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Abstract

This thesis presents the randomized subspace iteration method for eigenvalue problems. In

our analysis, we have considered symmetric positive definite eigenvalue problem. We present

deterministic and probabilistic bounds for three quantities. First, we present the deterministic

and probabilistic bounds for the canonical angles between the exact and the approximate

eigenvector subspaces. Second, we give deterministic and probabilistic bounds for the sine

of angle between the eigenvectors of the exact eigenvector subspace and the approximated

eigenvector subspace. Third, we also present deterministic and probabilistic bounds for the

accuracy of eigenvalues using the randomized subspace iteration. The probabilistic bounds

are provided when a Gaussian random matrix is used as the initial subspace. Finally, we

illustrate our theoretical results numerically using several different test matrices.
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Chapter 1

Introduction and Motivation

Randomized algorithms are discussed extensively in the early survey article by P. Martinsson and

J. A. Tropp [8]. Randomized (probabilistic) algorithms have been an integral part of scientific

computing ever since the novel work of Ulam and von Neumann on Monte Carlo methods in 1940s.

Since 1980s, the randomized methods have been used in Numerical Linear Algebra (NLA) [8, 9].

In late 1990s and early 2000s, the researchers in theoretical computer science showed that the

storage costs are significantly lower for randomized embeddings in computations on streaming data

than the classical algorithms. In the mid-2000s, numerical analysts have shown how randomized

algorithms can be practically implemented for low-rank approximations and least square problems

[7, 8]. Since then, randomized methods have been proven to be more efficient as compared to the

classical methods in solving certain NLA problems [4].

In [3] and [14], randomized algorithms have been developed to give better approximations for

low-rank decomposition when the singular values decay rapidly. As discussed earlier, random-

ized methods became more popular in last two decades to determine low-rank approximations of

matrices. They have gained more popularity over the classical methods because they are easy

to implement, numerically robust and computationally more efficient. Even though, they have

same asymptotic cost as the classical methods, they are more suitable for large-scale computations.

Moreover, they are very reliable in practical applications because of their numerical robustness.

In this thesis, we focus on a specific kind of randomized algorithm known as randomized

subspace iteration method. Our analysis is a particular case of the analysis performed in [12], as

we are considering symmetric positive definite matrices. The key idea is to identify a subspace that

approximately captures the range of a matrix using random sampling. A low-rank approximation
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is then obtained by projecting the matrix onto this approximated subspace. After computing the

low-rank approximation, an additional post-processing step is applied to compress the low-rank

representation to obtain a matrix with desired target rank. Then, a conversion step is performed in

order to obtain an equivalent eigenvalue decomposition.
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Chapter 2

Background and Notation

2.1 Preliminaries

Symmetric Positive Definite Eigenvalue Problem (SPDEVP): Given a symmetric positive def-

inite matrix A 2Rn⇥n we are interested in finding a scalar l 2R (an eigenvalue) and a correspond-

ing vector u 6= 0 2 Rn (an eigenvector) of matrix A such that

Au = lu. (2.1)

A set of all eigenvalues of matrix A is called a spectrum of A. For a symmetric positive definite

matrix A all its eigenvalues are real and positive, hence they can be arranged in a decreasing order

l1 � l2 � . . .� lk � lk+1 � · · ·� ln > 0.

The corresponding eigenvectors are denoted as u1,u2, . . . ,un.

Eigenvalue Decomposition: Given a symmetric positive definite matrix A 2Rn⇥n and a positive

integer 1  k  rank(A), we consider the following eigenvalue decomposition of matrix A

A =ULUT =


Uk U?

�
2

64
Lk

L?

3

75

2

64
UT

k

UT
?

3

75 . (2.2)
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Here, Lk 2 Rk⇥k denotes a diagonal matrix containing the k largest eigenvalues of matrix A,

i.e., Lk = diag (l1, . . . ,lk) and L? 2 R(n�k)⇥(n�k) a diagonal matrix containing the remaining

n� k eigenvalues of matrix A, i.e., L? = diag (lk+1,lk+2, . . . ,ln). The columns of Uk and U?

are the eigenvectors corresponding to eigenvalues in Lk and L?, respectively. We also denote

Ak = UkLkUT
k as the best rank-k approximation of A, for any unitarily invariant norm. Analo-

gously, we define A? =U?L?UT
? and notice that A = Ak +A?.

Note that from [2], we have that Spectral Theorem gives a similar decomposition known as the

Singular Value Decomposition (SVD). The matrix A can be written as A =USV T , where S 2Rn⇥n

is the diagonal matrix with singular values as its diagonal entries and U,V 2 Rn⇥n are orthogonal

matrices. The columns of U and the columns of V are called left and right singular vectors of A,

respectively.

Eigenvalues and Eigenvalue Ratios: Let l1,l2, . . . ,ln be the eigenvalues of A as defined before.

Denote the spectral norm by k ·k2. Then kL?k2 = lk+1 and kL�1
k k2 =

1
lk

. Further, we define the

eigenvalue ratios as

g j =
lk+1

l j
, j = 1,2, . . . ,k. (2.3)

Since the eigenvalues of A are monotonically decreasing, the eigenvalue ratios are monotonically

increasing, i.e., g1  g2  . . . gk  1.

Projection Matrices: Suppose that the matrix Z has full column rank with column space range(Z).

Z† is a left multiplicative inverse with † denoting the Moore-Penrose inverse (or pseudo inverse).

We will define the (orthogonal) projection matrix PZ , as PZ = ZZ†. An orthogonal matrix Q can

be uniquely defined by its range, and range(PZ) = range(Z). For any matrix Q with orthonormal

columns, the above formula simplifies and we have PQ = QQT .

Canonical Angles: The canonical angles or principal angles measure the separation between

subspaces. Let X and Y be two subspaces of Rn such that the dim(X ) = ` and dim(Y ) = k,

and ` � k. Then the canonical angles between the subspaces X and Y are defined as 0  qi 

4



p/2, i = 1,2, . . . ,k such that

cosqi = max
x2X ,y2Y ,kxk2=kyk2=1

y
T

x = y
T
i xi, i = 1,2, . . . ,k,

where kxik2 = kyik2 = 1, and

x
T
j x = 0, y

T
j y = 0 j = 1, . . . , i�1.

The canonical angles can be arranged in increasing order as

0  q1  q2  · · · qk  p/2.

Moreover, it can easily be verified that sinqi are singular values of PX �PY .

Let \(X ,Y ) denotes the canonical angles between the subspaces X and Y . Let X and Y

denote the matrices with orthonormal columns which form the bases for subspaces X and Y ,

respectively. Then, the singular values of (I �XXT )Y can be used to find sin\(X ,Y ), and the

singular values of XTY can be used to find cos\(X ,Y ).

Rayleigh-Ritz Procedure: Here we give a generalized Rayleigh-Ritz procedure as described

in [10]. Let A 2Rn⇥n be a symmetric positive definite matrix and V be an m dimensional subspace

of Rn. We consider the eigenvalue problem (2.1). An orthogonal projection approach allows us to

determine an approximate eigenpair (bl ,bu), with bl 2 R and bu 6= 0 in V satisfying the following

Galerkin condition given by

Abu�blbu ? V .

This is equivalent to say that

hAbu�blbu,vi= 0, for all v 2 V (2.4)
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Given an orthonormal basis {v1,v2, . . . ,vm} of V and denote V = [v1 v2 . . . vm], we can express

an approximate eigenvector bu 2 V as a linear combination of the basis {v1,v2, . . . ,vm}, i.e.,

bu =V w.

Therefore, equation ( 2.4) yields

hAV w�blV w,v ji= 0, for all j = 1,2, . . . ,m.

Hence, w and bl must satisfy

Bmw = blw,

where

Bm =V T AV.

Each eigenvalue bli, i = 1,2, . . . ,m of Bm is called a Ritz value, and vector V wi is called a Ritz

vector, where wi is the eigenvector of matrix Bm associated with the eigenvalue bli.

2.2 Subspace Iteration Method for Eigenvalue Problems

The subspace iteration (or simultaneous inverse iteration) method is an iterative method used for

solving eigenvalue problems first introduced by Bauer under the name of Treppeniteration (stair-

case iteration) [10]. This method can be viewed as a generalization of the power method to account

for multiple vectors at a time. In order to get better eigenpair approximations, the Rayleigh-Ritz

projection step is used. The algorithm with the Rayleigh-Ritz projection step is as follows:

6



Algorithm 1 : Idealized Subspace Iteration with Rayleigh-Ritz Projection Step

Ensure: Let A 2 Rn⇥n be a symmetric positive definite matrix X 2 Rn⇥m matrix with XT X = Im
1: for i = 1,2, . . . Do
2: Compute Y = AX
3: Compute Y = QR {QR Factorization of matrix Y }
4: Form B = QT AQ
5: Compute B =: W bLW T {Eigenvalue Decomposition of matrix B}
6: X = QW
7: Check Convergence
8: End for
9: bU = X

10: return bU and bL that satisfy bA ⌘ bUbLbUT

Remark 1. The diagonal entries bl1,bl2, . . . ,blm of matrix bL (eigenvalues of matrix B) are the Ritz

values of A and the columns bui of matrix bU are the corresponding Ritz vectors.

2.3 Random Matrices

In this section we give the common distributions and random matrices used in the random matrix

theory as considered in [8, 17].

Distributions: Let us first discuss commonly used distributions.

• Uniform Distribution: generally, UNIF denotes the uniform distribution over a finite set. A

scalar Rademacher random variable has a uniform distribution over a finite set {�1,+1} [16].

A Rademacher random vector has independent and identically distributed (iid) entries, each

distributed as a scalar Rademacher random variable. Sometimes, uniform distributions are

considered over Borel subset of Fn, equipped with Lebesgue measure [8].

• Normal Distribution: Normal distribution on Fn is denoted by Norm(µ,C) or N (µ,C),

where F is a field, µ is the expectation value and C is the positive semi-definite covariance

matrix. A standard normal random variable or a random vector has expectation value zero

(µ = 0) and the identity covariance matrix (C = I). We interchangeably use the term Gaus-

sian to refer to normal distributions.
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In practice, standard normal matrices are the most common random matrices used in randomized

algorithms.

Standard Normal Matrix or Gaussian Matrix:

• Real Standard Normal Matrix: A matrix W 2 Rm⇥n has the real standard normal distribution

if its entries form an independent family of standard normal variables (i.e. Gaussian with

mean zero and variance one).

• Complex Standard Normal Matrix: A matrix W 2 Cm⇥n has complex standard normal distri-

bution if it can be written as W = W1 + iW2, where W1 and W2 are independent real standard

normal matrices.

For the purpose of this work, matrix W 2Rn⇥(k+p) will be a real Gaussian random matrix, where k

will be the target rank and p will be oversampling parameter. The entries of W will be independent

and identically distributed N (0,1), i.e., with mean zero and variance one.
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Chapter 3

Randomized Subspace Iteration Method

We will now consider the randomized subspace iteration method for solving eigenvalue problem

(2.1) with a symmetric positive definite matrix A (SPDEVP). We start by taking a symmetric

positive definite matrix A 2 Rn⇥n and W 2 Rn⇥(k+p) is a starting guess, with parameter k denoting

the number of eigenvalues of interest (desired size of the eigenspace), and p> 0 is the oversampling

parameter. Moreover, let q � 1 be the maximum number of randomized subspace iteration steps

performed to obtain matrix Y , also known as the sketch of matrix A. The algorithm proceeds by

performing a thin-QR factorization of matrix Y in order to obtain a matrix Q whose columns form

an orthonormal basis for the range of Y . We assume that the range of matrix Q gives a good

approximation for the range of matrix A, i.e., given e > 0

kA�QQT Ak2  e.

Moreover, by the triangle inequality we have that

kA�QQT AQQTk2 = kA�QQT A+QQT A�QQT AQQTk2

 kA�QQT Ak2 +kQQT (A�QQT A)k2

= 2k(I �QQT )Ak2  2e.

This observation tells us how to compute an eigenvalue decomposition of matrix A. With or-

thonormal basis Q at hand, we obtain a low-rank approximation bA of matrix A by the projection,

i.e., A ⇡ bA = Q(QT AQ)QT . We then compute the eigenvalue decomposition W bLW T of a smaller
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matrix QT AQ, which gives us the orthonormal matrix bU = QW satisfying bA = bUbLbUT . The algo-

rithm showing the randomized subspace iteration method for solving a symmetric positive definite

eigenvalue problem is given in Algorithm 2.

Algorithm 2 : Randomized Subspace Iteration for SPDEP.

Ensure: Let A 2 Rn⇥n be a symmetric positive definite matrix and W 2 Rn⇥(k+p) be a starting
guess. Here k is the target rank (number of eigenvalues to be computed), p is the oversampling
parameter and q � 1 is number of subspace iteration steps.

1: Set X = W
2: for i = 1, 2,. . . q
3: Compute Y = AX
4: Compute Y = QR {thin-QR factorization of matrix Y }
5: Form the small matrix B = QT AQ
6: Compute B =: W bLW T {the eigenvalue decomposition of matrix B}
7: Form the orthonormal matrix X = QW
8: Check convergence
9: End for

10: bU := X
11: return bU and bL that satisfy A ⌘ bA = bUbLbUT

The return matrix bU is the approximated eigenspace of dimension n⇥ (k+ p) and the matrix

bL is a diagonal matrix of dimension (k+ p)⇥ (k+ p) with approximated eigenvalues down the

diagonal.

We now introduce the following notation which is needed in our analysis. The matrix UT W

captures the influence of initially chosen random Gaussian matrix W on the eigenvector matrix U .

Partition this matrix as

UT W =

2

64
UT

k W

UT
?W

3

75=:

2

64
W1

W2

3

75 , (3.1)

where W1 = U>
k W 2 Rk⇥(k+p) and W2 = U>

? W 2 R(n�k)⇥(k+p). We assume that the target rank k

satisfies 1  k  rank(A). Additionally, we have the following assumptions:

Assumption 1: Let W1 =U>
k W 2 Rk⇥(k+p) be defined as above. We assume that rank(W1) = k.
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Assumption 2: The eigenvalue gap at index k is inversely proportional to the eigenvalue ratio, i.e.,

gk = kL?k2kL�1
k k2 =

lk+1

lk
< 1.

The first assumption ensures that the starting guess W has a significant influence over the eigen-

vectors, whereas the second assumption guarantees that the k-dimensional subspace range(Uk) is

well defined. In practice, it is highly desirable that gk ⌧ 1, which guarantees a large eigenvalue

gap between eigenvalue lk and lk+1.

3.1 Deterministic Bounds

In this section we will discuss the accuracy of computed eigenpairs of problem (2.1) in the case of

symmetric positive definite matrix A. The results presented in this section show how well range(bU)

(an approximate eigenspace) approximates range(Uk) (an exact eigenspace) corresponding to the k

largest eigenvalues of A. This is measured in terms of the canonical angles between the exact and

the approximate eigenspaces. Let q1,q2, . . . ,qk denote the subspace angles between bU 2 Rn⇥(k+p)

and Uk 2 Rn⇥k. The following result is a direct consequence of [12, Theorem 1] and provides

the bound for the canonical angles \(Uk, bU) in the case of symmetric positive definite eigenvalue

problem.

Theorem 3.1.1. Let bU be obtained from the Algorithm 2. With Assumption 1 the canonical angles

q j, j = 1,2, . . . ,k, satisfy the following inequality

sinq j 
gq

j kW2W†
1k2q

1+ g2q
j kW2W†

1k2
2

.

Proof. The proof is similar to the one of [12, Theorem 1].

This result has several important consequences. First, if the matrix A has exact rank k, then

all the canonical angles are uniformly zero. This implies that the randomized subspace iteration

11



has exactly identified the eigenvalues. On the other hand, if the eigenvalue gap gk is very close

to 1, then the subspace may not be well defined, and it may be difficult to identify them using

the randomized subspace iteration. In practice, it is highly advisable to take gk ⌧ 1, so that the

angles can be captured accurately. Second, the bound for canonical angles show the explicit

dependence on the eigenvalue ratios g j, in particular, the canonical angles q j converge to zero with

the convergence rates depending on eigenvalue ratios. This is equivalent to say that the smaller the

eigenvalue ratio, the smaller the canonical angles. Third, term kW2W†
1k2 can be written in terms

of the eigenvector matrix U and the starting guess W as

kW2W†
1k2 = k(UT

?W)(UT
k W)†k2.

It can be observed that when the columns of W are linearly independent, this quantity is the tangent

of the largest canonical angle between the spaces range(Uk) and range(W). This is a common

term in randomized linear algebra, and can be interpreted as the measure of the subspace overlap

between the starting guess W and the matrix Uk containing the eigenvectors corresponding to the

k largest eigenvalues of matrix A. In the ideal scenario, the eigenvectors in Uk are contained in

W. This is extensively discussed in [1, Section 2.5]. In particular, when W is a Gaussian random

matrix, kW2W†
1k2 is approximately of order

p
(n� k)k. Fourth, the influence of kW2W†

1k2 is re-

strained by the eigenvalue ratios gq
j . When the number of subspace iteration steps q is significantly

large, then the canonical angles are smaller than the user defined tolerance.

Remark 2. The above theorem gives the bound for the sines of the canonical angles; this bound

can also be used to give the upper bound for tangents of the canonical angles and the lower

bound for the cosines of the canonical angles. With the same notation and assumptions as in

Theorem 3.1.1, the relationship between the sine and tangent implies that

tanq j  gq
j kW2W†

1k2, for j = 1,2 . . . ,k.

The next theorem is a special case of a more general result from our ongoing work [5]. Let
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l1,l2, . . . ,lk be the eigenvalues of A as defined before, and let u1,u2, . . . ,uk be the corresponding

eigenvectors. The following result quantifies the sine of the angle between the eigenvectors u j and

the subspace range(bU) measured in terms of k(I �PbU)u jk2.

Theorem 3.1.2. Let bU be obtained from Algorithm 2. With Assumption 1 we have that for j =

1,2, . . . ,k

k(I �PbU)u jk2 
gq

j kW2W†
1k2q

1+ g2q
j kW2W†

1k2
2

.

Proof. Consider the eigenvalue deconposition of matrix A = ULUT in (2.2) and let us denote

L1 := (Lk)
q and L2 := (L?)

q. Hence, using (3.1) yields

Y = QR = AqW = ULqUT W

=


Uk U?

�
2

64
Lq

k

Lq
?

3

75

2

64
UT

k

UT
?

3

75W = U

2

64
L1W1

L2W2

3

75 .

Since by assumption rank(W1) = k, W1W†
1 = Ik. Therefore,

Y W†
1L�1

1 =U

2

64
I

F

3

75 with F = L2W2W†
1L�1

1 .

Now define the matrix Z such that

Z = Y W†
1L�1

1 (Ik +FT F)�1/2 =U

2

64
Ik

F

3

75(Ik +FT F)�1/2. (3.2)

Since I �PbU is an orthogonal projector, 0 � I �PbU � I. The conjugation rule [3, Proposition

8.1] yields

(I �PZ)(I �PbU)(I �PZ)� I �PZ. (3.3)

13



Since range(Z)⇢ range(bU), following [3, Proposition 8.5] we obtain

(I �PZ)(I �PbU) = (I �PbU),

and
(I �PZ)(I �PbU)(I �PZ) =(I �PbU)(I �PZ)

=
�
(I �PZ)(I �PbU)

�T

=(I �PbU)
T

=(I �PbU).

Combining the last equation with (3.3), we have

I �PbU � I �PZ.

This gives k(I�PbU)u jk2 k(I�PZ)u jk2. Considering the square of this upper bound and using

the fact that PZ = ZZ† we have,

k(I �PZ)u jk2
2  u

T
j (I �PZ)u j = e

T
j UT (I �PZ)Ue j

= e
T
j (I �PZ)e j = e

T
j (Ik � (Ik +FT F)�1)e j. (3.4)

By the proof of [12, Theorem 9], we have

FT F � kW2W†
1k

2
2 diag (g

2q
1 ,g2q

2 , . . . ,g2q
k ),

where diag (g2q
1 ,g2q

2 , . . . ,g2q
k ) is a diagonal matrix with the eigenvalue ratios. Here M � N means

N �M is positive semi-definite. Furthermore,

e
T
j (Ik +FT F)�1

e j ⌫ e
T
j (Ik +kW2W†

1k
2
2 diag (g

2q
1 ,g2q

2 , . . . ,g2q
k ))�1

e j.

14



Then we have

e
T
j (Ik +FT F)�1

e j �
1

1+ g2q
j kW2W†

1k2
2

,

which yields

e
T
j (Ik � (Ik +FT F)�1)e j  1�

⇣ 1
1+ g2q

j kW2W†
1k2

2

⌘
=

g2q
j kW2W†

1k2
2

1+ g2q
j kW2W†

1k2
2

.

Combining this inequality with equation (3.4), and taking the square root on both the sides gives

k(I �PbU)u jk2 
gq

j kW2W†
1k2q

1+ g2q
j kW2W†

1k2
2

,

which completes the proof.

The inequality, g1  g2  · · ·  gk suggests that the approximations to the eigenvectors in the

subspace range(bU) are converging at different rates. Observe that as already discussed in prelim-

inaries, the eigenvalues of the matrix A are arranged in decreasing order. The next result gives

the accuracy of the eigenvalues of A computed using the randomized subspace iteration method

presented in Algorithm 2.

Theorem 3.1.3. Assume ` = k, i.e. p = 0 and W1 2 Rk⇥k is invertible. Let l1,l2, . . . ,lk be the

exact eigenvalues of A arranged in decreasing order, and bl1,bl2, . . . ,blk be the eigenvalues of QT AQ

(Ritz values) arranged in decreasing order. Then, for j = 1, . . . ,k, we have

max
1 jk

|l j �bl j| (lmax �lmin)
gq

k kW2W�1
1 k2q

1+ g2q
k kW2W�1

1 k2
2

,

where lmax and lmin are the largest and the smallest exact eigenvalues of A, respectively.

Proof. By applying [6, Theorem 5], we have that

max
1 jk

|l j �bl j| (lmax �lmin)ksinQk2, (3.5)
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where Q denote the diagonal matrix with diagonal entries as the canonical angles between range(bU)

(or range(Q)) and range(Uk). Since k = `, and W1 is a square matrix with rank(W1) = k, we have

that W1 is invertible, i.e., W†
1 = W�1

1 . Equation (3.5) and Theorem 3.1.1 yields

max
1 jk

|l j �bl j| (lmax �lmin)
gq

k kW2W�1
1 k2q

1+ g2q
k kW2W�1

1 k2
2

,

which completes the proof.

3.2 Probabilistic Bounds

The results presented in Section 3.1 do not take into account any information about the distribution

of the random matrix W2Rn⇥`, where `= k+ p. Although, as discussed in Section 2.3 , the entries

of matrix W can be drawn from different distributions, but the lack of underlying results from the

random matrix theory restricts our analysis to a class of standard Gaussian random matrices. In

this section we derive a few probabilistic results that will help us better understand the accuracy of

the subspaces.

Before we introduce the main results of this section, we first need the following lemma [13,

Lemma 2].

Lemma 3.2.1. Let W 2 Rn⇥` be a standard Gaussian matrix, such that rank(W1) = k. Further let

us assume that the oversampling parameter p � 2 and `= k+ p  n. Then with probability at least

1�d , we have

kW2W†
1k2 Cg,

with

Cg ⌘
e
p
`

p

✓
2/dp

2p(p+1)

◆ 1
(p+1)

✓p
n� k+

p
`+

r
2log

2
d

◆
.

Theorem 3.2.2 provides probabilistic bounds for the sines of the canonical angles between the

subspaces range(Uk) and range(bU), and for the sines of angle between the eigenvectors u j and the
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subspace range(bU).

Theorem 3.2.2. Let W 2 Rn⇥` be a standard Gaussian matrix such that rank(W1) = k. Moreover,

let the oversampling parameter p � 2 and ` = k+ p  n. Then, due to Lemma 3.2.1, each of the

following results hold with the probability at least 1�d

(i)

sinq j 
gq

j Cgq
1+ g2q

j C2
g

, for j = 1, . . . ,k,

and

(ii)

k(I �PÛ)u jk2 
gq

j Cgq
1+ g2q

j C2
g

, for j = 1, . . . ,k,

with Cg ⌘ e
p
`

p

✓
2/dp

2p(p+1)

◆ 1
(p+1)

✓p
n� k+

p
`+

q
2log 2

d

◆
.

Proof. (i) Let us first recall the main result of Theorem 3.1.1, i.e.,

sinq j 
gq

j kW2W†
1k2q

1+ g2q
j kW2kW†

1k2
2

. (3.6)

Lemma 3.2.1 and the fact that gq
j > 0 yield

gq
j kW2W†

1k2  gq
j Cg.

Let us define a function, f (t) := tp
1+t2 for t 2 (0,•), which obviously is an increasing

function on the interval (0,•). Since gq
j kW2W†

1k2  gq
j Cg, we get

f (gq
j kW2W†

1k2) f (gq
j Cg),

and consequently
gq

j kW2W†
1k2q

1+ g2q
j kW2W†

1k2
2


gq

j Cgq
1+ g2q

j C2
g

. (3.7)
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Combining equations (3.6) and (3.7) completes the first part of the proof.

(ii) Following the first part of the proof, we get

gq
j kW2W†

1k2q
1+ g2q

j kW2W†
1k2

2


gq

j Cgq
1+ g2q

j C2
g

. (3.8)

Equation (3.8) and the result of Theorem 3.1.2 together yield the desired result

k(I �PÛ)u jk2 
g2q

j kW2W†
1k2q

1+ g2q
j kW2W†

1k2
2

.

Before we present our next and final result, we need the following Lemma.

Lemma 3.2.3. Let W 2 Rn⇥` be a standard Gaussian matrix such that rank(W1) = k, with ` = k

and W1 is invertible. Then with probability 1�d

kW2W�1
1 k2  Ng,

with Ng =
2
p

k
d

⇣p
n� k+

p
k+

q
2log 2

d

⌘
.

Proof. First, by the submultiplicativity of the 2-norm

kW2W�1
1 k2  kW2k2kW�1

1 k2. (3.9)

From [13, Lemma2], we have

kW2k2 
⇣p

n� k+
p

k+

r
2log

2
d

⌘
,

with the probability of failure at most d/2. Since W1 is a standard Gaussian random matrix and
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rank(W1) = k, by [15, Theorem 3.4] we have that the probability

P
�
kW1

�1k2 � x
�


p
k

x
. (3.10)

Choosing x = 2
p

k
d in (3.10), we get the following

P(kW�1
1 k2 �

2
p

k
d

) d
2
.

Hence, with the probability of failure at most d
2 we have that

kW�1
1 k2 

2
p

k
d

. (3.11)

Combining (3.9) and (3.11), and using the union bound, we get

P
⇣
kW2k2kW�1

1 k2 � Ng

⌘
 d/2+d/2 = d ,

with Ng =
2
p

k
d

⇣p
n� k+

p
k+

q
2log 2

d

⌘
. Consequently, with the probability at least 1� d , we

have the desired bound

kW2W�1
1 k2  kW2k2kW�1

1 k2  Ng,

where Ng =
2
p

k
d

⇣p
n� k+

p
k+

q
2log 2

d

⌘
.

Our final result gives the probabilistic bounds for the accuracy of eigenvalues of matrix A

computed using the randomized subspace iteration method presented in Algorithm 2.

Theorem 3.2.4. Assume k = ` and W1 2 Rk⇥k is invertible. Let l1,l2, . . . ,lk be the eigenvalues

of matrix A, and bl1,bl2, . . . ,blk be the eigenvales of QT AQ (Ritz values). Then, by Lemma 3.2.3, for

j = 1, . . . ,k the following result holds with the probability at least 1�d

max
1 jk

|l j �bl j| (lmax �lmin)
gq

k Ngq
1+ g2q

k Ng
2
,
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with

Ng =
2
p

k
d

⇣p
n� k+

p
k+

r
2log

2
d

⌘
.

Proof. From Lemma 3.2.3, we have that

kW2W�1
1 k2  Ng.

Following the proof of Theorem 3.2.2 part (i), with an increasing function f (t) := tp
1+t2 on (0,•)

and g j > 0, we have that
gq

k kW2W�1
1 k2q

1+ g2q
k kW2W�1

1 k2
2


gq

k Ngq
1+ g2q

k N2
g

. (3.12)

Then, from (3.12) and Theorem 3.1.3, we obtain the final result

max
1 jk

|l j �bl j| (lmax �lmin)
gq

k Ngq
1+ g2q

k Ng
2
,

with

Ng =
2
p

k
d

(
p

n� k+
p

k+

r
2log

2
d
).
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Chapter 4

Numerical Experiments

In this chapter we will numerically illustrate the angles between the subspaces range(Uk) and

range(bUk) and the error bounds presented in Theorem 3.1.1. We will follow numerical experi-

ments performed in [12] and adapt the MATLAB implementation of randomized singular value

decomposition (randsvd) provided in [11] to use randomized subspace iteration for solving sym-

metric positive definite eigenvalue problem. All presented numerical experiments were performed

using MATLAB 9.4.0.813654 (R2018a).

4.1 Example 1: Low-rank Plus Noise

For our first numerical example, we will illustrate the the angles between the subspaces range(Uk)

and range(bUk) and the error bounds introduced in Theorem 3.1.1 using the low-rank plus noise

test matrix introduced in [12]. Given a Gaussian random matrix G 2Rn⇥n, we construct a positive

definite matrix A 2 Rn⇥n

A =
1
2
(D+DT ), (4.1)

with D 2 Rn⇥n given by

D =

2

64
Ir 0

0 0

3

75+

r
noise · r

2n2 (G+GT ).

Here, noise denotes the size of the noise introduced into the matrix, and r denotes the location

of the eigenvalue gap. To verify our theoretical results we will present the computed values of

canonical angles sinq j for j = 1, . . . ,k as well as the upper bounds provided in Theorem 3.1.1. We

will consider three values for parameter noise, i.e.,
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Small Noise with noise = 10�2,

Medium Noise with noise = 10�1,

Large Noise with noise = 1.

We further consider matrix of size n = 300, the oversampling parameter p = 20, and the target

rank k = 25. For our experiment, we consider W to be a Gaussian random matrix of dimension

n⇥ (k+ p) generated using MATLAB command randn(n,k+p). The location of the eigenvalue

gap is chosen as r = 15, i.e., there will be a gap between the eigenvalue l15 and l16.

We have performed q= 1,2,3 steps of randomized subspace iteration method on these matrices

with varied noises in order to check the validity of our proposed angle bounds.

Figure 4.1: k = 25 largest eigenvalues of the matrix A defined in (4.1).

Figure 4.1 depicts the first k = 25 eigenvalues of the low-rank plus noise matrices defined in

(4.1). It can be observed that for every case there is a sharp decay in the eigenvalues after the index

15, where the eigenvalue gap is located.

Figure 4.2 illustrates the computed canonical angles and the angle bounds presented in The-

orem 3.1.1 for different noise sizes. The target rank is k = 25 and the oversampling parameter
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(a) Small Noise noise = 10�2 (b) Medium Noise noise = 10�1 (c) Large Noise noise = 1

Figure 4.2: Plots of sinq j for j = 1, . . . ,k for the test matrices Low-rank plus noise. (4.1).

is p = 20. The solid lines correspond to the computed values, and the dashed lines correspond to

the bounds obtained using Theorem 3.1.1. The parameter q corresponds to the number of steps in

randomized subspace iteration method. It can be observed that the sines of the computed canonical

angles are smaller than the angle bounds for all the three cases. The Small Noise is quite close to

a low rank matrix and there is a large eigenvalue gap at index 15. For this example, the bounds

are qualitatively good. As the level of noise increases the eigenvalue gap decreases, therefore the

computed angles increase as predicted by Theorem 3.1.1. The bounds are not informative for the

q = 1 but are qualitatively good for q = 2 and q = 3. In this experiment, we have illustrated the fact

that the sines of computed canonical angles between the exact k-dimensinal eigenspace Uk and the

approximated eigenspace bUk are indeed bounded from above by the right-hand side
gq

j kW2W†
1k2q

1+g2q
j kW2W†

1k2
2

of Theorem 3.1.1. These observations confirm our theoretical results.

4.2 Example 2: Controlled Gap

For our second numerical example, we will illustrate the angles between the subspaces range(Uk)

and range(bUk) and the error bounds established in Theorem 3.1.1 using the controlled gap test

matrix introduced in [12]. We construct a positive definite matrix A 2 Rn⇥n

A =
1
2
(D+DT ), (4.2)
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with a sparse matrix D 2 R300⇥300 given by

D =
r

Â
j=1

gap
j

x jxT
j +

300

Â
j=r+1

1
j
x jxT

j ,

where x j 2 R300 is a sparse random vectors with non-negative entries generated using the MAT-

LAB command sprand(300,1,0.25). The eigenvalues decay like 1
j and the gap between the

eigenvalues l15 and l16 is controlled by the parameter gap.

To verify our theoretical results we will present the sines of the computed canonical angles

sinq j for j = 1, . . . ,k along with the upper bounds given in Theorem 3.1.1. We will consider three

values for parameter gap, i.e.,

Small Gap with gap = 1,

Medium Gap with gap = 2,

Large Gap with gap = 10.

Here again we consider the oversampling parameter p = 20 and the target rank k = 25. For this

example, we use the random matrix W as described in Example 1. The location of the eigenvalue

gap is chosen as r = 15, i.e., there will be a gap between the eigenvalue l15 and l16. We have

performed q = 1,2,3 steps of the randomized subspace iteration method on these matrices with

different gaps in order to verify our theoretical bounds.
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(a) Small Gap gap = 1 (b) Medium Gap gap = 2 (c) Large Gap gap = 10

Figure 4.4: Plots of sinq j for j = 1, . . . ,k for the test matrices controlled gap defined in (4.2).

Figure 4.3: k = 25 largest eigenvalues of the matrix A defined in (4.2).

Figure 4.3 shows the k largest eigenvalues of controlled gap matrices defined as in (4.2) for

different values of parameter gap. It is easy to see that there is a slow decay in the eigenvalues for

Small Gap and Medium Gap test matrices, but the eigenvalues decrease rapidly for the Large Gap

test matrix near the index 15. Figure 4.4 illustrates the computed canonical angle and the angle

bounds given in Theorem 3.1.1 for different gaps.The target rank is k = 25 and the oversampling

parameter is p = 20. The parameter q corresponds to the number of steps in randomized subspace

iteration method.The solid lines correspond to the computed values, and the dashed lines corre-

spond to the bounds obtained using Theorem 3.1.1. It can be observed that the the angle bounds
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are in accordance with the Theorem 3.1.1.The angle bounds are closer to the computed canonical

angles in all the three cases for every iteration. As we increase the gap and number of iterations,

the computed canonical angles decrease.The text matrices Medium Gap and Large Gap show a

decay in eigenvalues as well as show the prominent eigenvalue gap between the eigenvalues l15

and l16. These matrices satisfy the assumptions of our analysis, and hence forth the bounds are

expected to be nice. Small Gap has shown a decay in the eigenvalues but there is no prominent

eigenvalue gap. Even in this case the bounds are somewhat qualitatively good except for q = 1.

Also note that the bounds in this experiment are sharper than the bounds given in the first experi-

ment for Low-rank noise. Through this experiment, we have illustrated the fact that the computed

canonical angles between the exact k-dimensional eigenspace Uk and the approximated eigenspace

bUk are indeed bounded from above by the angle bound
gq

j kW2W†
1k2q

1+g2q
j kW2W†

1k2
2

of Theorem 3.1.1. These

observations confirm our theoretical results.

4.3 Observations From Numerical Experiments

We plot the canonical angles sin\(Uk, bU) in solid lines; the corresponding bounds from Theo-

rem 3.1.1 are also plotted in dashed lines. The results are depicted in Figure 4.2 and Figure 4.4 .

We make the general observations here:

• The influence of the number of steps in the randomized subspace iteration method on the

canonical angles is clear from the plots for both the experiments. The angles become smaller

as the number of iterations q increases, implying that the resulting subspace is becoming

closer to the exact eigenspace.

• A large eigenvalue gap in the spectrum, implies that the canonical angles below the index

locating the gap are captured accurately. This is prominently observed in the Figure 4.4a, in

which there is a large gap between eigenvalues l15 and l16. We can make similar observations

in other figures.

• The bounds depicted for most experiments are qualitatively informative, but in some experi-
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ments the bounds are quantitatively accurate as well, e.g., Large Gap matrix..

• As the decay rate of eigenvalues increases, it can be observed that the corresponding canoni-

cal angles are becoming smaller.
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Chapter 5

Conclusions and Future Research

In this work we have presented the deterministic and probabilistic bounds for using the random-

ized subspace iteration for symmetric positive definite eigenvalue problems. We have proposed

deterministic and bounds for the canonical angles between the exact and the approximate eigen-

vector subspaces, the sine of angle between the eigenvectors of the exact eigenvector subspace and

the approximated eigenvector subspace, and for the accuracy of eigenvalues using the randomized

subspace iteration. We have also shown the validity of our theoretical angle bounds by implement-

ing two numerical examples. We were able to successfully show the similar illustrations as given

in [12] but with symmetric positive definite matrices and using randomized subspace iteration for

the SPDEVP. This guarantees that our results are in consistence with the results presented in [12]

for obtaining the singular value decomposition (SVD) using the randomized subspace iteration

method. We can further our analysis by presenting similar results for the generalized eigenvalue

problems. We are currently working in that direction developing and analyzing the randomized

FEAST algorithm for the generalized eigenvalue problems.
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