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Abstract

Background: It is unknown if enrofloxacin accumulates in plasma of cats with

reduced kidney function.

Hypothesis: To determine if enrofloxacin and its active metabolite ciprofloxacin have

reduced clearance in azotemic cats.

Animals: Thirty-four cats hospitalized for clinical illness with variable degree of kid-

ney function.

Methods: Prospective study. After enrofloxacin (dose 5 mg/kg) administration to

cats, sparse blood sampling was used to obtain 2 compartment population pharmaco-

kinetic results using nonlinear mixed-effects modeling. Plasma enrofloxacin and cip-

rofloxacin concentrations were measured and summed to obtain the total

fluoroquinolone concentration. A model of ciprofloxacin metabolism from enrofloxa-

cin was created and evaluated for covariate effects on clearance, volume of distribu-

tion, and the metabolic rate of ciprofloxacin generation from enrofloxacin.

Results: Body weight was the only covariate found to affect total fluoroquinolone

volume of distribution (effect 1.63, SE 0.19, P < .01) and clearance (effect 1.63, SE

0.27, P < .01). Kidney function did not have a significant effect on total fluoroquino-

lone clearance (median 440.8 mL/kg/h (range 191.4-538.0 mL/kg/h) in cats with nor-

mal kidney function, 365.8 mL/kg/h (range 89.49-1092.0 mL/kg/h) in cats with

moderate kidney dysfunction, and 308.5 mL/kg/h (range 140.20-480.0 mL/kg/h) in

cats with severe kidney dysfunction (P = .64). Blood urea nitrogen concentration

influenced the metabolic generation of ciprofloxacin from enrofloxacin (effect 0.51,

SE 0.08, P < .01), but other markers of kidney function did not.

Conclusions and clinical importance.: Adjustment of enrofloxacin dosage is not indi-

cated for azotemic cats.

Abbreviations: AIC, Akaike information criterion; AUC, area under concentration curve; BUN, blood urea nitrogen; CKD, chronic kidney disease; Cmax, peak serum or plasma drug concentration;

CV, coefficient of variability; GFR, glomerular filtration rate; IV, intravenous; NLME, nonlinear mixed-effects modeling; SDMA, symmetric dimethylarginine; Vd, volume of distribution.
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1 | INTRODUCTION

Treatment of bacterial pyelonephritis requires an adequate

concentration of antibiotic at the site of infection within the renal

parenchyma.1-4 Fluoroquinolone antibiotics are recommended as the

empiric therapy for pyelonephritis when culture results are pending5 as

there is epidemiologic data that fluoroquinolone antibiotics have

favorable antibacterial activity among urinary tract pathogens in dogs

and cats.6-9 The choice of antibiotic should be amended according to

aerobic urine culture antimicrobial susceptibility testing.

In the United States, injectable enrofloxacin is only approved for

use in dogs, but is frequently used extra-label in cats for susceptible

bacterial infections as it is the only injectable fluoroquinolone avail-

able in this country. Enrofloxacin is extensively metabolized by the

liver, being N-dealkylated to form ciprofloxacin, the main active

metabolite. The antibacterial effects of enrofloxacin and ciprofloxacin

are additive.10

After oral administration of enrofloxacin to cats, the majority of

the drug accumulated within urine, suggesting renal excretion as the

primary means of elimination.11 The exact means of renal elimination

is unknown, but is likely because of a combination of glomerular filtra-

tion of unbound drug and active tubular secretion.12

Patients with kidney dysfunction might have alterations in renal

drug clearance. If glomerulotubular balance is intact, a reduction in

glomerular filtration rate (GFR) will be accompanied by proportional

reductions in tubular secretion and absorption. The net renal drug

elimination is determined by filtration and tubular modification.

Kidney disease accompanied by reduced GFR would result in

decreased filtration of the unbound forms of these drugs. Similarly,

reduced renal tubular secretory capability would decrease renal clear-

ance of ciprofloxacin and perhaps enrofloxacin.13,14

Retinal degeneration occurs in some cats receiving high dosages

(>8 mg/kg/day) of enrofloxacin.15 It is unclear if retinal injury is

related to peak drug concentration or cumulative drug exposure.

Further analysis of the risk of retinal injury suggested cat age and dose

of enrofloxacin might have contributory roles.16 Older cats might be

more likely to have kidney disease, which could result in greater

exposure to enrofloxacin and ciprofloxacin concentrations and higher

risk of developing retinal degeneration.

Other fluoroquinolones have been studied in humans and animals

with decreased kidney function. Ciprofloxacin, enrofloxacin, and mar-

bofloxacin have reduced clearance and increased drug exposure in

individuals with reduced kidney function.17-21 The dosage or adminis-

tration frequency of fluoroquinolones might need to be adjusted in

patients with kidney dysfunction to prevent excessive drug accumula-

tion. Although research has not been performed, some authors recom-

mend extending the dosing interval of fluoroquinolone antibiotics to

dogs and cats with kidney dysfunction.22

The pharmacokinetics of intravenously administered enrofloxacin

is reported for healthy adult cats and kittens,23 but there have been

no evaluations in cats with either experimental or naturally occurring

kidney disease.

The purpose of this study is to determine if enrofloxacin and its

active metabolite ciprofloxacin have reduced clearance in azotemic cats.

2 | MATERIALS AND METHODS

This was a prospective population pharmacokinetic study utilizing

nonlinear mixed-effects modeling (NLME). All cats were enrolled and

treated at [masked for review], after informed consent by their

owners from January 1, 2019 through September 1, 2021.

Client-owned cats that were administered enrofloxacin IV at the

discretion of their primary veterinarian for suspected bacterial

infection were eligible for enrollment. Cats that had received any fluo-

roquinolone in the previous 7 days were ineligible for enrollment in

this study. Additional exclusion criteria were cats with preexisting reti-

nal lesions or blindness, severe concurrent disease including anemia

(hematocrit <20%), hypoxia, congestive heart failure, hypotension,

and hypovolemia. Fractious cats that would experience excessive

stress during venipuncture were ineligible for enrollment.

All cats received 5 mg/kg IV injection of enrofloxacin (Baytril

2.27% solution, Elanco, Greenfield, IN). The volume of enrofloxacin

was diluted 1:1 with sterile saline and this final solution was adminis-

tered through a peripheral IV catheter over 30 minutes. No other con-

current drug or fluid was administered through that venous catheter

during drug administration. Samples were collected after the complete

volume of enrofloxacin had been administered. Although sampling

was only performed in the 24 hours after the initial IV dose of enro-

floxacin, all cats continued to receive antibiotic therapy as clinically

indicated; transition to another antibiotic based on culture and antimi-

crobial susceptibility report was performed as indicated.

The cats enrolled in this study were hospitalized for the manage-

ment of their illness and could not tolerate intensive sampling for indi-

vidual pharmacokinetic analysis. Instead, a population-based approach

to modeling the pharmacokinetics was designed using NLME evalua-

tion, that would allow for fewer samples to be obtained from each

cat. Sparse sampling was performed so that each cat was scheduled

to have only 3 blood samples obtained in the 24 hours after enroflox-

acin administration. The sample schedule was designed to optimize

time points according to previously published pharmacokinetic vari-

ables in healthy cats.23 Cats were randomly assigned to a specific

sparse sampling schedule (see Table S1).

At each sampling time point, 1.5 mL of whole blood was collected

via venipuncture into heparinized tubes, centrifuged, and plasma sep-

arated and stored at �80�C. Stored samples were shipped to North
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Carolina State University College of Veterinary Medicine for analysis.

Concentrations of enrofloxacin and ciprofloxacin were determined

using high-pressure liquid chromatography using a validated assay.23

The antibacterial effects of enrofloxacin and ciprofloxacin are

additive.10,24 Therefore, the total fluroquinolone concentration (sum

of enrofloxacin and ciprofloxacin concentrations) was used for phar-

macokinetic analysis.

As plasma ciprofloxacin concentration is also dependent on the

rate of metabolism of enrofloxacin into ciprofloxacin, secondary model-

ing was performed to determine the relationship between formation of

ciprofloxacin and clearance of both ciprofloxacin and enrofloxacin.

Modeling was used to identify inter- and intra-subject variability and

covariates that significantly affect the pharmacokinetics of the drug.

The models were parameterized by drug clearance. Final model

selection was based on goodness of fit plots, statistical significance

between models using twice the negative log likelihood (�2LL),

Akaike information criterion (AIC),25 a goodness of fit measure based

on the log likelihood adjusted for the number of variables and degrees

of freedom in the model, obtained in Phoenix NLME, and coefficient

of variation of variable estimates. The model with the smallest AIC

was selected as the final model.

Modeling population pharmacokinetics yields better estimates of

intersubject variability than traditional approaches, while allowing the

individual to be accounted for in modeling variability.26 Naturally

occurring kidney disease in people and experimentally induced kidney

dysfunction in rats causes between 32.5% and 73.4% decrease in

clearance of enrofloxacin or ciprofloxacin.17-20 Based on enrofloxacin

pharmacokinetics in healthy adult cats (mean clearance 257 ± 54 mL/

kg/h),23 4 normal cats and 4 with decreased kidney function (charac-

terized by a serum creatinine concentration >2.4 mg/dL) need to be

enrolled to have 80% power to detect a 32.5% reduction in drug

clearance. Because enrolled cats will have variable renal function,

ranging from normal to markedly reduced, a minimum of 24 cats was

targeted for enrollment to allow for 8 cats with normal, moderately

decreased, and markedly decreased kidney function to be included in

analysis, as suggested by regulatory agencies, and exceeding the a

priori sample size determination.27

Through sparse-sampling, initial pharmacokinetic variables of

plasma total fluoroquinolone concentration (sum of plasma enrofloxa-

cin and ciprofloxacin concentration at a specific time point) were esti-

mated using naive pooled modeling and noncompartmental methods.

These estimates were analyzed with NLME population pharmacoki-

netic modeling with commercial software (Phoenix NLME software,

Certara, Princeton, NJ). Once the final model was obtained for the

population, an examination of covariates was performed to determine

additional factors that might explain the variability in clearance of

enrofloxacin and ciprofloxacin.

Interindividual (between-subject) variability (variance of a variable

among different subjects) was expressed using an exponential error

model according to the equation:

Pi ¼Ppop� exp ηiPð Þ

where P is the variable of interest for the individual i, Ppop is θ (theta),

the typical value for the population estimate of the variable of inter-

est, and ηiP is the η (eta) for the individual and variable of interest.

The η values were assumed to be independent and have a normal dis-

tribution with a mean of 0 and variance of ω2. A multiplicative model

was chosen (among additive, log-additive, power, and mixed error

models) to describe the residual** random variability (ε) of the data,

where ε is the residual intrasubject (within subject) variability with a

mean of 0 and a variance of σ2, according to the equation:

Cobsij ¼Cpredij� 1þεij
� �

where Cobsij is the observed concentration for subject i at time j for

the individual and Cpredij is the model predicted concentration for

subject i at time j plus the error value (εij) adjustment for subject i at

time tj (multiplicative residual error).

The contribution of covariate to clearance and volume of both

compartments was evaluated after the population model was built.

Sex was added to the base model as a categorical covariate (where

female = 0 and male = 1). Covariates including cat age and weight as

well as biochemical variables including serum creatinine, symmetric

dimethylarginine (SDMA), and blood urea nitrogen (BUN) concentra-

tions were evaluated as continuous variables. The effect of each

covariate on the volume and clearance was evaluated using a likeli-

hood ratio test, and a P value <.01 was significant for adding a covari-

ate and a P value <.001 was significant for the removal of a covariate.

The final model was validated using the bootstrap technique.

Internal model validation was performed via bootstrap modeling

with 300 replicates.

Continuous data was analyzed for normality via the D'Agostino

Pearson test using a commercial statistical program (Graphpad Prism

9.3). Normally distributed data are reported as mean and SD, data that

are not normally distributed data are reported as median and range.

Pharmacokinetic variables were compared between groups of cats

stratified by renal function (normal kidney function: serum creatinine

concentration ≤2.4 mg/dL [within the reference interval], moderate

kidney dysfunction: serum creatinine concentration 2.5-10 mg/dL,

and severe kidney dysfunction: serum creatinine concentration

>10 mg/dL) via a Kruskal-Wallis test. A P value <.05 was considered

significant.

3 | RESULTS

A total of 34 cats were enrolled in this study, 18 were spayed females

and 16 were castrated males. The mean age was 11.4 ± 4.3 years, and

median weight was 3.8 kg (range 1.8-8.8 kg). The mean serum creati-

nine concentration and SD of the mean were 7.5 ± 6.0 mg/dL, BUN

137.6 ± 103.0 mg/dL, and SDMA 39.8 ± 27.0 μg/dL. Nine cats had

normal kidney function (median serum creatinine concentration 1.6,

range 0.9-2.2 mg/dL), 15 had moderate kidney dysfunction (median

serum creatinine concentration 5.6, range 2.7-8.6 mg/dL), and 10 had
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severe kidney dysfunction (median serum creatinine concentration

13.3, range 11.9-21.5 mg/dL). All cats received 5 mg/kg enrofloxacin

IV, with a mean total dose of 20.5 ± 7.4 mg. Three cats were enrolled

in sampling schedule 1, 10 in schedule 2, 4 in schedule 3, 1 in sched-

ule 4, 6 in schedule 5, 4 in schedule 6, and 6 in schedule 7 (see

Table S1).

3.1 | Noncompartmental analysis

Exactly 98 samples were obtained from the 34 enrolled cats. Four cats

only had 2 blood samples analyzed, as each of these cats had a single

blood sample that was lost in processing. Noncompartmental pharma-

cokinetic analysis was performed and is shown in Figure 1 as total

fluroquinolone concentration vs time.

There was no difference in the observed area under the curve

through 24 hours (AUC0!24) after dose administration between

groups with different renal function (P = .66); 41.44 μg h/mL (range

28.29-69.29 μg h/mL) in cats with normal kidney function, 39.79

μg h/mL (range 18.66-136.3 μg h/mL) in cats with moderate kidney

dysfunction, and 34.95 μg h/mL (range 19.95-78.5 μg h/mL) in cats

with severe kidney dysfunction. There was no difference in observed

clearance between groups with different renal function (P = .64);

440.8 mL/kg/h (range 191.4-538.0 mL/kg/h) in cats with normal kid-

ney function, 365.8 mL/kg/h (range 89.49-1092.0 mL/kg/h) in cats

with moderate kidney dysfunction, and 308.5 mL/kg/h (range

140.20-480.0 mL/kg/h) in cats with severe kidney dysfunction.

F IGURE 1 Semi-logarithmic spaghetti plots of total
fluroquinolone plasma concentrations over 24 hours after a single IV
administration (nominal dose of 5 mg/kg) of enrofloxacin in 34 cats.

F IGURE 2 Box plots of effect of sex on clearance and volume of
both compartments.
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The data was best modeled by 2-compartment kinetics demon-

strated goodness of fit evaluation and by the lower mean AIC �23.61

compared with �8.97 for 1-compartment model.

A 2-compartment model was created and evaluated using addi-

tive, multiplicative, and additive with multiplicative error models,

which found a multiplicative model to have the best performance (AIC

207.14 vs 209.61 for the proportional model and 230.24 for the addi-

tive model).

3.2 | Covariate model

Using the 2-compartment model with multiplicative error regression,

a stepwise search for covariates was performed (Figures 2 and 3).

Forward addition and backward deletion iteration were performed.

Only body weight was found to significantly affect the volume and

clearance of the first compartment. All other covariates were found to

not significantly affect volume or clearance of either compartment.

The final population pharmacokinetic model variables are shown

in Table 1. In this model body weight was centered around the mean

population body weight, 3.8 kg. The contribution of ciprofloxacin to

the total fluoroquinolone concentration is reported as the ciprofloxa-

cin: quinolone ratio, essentially ciprofloxacin's percentage of total flu-

oroquinolone concentration at any time point.

The basic goodness-of-fit diagnostic plots for the final population

pharmacokinetic model are shown in Figure 4. Individual fluoroquino-

lone concentrations are predicted well by the model (Figure 4A), with

data evenly distributed about the line of identity, indicating an appro-

priate structural model could be found for most individuals. There is

no major indication for bias in the population component of the model

(Figure 4B) as data remains evenly distributed about the line of

identity.

F IGURE 3 Population plots of the effect of each continuous covariate on clearance and volume of both compartments. Body weight
significantly contributed to both clearance and volume of distribution (P < .01).
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3.3 | Model validation

Model validation was performed via bootstrap simulation with

300 replicates. The results of the bootstrap simulation are presented

alongside model estimates in Table S2. Bootstrap replicate observa-

tions were similar to model estimates for all variables except the fluo-

roquinolone volume of distribution of the second compartment,

which was found to be higher and have a greater coefficient of vari-

ability in the bootstrap simulation. This suggests individual variability

in this variable might not be completely accounted for by the model.

From the bootstrap simulations, a predictive check was performed

using observed and simulated predicted plasma fluoroquinolone

concentration (Figure S1). There was good agreement between

observed and predicted data, but some kurtosis was observed in the

predicted quantiles beyond 12 hours after dosing.

3.4 | Modeling of enrofloxacin metabolism to
ciprofloxacin

A graphical model was created to investigate the conversion of

enrofloxacin to ciprofloxacin as well as their respective clearances

(Figure S2). The concentration of enrofloxacin and ciprofloxacin was

evaluated according to the relationship illustrated by this model to

TABLE 1 Enrofloxacin population
pharmacokinetic variables in cats.

Parameter Estimate SE CV%

θ Vd1 (mL/kg) 4794.7 359.6 7.22

Vd2 (mL/kg) 2.9 � 10�4 5.1 � 10�5 17.6

θ Cl1 (mL/kg/h) 254.3 31.8 12.49

Cl2 (mL/kg/h) 132.1 27.4 20.71

dVd1weight 1.6 0.2 13.75

dCl1weight 1.6 0.3 16.38

AUC0!24 (μg h/mL) 46.0 3.1 36.33

Ciprofloxacin: quinolone ratio 0.18 0.02 86.39

Note: θ Vd1 is the theta (typical value) for quinolone volume of distribution of the first compartment; Vd2

is the volume of distribution of quinolone within the second compartment; θ Cl1 is the theta for

quinolone clearance from the first compartment; Cl2 is the clearance of quinolone from the second

compartment; dVd1weight is the effect of the covariate weight on the volume of distribution of the first

compartment; dCl1weight is the effect of the covariate weight on the quinolone clearance of the first

compartment; AUC0!24 is area under the curve for the concentration versus time profile from dosing

(time 0 hour) through 24 hours post-dosing; Ciprofloxacin:quinolone is the ciprofloxacin-to-total

quinolone (enrofloxacin plus ciprofloxacin) plasma concentration ratio.

F IGURE 4 Predicted vs observed plasma fluoroquinolone concentrations from the nonlinear mixed-effects model.
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TABLE 2 Results from modeling
enrofloxacin and its metabolite
ciprofloxacin.

Parameter Estimate SE CV%

Vd enrofloxacin (mL/kg) 5797.5 323.5 5.4

Clearance of enrofloxacin into urine (mL/kg/h) 499.1 42.6 8.5

Vd ciprofloxacin (mL/kg) 22.7 4.2 18.7

Clearance of ciprofloxacin into urine (mL/kg/h) 4.6 0.8 16.9

Metabolism of enrofloxacin to ciprofloxacin (mL/kg/h) 0.13 0.03 22.9

Abbreviation: Vd, volume of distribution.

F IGURE 5 Population plots of the effect of each continuous covariate on kinetics of enrofloxacin and metabolite ciprofloxacin.
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determine the clearance of enrofloxacin to ciprofloxacin (also consid-

ered the metabolism of enrofloxacin to ciprofloxacin) and the clear-

ance of both compounds into urine. Results of this model are shown

in Table 2. Estimates of the Vd of enrofloxacin and its clearance had

little variability within the study population. The Vd of ciprofloxacin,

its clearance, as well as the metabolism of enrofloxacin to ciprofloxa-

cin had large coefficient of variability. A stepwise search for covariates

was performed to identify factors that might account for this

variability.

A stepwise covariate search identified BUN as a covariate that

affected the metabolism of enrofloxacin to ciprofloxacin and body

weight as a covariate that affected Vd of enrofloxacin (Figure 5). The

final population variables of the metabolite model are shown in Table 3.

4 | DISCUSSION

Client-owned cats in a hospital cannot be sampled as frequently

as research cats. Therefore, we used a population pharmacokinetic

approach with a sparse sampling design. Sparse sampling of cats with

naturally occurring disease receiving IV enrofloxacin allowed for popu-

lation pharmacokinetic modeling via a NLME approach. This method

investigated interactions of individual variability on pharmacokinetic

variables. Kidney function assessed by serum creatinine, BUN, and

SDMA concentrations did not contribute significantly to the population

variability (between-subject variability) for total fluoroquinolone clear-

ance or volume of distribution. While population modeling allowed for

renal function to be assessed as a continuous variable via these vari-

ables, when cats were grouped according to the magnitude of kidney

dysfunction, there was no difference observed in AUC0!24 or clearance

among groups. Because volume of distribution and clearance are

derived from the AUC it is not unexpected that we did not see

significant differences in these variables. Only body weight affected the

volume of the first compartment as well as its clearance. Further evalu-

ation of enrofloxacin pharmacokinetics in cats with larger body weight

(>7 kg) might be indicated based upon this finding.

Comparing the results of this study to earlier studies of enrofloxa-

cin pharmacokinetics in healthy adult cats,23,28 a similar ciprofloxacin:

total fluoroquinolone ratio was observed; however, the current popu-

lation had a larger Vd, clearance, and AUC0!24 of the total fluroquino-

lone concentration. The cause for these differences is undetermined

but could be because these cats were all hospitalized for management

of illness rather than healthy research adults. Intravenous fluid ther-

apy was given to all cats according to their hydration requirements

according to the discretion of the primary veterinarian. Fluid therapy

might increase the Vd of enrofloxacin and ciprofloxacin because of

extracellular volume expansion, but this relationship has not been

tested.

Bootstrap validation of the model showed a high CV for the Vd

and total fluoroquinolone clearance of the second compartment, as

was predicted by the model. This compartment represents extravas-

cular sites of fluoroquinolone accumulation such as within tissues.

The cause for the variability observed here is unknown and might be

reflective of drug accumulation at the site of infection, which might

vary according to the severity of disease. The Vd and clearance of this

second compartment were not affected by the presence of renal dis-

ease or any other covariates.

This study modeled the total fluoroquinolone concentration in

plasma. Ciprofloxacin is an active metabolite of enrofloxacin, and both

exhibit antibiotic effects through inhibition of topoisomerase IV.24,29

A model of ciprofloxacin generation from enrofloxacin was created so

that individual enrofloxacin and ciprofloxacin clearance, Vd, and the

rate of metabolism of enrofloxacin to ciprofloxacin could be investi-

gated. Covariate analysis identified the cat's BUN to be a covariate

affecting the metabolism of enrofloxacin to ciprofloxacin. As BUN

increased, the rate of this metabolism also increased. This suggests

cats that are more azotemic have higher rates of ciprofloxacin forma-

tion, however serum creatinine and SDMA concentrations were not

found to be significant covariates on this metabolic rate. Serum creati-

nine and SDMA concentrations are reasonable biomarkers for GFR in

cats,30,31 however BUN has poor specificity in detecting decreased

GFR.32 Serum creatinine predicts GFR better than BUN in cats.33 The

TABLE 3 Final covariate population
model of enrofloxacin and ciprofloxacin
kinetics.

Parameter Estimate SE CV%

θ Vd Enrofloxacin (mL/kg) 5797.5 313.5 5.4

Clearance of enrofloxacin into urine (mL/kg/h) 499.1 42.6 8.5

Vd ciprofloxacin (mL/kg) 22.6 4.2 18.7

Clearance of ciprofloxacin into urine (mL/kg/h) 4.6 0.8 16.9

θ Metabolism of enrofloxacin to ciprofloxacin

(mL/kg/h)

0.1 0.03 22.9

dVd Enrofloxacin-Weight 0.7 0.15 20.0

dCl Enrofloxacin metabolism to ciprofloxacin BUN 0.5 0.08 15.5

Note: θ Vd enrofloxacin is the theta (typical value) for enrofloxacin's volume of distribution Vd

ciprofloxacin is the volume of distribution of ciprofloxacin; θ Cl1 is the theta for quinolone clearance

from the first compartment; θ metabolism is the theta of clearance of enrofloxacin to ciprofloxacin

(representing the formulation of the active metabolite ciprofloxacin from enrofloxacin); dCl Enrofloxacin

is the effect of the covariate BUN on the metabolic clearance of enrofloxacin to ciprofloxacin;

dVd1weight is the effect of the covariate weight on the volume of distribution of enrofloxacin.
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poor utility of BUN as a biomarker of GFR combined with the lack of

influence of serum creatinine and SDMA concentration on the metab-

olism of ciprofloxacin from enrofloxacin undermine the role of kidney

disease in enrofloxacin metabolism. It is unknown why BUN and no

other biomarkers of GFR would be associated with this metabolism,

however it is unlikely that GFR affects the metabolism as BUN, serum

creatinine, and SDMA would be expected to be significant covariates

within the model. Enrofloxacin is N-dealkylated within the liver to form

ciprofloxacin and there is no clear connection between GFR and this

metabolism. Anephric humans who lack any GFR still have substantial

elimination and clearance of ciprofloxacin, suggesting nonrenal path-

ways might be utilized when renal elimination is reduced.34 Ciprofloxa-

cin dosing recommendations in people are contradictory, with some

authors suggesting no change be made35 and others recommending

dose reduction only in patients with severely reduced GFR.34,36 It us

unknown if the metabolism of ciprofloxacin from enrofloxacin is the

rate limiting step in cats, and possibly unaffected by kidney function.

Based on the current study, no change in dosage or administration

schedule of enrofloxacin is indicated in cats with kidney disease.

Studies in other species show decreased clearance of fluoroquin-

olone antibiotics attributed to kidney disease. Experimental models in

rats and in humans with kidney disease show plasma accumulation of

ciprofloxacin and dose adjustment is required.17,18,20 Dogs with

experimentally reduced GFR have decreased clearance of N-oxide-

marbofloxacin, but not the parent drug marbofloxacin.21 This suggests

that not all fluroquinolones are affected similarly by reductions in

GFR. In the absence of data, some have proposed that enrofloxacin

dosing interval be prolonged in cats with kidney disease.22 Data from

the current study does not support this practice. A reduction in the

dose, or a longer dose interval could decrease the concentrations

needed for adequate eradication of an infection.

Population pharmacokinetic modeling was the appropriate

approach for this population through sparse sampling, which allowed for

a study to be performed in cats with clinical disease without excessive

blood sampling. This technique is well suited for hospitalized cats, where

they might not tolerate, or the owner might not consent to dense sam-

pling. Other pharmacokinetic studies have been performed in dogs and

cats with naturally occurring kidney disease. Ampicillin and amoxicillin

have higher plasma drug concentrations in azotemic dogs and cats com-

pared with healthy controls.37,38 However, neither of these studies

stratified dogs and cats according to the magnitude of reduction in kid-

ney function. Therefore, it is challenging to accurately predict changes in

drug elimination in dogs with mild vs severe kidney disease. The NLME

modeling performed in the present study allows for evaluation of the

effect of reduced kidney function on pharmacokinetics and can quantify

these effects. Such an approach can generate dosing nomograms to

more accurately adjust drug dosing or administration interval to obtain

drug elimination as seen in animals with normal kidney function.

Because kidney disease was not found to affect the clearance of fluoro-

quinolone, a nomogram based on kidney function is not needed.

This study has several strengths and limitations. Cats were

enrolled across the spectrum of reduced kidney function, which pro-

duced a larger sample size than others reported for cats in any

pharmacokinetic study. Kidney function was not directly assessed

through GFR measurement. It is possible that some cats might have a

serum creatinine concentration within the population reference range

but have a lower than normal in GFR. While no cat had overt hepatic

failure clinically, liver function was not specifically tested in these cats as

it was not clinically indicated. Hepatic failure in cats is usually clinically

apparent, and we did not suspect that these cats had signs consistent

with liver failure. However, it is unknown if any cat had decreased

hepatic metabolism of enrofloxacin that could affect overall clearance.

This study also evaluated drug clearance after the first dose of enroflox-

acin. Although we cannot predict what might occur from multiple doses,

the pharmacokinetic variables reported here can be adequately assessed

from a single dose. Healthy cats have minimal total fluoroquinolone pre-

sent within serum 24 hours after IV administration.23,28 This study

found some cats to have higher total fluoroquinolone concentrations at

24 hours compared with this study (see Figure 1), but additional study is

required to measure the pharmacokinetics from multiple dosing.

In conclusion, decreased kidney function as evaluated by serum

creatinine, SDMA, and BUN concentration did not affect plasma total

fluoroquinolone, enrofloxacin, or ciprofloxacin clearance. Adjustment

of enrofloxacin dosage is not indicated for azotemic cats, however

further study of repeated doses is needed.
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