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Abstract

Ionic channels and semiconductor devices use atomic scale structures to control macroscopic flows

from one reservoir to another. The one-dimensional steady-state Poisson-Nernst-Planck (PNP) sys-

tem is a useful representation of these devices, but experience shows that describing the reservoirs

as boundary conditions is difficult. We study the PNP system for three types of ions with three

regions of piecewise constant permanent charge. Reservoirs are represented by the outer regions

with permanent charge zero. The PNP system can be treated as singularly perturbed system that has

two limiting systems: inner and outer systems (termed fast and slow system in geometric singular

perturbation theory). A complete set of integrals for the inner system is presented that provides

information for boundary and internal layers. We will examine the effects of permanent charge

on the fluxes of the ions through flux ratios, λ (Q) = J(Q)/J(0). J(Q) is the flux associated with

nonzero permanent charge, Q, and J(0) will be the flux associated with zero permanent charge.
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1 Quasi-One-Dimensional Poisson-Nernst-Planck System

1.1 Introduction

Membranes are one of the most important aspects of biological cells. They provide a barrier that

separates the inside of the cell from the rest of the world. Within a membrane there are pathways

that allow certain molecules to enter and leave a cell. These pathways allow cells to do life sus-

taining activities, such as regulation of the fluxes of ions, nutrients, and molecules. Their activities

underlie physiological processes as diverse as brain electrical activity, muscle contraction, water

and solute transport in the kidney, hormone secretion and the immune response [7].

Substances cross membranes through proteins specialized for the task. These proteins are sep-

arated into two different classes: channels and transporters. Channels are membrane-spanning

water-filled pores through which substrates passively diffuse down their electrochemical gradients

whenever the regulatory gate is open. Transporters are more biological devices involving con-

formation changes, changes in the shape of the macromolecule. Structural biology has shown that

transporters and channels have very similar structures, since transporters technically have two gates

they must control through a conformational cycle, because it has been shown the processes that

open and close channels (’activation’ and ’inactivation’) can be coupled to give properties rather

like transporters.

Transporters are shown to have a much more difficult quantitative properties, particularly if

the description was to be transferrable with parameters that were independent of conditions, be-

cause of this we will consider a simple model of a permanently open ion channel. Most biologists

imagine that if the driving force for electrodiffusion is increased-that is to say, if the difference of

the electrochemical potential across the channel is increased in magnitude - the flux through the

channel should increase. It has been shown before that this is not always the case. To see this

consider a channel with large permanent charge and the flux of ions with the opposite sign as the

permanent charge (called counterions). The flux of counterions in a channel can decrease dramati-

cally as the driving force increases - we call this the declining phenomenon. More precisely, if the
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concentration of the ion is held fixed on one side of the channel, the concentration decreased on the

other side (’trans’) of the channel, the flux of the counter ions can decrease if the permanent charge

density is large. A depletion zone which is an insulating region within a conductive, doped semi-

conductor material where the mobile charge carriers have been forced away by an electric field,

can form that prevents flow even though the driving force increases. It is worthwhile to emphasize

that if one increases the transmembrane electrochemical potential in a different manner, such as,

by increasing the transmembrane electric potential or the concentration of the ion at one side of

the channel, the one does not have the declining phenomenon.

The decline of flux with trans concentration has been considered a particular, even defining

properties of transporters, involving conformation changes of state and other properties of proteins

less well defined (physically) than electrodiffusion. Obligatory exchange, a cells response to phys-

ical factors, is ascribed widely to changes in the structure of transport proteins, to conformation

changes in the spatial distribution of the mass of the protein, obligatory exchange is often thought

to be a special property of transporters not found in channels.

The structure of many transporters can be detected thanks to advances of cryo-electron mi-

croscopy. A transporter (of one amino acid sequence and thus of a perfectly homogeneous molec-

ular type) exists in different states. Each state is said to have a different conformation meaning,

in physical language, that the spatial distribution of mass is different in different states, and the

distribution of the different states form disjoint sets, with no overlap. The movement of ions is

not directly controlled or driven by the conformation of mass, however. Rather, the distribution of

mass produces a distribution of steric repulsion forces, and spatial distribution of electrical forces

because the mass is associated with charge, mostly permanent charge of acid and base groups of

the protein, but also significant polarization charge, as well. It is the conformation of these forces

that determines the movement of ions. The spatial distribution of forces contributes to the potential

of mean force reported in simulations of molecular dynamics.

Our model is of course oversimplified as are any models, or even simulations in apparent

atomic detail, of condensed phases. More structural detail and more correlations between ions can
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and should be included. Our goal is to show properties of the cell that are not always detectable

experimentally.

1.2 Poisson-Nernst-Planck Model

Our study is based on a quasi-one-dimensional Poisson-Nernst-Planck (PNP) model. For a mixture

of n ion species, a quasi-one-dimensional PNP model is

1
A(X)

d
dX

(
εr(X)ε0A(X)

dΦ

dX

)
=−e0

( n

∑
s=1

zsCs +Q(X)

)
,

dJk

dX
= 0, −Jk =

1
κBT

Dk(X)A(X)Ck
dµk

dX
, k = 1,2, . . . ,n

(1)

where X ∈ [a0,b0] is the coordinate along the axis of the channel and reservoirs, A(X) is the cross-

sectional area of the channel at the location X , e0 is the elementary charge, ε0 is the vacuum

permittivity, εr(X) is the relative dielectric coefficient, Q(X) is the permanent charge density, κB

is the Boltzmann constant, T is the absolute temperature, Φ is the electrical potential, and, for the

kth ion species, Ck is the concentration, zk is the valence, Dk(X) is the diffusion coefficient, µk is

the electrochemical potential, and Jk is the flux density.

Equipped with system (1), a meaningful boundary condition for ionic flow through ion channels

is, for k = 1,2, . . . ,n,

Φ(a0) = V , Ck(a0) = Lk > 0; Φ(b0) = 0, Ck(b0) = Rk > 0. (2)

Mathematically, we will be interested in solutions of the boundary value problem (BVP) given

by (1) and (2). An important measurement for properties of ion channels is the I −V (current -

voltage) relation where the current I depends on the transmembrane potential (voltage) V and is

given by

I =
n

∑
s=1

zsJs(V ) (3)

where Jk(V )’s are determined by the BVP (1) and (2) for fixed Lk’s and Rk’s. Of course, the
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relations of individual fluxes J ′
ks to V contain more information, but biologically it is harder to

find the individual fluxes, only the total current. Our model, though, can help us find certain fluxes.

The positions X = a0 and X = b0 are located in the reservoir separated by the channel. They

are the locations of two electrodes that are applied to control or drive the ionic flow through the

ion channel. Ideally, the experimental designs should not affect the intrinsic ionic flow properties

so one would like to design the boundary conditions to meet the so-called electroneutrality

n

∑
s=1

zsLs = 0 =
n

∑
s=1

zsRs, (4)

so that sharp boundary layers, which might cause significant changes in the electrical potential and

concentrations near the boundaries, do not occur (see Remark 2.2).

The electrochemical potential µk consists of the ideal component, uid
k , and the excess compo-

nent, µex
k , where the ideal component,

µ
id
k (X) = zke0Φ(X)+κBT ln

Ck(X)

C0
, (5)

is the point charge contribution where C0 is a characteristic concentration, and the excess compo-

nent µex
k accounts for ion size effects. For our purposes we will only consider the ideal component.

The interested reader may refer to [1] for more results with the consideration of ion size effect.

The permanent charge Q(X) is a simplified mathematical model for ion channel (protein) struc-

ture. It is determined by the spatial distribution of amino acids in the channel wall, the acid (nega-

tive) and base (positive) side chains, more than anything else. We will assume Q(X) is known and

take an oversimplified description to capture some essence of its effects. For the majority of this

paper, we take it to be for some A, B with a0 < A < B < b0,

Q(X) =


0, X ∈ [a0,A)∪ (B,b0]

2Q0, X ∈ (A,B)
,
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but will also discuss theoretical results when Q(X) is more robust. The reader might note though

that work has been done to see the effect of refining the permanent charge over the neck of the

channel to better reflect the actual geometry to the channel.

The cross-sectional area A(X) typically has the property that A(X) is much smaller for X ∈

(A,B) (the neck region) than that for X 6∈ (A,B). It is interesting to note that it has been shown

before the neck of the channel should be "narrow" and "short" to optimize the effect of permanent

charge.

We will assume that εr(X) = εr, Dk(X) = D(X)Dk where εr is a constant and D(X) is some

dimensionless function and a dimensional constant Dk.

Note that the assumption Dk(X) = D(X)Dk is equivalent to the statement that Dk(X)/D j(X)

is a constant for k 6= j since Dk is a dimensional constant. Roughly speaking, the assumption says

that, as the environment varies from location to location, its influences on the two diffusion coeffi-

cients vary from one common environment to another common environment in a way so that their

ratio is independent of locations.

The following rescaling or its variations have been widely used for convenience of mathe-

matical analysis. Let C0 be a characteristic concentration of the ionic solution. We now make a

dimensionless re-scaling of the variables in system (1) as follows,

ε
2 =

εrε0κBT
e2

0(b0−a0)2C0
, x =

X−a0

b0−a0
, h(x) =

A(X)

(b0−a0)2 , Q(x) =
Q(X)

C0
,

D(x) = D(X), φ(x) =
e0

κBT
Φ(X), ck(x) =

Ck(X)

C0
, Jk =

Jk

(b0−a0)C0Dk
,

µk(x) =
1

κBT
µk(X) = zkφ(x)+ lnck(x).

(6)

The dimensionless quantity Q(x) from the permanent charge Q becomes

Q(x) =


0, x ∈ [0,a)∪ (b,1]

2Q0, x ∈ (a,b),

5



where

Q0 =
Q0

C0
, and 0 < a =

A−a0

b0−a0
< b =

B−a0

b0−a0
< 1.

In terms of the dimensionless quantities, the subinterval (a,b) ⊂ (0,1) corresponds to the neck

region [A,B]. We will make the key assumption that the parameter ε > 0 is small. This assumption

allows us to treat the PNP system as a singularly perturbed problem. For general electrodiffusion

problems, this may not be the case. But for ion channel problems, this assumption is reasonable.

In terms of the new variables in (6), the BVP (1) and (2) becomes

ε2

h(x)
d
dx

(
h(x)

dφ

dx

)
=−

n

∑
s=1

zscs−Q(x),

dJk

dx
= 0, −Jk = D(x)h(x)ck

dµk
dx

(7)

with boundary conditions at x = 0 and x = 1

φ(0) =V, ck(0) = Lk; φ(1) = 0, ck(1) = Rk, (8)

where

V :=
e0

κBT
V , Lk :=

Lk

C0
, Rk :=

Rk

C0
.
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2 A Dynamical System Study with Three Ions

For the purposes of this section we will consider only three ion species, two cations (positive

charge) and one anion (negative charge). We will also consider the case where the outer regions

are reservoirs together with the two regions of the channel near the ends and the permanent charge

is constant in the middle of the channel. We will rewrite the PNP system into a standard form for

singularly perturbed systems of first order ordinary differential equations and convert the boundary

value problem to a connecting problem.

Denote the derivative with respect to x by overdot and introduce u = εφ̇ and τ = x. Then our

system becomes,

εφ̇ = u, ε u̇ =−z1c1− z2c2− z3c3−Q(τ)− ε
h′(τ)
h(τ)

u,

ε ċ1 =−z1c1u− εh−1(τ)J1,

ε ċ2 =−z2c2u− εh−1(τ)J2,

ε ċ3 =−z3c3u− εh−1(τ)J3,

J̇1 = J̇2 = J̇3 = 0, τ̇ = 1.

(9)

We will treat this system as a dynamical system of phase space R9 with state variables

(φ ,u,c1,c2,c3,J1,J2,J3,τ). The introduction of the extra state variable τ = x and the τ-equation

seems to add complications to the problem, but this has a great advantage that we will explain

shortly. This introduction also makes (9) autonomous, so that dynamical system theory can be

applied directly.

For ε > 0, the rescaling x = εξ of the independent variable x gives rise to an equivalent (with
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the same phase space portrait) system

φ
′ = u, u′ =−z1c1− z2c2− z3c3−Q(τ)− ε

h′(τ)
h(τ)

u,

c′1 =−z1c1u− εh−1(τ)J1,

c′2 =−z2c2u− εh−1(τ)J2,

c′3 =−z3c3u− εh−1(τ)J3,

J′1 = J′2 = J′3 = 0, τ
′ = ε

(10)

where prime denotes the derivative with respect to the variable ξ .

For ε > 0, (9) and (10) have exactly the same phase portrait since they differ by a rescaling

only. The limiting systems (ε = 0) though provide vastly different, but often times complementary

information about the state variables. Singular perturbation theories help us patch this limiting

information together to form the solution for the system for ε > 0. In terms of the asymptotic

expansions, system (9) and its limit at ε = 0 will be used to study regular layer solutions. We will

call this system the outer system and its limit at ε = 0 the outer limit system. System (10) and its

limit at ε = 0 will be used to study inner or singular layer solutions, and we call the system the

inner system and its limit at ε = 0 the inner limit system. By a singular orbit, we mean a continuous

and piecewise smooth curve in R9 that is a union of finitely many orbits of outer limit system or

inner limit system. In the theory of geometric singular perturbations, viewing the independent

variables x and ξ as slow and fast time variables, the outer system is called the slow system, the

inner system is called the fast system, and a singular orbit is a union of slow and fast orbits.

Please note that we will call the inner or singular layers as boundary layers since they lie on

the boundary of each section ([0,a], [a,b], or [b,1]). In reference to the whole interval, [0,1], they

may be seen as interior layers.

Let BL and BR be the subsets of the phase space R9 defined by,

BL = {(v0,u,L1,L2,L3,J1,J2,J3,0) ∈ R9 : arbitrary u,J1,J2,J3}
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BR = {(0,u,R1,R2,R3,J1,J2,J3,1) ∈ R9 : arbitrary u,J1,J2,J3}

Then the boundary value problem is equivalent to a connecting problem, namely, finding an orbit

of system (9) or system (10) from BL to BR. To see this, suppose that (φ ,u,c1,c2,c3,J1,J2,J3,τ)

is an orbit starting at a point on BL and ending at a point on BR. Due to the definitions of BL

and BR, the starting point automatically has x = τ = 0 with the assigned values for φ ,c1, c2, and

c3 at x = 0, and the ending point has x = τ = 1 with the assigned values for φ ,c1, c2, and c3

at x = 1. This solution (φ ,u,c1,c2,c3,J1,J2,J3,τ) satisfies the boundary condition automatically.

Most importantly, when we arbitrarily rescale the independent variable x, the phase portrait will

remain the same. Therefore, in searching for a solution from BL to BR, we can apply any rescaling

of the independent variable x, even a rescaling that depends on each individual solution, this may

include multiplying by any positive scalar function that could depend on the state variables. This is

the significant advantage of introducing τ = x and τ̇ = 1 promised earlier (see treatments of outer

dynamics).

We will be interested in solutions of the connecting problem of the slow or fast system from BL

to BR. In view of the jump of Q(x) at x = a and x = b, the best one can hope is that the solution is

continuous and piecewise differentiable. We therefore require our solutions to be continuous and

piecewise differentiable. The continuity of u implies that φ ,c1, c2, and c3 are differentiable.

Orbits of the ε = 0 limiting systems are called singular orbits. Our construction of a solution

involves two main steps: the first step is to construct a singular orbit to the connecting problem,

and the second step is to apply geometric singular perturbation theory to show that there is a unique

solution near the singular orbit for ε > 0 small. This requires several transversality conditions for

limiting systems. The curious reader may reference [3] to learn more about the application of

geometric singular perturbation theory for this system.

To construct a singular orbit to the connecting problem, we first construct a singular orbit on

each subinterval [0,a], [a,b], and [b,1]. The reason to split the interval [0,1] into three subintervals

is simply because the permanent charge Q(x) has jumps at x = a and x = b. To be able to construct

a singular orbit on each subinterval, we need to preassign the values of φ ,c1, c2, and c3 at x = a

9



and x = b. Suppose, for the moment, that φ = φ a, c1 = ca
1, c2 = ca

2 and c3 = ca
3 at x = a, and that

φ = φ b, c1 = cb
1, c2 = cb

2, and c3 = cb
3 at x = b. Those eight unknown values,

φ
a,ca

1,c
a
2,c

a
3; φ

b,cb
1,c

b
2,c

b
3 (11)

will be determined along our construction of a singular orbit on the whole interval [0,1].

1. On the left subinterval [0,a] where Q = 0 or there is no permanent charge, we construct a

singular orbit for the boundary value problem with (φ ,c1,c2,c3,τ) being

(v0,L1,L2,L3,0) at x = 0 and (φ a,ca
1,c

a
2,c

a
3,a) at x = a.

The orbit consists of two boundary layers Γ0
` and Γa

` and one regular layer Λ`. In particular,

given (φ a,ca
1,c

a
2,c

a
3), the flux densities J`1,J

`
2,J

`
3 and the value u`(a) are uniquely determined.

The label ` indicates the quantities from the construction over the left subinterval [0,a].

Similar remarks apply to the labels m and r over the middle and right subintervals.

2. On the middle subinterval [a,b], we construct a singular orbit for the boundary value problem

with (φ ,c1,c2,c3,τ) being

(φ a,ca
1,c

a
2,c

a
3,a) at x = a and (φ b,cb

1,c
b
2,c

b
3,b) at x = b.

The orbit consists of two boundary layers Γa
m and Γb

m and one regular layer Λm. In particular,

given (φ a,ca
1,c

a
2,c

a
3) and (φ b,cb

1,c
b
2,c

b
3), the flux densities Jm

1 ,J
m
2 ,J

m
3 and the values um(a)

and um(b) are uniquely determined.

3. On the right subinterval [b,1], we construct a singular orbit for the boundary value problem

with (φ ,c1,c2,c3,τ) being

(φ b,cb
1,c

b
2,c

b
3,b) at x = b and (0,R1,R2,R3,1) at x = 1.

10



The orbit again consists of two boundary layers Γb
r and Γ1

r and one regular layer Λr. In

particular, given (φ b,cb
1,c

b
2,c

b
3), the flux densities Jr

1,J
r
2,J

r
3 and the value ur(b) are uniquely

determined.

4. Finally, for a singular orbit on the whole interval [0,1], we require that

J`1 = Jm
1 = Jr

1, J`2 = Jm
2 = Jr

2, J`3 = Jm
3 = Jr

3, u`(a) = um(a), um(b) = ur(b).

This consists of eight conditions. The number of conditions is exactly the same as the num-

ber of values in (11).

Remark 2.1. We call Γa
` , Γa

m, Γb
m, and Γb

r boundary layers because, relative to each subinterval, they

are boundary layers. But, relative to the whole interval [0,1], they should be termed interal layers.

2.1 Singular orbit on [0,a] where Q(x) = 0.

We consider the case with zero permanent charge on the subinterval [0,a] because [0,a] is viewed

as one of the reservoirs. The nonzero Q over the subinterval [a,b] will affect the solution on [0,a]

and on [b,1]. This effect will show up when matching conditions are imposed on φ a,ca
1, ca

2, and ca
3

to construct the singular orbit over the whole interval [0,1].

Recall that we have set φ(a) = φ a, c1(a) = ca
1, c2(a) = ca

2, and c3(a) = ca
3, where φ a, ca

i are

unknown values to be determined later on. Now let

Ba = {(φ a,u,ca
1,c

a
2,c

a
3,J1,J2,J3,a) ∈ R9 : u,Ji arbitrary}.

In this part, we will construct a singular orbit that connects BL to Ba. Two boundary layers and one

singular layer will be constructed.

If we set ε = 0 in (9) with Q(x) = 0, we get the outer limit system and, in particular, u = 0 and
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z1c1 + z2c2 + z3c3 = 0. The set

Z` = {u = 0, z1c1 + z2c2 + z3c3 = 0} (12)

will be called the outer manifold. In the theory of geometric singular perturbations, Z` is called the

slow manifold because if x and ξ are viewed as time variables, the evolution on Z` is characterized

by the time variable ξ , which is slow.

The geometric method for a construction of singular orbits on each of the subintervals [0,a],

[a,b], and [b,1] is the same. Let us explain the approach for constructing the singular orbit that

connects BL to Ba on [0,a]. Generally, the outer manifold Z` will not intersect BL and Ba. Since

the regular layer orbit lies entirely on the outer manifold Z` it will not intersect BL and Ba; that is,

it cannot satisfy the boundary conditions. Two boundary layers need to be introduced to connect

boundaries BL and Ba with the regular layer solution on Z`. These boundary layers should satisfy

the inner limit system. The boundary layer orbit Γ0
` at x = 0 will connect BL to Z`. It must lie

on the stable manifold W s(Z`); that is, it belongs to the intersection ML ∩W s(Z`), where ML is

the collection of orbits starting from points on BL and proceeding in forward time. Similarly, the

boundary layer Γa
` at x = a will connect Z` to Ba and it must lie on the unstable manifold W u(Z`);

that is, it belongs to the intersection Ma
` ∩W u(Z`), where Ma

` is the collection of orbits starting

from points on Ba
` proceeding in backwards time.

The first step in the construction examines the stability of the outer manifold Z` by linearizing

along Z`. (Z` is the set of equilibria of the inner limit system.) It turns out that the outer manifold

Z` has a stable manifold W s(Z`) and a unstable manifold W u(Z`). The next step is to check whether

W s(Z`) intersects BL. This requires knowledge of the global behavior of W s(Z`) and W u(Z`), and

the information from the linearization is not enough. Neither is abstract dynamical systems theory

(since the inner limit system is nonlinear). Luckily, there was discovered a complete set of inte-

grals for the inner limit system.

It is this set of integrals that allows us to give a complete, global description of the inner

12



limit dynamics; in particular, we are able to establish the required intersections ML∩W s(Z`) and

Ma
` ∩W u(Z`) and are also able to identify the so-called ω-limit set (set of limit points in for-

ward time on Z`) ω(ML∩W s(Z`)) and the α-limit set (set of limit points in backward time on Z`)

α(Ma
` ∩W u(Z`)) of the intersections. The intersections give the set of candidates for the boundary

layers (consisting of three parameter families of inner orbits parameterized by J1, J2, and J3). The

foot point ω(ML∩W s(Z`)) and α(Ma
` ∩W u(Z`)) (each parameterized by J1, J2, and J3 also) on Z`

provide the (reduced) boundary conditions for the regular solutions. We also are able to identify

one regular orbit Λ` that connects ω(ML ∩W s(Z`)) to α(Ma
` ∩W u(Z`)) and also determined the

triple (J1,J2,J3) uniquely. The desired singular orbit connecting BL to Ba on [0,a] is formed by

this regular orbit Λ` together with the two boundary layers Γ0
` and Γa

` that are uniquely determined

by the triple (J1,J2,J3).

2.1.1 Inner dynamics on [0,a]: boundary layers.

We start with the examination of boundary layers on the interval [0,a] where Q = 0. These will be

studied using the inner limit system obtained by setting ε = 0 in (10):

φ
′ = u, u′ =−z1c1− z2c2− z3c3,

c′1 =−z1c1u,

c′2 =−z2c2u,

c′3 =−z3c3u,

J′1 = J′2 = J′3 = 0, τ
′ = 0.

(13)

The set of equilibria of (13), that is, the set of points at which the vector field of (13) vanishes, is

precisely Z`= {u= 0,z1c1+z2c2+z3c3 = 0}. The linearization at the point (φ ,0,c1,c2,c3,J1,J2,J3,τ)∈
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Z` is 

0 1 0 0 0 0 0 0 0

0 0 −z1 −z2 −z3 0 0 0 0

0 −z1c1 0 0 0 0 0 0 0

0 −z2c2 0 0 0 0 0 0 0

0 −z3c3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


The linearized system has seven zero eigenvalue whose generalized eigenspace is the tangent

space of the seven-dimensional outer manifold Z` of equilibria. The two other eigenvalues are

±
√

z2
1c1 + z2

2c2 + z2
3c3 6= 0 whose eigenvectors are not tangent to Z`. In this sense, Z` is called

normally hyperbolic. The theory of normally hyperbolic invariant manifolds states [8] that

1. there is an eight-dimensional stable manifold W s(Z`) of Z` that consists of points approach-

ing Z` in forward time;

2. there is an eight-dimensional unstable manifold W u(Z`) of Z` that consists of points ap-

proaching Z` in backward time;

3. Z` as well as W s(Z`) and W u(Z`) persists for ε > 0 small; that is, for ε > 0 small, there exist

invariant manifolds Zε
` , W s(Zε

` ), and W u(Zε
` ), close to their counterparts.

What this result suggests is that, for a singular orbit connecting BL to Ba, the boundary layer at

x = 0 must lie in ML∩W s(Z`) and the boundary layer at x = a must lie in Ma
` ∩W u(Z`), where ML

and Ma
` are the collection of fowards and backward orbits, respectively, under the flow of (13).

Definition 2.1. A smooth function H : Rn→ R is called an integral of system
d
dt

z = f (z), z ∈ Rn,

if
d
dt
[H(z(t))] = 0 whenever z(t) is a solution.

14



For a system on Rn, if there are (n−1) (independent) integrals, then any orbits can be theoret-

ically determined by the intersection of (n−1) level sets of the integrals.

Proposition 2.1. System (13) has the following eight integrals:

H1 = ez1φ c1, H2 = ez2φ c2, H3 = ez3φ c3 H4 = c1 + c2 + c3−
1
2

u2,

H5 = J1, H6 = J2, H7 = J3, H8 = τ.

(14)

Proof. We can verify our first integrals by taking the derivative with respect to x and applying

system (13).

H ′1 = z1φ
′ez1φ c1 + c′1ez1φ = z1uc1ez1φ − z1c1uez1φ = 0

H ′4 = c′1 + c′2 + c′3−
1
2
·2uu′ =−z1c1u− z2c2u− z3c3u− (−z1c1− z2c2− z3c3)u = 0

H5,H6,H7,H8 can be proved trivially, and H2,H3 follow from the proof of H1.

These integrals allow one to completely understand the boundary layers (at x = 0, a) and

characterize landing points of boundary layers on the outer manifold Z`. The information on

landing points is crucial because it provides the boundary conditions that allow the regular layer to

connect boundary layers.

Corollary 1. i Let φ = φ L be the unique solution of

z1L1ez1(v0−φ L)+ z2L2ez2(v0−φ L)+ z3L3ez3(v0−φ L) = 0,

that is, φ
L = v0 +

1
z3− z2

(
ln
(
−z3L3

z1L1

)
− ln

(
z2L2

z1L1

))
and let

cL
1 = L1(−z3L3)

z1
z3−z2 (z2L2)

−z1
z3−z2 , cL

2 = L2(−z3L3)
z2

z3−z2 (z2L2)
−z2

z3−z2 ,
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cL
3 = L3(−z3L3)

z3
z3−z2 (z2L2)

−z3
z3−z2

The stable manifold W s(Z`) intersects BL transversally at points with

u0 = [sgn(φ L−v0)]

√
2(L1 +L2 +L3)−2(L1ez1(v0−φ L)+L2ez2(v0−φ L)+L3ez3(v0−φ L))) (15)

and arbitrary Ji’s, where sgn is the sign function.

Let φ = φ a,` be the unique solution of

z1ca
1ez1(φ

a−φ)+ z2ca
2ez2(φ

a−φ)+ z3ca
3ez3(φ

a−φ) = 0,

that is, φ
a,` = φ

a− 1
z3− z2

(
ln
(
−z3ca

3
z1ca

1

)
− ln

(
z2ca

2
z1ca

1

))
,

and let

ca,`
1 = L1(−z3L3)

z1
z3−z2 (z2L2)

−z1
z3−z2 , ca,`

2 = L2(−z3L3)
z2

z3−z2 (z2L2)
−z2

z3−z2 ,

ca,`
3 = L3(−z3L3)

z3
z3−z2 (z2L2)

−z3
z3−z2

The unstable manifold W u(Z`) intersects Ba transversally at points with

u`(z) = [sgn(φ a−φ
a,`)]

√
2(ca

1 + ca
2 + ca

3)−2(ca
1ez1(φ a−φ a,`)+ ca

2ez2(φ a−φ a,`)+ ca
3ez3(φ a−φ a,`))

arbitrary Ji’s.

ii Potential boundary layers Γ0
` at x = 0 are determined up to (J1,J2,J3) as follows: the φ -

component satisfies the Hamiltonian system

φ
′′+ z1L1ez1(v0−φ)+ z2L2ez2(v0−φ)+ z3L3ez3(v0−φ) = 0,
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together with φ(0) = v0 and φ(ξ )→ φ L as ξ → ∞, u(ξ ) = φ ′(ξ ), and

c1(ξ ) = L1ez1(v0−φ(ξ )), c2(ξ ) = L2ez2(v0−φ(ξ )), c3(ξ ) = L3ez3(v0−φ(ξ )).

Similarly, potential boundary layers Γa
` at x = a are determined in the following way: the

φ -component satisfies the Hamiltonian system

φ
′′+ z1ca

1ez1(φ
a−φ)+ z2ca

2ez2(φ
a−φ)+ z3ca

2ez3(φ
a−φ) = 0,

together with φ(0) = φ a and φ(ξ )→ φ a,` as ξ →−∞, u(ξ ) = φ ′(ξ ), and

c1(ξ ) = ca
1ez1(φ

a−φ(ξ )), c2(ξ ) = ca
2ez2(φ

a−φ(ξ )), c3(ξ ) = ca
3ez3(φ

a−φ(ξ )).

iii Let NL = ML∩W s(Z`) and Na
` = Ma

` ∩W u(Z`). Then,

ω(NL) = {(φ L,0,cL
1 ,c

L
2 ,c

L
3 ,J1,J2,J3,0) : all J1,J2,J3},

α(Na
` ) = {(φ

a,`,0,ca,`
1 ,ca,`

2 ,ca,`
2 ,J1,J2,J3a) : all J1,J2,J3},

where φ L,cL
1 ,c

L
2 ,c

L
3 ,φ

a,`,ca,`
1 , ca,`

2 , and ca,`
3 are given explicitly as in part (i),

Proof. We provide a proof for the first part that is related to the boundary layer on the left in each

statement.

Let z(ξ ) = (φ(ξ ),u(ξ ),c1(ξ ),c2(ξ ),c3(ξ ),J1(ξ ),J2(ξ ),J3(ξ ),τ(ξ )) be a solution to system

(13) with z(0) ∈ BL and z(ξ ) ∈W s(Z`). Then, Ji(ξ ) = Ji, τ(ξ ) = 0 for all ξ ,and

z(ξ )→ z(∞) = (φ L,0,cL
1 ,c

L
2 ,c

L
3 ,J1,J2,J3,0) ∈ Z`
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for some φ L and cL
i with 0 = z1cL

1 + z2cL
2 + z3cL

3 and

φ(0) = v0, c1(0) = L1, c2(0) = L2. c3(0) = L3.

Using our first integrals H1, H2 and H3, we have,

H1 = ez1φ c1 = ez1v0L1, H2 = ez1φ c2 = ez2v0L2, H3 = ez3φ c3 = ez3v0L3

at our boundary conditions. Therefore, we can solve for c1, c2, and c3

c1 = L1ez1(v0−φ), c2 = L2ez2(v0−φ), c3 = L3ez3(v0−φ).

And when we take the limit as ξ → ∞, we have,

cL
1 = L1ez1(v0−φ L), cL

2 = L2ez2(v0−φ L), cL
3 = L3ez3(v0−φ L).

Then we have,

z1L1ez1(v0−φ L)+ z2L2ez2(v0−φ L)+ z3L3ez3(v0−φ L) = 0,

that is, φ
L = v0 +

1
z3− z2

(
ln
(
−z3L3

z1L1

)
− ln

(
z2L2

z1L1

))
Hence we have,

cL
1 = L1ez1(v0−φ L) = L1e

z1

(
v0−v0+

1
z3−z2

(
ln

(
−z3L3
z1L1

)
−ln

(
z2L2
z1L1

))

= L1e
z1

z3−z2

(
ln

(
−z3L3
z1L1

)
−ln

(
z2L2
z1L1

))

= L1eln(−z3L3)
z1

z3−z2 eln(z2L2)
−z1

z3−z2

= L1(−z3L3)
z1

z3−z2 (z2L2)
−z1

z3−z2
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A similar calculation can be used to show that

cL
2 = L2(−z3L3)

z2
z3−z2 (z2L2)

−z2
z3−z2 , cL

3 = L3(−z3L3)
z3

z3−z2 (z2L2)
−z3

z3−z2

Since φ ′ = u we have that φ ′′ = −z1c1− z2c2− z3c3, so then our expressions for c1, c2, and c3

implies that φ satisfies the Hamiltonian equation,

φ
′′+ z1L1ez1(v0−φ)+ z2L2ez2(v0−φ)+ z3L3ez3(v0−φ) = 0

with φ(0) = v0 and φ(ξ )→ φ L as ξ → ∞. The Hamiltonian is

H(φ ,u) =
u2

2
−L1ez1(v0−φ)−L2ez2(v0−φ)−L3ez3(v0−φ).

In terms of φ and u = φ ′, the equation becomes,

φ
′ = u, u′ =−z1L1ez1(v0−φ)− z2L2ez2(v0−φ)− z3L3ez3(v0−φ).

The Hamiltonian system has a unique equilibrium (φ L,0) with φ L given above. If W s(φ L) is the

stable manifold of (φ L,0), then it is the restriction of W s(Z`) to the (φ ,u)-plane. In order to have

(v0,u0) ∈W s(φ L), H(φ L,0) = H(v0,u0) and one can explicitly solve for u0. To determine the sign

of u0, note that the left branch of the stable manifold W s(φ L) lies above the φ -axis and hence that

v0 < φ L implies u0 > 0; similarly, if v0 > φ L, then u0 < 0.

Remark 2.2. Note that, with the electroneutrality boundary conditons (4), one finds that

(φ L,cL
1 ,c

L
2 ,c

L
3) = (v0,L1,L2,L3).

Thus, under the electroneutrality boundary conditions, there is no boundary layers at x = 0. Like-

19



wise, with the electroneutrality boundary conditions (4), one finds, in Proposition 2.3, that

(φ R,cR
1 ,c

R
2 ,c

R
3 ) = (0,R1,R2,R3),

so that there is no boundary layers at x = 1. On the other hand, there must be internal layers at

x = a, and x = b due to the jumps of the permanent charge.

2.1.2 Outer dynamics on [0,a]: Regular layers.

We now construct regular layers on Z` that connect ω(NL) to α(Na
` ). We find that the outer flow on

Z` is itself a singular perturbation problem. To see this, we zoom in on an O(ε)-neighborhood of Z`

by blowing up the u and z1c1 + z2c2 + z3c3 coordinates. Let us introduce q̂ =−z1c1− z2c2− z3c3.

In terms of the variables (φ ,u, q̂,ci,Ji,τ), system (10) (with Q = 0)) becomes

φ
′ = u, u′ = q̂− ε

h′(τ)
h(τ)

u,

q̂′ = (z1(z1− z3)c1 + z2(z2− z3)c2− z3q̂)u− εh−1(τ)(−z1J1− z2J2− z3J3),

c′1 =−z1c1u− εh−1(τ)J1,

c′2 =−z2c2u− εh−1(τ)J2

J′i = 0, τ
′ = ε

(16)

For ε = 0, the set {u = q̂ = 0} is normally hyperbolic invariant manifold consisting of equilibria.

By Fenichel’s theory, the manifold persists for ε > 0 small and is given by

u = εA(φ ,ci,Ji,τ)+O(ε2), q̂ = εB(φ ,ci,Ji,τ)+O(ε2).

Using the invariance of the manifold we will preform a center manifold reduction. The procedure

is as follows, find u′ and q̂′ and substitute the expressions for those as well for u and q̂ into system
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(16). One then obtains,

B = O(ε), A =
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2)h(τ)
+O(ε).

System (16) on the perturbed invariant manifold can be obtained by substituting the expression of

u and q̂ with the approximations of A and B above. It reads as follows:

φ
′ = ε

−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2)h(τ)
+O(ε2),

c′1 =−z1c1

(
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2)h(τ)

)
− εh−1(τ)J1 +O(ε2),

c′2 =−z2c2

(
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2)h(τ)

)
− εh−1(τ)J2 +O(ε2),

J′i = 0, τ
′ = ε.

(17)

The corresponding outer dynamics is

φ̇ =
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2)h(τ)
,

ċ1 =−z1c1

(
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2)h(τ)

)
−h−1(τ)J1,

ċ2 =−z2c2

(
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2)h(τ)

)
−h−1(τ)J2,

J̇i = 0, τ̇ = 1.

(18)

Notice that the denominators in the equations for φ and the concentrations are the same and we

can verify that,

z1(z1− z3)c1 + z2(z2− z3)c2 = z2
1c1 + z2

2c2 + z2
3c3

since q̂ = 0 on the slow manifold Z` and consequentially z1c1+ z2c2+ z3c3 = 0. Since we are only

interested in solutions where ck > 0 then the above quantity is positive.

If we multiply the right hand side of the system by (z1(z1−z3)c1+z2(z2−z3)c2)h(τ) the phase

portrait will remain the same. In doing so our system becomes in terms of a new variable that we
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will call y,

d
dy

φ =−z1J1− z2J2− z3J3,

d
dy

c1 = z1c1(z1c1 + z2c2 + z3c3)− J1(z1(z1− z3)c1 + z2(z2− z3)c2)

d
dy

c2 = z2c2(z1c1 + z2c2 + z3c3)− J2(z1(z1− z3)c1 + z2(z2− z3)c2)

d
dy

Ji = 0,
d
dy

τ = h(τ)(z1c1(z1(z1− z3)c1 + z2(z2− z3)c2)

(19)

The equations for c1,c2 for a linear system of the form,

d
dy

Ĉ = DĈ

where Ĉ = (c1,c2)
T , and D is a matrix with constant (independent of y) entries given by,

D =

z1(z1J1 + z2J2 + z3J3)+ z1(z3− z1)J1 z2(z3− z2)J1

z1(z3− z1)J2 z2(z1J1 + z2J2 + z3J3)+ z2(z3− z2)J2

 .
Then the solution of (19) with the initial condition (φ L,0,cL

1 ,c
L
2 ,c

L
3 ,J1,J2,J3,0) ∈ ω(NL) is

φ(y) = φ
L +(−z1J1− z2J2− z3J3)y,

Ĉ(y) = eDyĈL,ˆ y

0
h−1(s)ds = (z1− z3)z1

ˆ y

0
c1(s)ds+(z2− z3)z2

ˆ y

0
c2(s)ds,

(20)

where ĈL = (cL
1 ,c

L
2)

T .

Now we are trying to find solutions that are in α(Na
` ) when τ = x = a, say at y = ya. We get,

φ
a
` = φ

L +(−z1J1− z2J2− z3J3)ya,

Ĉ`,a = eDyaĈL,ˆ a

0
h−1(t)dt = Ω

ˆ ya

0
Ĉ(t),

(21)
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where Ω = (z1(z1− z3),z2(z2− z3)). Note that, the unknowns for the above system of the four (4)

equations are J1,J2,J3 and ya. This system gives us the implicit forms of J1,J2 and J3.

The regular layer Λ` is given by (20) for y ∈ [0,ya], where J1,J2, and J3 are determined by (21)

together with u = 0 = z1c1 + z2c2 + z3c3.

In figure 1 we can see the complete singular orbit on [0,a]. The singular orbit for [b,1] can be

derived the exact same way.

2.2 Singular orbits on [a,b] with Q(x) = Q.

We now construct a singular orbit on the subinterval [a,b] viewed as the channel where the per-

manent charge Q(x) = Q is a nonzero constant. The construction is nearly the same as that for

singular orbits on [0,a].

We set φ(b) = φ b, c1(b) = cb
1, c2(b) = cb

2 and c3(b) = cb
3, where φ b, ci(b) are unknowns to be

Figure 1: The Singular Orbit on [0,a]
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determined later. Let

Bb = {(φ b,u,cb
1,c

b
2,c

b
3,J1,J2,J3,b) ∈ R9 : arbitrary u,J1,J2,J3}.

The singular orbit to be constructed will be a connecting orbit from Ba to Bb over [a,b].

2.2.1 Inner dynamics on [a,b]: Boundary layers.

By setting ε = 0 in system (9) with Q(x) = Q, we get u = 0 and z1c1 + z2c2 + z3c3 +Q = 0. The

outer manifold is

Zm = {u = 0, z1c1 + z2c2 + z3c3 +Q = 0}.

In terms of ξ , we obtain the inner system of (9):

φ
′ = u, u′ =−z1c1− z2c2− z3c3−Q− ε

h′(τ)
h(τ)

u,

c′1 =−z1c1u− εh−1(τ)J1,

c′2 =−z2c2u− εh−1(τ)J2,

c′3 =−z3c3u− εh−1(τ)J3,

J′1 = J′2 = J′3 = 0, τ
′ = ε.

(22)

The limiting system at ε = 0 is

φ
′ = u, u′ =−z1c1− z2c2− z3c3−Q,

c′1 =−z1c1u,

c′2 =−z2c2u,

c′3 =−z3c3u,

J′1 = J′2 = J′3 = 0, τ
′ = 0.

(23)
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The set of equilibria of (23) is precisely Zm, and Zm is normally hyperbolic with an eight-dimensional

stable manifold, W s(Zm), and an eight dimensional unstable manifold, W u(Zm), just like for Z` on

[0,a]. The manifolds Zm, W s(Zm), and W u(Zm) persist for ε > 0 small.

Proposition 2.2. i System (23) has the following eight integrals:

H1 = ez1φ c1, H2 = ez2φ c2, H3 = ez3φ c3 H4 = c1 + c2 + c3−
1
2

u2−Qφ ,

H5 = J1, H6 = J2,H7 = J3, H8 = τ.

ii Let φ = φ a,m be the unique solution of

z1ca
1ez1(φ

a−φ)+ z2ca
2ez2(φ

a−φ)+ z3ca
3ez3(φ

a−φ)+Q = 0,

and let

ca,m
1 = ez1(φ

a−φ a,m)ca
1, ca,m

2 = ez2(φ
a−φ a,m)ca

2, ca,m
3 = ez3(φ

a−φ a,m)ca
3.

The stable manifold W s(Zm) intersects Ba transversally at point with

um(a) =

[sgn(φ a,m−φ
a)]
√

2ca
1(1− ez1(φa−φa,m))+2ca

2(1− ez2(φa−φa,m))+2ca
3(1− ez3(φa−φa,m)−2Q(φ a−φ a,m).

are arbitrary Ji’s.

Let φ = φ b,m be the unique solution of

z1cb
1ez1(φ

b−φ)+ z2cb
2ez2(φ

b−φ)+ z3cb
3ez3(φ

b−φ)+Q = 0,

and let

cb,m
1 = ez1(φ

b−φ b,m)cb
1, cb,m

2 = ez2(φ
b−φ b,m)cb

2, cb,m
3 = ez3(φ

b−φ b,m)cb
3.
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The unstable manifold W u(Zm) intersects Bb transversally at points with

um(b) =

[sgn(φ b−φ
b,m)]

√
2cb

1(1− ez1(φb−φb,m))+2cb
2(1− ez2(φb−φb,m))+2cb

3(1− ez3(φb−φb,m)−2Q(φ b−φ b,m).

are arbitrary Ji’s.

iii Potential boundary layers Γa
m at x = a can be determined in the following way: the φ -

component satisfies the Hamiltonian system

φ
′′+ z1ca

1ez1(φ
a−φ)+ z2ca

2ez2(φ
a−φ)+ z3ca

3ez3(φ
a−φ)+Q = 0,

together with φ(0) = φ a and φ(ξ )→ φ a,m as ξ → ∞, u(ξ ) = φ ′(ξ ), and

c1(ξ ) = ca
1ez1(φ

a−φ(ξ )), c2(ξ ) = ca
2ez2(φ

a−φ(ξ )), c3(ξ ) = ca
3ez3(φ

a−φ(ξ )).

Similarly, potential boundary layers Γb
m at x = b can be determined in the following way:

the φ -component satisfies the Hamiltonian system

φ
′′+ z1cb

1ez1(φ
b−φ)+ z2cb

2ez2(φ
b−φ)+ z3cb

3ez3(φ
b−φ)+Q = 0,

together with φ(0) = φ b and φ(ξ )→ φ b,m as ξ →−∞, u(ξ ) = φ ′(ξ ), and

c1(ξ ) = cb
1ez1(φ

b−φ(ξ )), c2(ξ ) = cb
2ez2(φ

b−φ(ξ )) c3(ξ ) = c3(ξ ) = cb
3ez3(φ

b−φ(ξ )).

iv Let Na
m = Ma

m∩W s(Zm) and Nb
m = Mb

m∩W u(Zm), where Ma
m is the collection of orbits from

Ba in forward time under the flow (23) and Mb
m is the collection of orbits from Bb in backward

time under the flow (23). Then,

ω(Na
m) = {(φ a,m,0,ca,m

1 ,ca,m
2 ,ca,m

3 ,J1,J2,J3,a) : all Ji},
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α(Nb
m) = {(φ b,m,0,cb,m

1 ,cb.m
2 ,cb,m

3 ,J1,J2,J3,b) : all Ji}.

Remark 2.3. To show that the quantity under the square root is nonnegative, we assume ca
1 > 0,

ca
2 > 0, and ca

3 > 0 for the moment and let

f (x) = ca
1 + ca

2 + ca
3− ca

1ez1(φ
a−x)− ca

2ez2(φ
a−x)− ca

3ez3(φ
a−x)−Q(φ a− x).

Then,

f ′(x) = z1ca
1ez1(φ

a−x)+ z2ca
2ez2(φ

a−x)+ z3ca
3ez3(φ

a−x)+Q

and

f ′′(x) =−z2
1ca

1ez1(φ
a−x)− z2

2ca
2ez2(φ

a−x)− z2
3ca

3ez3(φ
a−x) < 0.

Therefore f (x) is concave downward. Note that f ′(x)→ +∞ as x→ −∞ and f ′(x)→ −∞ as

x→ +∞. Hence, f (x) has a unique criticial point and it must have a global maximum at this

critical point. Since x = φ a
m is the critical point, we have

f (φ a
m)≥ f (φ a) = 0.

By continuity, we have f (φ a
m)≥ 0 even if ca

1 = 0, ca
2 = 0, and/or ca

3 = 0.

2.2.2 Outer dynamics on [a,b]: Regular layers.

We now study the flow in the vicinity of the outer manifold Zm. Similarly to on [0,a] we will

now construct regular layers on Zm. Let us introduce q̂ =−z1c1− z2c2− z3c3−Q. In terms of the
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variables (φ ,u, q̂,c1,c2,Ji,τ), system (10) (with Q being nonzero) becomes

φ
′ = u, u′ = q̂− ε

h′(τ)
h(τ)

u,

q̂′ = (z1(z1− z3)c1 + z2(z2− z3)c2− z3q̂− z3Q)u− εh−1(τ)(−z1J1− z2J2− z3J3),

c′1 =−z1c1u− εh−1(τ)J1,

c′2 =−z2c2u− εh−1(τ)J2,

J′i = 0, τ
′ = ε

(24)

For ε = 0, the set {u = q̂ = 0} is normally hyperbolic invariant manifold consisting of equilibria.

By Fenichel’s theory, the manifold persists for ε > 0 small and is given by

u = εA(φ ,c1,c2,Ji,τ)+O(ε2), q̂ = εB(φ ,c1,c2,Ji,τ)+O(ε2).

Using the invariance of the manifold we will preform a center manifold reduction, just like on [0,a]

One then obtains,

B = O(ε), A =
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2− z3Q)h(τ)
+O(ε).

System (24) on the perturbed invariant manifold can be obtained by substituting the expression of

u and q̂ with the approximations of A and B above. The corresponding outer dynamics is

φ̇ =
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2− z3Q)h(τ)
,

ċ1 =−z1c1
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2− z3Q)h(τ)
−h−1(τ)J1,

ċ2 =−z2c2
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2− z3Q)h(τ)
−h−1(τ)J2,

J̇i = 0, τ̇ = 1.

(25)
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Again, we see that the first three equations have the same denominator. Since q̂ = 0 and

similarly z1c1 + z2c2 + z3c3 +Q = 0 then by some manipulation we see,

(z1c1(z1− z3)+ z2c2(z2− z3)− z3Q) = z2
1c1 + z2

2c2 + z2
3c3.

Since we want our concentration to be positive then our denominator is positive. Multiplying

through by the common denominator on the right hand side of the system we get,

d
dy

φ =−z1J1− z2J2− z3J3,

d
dy

Ĉ = DĈ+ z3QĴ,

d
dy

Ji = 0,
d
dy

τ = (z1c1(z1− z3)+ z2c2(z2− z3)− z3Q),

(26)

where Ĉ, and D are the same as for [0,a] and Ĵ = (J1,J2)
T .

Our solution with the initial condition (φ a,m,0,ca,m
1 ,ca,m

2 ,ca,m
3 ,J1,J2,J3,a) ∈ ω(Na

m) is

φ(y) = φ
a,m +(−z1J1− z2J2− z3J3)y,

Ĉ(y) = eDyĈa,m + z3Q
ˆ y

0
eD(y−t)dtĴ,

ˆ b

a
h−1(t)dt = (z1− z3)z1

ˆ y

0
c1(t)dt +(z2− z3)z2

ˆ y

0
c2(t)dt− z3Qy.

(27)

Now since we are trying to find solutions that connect our orbit from ω(Na
m) to α(Nb

m) we also

want to evaluate for where (27) is a τ = x = b for some y = yb.

φ
b,m = φ

a,m +(−z1J1− z2J2− z3J3)yb,

Ĉb,m = eDybĈa,m + z3Q
ˆ y

0
eD(yb−t)dtĴ,

ˆ b

a
h−1(t)dt = Ω

ˆ yb

0
Ĉ(t)dt− z3Qyb,

(28)
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where Ω is like it was described for [0,a].

It has been shown in [6] that system (28) is equivalent to,

φ
b,m = φ

a,m +(−z1J1− z2J2− z3J3)yb,

Ĉb,m = eDybĈa,m + z3QD−1(eDyb− I)Ĵ,
ˆ b

a
h−1(t)dt = Ω

ˆ yb

0
Ĉ(t)dt− z3Qyb.

(29)

Systems (29) helps us determine our unknown variables.

Our regular orbit, Λm is given by (27) where J1,J2 and J3 are determined by (29) together with

u = 0 and z1c1 + z2c2 + z3c3 +Q = 0.

2.3 Singular orbits on [b,1] with Q(x) = 0.

The construction of singular orbits on [b,1] is virtually identical to the construction of singular

orbits on [0,a], We will state only the results.

2.3.1 Inner dynamics on [b,1]: Boundary layers.

The inner limit system is

φ
′ = u, u′ =−z1c1− z2c2− z3c3,

c′1 =−z1c1u,

c′2 =−z2c2u,

c′3 =−z3c3u,

J′1 = J′2 = J′3 = 0, τ
′ = 0.

(30)

The outer manifold is

Zr = {u = 0, z1c1 + z2c2 + z3c3 = 0}.
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It consists of the equilibria of system (30) and is normally hyperbolic with an eight-dimensional

stable manifold W s(Zr) and an eight dimensional unstable manifold W u(Zr), similarly to Z`. Con-

cerning the boundary layers we have the following proposition.

Proposition 2.3. i System (30) has the following eight integrals:

H1 = ez1φ c1, H2 = ez2φ c2, H3 = ez3φ c3 H4 = c1 + c2 + c3−
1
2

u2,

H5 = J1, H6 = J2, H7 = J3 H8 = τ.

ii Let φ = φ b,r be the unique solution of

z1cb
1ez1(φ

b−φ)+ z2cb
2ez2(φ

b−φ)+ z3cb
3ez3(φ

b−φ) = 0,

that is, φ
b,r = φ

b +
1

z3− z2

(
ln
(
−z3cb

3

z1cb
1

)
− ln

(
z2cb

2

z1cb
1

))
and let

cb,r
1 = cb

1(−z3cb
3)

z1
z3−z2 (z2cb

2)
−z1

z3−z2 cb,r
2 = cb

2(−z3cb
3)

z2
z3−z2 (z2cb

2)
−z2

z3−z2 ,

cb,r
3 = cb

3(−z3cb
3)

z3
z3−z2 (z2cb

2)
−z3

z3−z2

The stable manifold W s(Z`) intersects BL transversally at points with

u0 = [sgn(φ b−φ)]
√

2(cb
1 + cb

2 + cb
3)−2(cb

1ez1(φ b−φ)+ cb
2ez2(φ b−φ)+ cb

3ez3(φ b−φ))) (31)

and arbitrary Ji’s, where sgn is the sign function.

Let φ = φ R be the unique solution of

z1R1ez1φ + z2R2ez2φ + z3R3ez3φ = 0,

that is, φ
R =− 1

z3− z2

(
ln
(
−z3R3

z1R1

)
− ln

(
z2R2

z1R1

))
,
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and let

cR
1 = R1(−z3R3)

z1
z3−z2 (z2R2)

−z1
z3−z2 cR

2 = R2(−z3R3)
z2

z3−z2 (z2R2)
−z2

z3−z2 ,

cR
3 = R3(−z3R3)

z3
z3−z2 (z2R2)

−z3
z3−z2

The unstable manifold W u(Z`) intersects Ba transversally at points with

ur(z) = [sgn(φ)]
√

2(R1 +R2 +R3)−2(R1ez1φ +R2ez2φ +R3ez3φ )

arbitrary Ji’s.

iii Potential boundary layers Γb
r at x = b are determined in the following way: the φ -component

satisfies the Hamiltonian system

φ
′′+ z1cb

1ez1(φ
b−φ)+ z2cb

2ez2(φ
b−φ)+ z2cb

3ez3(φ
b−φ) = 0,

together with φ(0) = φ b and φ(ξ )→ φ b,r as ξ → ∞, u(ξ ) = φ ′(ξ ), and

c1(ξ ) = cb
1ez1(φ

b−φ(ξ )), c2(ξ ) = cb
2ez2(φ

b−φ(ξ )) c3(ξ ) = cb
3ez3(φ

b−φ(ξ )).

Similarly, potential boundary layers Γ1
r at x = 1 are determined in the following way: the

φ -component satisfies the Hamiltonian system

φ
′′+ z1R1e−z1φ + z2R2e−z2φ + z3R3e−z3φ = 0,

together with φ(0) = 0 and φ(ξ )→ φ R as ξ →−∞, u(ξ ) = φ ′(ξ ), and

c1(ξ ) = R1e−z1φ(ξ ), c2(ξ ) = R2e−z2φ(ξ ), c3(ξ ) = R3e−z3φ(ξ ).

iv Let Nb
r = Mb

r ∩W s(Zr) and NR = MR∩W u(Zr), where Mb
r is the collection of orbits from Bb
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in forward time under the flow (30) and MR is the collection for orbits from BR in backward

time under the flow of (30). Then,

ω(Nb
r ) = {(φ b,r,0,cb,r

1 ,cb,r
2 cb,r

3 ,J1,J2,J3,b) : all J1,J2,J3},

α(NR) = {(φ R,0,cR
1 ,c

R
2 ,c

R
3 ,J1,J2,J3,1) : all J1,J2,J3}.

2.3.2 Outer dynamics on [b,1]: Regular layers.

We now examine the existence of regular layers or outer solutions that connect ω(Nb
r ) to α(NR).

Following exactly the same analysis as for [0,a], we find that the outer limit dynamics is

φ̇ =
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2)h(τ)
,

ċ1 =−z1c1

(
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2)h(τ)

)
−h−1(τ)J1,

ċ2 =−z2c2

(
−z1J1− z2J2− z3J3

(z1(z1− z3)c1 + z2(z2− z3)c2)h(τ)

)
−h−1(τ)J2,

J̇i = 0, τ̇ = 1.

(32)

The regular layer ΛR, following the same analysis as for [0,a], is given by,

φ = φ
b,r +(−z1J1− z2J2− z3J3)y,

Ĉ(y) = eDyĈb,r,

u = 0, 0 = z1c1 + z2c2 + z3c3,

τ = 1,

(33)
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where J1,J2 and J3 are determined by,

φ
R = φ

b,r +(−z1J1− z2J2− z3J3)y,

ĈR = eDyĈb,r,
ˆ 1

b
h−1(t)dt = Ω

ˆ y

0
Ĉ(t),

(34)

where τ = x = 1.

The outer solution Λr together with the inner solutions Γb
r and Γ1

r in statement (iii) of proposi-

tion 2.3 gives the singular orbit on [b,1].

2.4 Singular Orbit over [0,1]

Like was stated previously, there has been extensive work done to show the connection of these

orbits which will altogether form the singular orbit by geometric singular perturbation theory [3].

To construct the singular orbit over [0,1] we need to match our orbits by making sure the following

are satisfied,

J`1 = Jm
1 = Jr

1, J`2 = Jm
2 = Jr

2, J`3 = Jm
3 = Jr

3, u`(a) = um(a), um(b) = ur(b).

Over each of our intervals we say that we had 4 unknowns, ui,Ji
1,J

i
2,J

i
3 where i = `,m,r. We

also observed that for each interval we had three systems of 4 equations, (21),(29),(34), which

would help us determine these unknowns. Since our number of unknowns match our number

equations we can find an appropriate solution.
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Figure 2: Singular Orbit over [0,1]

For our work we will only state that the singular orbit will consist of,

(Γ0
` ∪Λ`∪Γ

a
`)∪ (Γ

a
m∪Λm∪Γ

b
m)∪ (Γb

r ∪Λr∪Γ
1
r ).

It should be known that studies have been conducted for a more robust Q where, that is, we

assume, for a partition x0 = 0 < x1 < .. . < xm−1 < xm = 1 of [0,1] into m sub-intervals, Q(x) = Q j

for x ∈ (x j−1,x j) where Q j’s are constants with Q1 = Qm = 0 similar results hold by the Exchange

Lemma [6].
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3 Numerical Study on Flux Ratios

To study the PNP system we will consider two cations with corresponding valences,z1 = 2,z2 = 1,

and one anion with valence z3 = −1. We will also be considering a smooth channel geometry

function, A(x), and our permanent charge as a piecewise constant function with the form

Q(x) =


0, x ∈ [0,a]∪b,1]

2Q0 x ∈ [a,b]
.

3.1 Numerical Method

To study our PNP system we will use an adaptive moving mesh finite element method. under the

effects of the permanent charge and the shape of the channel, the solution to the BVP is known to

have discontinuous second order derivatives at the jumps in permanent charge. For better resolution

and improvements of the accuracy of the numerical simulation, we adopt the so-called moving

mesh PDE (MMPDE) method to dynamically relocate the concentrate more mesh nodes around

these jump points. Remember that for the electrochemical potential we will only consider the ideal

component.

It should be pointed out that other moving mesh strategies or refinement-based mesh adaptation

methods can also be used for the numerical solution. The interested reader is referred to [1]. The

main reason for choosing the MMPDE method is that the method has also been shown analytically

and numerically to produce a nonsingular dynamically varying mesh. These features are important

since our long-term goal is to study time-dependent three-dimensional PNP models.

Within our interval we have large jumps in permanent charge at x = a and x = b. These are the

points at which we will concentrate more mesh points since finding a smooth solution along these

jumps will be trickier to calculate than for constant Q0.
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3.1.1 Finite element discretization

We first describe the finite element approximation to PNP for a given mesh. Denote the mesh

nodes by

0 = x1 < x2 < .. . < xNv−1 < xNv = 1,

where Nv is the number of mesh nodes. Define

Vh = span{ψ1, . . . ,ψNv}, V 0
h = span{ψ2, . . . ,ψNv−1},

where Ψ j = Ψ j(x) denotes the piecewise linear basis function corresponding to the node x j. A

linear finite element discretization of our BVP is to find φh,c1,h,c2,h,c3,h ∈Vh such that

ˆ 1

0
ε

2h(x)
dφh

dx
dv
dx

dx−
ˆ 1

0
h(x)

( 3

∑
j=1

z jc j,h +Q(x)
)

vdx = 0, ∀v ∈V 0
h

ˆ 1

0
Dkh(x)

(
zkck,h

dφh

dx
+

dck,h

dx

)
dv
dx

dx = 0, k = 1,2,3 ∀v ∈V 0
h .

(35)

Here, the subscript ”h” used in φh,c1,h,c2,h, and c3,h is different from the function h(x). It is used

to distinguish these discrete functions from their continuous counterparts. Express φh,c1,h,c2,h and

c3,h as

φh =
Nv

∑
j=1

φ
( j)
h ψ j(x), ck,h =

Nv

∑
j=1

c( j)
k,hψ j(x), k = 1,2,3.

Using these and the boundary conditions and taking v = ψ2, . . . ,ψNv−1 in (35) sequentially, we

obtain a system of nonlinear algebraic equations for the unknown variables φ
( j)
h , c( j)

1,h,c
( j)
2,h, and c( j)

3,h,

j = 1, . . . ,Nv. This system is solved by the MATLAB® function fsolve, a nonlinear system solver

based on the trust-region-Dogleg algorithm.

The computation alternates between the mesh generation and the solution of BVP. More specif-

ically, at the nth iteration, we assume that the physical mesh T n
h and the solution there on are

known. Then, a new mesh T n+1
h is generated based on the solution of T n

h . The new solution

on the new mesh are then obtain by solving (35). This procedure is repeated until convergence is
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reached. In practice, we have found that the convergence is reached very quickly and the solution

changes very little after a few iterations [1].

Note that the analytical solution to BVP is not available for any set of boundary values. Nev-

ertheless, since the fluxes J1, J2, and J3 should be consistent throughout the domain, we can check

the accuracy of the computation by examining if the fluxes stay constant.

3.2 Internal Dynamics

In figure 3 we see the internal dynamics for when the electroneutrality boundary conditions are

and are not satisfied. In figure 3b we see that there is a slight boundary layer along x = 0 in the

images of the conentrations and the electrical potiential, φ .

One of the interesting things we do observe is the electrochemical potentials cross over each

other. Each of the electrochemical potentials is monotonic. This can be seen from the third equa-

tion of (7). The expression D(x)h(x)ck > 0 so the sign of
dµk
dx

is determined solely by −Jk.

In figure 3 we see that even though the voltage and permanent charge are the same the internal

dynamics do slightly. Therefore the boundary conditions do effect the internal dynamics more than

we might expect.

Lastly, over the interval [0,1] all fluxes, J1,J2, and J3 seem to stay constant. This is one of the

ways that we can verify our numerical method.

3.3 Flux Ratios

We want to introduce the flux ratio,

λk(Q,ε) :=
Jk(Q,ε)

Jk(0,ε)
. (36)

It is important to note that from our BVP, (7) and (8), gives us,

Jk(Q,ε)Fk(Q,ε) = µk(0)−µk(1). (37)
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(a) Electroneutrality boundary conditions are satisfied.

(b) Electroneutrality boundary conditions are not satisfied.

Figure 3: Internal Dynamics for V = 10, Q0 = 0.01 . Starting in the top left and continuing in a
counter-clockwise rotation we have the graphs of concentrations, electrical potential, electrochem-
ical potential, and flux and current vs. x.
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where

Fk(Q,ε) =

ˆ 1

0

1
Dk(x;Q)h(x)ck(x,Q,ε)

dx > 0.

This means that the sign of Jk(Q,ε) is determined solely by the transmembrane electrochemical

potential µk(0)− µk(1), this is under the same boundary conditions independent of permanent

charge. This means that (36) is always greater than 0. However the permanent charge, Q(x),

influences the magnitude of Jk(Q,ε). In particular, if λk(Q,ε) > 1, then | Jk(Q,ε) |>| Jk(0,ε) |;

that is the magnitude of the flux Jk(Q,ε), relative to that of the flux Jk(0,ε), is enhanced by the

permanent charge Q, and if λk(Q,ε) < 1, then the magnitude of the flux Jk(Q,ε), relative to that

of the flux Jk(0,ε), is reduced by the permanent charge Q.

For experiments with 2 ion species, one cation with valence z1, and one anion with valence z2,

it has been shown that the flux ratios might be one of three cases,

(i) λ1 < 1 < λ2; (ii) 1 < λ1 < λ2; (iii) λ1 < λ2 < 1. (38)

for Q > 0. So we see that the fluxes of both ions might be enhanced or reduced [5]. For n = 2 we

actually see that the flux ratios are symmetric around 0, again we will see that for n = 3 this will

not happen.

Though mathematically it has not been shown it can be expect that permanent charge will

greater enhance the flux of the couterions. We will see, though, that nonzero voltage can cause

areas where the co-ions have a larger flux ratio than that of the same sign.

3.4 Numerical Results

When n = 3 we will see that the flux ratios do not necessarily follow the nice rules as for n = 2.

We will consider the valences z1 = 2,z2 = 1 and z3 = −1. Each λk will be associated with the

corresponding valence, zk. For our study we will consider separately fixed V and Q0 when the

other is constant, along with constant L and R. For our boundary conditions on ck we think about

the ratio of the concentrations as being constant, σ =
Lk

Rk
. When σ � 1 and σ � 1 we will observe
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different phenomena.

3.4.1 Fixed Q0

We will consider positive and negative Q0, and in each case will have σ � 1 and σ � 1.

(a) Q0 = 0.1. (b) Q0 =−0.1.

Figure 4: L1 = 0.01,L2 = 0.02,L3 = 0.04,σ = 6

In figure (4) we will consider σ = 6 and the boundary conditions on ck to be, L1 = 0.01,L2 =

0.02,L3 = 0.04,R1 = 0.06,R2 = 0.12, and R3 = 0.24. With these boundary conditions our problem

satisfies the electroneutrality conditions, (4). We see that these figures show that the the effect of

Q0 is not symmetric.

For both positive and negative Q0 we see that there are ranges of V that in which the flux ratios

switch from λ2 > λ1 to λ2 < λ1. This is a characteristic that is unseen with flux ratios for the n = 2

case. When this happens it can be seen as one ion "sacrificing" itself for the other.

Remember, for λk > 1 we say that the permanent charge enhances the flux while for λk < 1

the flux is reduced by the permanent charge. In figure (4a) we see that λ3 is enhanced for

−20 ≤ V ≤ 140 while λ2 only enhanced for a short range of V around V = 40, and λ1 is only

enhanced for 20≤V ≤ 80. This is consistent with our assumption that negative permanent charge

will help the counterion.
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In figure (4b) we see almost the opposite effect. For positive valence, λ1,λ2, the negative per-

manent charge enhances the flux of each ion, while the ion with negative charge is reduce, except

large negative V . Again, this is consistent with our hypothesis that permanent charge will enhance

the flux of the a couterion more than that of a co-ion.

(a) Q0 = 0.1. (b) Q0 =−0.1.

Figure 5: L1 = 0.06,L2 = 0.12,L3 = 0.24,σ = 1/6

For both (4a), (4b), (5a), and (5b) at least once λ1 and λ2 cross. For negative Q0, (4b) and (5b),

this we actually see this phenomena occur twice, both for V near 0. Whenever V = 0 the only

driving force is Q0. Since Q0 = −0.1 we expect that it will enhance the most positive charge the

most, which is associated with λ1.

We would assume that for all values of V that the flux ratio of the ion associated with z1 would

be larger than both that associated with z2 and z3 for Q0 < 0. We see that is not the case though

since for V away from 0 λ2 > λ1 in both (4b) and (5b). This implies that for nonzero V the voltage

may enhance the flux of z2 more than that for z1 even though it is not the most positively charged

ion.
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(a) V = 10. (b) V =−10.

Figure 6: L1 = 0.01,L2 = 0.02,L3 = 0.04,σ = 6

3.4.2 Fixed V

Just like for fixed Q0 we will consider σ � 1 and σ � 1

In figure (6) we again make our boundary conditions on ck such that they satisfy the elec-

troneutrality condition. For both positive and negative V we see similar phenomena, negative Q0

enhances the flux of cations and reduces that of anions while positive Q0 enhances the flux of an-

ions and reduces the flux of cations.

In experiments done with a large magnitude of V produced similar results.

Figure 7: Lk = 0.01,Rk = 0.08 for k = 1,2,3

In figure 7 we see that the flux ratios of λ1 and λ2 cross. In figure 8 we see that in fact they do
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cross twice, once at Q0 = 0 and again around Q0 = 0.02. While not proven it could be thought that

this is attributed to our boundary conditions do not satisfy electroneutrality (4).

Figure 8: A closer look at the crossing of λ1 and λ2 in figure 7
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4 Conclusions

With three ions we see that the dynamical systems study of the Poisson-Nernst-Planck system is

more intricate than it is for two ions, both analytically and numerically. We also see that numeri-

cally the flux ratios have more robust variations. We observed that λ1 and λ2 may cross over each

other multiple times whenever we fix Q0 and vary V . While for fixed V they only cross over each

other (away from Q0 = 0) when the elecroneutrality conditions are not satisfied. More work should

be done to prove analytically why the flux ratios behave in this manner.
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