|V |.

2.1.1 Ample and very ample line bundles

We start by defining ample and very ample line bundles on arbitrary projective varieties.

Definition 2.1.2. Let X be a projective variety and let L be a line bundle on X .

(1) L is very ample if there is an embedding X ⊆PN such that L =OPN (1)|X .

(2) L is ample if mL is very ample for some m > 0.
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It follows from Cartan-Serre-Grothendieck theorem (see [Laz04a], Theorem 1.2.5) that for

an ample line bundle L on a projective variety X , there exists an integer m(L) such that mL is

very ample for all m ≥ m(L). It is interesting to ask for an efficient estimate for this integer m(L).

The situation is pretty simple for curves as the following result shows.

Example 2.1.3. ([Har77], Chapter IV, Corollary 3.2 (b), Corollary 3.3) Let C be a smooth projec-

tive curve of genus g and let L be a line bundle on C .

(1) If deg(L) ≥ 2g+1 the L is very ample. To see this, recall that by [Har77], Chapter IV, Propo-

sition 3.1, L is very ample if and only if h0(L −P −Q) = h0(L)−2 for all P,Q ∈ X (they may not

be distinct). The assertion follows from Riemann-Roch since H 1(L −P −Q) = H 1(L) = 0 for all

P,Q ∈ X .

(2) L is ample if and only if deg(L) > 0. To see this, notice that the “if” part follows at once by

part (1). The “only if” part holds since if L is ample then mL is very ample for some large m and

consequently deg(mL) > 0. ♠

To this end, we recall a proposition and one of its corollaries without the proofs. The propo-

sition in particular implies that the restriction of an ample line bundle is ample.

Proposition 2.1.4. ([Laz04a], Proposition 1.2.9) Let f : Y → X be a finite mapping of projective

varieties, and L be an ample line bundle on X . Then f ∗L is an ample line bundle on Y . In

particular, if Y ⊆ X is a subvariety of X and L is an ample line bundle on X , then L|Y is also

ample.

Corollary 2.1.5. ([Laz04a], Corollary 1.2.11) Let L be a globally generated line bundle on X and

let ϕ=ϕ|L| be the morphism given by the complete linear series |L|. Then L is ample if and only if

ϕ is finite.

We now recall one of the most well-known criterion of ampleness, we refer to [Laz04a] for

the definition of intersection numbers.

Theorem 2.1.6. (Nakai-Moishezon Criterion, [Laz04a], Theorem 1.2.19) Let L be a line bundle
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on a projective variety X . Then L is ample if and only if LdimV ·V > 0 for all positive dimensional

irreducuble subvarieties V ⊆ X .

The remark after the following theorem of Miyaoka will be used in later chapters. A normal

projective variety X isQ-Gorenstein if the canonical divisor isQ-Cartier.

Theorem 2.1.7. ([Miy87], Theorem 1.1) Let X a normal projective Q-Gorenstein variety of di-

mension n ≥ 2 with singular locus of codimension ≥ 3. Assume that the canonical divisor KX ∈
Pic(X )⊗Q is nef. Let ρ : Y → X be any resolution of the singularities. Then for arbitrary ample

divisors H1, . . . , Hn−2, we have the following inequality:

(3c2(Y )− c2
1(Y ))ρ∗(H1) · · ·ρ∗(Hn−2) ≥ 0.

Remark 2.1.8. An obvious corollary of the theorem above is the following: let X be a smooth

three (resp. four)-fold and A be an ample divisor on it. Then A · c2(X ) ≥ 0 (resp. A2 · c2(X ) ≥ 0).

2.1.2 Nef and big line bundles

We start with the definition of nef line bundles.

Definition 2.1.9. Let X be a projective variety and let L be a line bundle on X . Then L is numer-

ically effective or nef if L ·C ≥ 0 for all irreducible curves C ⊆ X .

Example 2.1.10. Let X be a projective variety and let L be a globally generated line bundle on

X . Then L is nef. ♠

It is easy to see that if f : Y → X is a proper morphism of projective varieties and if L is a

nef line bundle on X then f ∗L is a nef line bundle on Y . In particular, restrictions of nef line

bundles are nef. We recall the following theorem of Kleiman.

Theorem 2.1.11. (Kleiman’s Theorem, [Laz04a], Theorem 1.4.8) Let X be a projective variety and

let L be a nef line bundle on X . Then LdimV ·V ≥ 0 for all irreducible subvariety V ⊆ X .
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Now we move on to define big line bundles. Let X be a projective variety carrying a line

bundle L. The semigroup of L is by definition

N(L) := {m ≥ 0|H 0(mL), 0}.

Given m ∈ N(L) consider the rational map ϕm defined by the complete linear series mL.

Definition 2.1.12. Assume X is normal and N(L) , (0). Then the Iitaka dimension of L is by

definition κ(L) := max{dimϕm(X )}. If H 0(X ,mL) = 0 for all m > 0, one sets κ(L) =−∞.

Using the notion of Iitaka dimension, one defines the big line bundles on X as follows.

Definition 2.1.13. Let X be a projective variety and let L be a line bundle on X . Then L is called

big if κ(L) = dim X .

Example 2.1.14. An ample line bundle on X is big. Further, a nef line bundle L on X is big if

and only if Ln > 0 where dim X = n. ♠

2.1.3 Bertini’s theorems

We briefly recall the following version of Bertini’s theorem. We say a line bundle L on a projec-

tive variety is fixed component free or movable if the the base locus of the complete linear series

|L| i.e., Bs(|L|) is of codimension ≥ 2.

Theorem 2.1.15. (Bertini) Let X be a projective variety and let L be a fixed component free line

bundle on X . Then

(1) if dimϕ|L|(X ) > 1 then the general divisors of |L| are irreducible and reduced;

(2) a general divisor of |L| has no singular points outside Bs(|L|) and the singular points of X .

We state the classical version of the Bertini theorem for general linear sections.

Theorem 2.1.16. ([Laz04a], Theorem 3.3.1) Let X be an irreducible variety and let f : X → Pr

be a morphism. Fix an integer d < dim f (X ). If L ⊆ Pr is a general (r −d)-plane, then f −1(L)is

irreducible.
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2.2 Varieties of minimal degree and their classification

We recall that a subvariety X ⊆ Pr is called non-degenerate if it is not contained in any hyper-

plane. For any non-degenerate variety X ⊆Pr , we have the inequality

deg(X ) ≥ 1+codim(X ).

Definition 2.2.1. A non-degenerate variety X ⊆ Pr is said to be a variety of minimal degree if it

satisfies the equality deg(X ) = 1+codim(X ).

If codim(X ) = 1 then of course the variety X is a quadric hypersurface. One can completely

classify the varieties of minimal degree, but before doing so, we define the rational normal

curves and rational normal scrolls.

Definition 2.2.2. Consider the morphism P1 → Pr defined by (s, t ) 7→ (sr , sr−1t , · · · , st r−1, t r ).

The image of this map is called the standard rational normal curve in Pr . A rational normal

curve in Pr is any curve that is obtained from the standard rational normal curve by an auto-

morphism.

As it turns out, one may generalize this construction and define rational normal scrolls.

Definition 2.2.3. A rational normal scroll X ⊆ Pr of dimension n is the image of a projective

bundle π : P(E ) → P1 through the morphism given by the tautological line bundle OP(E )(1)

where the vector bundle E =O (a1)⊕·· ·⊕O (an) satisfies 0 ≤ a1 ≤ a2 ≤ ·· · ≤ an and deg(X ) =∑
ai .

In the situation above, if a1 = a2 = ·· · = al = 0 for some 0 < l < n then X is singular and

it is a cone over a smooth rational normal scroll. The vertex or singular locus V of this cone

has dimension l − 1 and let XS = X \V be the smooth part of X . Moreover, X is normal and

X̃ = P(E ) → X is a rational resolution of singularity which is called the canonical resolution of

the rational normal scroll X .

The following theorem provides a complete classification of the varieties of minimal degree.
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Theorem 2.2.4. ([EH85], Theorem 1) Let X ⊆Pr is a variety of minimal degree. Then X is a cone

over a smooth such variety. Moreover, if X is smooth and codim(X ) > 1 then X ⊆ Pr is either a

rational normal scroll or a Veronese surface P2 ⊆P5.

Figure 2.1: Real world example of scroll: Kobe Port Tower
https://en.wikipedia.org/wiki/Kobe_Port_Tower

Let X be a rational normal scroll. Let H be the class of a hyperplane section and R be the

class of a general linear subspace of codimension one. We note the following fact:

Lemma 2.2.5. ([Fer01], Corollary 2.2 (2)) If codim(V , X ) = 2 then H ∼ deg(X )R.

We prove a lemma here that we will use in the later chapters.

Lemma 2.2.6. Let X be a smooth projective variety and let L be an ample and globally generated

line bundle on X . Let ϕL be the morphism induced by the complete linear series L. Assume ϕL

maps X onto a singular rational normal scroll Y with vertex V . Then codim(V ,Y ) = 2, in other

words, Y is obtained by taking cones over a rational normal curve.

Proof. Suppose Ỹ = P(E ) → Y is the canonical resolution. If the codimension of the singular

locus is > 2, then the canonical resolution is a small resolution (see [Fer01], Proposition 2.1) and
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hence X could be obtained by contracting subschemes of (X ×Y Ỹ )red of codimension greater

than one, which contradicts the factoriality of X . The assertion follows since codim(V ,Y ), 1 as

Y is normal. ä

2.3 Cyclic covers of projective varieties and adjunction

Quite a lot of examples in algebraic geometry comes from cyclic covers of varieties and this

section is devoted to the basics of these covers, we refer to [Laz04a], 4.1. B for details. Let X be

an affine bundle and s ∈C[X ] be a non-zero regular function. We take the product X ×A1 with

the affine line and denote the coordinate of A1 by t . We define the subvariety Y ⊆ X ×A1 by

t m − s = 0 and denote the natural map Y → X by π. Then π can be thought of as a cyclic cover

of degree m branched along the divisor D := div(s). Setting s′ := t |Y , one obtains s′m = π∗s.

Globalizing this local description, one obtains

Proposition 2.3.1. ([Laz04a], Proposition 4.1.6) Let X be a variety and L be a line bundle on X .

Given a section s ∈ H 0(mL) defining a divisor D ⊆ X , there is a finite flat covering π : Y → X

of degree m where there is an s′ ∈ H 0(π∗L) such that s′m = π∗s. The divisor D ′ := div(s′) maps

isomorphically to D. Moreover, if X and D are smooth, so are X ′ and D ′.

The divisor D in the above proposition is called the branch divisor of the cyclic cover. We list

two properties of cyclic covers below that we will use in Examples 3.1.10 and 3.1.11.

Remark 2.3.2. (Properties of cyclic covers) Let π : Y → X , D and D ′ be as above and we assume

that they are smooth. Further let KY and KX be the canonical bundles of Y and X respectively.

(1) The push-forward of the structure sheaf splits as follows

π∗OY :=OX ⊕ (−L)⊕·· ·⊕ (−(m −1)L).

(2) KY ∼π∗(KX + (m −1)L). ♦
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We remark that any formula that connects the canonical bundles of two varieties can be

thought of as an adjunction formula and thus the item (2) of the above remark can be regarded

as an adjunction formula. We take this opportunity to state the most well-known adjunction

formula below.

Remark 2.3.3. (Adjunction for divisors) Let D be a smooth divisor with canonical bundle KD on

a smooth variety X with canonical bundle KX . Then KD is linearly equivalent to the line bundle

(KX +D)|D . ♦

2.4 Minimal free resolution and Koszul cohomology

In this section, we introduce the minimal free resolutions and Koszul cohomology groups. We

also briefly discuss the geometric contexts in which they are used. The main references for this

section are [AN10], [Eis05] and [Gre84b]. Throughout this section, we fix a complex vector space

V of dimension r +1 and set

S := S(V ) := Sym(H 0(L))�C[X0, · · · , Xr ],

the symmetric algebra of V . We denote by S+ the maximal ideal (X0, · · · , Xr ) ⊆ S. Let B = ⊕
q∈Z

Bq

be a finitely generated graded S module with Bq as the q-th graded piece. Further, we denote

the module B shifted by a by B(a), so that B(a)q = Ba+q .

2.4.1 Minimal free resolutions of finitely generated graded modules

We aim to construct a graded free resolution of B . Given homogeneous elements bi ∈ B of

degree ai that generate B as an S module, we define a degree-preserving map from the graded

free module F0 = ⊕S(−ai ) → B . Let M1 ⊆ F0 be the kernel of this map which is also a finitely

generated S module by the Hilbert Basis Theorem. By choosing finitely many homogeneous

generators of M1, we may define a degree-preserving map from a graded free module F1 → F0
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with image M1. Continuing in this fashion, one constructs a graded free resolution of B . In this

situation, we recall the following theorem.

Theorem 2.4.1. (Hilbert Syzygy Theorem, [Eis05], Theorem 1.1) B has a finite graded free resolu-

tion with m ≤ r +1 as follows:

0 → Fm → Fm−1 →···→ F1 → F0 → B → 0. (2.1)

Now we define what it means to say that a complex is minimal. We will see in the theorem

next to the following definition that B admits a minimal graded free resolution and the minimal

graded free resolutions of B are unique upto isomorphisms.

Definition 2.4.2. A complex F of graded S module as follows

F : · · · −→ Fi+1
δi+1−−−→ Fi

δi−→ Fi−1 −→ ·· ·

is called minimal if the image of δi is contained inside S+Fi−1 for all i .

Theorem 2.4.3. ([Eis05], Theorem 1.6) If F and G are minimal graded free resolutions of B, then

there is a graded isomorphism F → G inducing identity on B. Furthermore, any graded free reso-

lution contains the minimal graded free resolution as a direct summand.

The following is an easy lemma that we record for future reference.

Lemma 2.4.4. ([Eis05], Proof of Proposition 1.7) Suppose (2.1) is the minimal graded free reso-

lution of B. Then there is an isomorphism Fp ⊗S C� TorS
p (B ,C).

Proof. Follows from the observation that the maps become zero after tensoring by S/S+ �C. ä

2.4.2 Koszul cohomology and graded Betti numbers

We start by defining the Koszul complex that turns out to be one of the first examples of minimal

graded free resolutions.
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Definition 2.4.5. The Koszul complex is defined as follows

0 →∧r+1V ⊗S(−r −1) →···→V ⊗S → S →C→ 0 (2.2)

where the maps ∧pV ⊗S(−p) →∧p−1 ⊗S(−p +1) are given by the following:

v1 ∧·· ·∧ vp ⊗ f 7→
p∑

i=1
(−1)p v1 ∧·· ·∧ v̂i ∧·· ·∧ vp ⊗ vi f .

Theorem 2.4.6. ([AN10], Corollary 1.6) The Koszul complex (2.2) is the minimal graded free res-

olution of the graded S module S/S+ �C.

Tensoring the complex (2.2) by B , we obtain the following maps.

· · ·→
p+1∧

V ⊗Bq−1
dp+1,q−1−−−−−→

p∧
V ⊗Bq

dp,q−−−→
p−1∧

V ⊗Bq+1 →··· (2.3)

Definition 2.4.7. The Koszul cohomology group Kp,q (B ,V ) is defined as follows:

Kp,q (B ,V ) := Ker(dp,q )/Image(dp+1,q−1). (2.4)

The elements of Kp,q (B ,V ) are called the p-th syzygies of B with respect to V of weight q .

Lemma 2.4.8. ([AN10], Proof of Proposition 1.12) Kp,q (B ,V )� TorS
p (B ,C)p+q .

Proof. The conclusion follows from tensoring the Koszul resolution (2.2) by R and observing

that the degree (p +q)-th part of the p-th module is ∧pV ⊗Bq . ä

It follows from Lemma 2.4.4 and Lemma 2.4.8 that if (2.1) is the minimal graded free resolu-

tion of B , then there are isomorphisms

Fp �Kp,q (B ,V )⊗S(−p −q).

The numbers bp,q := dimCKp,q (B ,V ) are called the graded Betti numbers of B and there is a
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compact way to express them using a table called the Betti diagram whose p-th column and q-

th row contains the entry bp,q . It is customary to put ‘−’ for zero and ‘∗’ for potential non-zero

entries in the Betti diagram.

0 1 2 · · · p · · ·
...
q b0,q b1,q b2,q · · · bp,q · · ·
...

Table 2.1: Betti diagram of B with respect to V

Example 2.4.9. (Four points in P2) Here we encounter a geometric situation for the first time.

We refer to [Eis05], 3B.2 for the details. Let X = {p1, p2, p3, p4} be a set of four points in P2

and let SX be the homogeneous coordinate ring of SX and we set S := Sym(H 0(P2,OP2 (1)) �

C[X0, X1, X2]. There are three distinct possibilities and one needs to address them separately.

Case 1. This is the case when no three points are collinear, the picture is depicted below.

p2

p1

p3

p4

L1

L2

L3 L4

Figure 2.2: Four general points in P2

In this case, we set C1 = L1∪L2 and C2 = L3∪L4. It turns out that the homogeneous ideal IX

of X ⊆ P2 is the complete intersection of two conics, the defining equations of C1 and C2 each

of which is an union of two lines. The minimal graded free resolution of SX is as follows:

0 → S(−4) → S(−2)⊕2 → S → SX → 0.

The graded Betti numbers of SX are listed in the Betti diagram below.

21



0 1 2
0 1 − −
1 − 2 −
2 − − 1

Table 2.2: Betti diagram of four general points in P2

Case 2. When exactly three points are collinear, we have the following picture.

L1

L

L2

p1 p2 p3

p4

Figure 2.3: Four points in P2 exactly three of which are collinear

In this case, take lines L1 and L2 passing through p4 that do not contain any of the three

points p1, p2, p3 (see picture). Set C1 := L∪L1 and C2 = L∪L2. It turns out that the homogeneous

ideal IX of X ⊆ P2 is generated by the conics defining C1 and C2 together with a cubic. The

graded Betti numbers of SX in this situation are listed in the Betti diagram below.

0 1 2
0 1 − −
1 − 2 1
2 − 1 1

Table 2.3: Betti diagram of four points in P2 exactly three of which are collinear

Case 3. The last case is when all four points lie on a line L.

p1 p2 p3 p4

Figure 2.4: Four collinear points in P2
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It turns out that the homogeneous ideal IX of X ⊆ P2 is generated by the defining equation

of L and a quartic that is the product of four lines each passing through exactly one of the given

points. The graded Betti numbers of SX for this case are listed in the Betti diagram below.

0 1 2
0 1 1 −
1 − − −
2 − − −
3 − 1 1

Table 2.4: Betti diagram of four collinear points in P2

♠

2.5 Koszul resolution of the ideal sheaf and vanishing theorems

We will make use of the Koszul resolution of ideal sheaves in the later chapters. We define the

Koszul resolution of the ideal sheaf below in a more general set-up, namely we define the Skoda

complex.

Definition 2.5.1. Let X be a smooth projective variety of dimension n ≥ 2. Let B be a globally

generated and ample line bundle on X .

(1) Take n −1 general sections s1, ...sn−1 of H 0(B) so the intersection of the divisor of zeroes

Bi = (si )0 is a nonsingular projective curve C , that is C = B1 ∩ ...∩Bn−1.

(2) Let I be the ideal sheaf of C and let W = span{s1, ..., sn−1} ⊆ H 0(B) be the subspace

spanned by si . Note that W ⊆ H 0(B ⊗I ). For i ≥ 1, define the Skoda complex Ii as

0
n−1∧

W ⊗B−(n−1) ⊗I i−(n−1) . . . W ⊗B−1 ⊗I i−1 I i 0

where I k stands for I⊗k , we have used the convention that I k =OX for k ≤ 0.

In this article we will only use I1 which is called the Koszul resolution of I and it is exact (see

[Laz04b]). We now recall two well-known vanishing theorems that are crucial for us.

23



Theorem 2.5.2. (Kodaira Vanishing Theorem, [Laz04a], Theorem 4.2.1) Let X be a smooth pro-

jective variety and let L be an ample line bundle on X . Then H i (KX +L) = 0 for all i > 0.

Kodaira Vanishing Theorem generalizes for nef and big line bundles as follows.

Theorem 2.5.3. (Kawamata-Viehwag Vanishing Theorem, [Laz04a], Theorem 4.3.1) Let X be a

smooth projective variety and let L be a nef and big line bundle on X . Then H i (KX +L) = 0 for all

i > 0.

2.6 Projective normality, normal presentation and property Np

Throughout this section, X denotes a normal projective variety and L denotes ample and glob-

ally generated line bundle on X . The main references for this section are [Eis05], [Gre84b],

[Laz89] and [Laz04a]. We set

R := ⊕
m≥0

H 0(mL) and S := Sym(H 0(L)�C[X0, . . . , Xs].

Since R is finitely generated as an S module, following the notations that we have used before,

we set Kp,q (X ,L) := Kp,q (R, H 0(L)). We have have a minimal graded free resolution of R as an S

module as follows:

0 −→ Es+1 −→ ·· · −→ E0 −→ R −→ 0, (2.5)

Where the modules Ei �⊕S(−ai j ) encodes the syzygy information as we have seen before.

Definition 2.6.1. In the situation as above,

(1) L is projectively normal (or it satisfies property N0) if E0 � S;

(2) L is normally presented (or it satisfies property N1) if E0 � S and E1 � S(−2);

(3) L satisfies property Np if E0 � S and Ei � S(−i −1) for all 1 ≤ i ≤ p.

We remark that L is projectively normal if and only if it is very ample and the homogeneous

coordinate ring R is integrally closed. Further, L is normally presented if and only if in addition,

the homogeneous ideal IX of the embedding X ,→P(H 0(L)) is cut out by quadrics.
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2.6.1 Characterizations of Np property

The syzygy bundle ML associated to a globally generated line bundle L is defined as follows,

0 −→ ML −→ H 0(L)⊗OX −→ L −→ 0. (∗)

We start by the following two lemmas that are necessary to prove the characterization i.e.,

Theorem 2.6.4. The proof that we include here is taken from [Laz89] and [Her06], Appendix A.

Lemma 2.6.2. L satisfies Np property if and only if Kp ′,q ′(X ,L) = 0 for all 0 ≤ p ′ ≤ p and q ′ ≥ 2.

Proof. We start with a minimal graded free resolution (2.5) of R as S module. Observe that

L satisfies Np property if and only if Ep ′ has no generators of degree larger than p ′+ 1 for all

0 ≤ p ′ ≤ p. Since TorS
p ′(R,C) � Ep ′ ⊗C by Lemma 2.4.4, L satisfies Np property if and only if

TorS
p ′(R,C)k = 0 for all k ≥ p ′+2 and 0 ≤ p ′ ≤ p. The conclusion follows from Lemma 2.4.8. ä

Lemma 2.6.3. Kp,q (X ,L)�Ker(H 1(∧p+1ML ⊗ (q −1)L) −→∧p+1H 0(L)⊗H 1(X , (q −1)L)).

Proof. We start with the following commutative diagram (see [Laz89], Diagram (1.3.5))

0

∧p+1ML ⊗ (q −1)L

∧p+1H 0(L)⊗ (q −1)L 0

0 ∧p ML ⊗qL ∧p H 0(L)⊗qL ∧p−1ML ⊗ (q +1)L 0

0 ∧p−1H 0(L)⊗ (q +1)L

where the vertical and horizontal exact sequences are obtained from (∗). Taking global sections,
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we obtain the following diagram.

0

H 0(∧p+1ML ⊗ (q −1)L)

H 0(∧p+1H 0(L)⊗ (q −1)L) 0

0 H 0(∧p ML ⊗qL) ∧p H 0(L)⊗H 0(qL) H 0(∧p−1ML ⊗ (q +1)L)

H 1(∧p+1ML ⊗ (q −1)L) H 0(∧p−1H 0(L)⊗ (q +1)L)

∧p+1H 0(L)⊗H 1((q −1)L)

α

ψ

λ µ

β

φ

Notice that Kp,q (X ,L)�Ker(β)/Image(λ). Also observe thatλ induces an isomorphism between

H 0(∧p ML ⊗qL) and Ker(β). The required isomorphism between Kp,q (X ,L) and Ker(φ) is given

by sending x to ψ(λ−1x). ä

Now we are ready to state the main theorem that we will crucially use later.

Theorem 2.6.4. Let L be an ample, globally generated line bundle on X . If the cohomology group

H 1(
∧p ′+1 ML ⊗kL) vanishes for all 0 ≤ p ′ ≤ p and for all k ≥ 1, then L satisfies the property Np .

If in addition H 1(r L) = 0 for all r ≥ 1, then the above vanishing is a necessary and sufficient

condition for L to satisfy Np .

Proof. Follows immediately from Lemma 2.6.3. ä
Since we are working over a field with characteristic zero,

∧p ′+1 ML is a direct summand

of M⊗p ′+1
L (see [EL93b], Lemma 1.6). Consequently, to show that a line bundle L satisfies the

property Np , we will show that H 1(M⊗p ′+1
L ⊗kL) = 0 for all 0 ≤ p ′ ≤ p and for all k ≥ 1. We remark

that if L is projectively normal then it is automatically very ample and we refer to [Mum70] for

an overview of these circles of ideas.

Before providing some examples, we remark here that if L satisfies Np property, then the
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Betti diagram of the coordinate ring SX looks as follows.

0 1 2 · · · p p +1 · · · r +1
0 1 − − ·· · − − − −
1 − ∗ ∗ ·· · ∗ ∗ · · · ∗
2 − − − ·· · − ∗ · · · ∗
...

...
...

... · · · ...
... · · · ...

Table 2.5: Betti diagram of SX if L satisfies Np

Example 2.6.5. (Twisted cubic curve) Let C ⊆ P3 be a rational normal curve of degree 3 i.e.

the embedding P1 ,→ P3 by the complete linear series |OP1 (3)|. We have S = Sym(H 0(OP1 (3)) �

C[X0, X1, X2] where X0, X1, X2 are the homogeneous coordinates of P2. In this case, the em-

bedding is projectively normal, the homogeneous ideal IC is generated by the following three

quadrics

∆01 = X0X2 −X 2
1 , ∆02 = X0X3 −X1X2, ∆12 = X1X3 −X 2

2

and the homogeneous coordinate ring SC = S/IC = ⊕(H 0(OP1 (3d)). The relations among ∆i j ’s

are given by the following two equations:

X0∆12 −X1∆02 +X2∆01 = 0, X1∆12 −X2∆02 +X3∆01 = 0.

The minimal graded free resolution of SC takes the following shape (see [Laz89], Example 1.2.2)

0 S(−3)⊕2 S(−2)⊕3 S SC 0.

(
X0 X1
−X1 −X2
X2 X3

)
(∆12 ∆02 ∆01 )

Consequently, the line bundle OP1 (3) satisfies N2. ♠

Example 2.6.6. (Rational normal curves) The above example generalizes as follows: let C ⊆ Pr

be a rational normal curve of degree r . Using the Eagon-Northcott complex, one obtains that

the Betti diagram of SC is as follows (see [Eis05], Corollary 6.2).
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0 1 2 · · · r −1
0 1 − − ·· · −
1 − (r

2

)
2
(r

3

) · · · (r −1)
(r

r

)
Table 2.6: Betti diagram of rational normal curves

In particular, one observes from the diagram above that OP1 (r ) satisfies Nr property. ♠

Example 2.6.7. (Elliptic quartic curve) Let E ⊆P3 be an elliptic curve embedded by a line bun-

dle of degree 4. Then E is a complete intersection of two quadrics Q1 and Q2. Further, the

embedding is projectively normal and the minimal graded free resolution of the homogeneous

coordinate ring SE is as follows (see [Laz89], Example 1.2.4)

0 S(−4) S(−2)⊕2 S SE 0.

( Q2
−Q1

)
(Q1 Q2 )

Consequently, the line bundle satisfies N1 but not N2. ♠

2.6.2 Mukai’s conjecture for adjoint linear series

As we discussed in the introduction, the following conjecture, known as Mukai’s conjecture has

motivated a lot of work regarding syzygies of projective varieties.

Conjecture 2.6.8. Let X be a smooth projective variety of dimension n and let L be an ample line

bundle on X . Then KX +dL satisfies the Np property if d ≥ n +p +2.

In this section, we include a brief survey of the existing results. We first state some of the

results obtained on surfaces towards this direction below.

• Elliptic Ruled Surfaces: Homma proved it for the case p = 0 for elliptic ruled surface (see

[Hom80] and [Hom82]). The case p = 1 for elliptic ruled surfaces was proved by Gallego and

Purnaprajna. In fact, they showed that the numerical classes of normally presented divisors on

an elliptic ruled surface forms a convex set and as a particular case recovered Mukai’s conjecture

for p = 0,1 and yield weaker bounds for higher syzygies (see [GP96]).
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• Surfaces with Kodaira Dimension zero: Gallego and Purnaprajna proved Mukai’s conjecture

on these surfaces for p = 0,1 lowering the bound by one in the latter case (see [GP98]).

• Surfaces of General Type: Purnaprajna proved that under mild hypothesis on an ample and

globally generated line bundle A, KX + l A is projectively normal and normally presented for

l ≥ 2 where KX is the canonical line bundle. He also obtained precise results on higher syzygies

(See [Pur05]). Np property of the adjoint bundles associated to an ample and globally gener-

ated line bundle on surfaces of general type was also studied in [BH13] where Banagere and

Hanumanthu proved several interesting results in this direction.

In the following table, we list a few very important results in higher dimensional varieties.

X L p d ≥ Reference
Arbitrary Very ample Arbitrary n +p +1 Ein-Lazarsfeld [EL93b]
Abelian Ample 0 3 Koizumi [Koi76]
Abelian Ample 1 4 Kempf [Kem89]
Abelian Ample Arbitrary p +3 Pareschi [Par00]

Hyperelliptic Ample Arbitrary p +3 Chintapalli-Iyer [CI14]

Table 2.7: Conditions under which KX +dL satisfies Np on X

Apart from these results, Butler proves that if E is a rank n vector bundle on a smooth pro-

jective curve C with genus g ≤ 1 then KX + l A is projectively normal for l ≥ 2n +1 and satisfies

the property Np for l ≥ 2n(p +1) where X = P(E) (see [But94]). Effective projective normality

results and higher syzygies for ruled surfaces and higher dimensional ruled varieties were sys-

tematically studied by Park in a series of papers [Par06a]–[Par05]. Another very interesting case

is the case on toric varieties; Hering, Schenck and Smith proved in [HSS06] that for an ample

line bundle A on an n dimensional toric variety, l A satisfies Np property for l ≥ n +p −1.

2.7 Surjectivity of multiplication maps

As it will be clear to us that to study Np property for line bundles, it is often useful to study

the surjectivity for the multiplication maps of global sections of vector bundles on X . In this

section, we recall some of the results that allow us to prove the surjection of such maps for
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curves and higher dimensional varieties. For references, see [Gre84b], [Laz04a], and [GP01]–

[GP98].

2.7.1 Multiplication maps on curves

In this subsection, we recall a few important results on curves. The first result is a generalization

of the base point-free pencil trick, and it is due to Green who calls it “The H 0 Lemma”.

Theorem 2.7.1. ([Gre84b], Theorem (4.e.1)) Let C be a smooth, irreducible curve. Let L and M be

line bundles on C . Let W be a base point free linear subsystem of H 0(C ,L). Then the multiplica-

tion map W ⊗H 0(M) → H 0(L⊗M) is surjective if h1(M ⊗L−1) ≤ dim(W )−2.

Before stating the next result, we recall the notion of stability. Let C be a smooth projective

curve and E be a vector bundle on C . The slope of E is given by µ(E) := deg(E)/rank(E). E is

called semistable (resp. stable) if for every proper sub-bundle E ′ ( E , one has µ(E ′) ≤µ(E) (resp.

µ(E ′) <µ(E)).

Example 2.7.2. Any line bundle on C is stable. Further, when C = P1, by Grothendieck’s Theo-

rem, there is no stable vector bundle of rank > 1 on C and the semistable vector bundles are of

the form
⊕

OP1 (a). ♠

Proposition 2.7.3. [But94], Proposition 2.2) Let E and F be semistable vector bundles over a curve

C of genus g such that E is generated by its global sections. If

(1) µ(F ) > 2g , and

(2) µ(F ) > 2g + rank(E)(2g −µ(E))−2h1(E),

then the multiplication map H 0(E)⊗H 0(F ) → H 0(E ⊗F ) surjects.

When we use the above proposition, one of the vector bundle is going to be the syzygy bun-

dle ML corresponding to a globally generated line bundle on C . Thus, we require the following

theorem that gives the criterion under which the line bundle ML is semistable on C .
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Proposition 2.7.4. ([EL92], Proposition 1.5) For a smooth projective curve C of genus g , and a

globally generated line bundle L on C , the syzygy bundle ML is stable as soon as deg(L) ≥ 2g +1.

We remark that it is easy to see that if deg(L) ≥ 2g +1 then µ(ML) > −2 and we will use this

fact often in the proofs of our main theorems.

2.7.2 Castelnuovo-Mumford regularity

We start by defining what it means to say that a sheaf F is m-regular with respect to L.

Definition 2.7.5. Let F be a coherent sheaf on a projective variety X and let L be an ample and

globally generated line bundle on X . Then F is said to be m-regular if

H i (F ⊗ (m − i )L) = 0 for all i > 0.

It follows from the work of Mumford that if F is m-regular then it is (m+k)-regular for every

k ≥ 0. It turns out that 0-regularity provides a very effective result for surjectivity of multiplica-

tion maps as the following lemma shows.

Lemma 2.7.6. ([Mum70]) Let L be a base point free line bundle on a variety X and let F be a

coherent sheaf on X . If H i (F ⊗ (−i L)) = 0 for all i ≥ 1 then the multiplication map

H 0(F ⊗ (i L))⊗H 0(L) → H 0(F ⊗ (i +1)L)

surjects for all i ≥ 0.

2.7.3 Criterions of Gallego-Purnaprajna

The following observation of Gallego and Purnaprajna is one of the most useful ways to deal

with the surjectivity of multiplication maps for global sections of tensor product of line bundles.

Using the following “divide and rule” method one may prove surjectivity by proving surjectivity

of simpler multiplication maps. The proof is taken from [BH13].
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Observation 2.7.7. ([GP99a], Observation 1.4.1) Let E and L0 := OX , L1, L2, · · · ,Lr be coherent

sheaves on a variety X . Assume the following evaluation maps

αk : H 0

(
E ⊗

k−1⊗
i=0

Li

)
⊗H 0(Lk ) → H 0

(
E ⊗

k⊗
i=1

Li

)

surjects for all 1 ≤ k ≤ r . Then the evaluation map ψ : H 0(E)⊗H 0
(

r⊗
i=1

Li

)
→ H 0

(
E ⊗

r⊗
i=1

Li

)
also

surjects.

Proof. We have the following commutative diagram.

H 0(E)⊗H 0(L1)⊗·· ·⊗H 0(Lr ) H 0(E ⊗L1)⊗H 0(L2)⊗·· ·⊗H 0(Lr )

H 0(E)⊗H 0
(

r⊗
i=1

Li

)
H 0(E ⊗L1 ⊗L2)⊗H 0(L3)⊗·· ·⊗H 0(Lr )

· · ·

H 0
(
E ⊗

r⊗
i=1

Li

)
H 0

(
E ⊗

r−1⊗
i=1

Li

)
⊗H 0(Lr )

φ

α1⊗Id

α2⊗Id

ψ

α3⊗Id

αr−1⊗Id

αr ⊗Id

Our hypotheses implies that ψ◦φ is surjective and thus ψ is surjective. ä

The following two lemmas are also very important to show projective normality and higher

syzygies as we will see in later chapters.

Lemma 2.7.8. ([GP99a], Observation 2.3) Let X be a regular variety (i.e. H 1(OX ) = 0). Let E be a

vector bundle and let D be a divisor such that L = OX (D) is globally generated and H 1(E ⊗L∗) =
0. If the multiplication map H 0(E |D )⊗H 0(L|D ) → H 0((E ⊗L)|D ) surjects then H 0(E)⊗H 0(L) →
H 0(E ⊗L) also surjects.
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Proof. We have the following commutative diagram with exact rows.

0 H 0(E)⊗H 0(OX ) H 0(E)⊗H 0(L) H 0(E)⊗H 0(L|D ) 0

0 H 0(E) H 0(L⊗E) H 0(E ⊗L⊗OD )

The top sequence is exact since X is regular. Observe that the left vertical map is surjective.

We claim that the right vertical map is also surjective. Indeed, since H 1(E ⊗L∗) = 0, the map

H 0(E) → H 0(E ⊗OD ) surjects. In what follows, the right vertical map is surjective by our hy-

pothesis since it factors through H 0(E |D )⊗H 0(L|D ) → H 0(E ⊗L ⊗OD ). The conclusion follows

from a simple diagram chase. ä

Lemma 2.7.9. [GP99a], Lemma 2.9) Let X be a projective variety, let r be a non-negative integer

and let F be a base-point-free line bundle on X . Let Q be an effective line bundle on X and let q

be a reduced and irreducible member of |Q|. Let R be a line bundle and G a sheaf on X such that

(1) H 1(F ⊗Q∗) = 0,

(2) H 0(M⊗i
F⊗Oq

⊗R ⊗Oq )⊗H 0(G) → H 0(M⊗i
F⊗Oq

⊗R ⊗G ⊗Oq ) is surjective for all 0 ≤ i ≤ r .

Then for all 0 ≤ i ′ ≤ r and for all 0 ≤ k ≤ i ′, the following map

H 0(M⊗k
F ⊗M⊗i ′−k

F⊗Oq
⊗R ⊗Oq )⊗H 0(G) −→ H 0(M⊗k

F ⊗M⊗i ′−k
F⊗Oq

⊗R ⊗G ⊗Oq )

is surjective.

Proof. We do an induction on i ′. Clearly, the statement is true if i ′ = 0 since it is just the condition

(2) with r = 0. Assume the statement is true for i ′−1 and we want to prove it for i ′. To this end,

we use induction on k. If k = 0, then it is again the condition (2) and we are done. Assume it is
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true for k −1 and we want to prove it for k. We have the following commutative diagram

0 MF ⊗Oq H 0(F )⊗Oq F ⊗Oq 0

0 MF⊗Oq H 0(F ⊗Oq )⊗Oq F ⊗Oq 0

Observe that the second vertical map is surjective by the condition (1) and its kernel is H 0(F ⊗
Q∗)⊗Oq . Consequently, by Snake lemma we obtain the following exact sequence

0 → H 0(F ⊗Q∗)⊗Oq → MF ⊗Oq → MF⊗Oq → 0. (2.6)

Tensoring the above exact sequence by M⊗k−1
F ⊗M⊗i ′−k

F⊗Oq
⊗R ⊗Oq and taking global sections, we

obtain the following diagram with exact rows (the exactness of the top row can be seen by a

diagram chase)

0 A⊗H 0(G) B ⊗H 0(G) C ⊗H 0(G) 0

0 A′ B ′ C ′ 0

(2.7)

where the groups A,B ,C , A′,B ′,C ′ are as follows:

A = H 0(F ⊗Q∗)⊗H 0(M⊗k−1
F ⊗M⊗i ′−k

F⊗Oq
⊗R ⊗Oq ), B = H 0(M⊗k

F ⊗M⊗i ′−k
F⊗Oq

⊗R ⊗Oq ),

A′ = H 0(F ⊗Q∗)⊗H 0(M⊗k−1
F ⊗M⊗i ′−k

F⊗Oq
⊗R ⊗G ⊗Oq ), C = H 0(M⊗k−1

F ⊗M⊗i ′−k+1
F⊗Oq

⊗R ⊗Oq ),

B ′ = H 0(M⊗k
F ⊗M⊗i ′−k

F⊗Oq
⊗R ⊗G ⊗Oq ), C ′ = H 0(M⊗k−1

F ⊗M⊗i ′−k+1
F⊗Oq

⊗R ⊗G ⊗Oq ).

The left vertical map of (2.7) surjects by the induction hypothesis on i ′ and the right vertical

map surjects by the induction hypothesis on k. Thus, the surjectivity of the middle vertical map

follows from a diagram chase. ä
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Chapter 3

Properties N0 and N1 for adjoint linear series on smooth

minimal varieties

This chapter is devoted to the proof of Theorem 1.1.1 and Theorem 1.1.2. Throughout Section

3.1 and Section 3.2, we only work with smooth projective varieties. Finally in Section 3.2.3 we

will see to what extent our results generalize for varieties with canonical singularities.

3.1 Projective normality for adjoint linear series

We first prove the projective normality results for adjoint linear series L = KX + lB for an ample

and globally generated line bundle B on X , i.e., Theorem 1.1.1. The way we are going to prove

this result is as follows: by Theorem 2.6.4 we need to check the surjection of H 0(kL)⊗H 0(L) →
H 0(k + 1)L. We first make use of the “divide and rule” method (Observation 2.7.7) to reduce

the problem to checking the surjectivity of simpler multiplication maps. Then we we Koszul

resolutions (see Definition 2.5.1) of the ideal sheaf of general curve sections of B and KX +B to

further reduce the problem to checking such surjectivity of multiplication maps on curves and

we use the results of Section 2.7.

3.1.1 Surjectivity of multiplication maps

First we prove a lemma that shows a surjection of a multiplication map of global sections as we

described before. We will require this lemma crucially in the proof of our main theorem.

Lemma 3.1.1. Let X be a smooth projective variety of dimension n, n ≥ 3. Let B be an ample
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and base point free line bundle on X . We further assume h0(B) ≥ n +2. Let Xn be X , Xn− j be a

smooth irreducible (n − j )-fold chosen from the complete linear system of |B |Xn− j+1 | (which exists

by Bertini) for all 1 ≤ j ≤ n −1. Then the following will hold.

(i) H 1(K + lB |Xn− j ) = 0 for all 0 ≤ j ≤ n −2, l ≥ n −1.

(ii) H 0(K +nB)⊗H 0(B) → H 0(K + (n +1)B) surjects.

Proof. (i) By adjunction, KXn− j = (K + j B)|Xn− j for all 0 ≤ j ≤ n −1. Thus, by Kodaira Vanishing,

H 1(K + lB |Xn− j ) = H 1(KXn− j + (l − j )B |Xn− j ) = 0

for all 0 ≤ j ≤ n −2, l ≥ n −1.

(ii) Thanks to part (i), H 0((K + lB)|Xn− j ) → H 0((K + lB)|Xn− j−1 ) surjects for all l ≥ n, 0 ≤ j ≤
n −2. We have the following diagram.

0 H 0(L)⊗H 0(B ⊗I ) H 0(L)⊗H 0(B) H 0(L)⊗V 0

0 H 0((L+B)⊗I ) H 0(L+B) H 0((L+B)|X1 ) 0

(3.1)

Here L = K +nB , I is the ideal sheaf of the curve X1 in X and V is the cokernel of the map

H 0(B⊗I ) → H 0(B). The bottom row is exact by part (i) and the top row is exact by the definition

of V .

Let W be the vector space corresponding to the curve X1 on X that appears on the Koszul

resolution of I (see Definition 2.5.1). Tensoring the following exact sequence:

0 −→
n−1∧

W ⊗B−(n−1) −→ ·· · −→
2∧

W ⊗B−2 −→W ⊗B−1 −→I −→ 0 (3.2)

by L+B , we get the following exact sequence where L′ = L+B ,

0
n−1∧

W ⊗L′⊗B−(n−1) . . . W ⊗L′⊗B−1 L′⊗I 0.
fn−1 f2 f1

36



To show the left most vertical map in (3.1) surjects, it is enough to prove H 1(Ker( f1)) = 0

as W ⊆ H 0(B ⊗I ). The following two claims prove the vanishing.

Claim 1: H r (Ker( fr )) = 0 =⇒ H r−1(Ker( fr−1)) = 0 for all 2 ≤ r ≤ n −2.

Proof: We have the following short exact sequence:

0 Ker( fr )
r∧

W ⊗L′⊗B−r Ker( fr−1) 0.
fr

The long exact sequence of cohomology proves the claim as H r−1(K + (n + 1− r )B) = 0 since

n +1− r > 0 for r in the given interval. ■
Claim 2: H n−2(L′− (n −1)B) = 0.

Proof: This is obvious from Kodaira Vanishing as H n−2(L′− (n −1)B) = H n−2(K +2B) = 0. ■
Thus, in order to prove the surjectivity of the middle vertical map in (3.1), we only have

to prove the surjection of the map H 0(L|X1 )⊗V → H 0((L +B)|X1 ) as H 0(L|Xn− j ) → H 0(L|Xn− j−1 )

already surjects for all 0 ≤ j ≤ n − 2 by part (i). Using Lemma 2.7.1, it is enough to prove the

following inequality:

h1((K + (n −1)B)|X1 ) ≤ dim(V )−2. (3.3)

So, first we have to find an estimate of dim(V ) and we do that by the following claim.

Claim 3: h0(B ⊗I ) = dim(W ).

Proof: We tensor the exact sequence (3.2) by B and get the following exact sequence:

0
n−1∧

W ⊗B−(n−2) . . .
2∧

W ⊗B−1 W ⊗OX B ⊗I 0
gn−1 g3 g2 g1

So, in order to prove the claim, it is enough to show H 0(Ker(g1)) = 0 and H 1(Ker(g1)) = 0.

These two vanishing can be seen from the following four facts whose proofs we omit as they

are similar to Claim 1 and Claim 2.

Fact 1: H r−1(Ker(gr )) = 0 =⇒ H r−2(Ker(gr−1)) = 0 for all 2 ≤ r ≤ n −2,

Fact 2: H n−3(B−(n−2)) = 0,
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Fact 3: H r (Ker(gr )) = 0 =⇒ H r−1(Ker(gr−1)) = 0 for all 2 ≤ r ≤ n −2,

Fact 4: H n−2(B−(n−2)) = 0. ■
Therefore, dim(V ) = h0(B)−h0(B ⊗I ) ≥ h0(B)− (n−1) as dim(W ) ≤ n−1. Observe that the

bundle (K +(n−1)B)|X1 is the canonical bundle of X1 and consequently h1((K +(n−1)B)|X1 ) = 1.

Thus, the inequality (3.3) is verified thanks to h0(B) ≥ n +2. ä

Remark 3.1.2. Since B is ample and base point free, h0(B) ≥ n + 1. In our theorems, we are

assuming that h0(B) ≥ n+2. Later we will give an example where h0(B) = 4 and K +3B does not

satisfy projective normality on a regular three-fold. ♦

Now we prove another lemma that is equally crucial for the proof of Theorem 1.1.1.

Lemma 3.1.3. Let X be a smooth projective variety of dimension n, n ≥ 3. Let B be an ample and

base point free line bundle on X . We further assume the following three conditions:

(a) K is nef, K +B is base point free,

(b) h0(K +B) ≥ h0(K )+n +1,

(c) B −K is nef and effective divisor.

Let Xn be X , Xn− j be sufficiently general smooth irreducible (n− j ) fold chosen from the complete

linear system of |(K +B)|Xn− j+1 | for all 1 ≤ j ≤ n −1. Then the following will hold:

(i) H 1((2n −2)B |Xn− j ) = 0 for all 0 ≤ j ≤ n −2.

(ii) H 0(K + (2n −1)B)⊗H 0(K +B) → H 0(2K +2nB) surjects.

Proof. (i) Adjunction gives us KXn− j = (( j +1)K + j B)|Xn− j for all 0 ≤ j ≤ n −1. We have,

H 1((2n −2)B |Xn− j ) = H 1(KXn− j + (((2n −2 j −3)B + ( j +1)(B −K ))|Xn− j )).

Note that, 2n −2 j −3 ≥ 1 for all 0 ≤ j ≤ n −2. Using Kodaira Vanishing Theorem we conclude

H 1((2n −2)B |Xn− j ) = 0 for all 0 ≤ j ≤ n −2
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as B −K is nef.

Proof. (ii) Let I be the ideal sheaf of X1 in X and consequently we have W as in Definition

2.5.1. We have the following diagram where L = K + (2n −1)B and V is the cokernel of the map

H 0((K +B)⊗I ) → H 0(K +B):

0 H 0(L)⊗H 0((K +B)⊗I ) H 0(L)⊗H 0(K +B) H 0(L)⊗V 0

0 H 0((L+K +B)⊗I ) H 0((L+K +B)) H 0((L+K +B)|X1 ) 0

(3.4)

The bottom row is exact by Kodaira Vanishing as H 1((K + (2n − 1)B)|Xn− j ) = 0, the top row is

exact by our construction. We have the following exact sequence:

0
n−1∧

W ⊗ (K +B)−(n−1) . . . W ⊗ (K +B)−1 I 0.

Tensoring by L +K +B and taking cohomology, as in the proof of Lemma 3.1.1, we have the

following two vanishings:

(V-1) H r−1(K +L+B−r (K +B)) = H r−1(K +(2n−2r+1)B+(r−1)(B−K )) = 0 for all 2 ≤ r ≤ n−2

which is obvious by Kodaira Vanishing since we have B −K nef.

(V-2) H n−2(L+K +B − (n −1)(K +B)) = 0 which comes from Kodaira Vanishing as well.

The above two vanishings show that the leftmost vertical map in (3.4) is surjective. Note that

H 0(L) → H 0(L|X1 ) is surjective by part (i). Consequently, by the application of Lemma 2.7.1, we

just need the following inequality:

h1((2n −2)B |X1 ) ≤ dim(V )−2. (3.5)

As in the proof of Claim 3, Lemma 3.1.1, we can see that dim(V ) ≥ h0(K +B)− (n −1). Still, we

have to estimate h1((2n −2)B |X1 ). We have the short exact sequence:

0 (−K −B)|X2 OX2 OX1 0.
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Tensoring this by (2n −2)B and taking the long exact sequence of cohomology, we obtain

. . . H 1((2n −2)B |X2 ) H 1((2n −2)B |X1 ) H 2((−K + (2n −3)B)|X2 ) . . .

Since H 1((2n−2)B |X2 ) = 0 by (i), we get h1((2n−2)B |X1 ) ≤ h2((−K +(2n−3)B)|X2 ). Now, we have,

h2((−K +(2n−3)B)|X2 ) = h0(((n−1)K +(n−2)B+K −(2n−3)B)|X2 ) = h0(K |X2 −(n−1)(B−K )|X2 )

where the first equality is obtained by duality.

Note that, assumption (c) gives us h0(K |X2 − (n −1)(B −K ))|X2 ) ≤ h0(K |X2 ). The long exact

sequence associated to the following short exact sequence:

0 (−B)|Xn− j+1 K |Xn− j+1 KXn− j 0

shows us (by Kodaira Vanishing) that h0(K |Xn− j ) = h0(K |Xn− j+1 ) for all 0 ≤ j ≤ n − 2. Conse-

quently, h0(K |X2 ) = h0(K ). Thus, to show inequality (3.5) it is enough to show the inequality

h0(K ) ≤ h0(K +B)− (n +1) which we have, thanks to assumption (b). ä

Now we list three remarks that discuss the hypotheses of the lemma we just proved.

Remark 3.1.4. We always have h0(K +B) ≥ h0(K )+n on any smooth projective n-fold if K +B

and B are ample and base point free.

Proof. Note that, h0(K +B)−h0(K ) is the dimension of the cokernel V of the map H 0(K ) →
H 0(K +B) in H 0((K +B)|Xn−1 ) where Xn−1 is a smooth irreducible divisor chosen from the com-

plete linear system of B . Notice that V is the linear subsystem of the complete linear series

|(K +B)|Xn−1 | obtained by pulling back the base point free complete linear series |K +B | on X

by the embedding Xn−1 ,→ X . Consequently |V | is globally generated and dim(V ) ≥ n as the

morphism induced by |V | is the composite of the embedding i and a finite morphism (given on

X by |K +B |) and is hence finite on an n −1 dimensional variety Xn−1. ♦

Remark 3.1.5. Let X be a smooth projective variety of dimension n with nef canonical bundle

K . Let B be an ample and base point free line bundle such that B +K is globally generated,
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h0(B) ≥ n +2 and H 1(B) = 0. Then h0(K +B) ≥ h0(K )+n +1.

Proof. The assertion is trivial if h0(K ) = 0 or if K = OX . Otherwise, we have the short exact

sequence:

0 B B +K (B +K )|K 0

where K is a non zero effective divisor chosen from the linear system of K . From the long exact

sequence, we get that h0(K +B) = h0(B)+h0((B +K )|K ). But h0((B +K )|K ) ≥ h0(K |K ). Thus,

h0(K +B) = h0(B)+h0((B +K )|K ) ≥ n +2+h0(K )−1. ♦

Remark 3.1.6. Let X be a smooth projective variety of dimension n with nef canonical bundle

K and H n−1(OX ) = 0. Let B be an ample and base point free line bundle on X such that B +K is

globally generated and h0(B) ≥ n +2. Then h0(K +B) ≥ h0(K )+n +1.

Proof. Again, we can assume that K is a non zero effective divisor. The long exact sequence

associated to the short exact sequence:

0 K B +K (B +K )|B 0

gives h0(K +B) = h0(K )+h0((B+K )|B) (here B is a sufficiently general non zero effective divisor

chosen from the linear system of B). Now we have h0((B +K )|B) ≥ h0(B |B). Hence h0(K +B) ≥
h0(K )+h0(B |B) ≥ h0(K )+n +1. ♦

3.1.2 Proof of Theorem 1.1.1

Now we are ready to prove our main theorem and we will make use of the lemmas that we

proved in the previous subsection as we promised.

Theorem 3.1.7. Let X be a smooth projective variety of dimension n, n ≥ 3. Let B be an ample

and base point free line bundle on X . We further assume:

(a) K is nef, K +B is base point free,
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(b) h0(B) ≥ n +2,

(c) h0(K +B) ≥ h0(K )+n +1,

(d) B −K is nef and effective.

Then K + lB is very ample and it embeds X as a projectively normal variety for all l ≥ n.

Proof. We need to prove H 0((K + lB)⊗k )⊗ H 0(K + l B) → H 0((K + lB)⊗k+1) surjects ∀k ≥ 1. We

carry out the proof using several steps.

Step 1: H 0(k(K + l B)+ r B)⊗H 0(B) → H 0(k(K + l B)+ (r +1)B) surjects for k ≥ 2, l ≥ n, r ≥ 0.

This comes from CM lemma (Lemma 2.7.6) once we note that,

H i (k(K + l B)+ (r − i )B) = H i (K + (k −1)K + r B + (kl − i )B) = 0 for all 1 ≤ i ≤ n

by Kodaira Vanishing.

Step 2: H 0(k(K +l B)+(l −1)B)⊗H 0(K +B) → H 0((k+1)K +(kl +l )B) surjects for k ≥ 2, l ≥ n.

This again comes from CM lemma (Lemma 2.7.6). Indeed,

H i (k(K + lB)+ (l −1)B − i K − i B) = H i (K +kK + (kl + l −1− i )B − (1+ i )K ).

But kl + l −1− i ≥ 3n−1− i ≥ 2n−1 > 1+n for all 1 ≤ i ≤ n. Since assumption (d) shows us that

B −K is nef, Kodaira Vanishing gives

H i (k(K + lB)+ (l −1)B − i K − i B) = 0 for all 1 ≤ i ≤ n.

Step 3: H 0((K + lB)⊗k )⊗H 0(K + lB) → H 0((k + lB)⊗k+1) surjects for k ≥ 2, l ≥ n, r ≥ 0. This

comes from Steps 1, 2 and the Observation 2.7.7.

So, we only need to prove H 0(K + lB)⊗H 0(K + l B) → H 0((K + lB)⊗2) surjects for all l ≥ n.

Step 4: H 0(K + l B)⊗H 0(B) → H 0(K +(l +1)B) surjects for l > n. This comes from CM lemma

(Lemma 2.7.6) once we note that H i (K +(l − i )B) = 0 for all 1 ≤ i ≤ n by Kodaira Vanishing since
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l − i > 0.

Step 5: H 0(K + (2l −1)B)⊗H 0(K +B) → H 0(2K +2lB) surjects for l > n. To see this, first note

that H i (K +(2l−1)B−i K −i B) = H i (K +(2l−i−1)B−i K ). Now, 2l−i−1 ≥ 2n−i+1 > i , thanks to

l ≥ n+1 and 1 ≤ i ≤ n. Since B−K is nef, Kodaira Vanishing implies H i (K+(2l−1)B−i K−i B) = 0.

Hence by CM lemma (Lemma 2.7.6), we are done.

Step 6: H 0(K + l B)⊗H 0(K + l B) → H 0(2K +2lB) surjects for l > n. This comes from Steps 4,

5 and the Observation 2.7.7.

So, we only need to prove H 0(K +nB)⊗ H 0(K +nB) → H 0(2K +2nB) surjects which is our

final step.

Step 7: H 0(K +nB)⊗H 0(K +nB) → H 0(2K +2nB) surjects. This is because in Lemma 3.1.1,

we have already proved H 0(K +nB)⊗H 0(B) → H 0(K + (n +1)B) surjects and in Step 4 we have

showed H 0(K +lB)⊗H 0(B) → H 0(K +(l +1)B) surjects for l > n. Using Observation 1.2, we only

need to show the surjection of H 0(K + (2n −1)B)⊗ H 0(K +B) → H 0(2K +2nB) which we have

proved in Lemma 3.1.3. ä

Remark 3.1.8. Let X be a n dimensional smooth projective variety. Let B be a globally gener-

ated, ample line bundle on X . We further assume that B −K is a non-zero effective divisor. If

pg (X ) ≥ 2, then h0(B) ≥ n +pg .

Proof. The long exact sequence associated to the short exact sequence:

0 K B B |D 0

shows that the cokernel of the map H 0(K ) → H 0(B) is a base point free linear subsystem of the

base point free complete linear system of H 0(B |D ) (D is an element of the linear series of B−K ).

By the same argument used in the proof of Remark 3.4, we have h0(B)−pg ≥ n. ♦

Remark 3.1.8 and Remarks 3.1.5, 3.1.6 allow us to deduce a corollary of Theorem 3.1.7 which

we state below.
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Corollary 3.1.9. Let X be a smooth projective variety of dimension n ≥ 3 with pg ≥ 2. Let B be an

ample, globally generated line bundle on X . Assume K is nef and B−K is a nef, non-zero, effective

divisor. Further assume that B +K is globally generated. If either H 1(B) = 0 or H n−1(OX ) = 0 then

K +nB will be very ample and it will embed X as a projectively normal variety.

3.1.3 A discussion on optimality

In this section, we produce examples to discuss the sharpness of our conditions. Both of our

examples are cyclic covers and we refer to Section 2.3 for the basics. In our first example, we

construct a regular variety of general type and an ample, globally generated line bundle B on it

that satisfies all the conditions of Theorem 3.1.7 except the condition (b) and show that the line

bundle K +nB does not satisfy the property N0.

Example 3.1.10. Consider a double cover X of Pn+1 branched along an n-fold of degree 2n+4,

n ≥ 3. Let the natural finite morphism from X to Pn+1 be f . The unique line bundle associated

to this cover is O (n +2). We have f∗(OX ) =O ⊕O (−n −2), H 1(OX ) = 0 and KX =OX .

Consider B = f ∗O (1). Clearly B is ample and base point free,

H 0(B) = H 0( f∗(B)) = H 0(O (1)⊕O (−n −1)) =⇒ h0(B) = n +2.

Kodaira Vanishing shows that H 1(r B) = 0 for all r ≥ 1.

Let Y ∈ |B | be smooth irreducible n-fold given by Bertini’s Theorem. Consider the line bun-

dle B |Y on Y . This is again ample and base point free and by adjunction KY = B |Y . So Y is a

smooth n-fold of general type. Consider the following exact sequence:

0 B∗ OX OY 0. (3.6)

Taking cohomology and using Kodaira Vanishing, we get H 1(OY ) = 0. Tensoring the sequence

(2.5.1) by B and taking cohomology gives us h0(B |Y ) = h0(B)−1 = n +1. Hence B |Y does not
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satisfy the condition (b) of Theorem 3.1.7.

We have that KY +B |Y = 2B |Y and is hence base point free. Clearly KY = B |Y is nef since it is

ample. Also B |Y −KY =OY and is hence nef and effective. Now we show that,

h0(KY +B |Y ) ≥ h0(KY )+n +1 i.e. h0(2B |Y ) ≥ h0(B |Y )+n +1.

We have that H 0(2B) = H 0( f ∗O (2)) = H 0(O (2)⊕O (−n)) =⇒ h0(2B) = h0(O (2)) = (n+2
2

)+ (n +2).

Tensoring the exact sequence (3.6) by 2B and taking the cohomology shows that

h0(2B |Y ) = h0(2B)−h0(B) =
(

n +2

2

)
.

Now, h0(B |Y )+n +1 = 2n +2. Since n ≥ 3 we have that h0(KY +B |Y ) ≥ h0(KY )+n +1. We have

showed that B |Y satisfies all the conditions in Theorem 3.1.7 except (b). Now we prove that

KY +nB |Y = (n +1)B |Y does not satisfy property N0.

We have that KY +nB |Y = (n +1)B |Y . Suppose (n +1)B |Y satisfies the property N0. Hence

for a curve section C ∈ |BY | we have that (n +1)B |C is very ample. We also have that KC = nB |C
and hence (n +1)B |C = KC +B |C .

Now deg(B |C ) = B n+1 = 2H n+1 = 2 where H is a hyperplane section of Pn+1 since the map f

is 2 : 1. But KC +E cannot be very ample if E is an effective divisor of degree 2. ♠

Now we give an example of a variety and an ample, globally generated line bundle B for

which K +nB does not satisfy the property N0, where B −K is neither nef nor effective although

the geometric genus of the variety is large (see Corollary 3.1.9).

Example 3.1.11. Consider X a cyclic double cover of Pn branched along a hypersurface of de-

gree 2r . Denote by f the natural morphism from X to Pn . Let B = f ∗(O (1)). We have that,

f∗(OX ) =O ⊕O (−r ), KX = f ∗(O (−n −1+ r )), KX +B = f ∗(O (−n + r )), B −KX = f ∗(O (n +2− r )).

We can see that for r ≥ n +3, B −KX is not nef. However by making r large enough we can

make pg as large as we wish to and in particular make pg ≥ 2. We also have H 1(B) = 0. We now
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show that for r ≥ n +3, KX +nB is not projectively normal. Indeed,

KX +nB = f ∗(O (r −1)) =⇒ H 0(K +nB) = H 0(O (r −1)⊕O (−1)) = H 0(O (r −1)).

Now H 0(2KX +2nB) = H 0( f ∗(O (2r −2))) = H 0(O (2r −2))⊕H 0(O (r −2)). If r ≥ 2 we can clearly

see that K +nB is not projectively normal. Hence we can see that the condition B −KX nef and

effective is essential in Corollary 3.1.9. ♠

3.2 Normal presentation for adjoint linear series

In this section, we will prove the normal presentation result for adjoint linear series. We will

follow the same procedure described at the beginning of Section 3.1.

3.2.1 Surjectivity of multiplication maps

We first verify the surjectivity of the multiplication maps of global sections in the following three

lemmas that will arise after we perform the “divide and rule”.

Lemma 3.2.1. Let X be a regular smooth projective variety of dimension n, n ≥ 3. Let B be an

ample and base point free line bundle on X . We further assume h0(B) ≥ n +2. Let Xn be X and

let Xn− j be a smooth irreducible (n − j )-fold chosen from the complete linear system |B |Xn− j+1 |
(which exists by Bertini) for all 1 ≤ j ≤ n −1. Then the map

H 0((K +nB)|Xn− j )⊗H 0(B |Xn− j ) → H 0((K + (n +1)B)|Xn− j )

surjects for 0 ≤ j ≤ n −1.

Proof. To start with, notice that Xn− j is regular for all j . Indeed, it can easily be seen by taking

cohomology of the exact sequence

0 −B |Xn− j+1 OXn− j+1 OXn− j 0.
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Because of the vanishing Lemma 3.1.1 (i), by the repeated application of Lemma 2.7.8, it is

enough to prove H 0((K +nB)|X1 )⊗H 0(B |X1 ) → H 0((K +(n+1)B)|X1 ) surjects. To show this using

Lemma 2.7.1, we have to prove the inequality h1((K + (n −1)B)|X1 ) ≤ h0(B |X1 )−2 which follows

directly from our assumption that h0(B) ≥ n +2. ä

Lemma 3.2.2. Let X be a regular smooth projective n-fold, n ≥ 3. Let B be an ample and base

point free line bundle on X . We further assume:

(a) K is nef, K +B is base point free,

(b) h0(K +B) ≥ h0(K )+n +1,

(c) (n −2)B − (n −1)K is nef and effective.

Let Xn be X and let Xn− j be a sufficiently general smooth irreducible (n− j )-fold chosen from the

complete linear system |(K +B)|Xn− j+1 | for all 1 ≤ j ≤ n −1. Then the following will hold:

(i) H 1((2n −3)B |Xn− j ) = 0 for all 0 ≤ j ≤ n −2,

(ii) H 0((K + (2n −2)B)|Xn− j )⊗H 0((K +B)|Xn− j ) → H 0((2K + (2n −1)B)|Xn− j ) surjects for all 0 ≤
j ≤ n −1.

Proof. (i) Adjunction gives us KXn− j = (( j +1)K + j B)|Xn− j for all 0 ≤ j ≤ n −1. We have

H 1((2n −3)B |Xn− j ) = H 1(KXn− j + (B + (2n −4− j )B − ( j +1)K )|Xn− j ).

Note that,

B − j +1

2n −4− j
K = B − n −1

n −2
K + n −1

n −2
K − j +1

2n −4− j
K .

We have n−1 ≥ j+1 and n−2 ≤ 2n−4− j for all 0 ≤ j ≤ n−2. Consequently, (2n−4− j )B−( j+1)K

is nef as K and B − n −1

n −2
K are nef. Using Kodaira Vanishing we conclude H 1((2n−3)B |Xn− j ) = 0

for all 0 ≤ j ≤ n −2.
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(ii) As in the proof of Lemma 3.2.1, Xn− j is regular forr all j . Repeated application of Lemma

2.7.8 shows that it is enough to prove the lemma for j = n − 1. Hence, we have to prove the

surjection of

H 0((K + (2n −2)B)|X1 )⊗H 0((K +B)|X1 ) → H 0((2K + (2n −1)B)|X1 ).

Application of Lemma 2.7.1 shows us it is enough to check the following inequality:

h1((2n −3)B |X1 ) ≤ h0((K +B)|X1 )−2. (3.7)

We have the short exact sequence:

0 (−K −B)|X2 OX2 OX1 0.

Tensoring this by (2n −3)B and taking the long exact sequence, we obtain the following.

. . . H 1((2n −3)B |X2 ) H 1((2n −3)B |X1 ) H 2((−K + (2n −4)B)|X2 ) . . .

Since H 1((2n −3)B |X2 ) = 0 by (i), we get h1((2n −3)B |X1 ) ≤ h2((−K + (2n −4)B)|X2 ). We have,

h2((−K + (2n −4)B)|X2 ) = h0(((n −1)K + (n −2)B +K − (2n −4)B)|X2 )

= h0((K + (n −1)K − (n −2)B)|X2 ).

Note that, assumption (c) gives us h0((K +(n−1)K −(n−2)B)|X2 ) ≤ h0(K |X2 ). The long exact

sequence associated to the following short exact sequence

0 (−B)|Xn− j+1 K |Xn− j+1 K |Xn− j 0

shows us (by Kodaira Vanishing) that h0(K |Xn− j ) = h0(K |Xn− j+1 ) for all 0 ≤ j ≤ n−2. Consequently
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we get that h0(K |X2 ) = h0(K ). Thus, in order to show (3.7) it is enough to show the inequality

h0(K ) ≤ h0((K +B)|X1 )−2 which comes from assumption (b). Indeed, tensoring the above exact

sequence by B |Xn− j+1 and taking cohomology (recall that Xn− j+1 is regular), one sees easily that

h0((K +B)|Xn− j ) = h0((K +B)|Xn− j+1 )−1. ä

Lemma 3.2.3. Let X be a regular smooth projective n-fold, n ≥ 3. Let B be an ample and base

point free line bundle on X . We further assume:

(a) K is nef, K +B is base point free,

(b) h0(B) ≥ n +2,

(c) h0(K +B) ≥ h0(K )+n +1,

(d) (n −2)B − (n −1)K is nef and non-zero effective divisor.

Let Xn be X and let Xn− j be a sufficiently general smooth irreducible (n − j ) fold chosen from the

complete linear system of |B |Xn− j+1 | for all 1 ≤ j ≤ n −1. Let L be K + lB where l ≥ n. Then

H 0(ML|Xn− j
⊗L|Xn− j )⊗H 0(B |Xn− j ) −→ H 0(ML|Xn− j

⊗L|Xn− j ⊗B |Xn− j )

surjects for all 0 ≤ j ≤ n −1.

Proof. For simplicity, we only prove the assertion for l = n that is for L = K +nB . The proof

for l > n is similar. We prove the case for L = K +nB by induction on j . Before starting the

induction, we first prove the following claim.

Claim: In the context of our theorem we have B n ≥ 4.

Proof of the Claim: Let h0(B) = r +1. Let f be the finite morphism induced by the ample and

base point free line bundle B . We have that B n = deg( f )·deg(Y ) where Y is the scheme theoretic

image. Now, the codimension of Y in Pr ≥ 1 and hence deg(Y ) ≥ 2. So the only way B n < 4 is

when the following happens.
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• Case 1: deg( f ) = 1 and deg(Y ) = 2 and hence codim(Y ) = 1. In this case we have that Y

is a variety of minimal degree and it is either a smooth quadric hypersurface or a cone over a

smooth rational normal scroll or a cone over the Veronese embedding of P2 (see [EH85]). In all

three cases Y is normal. Indeed, the first case is trivial. The second and third case follows from

the fact that a cone over a projectively normal embedding is normal. Now f is a finite birational

map between normal varieties and is hence an isomorphism. Consequently, the image is a

smooth rational normal scroll whose canonical divisor is negative ample. This contradicts the

hypothesis (a).

• Case 2: deg( f ) = 1 and deg(Y ) = 3 and codim(Y ) = 2. In this case again Y is a variety of

minimal degree and hence a normal variety and we have that f is an isomorphism which leads

to a contradiction as before.

• Case 3: deg( f ) = 1 and deg(Y ) = 3 and codim(Y ) = 1. In this case consider a general curve

section C of |B | in X . It is the pullback of a general curve section D of O (1) in Y . By Bertini

we have that C can be taken to be smooth and irreducible and since f is surjective we have

that D is reduced and irreducible. Notice that D is a plane curve since the codimension of Y

was 1. Moreover, D is a plane curve of degree 3 and hence we have that pa(D) = 1. C is the

normalization of D and hence g (C ) ≤ 1. But we have that 2g (C )−2 = (n −1)B n +B n−1KC and

hence g (C ) ≥ 4 since B n = 3, n ≥ 3 and KC is nef. So we have a contradiction. ■
Now we start our induction on j . We aim to show the following.

Induction Step: Suppose H 0(ML|Xn− j
⊗L|Xn− j )⊗H 0(B |Xn− j ) → H 0(ML|Xn− j

⊗L|Xn− j ⊗B |Xn− j ) surjects

for some 1 ≤ j ≤ n −1. Then

H 0(ML|Xn− j+1
⊗L|Xn− j+1 )⊗H 0(B |Xn− j+1 ) → H 0(ML|Xn− j+1

⊗L|Xn− j+1 ⊗B |Xn− j+1 )

surjects.

Proof of Induction Step: First we prove

H 1(ML|Xn− j+1
⊗L|Xn− j+1 ⊗ (B |Xn− j+1 )∗) = 0 for 1 ≤ j ≤ n −1. (3.8)
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We have the short exact sequence:

0 ML|Xn− j+1
⊗L′|Xn− j+1 H 0(L|Xn− j+1 )⊗L′|Xn− j+1 (L+L′)|Xn− j+1 0

where L′ = K + (n −1)B . In order to prove (3.8), it is enough to prove

H 0(L|Xn− j+1 )⊗H 0(L′|Xn− j+1 ) → H 0((L+L′)|Xn− j+1 )

surjects since according to Lemma 3.1.1 (i), H 1(L′|Xn− j+1 ) = 0.

To prove this surjection with the help of Observation 2.7.7, we need to prove the following:

H 0((K + l B)|Xn− j+1 )⊗H 0(B |Xn− j+1 ) → H 0((L+ (l +1)B)|Xn− j+1 ) surjects for all l > n. (3.9)

H 0((K +nB)|Xn− j+1 )⊗H 0(B |Xn− j+1 ) → H 0((L+ (n +1)B)|Xn− j+1 ) surjects. (3.10)

H 0((K + (2n −2)B)|Xn− j+1 )⊗H 0((K +B)|Xn− j+1 ) → H 0((2K + (2n −1)B)|Xn− j+1 ) surjects. (3.11)

We use CM Lemma (Lemma 2.7.6) to prove (3.9). Recall that KXn− j+1 = (K + ( j −1)B)|Xn− j+1 .

Hence by Kodaira Vanishing,

H i ((K + (l − i )B)|Xn− j+1 ) = H i ((K + ( j −1)B)|Xn− j+1 + ((l − i − j +1)B)|Xn− j+1 ) = 0

for all 1 ≤ i ≤ n − j +1.

We have already proved (3.10) in Lemma 3.2.1.

For simplicity we do some re-indexing to prove (3.11) only. We will show that

H 0((K + (2n −2)B)|Xn− j )⊗H 0((K +B)|Xn− j ) → H 0((2K + (2n −1)B)|Xn− j )

surjects for all 0 ≤ j ≤ n −2. We have already proved the surjection when j = 0 in Lemma 3.2.2.

So, we assume 1 ≤ j ≤ n −2. Our obvious choice is to use the CM Lemma (Lemma 2.7.6).
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For all 1 ≤ i ≤ n − j −1, the following holds:

H i (((1− i )K + (2n −2− i )B)|Xn− j ) = H i ((K + j B + (2n −2−2i − j )B + i (B −K ))|Xn− j ) = 0

as B −K is nef and 2n −2−2i − j > 0 for i in the given range.

Notice that, H n− j (((n+ j −2)B −(n− j −1)K )|Xn− j ) = H 0(((n−1)K −(n−2)B −( j −1)K )|Xn− j ).

Now, ((n −1)K − (n −2)B − ( j −1)K )|Xn− j is negative nef and (n −1)K − (n −2)B is negative of a

non-zero effective divisor and consequently H n− j (((n + j −2)B − (n − j −1)K )|Xn− j ) = 0.

Since we have proved (3.8), to finish the proof of Induction Step using Lemma 1.3, it is

enough to prove the following map

H 0(ML|Xn− j+1
⊗L|Xn− j+1⊗OXn− j )⊗H 0(B |Xn− j+1⊗OXn− j ) → H 0(ML|Xn− j+1

⊗L|Xn− j+1⊗B |Xn− j+1⊗OXn− j )

surjects for all 1 ≤ j ≤ n −1. Now we use the vector bundle technique (Lemma 2.7.9) by taking

F = L|Xn− j+1 , R = L|Xn− j+1 , Q =OXn− j+1 (B |Xn− j+1 ), r = 1, G = B |Xn− j . We need to show the following:

H 1(F ⊗Q∗) = 0; this comes from Lemma 3.1.1 (i). (3.12)

H 0(ML|Xn− j
⊗L|Xn− j )⊗H 0(B |Xn− j ) → H 0(ML|Xn− j

⊗L|Xn− j ⊗B |Xn− j ) surjects; it is our hypothesis.

(3.13)

H 0(L|Xn− j )⊗H 0(B |Xn− j ) → H 0((L+B)|Xn− j ) surjects; this comes from Lemma 3.1. (3.14)

That concludes the proof of the Induction Step. Now we have to prove the base case.

Base Case: We have to prove H 0(ML|X1
⊗L|X1 )⊗H 0(B |X1 ) → H 0(ML|X1

⊗L|X1 ⊗B |X1 ) surjects.

Proof of Base Case: Notice, deg(L|X1 ) = (K +nB) ·B n−1, We have,

2g −2 = (B |X2 )2 + (B |X2 ) ·KX2 = B n + (K + (n −2)B) ·B n−1 where g = pg (X1).

=⇒ deg(L|X1 ) > 2g , thanks to B n > 2 =⇒ ML|X1
is semistable and µ(ML|X1

) >−2 (see [But94]).
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We will use Proposition 1.4 to prove the required surjection of Base Case. We need to check:

µ(ML|X1
⊗L|X1 ) > 2g . (3.15)

µ(ML|X1
⊗L|X1 ) > 4g −deg(B |X1 )−2h1(B |X1 ). (3.16)

To prove (3.15), we have to show (K +nB) ·B n−1−2 ≥ B n +B n−1 ·(K +(n−2)B)+2 which follows

since B n ≥ 4.

Showing (3.16) is equivalent to proving 2h1(B |X1 ) ≥ (n −3)B n +B n−1 ·K +6. Riemann-Roch

gives the following,

2h1(B |X1 ) = 2h0(B |X1 )+ (n −3)B n +B n−1 ·K .

That finishes the proof since h0(B |X1 ) ≥ 3, thanks to h0(B) ≥ n +2. ä

3.2.2 Proof of Theorem 1.1.2

Now we are ready to prove our main theorem regarding normal presentation of adjoint bundles

on regular minimal varieties.

Theorem 3.2.4. Let X be a regular smooth projective n-fold, n ≥ 3. Let B be an ample and base

point free line bundle on X . We further assume the following four conditions:

(a) K is nef, K +B is base point free,

(b) h0(B) ≥ n +2,

(c) h0(K +B) ≥ h0(K )+n +1,

(d) (n −2)B − (n −1)K is nef and non-zero effective divisor.

Then K + lB will satisfy the property N1 for l ≥ n.

Proof. We prove the assertion only for l = n, the case l > n is similar. Let L = K +nB . Since we

already know that H 1(ML⊗L) = 0 which comes from the projective normality of L, we only have
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to prove for all k ≥ 1,

H 1(M⊗2
L ⊗L⊗k ) = 0. (3.17)

We omit the proof when k ≥ 2 which follows easily from CM Lemma (Lemma 2.7.6). Here

we only prove the key case k = 1 that is H 1(M⊗2
L ⊗L) = 0. We have the short exact sequence:

0 M⊗2
L ⊗L H 0(L)⊗ML ⊗L ML ⊗L⊗2 0.

It is enough to prove that H 0(L)⊗ H 0(ML ⊗L) → H 0(ML ⊗L⊗2) surjects as H 1(ML ⊗L) = 0. We

use Observation 2.7.7; it is enough to prove the following:

H 0(ML ⊗L)⊗H 0(B) → H 0(ML ⊗L⊗B) surjects. (3.18)

H 0(ML ⊗L)⊗H 0(lB) → H 0(ML ⊗L⊗ lB) surjects for all l ≥ 2. (3.19)

H 0(ML ⊗ (K + (2n −1)B)⊗H 0(K +B) → H 0(ML ⊗ (2K +2nB)) surjects. (3.20)

We have proved (3.18) in Lemma 3.2.3.

In order to prove (3.19), we again use Observation 2.7.7. Therefore it is enough to prove that

H 0(ML ⊗(K +lB))⊗H 0(B) → H 0(ML ⊗(K +(l +1)B)) surjects for l > n. To prove this our obvious

choice is to use CM lemma (Lemma 2.7.6). First, we want to show that H 1(ML⊗(K +(l−1)B)) = 0

which is equivalent to showing the surjection of the following map:

H 0(L)⊗H 0(K + (l −1)B) → H 0(L+K + (l −1)B). (3.21)

If l = n +1 then this has already been proved in Theorem 3.1.7, Step 7. If l > n +1 then in

order to show the surjection of (3.21), it is enough to prove

H 0(2K +2nB + r B)⊗H 0(B) → H 0(2K +2nB + (r +1)B)
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surjects for all r ≥ 0. This is Step 1 in Theorem 3.1.7 with k = 2. Now we will show that, for all

2 ≤ i ≤ n, H i (ML ⊗ (K + (l − i )B)) = 0. We have the short exact sequence:

0 ML ⊗ (K + (l − i )B) H 0(L)⊗ (K + (l − i )B) 2K + (l +n − i )B 0.

It gives us the long exact sequence:

... H i−1(2K + (l +n − i )B) H i (ML ⊗ (K + (l − i )B)) H 0(L)⊗H i (K + (l − i )B) ...

Since the first and the last terms are zero by Kodaira Vanishing, hence H i (ML⊗(K +(l−i )B)) = 0

for all 2 ≤ i ≤ n.

We are left to prove (3.20). Again we are going to use CM Lemma (Lemma 2.7.6). We have to

prove the following three things:

H 1(ML ⊗ (2n −2)B) = 0. (3.22)

H j (ML ⊗ ((2n −1− j )B − ( j −1)K )) = 0 for all 2 ≤ j ≤ n −1. (3.23)

H n(ML ⊗ ((n −1)B − (n −1)K )) = 0. (3.24)

We observe that (3.22) is equivalent to showing H 0(L)⊗ H 0((2n −2)B) → H 0(L + (2n −2)B)

surjects. Using Observation 2.7.7, this is equivalent to showing H 0(K + lB)⊗ H 0(B) → H 0(K +
(l +1)B) surjects for all l ≥ n. This follows from Lemma 3.1.1 and Theorem 3.1.7, Step 4.

To prove (3.23), we write down the short exact sequence:

0 ML ⊗ (a j B −b j K ) H 0(L)⊗ (a j B −b j K ) L⊗ (a j B −b j K ) 0 (3.25)

where a j = 2n −1− j , b j = j −1. The long exact sequence corresponding to it is:

... H j−1(L⊗ (a j B −b j K )) H j (ML ⊗ (a j B −b j K )) H 0(L)⊗H j (a j B −b j K ) ...
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Now H j−1(L⊗(a j B −b j K )) = H j−1(K +(3n−2 j )B +( j −1)(B −K )) = 0 as 3n−2 j > 0 for all j < n

and B −K is nef. Also, H j (a j B −b j K ) = H j (K + (2n −2 j −1)B + j (B −K )) = 0 as 2n −2 j −1 > 0

for all j < n and B −K is nef.

We are left to prove (3.24) only. The long exact sequence associated to (3.25) corresponding

to j = n gives the required vanishing for the following reasons:

H n−1((2n −1)B − (n −2)K ) = H n−1(K +nB + (n −1)(B −K )) = 0.

H n((n −1)(B −K )) = H 0(nK − (n −1)B) = H 0((n −1)K − (n −2)B +K −B) = 0.

The last equality comes from the fact that (n −1)K − (n −2)B is negative effective and K −B is

negative nef. That concludes the proof. ä

Now we prove a weaker result for the normal presentation of the adjunction bundle associ-

ated to an ample, globally generated line bundle on an irregular variety of dimension n. Here

we have to use Koszul resolution to restrict ourselves to the multiplication map on the curve

section as the variety is not regular. We include only a sketch of the proof as it is very similar to

what we have done thus far.

Theorem 3.2.5. Let X be an irregular smooth projective variety of dimension n, n ≥ 3. Let B be

an ample and base point free line bundle on X . We further assume:

(a) K is nef, B ′ and K +B ′ is base point free whenever B ≡ B ′,

(b) h0(B) ≥ n +2,

(c) h0(K +B) ≥ h0(K ′)+n +1 whenever K ≡ K ′,

(d) (n −2)B − (n −1)K is nef and non-zero effective divisor.

Then K + lB will satisfy the property N1 for l ≥ n.

Proof. As before, we just give the sketch for L = K +nB . We have to prove that H 1(M⊗2
L ⊗L⊗k ) = 0.

Again, we just discuss the case when k = 1. It is enough to prove the surjection of the following
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multiplication map of global sections,

H 0(ML ⊗L)⊗H 0(L) → H 0(ML ⊗L⊗2).

Let E be a torsion line bundle in Pic0(X ) which is not n torsion. Such an E exists as Pic0(X )

is an abelian variety when X is irregular. Note that B +E is globally generated by assumption

(a). Observation 2.7.7 tells us it is enough to check the following three maps surject:

H 0(ML ⊗ (K +nB))⊗H 0(B +E) → H 0(ML ⊗ ((n +1)B +E)). (3.26)

H 0(ML ⊗ (K + r B +E))⊗H 0(B) → H 0(ML ⊗ ((r +1)B +E)) for n +1 ≤ r ≤ 2n −2. (3.27)

H 0(ML ⊗ (K + (2n −1)B +E))⊗H 0(K +B −E) → H 0(ML ⊗ (2K +2nB)). (3.28)

To show (3.26) surjects, we use CM Lemma (Lemma 2.7.6). We have to prove the following,

H i (ML ⊗ (K +nB − i B − i E) = 0 for all 1 ≤ i ≤ n.

When 2 ≤ i ≤ n −1 this follows easily by multiplying the exact sequence (∗) by suitable line

bundle and then taking the cohomology.

When i = n, same computation shows the vanishing once we see that H 0(nE) = 0.

To prove the vanishing for i = 1, we need to show the surjection of the following map:

H 0(L)⊗H 0(K + (n −1)B −E) → H 0(2K + (2n −1)B −E).

By Observation 2.7.7, Lemma 3.1.1 and Theorem 3.1.7, Step 4, it is enough to prove the sur-

jection of H 0(K + (2n −2)B)⊗ H 0(K +B −E) → H 0(2K + (2n −1)B −E). Now, K +B −E is base

point free by our assumption. Let C be a curve section of K +B −E . Using Koszul resolution
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(Definition 2.5.1) and Lemma 2.7.1, it is enough to check,

h1(((2n −3)B +E)|C ) ≤ h0(K +B)− (n +1).

Now, h1(((2n −3)B +E)|C ) = h0((nK − (n −2)B −nE)|C ) = h0(nK − (n −2)B −nE) ≤ h0(K −nE)

thanks to assumption (d). So, the inequality follows thanks to assumption (c).

(3.27) and (3.28) follows from CM Lemma (Lemma 2.7.6) as well. ä

Remark 3.2.6. We always have h0(K +B) ≥ h0(K ′)+n on any smooth projective n-fold if K +B ,

K ′+B , B are ample, base point free and K ≡ K ′.

Proof. We have K ′ = K +δ where δ is a numerically trivial line bundle. By Riemann-Roch, we

obtain that h0(K +B) = h0(K +B +δ). The assertion follows from an argument similar to the

proof of Remark 3.1.4. ♦

3.3 Properties N0 and N1 on varieties with canonical singularities

In this section we recall some relevant results for canonical varieties, we refer to [Rei79] and

[Rei87] for details. For a normal projective variety X , the canonical divisor KX is a Weil divisor

and not necessarily Cartier (it is so if X is smooth for example). We set

ω[r ]
X :=OX (r KX )

and this is a divisorial sheaf. First we define Gorenstein varieties.

Definition 3.3.1. Let X be a normal projective variety. If X is Cohen-Macaulay and KX is Cartier,

then X is called Gorenstein.

Now we define what it means to say that X has canonical singularities.

Definition 3.3.2. Let X be a normal projective variety as above. Then X is said to have canonical

singularities if the following two conditions hold:
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(1) ω[r ]
X is locally free for some r ≥ 1,

(2) for some resolution f : Y → X and r as in (1), f∗ω⊗r
Y =ω[r ]

X .

The smallest integer r for which (1) holds is called the canonical index of X . If moreover ω[r ]
X is

ample then X is called canonical variety.

There is a more general class of singular varieties and they are called varieties with Du-Bois

singularity. It follows from the works of Kollár and Kovács, it follows that (log-) canonical singu-

larities are Du-Bois (see [KK10]). Now we are ready to make the following

Remark 3.3.3. Theorems 3.1.7, 3.2.4, 3.2.5 and 4.2.1 go through for X Gorenstein with Du-Bois

singularities. Indeed, we required smooth hyperplane sections of the ample and base point

free line bundle B . The smoothness is used to justify Kodaira Vanishing (both on the general

member of |B | and on X ) and to apply Green’s result (Lemma 2.7.1) on the smooth curve section.

We observe that if X is Gorenstein with Du-Bois singularities and B is Cartier, the general

member of |B | is Cohen-Macaulay as well. Also since X is nonsingular in codimension 1 and |B |
is base point free, a general member of |B | is smooth outside the singular locus of X (by Bertini’s

theorem) and is hence nonsingular in codimension 1. The above two observations show that

the general member is normal. Now the general hyperplane section of |B | also has Du-Bois

singularities (see [Kol13], Proposition 6.20). We also have (see [Kol13], Theorem 10.42) that for

a projective, Cohen-Macaulay variety with Du-Bois singularities, Kodaira Vanishing theorem

holds for an ample line bundle. Now the complete intersection surface that we get is a nor-

mal surface and hence singularities are isolated. So Bertini’s Theorem gives us a smooth curve

section and we can apply Lemma 2.7.1. ♦
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Chapter 4

Properties N0 and N1 for pluricanonical linear series on

canonical varieties

The goal of this section is to prove effective projective normality and normal presentation re-

sults for pluricanonical series on smooth canonical varieties in dimension ≤ 5. Since we are

interested in working with only ample canonical bundles instead of ample and globally gen-

erated canonical bundles, it is important for us to know effective global generation results for

adjoint bundles. Precisely for this reason, the posidive evidences of a conjecture of Fujita that

we will describe below are of great interest for us.

4.1 Fujita’s conjecture for adjoint bundles

We state the conjecture of Fujita regarding the positivity of adjoint bundles formulated in 1985.

Conjecture 4.1.1. Let X be a smooth projective variety of dimension n with canonical bundle KX

and let L be an ample line bundle on X .

(1) (Fujita Freeness Conjecture) KX +mL is globally generated for m ≥ n +1.

(2) (Fujita Very Ampleness Conjecture) KX +mL is very ample if m ≥ n +2.

Observe that for smooth projective curves both Fujita freeness and Fujita very ampleness

follow thanks to Example 2.1.1 and Example 2.1.3. Our main interest lies in the Fujita freeness

and we review a few results in that direction. After the case for curves, the next situation to

consider is that for surfaces. In this case both parts of the conjecture follows from the work of

Reider that we are going to describe next.
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4.1.1 Reider’s theorems for surfaces

We state the theorem of Reider for surfaces.

Theorem 4.1.2. ([Rei88], Theorem 1.1) Let X be a smooth projective surface with canonical bun-

dle KX and let L be a nef line bundle on X .

(a) If L2 ≥ 5 and p ∈ X is a base point of |KX +L| then there is an effective divisor E passing

through p for which one of the following happens:

(1) L ·E = 0 and E 2 =−1;

(2) L ·E = 1 and E 2 = 0.

(b) If L2 ≥ 10 and p, q ∈ X that are not separated by |KX +L| then there is an effective divisor E

passing through p and q for which one of the following happens:

(1) L ·E = 0 and E 2 =−1 or −2;

(2) L ·E = 1 and E 2 =−1 or 0;

(3) L ·E = 2 and E 2 = 0.

4.1.2 Fujita freeness for higher dimensional varieties

In this section we provide the results in the direction of Fujita freeness in higher dimensions.

The conjecture is proven for three-fold by Ein and Lazarsfeld ([EL93a], in dimension three and

four by Kawamata ([Kaw97]), and in dimension five by Ye and Zhu ([YZ20]). The precise state-

ments are provided below.

Theorem 4.1.3. (See [Kaw97], Theorem 3.1) Let X be a normal projective variety of dimension 3,

L an ample Cartier divisor, and x0 ∈ X a smooth point. Assume that there are positive numbers

σp for p = 1,2,3 which satisfy the following conditions:

(1)
pp

Lp ·W ≥σp for any subvariety W of dimension p which contains x0,
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(2) σ1 ≥ 3, σ2 ≥ 3 and σ3 > 3.

Then |KX +L| is free at x0.

Corollary 4.1.4. (See [Kaw97], Corollary 3.2) Let X be a smooth projective variety of dimension

3, and H an ample divisor. Then |KX +mH | is base point free if m ≥ 4. Moreover, if H 3 ≥ 2, then

|KX +3H | is also base point free.

Theorem 4.1.5. (See [Kaw97], Corollary 4.2 and [YZ20], Main Theorem) Let X be a smooth pro-

jective variety of dimension 4 (resp. 5), and H an ample divisor. Then |KX +mH | is base point

free if m ≥ 5 (resp. m ≥ 6).

We remark here that an effective freeness for adjoint bundles with quadratic bounds has

been proven by Anghern and Siu ([AS95]).

4.2 Proof of Theorem 1.2.1

In this section, we will concentrate on the behavior of pluricanonical series. First, we will prove

a theorem whose corollaries will give us effective results on three and four-folds. We follow all

the conventions and notation described in the first paragraph of Chapter 3. In particular, by a

variety we mean a smooth projective variety.

Theorem 4.2.1. Let X be an n dimensional smooth projective variety and let B be an ample,

globally generated line bundle on X . Let L be a nef line bundle on X . Moreover, assume:

(a) (n −1)(B −L)−K is ample,

(b) B −K is ample,

(c) B +L is globally generated,

(d) h0(K −L) ≤ h0(B)− (n +1).

Then nB +L will be very ample and it will embed X as a projectively normal variety.
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Proof. Let Xn be X and let Xn− j be a smooth irreducible (n − j ) fold chosen from the complete

linear system of |B |Xn− j+1 | by Bertini, for all 1 ≤ j ≤ n −1. By adjunction, KXn− j = (K + j B)|Xn− j

for all 0 ≤ j ≤ n−1. We have to prove H 0(k(nB +L))⊗H 0(nB +L) → H 0((k+1)(nB +L)) surjects.

Here we show the key case that is the case when k = 1. The proof for k ≥ 2 is similar. We break

the proof into a few steps.

Step 1: H 0(nB+L)⊗H 0(B) → H 0((n+1)B+L) surjects. We have the following diagram where

I is the ideal sheaf of X1 in X , V is the cokernel of H 0(B ⊗I ) → H 0(B):

0 H 0(nB +L)⊗H 0(B ⊗I ) H 0(nB +L)⊗H 0(B) H 0(nB +L)⊗V 0

0 H 0(((n +1)B +L)⊗I ) H 0((n +1)B +L) H 0(((n +1)B +L)|X1 ) 0

(4.1)

Note that H 0((r B +L)|Xn− j ) → H 0((r B +L)|Xn− j−1 ) surjects for all 0 ≤ j ≤ n −2, r ≥ n because of

the vanishing H 1(((r − 1)B +L)|Xn− j ) = 0. Therefore the bottom horizontal sequence is exact.

Note that the top row is exact as well. The leftmost vertical map is surjective. Indeed, tensoring

the following exact sequence (recall that W is the span of n −1 general sections of B)

0 →
n−1∧

W ⊗B−(n−1) →···→
2∧

W ⊗B−2 →W ⊗B−1 →I → 0 (4.2)

by (n +1)B +L, we get the following exact sequence where L′ = (n +1)B +L

0
n−1∧

W ⊗L′⊗B−(n−1) . . . W ⊗L′⊗B−1 L′⊗I 0.
fn−2 fn−1 f2 f1

Therefore, to see that the leftmost vertical map surjects, we just need H 1(Ker( f1)) = 0. The proof

of this vanishing is similar to that of Lemma 3.1.1. It comes from the following two facts:

Fact 1: H j (Ker( f j )) = 0 =⇒ H j−1(Ker( f j−1)) = 0 for all 2 ≤ j ≤ n −2 (proof similar to Claim 1,

Lemma 3.1.1).

Fact 2: H n−2(L′− (n −1)B) = H n−2(2B +L) = 0 (using B −K is ample and Kodaira Vanishing).

Therefore, to prove the assertion of this step, it is enough to show the surjection of the right-
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most vertical map. We use Lemma 1.6 to prove that, we need the following inequality:

h1((n −1)B +L)|X1 ) ≤ h0(B)− (n +1).

But h1((n −1)B +L)|X1 ) = h0((K −L)|X1 ) = h0(K −L) (the last equality is due to the ampleness of

B +L−K ) which proves the assertion of this step because of our assumption (d).

Step 2: H 0(r B +L)⊗H 0(B) → H 0((r +1)B +L) surjects for all r ≥ n +1. This comes from CM

Lemma (Lemma 2.7.6).

Step 3: H 0((2n−1)B +L)⊗H 0(B +L) → H 0(2nB +2L) surjects . This comes from CM Lemma

(Lemma 2.7.6) as well thanks to assumption (a). ä
In the following corollary, we assume Fujita freeness, at least for pluricanonical series.

Corollary 4.2.2. Let X be an n dimensional smooth projective variety, n ≥ 3, with ample canoni-

cal bundle K . We further assume that lK is globally generated for all l ≥ n+2. Then the following

statements will hold.

(i) If h0(K ) ≤ h0((n+2)K )−(n+1) then n(n+2)K is very ample and it embeds X as a projectively

normal variety.

(ii) If h0((n +2)K ) > n +1 then (n(n +2)+1)K is very ample and it embeds X as a projectively

normal variety.

(iii) (n(n+2)+m)K is very ample and it embeds X as a projectively normal variety for all m ≥ 2.

Proof of (i), (ii). Follows directly from Theorem 4.2.1 with B = (n+2)K and L = 0, K respectively.

Proof of (iii). Let s = n+2. The proof is entirely based on CM Lemma (Lemma 2.7.6). We give an

outline here. We divide the proof into a few steps.

Step 1: H 0((ns +m)K )⊗ H 0(sK ) → H 0(((n +1)s +m)K ) surjects for all m ≥ 2. This comes

from CM Lemma (Lemma 2.7.6).

Step 2: H 0(((2n−1)s+m)K )⊗H 0((s+m)K ) → H 0((2ns+2m)K ) surjects for all m ≥ 2. To prove

this, first notice that if m ≥ s, then m = as+b where a ≥ 1 and b < s. In that case, by Observation
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2.7.7, it is enough to show H 0(((2ns+m+(a−1)s)K )⊗H 0((s+b)K ) → H 0((2ns+2m)K ) surjects

for all m ≥ 2 which comes from CM Lemma (Lemma 1.7). If m < s, we can directly use CM

Lemma (Lemma 2.7.6).

The above two steps show that H 0((ns+m)K )⊗H 0((ns+m)K ) → H 0((2ns+2m)K ) surjects.

Similar calculation shows H 0(k(ns+m)K )⊗H 0((ns+m)K ) → H 0((k +1)(ns+m)K ) surjects for

all k ≥ 2. ä
Now we combine our results with the base point freeness theorems on three and four-folds

(see [EL93a] and [Kaw97]). In particular, we will use Theorems 4.1.3, 4.1.5 and Corollary 4.1.4.

For the statement of the Riemann-Roch formula, we refer to [Har77], Appendix A.

Corollary 4.2.3. Let X be a smooth projective three-fold with ample canonical bundle K . Then

nK is very ample and embeds X as a projectively normal variety for all n ≥ 12.

Proof. We have by Riemann-Roch that χ(D)+χ(−D) = −K ·D2

2 +2χ(OX ). Hence, K ·D2 is even for

any divisor D . In particular K 3 is even. By Corollary 4.1.4 we have that 4K is base point free.

By CM Lemma (Lemma 2.7.6), the corollary is obvious for n ≥ 14 since K is ample and we

have Kodaira Vanishing. For n = 13 we use Theorem 4.2.1 with L = K . Conditions (a), (b), (c)

are easily satisfied. We need to check that h0(4K ) ≥ 5. We note that by Riemann-Roch (see

the formula given in [Har77], Appendix A, Exercise 6.7) and Remark 2.1.8 we have h0(4K ) ≥
6+h0(2K ) and hence we are done.

For the case n = 12 we again apply Theorem 4.2.1 but now with L = 0. Here we need to check

the fact that h0(4K ) ≥ h0(K )+4. If h0(K ) = 0 then we are done trivially since 4K is ample and

base point free. If not then we know that K is effective and hence h0(K ) ≤ h0(2K ). The required

inequality comes from the inequality h0(4K ) ≥ 6+h0(2K ). ä

Corollary 4.2.4. Let X be a smooth projective three-fold with ample canonical bundle K . Then

we have that the embedding by nK for n ≥ 13 is normally presented.

Proof. Suppose that L = nK . We note that the cases n = 3l +1 with l ≥ 4 normal presentation

of nK directly follows from Riemann-Roch and Theorem 3.2.4 for regular threefolds and 3.2.5
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for irregular threefolds using B = lK respectively. While using Theorem 3.2.5 we need to check

the conditions. We only check the conditions (a) and (c) below. The other conditions follow

directly from the Riemann-Roch formula ([Har77], Appendix A, Exercise 6.7) once we note that

K · c2(X ) ≥ 0.

First we show that condition (a) holds. We have B = lK , l ≥ 4. Suppose B ′ ≡ B , then we have

that B ′−K is ample and (B ′−K )3 > 27 (Using K 3 ≥ 2) and (B ′−K ) ·C ≥ 3 and (B ′−K )2 ·S ≥ 9 for

any curve C and surface S respectively. Hence B ′ is base point free by Theorem 4.1.3. Similar

reasoning will show that K +B ′ is base point free as well.

Now show that condition (c) holds. Since K +B is ample and base point free, if h0(K ′) = 0 we

are done. Otherwise K ′ is effective and h0(K ′) ≤ h0(2K ′). Note that h0(4K ) ≤ h0((l +1)K ). But

since all higher cohomology of 2K ′ vanishes by Kodaira Vanishing we have by Riemann-Roch

that h0(2K ′) depends only on the numerical class of K ′ and hence h0(2K ) = h0(2K ′). So it is

enough to show that h0(4K )−h0(2K ) ≥ 4 which we have shown in the proof of Corollary 4.2.3

(in fact ≥ 6).

For other cases, it is enough to show that H 1(M⊗2
L ⊗L⊗k ) = 0 since we have already shown

projective normality for nK for n ≥ 13. We only show the case k = 1 since for k ≥ 2 the proof

follows from CM Lemma (Lemma 2.7.6). We have the following exact sequence

0 M⊗2
L ⊗L H 0(L)⊗ML ⊗L ML ⊗L⊗2 0.

Taking cohomology we have the following

... H 0(L)⊗H 0(ML ⊗L) H 0(ML ⊗L⊗2) H 1(M⊗2
L ⊗L) ...

It is enough to show that H 0(L)⊗H 0(ML⊗L) → H 0(ML⊗L⊗2) is surjective. Now 4K is base point

free. We first show that H 0(ML ⊗L)⊗ H 0(4K ) → H 0(ML ⊗L + 4K ) is surjective. To do this it is

enough to show (by Lemma 2.7.6) the following three vanishings:

(i) H 1(ML ⊗L−4K ) = 0,
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(ii) H 2(ML ⊗L−8K ) = 0,

(iii) H 3(ML ⊗L−12K ) = 0.

Now L = nK with n ≥ 14 (the case when L = 13K has already been taken care of). By tensor-

ing the exact sequence

0 ML H 0(L)⊗OX L 0

by L−8K and L−12K respectively and using Kodaira Vanishing theorem we can see that (ii) and

(iii) follow immediately. Now we note that to show (i) we need to to show that the following map

H 0(L)⊗H 0(L−4K ) → H 0(2L−4K )

is surjective. We now note that L − 4K = mK where m ≥ 10. Using Observation 2.7.7 we can

keep on showing surjectivity of multiplication maps by H 0(4K ) until we are left with lK where

0 ≤ l ≤ 7. Hence H 0(L)⊗H 0(L−4K ) → H 0(2L−4K ) is surjective for L = nK and n ≥ 19. We need

to check separately from 14 ≤ n ≤ 18.

Case n=14. We need to show the surjectivity of H 0(14K ) ⊗ H 0(10K ) → H 0(24K ). We have by

Lemma 2.7.6 the surjectivity of H 0(14K )⊗H 0(4K ) → H 0(18K ). We have the surjectivity of H 0(18K )⊗
H 0(6K ) → H 0(24K ) using Step 1, Theorem 4.2.1 with B = 6K and L = 0.

Case n=15. We need to show the surjectivity of H 0(15K )⊗ H 0(11K ) → H 0(26K ). We have that

H 0(15K )⊗ H 0(5K ) → H 0(20K ) surjects by Theorem 4.2.1 with B = 5K and L = 0. We also have

the surjectivity of H 0(20K )⊗H 0(6K ) → H 0(26K ) by Lemma 2.7.6.

Case n=16. Obvious.

Case n=17. We need to show the surjectivity of H 0(17K )⊗H 0(13K ) → H 0(30K ). This case is easy

and follows from Lemma 2.7.6.

Case n=18. We need to show the surjectivity of H 0(18K )⊗H 0(14K ) → H 0(32K ). This case follows

directly from Lemma 2.7.6.

The algorithmic nature of the proof shows that we have actually proved the surjectivity of
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the map H 0(ML ⊗ (L+4lK ))⊗H 0(4K ) → H 0(ML ⊗ (L+4(l +1)K )). Since L = nK where n ≥ 14, to

complete the proof we just need to prove the surjection of the multiplication map

H 0(ML ⊗ (L+4lK ))⊗H 0(pK ) → H 0(ML ⊗ (L+ (4l +p)K ))

where l ≥ 2 and p ≤ 7. Moreover if n ≥ 16 we have that l ≥ 3. So for n ≥ 16, using Lemma 2.7.6

we see that it is enough to prove the surjection of H 0(L +mK )⊗ H 0(L) → H 0(2L +mK ) where

m ≥ 5. But we have the surjection of H 0(L)⊗ H 0(L) → H 0(2L). Thus, using Observation 2.7.7,

we only need to prove the surjection of H 0(l K )⊗H 0(mK ) → H 0((m + l )K ) where l ≥ 32. Since

4K is base point free, we have the above surjection by Lemma 2.7.6 and Observation 2.7.7.

To finish the proof we need to handle the two following cases separately.

L=14K: We need to show the surjection of H 0(ML ⊗ (L+8K ))⊗H 0(6K ) → H 0(ML ⊗ (L+14K )).

By lemma 2.7.6 we notice that it is enough to show the surjection of H 0(16K ) ⊗ H 0(14K ) →
H 0(30K ) which is clear by the same lemma.

L=15K: We need to show the surjection of H 0(ML ⊗(L+8K ))⊗H 0(7K ) → H 0(ML ⊗(L+15K )). By

Lemma 2.7.6, we notice that it is enough to show that H 0(16K )⊗H 0(15K ) → H 0(31K ) surjects

which is again clear by the same lemma. ä

Corollary 4.2.5. Let X be a smooth projective four dimensional variety with ample canonical

bundle K . Then nK is very ample and it will embed X as a projectively normal variety for all

n ≥ 24.

Proof. It comes from Corollary 4.2.2. The following is the Riemann-Roch formula a line bundle

B ,

χ(B) =− 1

720
(K 4 −4K 2 · c2 −3c2

2 +K · c3 + c4)− 1

24
B ·K · c2 + 1

24
B 2 · (K 2 + c2)− 1

12
B 3 ·K + 1

24
B 4.

It is enough to show that h0(2K ) ≤ h0(6K )−5 which can be seen easily, thanks to the fact K 2 ·c2 ≥
0 (see Remark 2.1.8). In fact, h0(2K ) ≤ h0(6K )−6 which verifies condition (ii). ä
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Corollary 4.2.6. Let X be a smooth projective 4-fold with ample canonical bundle K we have

that the embedding by nK for n ≥ 25 is normally presented.

Proof. We use the same argument as in Corollary 4.2.5, but now using the fact that 6K is globally

generated (see Theorem 4.1.5). ä

Corollary 4.2.7. Let X be a smooth projective 5-fold with ample canonical bundle K with an

additional property that pg (X ) ≥ 1. Then the embedding by nK for n ≥ 35 is projectively normal

and the embedding by nK for n ≥ 36 is normally presented.

Proof. We know that nK is globally generated for n ≥ 7 (see Theorem 4.1.5). Let K be a smooth

divisor chosen from the linear system of |K |. The corollary follows if we notice the fact that

h0(7K )−h0(6K ) = h0((7K )|K ) and apply Riemann-Roch formula on K to verify conditions (i)

and (ii) of Corollary 4.2.2. Normal Presentation follows from the similar arguments used before.

ä

4.3 Properties N0 and N1 for pluicanonical series on canonical threefolds

In this section, we prove a corollary for pluricanonical series on canonical threefolds (in the

sense of Definition 3.3.2)

Corollary 4.3.1. If X is a projective three-fold with canonical Gorenstein singularities and ample

canonical bundle K then we have that nK is projectively normal for n ≥ 12 and satisfies N1 if

n ≥ 13.

Proof. Follows from Remark 3.3.3 since 4K is base point free (see [Lee00], Theorem 3.2). ä
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Chapter 5

Effective projective normality for certain varieties with KX = 0

The main aim of this chapter is to prove results on effective very ampleness and projective nor-

mality on a four dimensional variety with trivial canonical bundle.

5.1 Projective normality for regular four-folds

One can obtain effective projective normality results in these cases just using Theorem 3.1.7

and Theorem 3.2.4 (see Lemma 5.1.3). In order to improve the bounds, one can use a result of

Green as we are going to describe next.

5.1.1 A result of Green and its consequence

Theorem 5.1.1. ([Gre84a], p.1089, (3)) Let X be a regular projective variety of dimension n for

which the canonical bundle K is ample and base point free. Moreover, assume h0(K ) ≥ n + 2.

Let ϕK be the morphism induced by the complete linear series |K |. If ϕK (X ) is not a variety of

minimal degree then the multiplication map H 0(K )⊗H 0(K ⊗l ) → H 0(K ⊗l+1) surjects for l ≥ n.

The following corollary is the precise version of what we will use in the subsequent sections.

Corollary 5.1.2. Let X be a regular variety of dimension n ≥ 3 with trivial canonical bundle. Let

L be an ample and globally generated line bundle on X and ϕL be the morphism induced by the

complete linear series |L|. Assume ϕL does not map X onto a variety of minimal degree. Then

L⊗n−1 is projectively normal.
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Proof. We use Theorem 2.6.4 and Observation 2.7.7 to notice that to prove the projective nor-

mality of L⊗n−1, it is enough to show the surjectivity of the map H 0(l L)⊗H 0(L) −→ H 0((l +1)L)

for l ≥ n −1. We just prove the case for l = n −1 here, the rest follow similarly.

Choose a smooth section T of the ample and base point free line bundle L. We have the

following commutative diagram,

0 H 0((n −1)L)⊗H 0(OX ) H 0((n −1)L)⊗H 0(L) H 0((n −1)L)⊗H 0(KT ) 0

0 H 0((n −1)L) H 0(nL) H 0(nKT ) 0

where KT = L|T (by adjunction) denotes the canonical bundle of T . Since the leftmost map sur-

jects, the middle vertical map surjects if and only if rightmost vertical map surjects. By Kodaira

Vanishing we have that H 1((n −2)L) = 0 and hence we have a surjection,

H 0((n −1)L) → H 0((n −1)L|T ) = H 0((n −1)KT ).

Hence the rightmost vertical map surjects if and only if we have the surjection of

H 0((n −1)KT )⊗H 0(KT ) −→ H 0(nKT ).

We notice that T is a smooth irreducible regular variety of general type and hence by Theorem

2.7.1, the above map surjects unless T is mapped to a variety of minimal degree by the complete

linear series of L|T . But the latter is equivalent to saying that X is mapped by the complete linear

series of |L| to a variety of minimal degree. ä

5.1.2 Proof of Theorem 1.3.2

We start with a general statement on projective normality and normal presentation.

Lemma 5.1.3. Let X be a smooth, projective n-fold with trivial canonical bundle. Let B be an
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ample and base point free line bundle on X with h0(B) ≥ n +2. Then lB satisfies the property N0

for all l ≥ n. Moreover, if X is Calabi–Yau, then lB satisfies the property N1 for all l ≥ n.

Proof. Follows immediately from Theorem 3.1.7 and Theorem 3.2.4. ä
Now we want to find out what multiple of an ample line bundle is very ample on a four

dimensional variety with trivial canonical bundle. We will use the Fujita freeness on four-folds

that has been proved by Kawamata in [Kaw97]. We begin with a lemma.

Lemma 5.1.4. Let X be a smooth projective four-fold with trivial canonical bundle. Let A be an

ample line bundle and let B = n A for n ≥ 5. Then the multiplication map H 0(3B+k A)⊗H 0(B) →
H 0(4B +k A) is surjective for k ≥ 1.

Proof. Note that B is base point free by Kawamata’s proof of Fujita’s base point freeness theorem

on four-folds (see Theorem 4.1.5). We prove the statement for k = 1. For k > 1 the proof is

exactly the same.

Let C be a smooth and irreducible curve section of the linear system |B | and let I be the

ideal sheaf of C in X . We have the following commutative diagram with the two horizontal rows

exact. Here V is the cokernel of the map H 0(B ⊗I ) → H 0(B).

0 H 0(B ⊗I )⊗H 0(3B + A) H 0(B)⊗H 0(3B + A) V ⊗H 0(3B + A) 0

0 H 0((4B + A)⊗I ) H 0((4B + A)) H 0(4B + A|C ) 0

Now we claim that the leftmost vertical map is surjective. Consider the Koszul resolution,

0 →
3∧

W ⊗B−3 →
2∧

W ⊗B−2 →W ⊗B∗ →I → 0. (5.1)

Tensor it with 4B + A to get the following,

0 →
3∧

W ⊗ (B + A)
f3−→

2∧
W ⊗ (2B + A)

f2−→W ⊗ (3B + A)
f1−→ (4B + A)⊗I → 0 (5.2)
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That gives us two short exact sequences.

0 → Ker( f1) →W ⊗ (3B + A)
f1−→ (4B + A)⊗I → 0, (5.3)

0 →
3∧

W ⊗ (B + A)
f3−→

2∧
W ⊗ (2B + A)

f2−→ Ker( f1) → 0. (5.4)

Taking long exact sequence of cohomology in the second sequence we get the following,

2∧
W ⊗H 1(2B + A) → H 1(Ker( f1)) →

3∧
W ⊗H 2(B + A). (5.5)

Hence H 1(Ker( f1)) = 0 since the other terms of the exact sequence vanish by Kodaira Vanishing.

The long exact sequence of cohomology associated to the first sequence is the following,

W ⊗H 0(3B + A) → H 0((4B + A)⊗I )) → H 1(Ker( f1)). (5.6)

We showed that the last term is zero, thus W ⊗H 0(3B +A) → H 0((4B +A)⊗I )) surjects. Conse-

quently, H 0(B ⊗I )⊗H 0(3B + A) → H 0((4B + A)⊗I ) surjects since W ⊆ H 0(B ⊗I ).

In order to prove the lemma we are left to show that V ⊗H 0(3B + A) → H 0((4B + A)|C ) sur-

jects. Since we have the surjection of H 0(3B + A) → H 0((3B + A)|C ), it is enough to show the

surjection of V ⊗H 0(3B +A|C ) → H 0((4B +A)|C ). Thus, using Lemma 2.7.1 we need to prove the

following inequality

h1(2B + A|C ) ≤ dimV −2.

To prove this inequality, first we tensor the Koszul resolution by B to obtain,

0 →
3∧

W ⊗B−2 f3−→
2∧

W ⊗B∗ f2−→W ⊗OX
f1−→ B ⊗I → 0. (5.7)

73



As before, we end up getting two short exact sequences,

0 → Ker( f1) →W ⊗OX
f1−→ B ⊗I → 0 (5.8)

0 →
3∧

W ⊗B−2 f3−→
2∧

W ⊗B∗ f2−→ Ker( f1) → 0 (5.9)

The long exact sequence of cohomology associated to the second sequence gives,

2∧
W ⊗H 0(B∗) → H 0(Ker( f1)) →

3∧
W ⊗H 1(B−2). (5.10)

Consequently, H 0(Ker( f1)) = 0 since H 1(B−2) = 0 by Kodaira Vanishing and H 0(B∗) = 0.

Taking cohomology once more we have the following exact sequence,

2∧
W ⊗H 1(B∗) → H 1(Ker( f1)) →

3∧
W ⊗H 2(B−2). (5.11)

Hence H 1(Ker( f1)) = 0 since the other terms of the exact sequence vanish by Kodaira Vanishing.

The long exact sequence of cohomology associated to the first sequence is the following.

H 0(Ker( f1)) →W ⊗H 0(OX ) → H 0(B ⊗I )) → H 1(Ker( f1)) (5.12)

But the first and last terms are zero by Kodaira Vanishing and hence h0(B ⊗I ) = dimW ≤ 3.

Thus we obtain the inequality dimV −2 ≥ h0(B)−5.

On the other hand the canonical bundle of C is given by 3B |C . Applying Serre Duality it is

enough to prove that h0(B − A) ≤ h0(B)−5 i.e. h0((n −1)A) ≤ h0(n A)−5.

Applying Riemann–Roch for n A and (n −1)A and subtracting the equations we obtain,

h0(n A)−h0((n −1)A) = n4 − (n −1)4

24
A4 + n2 − (n −1)2

24
A2 · c2. (5.13)
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The result of Miyaoka (see Remark 2.1.8) shows that A2 · c2 ≥ 0 which gives,

h0(n A)−h0((n −1)A) ≥ n4 − (n −1)4

24
A4 ≥ 5 if n ≥ 5 (5.14)

and that concludes the proof. ä
Now we give a classification theorem in which we classify the varieties which come as an

image of a regular four-fold with trivial canonical bundle by an ample, globally generated line

bundle with an additional property of being a variety of minimal degree.

Theorem 5.1.5. Let X be a regular smooth projective four-fold with trivial canonical bundle. Let

ϕ be the morphism induced by the complete linear series of an ample and base point free line

bundle B on X with h0(B) = r +1 and let d be the degree ofϕ. Ifϕmaps X to a variety of minimal

degree Y then,

d ≤ 24(r −1)

r −3
.

(a) Assume Y is smooth. Then one of the following happens:

(1) Y =P4.

(2) Y is a smooth quadric hypersurface in P5.

(3) Y is a smooth rational normal scroll of dimension 4 in P6 or P7 and X is fibered over P1.

Moreover, the general fibre is a smooth threefold G with KG = 0 and the degree d satisfies

the following bounds;

2 ≤ d ≤ min
{

6h0(B |G ),
24(r −1)

r −3

}
.

If in addition G is regular we have the following;

2h0(B |G )−6 ≤ d ≤ min
{

6(h0(B |G )−1),
24(r −1)

r −3

}
, if d is even and

2h0(B |G )−5 ≤ d ≤ min
{

6(h0(B |G )−1),
24(r −1)

r −3

}
, if d is odd.
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(4) Y is a smooth rational normal scroll in Pr for r ≥ 8 and X is fibered over P1 and the general

fibre is a three-fold G with KG = 0 and the degree d of ϕB satisfies 2 ≤ d ≤ 18.

(b) Assume Y is singular. Then one of the following happens:

(1) Y is a singular quadric hypersurface.

(2) Y is a singular four-fold which is either a triple cone over a rational normal curve in Pr

where 6 ≤ r ≤ 8 or a double cone over the Veronese surface in P5.

Proof. We first prove the inequality. Using Riemann–Roch we can see that,

h0(B) = 1

24
B 4 + 1

24
B 2 · c2 +2. (5.15)

and we also have that B 4 = d(r −3) since Y is a variety of minimal degree. By Miyaoka’s result

(see Remark 2.1.8) we have that B 2 · c2 ≥ 0 and hence we have the inequality d ≤ 24(r−1)
r−3 .

(a) We now describe the cases when Y is a smooth variety of minimal degree. We have that

r ≥ 4.

Case 1. If r = 4, we have that Y =P4.

Case 2. If r = 5, we have that codimension of Y is one and degree is 2 which implies that Y is a

smooth quadric hypersurface.

Suppose r ≥ 6, we have that Y is a smooth rational normal scroll (which is abstractly a pro-

jective bundle overP1) and is hence fibered overP1. Let this map from Y toP1 beφ. Composing

this with ϕ we get a map φ ◦ϕ : X → P1. Therefore, X is fibered over P1. The general fibre is

the inverse image of the general linear fiber of the smooth scroll and is hence irreducible by

Bertini’s theorem. This along with generic smoothness implies that the general fibre of φ is a

smooth threefold G with KG = 0 by adjunction. Let the general fibre of Y be denoted by R and

that of X is denoted by G . We have the following exact sequence of cohomology of line bundles
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on X .

0 → H 0(B(−G)) → H 0(B) → H 0(B ⊗OG ) → H 1(B(−G)). (5.16)

Notice that H−R is a base point free divisor in Y where H is a hyperplane section in Y . We have

that Y is S(a1, a2, a3, a4) i.e, Y is the image of P(E ) where E is the following vector bundle,

P(E ) =O(a1)⊕O(a2)⊕O(a3)⊕O(a4)

mapped to the projective space by |OP(E )(1)|.
Case 3. For the cases r = 6 or r = 7 we use the fact that degree of ϕ is equal to the degree of

ϕ|G and then use Riemann–Roch theorem on the threefold G (see [Har77], Appendix A, Exercise

6.7) noticing the fact that KG = 0 and that B |G is ample and base point free. This gives the upper

bound 6h0(B |G ) since we have that B |G · c2 ≥ 0 (see Remark 2.1.8). The lower bound 2 is due to

the fact that G cannot be birational to P3.

Assuming G is regular and hence Calabi–Yau we have that h0(B |G ) ≥ 1
6 (B |G )3 +1 and hence

we have d ≤ 6(h0(B |G )−1). The lower bound is obtained by Proposition 2.2, part (1) of [KW14].

Case 4. Suppose r ≥ 8. Recall that H −R is base point free. We compute (H −R)4 = H 4 −4H 3R;

H 4 =
3∑

i=0
ai H 3R and r =

3∑
i=0

ai +3. (5.17)

So, r ≥ 8 gives
∑3

i=0 ai ≥ 5 which gives (H −R)4 > 0 as H is ample. Hence, H −R is nef and big

and consequently B −G is nef and big as well. Thus by Kawamata-Viehwag Vanishing, we have

that H 1(B −G) = 0. Hence ϕ|G is given by the complete linear system |B |G |.
Since G maps to F = P3 we have that h0(B |G ) = 4. Now, the degree of ϕ is also the degree of

ϕ|G for a general fibre G . Hence by a result of Gallego and Purnaprajna (see [GP01], Theorem

1.6) we have that 2 ≤ d ≤ 18.

(b) Now we assume that Y is singular.
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Case 1. As before, if r = 5 then Y is a singular quadric.

Case 2. Suppose the image Y of X under the morphism defined by |B | is a singular variety. Then

by Theorem 2.2.4, Y is a cone over a smooth variety of minimal degree with vertex V . Moreover,

codim(V ,Y ) = 2 by Lemma 2.2.6. Hence Y can be either a triple cone over a rational normal

curve or a double cone over the Veronese surface in P5.

Suppose Y is a cone over a rational normal curve. Let R be a general linear subspace of Y

and G its inverse image. By Bertini, G is irreducible and d = B 3 ·G . Moreover, using the fact

that the codimension of the singular locus of Y is exactly 2, we have B = deg(Y ) ·G = (r −3)G by

Lemma 2.2.5. Hence d ≥ (r −3)3. Using the previously proved upper bound we have,

(r −3)3 ≤ 24(r −1)

and hence r ≤ 8. ä
Now we prove our main result using the previous theorem. We notice that part (2) of the

next theorem holds for both hyperkähler and Calabi–Yau four-folds (see Definitions 5.2.1 and

5.2.2) since it only requires a regular four-fold with trivial canonical bundle.

Theorem 5.1.6. Let X be a smooth projective four-fold with trivial canonical bundle and let A

be an ample line bundle on X . then,

(1) n A is very ample and embeds X as a projectively normal variety for n ≥ 16.

(2) If H 1(OX ) = 0 then n A is very ample and embeds X as a projectively normal variety for

n ≥ 15.

Proof. (1) By the result of Kawamata (see Theorem 4.1.5), we have that on a four-fold with trivial

canonical bundle if A is ample then n A is base point free for n ≥ 5. Now using CM lemma (see

Lemma 2.7.6) we can easily prove that n A satisfies the property N0 for n ≥ 21.

If we set B = 5A then 20A = 4B and it satisfies the property N0 by Lemma 5.1.3.
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Using Lemma 5.1.4, Lemma 2.7.6 and Observation 2.7.7, we can see that the following map

H 0(nk A)⊗H 0(n A) −→ H 0((nk +n)A)

is surjective for k ≥ 2 and 16 ≤ n ≤ 19. So we are left to check the surjectivity of the multiplication

map H 0(n A)⊗ H 0(n A) −→ H 0(2n A) for 16 ≤ n ≤ 19. We just prove it for n = 16. The proof is

similar for the other three cases.

For n = 16, the following maps are surjective by Lemma 5.1.4 and Lemma 2.7.6,

H 0(16A)⊗H 0(5A) → H 0(21A) and H 0(21A)⊗H 0(5A) → H 0(26A). (5.18)

Therefore, by Observation 2.7.7 we need to show that H 0(26A)⊗H 0(6A) −→ H 0(32A) is surjec-

tive which follows from Lemma 2.7.6 as well.

(2) Suppose H 1(OX ) = 0. We just need to show that 15A satisfies the property N0. Let B = 5A

which is ample and base point free (see Theorem 4.1.5). By Corollary 5.1.2, we know that 3B is

projectively normal unless the image of the morphism induced by the complete linear series |B |
is a variety of minimal degree. Thus, we aim to show that the image of the morphism induced

by the complete linear series |5A| is not a variety of minimal degree. Applying Riemann–Roch

we get,

h0(5A) = 625

24
A4 + 25

24
A2 · c2 +2 ≥ 28. (5.19)

Now suppose that the image is a variety of minimal degree. However, since the codimension of

the image is ≥ 24, by Theorem 5.1.5, we have that the image cannot be a quadric hypersurface or

a cone over the Veronese embedding of P2 in P5 or a cone over a rational normal curve. Hence

the image is a smooth rational normal scroll.

Let h0(B) = r + 1. Hence the degree of the image is r − 3. Also, let the degree of the finite
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morphism given by the complete linear series of B be d . We know by Theorem 5.1.5 that

d ≤ 24(r −1)

r −3
.

Using h0(B) ≥ 28 we have that r ≥ 27 and hence d ≤ 26.

Since the image of the morphism is a smooth rational normal scroll of dimension 4, we can

choose a general P3 = R and take the pullback of the divisor R under the morphism induced by

the complete linear series |B | and call it G . The degree of the morphism restricted to G is again

d . Since the degree of R in the image is 1 we have that d = B 3 ·G = 125A2 ·G ≥ 125 (since A is

ample and G is effective) contradicting d ≤ 26. Hence the image cannot be a variety of minimal

degree. ä

5.2 Projective normality for certain hypekähler varieties

As we discussed before, K3 surfaces can be generalized in higher dimensions in two different

ways and they give rise to Calabi–Yau and hyperkähler manifolds. We first define Calabi–Yau

manifolds.

Definition 5.2.1. A compact Kähler manifold M of dimension n ≥ 3 is called Calabi–Yau if it

has trivial canonical bundle and the hodge numbers hp,0(M) vanish for all 0 < p < n.

With this definition, Calabi–Yau manifolds are necessarily projective. We define the hyper-

kähler manifolds in the next section and provide the four known classes of examples. We re-

mark that the definition of hyperkähler manifolds (Definition 5.2.2) does not imply projectivity

in general, and if it is then we call it a hyperkähler variety.

The decomposition theorem of Bogomolov (see [Bog78]) says, any complex manifold with

trivial first Chern class admits a finite étale cover isomorphic to a product of complex tori,

Calabi–Yau manifolds and hyperkähler manifolds. Thus, these spaces can be thought of as the

“building blocks” for manifolds with trivial first Chern class.
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5.2.1 Definition and examples of hyperkähler varieties

We start with the definition.

Definition 5.2.2. A compact Kähler manifold M is called hyperkähler if it is simply connected

and its space of global holomorphic two forms is spanned by a symplectic form.

Recall that a hyperkähler variety X is a projective hyperkähler manifold. The symplectic

form ensures that KX is trivial and dim(X ) is even. It is also known that χ(OX ) = n +1 and the

following are the values of hp (X ,OX ),

hp (X ,OX ) =


1 p is even,

0 p is odd.

Only a few classes of examples of hyperkähler varieties are known. Beauville first gave ex-

amples of two distinct deformation classes of compact hyperkähler manifolds in all even di-

mensions greater than or equal to 2 (see [Bea84]). The first example is the Hilbert scheme S[n]

of length n subschemes on a K 3 surface S. The second one is the generalized Kummer variety

K n(T ) which is the fibre over the 0 of an Abelian surface T under the morphism φ◦ψ (see the

diagram below)

T [n+1] ψ−→ T (n+1) φ−→ T

where T [n+1] Hilbert scheme of length n +1 subschemes on the Abelian variety T , T (n+1) is the

symmetric product, ψ is the Hilbert chow morphism and φ is the addition on T . Two other

distinct deformation classes of hyperkahler manifolds M6 and M10 are given by O’Grady in di-

mensions 6 and 10 respectively which appear as desingularizations of certain moduli spaces of

sheaves over symplectic surfaces (see [O’Gr99], [O’Gr03]). All other known examples are defor-

mation equivalent to one of these.
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5.2.2 Properties of hyperkähler varieties

We start by the following theorem of Beauville and Fujiki (see [Bea84] and [Fuj85]).

Theorem 5.2.3. Let X be a hyperkähler variety of dimension 2n. There exists a quadratic form

qX : H 2(X ,C) → C and a positive constant cX ∈ Q+ such that for all α in H 2(X ,C),
´

X α
2n =

cX ·qX (α)n . The above equation determines cX and qX uniquely if one assumes the following two

conditions.

(I) qX is a primitive integral quadratic form on H 2(X ,Z);

(II) qX (σ, σ̄) > 0 for all 0,σ ∈ H 2,0(X ).

Here qX and cX are called the Beauville form and Fujiki constant respectively.

The Beauville form and Fujiki constants are fundamental invariants of a hyperkähler variety.

They play an important role in determining the intersections on X as the following theorem

shows (See [Fuj85], [GH03]).

Theorem 5.2.4. Let X be a hyperkähler variety of dimension 2n. Assume that α ∈ H 4 j (X ,C) of

type (2 j ,2 j ) on all small deformations of X . Then there exists a constant C (α) ∈C depending on

α such that
´

X α ·β2n−2 j =C (α) ·qX (β)n− j for all β ∈ H 2(X ,C).

As a consequence of the theorem above, we get the following form of the Riemann–Roch

formula for a line bundle L on a hyperkähler variety of dimension 2n (see [Huy99]),

χ(X ,L) =
n∑

i=0

ai

(2i )!
qX (c1(L))i (5.20)

where ai =C (td2n−2i (X )). Here ai ’s are constants depending only on the topology of X .

Elingsrad-Gottsche-Lehn computes the rational constants of the Riemann–Roch expression

for hyperkähler manifolds of deformation type K 3[n] (See [EGL01]) and Nieper computes the

same for generalized Kummer varieties K n(T ) of dimension 2n (see [Nie03]). If X is of K 3[n]
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type we have,

χ(L) =
(

1
2 q(L)+n +1

n

)
and cX = (2n)!

n!2n
. (5.21)

For a generalized Kummer variety of dimension 2n we have the following Riemann–Roch for-

mula,

χ(L) = (n +1)

(
1
2 q(L)+n

n

)
and cX = (n +1)

(2n)!

n!2n
(5.22)

The Riemann–Roch formula and Fujiki constant for M6 are the same as that of K 3(T ).

We will use Matsushita’s theorem on fibre space structure of hyperkähler varieties. We recall

the definition and the main theorem.

Definition 5.2.5. Let X be an algebraic variety. A fibre space structure of X is a proper surjective

morphism f : X → S that satisfies the following two conditions:

(1) X and S are normal varieties with 0 < dim(S) < dim(X ).

(2) A general fibre of f is connected.

Theorem 5.2.6. ([Mat99], Theorem 2, (3)) Let f : X → B be a fibre space structure on a projective

hyperkähler variety X of dimension 2n with projective base B. Then dim(B) = n.

5.2.3 Proof of Theorem 1.3.4

Let X be a hyperkähler variety of dimension 2n and let B be an ample and globally generated

line bundle on X . In this section,ϕB will always denote the morphism induced by the complete

linear series |B |. The aim is to study the projective normality of B⊗2n−1. We do this by Corollary

5.1.2 that requires us to analyze the case when ϕB maps X onto a variety of minimal degree.

Recall that a variety of minimal degree is either (1) a quadric hypersurface, or (2) a smooth

rational normal scroll, or (3) cone over a smooth rational normal scroll, or (4) cone over the

Veronese embedding of P2 inside P5 ([EH85]). The following lemma eliminates a few cases.
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Lemma 5.2.7. Let B be an ample and globally generated line bundle on a hyperkähler variety X

of dimension 2n. Suppose the morphism ϕB induced by the complete linear series |B | maps X

onto a variety of minimal degree Y .

(1) If Y is a quadric hypersurface then h0(B) = 2n +2.

(2) Y can never be a smooth rational normal scroll.

(3) If Y is a cone over a smooth rational normal scroll then the codimension of its singular

locus is two i.e. Y is obtained by taking cones over a smooth rational normal curve.

(4) If Y is a cone over the Veronese embedding of P2 inside P5 then h0(B) = 2n +4.

Proof. (1) and (4) are obvious. (3) comes from Lemma 2.2.6. We give the proof of (2) below.

To prove (2) we argue by contradiction. Suppose the image is a smooth rational normal

scroll. Since a smooth scroll admits a morphism to P1 we have a composed morphism from

X to P1. Take the Stein factorization of this morphism which has connected fibres and notice

that since X is smooth this further factors through a normalization. So we get a morphism

from X to a normal base of dimension 1 (hence smooth in this case) with connected fibres

which contradicts Matsushita’s result on the fibre space structure of a holomorphic symplectic

manifold (see Theorem 5.2.6). ä
We give two definitions below that we will use later in this note.

Definition 5.2.8. For a given hyperkähler variety X , we define the following two polynomials,

RRX (x) =
n∑

i=0

ai

(2i )!
(x)i and RX (x) = RRX (x)− an

(2n)!
xn

where ai =C (td2n−2i ). (Note: these polynomials depend only on the deformation type of X .)

Definition 5.2.9. For a given hyperkähler variety X with Beauville form qX , we define the con-

stant αX as below,

αX = min
{

qX (A)
∣∣∣ A is an ample line bundle on X

}
.
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Our next task is to find an upper bound for deg(ϕB ) for an ample and base point free line

bundle B . The next result in fact just uses the fact that B is base point free and the induced

morphism ϕB is generically finite.

Lemma 5.2.10. Let X be a hyperkähler manifold of dimension 2n. Assume RX |Z≥0 is increasing

and RX (αX ) > 2n. Then, for any globally generated line bundle B on X , such thatϕB is generically

finite, deg(ϕB ) < (2n)!.

Proof. Let Y = Im(ϕB ). We have the equation B 2n = deg(ϕB ) ·deg(Y ) to begin with. Note that,

deg(Y ) ≥ 1+codim(Y ) =⇒ deg(Y ) ≥ h0(B)−2n (5.23)

since codim(Y ) = h0(B)−2n. Thus, we get,

B 2n ≥ deg(ϕB )(h0(B)−2n). (5.24)

Recall that B 2n = cX (qX (B))n and notice that h0(B) = RRX (qX (B)) = RX (qX (B))+ an

(2n)!
(qX (B))n .

Since, an = cX , using 5.24 we get,

cX (qX (B))n ≥ deg(ϕB )

(
RX (qX (B))+ an

(2n)!
(qX (B))n −2n

)

=⇒ cX (qX (B))n
(
1− deg(ϕB )

(2n)!

)
≥ deg(ϕB )(RX (qX (B))−2n) ≥ deg(ϕB )(RX (αX )−2n).

That concludes the proof since the last term is strictly greater than zero by hypothesis and

qX (B) > 0 since B is nef and big. ä

Remark 5.2.11. If all Todd classes of the hyperkähler variety X is fakely effective then RX |Z≥0 is

increasing. In particular, it is satisfied for all known examples of hyperkähler varieties, except

O’Grady’s 10 dimensional example M10 (see [CJ20], Theorem 1.8) remaining unknown, which

is also clear from their explicit Riemann–Roch expressions. ♦

The remark above leads to the following consequence.
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Remark 5.2.12. The hypothesis of Lemma 5.2.10 are satisfied for all known examples of hyper-

kähler varieties X of dimension 2n ≥ 4 (see [CJ20], Theorem 1.8), except O’Grady’s 10 dimen-

sional example M10.

Proof. Thanks to the previous remark, it is enough to show that RX (αX ) > 2n.

If X is either type K 3[n] or K n(T ) then αX ≥ 2. Since RX |Z≥0 is increasing, we have,

RX (αX ) ≥ RRX (2)− cX 2n

(2n)!
. (5.25)

If X is of type K 3[n] (resp. K n(T )), using the Riemann–Roch expression 5.21 (resp. 5.22) and

n ≥ 2 we have the following,

RRX (2)− cX 2n

(2n)!
=

(
n +2

n

)
− 1

n!
> 2n

(
resp. RRX (2)− cX 2n

(2n)!
= (n +1)2 − 1

n!
> 2n

)
. (5.26)

Same argument works for M6 as well since its Riemann–Roch expression is the same as that of

K 3(T ). That concludes the proof of the assertion. ♦
The upper bound for the degree has the following consequence on the secant lines of an

embedding of a K 3 surface. Even though it has nothing to do with our present purpose, it still

might be of independent interest.

Corollary 5.2.13. Let S be a K 3 surface and B be a very ample line bundle. Consider the projec-

tive embedding of S in Ph0(B)−1 and the closed subvariety of Gr (2,h0(B)) consisting of lines that

intersect the K 3 surface at a subscheme of length at least 2. Then a general such line intersects S

at a subscheme of length ≤ 7.

Proof. Given the above conditions we construct a generically finite morphism f from X = S[2] to

Gr (2,h0(B)). Given a point on X we take the length 2 subscheme it defines on S and send it to

the linear span of the length two subscheme inside Ph0(B)−1. Since a general such line does not

lie on S, it intersects S at finitely many points. So a general point in the image of the morphism

f has got finite fibers. Hence f is a generically finite morphism.
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Observe that this morphism is given by the complete linear series B −δwhere 2δ is the class

of the divisor in S[2] that parametrizes non-reduced subschemes of length 2 on the K 3 surface S.

By Lemma 5.2.10 and Remark 5.2.12, we have deg( f ) ≤ 23 . If a line intersects S at k points then

the line has
(k

2

)
preimages under the morphism f . Thus for a general line

(k
2

) ≤ 23 and hence

k ≤ 7. ä
In the next Lemma, we will use the upper bound for deg(ϕB ) to put more restrictions on the

image of ϕL when it maps onto a variety of minimal degree.

Lemma 5.2.14. Let X be a hyperkähler manifold of dimension 2n ≥ 4 for which RX |Z≥0 is increas-

ing, RX (αX ) > 2n and RRX (αX ) ≥ 4n. Then for any ample and globally generated line bundle B

on X , ϕB can never map X onto a variety that is obtained by taking cones over a rational normal

curve.

Proof. Suppose Y = Im(ϕB ) is a variety of minimal degree that is obtained by taking cones over

a rational normal curve and d = deg(ϕB ). Therefore Y is singular in codimension two. Let G

be the inverse image of a general linear subspace of R of codimension 1 in Y . Notice that G is

irreducible by Bertini’s theorem.

We have B 2n−1 ·G = d . Using Lemma 2.2.5, we deduce that B can be written as the pullback

of deg(Y ) ·R. Thus, G is ample and d = deg(Y )2n−1 ·G2n ≥ deg(Y )2n−1.

Now we use the fact that deg(Y ) = (
RRX (qX (B))−2n

)
and d < (2n)! (see Lemma 5.2.10 and

Remark 5.2.12) that leads us to the following inequality,

(
RRX (qX (B))−2n

)2n−1 < (2n)! (5.27)

which is absurd. Indeed, by our assumption, RRX (qX (B))−2n ≥ RRX (αX )−2n ≥ 2n. ä

Notice that the proof above also shows the following.

Remark 5.2.15. Let X be a hyperkähler manifold of dimension 2n ≥ 4 for which RX |Z≥0 is in-

creasing and RX (αX ) > 2n. Let B be an ample and globally generated line bundle for which
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either h0(B) ≥ 4n, or B 2n < αn
X (h0(B)−2n)2n . Then ϕB can never map X onto a variety that is

obtained by taking cones over a smooth rational normal curve. ♦

Combining Lemmas 5.2.7, 5.2.14 and Remarks 5.2.12 and 5.2.15 we get the following.

Proposition 5.2.16. Let X be a hyperkähler manifold of dimension 2n ≥ 4 and let B be an ample

and globally generated line bundle on X . If X is deformation equivalent to either K n(T ) or M6

then the morphism ϕB given by the complete linear series |B | will never map X onto a variety of

minimal degree. If X is of type K 3[n] and ϕB maps X onto a variety Y of minimal degree then

either,

(1) X is of type K 3[2], qX (B) = 2, deg(ϕB ) = 6 and Y is a quadric hypersurface (possibly singu-

lar) inside P5 which can not be obtained by taking cones over any rational normal scroll,

or

(2) X is of type K 3[3], qX (B) = 2, deg(ϕB ) = 30 and Y is a variety embedded inside P9 that is

obtained by taking cones over the Veronese embedding of P2 inside P5.

Proof. To start with, note that αX ≥ 2. Suppose X is of type K n(T ) or M6. By Riemann–Roch, we

get h0(B) = RRX (qX (B)) ≥ RRX (2) > 2n +4. Consequently, by Lemma 5.2.7, Im(ϕB ) can only be

a variety that is obtained by taking cones over a rational normal curve. But that is impossible by

Lemma 5.2.14 since RRX (2) > 4n.

Now, assume X is of type K 3[n]. We can argue exactly like the previous paragraph to con-

clude that ϕB will never map X onto a variety of minimal degree if n ≥ 5.

We deal with the case n = 2, 3 and 4 separately and we will use Lemma 5.2.7. Note that qX (B)

is even, say qX (B) = 2k for some positive integer k.

Suppose n = 2. Note that h0(B) > 8 if q(B) ≥ 4 and B 2n < 22(h0(B)−4)4 if q(B) = 2. Conse-

quently by Remark 5.2.15, Y can not be obtained by taking cones over rational normal curve.

The equation RRX (2k) = 2n +2 has only one positive even integer solution k = 1 in which case

qX (B) = 2, deg(ϕB ) = 6 and Y is a quadric hypersurface in P5. RRX (2k) = 2n +4 has no integer

solution.
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Suppose n = 3. Argument similar to that of the case n = 2 yields that Y can not be ob-

tained by taking cones over rational normal curve. Moreover, RRX (2k) = 2n +2 has no solution

and RRX (2k) = 2n + 4 has only one positive integer solution k = 1 in which case qX (B) = 2,

deg(ϕB ) = 30 and Y is a variety of minimal degree in P9 obtained by taking Veronese embed-

ding of P2 inside P5.

Similar argument shows that ϕB can not map K 3[4] onto a variety of minimal degree. ä

Now we are ready to give the proof of our main theorem.

Theorem 5.2.17. Let X be a projective hyperkähler variety of dimension 2n ≥ 4 that is deforma-

tion equivalent to K 3[n], K n(T ) or M6. Let B be an ample and globally generated line bundle on

X . Then the following happens;

(1) B⊗l is projectively normal for l ≥ 2n.

(2) B⊗2n−1 is projectively normal unless:

(a) n = 2, X = K 3[2] and ϕB maps X onto a quadric (possibly singular) inside P5. In this

case qX (B) = 2, deg(ϕB ) = 6, or

(b) n = 3, X = K 3[3] and ϕB maps X onto a variety of minimal degree inside P9 which

is obtained by taking cones over the Veronese embedding of P5 inside P5. In this case

qX (B) = 2, deg(ϕB ) = 30.

Hence if X is as above and B does not satisfy cases 2(a) or 2(b) then a general curve section of |B |
is non-hyperelliptic.

Proof. To prove (1) we simply notice that h0(B) ≥ 2n +2 by the Riemann–Roch formula on X .

The assertion follows by Lemma 5.1.3. (2) follows directly by Corollary 5.1.2, and Proposition

5.2.16. The statement on non-hyperellipticity of a general curve section C follows from the fact

that B d−1|C = KC by adjunction and that a very ample line bundle restricts to a very ample line

bundle on a closed immersion. ä
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We finish by the following example of Debarre. It shows the existence of an ample and glob-

ally generated line bundle on a hyperkähler variety of K 3[2] type that induces a 6-1 map onto a

variety of minimal degree by its complete linear series.

Example 5.2.18. ([Deb18]) Let (S,L) be a polarized K 3 surface with Pic(S) =ZL and L2 = 4. Then

L is very ample and consequently we get a morphism φ : S[2] →Gr (2,4) to the Grassmannian.

Now, L induces a line bundle L2 on S[2] and it is known that Pic(S[2]) =ZL2 ⊕Zδ. Moreover,

the pullback of the Plücker line bundle on the Grassmannian has class L2−δ on S[2]. Therefore,

if (S,L) is general then it contains no line and consequently φ will be finite of degree
(4

2

)= 6. ♠
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