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Abstract  

 

Fire is a global phenomenon that annually burns approximately 3% of Earth’s terrestrial surface.  

While fire is an important component of many terrestrial ecosystems, climate change and 

anthropogenic influence are expected to alter global fire regimes (particularly fire frequency and 

intensity).  This makes understanding fire’s role under a changing climate critical to preserving 

threatened ecosystems.  Despite the need to protect these ecosystems, the manipulation of fire 

regimes is dangerous and often impossible in most systems.  Pyrophilic, or fire recurrent 

ecosystems, however, may offer a useful model due to their long-term adaptation to recurrent fires.   

The fire regimes of pyrophilic ecosystems are maintained by feedbacks between fire and plant 

fuels, which has led to a historical focus on the role of plants in pyrophilic systems.  This approach 

has largely ignored the role of soil microbes in these systems, despite their ability to modify plant 

fuel loads through saprotrophic, mutualistic, and pathogenic interactions.  By improving our 

knowledge of the microbial processes that underly pyrophilic ecosystems, we may be able to better 

respond to future changes in the frequency and intensity of global fire regimes.  In this dissertation, 

I assessed microbial roles in pyrophilic ecosystems by testing four primary questions 1) Does fire 

drive similar shifts to microbial community structure and seasonal trajectories across pyrophilic 

systems, 2-3) Do fire regime components (e.g. fire frequency and intensity) alter the microbial 

mediation of plant fuel loads via decomposition, and 4) Does fire modify microbial and abiotic 

soil components in ways that influence plant fuel production?  I hypothesized that fire would 

modify microbial communities and their function (e.g. decomposition, mutualism, and pathogenic 

effects) in ways that modified plant fuel dynamics.  I used four complementary experiments that 

manipulated fire regime components and combined molecular, field, and greenhouse techniques 

to develop a holistic understanding of microbial roles in pyrophilic ecosystems.  Fire had similar 
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effects on fungal community structure and seasonal trajectories across pyrophilic ecosystems.  

Furthermore, as the frequency and intensity of fires increased, microbial functions like 

decomposition slowed, and microbial interactions with plant fuel production were altered.  This 

indicates that fire alters microbial community structure, seasonal dynamics, and function in ways 

that modify plant fuel loads.  Since fire-microbial interactions influence plant fuel dynamics in 

ways that lead to fuel accumulation, this could drive positive feedbacks on future fires, and 

suggests that soil microbes play integral roles in maintaining the fire regimes of pyrophilic 

ecosystems.  By understanding the processes that govern the fire regimes of pyrophilic ecosystems, 

we can better respond to and preserve terrestrial systems against future increases in fire frequency 

and intensity due to climate change and anthropogenic influence.  
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Introduction 

 

Disturbances are important determinants of biological communities; however, they are often left 

out of assembly models as they are viewed as rare, pre-successional events.  Disturbances are 

relatively common however, and often play high level roles in determining the structure of 

biological communities (Grime 1973; Horn 1975; Beckage et al. 2009; He et al. 2019).  Many 

communities have long evolutionary histories with disturbances, which act as selective forces on 

traits and function.  Case in point, many of Earth’s ecosystems are considered disturbance 

mediated (e.g. intertidal zones, flood plains, and pyrophilic ecosystems), as they possess suites of 

species adapted to surviving and taking advantage of recurrent disturbances.  Amongst the best 

studied of disturbances is fire, which produces easily recognizable changes in ecosystems and 

species pools, and has had a global influence on Earth since the evolution of terrestrial plants 

(Archibald et al. 2018). 

Fire is a widespread phenomenon that annually burns approximately 3% of Earth’s 

terrestrial surface.  While fires are often considered large-scale, highly destructive disturbances, 

many systems are actually maintained by relatively frequent (1-3yr fire return intervals), low 

intensity fires (Mutch 1970; Bowman et al. 2009; Archibald et al. 2013; Nerlekar & Veldman 

2020).  Since global fire regimes, particularly their frequencies and intensities,  are expected to 

change due to climate change (Liu & Wimberly 2016) and anthropogenic influence (Balch et al. 

2017), understanding fire’s role in ecosystems is crucial to the preservation of terrestrial systems.  

Despite the importance of fire research under a changing climate, direct manipulation of fire 

regimes is often extremely dangerous or impossible.  Pyrophilic, or fire recurrent ecosystems, 

however, may provide useful models for testing fire based questions due to their long-term 

adaptation to recurrent fires. 
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 Pyrophilic ecosystems like grasslands, savannas, and shrublands, are subjected to frequent 

(in some cases annual) fires that are necessary for their maintenance and preservation (Platt 1999; 

Mistry et al. 2005; Towne 2012).  The reliance on frequent fires in these systems means that 

experimental manipulation of fire regime components like frequency and intensity is relatively 

easy, less damaging to the environment, and can be done in a safer, controlled manner.  

Furthermore, pyrophilic system’s long-term adaptation to recurrent fires implies that they may 

provide a suitable model for estimating the long-term effects of altered fire regimes in less fire 

tolerant systems.  Despite early differences in fire intensities between pyrophilic and less-fire 

tolerant systems, it is likely that fire intensity will decrease as fires become more frequent and fuel 

loads are reduced (Archibald et al. 2013; Kalies & Yocom Kent 2016), and that fires will become 

more comparable or begin to approximate to those in pyrophilic systems.  Since fires have well 

known effects on ecological processes in pyrophilic ecosystems (Certini 2005; Ficken & Wright 

2017; Butler et al. 2019), understanding the processes that are central to pyrophilic systems may 

help us forecast the effects of fire in less fire tolerant ecosystems under changing climate and fire 

regime conditions. 

 In pyrophilic ecosystems, interactions between fire and plants (i.e. fuels) engineer fire 

regimes (Birk & Bridges 1989; Beckage & Ellingwood 2008; Beckage et al. 2009, 2011; Platt et 

al. 2016) and determine the characteristics of individual fires (e.g. temperature, duration, and 

severity; Platt et al. 2016).  The fire regimes produced by interactions between fire and plant fuels 

select for fire adapted or tolerant plant taxa (Platt 1999; Keeley & Fotheringham 2000; Gagnon et 

al. 2010; Harms et al. 2017; Pyke 2017), which possess traits such as rapid post-fire resprouting 

and growth that can drive the rapid accumulation of new plant fuels (Birk & Bridges 1989; Brewer 

& Platt 1994; Whelan 1995; Bond & Keeley 2005; Beckage et al. 2011; Tiribelli et al. 2018).  The 
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quick build-up in plant fuels in turn favors recurrent fires of varying intensity and duration.  The 

close connection between fire and plant fuels implies that processes that modify plant fuel loads, 

may also drive feedbacks on future fires (Beckage et al. 2011).  Due to their clear importance in 

the fire regimes of pyrophilic systems, plant communities have historically received the most 

attention from fire ecologists.  This has largely left other ecological processes with the potential to 

modify plant fuels, such as those dominated by fungi (e.g. decomposition, pathogenicity, and 

mutualisms), unconsidered despite their potential to modify fire characteristics through their 

interactions with plant fuel loads.   

 Fungi play foundational roles in ecosystems and are affected by fire in ways that alter their 

community structure and function.  Fire restructures fungal communities by suppressing dominant 

taxa (Brown et al. 2013; Pressler et al. 2019; Semenova‐Nelsen et al. 2019), favoring species that 

can endure the passage of fire (Peay et al. 2009; Glassman et al. 2016a; Owen et al. 2019), and 

selecting for taxa that can survive in harsh, post-fire environments (Sharma 1981; Hamman et al. 

2007; Hansen et al. 2013).  Since fungi directly modify plant fuel loads through saprotrophic, 

mutualistic, and pathogenic interactions, fires that disproportionally effect certain taxa or 

functional groups could drive feedbacks on future fire characteristics.  For example, if fire largely 

removes surface associated decomposer and plant pathogen species, while leaving mycorrhizal 

mutualists unharmed, then this could favor the build-up of plant-fuels and plant fuel production.  

Furthermore, many fungal taxa follow seasonal trends in abundance (Harvey et al. 1978; Santos-

Gonzalez et al. 2007; Averill et al. 2019), and are intrinsically connected to ecological processes 

like nutrient cycles (Hanula et al. 2012; Fultz et al. 2016; Butler et al. 2019).  Since fungi are 

highly associated with their local environment (Tedersoo et al. 2014; Bahram et al. 2018; Delgado-
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Baquerizo et al. 2018; Averill et al. 2019), fire effects on microbes may also interact with seasonal 

trends and fire driven changes to ecosystems. 

 The tight associations between fungi and their local environment imply that fire driven 

changes to nutrient cycles and abiotic conditions may indirectly modify fungal effects on plant 

fuel loads across time.  Early after fire, when fire related mortality effects on fungal communities 

are strongest (Muñoz-Rojas et al. 2016; Smith et al. 2016; Semenova‐Nelsen et al. 2019), the post-

fire nutrient flush (e.g. C, N, and P; Neary et al. 1999; Johnson & Curtis 2001) and suppression of 

non-fire tolerant fungal taxa may govern microbial community structure and function.  However, 

with increasing time after fire, fire implicated nutrient loss due to erosion, wind, and leaching (Bell 

& Binkley 1989; Knelman et al. 2019), as well as inhospitable soil environments (e.g. hydrophobic 

and dry conditions; Iverson & Hutchinson 2002; MacDonald & Huffman 2004) may limit fungal 

function.  The lack of available nutrients and inhospitable conditions could slow fungal activities 

like decomposition due to high C:N ratios and low moisture conditions, which are less favorable 

for fungal function (Orchard & Cook 1983; Manzoni et al. 2010; Cornelissen et al. 2017).  Despite 

strong early effects on fungal communities and their function, fire effects on fungi may attenuate 

with time as fungi recover, recolonize, or disperse into burned areas, and plant fuel loads are 

replenished (Treseder et al. 2004; Hart et al. 2005; Bastias et al. 2006; Holden et al. 2013).  In 

summary, understanding how fire effects fungi and their roles in pyrophilic ecosystems is central 

to understanding the processes that engineer the fire regimes of pyrophilic ecosystems.  
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 I used four complementary experiments to elucidate fungal roles in the fire-fuel feedback 

processes that engineer pyrophilic 

ecosystems.  These experiments answered 

four primary questions: 1) Does fire have 

similar effects on fungal taxa and their 

seasonal trajectories across pyrophilic 

ecosystems (Fig.1 path 1), 2-3) Do fire 

regime components like fire history and 

intensity alter fungal functions like decomposition (Fig.1 path 2,3), and 4) Does fire modify biotic 

and abiotic conditions in ways that alter plant fuel production (Fig.1 path 4)?  We hypothesized 

that fire would shift fungal communities and their associated functions (e.g. decomposition, 

mutualisms, and pathogenic effects) in ways that modified plant fuel loads.  We specifically 

predicted that the recurrent, lower intensity fires common in pyrophilic ecosystems would favor 

similar fungal taxa and functional groups across pyrophilic ecosystems and alter fungal seasonal 

trajectories from nearby unburned sites.  We also predicted that as fires increased in frequency and 

intensity, that fungal functions like decomposition and involvement in plant biomass production 

would decrease.  I evaluated these questions by combining molecular, field, and greenhouse 

techniques to create a comprehensive picture of fungal roles in pyrophilic ecosystems.  My 

findings suggest that fungi are foundational members of pyrophilic ecosystems, and that their long 

term adaptation to recurrent fire helps promote the fire regimes that underlie pyrophilic systems 

(Fig.1 “Feedbacks to future fires” path). 

 

 

 

 

Figure 1: Fire-plant-fungi feedback model based on R-A-M 

model for pyrophilic plants (Platt 1999). 
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Chapter 1 - Fungal community structure and seasonal trajectories respond similarly to fire 

across pyrophilic ecosystems* 

 

Jacob R. Hopkins, Jean Huffman, William J. Platt, Benjamin A. Sikes 

 

* Hopkins, J.R., Semenova-Nelsen, T., Sikes, B.A. (2021). Fungal community structure and 

seasonal trajectories respond similarly to fire across pyrophilic ecosystems. FEMS Microbiology 

Ecology, 97.1, fiaa219. 

 

Abstract 

Fire alters microbial community composition, and is expected to increase in frequency due to 

climate change. Testing whether microbes in different ecosystems will respond similarly to 

increased fire disturbance is difficult though, because fires are often unpredictable and hard to 

manage. Fire recurrent or pyrophilic ecosystems, however, may be useful models for testing the 

effects of frequent disturbance on microbes. We hypothesized that across pyrophilic ecosystems, 

fire would drive similar alterations to fungal communities including altering seasonal community 

dynamics. We tested fire’s effects on fungal communities in two pyrophilic ecosystems, a Longleaf 

pine savanna and tallgrass prairie. Fire caused similar fungal community shifts including a) driving 

immediate changes that favored taxa able to survive fire and take advantage of post-fire 

environments, and b) altering seasonal trajectories due to fire-associated changes to soil nutrient 

availability. This suggests that fire has predictable effects on fungal community structure and intra-

annual community dynamics in pyrophilic ecosystems, and that these changes could significantly 

alter fungal function. Parallel fire responses in these key microbes may also suggest that recurrent 
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fires drive convergent changes across ecosystems, including less fire frequented systems that may 

start burning more often. 

 

Introduction 

Fire is a consistent disturbance in terrestrial ecosystems that shifts the composition of microbial 

communities.  The strength of these changes is largely determined by the historical fire regime, 

which can regulate how microbes and their associated functions change following individual fires 

(McMullan-Fisher et al. 2011; König et al. 2019; Pressler et al. 2019; Semenova‐Nelsen et al. 

2019).  As predicted, anthropogenic influence (Balch et al. 2017) and climate change (Liu & 

Wimberly 2016; Schoennagel et al. 2017) are increasing the frequency of wildfires. Understanding 

how increasing fire disturbance impacts microbial communities, which are foundational to 

terrestrial ecosystems, is critical to predict and mitigate ecosystem consequences.  Using 

experimental fires in many ecosystems to test these responses, however, are often dangerous or 

impossible.  In lieu of widespread, controlled fire experiments, pyrophilic (i.e. fire recurrent) 

ecosystems may provide models to test the potential effects of altered fire regimes since they are 

historically maintained by frequent fires (both natural and prescribed).  Recurrent fires in these 

systems has driven long-term adaptation of their biological communities to fire (Bowman et al. 

2009; Pausas 2015; Archibald et al. 2018). If repeated fires in distinct, pyrophilic ecosystems drive 

similar fire responses in microbial communities, it may support a more general framework to 

predict microbial responses to increased fire frequency. 

 Fungi are foundational microbes in most pyrophilic ecosystems, and fire directly alters 

their communities and function in ways that impact future fire disturbances.  Since fungi directly 

modify available plant fuels through saprotrophic, pathogenic, and mutualist interactions, fire 
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induced changes to fungal communities may drive feedbacks on the frequency and intensity of 

future fires.  The ability of fungi to modify fire regimes through their effects on plant fuels makes 

understanding fire effects on fungi important to our comprehension of the ecological processes 

that underpin pyrophilic ecosystems.  Across pyrophilic systems, fire restructures fungal 

communities by inducing mortality (Hamman et al. 2007; Dooley & Treseder 2012), suppressing 

dominant taxa (Brown et al. 2013; Pressler et al. 2019; Semenova‐Nelsen et al. 2019), and 

selecting for species that can withstand extreme fire temperatures and survive in harsh, post-fire 

environments (Hamman et al. 2007; Peay et al. 2009; Owen et al. 2019).  Certain fungal taxa or 

groups may be better at surviving fire than others, whether through thermotolerance and avoiding 

high temperatures via belowground sporocarps, or by taking advantage of post-fire conditions 

through stress tolerance, rapid colonization, and dispersal. This differential survival could alter 

community structure, and potentially shift fine fuel dynamics and feedbacks on future fires.  Many 

of these community shifts may take place immediately with fire, but others may alter the normal 

intra-annual dynamics of fungal communities.   

Many fungal taxa display seasonal trends, so apart from immediate community changes,  

fire could also change the seasonal trajectory of fungal communities.  Fungal mutualists like 

mycorrhizal fungi are key examples. Both arbuscular (AM) and ectomycorrhizal (EM) fungi 

provide plant hosts with nutrients (mainly P and N respectively) in return for carbon. Both groups 

also display seasonal peaks in abundance (Harvey et al. 1978; Santos-Gonzalez et al. 2007), and 

are strongly impacted by fire (Klopatek et al. 1988; Dhillion & Anderson 1993; Taudière et al. 

2017).  Fire is well known to decrease the richness and in situ colonization of AM and EM fungal 

communities (Dove & Hart 2017). In doing so, fire may suppress mycorrhizal fungi in ways that 

alter their function to plants at key life history stages (e.g. germination, growth, reproduction), 
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thereby limiting future plant fuel production.  Alternatively, fires early in the growing season are 

commonly used in ecosystem management and may benefit fuel production by reducing fungal 

plant pathogens in standing biomass (Hardison 1976; Katan 2000).  Despite the potential 

interaction between fire and fungal seasonal trends, few studies have explored how fire alters 

fungal community seasonal trajectories.  Natural seasonal turnover in fungal communities is 

expected regardless of fire, but fire may augment these seasonal dynamics.  Since fungal 

communities are highly associated with environment conditions, it is likely that both the direct (i.e. 

mortality) and indirect effects (i.e. changes to environmental conditions) of fire play important 

roles in shaping fungal communities across time. 

 The nature of fire’s effects on fungal communities likely changes in the seasons following 

fire.  While fire has well known short-term effects on fungal communities (Muñoz-Rojas et al. 

2016; Semenova‐Nelsen et al. 2019), how fire continues to alter fungal community dynamics after 

fires is less clear.  One way fire may alter fungal recovery time is by local changes to limiting 

nutrients.  Prescribed fires often drives a flush of nutrients immediately following the fire event 

(i.e. C, N, and P; Butler et al., 2018; Johnson and Curtis, 2001; Neary et al., 1999), but can drive 

a longer-term loss of nutrients due to erosion (Knelman et al. 2015), wind, and leaching, especially 

under high frequency fire regimes (Bell & Binkley 1989; Knelman et al. 2019).  The lack of 

available nutrients could slow fungal activities like decomposition if C:N and C:P ratios increase 

due to nutrient loss (Raison 1979; Butler et al. 2019).  Fire may also change the physical 

environment in ways that create inhospitable conditions for many fungal species (i.e. dry, 

hydrophobic soil; Iverson and Hutchinson, 2002; MacDonald and Huffman, 2004), thereby 

favoring stress tolerant taxa that can survive fire and/or take advantage of post-burn conditions 

through colonization and dispersal from nearby unburned areas.  Despite strong, early effects on 
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fungal communities, fire effects may attenuate with time as plants regrow, litter (e.g. fuels) 

replenishes, and fungi recolonize (Treseder et al. 2004; Hart et al. 2005; Bastias et al. 2006a; 

Holden et al. 2013).  These dynamic fire effects on fungal communities likely overlay, and interact 

with, seasonal changes in  fungal communities (Averill et al. 2019; Štursová et al. 2020).  

Understanding these interactions is central to understand and predict fire’s role in ecosystems and 

any feedbacks to future fires. 

 To address these questions, we sampled soil fungal communities and soil edaphic traits 

across the growing season following prescribed fires in two pyrophilic ecosystems: A Longleaf 

pine savanna and tallgrass prairie.  These systems represent intact, late-succession ecosystems that 

have been historically managed with frequent prescribed burning (detailed below in methods).  

Soil samples were collected at one to two month intervals following prescribed fires, and fungal 

communities were characterized with amplicon sequencing that targeted the ITS2 rDNA region.  

We hypothesized that fire would drive similar shifts in fungal community structure in both 

pyrophilic ecosystems, and that these changes would persist throughout the year following fire, 

but attenuate with time.  We expected that fire related differences in fungal community structure 

would reflect selection for fungal taxa that could survive the passage of fire and/or take advantage 

of post-fire environments.  We further hypothesized that fire would alter fungal seasonal 

trajectories (i.e. compositional changes between successive sampling times) such that fungal 

communities that experienced fire would display larger changes across seasons compared to those 

that did not burn. We predicted these seasonal dynamics in burned communities would be linked 

to fire-related changes in nutrient availability and environmental conditions.  Our findings suggest 

that fire causes parallel shifts in fungal community structure and seasonal trajectories across these 

pyrophilic ecosystems. 



11 
 

Methods 

Study Sites: We conducted our study in two pyrophilic ecosystems: A Longleaf pine savanna and 

tallgrass prairie.  Both represent key examples of pyrophilic ecosystems, and are maintained with 

frequent prescribed burns in order to mimic pre-colonial fire return intervals of 2-3 natural fires 

per decade (Platt 1999; Ford 2009).  Despite the overstory Longleaf pines, both sites host similar 

understory plant communities, including shared representative grass (Schizachyrium, Andropogon, 

and Sorghastrum) legume (Chamaescrista), and forb (Liatris) genera. 

The Longleaf pine savanna is an old-growth pine savanna on the Wade Tract (30˚ 45’ N; 

84˚ 00’ W; Thomas County, Georgia, USA; Fig.S1).  Surface soils are acidic, fine-textured sands 

with 50-100 cm deep A horizons over clay hardpans (Carr et al. 2009; Levi et al. 2010).  The open 

savanna/woodland physiognomy is characterized by overstory, EM fungal associated Longleaf 

Pines (Pinus palustris) and diverse herbaceous and AM fungal associated ground layer vegetation.  

Average annual precipitation for this site is 1350mm, with two peaks in seasonal rainfall (January 

- March, and June - August).  Prescribed fires have been instrumental in maintaining old-growth 

aspects of the Wade Tract over the past century. Traditional “open woods burning” involved 

annual-biennial, low-intensity late dormant and early growing season fires, typically in February-

March, from the early 1800s to 1978 (Crawford & Brueckheimer 2012).  Records indicate 25 fires 

at the site during the 3.5 decades between 1982 and 2016.  Fire return intervals averaged 1.5 years, 

with 90% occurring between mid-March and late June. 

 The two, remnant tallgrass prairies, Rockefeller (39° 2’ N; 95° 12’ W; Fig.S2) and Dogleg 

(39° 3’ N; 95° 11’ W; Fig.S2), are located at the University of Kansas Field Station (Leavenworth 

County, Kansas).  Surface soils at these adjacent sites are Pawnee series and Grundy silty clay 

loam (Dickey et al. 1977).  Both are characterized by diverse, AM fungal associated graminoid 
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and forb vegetation, with Rockefeller approximately 2.5 times the size of Dogleg prairie.  Average 

annual precipitation for these sites is 1013mm, with the majority occurring between April and 

September.  Both prairies are managed with low-intensity, prescribed fires in March-April, with 

occasional mowing to sustain the grassland structure, and fire return intervals of 1.5-2 years. 

2017 Prescribed Fires: Wade Tract prescribed fires took place on March 23rd  (Keetch-Byram 

Drought Index = 150) and April 12th (Keetch-Byram Drought Index = 105) in the east and west 

management units respectively. Drip torches ignited both fires along a central access road.  Back 

and flanking fires were ignited in the morning with winds of 11 – 30 km/hr and relative humidity’s 

ranging from 37% - 83%.  Flaming fronts were estimated at 0.5-1.5 m high, and fine fuel 

consumption was ~60-66% for both fires. 

 Prescribed fires at the Rockefeller prairie took place on April 7th.  Drip torches started the 

fire along a paved walking trail.  Flanking fires were used to ensure that the fire remained under 

control and limited to the Rockefeller prairie site.  Flaming fronts were estimated at 1-2 m high.  

The prescribed fire was intense enough to remove most vegetation, with only charred Blackberry 

stems (Rubus sp.) remaining.  Residual ash was primarily black in color with scattered white 

patches, and fine fuel consumption was approximately 50-60%. 

Sampling of Fungal Communities: Experimental plots (4m2) were established at the Wade Tract, 

Rockefeller prairie, and Dogleg prairies prior to prescribed fires in March (Rockefeller prairie and 

Wade Tract - East management unit) and April (Wade Tract - West management unit).  Note that 

the Dogleg prairie served as a “no burn” comparison for the Rockefeller prairie, due to its close 

proximity to Rockefeller unburned status in 2017.  This created 24 plots at the Wade Tract (15 

burned, 9 no burn), and 15 plots across the Rockefeller and Dogleg prairies (10 burned, 5 no burn).  

"No burn" sites at the Wade Tract were determined based on management records, GPS fire maps, 



13 
 

and on-site inspection.  Given the importance of overstory Longleaf pines in the Wade Tract pine 

savanna (Platt 1999), we further classified the Wade Tract sites into "near" (<10m from nearest 

overstory pine) or "away" (>10m from nearest overstory pine) from pines.  This classification was 

based on known differences in fire characteristics (e.g. temperature and duration) and microbial 

communities that are caused by larger amounts of pine needle fuels near overstory pines (Platt et 

al. 2016a; Semenova‐Nelsen et al. 2019; Hopkins et al. 2020).  This gave a final count of 13 "near" 

and 11 "away" plots. 

 A 2.5cm diameter soil corer was used to collect soil samples (~2.5cm deep) from the center 

of each plot.  Soils were sampled to this depth, because temperature related effects of fire are 

known to decrease rapidly with depth at this site (Hopkins et al. 2020).  Three total cores were 

collected (~50g total), and homogenized in sample bags to produce 1 sample per plot at each 

sampling time.  At the Wade Tract sites, soils were sampled 2 weeks prior to fire, then, 1, 2, 3, 4, 

5, 6, and 7 months post-fire.  At the two prairie sites, soils were sampled 2 weeks prior to and 

following fires, then at 1, 2, 4, 7, and 8 month intervals.  All samples were taken at least 30 cm 

from previous sample sites to avoid damage to soils.  To avoid inter-sample contamination, soil 

corers were sterilized with 1:9, bleach:isopropyl alcohol solution between plots.  Soil samples were 

deposited in sterile bags, kept on ice, and frozen at 20°C within six hours of sampling.  When 

necessary, samples were shipped overnight to the University of Kansas where they were stored at 

-80°C until processing.  Before downstream analyses, samples were thawed, homogenized, and 

subsampled.  A two gram subsample was taken for molecular analyses, and the remaining soil was 

sent to Kansas State Soil Testing Lab for chemical analyses 

Soil Chemical Analyses: Soil phosphorus content was measured using the Mehlich-3 method on a 

Lachat Quickchem 8000 (Lachat Instruments, Loveland, Colorado; (Mehlich, 1984).  Total soil 
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nitrogen and carbon samples were measured on a LECO TruSpec CN Carbon/Nitrogen 

combustion analyzer (LECO Corporation, St. Joseph, Michigan). 

DNA extraction and PCR: DNA was extracted from 0.25g of the molecular subsample using 

Machery-Nagel NucleoSpin® Soil kits (Machery-Nagel, Düren, Germany) and following the 

manufacturer’s protocol.  Then, a single step PCR was used to amplify the ITS2 rDNA region 

using the fITS7 (forward; Ihrmark et al. 2012) and ITS4 (reverse; White et al. 1990) primer pair.  

The PCR mix was: 0.8 µL of DNA, 8 µL of 5x Q5® buffer (New England Biosystems, Ipswich, 

Massachusetts), 0.8 µL of dNTPs (10mM), 2 µL each of forward and reverse primers (10mM), 0.4 

µL of Q5® High-Fidelity DNA polymerase (New England Biosystems), 8 µL of enhancer (New 

England Biosystems), and 17.8 µL of ddH2O to adjust reaction volume to 40 µL.  The PCR scheme 

followed Semenova-Nelsen et al. 2019: an initial denaturation step at 98˚C for 30 sec, followed by 

25 cycles of 98 ˚C for 10 sec, 57 ˚C for 30 sec, and 72 ˚C for 30 sec, and a final extension step at 

72 ˚C for 2 min, then held at 4 ˚C.  Products for all PCRs were checked using agarose gels to 

ensure successful amplification, and cleaned using Agencourt AMPure XP magnetic beads 

(Beckman Coulter, Indianapolis, Indiana). 

Library Preparation and Sequencing: Illumina MiSeq Nextera protocol was used to sequence 

fungal community samples.  Using a second PCR reaction, 12 bp sequence barcodes (Nextera 

indices, Illumina, San Diego, California) were added to samples.  The second “barcoding” PCR 

was similar to the first, except 5 µL of the primary PCR amplicon was used instead of 8 µL of the 

original DNA template, and the number of PCR cycles was set to eight.  Barcoded amplicons were 

purified with Agencourt beads (as above) and DNA concentrations were checked using a Qubit 

2.0 (LifeTechnologies, Carlsbad, California).  Samples were then pooled in equimolar 

concentrations into a single library and sequenced using an Illumina MiSeq (Illumina, San Diego, 
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California) with 300bp paired-end reads and V3 chemistry at the Kansas State Integrated 

Genomics Center.  Sequence data is deposited in the Genbank Sequence Read Archive (SRA) 

PRJNA626638. 

Bioinformatics:  Raw sequencing data were analyzed using Qiime v.1.9.1, following methods 

outlined in Caporaso et al. 2010.  Quality and barcode filtering resulted in 5M (of 21M input 

sequences) reads for the prairie sites and 5.5M (of 21.5M input sequences) for the pine savanna 

sites, with median lengths between 270 and 280.  Open-reference OTU picking was completed 

using Usearch 6.1 (Edgar 2010), and the UNITE fungal ITS reference database v7.2 “dynamic” 

(Abarenkov et al., 2010, accessed Sept. 2019) to cluster OTUs, and the Ribosomal Database 

Project Classifier 2.2 (Wang et al. 2007) to assign taxonomic identities to OTUs.  OTUs with less 

than five reads were removed to reduce sequencing artefacts (Lindahl et al., 2013), and DESeq2 

(Love et al., 2014) was used to normalize read counts across samples and OTUs due to differences 

in sequencing effort.  Bioinformatics scripts are included in the appendix. 

Statistical Analyses:  To contrast fire driven and seasonal changes in fungal communities, we used 

PRIMER 6 & PERMANOVA+ (Clarke & Gorley 2006).  Dissimilarity matrices from OTU tables 

were created using the Bray-Curtis index.  PERMANOVAs and apriori contrasts testing specific 

differences in fungal community structure between successive (i.e. intra-seasonal) sampling times 

were used to assess the effects of fire and time since fire on fungal communities in the tallgrass 

prairie sites, and the effect of fire, pine proximity, and time since fire on fungal communities in 

the Longleaf pine savanna site.  With tallgrass prairie samples, fire treatment and time since fire 

were treated as fixed effects, and plot as a random effect.  Plot was included to account for natural 

differences between plots across time, and to separate location based effects between the two 

prairies from fire treatment effects.  With Longleaf pine savanna communities, fire treatment, time 
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since fire, and pine proximity were treated as fixed effects and fire management unit was accounted 

for as a fixed effect.  Fire management unit was treated as a fixed versus random effect, as there 

were only two levels (e.g. East & West), instead of the 5 plus suggested for use as a random effect 

(Crawley 2002; Gelman 2005).  To assess fungal community shifts following fire, Longleaf pine 

savanna samples were grouped together across fire management units by time since fire.  Grouping 

Longleaf pine savanna samples in this way made them comparable to analyses in the tallgrass 

prairie sites.  Following PERMANOVAs, custom, apriori contrasts were used to test short-term or 

intra-seasonal (between successive sampling times) differences in fungal communities.  Results 

for both ecosystems were independently visualized using non-metric multidimensional scaling 

(NMDS).  Additionally, fire’s effect on fungal community dispersion was assessed using the 

PERMdisp function, which calculates the OTU dispersion heterogeneity (average intra-group 

variance) with respect to burn treatment.  

Using R v. 3.5.1 (R Core Team, 2013), differences in fungal communities, environmental 

effects, and species diversity were assessed and visualized based on fire treatment and time since 

fire using the envfit, CCA, and specnumber functions in the Vegan package (Oksanen et al. 2013).  

Fungal community diversity was calculated by quantifying raw OTU richness and the Inverse 

Simpson Index for each sample using the specnumber function, then treatment based differences 

in community diversity for post-fire samples were assessed using type III analysis of variance 

(ANOVAs) in the Emmeans package (Lenth 2018).  Environmental variables were projected onto 

ordinations using Pearson correlation coefficients, and experimental treatment effects on nutrient 

availability were assessed similarly to species diversity.  The resulting means were used to plot 

changes in nutrient availability over time.  We also used the indicspecies package (De Caceres & 

Jansen 2016), to identify fungal OTUs that were associated with burned and unburned sites.  In 
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longleaf pine savanna site, burned and unburned plots were interspersed, and we were able to 

directly compare indicator species between burned and unburned plots.  In the prairie, where 

burned plots were adjacent to unburned plots, we were concerned that spatial effects might lead to 

indicator species differences beyond those caused by fire alone. To account for this, we choose 

instead to contrast pre-fire and 2wk post fire samples in the burned plots alone.  Using the mulitpatt 

function in the indicspecies package, we inserted both OTU tables and allowed for 999 

permutations and a p-value cutoff of 0.05.  The indicspecies function tests the indicator value index 

of each OTU for a given treatment group by assessing 1) the OTU’s “specificity,” or the probability 

that a site belongs to the treatment group, given that the OTU is present (A statistic), and 2) the 

OTU’s “fidelity,” or the probability of finding a species in a site belonging to the specific treatment 

group (B statistic).  Note that the indicspecies function handles indicator species analysis for all 

taxa independently.  To help further avoid spurious results, species were only considered indicator 

species if their A statistic was at least 50%, their B statistic was at least 40%, and their indicator 

value index significance was below 0.05.  For species meeting these criteria, taxonomic and 

ecological data are mentioned in the results and provided in the Ch.1 appendix (Tables S9-S12). 

 

Results 

Fungal Data: Community sequence data revealed a highly diverse fungal community in the 

Longleaf pine savanna site.  A total of 8749 OTUs were identified, with 80% of classifiable OTUs 

representing 5 phyla, 25 classes, 87 orders, 195 families, and 2647 genera.  1686 OTUs were 

identified only to the kingdom level (Fungi), and 88 OTUs were either not fungi or unclassifiable 

and removed from downstream analyses.  Pine savanna communities were dominated by the 

Basidiomycota class Agaricomycetes (~26%), followed by the Ascomycota classes 



18 
 

Sordariomycetes (~17%), and Dothideomycetes (~10%), and four orders: Basidiomycota orders 

Agaricales (~8%) and Russulales (~6%), and Ascomycota orders Hypocreales (~6%) and 

Pleosporales (~5%).  The five most abundant OTUs were an unidentified Trichocomaceae species, 

the endophyte Umbelopsis diamorpha, an unidentified Geminibasidium species, the capsule 

forming Cryptococcus podzolicus, and an unidentified, basal lineages fungal species.  Note that 

many members of the family Aspergillaceae (i.e. Trichocomaceae) and genus Geminibasidium are 

able to survive in extreme conditions and are thermotolerant (McGee et al. 2006; Nguyen et al. 

2013). 

In the tallgrass prairies, a total of 8425 OTUs were identified, with ~76% classifiable OTUs 

representing 5 phyla, 24 classes, 90 orders, and 483 genera.  2036 OTUs were identified only to 

the kingdom level (Fungi), and 96 OTUs were either not fungi or unclassifiable and removed from 

downstream analysis.  Prairie fungal communities were dominated by three classes: Ascomycota 

classes Sordariomycetes (~27%) and Dothideomycetes (~18%), and the Basidiomycota class 

Agaricomycetes (~22%), and three orders: Ascomycota orders Hypocreales (~14%) and 

Pleosporales (~13%), and the Basidiomycota order Agaricales (~12%).  The five most abundant 

OTUs corresponded to an unidentified Pleosporales sp., an unidentified Periconia species, an 

unidentified Ascomycete, an unidentified Nectriaceae species, and an unidentified Sordariaceae 

species.  

Direct Effects of Prescribed Fire on Fungal Communities: In the longleaf pine savanna site, fungal 

communities varied based on the presence/absence of fire and location relative to Longleaf pines.  

As expected, burned fungal community composition was different than unburned community 

composition (PERMANOVA: F1,102 = 2.13, P = 0.001, R2 = 1.9%; Fig.1a, Table 1).  However, 

despite apparent fire driven shifts to fungal community structure, fire did not homogenize 
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communities found in burned vs. no burn plots (Beta-dispersion: F1,22 = 0.013, P = 0.931; Table 

2), or alter alpha diversity (OTU Richness: F1,19 = 1.33, P = 0.264, Fig.2a; Inverse Simpson: F1,19 

= 1.85, P = 0.189, Fig.2c; Table 3).  Proximity to overstory Longleaf pines also suggested that 

“near” and “away” fungal communities differed marginally (F1,102 = 1.35, P = 0.078, R2 = 1.2%; 

Table 1), and that this effect was modified by the presence/absence of fire (F1,102 = 1.64, P = 0.013, 

R2 = 1.4%; Table S1).  Specifically, differences between burned and unburned fungal communities 

were larger in near pines plots than in away from pines plots. 

 Within the tall grass prairie sites, fungal communities were also altered by prescribed fire.  

Fire treatment described the largest differences between fungal communities (F1,102 = 8.6781, P = 

0.001, R2 = 15%; Fig.1b, Table 4), but some of this was likely due to inherent site-based variation 

in fungal communities between the two prairies.  As in the Longleaf pine savanna, fire did not 

homogenize communities as both types of plots (i.e. burned and unburned) showed similar average 

dispersion of fungal communities (F1,20 = 1.939, P = 0.21; Table 5).  Fungal diversity, however, 

was marginally higher in burned sites when the Inverse Simpson Index was taken into account 

(OTU Richness: F1,13 = 2.41, P = 0.14, Fig.2b; Inverse Simpson, Fig.2d: F1,13 = 3.66, P = 0.078; 

Table 6).  In summary, fungal communities were altered by prescribed fire in both the Longleaf 

pine savanna and tallgrass prairie sites, with fire-driven changes primarily related to changes in 

community composition, and not the dispersion or richness of fungal communities. 

Fungal Community Seasonal Trajectory: In the Longleaf pine savanna, fungal communities 

exhibited seasonal changes that were modified by the presence/absence of fire.  Seasonal changes 

in fungal community composition were apparent across fungal communities (F7,102 = 2.08, P = 

0.001, R2 = 12.7%; Fig.3a-b, Table 1), with significant overall differences between successive 

sampling times (P < 0.05, Table S2-S3).  Specifically, fungal communities displayed substantial 
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shifts from previous sampling times until the 6-7 months  (October-November) after the start of 

the experiment.  Also, despite no significant overall interaction between time since fire and fire 

treatment (F6,102 = 0.973, P = 0.61; Table 1), apriori contrasts revealed significant fungal 

community shifts in burned plots, which exhibited distinct compositional changes between 

successive sampling times early after fire (e.g. pre-fire vs. 1month, 2 vs. 3 months, 3 vs. 5 months), 

however these differences were no longer apparent 4-6 months after fire (P < 0.05; Table S4-S5).  

Fungal communities in non-burned plots also displayed some changes between successive 

sampling times, however, unburned communities varied less across time and displayed smaller 

inter-sampling differences than burned fungal communities (Table S4-S5). 

 There were also strong seasonal changes in tallgrass prairie fungal communities that were 

altered in the presence of fire.  Fungal communities shifted seasonally (F6,102 = 2.1448, P = 0.001, 

R2 = 7.2%; Fig.3c-d, Table 4), but now there was a significant overall interaction between fire 

treatment and sampling time (F6,102 = 1.47, P = 0.001, R2 = 5%; Table 4, Table S6). Community 

shifts between pairs of successive sampling times were significant in burned, but not unburned 

prairie plots (P < 0.05, Table S7-S8).  Similar to fungal community shifts in the Longleaf pine 

savanna, fungal community turnover slowed around 7 months following fire (November).  In 

conclusion, fire altered the seasonal trajectories of fungal communities across the two pyrophilic 

ecosystems by making differences between successive sampling times larger in burned vs. 

unburned plots, and driving longer term (i.e. 1 yr.) differences between burned and unburned 

fungal communities. 

Indicator Species Analyses: Longleaf pine savanna indicator species reflected fire driven 

community shifts that favored fungi able to survive the short and longer term effects of fire.  Taxa 

identified as indicators in the burned plots (Table S9) were either truffle forming mycorrhizae like 
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Hydnangiaceae and Rhizopogon, or able to survive in the extreme conditions following the passage 

of fire like Geminibasidium (Nguyen et al. 2013), Chaetothyriales (Sterflinger et al. 1999; 

Villaseñor 2004), and Aspergillaceae (McGee et al. 2006).  Taxa identified as indicators in 

unburned plots (Table S10), however, were largely plant pathogens like Trimmatostroma (Dick & 

Gadgil 2009), Myrothecium (Chen 2016), and Mycosphaerellaceae (Taylor et al. 2003), or 

saprotrophs like Preussia (Kirk et al. 2008) and many Dothideomycetes. 

 Tallgrass prairie indicator species reflected similar trends as pine savanna taxa, as the 

burned sites contained species known to survive extreme temperatures and thrive in post-fire 

environments.  Two weeks after fire, taxa known to rapidly colonize burned soils like Cortinarius 

(McMullan-Fisher et al. 2011), Talaromyces (Sharma 1981), and Pyronemataceae (Hansen et al. 

2013), as well as wood associated saprotrophs like Lophiostoma (Holm 1988), Coprinellus (Peiris 

et al. 2007), Lasiosphaeriaceae (Cannon & Kirk 2007), and Urnula (Huffman 2008) were 

representative of burned communities (Table S11).  Unburned, pre-fire indicator taxa (Table S12) 

were taxa known to contain plant-associated pathogens like Tubeufiaceae (Rossman 1987), 

Trimmatostroma (Dick & Gadgil 2009), Phoma (Kirk et al. 2008), Zymoseptoria (Quaedvlieg et 

al. 2011), and Mycosphaerellaceae (Taylor et al. 2003), as well as saprotrophic taxa like 

Cryptococcus (May et al. 2016), Phaeosphaeriaceae (Cannon & Kirk 2007), Periconia 

(Markovskaja & Kačergius 2014), and Bullera (Nakase & Suzuki 1986).  In summary, the 

indicator taxa for burned plots were taxa known to rapidly colonize and survive in post-fire 

environments, while the unburned indicators were predominantly plant pathogenic and 

saprotrophic taxa. 

Indirect Effects of Prescribed Fire on Fungal Communities:  Fire altered nutrient levels in 

Longleaf pine savanna sites, however these changes were only correlated with shifts in fungal 
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communities 3 months after fire (Table S13).  Soil carbon, nitrogen, and phosphorus levels did not 

vary significantly with time (C: F6,63=0.003, p = 1; N: F6,63=0.082, p=0.99; P: F6,63=0.074; p=0.99; 

Fig.4a,c,e; Tables S14-16), but C and N were generally higher in burned sites (C: F1,63=6.68, 

p=0.01; N: F1,63=5.34, p=0.02; Fig.4a,c), and P levels were higher in burned plots near overstory 

Longleaf pines (F1,63=8.18, p<0.001; Fig.4e).  Despite fire induced differences in nutrient 

availability between treatments, nutrients were only associated with fungal community structure 

three months after fire (P<0.05; Table S13), when decreased P in burned sites was associated with 

fungal community structure. 

 Unlike in the savanna system, fire induced changes to nutrient availability were clearly 

associated with fungal community structure in the tallgrass prairie sites (Table S17).  The largest 

differences in C, N, and P  levels were due to differences between fire treatments (C: F1,89=55.3, 

p<0.001; N: F1,89=61.2, p=0.001; P: F1,89=13.4; p<0.001; Fig.4b,d,f, Table S18-20) and sampling 

times (C: F6,89=8.3, p<0.001; N: F6,89=7.1, p<0.001; P: F6,89=3.2, p<0.001).  C, N, and P levels 

were generally higher in the burned, Rockefeller prairie, but followed similar seasonal patterns in 

both prairies (Fig.4b,d,f).  Carbon, nitrogen, and phosphorus levels decreased early after fire (2 

weeks – 2 months), but began to increase starting around 3 months.  Despite similar seasonal 

changes in nutrient levels between the burned and non-burned prairies, fungal community shifts 

from 2 weeks – 2 months were tightly correlated with C, N, and P loss in the burned prairie plots, 

and this relationship attenuated with time (Table S17).  Similar associations between fungal 

communities and C, N, and P were not observed in the unburned prairie plots.  In summary, fires 

altered nutrient availability similarly across both pyrophilic systems but changes to nutrient 

availability were more associated with fungal communities in the tallgrass prairie sites. 
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Discussion 

Fire altered the structure and seasonal trajectories of fungal communities in a similar manner across 

Longleaf pine savanna and tallgrass prairie sites.  The fungal community responses to fire observed 

here mirror changes in other pyrophilic systems: Mediterranean shrublands (Goberna et al. 2012), 

oak savannas (Ponder et al. 2009), Loblolly pine forests (Brown et al. 2013), and Ponderosa pine 

forests (Stendell et al. 1999; Hamman et al. 2007), suggesting there are generalizable fungal 

community responses to fire.  The Longleaf pine savanna and tallgrass prairie ecosystems are 

distinct in several ways, including  vegetation, (overstory pines vs grassland vegetation only) 

mycorrhizal status of plants (mixed EM and AM vs AM dominated), and climate (sub-tropical 

versus temperate).  Despite these key differences, fire favored fungal taxa with similar traits (e.g. 

thermotolerance, drought tolerance, or effective post-fire colonization/dispersal ability) in both 

systems and caused similar shifts in fungal seasonal trajectories.  These shifts were largely due to 

compositional turnover and suppression of dominant taxa, rather than mortality and loss of taxa 

alone.  These effects are distinct from wildfire effects in less fire tolerant systems (Glassman et al. 

2016; Dove & Hart 2017; Day et al. 2019), where rarer, high intensity fires often drive fungal 

mortality and declines in species richness (Treseder et al. 2004; Glassman et al. 2016; Dove & 

Hart 2017; Day et al. 2019).  However, both pyrophilic (Brown et al. 2013; Semenova‐Nelsen et 

al. 2019) and less fire tolerant ecosystems (Bastias et al. 2006a; Glassman et al. 2016; Smith et al. 

2016; Owen et al. 2019) contain fungal taxa able to survive fire and rapidly take advantage of post-

fire environments in ways that may alter their seasonal trajectory as they did here. 

 Fire interacted with seasonal trends in fungal community structure to influence fungal 

seasonal trajectories following fire.  As expected, fungal community composition in burned and 

unburned plots changed across time (i.e. natural seasonality; Dhillion and Anderson 1993; Averill 
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et al. 2019; Štursová et al. 2020), however, changes in burned fungal communities were often 

larger, and varied more between successive sampling times than did unburned communities.  The 

larger, fire-associated changes in burned communities altered their seasonal trajectories from 

fungal communities in nearby unburned plots, producing distinct burned and unburned 

communities that were maintained throughout the year following fire.  These larger shifts in burned 

communities were likely due to the suppression of dominant fungi (Hansen et al. 2019; Semenova‐

Nelsen et al. 2019) that allowed for greater turnover with the growing season and new fungal 

dispersal and growth.  Fire’s effects on fungal communities did attenuate with time, however, 

likely reflecting the regrowth of host plants, replenishing litter fuel loads, and post-fire fungal 

recovery and dispersal effects (Treseder et al. 2004; Hart et al. 2005; Bastias et al. 2006a; 

Bárcenas-Moreno et al. 2011; Holden et al. 2013).  Since burned and unburned communities 

remained distinct throughout the study (~1 yr.), this may suggest that post-fire priority effects 

(Kennedy & Bruns 2005; Glassman et al. 2016) can promote alternative fungal assemblages.  As 

fires continue to increase, these priority effects may drive larger and larger differences in seasonal 

trajectories between burned and unburned fungal communities, and contribute to inter-annual 

variations in fungal community structure (Bastias et al. 2006a; Cairney & Bastias 2007; Egidi et 

al. 2016). 

 Fire related shifts in fungal community structure, were at least in part associated with fire-

driven changes to nutrients, possibly reflecting an initial, post-fire nutrient flush (Certini 2005). 

This relationship was only clear in tallgrass prairie fungal communities which were linked  to early 

shifts in C, N, and P levels, whereas these relationships were only present in in the Longleaf pine 

savanna communities at 3 months after fire.  The differences in fungal responses to nutrient levels 

may be due to differences in soil type. As across the Southeast Coastal Plain, these pine savanna 
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sites have nearly pure-sand top soils (~99% sand, 1% silt), which can accelerate post-fire nutrient 

leaching and loss, particularly following annual prescribed fires (Bell & Binkley 1989; Certini 

2005).  The importance of fire driven changes to nutrients declined with time, but fungi able to 

survive fire and thrive in these post-fire environments created persistent community differences. 

 Indicator taxa in burned plots possessed traits that can help resist high temperatures and 

post-fire conditions.  The indicator taxa for fire differed between pine savanna and tallgrass prairie 

sites, likely due to differences in available species pools between the two systems (i.e. mix of AM 

and EM associated species in pine savannas, and predominantly AM associated species in prairies). 

Yet in both systems, indicator species represented known thermo- and drought tolerant fungal 

species including such as Geminibasidium in burned Longleaf pine savanna plots, as well as rapid 

post-fire colonizers like Talaromyces (Sharma 1981; McMullan-Fisher et al. 2011) and 

Pyronemetaceae (Hansen et al. 2013) in the post-fire tallgrass prairie plots.  In both sites, fires 

remove most aboveground plant biomass and left sites exposed to the wind and sun, which likely 

favored drought-tolerant taxa.  Drought-tolerant fungi proliferate after fires (Persiani & Maggi 

2013), and our data suggest that adaptation to post-fire conditions is just as important as fire 

resistance alone, given that drought tolerant taxa were indicative of burned sites at all sampling 

times in our study.  Many indicator taxa of burned plots were also either wood decomposers or 

truffle forming fungi (mycorrhizal).  Wood decomposers may be shielded from low-severity 

prescribed fires, and fires may modify substrates in ways that allow them to proliferate or readily 

disperse after fire (McMullan-Fisher et al. 2011; Hanula et al. 2012). Similarly, truffle forming 

mycorrhizal species may be insulated from fire both by the soil and within plant roots (Carson et 

al. 2019), which may explain why Rhizopogon and Hydnangiaceae species were indicative of 

burned pine savanna sites, a pattern well-supported in other systems (Klopatek et al. 1988; Horton 
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et al. 1998; Baar et al. 1999; Glassman et al. 2016; Owen et al. 2019).  If low-intensity fire favors 

functional groups like wood rot and truffle forming mycorrhizal fungi, decomposition of fine plant 

fuels (i.e. non-woody litter) may slow and future plant fuel production may be favored respectively 

(Ficken & Wright 2017; Semenova‐Nelsen et al. 2019; Hopkins et al. 2020).  These changes could 

increase fine fuel loads over time, and increase the likelihood or spread of future fires in pyrophilic 

ecosystems. 

 Over time, as recurrent fires reduce fuel loads in long unburned systems (Kalies & Yocom 

Kent 2016), and fires decrease in intensity, less fire tolerant systems may start to approximate fire 

recurrent, pyrophilic systems.  High intensity wildfires differ significantly from lower intensity 

prescribed fires, yet frequent fires in pyrophilic systems may be the safest method for testing the 

effect of altered fire regimes on fungal communities.  Non-pyrophilic systems may start to 

experience increased fires both as a result of climate change (Liu & Wimberly 2016) and the 

increased usage of prescribed burns in land management to prevent wildfires (Kolden 2019).  As 

these systems burn, soil microbial dynamics in less fire tolerant and long unburned systems may 

start to parallel those seen in pyrophilic systems, with concomitant changes to ecological processes 

like nutrient cycling (Ficken and Wright, 2017; Hopkins et al., 2020).  Recent wildfires have shown 

that fire tolerant taxa are already present in long unburned ecosystems and increase in abundance 

following fire (Reazin et al. 2016; Smith et al. 2016; Hughes et al. 2020).  Improving our 

understanding between microbial community structure, seasonality, and function in fire recurrent 

ecosystems may therefore provide a more generalizable model for predicting future changes with 

more frequent fires. 

 In conclusion, our research demonstrates that fire drives comparable changes to fungal 

communities across pyrophilic ecosystems.  In both prairie and pine savanna systems, fire driven 
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changes reflected patterns consistent with selection for fire tolerant traits, community turnover, 

and changes to the local environment.  Furthermore, fire driven changes altered the seasonal 

dynamics of fungal communities that naturally occur in the absence of fire.  The similarity of fire 

driven shifts to fungal communities (Bárcenas-Moreno et al. 2011; Carson et al. 2019; Owen et 

al. 2019), suggests that pyrophilic systems may provide a useful model for assessing the influence 

of increased fires on microbial communities in less fire tolerant ecosystems, even if fires there are 

initially high intensity.  Understanding fire’s effects on microbes like fungi can improve our 

knowledge of the ecological processes that underpin terrestrial ecosystems and help ensure their 

resilience. 
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Chapter 1 - Tables 

 

Table 1: Longleaf pine savanna prescribed fire and sampling time effects on fungal communities 

PERMANOVA table.  All tests used 999 permutations. 

Factor d.f. Pseudo-F P-value % Variance Explained 

fire treatment 1 2.1304 0.001*** 1.9 

time 7 2.0751 0.001*** 12.7 

pine proximity 1 1.3461 0.078* 1.2 

side 1 2.4268 0.001*** 2.1 

fire x time 6 0.97346 0.61 5.1 

fire x pine 1 1.6375 0.013** 1.4 

time x pine 7 0.89878 0.895 5.5 

* ≤ 0.1, ** ≤ 0.05, *** ≤ 0.001 

 

Table 2: Longleaf pine savanna fungal community multivariate homogeneity of groups dispersion 

table.  All contrasts used 999 permutations, and p-values were derived from permutations. 

Factor d.f. F-value P-value 

fire treatment 1 0.013 0.931 

time 7 2.9 0.04** 

fire x time 14 2.52 0.34 

* ≤ 0.1, ** ≤ 0.05, *** ≤ 0.001 

Table 3: Fire effects on Longleaf pine savanna fungal community OTU richness and Inverse 

Simpson Index values. 

Response Term d.f.1 d.f.2 F-ratio P-value 

OTU Richness 

fire treatment 1 19.19 1.325 0.2638 

time 6 2.97 1.891 0.3226 

pine proximity 1 19.18 1.9 0.1839 

fire x time 6 47.86 1.158 0.3444 

fire x pine 1 19.16 1.634 0.2165 

time * pine 6 47.86 0.812 0.566 

  fire * time * pine 6 47.86 0.935 0.4789 

      

Inverse Simpson 

Index 

fire treatment 1 19.2 1.854 0.1891 

time 6 5.58 1.733 0.2685 

pine proximity 1 19.16 2.108 0.1627 

fire * time 6 47.89 1.432 0.2221 

fire * pine 1 19.12 1.246 0.2782 

time * pine 6 47.89 0.798 0.5761 

fire * time * pine 6 47.89 0.975 0.4524 

*: p < 0.1, **: P < 0.05   
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Table 4: Tallgrass prairie prescribed fire and sampling time effects on fungal communities 

PERMANOVA table.  All tests used 999 permutations. 

Factor d.f. Pseudo-F P-value % Variance Explained 

fire treatment 1 8.6781 0.001*** 14.9 

time 6 2.1448 0.001*** 7.2 

plot 14 3.3192 0.001*** 26 

fire x time 6 1.47 0.001*** 5 

* ≤ 0.1, ** ≤ 0.05, *** ≤ 0.001 

 

Table 5: Tallgrass prairie fungal community multivariate homogeneity of groups dispersion table.  

All contrasts used 999 permutations, and p-values were derived from permutations. 

Factor d.f. F-value P-value 

fire treatment 1 1.9393 0.208 

time 6 0.38675 0.911 

fire x time 13 1.2126 0.864 

* ≤ 0.1, ** ≤ 0.05, *** ≤ 0.001 

 

 

Table 6: Fire effects on tallgrass prairie fungal community OTU richness and Inverse Simpson 

Index values. 

Response Term d.f.1 d.f.2 F-ratio P-value 

OTU 

Richness 

fire treatment 1 13 2.412 0.1443 

time 6 63 2.744 0.0263** 

fire * time 6 63 1.884 0.1096 

    

Inverse 

Simpson 

Index 

fire treatment 1 13 3.655 0.0781* 

time 6 63 2.706 0.0195** 

fire * time 6 63 1.02 0.4189 

*: p < 0.1, **: P < 0.05   
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Chapter 1 - Figures 

 

 

Figure 2: Non-metric multidimensional ordinations for burned and non-burned fungal 

communities.  Ellipses represent the standard deviation of each burn treatment group (black = no 

burn, red = burned).  a) Longleaf pine savanna fungal communities.  b) Tallgrass prairie fungal 

communities. 
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Figure 3: OTU richness and Inverse Simpson Index values for Longleaf pine savanna and 

tallgrass prairie fungal communities.  Box charts display the mean, lower & upper quartiles, 

and extremes.  Outliers are denoted with solid black points. a) OTU richness of Longleaf pine 

savanna and b) tallgrass prairie fungal communities did not differ between burned and unburned 

sites.  c) Average Inverse Simpson Index value for Longleaf pine savanna fungal communities 

did not vary significantly between burned and unburned sites, however, d) Inverse Simpson 

Index values were marginally higher for fungal communities in burned tallgrass prairie sites 

relative to unburned sites. 
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Figure 4: Canonical correspondence analysis ordinations for burned and non-burned fungal 

community composition across time.  Prescribed fires occurred between March and April of 

2017, and sampling times reflect time since fire.  Total Carbon, total nitrogen, and P were 

projected onto ordinations using Pearson correlations.  In Longleaf pine savanna sites a) 

burned fungal communities differed between successive sampling times, while c) non-burned 

fungal communities only showed longer term differences in composition.  In tallgrass prairie 

sites c) burned communities shifted between successive sampling times, where d) non-burned 

communities differed primarily across longer intervals of time. 
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Figure 5: Carbon, nitrogen, and phosphorus levels following prescribed burns.  Points represent 

mean C, N, and P at each sampling time, solid lines and points correspond with near pines sites, 

dashed lines and open points correspond with away from pines sites.  Error bars represent the mean 

+/- one standard error.  a) Total soil carbon (%) in Longleaf pine savanna and in b) tallgrass prairie 

sites.  c) Total soil nitrogen (%) in Longleaf pine savanna and d) tallgrass prairie sites.  e) Natural 

log inorganic phosphorus (ppm) in Longleaf pine savanna and f) tallgrass prairie sites.   
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Chapter 2 - Frequent fire slows microbial decomposition of newly deposited fine fuels in a 

pyrophilic ecosystem* 

 

Jacob R. Hopkins, Jean Huffman, William J. Platt, Benjamin A. Sikes 

 

* Hopkins, J.R., et al. (2020). Frequent fire slows microbial decomposition of newly deposited 

fine fuels in a pyrophilic ecosystem. Oecologia 193(3), 631-643. 

 

Abstract 

Frequent fires maintain nearly 50% of terrestrial ecosystems, and drive ecosystem changes that 

govern future fires.  Since fires are dependent on available plant or fine fuels, ecosystem processes 

that alter fine fuel loads like microbial decomposition are particularly important and could modify 

future fires.  We hypothesized that variation in short-term fire history would influence fuel 

dynamics in such ecosystems.  We predicted that frequent fires within a short-time period would 

slow microbial decomposition of new fine fuels.  We expected that fire effects would differ based 

on dominant substrates and that fire history would also alter soil nutrient availability, indirectly 

slowing decomposition.  We measured decomposition of newly deposited fine fuels in a Longleaf 

pine savanna, comparing plots that burned 0, 1, 2, or 3 times between 2014 & 2016, and which 

were located in either close proximity to or away from overstory pines (Longleaf pine, Pinus 

palustris).  Microbial decomposition was slower in plots near longleaf pines and, as the numbers 

of fires increased, decomposition slowed.  We then used structural equation modeling to assess 

pathways for these effects (number of fires, 2016 fuel/fire characteristics, and soil chemistry).  

Increased fire frequency was directly associated with decreased microbial decomposition.  While 
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increased fires decreased nutrient availability, changes in nutrients were not associated with 

decomposition.  Our findings indicate that increasing numbers of fires over short time intervals 

can slow microbial decomposition of newly deposited fine fuels.  This could favor the fine fuel 

accumulation and drive positive feedbacks on future fires. 

 

Introduction 

Fire is a consistent disturbance in terrestrial ecosystems that profoundly changes biological 

and biogeochemical processes.  Although often thought of as rare, catastrophic events (Bowman 

et al. 2009), frequent fires are necessary to maintain nearly 50% of terrestrial ecosystems including 

grasslands, savannas, and many Mediterranean-type ecosystems (Archibald et al. 2018).  Since 

wildfire frequency is expected to increase due to human influence (Balch et al. 2017) and climate 

change (Liu and Wimberly 2016, Schoennagel et al. 2017), understanding how ecosystems 

respond to frequent fire is important for their preservation and maintenance.  While directly 

manipulating aspects of fire regime is impossible in many systems, prescribed fire in naturally fire-

frequented ecosystems may represent a conservative model to predict the pathways through which 

increased fire frequencies can impact systems that otherwise rarely experience fire. 

 Frequent fires in grasslands and savannas alter organisms and their environment in ways 

that can impact subsequent fires.  The fine fuels produced by fire-adapted plants (i.e. their litter) 

are key examples, as frequent fires favor plant species that rapidly recover following fire and 

produce biomass that fuels future fires (Whitlock et al. 2003, Beckage et al. 2009, Cornelissen et 

al. 2017).  By favoring fire adapted plant species, characteristics of previous fires can create a 

feedback, through the rapid production of fine fuels that control the spread and intensity of new 

fires (i.e. short-term fire history; Neary et al. 1999, Ficken and Wright 2017). Fine fuel 
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accumulation, however, is also governed by other processes like microbial decomposition, which 

may also produce feedbacks based on fire history (Butler et al. 2019).  Quantifying the pathways 

by which fire history impacts decomposition is critical for the maintenance of fire-frequented 

ecosystems and predicting potential mechanisms by which frequent fires impact other systems.  

 Repeated fires directly govern microbial decomposition by altering fine fuel loads and 

shaping the microbial communities that control fuel decay.  The strength of fire’s effect on 

decomposition is constrained by fire regime components like fire history, which can determine the 

quantity of available fine fuels and the intensity of future fires.  For example,  longer fire return 

intervals result in increased fuel loads  (Archibald et al. 2013, Harris et al. 2016) and longer 

recovery times for microbes, while shorter fire return intervals, or frequent fires, can decrease plant 

fuel loads and microbial recovery times due to repeated combustion (Platt et al. 2016).  When 

combined with natural variations in fuel load production (i.e. tree-grassland matrices of savannas; 

Platt et al. 2016), this can produce fires of varying frequencies and intensities that drive differential 

mortality of microbial decomposers and slow decomposition depending on location.  Since fire 

can cause the mortality of microbial decomposers and filter communities for particular functional 

groups (Dooley and Treseder 2012, Ferrenberg et al. 2013, Brown et al. 2013), understanding how 

fire-history and intensity alters microbial decomposition can clarify the dynamics of fire-microbe-

plant interactions in pyrophilic ecosystems.  If microbial decomposition is strongly altered by fire, 

this could directly shift new fine fuel accumulation rates and affect the intensity and likelihood of 

future fires. 

Fire regimes also influence the substrates and nutrients available for microbial 

decomposition, which may create indirect pathways for fire feedbacks.  Fine fuel traits (e.g. carbon 

to nitrogen ratio and lignin content) directly govern decomposition (Manzoni et al. 2010), and also 
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determine the duration and intensity of fires (Demirbaş 2001).  For example, the larger quantities 

of needles near longleaf pines can increase local fire intensities (Platt et al. 2016), and are also 

harder to decompose than grass and forb litter.  As such, fire histories that change the composition 

of new fine fuels may change both the substrates available to microbial decomposers, and fire's 

direct effects on them.  Fire history can also govern stoichiometry through fire effects on limiting 

nutrients like nitrogen (N) and phosphorus (P) (Raison 1979, Butler et al. 2018).  Rapid post-fire 

decomposition may be favored by N and P mineralization if enzyme production and microbial 

growth would be otherwise limited.  Longer intervals between fires can allow fuels to build-up, 

and increase fire intensity to the point where temperature-sensitive elements like N are volatilized 

(Raison 1979).  N availability then may vary with fire due to interactions between fire history and 

intensity (i.e. maximum temperature and duration).  Low N availability may a) slow decomposition 

if N-limited microbes cannot make enzymes or b) accelerate decomposition if microbes can make 

enzymes, and rapidly decompose new fuels to acquire N and other limiting nutrients lost with fire 

(Parnas 1975).  Apart from individual fire intensity, repeated fires decrease nutrient availability 

(Bell and Binkley 1989), and drive leaching that could slow microbial decomposition.   

These combined effects of short-term fire history on substrates and nutrients likely 

combine with direct fire effects to determine microbial decomposition of fuels.  While single fires 

can slow decomposition and promote fuel accumulation (Semenova-Nelsen et al. 2019), increasing 

the number of fires within a short period could produce synergistic effects that further slow 

decomposition.  These effects could result from both the direct and indirect effects of fire on 

microbial decomposition mentioned above.  We hypothesized that increasingly frequent fires 

would slow decomposition, and that fire would impact decomposition through mechanisms related 

to fire characteristics and nutrient availability.  We also hypothesized that natural variations in the 
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type and quantity of fine fuels would slow decomposition independently of fire history due to 

substrate differences (Taylor et al 1989). 

We manipulated short-term fire history in an old-growth Longleaf pine savanna to evaluate 

the effect of fire history on the microbial decomposition of fine fuels. Pine savannas offer ideal 

systems for testing our hypotheses because: organisms there have long co-evolutionary histories 

with fire (Noss et al. 2015), fire history can be experimentally manipulated, and the spatial 

heterogeneity of the savanna produces variation in dominant vegetation and the fuels microbes 

decompose.  We used mesh litter bags to measure microbial decomposition of new, post-fire fine 

fuels.  Decomposition was assessed both near and away from pines, to reflect differences in fine 

fuel substrates (Ellair and Platt 2013, Platt et al. 2016) and microbial communities (Semenova-

Nelsen et al. 2019).  We first assessed the impact of fire history and pine proximity on microbial 

decomposition rate constants (k) during the year following 2016 fires.  We then used structural 

equation modeling (SEM) to assess the relative importance of direct and indirect mechanisms on 

decomposition following prescribed fires.  In addition to fire history, edaphic properties, fire 

characteristics, and fine fuel traits in 2016 were all analyzed as potential drivers of microbial 

decomposition.  The resulting SEM model allowed us to identify the primary pathways through 

which fire history altered microbial decomposition of fine fuels.  

 

Methods 

Field Site: We conducted our study on the Wade Tract (30o 45’ N; 84o 00’ W; Thomas County, 

Georgia, USA). Situated on moderately dissected terrain 25-50 m above sea level in the Red Hills 

region of northern Florida-southern Georgia, the 80 ha preserve is characterized by a warm-

temperature climate, with a growing season of 10-11 months, a mean annual temperature of 
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19.6°C, and average precipitation of ca. 1,350 mm that tends to bimodally distributed during the 

summer and winter months.  Surficial soils are acidic, fine-textured sands with A horizons 50-100 

cm deep over a clay hardpan (Typic and Arenic Kandiudults; Carr et al. 2009, Levi et al. 2010).  

Natural fires in this site tended to occur every 1-3 years, generally during a fire season that spanned 

dry springs to wet summers, when annual thunderstorms first occurred (Platt et al. 2015, Rother et 

al. 2018).  Historical “open-woods burning” and more recently prescribed fires, have maintained 

the open savanna/woodland physiognomy (Platt et al. 1988, Gilliam and Platt 1999, Mugnani et 

al. 2019).  The ground layer vegetation and litter on the site has burned annually-biennially (return 

intervals averaging 1.5 years) during prescribed fires between March and June using drip torches, 

1-2 weeks after rain at relative humidity of 50-60% and winds 10-20 km/hr.  Flame heights during 

burns can reach 1-2 m, and generally result in 60-90% removal of accumulated fine fuels.  

2014 Field Plots: We established experimental plots in mid-June 2014, following 2014 prescribed 

fires.  These fires produced large unburned patches in a matrix of burned vegetation. We  randomly 

selected 24 unburned patches, 12 in each of two fire management units.  Within each fire 

management unit, 6 patches were near (<5 m) and 6 patches were away (>10 m) from overstory 

pines.  We then randomly selected 24 similar sized burned patches (12 near pines, and 12 away 

from pines), such that each burned plot was near an unburned patch.  Thus, 24 unburned and 24 

burned patches were evenly distributed across two fire blocks and relative to overstory pines 

(Table 7).  Each patch was at least 5 m in diameter to minimize fire-edge effects, and did not 

contain large amounts of woody debris such as fallen trees or large branches.  Within each patch, 

we established randomly located, 1x1 m sampling plots for downstream measurements.  Note that 

these plots were same as used in Semenova-Nelsen et al. 2019.  This allowed us to test both the 
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effects of increased fire frequency, as well as the presence/absence of fire on microbial 

decomposition. 

Short-term fire regimes: We generated differences in short-term fire histories (2014-2016) by 

manipulating fire regimes.  The different fire histories are depicted in Table 7.  In 2014, unburned 

and burned plots were selected based on patchiness of prescribed fires conducted that year.  In 

2015, we manipulated prescribed fires by burning only one fire block, so that half of the 

experimental plots burned.  Then, in 2016 all plots burned during prescribed fires.  We thus 

generated replicated plots with patterns of 1, 2, and 3 fires; six plots with each fire history were 

located near and away from pines.  Following the 2016 fires, we used fire maps to identify patches 

that did not burn in 2014, 2015, or 2016; we randomly selected 12 of these patches, 6 near pines 

and 6 away from pines, and established an additional plot in each. This generated a total of five 

short-term fire histories that involved 0 (0-0-0), 1 (0-0-1), 2 (1-0-1, 0-1-1) and 3 (1-1-1) fires over 

the three-year study period (Table 7).  

We conducted prescribed fires similarly from 2014-2016. All were ignited and occurred 

under similar conditions. In all three years, head and flanking fires were ignited in the two fire 

management units between mid-March and early May under Keetch-Byram Drought Indices of 

60-250 using drip torches. Fine fuel consumption in burned patches was estimated each year as 

60-80%. Because fires were conducted under similar weather conditions and times of the year, 

short-term fire histories in Table 7 were considered to differ mainly in the numbers of fires.  

In 2016 we explored fuel-fire relationships and measured characteristics of fires in the 

plots.  First, we measured fine fuels, pre- and post-fire, in the 48 plots using procedures outlined 

in Platt et al. 2016. We established pairs of 30 x 30 cm subplots adjacent to each of the 1m2 plots. 

For each plot, we randomly selected one subplot and collected above ground fuels 1-2 days prior 
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to fires, then sorted those fuels into fine fuels using two categories: pine needles and non-pine fuels 

(graminoid, forb, shrub, and other non-woody fuels).  Additionally, we recorded the total amount 

of fine fuels and proportion of fuel loads that were Longleaf pine needles.  The fine fuels were air-

dried and weighed.  One day after 2016 fires, we collected the fine fuels from the other subplot. 

Remaining fine fuels were weighed to estimate fine fuel combustion.  Average mass of woody 

fuels in plots was similar before and after fires, so we did not examine woody fuel effects on fire 

characteristics.  

We assessed fire characteristics using temperatures recorded at the surface and in the soil 

during the prescribed fires.  We placed two thermocouples in the center of each plot. One was 

placed 2-3 mm above the ground surface, not contacting litter or soil; the second was placed 1 cm 

in the soil, close to the surface thermocouple.  Thermocouples recorded temperatures every second 

from the time of activation until 5-6 hours after prescribed fires.  The temperature data were used 

to estimate 1) maximum surface & soil temperature increase - the largest instantaneous rise in 

temperature recorded and 2) duration of heating - the time (in seconds) that the temperature at the 

soil surface remained >60°C (Platt et al. 2016). 

Quantifying Microbial Decomposition: We measured microbial decomposition of recently 

deposited litter experimentally in 2016. In October 2016, we collected recently deposited, intact 

plant material (dead pine needles, grass culms, forbs, and oak leaves) from outside the 4 m2 sample 

plots.  Litter collected from patches of the same type (i.e. near and away from pines) was pooled, 

then shipped to the University of Kansas where it was stored at -20°C until processing.  Near and 

away litter was separated to account for inherent differences in litter chemistry (i.e. C:N ratios and 

lignin content) and composition (i.e. more pine needles near pines) between litter types.  Plant 

litter was dried at 65˚C for 72 hours, ground using a Model 4 Wiley Mill (Thomas Scientific, 
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Swedesboro, USA) with a 6mm opening, and sterilized via gamma irradiation to ~32 kGy at the 

Penn State Radiation Science & Engineering Center.  Within a biological safety cabinet, we placed 

the sterilized plant litter in 15 x 15 cm, 30 µM nylon mesh bags, following (Robertson and Paul 

2000).  This mesh excludes non-microbes and isolates microbial decomposition of plant litter 

(Bradford et al. 2002).  Each bag was filled with 5 g of plant litter collected either near or away 

from pines.  Initial bag masses were recorded, and bags were stored sterilely until deployment.  

Bags were deployed in June 2016, 2-3 months after experimental fires.  Four 

decomposition bags with litter corresponding to pine proximity (i.e. near or away from pines), 

were selected and randomly placed on the soil surface in each plot.  The small mesh size used in 

bag construction prevented photo degradation of bag contents.   Bags were anchored along margins 

with sod-staples so that one surface of the bag contacted litter and soil. One bag from each plot 

was collected 2, 4, 6, and 8 months after deployment.  Any soil or litter on the bag surface was 

cleared, and then bags were placed in sterile plastic bags.  Bags were shipped overnight to the 

University of Kansas.  Litter contents were then removed, dried at 65˚C for 72 hours, and weighed 

to determine mass loss.  Decomposition rate constants (k) were determined by fitting 

decomposition from 2 - 8 months in each experimental plot to a negative exponential curve using 

the following equation: 

𝑀𝑡

𝑀0
= 𝑒−𝑘∗𝑡 

where the M0 = starting mass, Mt = mass at time of collection, and t is the number of months the 

bag was deployed in the field.  A negative exponential curve was used to estimate k, as 

decomposition is well known to follow an exponential decay function when measured over time 

(Olson 1963; Karberg et al. 2008).  This produced a decomposition rate constant (k) for each 

experimental plot during the year following 2016 prescribed fires. 
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Soil analysis: Soil samples were collected from all plots in June 2016 to measure post-fire nutrient 

flux.  We collected soil at three randomly located points, avoiding ground layer plants. We 

collected the upper 1.5 cm of soil within a 9 x 9 cm quadrat (i.e., depth potentially affected by 

increasing fire temperatures; Mehlich 1984, Gagnon et al. 2015).  Soil samples from each plot 

were combined, and kept cool until frozen at -20°C within 6 hours of sampling.  Samples were  

overnighted to the University of Kansas, thawed, and homogenized by hand, before subsampling.  

A 100 g subsample was sent to the Kansas State University Soil Testing Lab for analysis.  

Soil phosphorus was measured using the Mehlich-3 method (Mehlich 1984) on a Lachat 

Quickchem 8000 (Lachat Instruments, Loveland, USA).  Total soil nitrogen and carbon were 

measured on a LECO TruSpec CN Carbon/Nitrogen combustion analyzer (LECO Corporation, St. 

Joseph, USA).  Carbon to nitrogen ratio was also calculated. NH4
+ and NO3

- were extracted using 

1 M KCl on 2 g of soil, then Cadmium reduction for nitrate and colorimetric procedures were used, 

followed by flow analysis for ion quantification (Brown 1998). 

Data Analysis:  All analyses were conducted in R version 3.5.1 (R Core Team 2013). Analyses of 

variance (ANOVAs) assessed the effect of short-term fire history and proximity to pines on 

microbial decomposition rate constants (k).  Differences in decomposition, fine fuels, nutrients, 

and fire characteristics between short-term fire history and pine proximity treatments were first 

assessed using Type III analysis of variance (ANOVA) using the “Emmeans” package (Lenth 

2018).  Note that pine proximity treatments were considered in these analyses to account for 

inherent differences in litter chemistry, fuel traits, and flammability, between near pines fuels vs. 

away from pines fuels.  Following ANOVAs, apriori contrasts regarding differences in 

decomposition based on the frequency of fires were assessed using the contrast function. 
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We then developed a structural equation model to assess the causal pathways by which 

fires impacted plot-level microbial decomposition rate constants (k).  Based on existing literature, 

we hypothesized three specific pathways between fire history and microbial decomposition (Figure 

1).  These pathways included both direct fire history effects and indirect effects through 2016 fire 

characteristics and initial changes to soil properties.  Chapter 1 Appendix Tables S1 and S1.5 

describe variables and justifications for model pathways included in the SEM analysis.  We also 

hypothesized that fuel characteristics play an independent role in determining both fire 

characteristics and decomposition. We hypothesized that frequent fires would 1) reduce microbial 

decomposition rates (Figure 6; Path A; Ficken and Wright 2017), 2) reduce the severity of 

individual fires thereby increasing decomposition rates (Figure 6; Path B; Ficken and Wright 2017, 

Ellair and Platt 2013, and 3) modify the initial flux of nutrients mineralized by fire and slow 

decomposition (Figure 6;  Path C; Bell and Binkley 1989, Czimczik et al. 2005, Butler et al. 2018).  

Distinct from short-term fire history effects, locational effects due to larger fine fuel loads and 

larger amounts of pine needles near pines, should 4) increase fire intensity and slow decomposition 

(Figure 6; Path D; Ellair and Platt 2013).  Our SEM contained categorical, continuous, and ratio 

variables.  All continuous variables were transformed and scaled prior to analysis (Chapter 1 

appendix Table S1).  After developing an initial model based on these hypotheses, the R Package: 

“lavaan” (Rosseel 2012) was used to evaluate the preliminary SEM for convergence.  Upon 

convergence, fit measures and parsimony were used to assess the modification of model 

parameters.  Further models were then evaluated per Hooper et al. 2008. 
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Results 

Fine Fuels:  Pre-fire fine fuel loads varied based on proximity to overstory longleaf pines and 

short-term fire history treatment.  The largest differences were between pine needle fuels, with 

near pines sites having larger amounts (F1,59 = 33.4, p < 0.001; Ch.2 App. Table S2, Fig.S1) and 

proportions (F1,59 = 22.3, p < 0.001; Ch.2 App. Table S2, Fig.S1) of Longleaf pine needles.  Total 

fine fuels (F4,59 = 7.34, p < 0.001; Ch.2 App. Table S2, Fig.S1) and non-pine fuels (F4,59 = 7.37, p 

< 0.001; Ch.2 App. Table S2, Fig.S1) also differed between short-term fire history treatments, with 

sites experiencing two fires in the final two years having lower amounts of both.  In summary, near 

pines sites had larger amounts of Longleaf pine needles, and more frequently burned sites had 

smaller fine fuel loads and amounts of non-pine fuels. 

Soil Nutrients: Post-fire nutrients levels varied based on the short-term fire history.  As the number 

of fires increased, total soil nitrogen (F4,59 = 5.17, p = 0.001; Ch.2 App. Table S3, Fig.S2), inorganic 

phosphorus (F4,60 = 4.49, p = 0.003; Ch.2 App. Table S3, Fig.S2), ammonium (F4,60 = 10.6, p < 

0.001; Ch.2 App. Table S3, Fig.S2), and nitrate (F4,60 = 3.39, p = 0.02; Ch.2 App. Table S3, Fig.S2) 

levels decreased.  While nitrate levels decreased when there were two fires in the final two years, 

it is worth noting that sites burned in only the final year (0_0_1) or the first and final year (1_0_1) 

actually saw an increase in nitrate levels.  Total soil carbon however did not vary between 

experimental treatments (F4,60 = 1.02, p = 0.4; Ch.2 App. Table S3, Fig.S2).  While soil carbon did 

not vary between short-term fire history treatments in this analysis, C:N ratios increased as fires 

became more frequent (F4,60 = 10.4, p < 0.001; Ch.2 App. Table S3, Fig.S2).  Frequent fires were 

associated with lower amounts of soil nutrients, and changed nutrient levels in ways that shifted 

stoichiometric ratios of carbon and nitrogen.   
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Fire Characteristics:  2016 prescribed burn characteristics differed between short-term fire history 

treatments; however, these differences were primarily related to the presence or absence of fire.  

While there was some natural variation between maximum surface (F4,51 = 105.1, p < 0.001; Ch.2 

App. Table S4, Fig.S3) and soil temperature (F4,51 = 3.75, p = 0.009; Ch.2 App. Table S4, Fig.S3) 

increases, surface fire duration >60°C (F4,51 = 25.3, p < 0.001; Ch.2 App. Table S4, Fig.S3), and 

percent fine fuel combustion (F4,51 = 72.6, p < 0.001; Ch.2 App. Table S4, Fig.S3), between burned 

sites, prescribed fires generally did not very in intensity between our experimental treatments. 

Microbial decomposition: Short-term fire history and pine proximity independently affected 

microbial decomposition rate.  As fires increased in frequency, decomposition rates decreased 

(F4,48 = 3.971, p = 0.007; Ch.2 App. Table S5, Fig.7a & S4) with contrasts revealing that burning 

at least once during the 3-year period was associated with slower decomposition than not burning 

(P = 0.01; Ch.2 App. Table S5).  Additionally, decomposition rates were lower in sites that burned 

at least two times as compared to sites that only burned once (P = 0.009; Ch.2 App. Table S5).  

There were no overall differences in decomposition rates between sites that burned two times and 

sites that burned 3 times (P = 0.4; Ch.2 App. Table S5). 

Proximity to pines also altered microbial decomposition.  During the year following 2016 

prescribed fires, litter bags located near pines had slower decomposition rates than bags placed 

away from pines (F1,48 = 3.921, P = 0.05; Ch.2 App. Table S5, Fig.7b).  In summary, increasing 

the number of fires during the study period and close proximity to pines slowed microbial 

decomposition.  

Structural equation modeling of causal pathways for fire history effects: We initially began with a 

highly saturated SEM based on our hypothesized pathways (Appendix; Table S1.5 and SEM model 

fitting section).  The first model converged, but was poorly supported (X2 = 102.392, D.F. = 28, P 
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< 0.001).  Through four iterations, poorly supported paths in the model were successively pruned 

to improve model fit using an increasingly conservative threshold for relationships (e.g. P > 0.5, P 

> 0.2).  Model support was checked after each pruning step (support for each included in appendix 

table S6) with fit statistics assessed according to Hooper et al. 2008.  The final model was well 

supported (X2 = 21.795, D.F. = 23, P = 0.533; Table 8), and further removal of unsupported 

pathways did not improve overall fit.  Final SEM pathways and coefficients, along with literature 

support for these pathways are presented in Table 7. 

SEM results: The final SEM model supported our hypotheses that short-term fire history altered 

the microbial decomposition of fine fuels.  We used our initial hypotheses (Figure 6) to construct 

pathways for relationships in our SEM model (Figure 8).  In this way, we could distinguish the 

underlying mechanisms through which fire history was postulated to modify microbial 

decomposition in the final model.  Numbers in parentheses are the standardized regression 

coefficients (Table 8).  These values indicate the direction (+/-) and strength of relationships 

between variables, and allow for direct comparisons between model pathways.  

SEM-Direct Impact of short-term fire history: In line with our causal model (Figure 6; path A), 

short-term fire history was linked to microbial decomposition rate (-0.517; Figure 8).  Specifically, 

as the number of fires a plot experienced increased, the decomposition rate constants (k) decreased, 

paralleling the ANOVA analyses above.   

SEM-Modification of Edaphic Factors: While short-term fire history directly modified edaphic 

pathways, changes to nutrient availability did not alter microbial decomposition rates (Fig. 8).  

Increased numbers of fires during the study period were associated with decreases in ammonium 

(-0.77), nitrate (-0.37), phosphorus (-0.58), and total nitrogen (-0.55), and marginally significant 

decreases in soil carbon (p = 0.08, -0.25).  Overall, increasingly frequent fires were associated with 
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decreased nutrient availability, but these changes were not associated with decomposition rates 

during the year following 2016 prescribed fires. 

SEM-Fire Characteristics: As hypothesized in our causal model (Fig. 6; Path B), short-term fire 

history was associated with 2016 fire characteristics, but changes in fire characteristics were not 

associated with microbial decomposition.  More fires during the study period corresponded with 

greater maximum surface temperature increases (0.55), although this was largely driven by the 

presence vs. absence (0-0-0) of fire in the final year.  Additionally, increased numbers of fires 

during the study were associated with shorter fire durations (-0.22).  Greater surface fire 

temperature increases were also correlated with increased surface fire durations (1.03) and larger 

soil temperature increases (0.65).  Surface fire temperature increases and durations also altered 

edaphic properties as fires became hotter and longer.  Hotter surface temperatures were associated 

with decreased nitrate (-0.69) and phosphorus (-0.49).  Longer fire durations, however, were 

associated with increased phosphorus (0.86), ammonium (0.2), and nitrate (1.1), and decreased 

carbon (-0.28).  In summary, increasing the number of fires shifted 2016 fire characteristics, which 

were associated with altered edaphic properties, but not microbial decomposition. 

SEM-Fuel traits: Fuel traits were directly linked to microbial decomposition and 2016 fire 

characteristics (Figure 6; path D).  As shown in previous work (Ellair and Platt 2013), sites located 

near pines had more pine needles (0.53), which were directly linked with greater increases in 

maximum surface temperature (0.34) and indirectly linked to longer fire durations (0.34) and 

higher soil temperatures (0.22) through changes to surface temperatures.  Fuel traits also had 

indirect effects on nutrient availability through their modification of fire characteristics (Figure 3).  

Additionally, near pine sites had lower decomposition rate constants (k) than those located away 
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from pines (-0.27).  Taken together, fuel traits modified the intensity of 2016 fire characteristics, 

and slowed decomposition in sites located near pines. 

 

Discussion 

Microbial decomposition of new fine fuels was slower in frequently burned sites during the year 

following 2016 prescribed fires.  These fire driven changes are consistent with studies that show 

repeated fires shift microbial community structure, cause the loss of key functional groups (Hart 

et al. 2005, Ferrenberg et al. 2013, Brown et al. 2013), and are associated with slower 

decomposition (Ficken and Wright 2017, Butler et al. 2019).  While fire history in our system did 

not suppress total fungal abundance (Hansen et al 2019), it likely impacted microbial community 

structure (Semenova-Nelsen et al. 2019) in ways that slowed decomposition. This demonstrates 

that short-term variations in fire history are as important as single fires (Ficken and Wright 2017, 

Semenova-Nelsen et al. 2019) or long-term fire regime differences (Butler et al. 2019), in 

determining ecological functions like decomposition.  Moreover, decomposition differences arose 

quickly (i.e. within 3 years) in this pyrophilic ecosystem, so rarely burned systems, which lack 

fire-adapted organisms, may respond more strongly to repeated fires.  It  is important to note 

however, that the pathway linking fire history to microbial decomposition includes other 

unmeasured processes besides direct fire effects on microbial decomposers. 

 Although short term fire history impacted nutrients, these effects were not linked to shifts 

in microbial decomposition.  Our study confirms well known impacts of fire on the availability of 

soil carbon and nutrients (Raison 1979, Neary et al. 1999, Certini 2005).  While nutrient 

availability influences decomposition (Manzoni et al. 2010), significant fire-driven changes to 

carbon, nitrogen (NO3 and NH4), and phosphorus did not slow decomposition rates during the 
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year following 2016 prescribed fires.  Two key factors may explain the absence of this relationship. 

First, short term nutrient effects directly after fire may have been obscured when evaluated on 

decomposition rate constants (k) that integrate seasonal variation. Stoichiometric controls on 

decomposition vary seasonally (Schmidt et al. 2007), and fire-induced differences in nutrient 

availability may have had decomposition effects that were balanced out at other time points. For 

example, frequent burning that reduced nutrients for decomposition directly after the 2016 spring 

fire, also likely reduced plant production throughout the year perhaps leaving greater soil nutrients 

for fall microbial decomposition. Second, the high frequency of fires at this site (return interval of 

~1 year) may cause long term nutrient limitations (Knicker 2007; Toberman et al. 2014; Butler et 

al. 2019), which could mask the effect of short term changes in nutrient levels following single 

fires.  Despite immediate C, N, and P losses in our study, the associations between microbial 

decomposition and fire history were stronger than associations between decomposition and altered 

nutrient availability.  The long term adaptation to frequent fires and low nutrient availability at this 

site likely had a stronger effect on decomposition rates (Butler et al. 2019) than short term nutrient 

effects following the most recent fire.  Other unmeasured factors like soil moisture, pH, and 

temperature, are also shifted by fire and can modify microbial decomposition, but past studies have 

not shown these factors were linked to microbial communities or decomposition at this site 

(Semenova-Nelsen et al. 2019).  In summary, short term fire history altered nutrient availability, 

yet these changes were not linked to variation in microbial decomposition. 

 Short-term fire history also modified the intensity of 2016 fires, but this was not strongly 

linked to microbial decomposition rates.  Larger temperature increases and longer burn durations 

are expected to kill more microbes (Bárcenas-Moreno and Bååth 2009, Dooley and Treseder 

2012), and alter microbial decomposition rates due to microbial mortality.  However, even in 
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"long" unburned plots, prescribed 2016 fires at this site may not have reached sufficient intensity 

to cause significant microbial mortality (Hansen et al. 2019).  As with nutrient effects, it is also 

possible that fire intensity related effects on microbial decomposition are strongest immediately 

after fires, and dissipate with time (or are even offset) as microbial communities recover 

(Bárcenas-Moreno et al. 2011a).  Consistent with this interpretation, while fire characteristics did 

not impact microbial decomposition, they did have strong effects on nutrient availability.  High 

intensity fires can increase nutrient volatilization (Neary et al. 1999), while longer, low intensity 

fires (i.e. < 200°C) may favor the release of nutrients from fine fuels (Certini 2005).  These were 

born out by our data, as hotter fires (i.e. higher surface temperatures) were associated with 

decreased N and P, while longer fires (i.e. longer durations above 60°C) were associated with 

increased N and P.  Fire characteristics, including intensity and duration, may play a larger role in 

decomposition after wildfires, since wildfire intensity commonly surpasses that of prescribed fires 

(Certini 2005).  Overall, short-term fire history modified fire characteristics and nutrient 

availability, but these changes were not associated with shifts in microbial decomposition rates. 

 The types of fuels present determined both fire characteristics and postfire decomposition.  

While location and fuel composition covary, we show that microbial decomposition rates were 

slower in near pines sites.  The direct link between pine proximity and decomposition suggests 

that the high lignin and C:N content of near pines fuels (Wardle et al. 2002) and location based 

differences in microbial communities result in slower decomposition.  While larger amounts of 

Longleaf pine needles increased the intensity of 2016 prescribed fires, this did not affect microbial 

decomposition rates following 2016 fires.  Since microbial decomposition rates are slower near 

pines, the greater suppression of decomposition following fire may contribute to natural fuel 

accumulation that alters the likelihood or spread of future fires.  At our study site, fires commonly 
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consume more than 60% of fuels (see appendix section “fuels”), and are primarily reliant on fuel 

accumulated in the last year.  This may be a key difference, for example, from fire suppressed 

forests in the Western US, where the buildup of coarse woody debris (Brown 1983, Kalies and 

Yocom Kent 2016), can create fires so severe that upper soil horizons are completely lost or 

sterilized.  Fire-driven decomposition differences then may depend on the fuels accumulated since 

the last fire, and in fire-frequented systems fuel loads may have a strong seasonal relationship.  

 Linking fire regime and microbial function elucidates the largely unconsidered, but 

important roles that microbes play in pyrophilic ecosystems.  Historically, fire ecology has focused 

on the interaction of fire with above ground communities (i.e. plants) and biogeochemistry 

(Archibald et al. 2018), while rarely exploring microbial functions like decomposition.  Our study 

identified pathways through which fire history governs microbial decomposition of fuels, fire 

characteristics, and soil nutrient availability.  Short-term fire history's effects on microbial 

decomposition should modify fine fuel loads, which could ultimately impact future fires.  Other 

microbial functions, however, may also contribute to (or mitigate) fire feedbacks.  Fire regime 

impacts on microbial mutualists, (i.e. mycorrhizae), could alter their benefits for post-fire plant 

survival and fuel production (Peay et al. 2009, Glassman et al. 2016, Carson et al. 2019).  Microbial 

pathogen responses to fire history may also be important due to their role in plant productivity 

(Schnitzer et al. 2011), with pathogen suppression by fire potentially allowing for greater post-fire 

plant survival and faster fuel production.  The indirect impact of microbe-plant symbioses on fuels 

may counterbalance, or even exacerbate the positive fire feedbacks from microbial decomposition.  

Future work can explore how fire-microbe interactions shape fire feedbacks through fuel load 

alterations (as seen here) and plant-microbe interactions.   
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In conclusion, we demonstrated that short-term fire history and microbial decomposition 

are closely connected through direct fire and fuel related pathways.  Furthermore, we identified a 

feedback mechanism through which increased numbers of fires may increase fine fuel 

accumulation and the intensity of future fires.  Understanding how different fire histories impact 

microbial decomposers and associated fine fuels is critical to our knowledge and maintenance of 

pyrophilic ecosystems, many of which are endangered (Bowman et al. 2009).  Furthermore, our 

study system may provide a conservative model for predicting the effects of increasing fire 

frequencies in other ecosystems.  Fire helps maintain more than 50% of terrestrial ecosystems, and 

its occurrence is becoming increasingly frequent due to anthropogenic change (Archibald et al. 

2018).  Including foundational microbial processes like decomposition in fire models can improve 

our understanding and management of fire-dependent and non-fire dependent ecosystems alike. 
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Chapter 2 - Tables 

 

Table 7: Experimental field design for short-term fire history treatments (2014-2016) in plots 

located near and away from pines. For each year, 1 indicates groups of plots that were burned and 

0 indicates groups of plots that were not burned. The design produced five short-term fire history 

treatments that involved 0-3 fires, both near & away from pines. Of the total of 60 plots, 48 were 

established in 2014. Fire maps were used to establish an additional 12 plots (marked with *) in 

2016 that did not burn in the three previous years. 

 

 

Table 8: Final SEM pathway coefficients and justifications. For each pathway in the model, the 

table identifies the response variable(s), explanatory variable(s), standardized estimate (effect 

size), standard errors, P-values for significance, R-squared estimate for model pathway, and 

justification for inclusion in the final model. 

Response 

Variable 

Explanatory 

Variable 

Stand. 

Estim. 

Stand. 

Err. 
P-value R2 Justification 

Microbial 

Decomposition 

Rate Constant 

(k) 

# of Fires -0.517 0.123 <0.001*** 

0.325 

Ficken and Wright 2017 

Pine Proximity -0.268 0.236 0.021** 
pine fuels are more recalcitrant 

than non-pine fuels 

Surf. Dur. > 60 0.169 0.129 0.181 Peay et al. 2009 

              

Maximum 

Instant Surface 

Temp. Increase 

(°C) 

# of Fires 0.546 0.097 <0.001*** 

0.441 

presence of fire = hotter 

temperatures 

Pine Needle 

Fuels 
0.335 0.11 0.002** Ellair and Platt 2013 

              

Maximum 

Instant Soil 

Temp. Increase 

(°C) 

Max Inst. Surf. 

Inc. 
0.645 0.091 <0.001*** 0.416 Peay et al. 2009 

              

Surface Fire 

Duration > 

60°C (sec) 

# of Fires -0.223 0.067 0.001*** 

0.843 

smaller fuel loads w/ increased 

fire frequencies 

Max Inst. Surf. 

Inc. 
1.027 0.073 <0.001*** 

Bárcenas-Moreno and Bååth 

2009 

              

    Near Pines   Away from Pines 

Short-Term 

Fire History 

2014 1 1 0 0 0   1 1 0 0 0 

2015 1 0 1 0 0   1 0 1 0 0 

2016 1 1 1 1 0*   1 1 1 1 0* 

Number of 

Plots 
  6 6 6 6 6   6 6 6 6 6 

Number of 

Fires 
  3 2 2 1 0   3 2 2 1 0 
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Total Soil 

Carbon (%) 

# of Fires -0.252 0.13 0.08* 

0.06 

Czimczik et al. 2005 

Max Inst. Surf. 

Inc. 
0.241 0.146 0.102 Johnson & Curtis 2000 

Surf. Dur. > 60 -0.279 0.121 0.032** Johnson & Curtis 2000 

              

Total Soil 

Nitrogen (%) 
# of Fires -0.551 0.111 <0.001*** 0.304 Christensen 1977 

              

Inorganic Soil 

Phosphorus 

(ppm) 

# of Fires -0.58 0.132 <0.001*** 

0.519 

Butler et al. 2018 

Max Inst. Surf. 

Inc. 
-0.494 0.304 0.071* Butler et al. 2018 

Surf. Dur. > 60 0.861 0.252 <0.001*** Butler et al. 2018 

              

NO3
- (ppm) 

# of Fires -0.368 0.15 0.008** 

0.447 

Christensen 1977 

Max Inst. Surf. 

Inc. 
-0.686 0.348 0.02** Raison 1979 

Surf. Dur. > 60 1.094 0.289 <0.001*** 
longer, low intensity fires 

release more N 

              

NH4
+ (ppm) 

# of Fires -0.774 0.1 <0.001*** 

0.526 

Christensen 1977 

Surf. Dur. > 60 0.195 0.096 0.041** 
longer, low intensity fires 

release more N 

              

Pine Needle 

Fuels (g) 
Pine Proximity 0.53 0.217 <0.001*** 0.281 more pine needles near pines 



58 
 

Chapter 2 - Figures 

 

 
Figure 6: Hypothesized pathways by which short-term fire history modifies microbial 

decomposition of fine fuels.  Fire History shown in light red, nutrients in blue, fire characteristics 

in orange, fuel traits in green, and decomposition in pink.  Path A: Increasing recurrence of fire 

should slow decomposition through repeated negative effects on microbes.  Path B: Frequent fires 

should lessen fire severity characteristics and the negative effect of fire on decomposition.  Path 

C: Frequent fires alter nutrient availability, which could lead to nutrient loss and slow 

decomposition.  Path D: Distinct from fires, increasing amounts of fine fuels should increase fire 

severity characteristics and slow decomposition.  citations for hypothesized pathways are detailed 

in Ch.1 appendix table S1.5. 
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Figure 7: Short-term fire history and pines proximity effects on microbial decomposition.  Trend 

lines represent microbial decomposition rate constants (k) calculated by fitting decomposition 

measurements in each plot to a negative exponential decay function.  Error bars and points 

represent 95% confidence intervals and means for microbial decomposition rate constants (k).  

ANOVA results are annotated in the figures, fire = fire history and prox = pine proximity.  a) As 

fires became more frequent, decomposition rate constants (k) were lower, and larger amounts of 

plant fuels remained at the end of the experiment. b) Experimental sites located near pines had 

lower decomposition rate constants (k) than sites located away from pines.  Note that * p  ≤ 0.05. 
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Figure 8: SEM model for short-term fire history’s effect on microbial decomposition.  Components 

are group by color as in Figure 1.  Coefficients are standardized regression coefficients.  Red and 

black paths denote negative and positive associations between linked variables respectively.  

Increasingly frequent fires were associated with lower microbial decomposition rates, however 

fire history related effects on fire characteristics and nutrients did not affect decomposition.  

Additionally, sites located near pines had lower decomposition rates than sites located away from 

pines. 
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Chapter 3 - Fire temperature and duration determine microbial decomposition in a fire 

frequented ecosystem 

 

Jacob R. Hopkins, Tatiana Semenova-Nelsen, Jean Huffman, Neil Jones, William J. Platt, 

Benjamin A. Sikes 

 

Abstract 

Fire is a common disturbance in more than 40% of Earth’s terrestrial ecosystems that alters biotic 

processes and the local environment.  Since climate change models predict an increase in the 

intensity of future fires, understanding how fire intensity modifies ecosystems is crucial for 

predicting climate driven shifts to the ecological dynamics of systems.  The intensity of fire is 

primarily governed by plant fuel loads, therefore fire intensity related effects on plant communities 

and processes that directly modify plant fuel loads may drive feedbacks on future fires.  One such 

process is microbial decomposition, which directly controls the amount of above ground plant 

fuels and is likely affected by fire intensity.  We hypothesized that increasingly intense fires would 

slow the microbial decomposition of new plant fuels and increase fuel build-up for a given fire 

return interval.  We designed six fuel treatments that mimicked the effect of increasingly intense 

fires, and measured above ground microbial decomposition the year following fires.  Increasing 

the intensity of fire (e.g. temperature and duration) had a negative impact on above ground 

microbial decomposition, however, it did not appear that this was due to differential effects of fire 

on microbial groups (i.e. bacteria and fungi).  We then used structural equation models (SEM) to 

observe fire energy release and microbial decomposition in a broader context which included 

nutrient availability and plant fuel type.  Microbial decomposition responded negatively to longer 
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and hotter fires, and positively to nutrient availability, however, there was no relationship between 

fire energy release and nutrient availability.  Additionally, sites near longleaf pine trees (Pinus 

palustris) had higher mass loss soon after fires and lower mass loss later relative to sites located 

away from longleaf pines.  This suggests that intense fires can slow microbial decomposition and 

cause post-fire plant fuels to accumulate faster.  Increased plant fuel loads in turn could increase 

the intensity of future fires and establish a positive feedback mechanism that favors recurrent fires 

in ecosystems. 

 

Introduction 

Fire modifies biological communities and biogeochemical processes in 20% of Earth’s terrestrial 

ecosystems (Archibald et al. 2018).  Although often considered cataclysmic events like wildfires 

in the Western United states and Australia, recurrent, low intensity fires are common in 

approximately 23% of terrestrial ecosystems (e.g. grasslands and savannas; Ford 2009).  Across 

ecosystems, climate change models (Liu & Wimberly 2016; Schoennagel et al. 2017) and human 

influence (Balch et al. 2017) predict an increase in the frequency and intensity of future fires, 

which could have profound effects on ecological processes like plant fuel production and nutrient 

cycling. While manipulating fire intensity is dangerous and often impossible in most ecosystems, 

fire recurrent, pyrophilic grasslands and savannas may provide a model (Semenova-Nelsen et al. 

2019; Hopkins et al. 2020; Hopkins et al. 2021) for testing fire intensity related questions due to 

their long term adaptation to fire (Bowman et al. 2009; Pausas 2015; Archibald et al. 2018). 

In pyrophilic grasslands and savannas, the intensity of individual fires modifies biological 

communities and their environment in ways that can affect future fires.  The relationship between 

fire intensity and plant communities is particularly important as the intensity of future fires may 
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be affected if the amount or type of plant fuels is changed (Ellair & Platt 2013; Platt et al. 2016; 

Cornelissen et al. 2017).  For example, if fire favors species that can endure large heat fluxes like 

the longleaf pine (Pinus palustris), then this could increase the amount of flammable pine needle 

fuels and raise the intensity of future fires (Ellair & Platt 2013; Platt et al. 2016; Pausas 2017).  

Additionally, fire intensity is closely linked to the combustion of plant fuels, which can directly 

determine the intensity of future fires through residual fuel loads (Shinneman & Baker 1997; 

Barker & Price 2018).  Plant fuel loads are also governed by other biotic processes like microbial 

decomposition however, which could be both affected by and drive feedbacks on fire intensity 

depending on how decomposers alter the quantity of new and residual plant fuels (Cornelissen et 

al. 2017).  Therefore, understanding fire intensity’s role in ecosystems requires consideration of 

plant fuel dynamics and microbial function. 

 Microbial decomposition influences plant fuel loads through the decay of plant matter, and 

is likely governed by fire characteristics related to intensity.  Fire characteristics generally 

associated with intensity (e.g. heat flux and burn duration) are known to increase microbial 

mortality (Bárcenas-Moreno & Bååth 2009; Glassman et al. 2016), which could hinder microbial 

decomposition of new plant fuels if surviving litter and soil microbes are less efficient 

decomposers.  Additionally, fire has differential effects on decomposer groups, which could 

further slow decomposition since fungi, the dominant decomposers in most ecosystems, are more 

susceptible to large heat fluxes than bacteria (Hamman et al. 2007; Bárcenas-Moreno & Bååth 

2009).  While it is difficult to determine the strength of decomposition effects in relation to fire 

intensity, Hopkins et al. 2020 showed that larger heat fluxes and longer durations above 60°C 

slowed the decomposition of plant fuels following prescribed burns.  This suggests that fire 
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characteristics associated with fire intensity govern microbial decomposition, and that these fire 

characteristics may drive feedbacks on future fires. 

 Soil nutrient availability is closely linked to microbial decomposition and fire 

characteristics associated with intensity.  Apart from direct effects of fire characteristics on 

microbial decomposers, fire can indirectly effect microbial decomposition by changing the 

availability of carbon (C) and nitrogen (N) (Raison 1979; Johnson & Curtis 2001).  Low intensity 

fires can increase above and belowground C and N availability, favoring microbial decomposition 

and potentially decreasing the intensity of future fires due to increased decomposition of residual 

and new plant fuels.  However, high intensity fires can lead to nutrient loss through oxidation, 

volatilization, ash transport, and leaching, which may favor higher intensity future fires due to 

decreased microbial decomposition of new, post-fire plant fuels (Certini 2005).  Furthermore, 

microbial decomposition is linked to stoichiometric nutrient ratios like C:N, with lower C:N ratios 

favoring decomposition (Manzoni et al. 2010).  Depending on the intensity of fires, decomposition 

could potentially increase at low intensities due to nitrogen mineralization (low C:N), or decrease 

at higher intensities as nitrogen volatilizes relatively easily around 200˚C (higher C:N; Raison 

1979).  Since fire intensity, nutrient availability, and microbial decomposition are likely linked, 

understanding how they interact is crucial to comprehending the mechanisms that govern 

pyrophilic ecosystems and fire intensity. 

 Fire intensity likely has immediate and long-term impacts on microbial decomposition and 

nutrient availability.  The length of time that microbial decomposition is affected following fire 

may be a function of fire induced microbial mortality and post-fire microbial recovery rates (Hedo 

et al. 2015; Muñoz-Rojas et al. 2016), with higher intensity fires affecting greater mortality and 

slower recovery than less severe fires (Dooley & Treseder 2012).  Increasingly intense fires may 
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also slow microbial decomposition for long periods following fire (i.e. 2+ months) due to nutrient 

loss (Butler et al. 2019).  While nutrient availability increases immediately following fires, 

leaching, surface erosion, and nutrient uptake by plants may decrease nutrient availability with 

time.  Due to the inherent complexity of interactions between fire and microbial decomposition, 

and their potential to change with time, quantifying the relationship between fire intensity and 

microbial decomposition requires a holistic approach capable of accounting for parallel and 

interacting ecological processes. 

 We manipulated fire characteristics associated with intensity in an old-growth Longleaf 

pine savanna to evaluate the effect of fire intensity on the microbial decomposition of post-fire 

plant fuels.  We hypothesized that as fire temperature and duration increased, fires would slow 

microbial decomposition through mechanisms related to fire characteristics, nutrient availability, 

and natural variations in the type of plant fuels.  We also hypothesized that fire intensity treatments 

would affect microbial decomposer groups differently, and alter their ability to decompose new 

plant fuels.  We used mesh litter bags to measure microbial decomposition of new, post-fire fine 

plant fuels, and also applied three antibiotic treatments (anti-fungal, anti-bacterial, and water 

control) to explore differential responses of microbial decomposer groups to fire characteristics.  

Decomposition was assessed both near and away from overstory Pinus palustris trees to reflect 

differences in plant fuels and microbial communities.  We first assessed the effect of fire intensity 

on microbial decomposition following prescribed fires in 2017.  Then structural equation modeling 

(SEM) was used to observe the relationship between intensity and decomposition from an 

ecological perspective, which took nutrient availability, proximity to overstory P. palustris, and 

time since fire into account.  This allowed us to identify mechanisms through which intensity 
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related fire characteristics shifted above ground microbial decomposition and altered plant fuel 

loads. 

Methods 

Field Site:  We conducted our study in old-growth pine savanna on the Wade Tract (30˚ 45’ N; 84˚ 

00’ W; Thomas County, Georgia, USA). Situated on moderately dissected terrain 25-50 m above 

sea level in the headwaters of the St. Marks River in the Red Hills region of northern Florida-

southern Georgia, the 85 ha Pliocene-aged site contains Ultisol soils characterized by surface sands 

underlain by a clay-rich horizon (Typic and Arenic Kandiudults; Carr et al. 2009; Levi et al. 2010).  

The open savanna/woodland physiognomy is characterized by overstory pines and diverse 

herbaceous-dominated ground layer vegetation. 

Management actions over the past century have maintained an old-growth population of 

longleaf pine (Pinus palustris) on the Wade Tract. Prescribed fire management has been 

instrumental in maintaining old-growth aspects of the Wade Tract over the past century. 

Traditional “open woods burning” involved annual-biennial, low-intensity late dormant and early 

growing season fires, typically in February-March, from the early 1800s to 1978 (Crawford & 

Brueckheimer 2012b).  Records indicate 25 fires in each of the two burn units encompassing the 

site during the 3.5 decades between 1982 and 2016. Return intervals within the two fire 

management units averaged 1.5 years, with 90% occurring between mid-March and late June. 

Since protection by a perpetual conservation easement in 1978, vehicular traffic has been kept out 

of the area.  

2017 Field Plots:  The study was initiated following 2017 prescribed fires.  The two fire 

management units were burned on March 23rd (Keetch-Byram Drought Index = 150) and April 

12th (Keetch-Byram Drought Index = 105) using drip torches along a central access road.  Fires 
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were ignited late morning, with winds of 11.3-27.4 km/hr and relative humidities of 37-83%.  

Flaming lengths were typically in the range of 0.5-1.5 m high.  Fine fuel consumption in burned 

patches was estimated to be 59-66%. 

 Using GPS maps, 8 experimental patches of ground layer vegetation that were >5m2 were 

chosen.  Four of the experimental patches were located within 10 m of overstory pines, and the 

other four were located at least 10 m away from the nearest overstory pine.  Within each of the 

eight experimental patches, twelve 4 m2 plots were established and received 1 of 6 fuel 

manipulation treatments described in the next section.  After plot establishment, we GPS mapped 

each plot and marked corners with flags and aluminum id tags for future relocation.  This resulted 

in 96 total plots, with 48 located both near and away from overstory pines. 

Fire Intensity Treatments:  Fire intensity treatments were designed for “near pines” and “away 

from pines” plots by measuring the amount of pine needle fuels, non-pine needle fuels, and total 

fine fuels for 20 near and 20 away fuel test plots (Ch.3 Appendix 1).  The weights were then 

averaged and used to create 6 fuel manipulation treatments (listed in order of decreasing intensity): 

2x pine needle addition, 1x pine needle addition, fuel swap (proportions of pine needle and non-

pine fuels were swapped between near and away plots), a reference treatment (average amount of 

pine needles and non-pine fuels), fuel removal (all pine needle fuels removed), and unburned (did 

not burn during 2017 prescribed burns).  The fuel manipulation treatments were evenly applied to 

plots 1-2 days before prescribed burns for each fire management unit to minimize the impact of 

precipitation.  Note that in the structural equation model, fire intensity treatment was coded as an 

ordinal variable ranked in terms of increasing energy release.  Specifically, unburned as 1, fuel 

removal as 2, reference as 3, fuel swap as 4, 1x pine needle addition as 5, and 2x pine needle 
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addition as 6.  This variable was used in early SEM model fitting steps to verify that the fuel 

manipulation treatments altered fire characteristics associated with intensity appropriately. 

Quantifying Fire Characteristics:  Fire characteristics were measured in the 2017 fires based on 

procedures developed by Ellair & Platt 2013 and Gagnon et al. 2015. We placed two 

thermocouples in the center of each plot on the day before the fire. One was placed just above the 

ground surface, but not contacting litter or soil; the second was placed 1 cm below the soil surface 

close to the surface thermocouple. These thermocouples were attached to data loggers by cables, 

and recorded temperatures every second from the time of activation (several hours prior to ignition 

of prescribed fires) until collection several hours after passage of flaming fronts during the 

prescribed fires.  

Three variables extracted from temperatures recorded over time by data loggers were used 

in analyses. Maximum surface and soil temperature increases were calculated as the largest 

instantaneous temperature increases during the 2017 prescribed fires. Duration of heating was 

calculated as the time (seconds) that the surface temperature remained >60°C; this temperature is 

widely used as a threshold for lethal effects on plant tissues (Platt et al. 2016).   

Microbial Decomposition Bags:  We collected approximately 5 kg of recently deposited, intact 

dead plant material outside the 4 m2 sample areas of each patch prior to 2017 prescribed burns. 

This new litter included pine needles, grass culms, forbs, and oak leaves produced that year; 

partially decomposed litter on the ground surface was not included. Additionally, the collected 

litter was kept separate depending on proximity to longleaf pines. All collected litter was shipped 

to the University of Kansas where it was stored at 4°C for less than 1 week until processed.  The 

plant litter was dried at 65˚C for 72 hours, ground using a Model 4 Wiley Mill (Thomas Scientific, 

Swedesboro, NJ) with a 6mm opening, and then sterilized via gamma irradiation to ~32 kGy at the 
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Penn State Radiation Science & Engineering Center.  Using a sterile hood, we then placed 

sterilized plant litter in 15 x 15 cm, 30 µm nylon mesh bags, following procedures of Robertson 

& Paul 2000. This mesh size is sufficient to exclude non-microbes, and thus measure only 

microbial decomposition of plant litter (Bradford et al. 2002).  Each decomposition bag was filled 

with approximately four grams of plant litter collected from either near or away from pines.  Initial 

mass for each bag was recorded before and after litter was added; then bags were heat sealed and 

stored in sterile plastic bags until deployment in plots.  Note that decomposition bags serve a dual 

purpose, as they allow for consideration of the effect of proximity to pines and different plant fuel 

contents (i.e. pine vs. non-pine) on above ground microbial decomposition.  

Antibiotic Treatments:  Captan PESTANAL® (99% pure), bronopol PESTANALTM (≥98% pure), 

and distilled water (pH 7), were used as the anti-fungal, anti-bacterial, and sterile control 

treatments respectively based on (Bailey et al. 2003).  Antibiotics were applied at concentrations 

of 0.016 g/L for captan and 0.008 g/L bronopol (Shepherd et al. 1988; Díaz Dellavalle et al. 2011).  

Bags receiving the anti-fungal treatment were soaked in the Captan solution for 20 minutes to 

ensure proper saturation and labeled with a green zip tie.  Bags receiving the anti-bacterial 

treatment were soaked in the bronopol solution for 10 minutes and labeled with a white zip tie.  

Finally, the control set of bags were dipped in DI water for 10 minutes and left unlabeled.  After 

bags were dipped, they were kept at 4˚ Celsius until deployment.  At the 2, 4, and 6-month bag 

collection dates, 25 mL of the appropriate anti-biotic solution was reapplied evenly to the upward 

facing bag surface without disturbing bag contents. 

Decomposition Bag Deployment and Collection: Bags were placed in the plots in May 2017, 

following the 2017 prescribed burns. Twelve decomposition bags (4 anti-fungal, 4 anti-bacterial, 

and 4 control), each with litter corresponding to local pine overstory conditions, were randomly 
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selected, and placed on the soil surface in each plot. Bags were placed among the bases of 

vegetation in plots so that one flat surface of the bag contacted bare soil.  All bags were anchored 

along margins with 5 cm sod-staples to ensure that they remained in the plot and stayed in contact 

with litter and soil surfaces.   From within each bag treatment group, one bag was collected 

approximately 2, 4, 6, and 8 months after the 2017 prescribed fires.  Any soil or litter on the bags 

was carefully removed, and then bags were placed in sterile plastic bags. Collected bags were 

shipped overnight to the University of Kansas to be analyzed.  Once received, litter contents were 

carefully removed, dried at 65˚C for 72 hours, and then weighed to determine percent mass loss.   

Soil analysis:  Soil samples were collected from all plots in  2017.  Soil was collected at three 

randomly located points just outside each 4m2 plot, shifting locations slightly to avoid bases of 

established ground layer plants. We removed litter carefully, then collected the upper 1.5 cm of 

soil within a 9 x 9 cm quadrat (soil depth where heating effects begin to decrease during prescribed 

fires). We removed obvious roots from the samples. All equipment used to collect samples was 

sterilized with 10% bleach and 90% isopropyl alcohol between sampling of plots. The three soil 

samples from each plot were combined and kept cool with freezer packs after collection, frozen at 

-20°C until shipped overnight to the University of Kansas, and stored at -20°C upon arrival. 

Samples were thawed and homogenized by hand using sterile technique (within sealed bags).  

A 100 g subsample was sent to the Kansas State University Soil Testing Lab for analysis.  

Soil phosphorus content was measured using the Mehlich-3 method on a Lachat Quickchem 8000 

(Lachat Instruments, Loveland, USA; Mehlich 1984).  Total soil nitrogen and carbon samples were 

measured on a LECO TruSpec CN Carbon/Nitrogen combustion analyzer (LECO Corporation, St. 

Joseph, USA).  NH4+ and NO3- were extracted using 1 M KCl on 2 g of soil, then Cadmium 

reduction for nitrate and colorimetric procedures was used, followed by flow analysis for ion 
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quantification (Brown 1998).  C:N ratio as obtained by dividing the amount of total soil carbon by 

the amount of total soil nitrogen.  Soil pH was determined using a 1:1 soil-distilled water slurry, 

where each slurry was assayed 3 times (probe cleaned between trials), and results were averaged 

to attain sample pH. 

Data Analysis:  All analyses were completed in R 4.0.1 (R Core Team 2020).  Linear mixed effect 

models available in the “lme4” (LMERs; Bates et al. 2015) were used to assess the effects of fire 

intensity treatment, location in proximity to pines, and antibiotics, on microbial decomposition.  

For random effects, we controlled for plot, patch, and fire management unit (side) level differences, 

with a three level nested structure (plot within patch, patch within fire management unit).  Model 

fitting for LMERs at all time points started with fully factorial models and removed main and 

random effects until model fit criteria (AIC and BIC) were minimized.  Following LMERs, type 

III ANOVAs with the Satterthwaite Method were used to evaluate main effects, and then estimated 

marginal means in the “emmeans” (Lenth 2018) package were used to evaluate significant (α = 

0.05) pairwise differences between experimental treatments. 

We then explored possible mechanisms underlying fire driven shifts to microbial 

decomposition using structural equation modeling (SEM). Based on existing literature, we 

hypothesized specific pathways relating fire intensity and microbial decomposition that included 

direct effects of fire on microbes, as well as indirect relationships mediated through fire driven 

changes to soil properties. We also hypothesized that proximity to overstory longleaf pines might 

play an independent role in determining decomposition due to differences in plant fuel loads.  

Initial model pathways are shown in Figure 9.  Specifically, we hypothesized that 1) heat flux and 

burn duration related fire characteristics would govern the energy released from individual fires 

(Figure 9, path A) 2) increasing fire energy release would be associated with decreased 
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decomposition (Figure 9, path B), and 3) higher fire energy release would decrease nutrient 

availability, and slow decomposition (Figure 9, path C).  We also hypothesized that 4) proximity 

to pines, although independent of fire energy release, would be associated with slower 

decomposition due to the recalcitrant nature of pine needle fuels (Figure 9, path D).  Our SEM 

contained categorical, continuous, and ratio variables, which described fire intensity treatments, 

2017 prescribed fire characteristics, fuel treatment data, and plant litter decomposition data within 

plots.  Important to note, antibiotic treatments were not included in the SEM due to inherent 

complications with non-ordinal factor variables.  All continuous variables were scaled and 

transformed appropriately prior to analysis.  For a description of model variables see Table 9.  

After developing an initial hypothesis for model structure, the R Package: “lavaan” was used to 

evaluate the preliminary SEM for convergence (Rosseel 2012).  Upon convergence, a goodness of 

fit guided approach was used to assess the further modification of model parameters. Models were 

then evaluated using test statistics suggested by Hooper et al. 2008.  See the chapter 3 appendix 

for full model fitting details. 

 

Results    

Effect of fire intensity treatment, proximity to pines, and antibiotics on microbial decomposition: 

As hypothesized, increasingly intense fires had negative effects on microbial decomposition.  

Increasing fire intensity slowed microbial decomposition at 2 (F5, 285 = 3.186, P = 0.012; Figure 

10a; Tables 10, 11), 4 (F5, 285 = 4.012, P = 0.003; Figure 10c), and 8 (F5, 286 = 2.3855, P = 0.0482; 

Figure 10d) months.  At 2 and 4 months, all intensity treatments had lower mass loss than unburned 

plots (P < 0.05).  At 4 months, the 2x addition treatments had lower mass loss than the fuel removal 

plot as well as the unburned plot (P < 0.05).  At 8 months, only the 1x and 2x additions had lower 
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mass loss than the unburned treatment plots (P < 0.05).  Also at 8 months, the 2x additions had 

lower mass loss than the reference and fuel swap plots (P < 0.05). 

The antibiotic treatments had a significant effect on decomposition early in the study.  At 

the 2-month collection point (F2, 285 = 5.213, P = 0.006; Tables 10, 11; Figure 10b), mass loss was 

higher in the anti-fungal treatments than the anti-bacterial and control treatments (P < 0.05).  The 

anti-bacterial and control treatments were not statistically different. 

Proximity to pines did not have a significant effect on microbial decomposition throughout 

the study, and overall model fit was often improved upon its removal. 

 In summary, fire intensity treatments had the strongest effect on microbial decomposition 

in the study, with more intense treatments (1x and 2x additions) slowing decomposition the most.  

Antibiotics altered decomposition at the first collection point, however, later in the study they did 

not have a discernable effect on the decomposition of plant fuels. 

Structural equation modeling of causal pathways for fire intensity effects:  Given the scope of our 

data, we developed a structural equation model to assess the causal pathways by which fire 

intensity impacted above ground microbial decomposition.  Since fire intensity was not directly 

measured, we modeled it as a “fire energy release” latent variable described by maximum surface 

and soil temperature increases and surface fire duration > 60˚C.  While we were specifically 

relating fire intensity to above ground microbial decomposition, we included both surface and soil 

fire characteristics in our fire intensity model.  We took this approach, because we expected that 

larger heat fluxes and longer burn durations would negatively affect microbial decomposers 

entering decomposition bags from residual fuels and the soil.  Initial analysis began with the fire 

intensity latent variable construction, and included a covariance structure between maximum 

surface temperature and surface duration > 60˚C.  This model converged and was a good fit to the 
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data (MFTS = 0.013, D.F. = 1, P = 0.911).  Following latent variable construction, a highly 

saturated model containing all variables described in table 9 was created by including mechanisms 

through which we hypothesized that fire intensity would modify microbial decomposition (Ch.3 

App. Table S1).  The model fitting approach sought to minimize the MFTS, while achieving a χ2 

p-value greater than 0.05.  The initial model converged, but was not well supported (MFTS = 

156.382, D.F. = 19, P = 0), so a reductive model approach where non-significant pathways and 

variables were removed was employed.  Following several iterations, a final, well supported model 

was determined (MFTS = 35.382, D.F. = 26, P = 0.104).  A description of this model is available 

in table 2.  Model fit statistics (Ch.3 App. Table S2) were assessed for all models according to 

(Hooper et al. 2008).  See the chapter 3 appendix for more details on SEM model fitting. 

SEM results:  The final SEM model (Table 12, Figure 11) supported our hypotheses that fire 

intensity governs the microbial decomposition of fine fuels.  Furthermore, the model also detailed 

other mechanisms that govern above ground plant fuel decomposition. 

Direct Impact of fire intensity:  Fire intensity was associated with microbial decomposition at all 

time points in the study, as in the LMER analysis above.  Specifically, as fire intensity increased, 

microbial decomposition slowed.  The model supported a direct pathway for these effects at 2 (-

0.38) and 4 months (-0.18), and indirect pathways at 6 (-0.13) and 8 (-0.15) months.  In summary, 

increasingly intense fires were associated with decreased above ground microbial decomposition 

throughout the study. 

Edaphic and Pine Proximity Effects:  While not related to fire intensity, total soil carbon and 

nitrogen were strong predictors of microbial decomposition.  Total soil carbon was an important 

predictor of increased decomposition across all time points in the study with direct effects at 2 

(0.22) and 6 (0.11) months, and weak indirect effects at 4 (0.05) and 8 (0.1) months.  Additionally, 
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soil carbon was positively related to soil nitrogen (0.9), which was related to increased microbial 

decomposition at 4 months (0.15), and indirectly related to increased microbial decomposition at  

6 (0.05) and 8 months (0.05). 

 Proximity to pines was also associated with microbial decomposition at all time points in 

the study.  Specifically, bags located near pines saw more decomposition at two months (0.22) and 

slowed decomposition at 6 months (-0.16).  Proximity to pines also had weak, but positive effects 

on decomposition at 4 (0.05) and 8 months (0.01).  While not directly related to the fire intensity, 

increased nutrient availability and proximity to pines were important predictors of microbial 

decomposition depending on time since fire. 

 

Discussion 

Microbial decomposition was slower in intensely burned sites following 2017 prescribed fires and 

was regulated by soil fungi early after fires.  The differences in plant fuel decomposition associated 

with fire energy release were likely caused by augmented microbial mortality due to larger heat 

fluxes and longer burn durations (Bárcenas-Moreno & Bååth 2009; Dooley & Treseder 2012).  

Fire intensity driven effects on microbial communities are consistent with Ficken and Wright 2017, 

Semenova-Nelsen et al. 2019, and Hopkins et al. 2020, which found that fire reduced microbes 

ability to decompose new plant fuels.  Independent of fire intensity, antibiotic treatments revealed 

a suppression of bacterial saprotrophs by fungi early after fires.  Despite superior survival of 

bacteria relative to fungi following intense heating and fires (Hamman et al. 2007; Bárcenas-

Moreno & Bååth 2009), the higher decomposition in anti-fungal bags suggested that fungi that 

survive fire can suppress post-fire bacterial function.  This suggests a novel mechanism that could 

alter plant fuel load dynamics following fire if fire resistant fungi suppress decomposition of new 
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plant fuels. Taken together, this implies that fire intensity is an important driver of microbial 

function in pyrophilic ecosystems, and that fungi can regulate post-fire plant load dynamics. 

 Surprisingly, fire characteristics related to intensity, microbial decomposition, and nutrient 

availability did not interact as strongly as predicted.  The lack of interaction between fire intensity 

and nutrient availability is unexpected, but not entirely surprising as fire is known to have 

differential effects on nutrients in fire frequented, pyrophilic ecosystems (Coates et al. 2018).  

Additionally, fires may not have been intense enough to drive significant carbon and nutrient loss, 

as commonly occurs following wildfires (Neary et al. 1999; Certini 2005).  Despite the lack of 

interaction with fire, higher amounts of nitrogen (N) and carbon (C) were associated with increased 

decomposition across most of the study, which may be due to increased nutrient availability or 

C:N ratios favorable for decomposition (Perez-Harguindeguy et al. 1999; Manzoni et al. 2010).  

Important to note, it is likely that fire effects on nutrient availability will be stronger in less fire 

frequented ecosystems, which have larger fuel loads (Shinneman & Baker 1997; Kalies & Yocom 

Kent 2016) and higher intensity fires that can have highly destructive effects on below ground 

processes and nutrient availability (Neary et al. 1999). 

 Independent of fire characteristics related to intensity, proximity to pines had differential 

effects on microbial decomposition depending on time since fire.  Higher mass loss near pines as 

opposed to away from pines sites soon after fires was unexpected, as longleaf pine needles are 

commonly considered to be resistant to decomposition due to their high lignin content (Wardle et 

al. 2002; Cornelissen et al. 2017).  The larger amounts of pine needles in plots near longleaf pines 

may explain this effect though, as pine needle fuels favor higher fuel combustion (Platt et al. 2016), 

which may have caused a larger flux of nutrients following fire that favored decomposition (Neary 

et al. 1999).  This effect decreased with time however, likely due to nutrient availability returning 
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to pre-fire levels (Kutiel & Naveh 1987), and the recalcitrant nature of longleaf pine needles acting 

as the governing factor of decomposition (Wardle et al. 2002).  This highlights the importance of 

considering plant fuel traits in fire intensity and fire-climate models, as the type and quantity of 

plant fuels are important predictors of microbial decomposition and feedbacks on future fires. 

 Although fire intensity, nutrient availability, and proximity to pines are important 

determinants of microbial decomposition, it is apparent that the strength of these effects change 

with time since fire.  Early after fire, the energy released by fire appears to be the dominant factor 

controlling microbial decomposition, but this effect gradually weakens with time.  As the effect of 

fire intensity weakens, other factors like nutrient availability and proximity to pines take 

precedence, which is consistent with other studies that found decreasing effects of fire on microbial 

communities with time since fire (Bárcenas-Moreno et al. 2011; Hedo et al. 2015).  Additionally, 

the increasing importance of nutrient availability and pine proximity corresponds with the growing 

season at this site, which is a time of intense competition for nutrients and available substrates 

(Schmidt et al. 2007).  By comparing the importance of fire intensity, nutrient availability, and 

proximity to pines across time, we provide an ecologically relevant model for understanding the 

short- and longer-term importance of fire intensity in ecosystems. 

 Linking fire intensity and microbial function expands our understanding of microbial roles 

in ecosystems.  Specifically, we have illustrated a potential mechanism through which energy 

released during fire alters the microbial decomposition of plant fuels and may shift future fire 

characteristics due to changes in fine fuel loads.   This work builds upon the findings of Semenova-

Nelsen et al. 2019 and Hopkins et al. 2020, which showed the effects of fire and fire history on 

microbial function, by connecting another component of fire regime, fire intensity, to microbial 

roles in ecosystem dynamics.  In addition to microbial decomposition, fire intensity likely modifies 
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other microbial related processes like the formation of plant-fungal mutualisms (Klopatek et al. 

1988; Glassman et al. 2016) and plant-pathogen interactions (Hardison 1976).  In ecosystems 

where fuel loads are allowed to build up, increasingly intense fires are known to burn off entire 

organic matter layers and expose mineral soils (Glassman et al. 2016).  Fires of this intensity can 

significantly reduce ectomycorrhizal spore abundance, which could slow plant growth and fuel 

production.  Alternatively, increasingly intense fires may favor plant growth and plant fuel 

production if microbial pathogen mortality is increased by fire (Hardison 1976).  In this case, fire 

could help plants escape microbial pathogens and produce more fuels, thus increasing the intensity 

of future fires due to larger fuel loads.  Future work must explore microbial responses to other fire 

regime components (e.g. season and extent of fires) to further our understanding of microbial roles 

in pyrophilic ecosystems.  Additionally, we must acknowledge the potential of fire regime driven 

feedbacks on future fire characteristics in pyrophilic and non-pyrophilic ecosystems alike. 

 In summary, we confirmed that fire intensity shifts microbial decomposition, and that the 

strength of this effect changes across time.  Moreover, we identify another potential mechanism 

through which fire intensity can influence microbial decomposition and future fire characteristics 

due altered plant fuel loads.  This model provides a readily transferable framework, which is 

applicable to other ecosystems due to its inclusion of fire characteristics, abiotic factors, and time 

since fire.  As mentioned above, there are still other factors to consider where fire regime and 

microbes are concerned, however, these can be easily included in our model due to the flexibility 

of SEM.  Since fires are expected to increase in number due to climate change effects (Liu & 

Wimberly 2016; Schoennagel et al. 2017), understanding the role of microbes in fire ecology is 

crucial to predicting and managing future changes to fire mediated ecosystems. 
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Chapter 3 - Tables 

 

Table 9: Description of variables included in structural equation model fitting process.  Table 

contains names, means, standard deviations, and descriptions of each variable.  Note that means 

and standard deviations reflect pre-transformed and normalized measurements. 

 
 

Variable Name Type SEM Code Transformation Description

Fire energy release latent none none latent variable described by fire temp. and duration

1 = unburned

2 = fuel removal

3 = reference

4 = fuel swap

5 = 1x addition

6 = 2x addition

maximum surface temperature continuous none none max temp. increase recorded by surface thermocouple

surface duration > 60˚C continuous none natural log surface temp. duraction (sec) above 60°C

maximum soil temperature continuous none log 10 max. temp. increase recorded by soil thermocouple

total nitrogen percent none natural log total organic and inorganic nitrogen

total carbon percent none natural log total soil carbon

month 2 percent mass loss continuous none none percent mass loss at 2 months

month 4 percent mass loss continuous none none percent mass loss at 4 months

month 6 percent mass loss continuous none none percent mass loss at 6 months

month 8 percent mas loss continuous none none percent mass loss at 8 months

pine proximity categorical near - away none decomp. bag proximity to overstory pines, and litter type

ordinal variable describing fuel manipulation treatmentsfire intensity treatment ordinal none
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Table 10: Linear mixed effect model tables for microbial decomposition at each collection point.  

Tables contain the fixed and random effects for each model.  Main effects were determined using 

Type III sums of squares with Satterthwaite method. 

 

Term Variance S.D. Term D.F. F-value P-value

plot:patch 1.87 1.368 intensity treatment 5 3.186 0.01**

patch 2.662 1.632 antibiotic 2 5.2128 0.006**

residual 13.628 3.692 pine proximity 1 2.4476 0.15

plot:patch 3.705 1.925 intensity treatment 5 4.0119 0.003**

patch 3.797 1.949 pine proximity 1 2.6203 0.14

residual 44.411 6.664

plot:patch:side 18.194 4.265 intensity treatment 5 1.6683 0.15

patch:side 1.966 1.402 pine proximity 1 0.017 0.90

side 3.98 1.995 severity * pine 5 1.7142 0.14

residual 59.154 7.691

plot:patch:side 3.06E-04 1.75E-02 intensity treatment 5 2.3855 0.05**

patch:side 6.53E-04 2.56E-02 antibiotic 2 1.0644 0.35

side 1.35E-17 3.67E-09 pine proximity 1 0.2939 0.60

residual 1.12E-02 1.06E-01 intensity*antibiotic 10 0.8426 0.59

intensity*pines 5 0.4354 0.82

antibiotic*pines 2 0.2876 0.75

intensity*anti*pines 10 0.9578 0.48

Random effects Fixed effects

6 months

8 months

2 months

4 months
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Table 11: Pairwise contrasts for linear mixed effect model main effects on microbial 

decomposition.  Tables contain all pairwise contrasts for significant main effects (α = 0.05).  

Pairwise differences were estimated using the Satterthwaite Method.  Lowercase letters in the 

group column denote significance groupings. 

 

Treatment Estimate S.E. D.F. Group

Intensity treatment

2x addition 10.64 0.90 77.31 a

1x addition 11.85 0.90 76.04 a

fuel swap 11.72 0.90 77.27 a

reference 12.05 1.04 24.90 a

fuel removal 12.29 0.90 75.94 a

unburned 14.81 1.06 75.07   b

Antibiotic treatment

anti-fungal 13.31 0.54 192.48 a

anti-bacterial 11.63 0.53 193.32   b

control 12.05 0.65 24.90   b

Intensity treatment

2x addition 19.25 1.53 79.15 a

1x addition 20.27 1.52 77.65 ab

fuel swap 21.15 1.29 79.15 ab

reference 20.84 1.46 26.33 ab

fuel removal 22.75 1.52 77.54   b

unburned 26.20 1.71 75.52     c

Intensity treatment

2x addition 29.49 1.83 11.39 a

1x addition 31.26 1.83 11.39 ab

fuel swap 34.40 1.83 11.39   bc

reference 34.30 1.84 11.78   bc

fuel removal 32.10 1.83 11.39 abc

unburned 37.05 1.78 10.44      c

2 months

8 months

4 months
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Table 12: Final SEM pathway coefficients and justifications. Table contains each pathway in the 

model with response variables, explanatory variables, effect and standardized effect of each 

variable, P-values for significance, R-squared estimate for model pathway, and justification for 

inclusion in final model. 

 
 

Response Variable Explanatory Variable(s) Estimate Standardized Estimate P-value R
2 Justification

maximum surface temperature 1 0.779 na 0.606 Ellair & Platt (2013) & Platt et al. (2016)

maximum soil temperature 0.983 0.893 0.001 0.797 Ellair & Platt (2013) & Platt et al. (2016)

surface duration > 60˚C 1.255 0.898 0.001 0.807 Ellair & Platt (2013) & Platt et al. (2016)

total nitrogen total carbon 0.698 0.894 0.001 0.799 linked through C:N ratio 

fire energy release -0.033 -0.383 0.001 0.265 Bárcenas-Moreno and Bååth 2009

pines 0.022 0.217 0.001 Hobbie 2000

total carbon 0.029 0.217 0.001 Taylor et al. 1989

fire energy release -0.024 -0.181 0.001 0.167 Bárcenas-Moreno and Bååth 2009

month 2 percent mass loss 0.349 0.222 0.001 Voříšková and Baldrian 2013

total nitrogen 0.041 0.152 0.007 Taylor et al. 1989

month 2 percent mass loss 0.246 0.135 0.027 0.164 Voříšková and Baldrian 2013

month 4 percent mass loss 0.344 0.296 0.001 Voříšková and Baldrian 2013

pines -0.029 -0.162 0.005 Hobbie 2000

total carbon 0.027 0.113 0.054 Taylor et al. 1989

month 2 percent mass loss 0.272 0.124 0.028 0.232 Voříšková and Baldrian 2013

month 4 percent mass loss 0.358 0.255 0.001 Voříšková and Baldrian 2013

month 6 percent mass loss 0.317 0.262 0.001 Voříšková and Baldrian 2013

maximum surface 

temperature & surface 

duration > 60˚C

na 0.074 0.437 0.061 na Peay et al. 2009

Fire energy release

Covariance Structures

month 2 percent mass 

loss

month 4 percent mass 

loss

month 6 percent mass 

loss

month 8 percent mass 

loss
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Chapter 3 - Figures 

 

 
Figure 9: Hypothesized pathways by which energy release associated with fire intensity modifies 

microbial decomposition of  new plant fuels. Path A) increasing  the temperature and duration of 

fires will increase the energy released during fire.  Path B) increasing fire energy release will slow 

microbial decomposition. Path C) fire energy release will alter nutrient availability and impact 

microbial decomposition. Path D) distinct from fire,  pine proximity and litter type will  alter 

microbial decomposition to differences in litter recalcitrance. 
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Figure 10: Effect of fire intensity and antibiotic treatments on the microbial decomposition of  litter 

bag contents.   Plots denote the mean, ± standard error. At the two month collection point, 

microbial decomposition  a) decreased as fire intensity increased, and b) antifungal   solution was 

added.  c) At the four month collection point, microbial decomposition was lowest in the fuel 

addition treatments.  d) At eight months, microbial decomposition was lower in burned versus 

unburned sites. 
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Figure 11: Final SEM and model components for fire severity’s effect on microbial decomposition 

of fine fuels.  Numerical coefficients on model paths are standardized regression coefficients. Red 

paths denote negative associations between linked variables, while black paths denote positive 

associations.  Fire severity is linked to microbial decomposition at two and four months, and 

modifies decomposition at six and eight months through changes at prior time points.  Nutrients 

and proximity to pines are also strong drivers of decomposition across the study despite not being 

linked to fire severity. 
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Chapter 4 - Interactions between fire and pyrophilic plants: a case study in a frequently 

burned Longleaf pine savanna ecosystem 

 

Jacob R. Hopkins, Jean Huffman, Neil Jones, William J. Platt, Benjamin A. Sikes 

 

Abstract 

Feedbacks between fire and pyrophilic plants engineer the recurrent, low severity fires that 

maintain pyrophilic ecosystems like savannas.  The mechanisms that sustain fire-plant feedbacks 

are less clear however, but may be related to plant growth responses (i.e. fuel production) to fire 

associated changes in soil conditions and variations in savanna soil type (e.g. trees vs. 

understory).  We hypothesized that pyrophilic plants would have higher germination rates than 

less pyrophilic species, and display rapid growth responses related to fire associated changes to 

abiotic (nutrient availability) and biotic (microbes) soil conditions.  We further hypothesized that 

soil type would modify plant growth responses to fire treatments.  To test these hypotheses, we 

conducted a greenhouse experiment using surface soil from an old-growth pine savanna exposed 

to low, medium, and high fire severity treatments.  We compared the germination of savanna 

plant species from patches that burned annually (more pyrophilic plants) to species from patches 

that burned every two to three years (less pyrophilic plants), and then explored germination and 

growth responses of the more pyrophilic species to soil type and fire intensity treatments.  The 

more pyrophilic species had higher germination rates than their less pyrophilic counterparts, and 

displayed varying germination and rapid growth responses to soil type and fire severity effects 

on biotic and abiotic soil factors.  This suggests that pyrophilic plants can take advantage of post-

fire conditions, and rapidly produce the fuel loads necessary for the fire regimes of pyrophilic 
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ecosystems.  Furthermore, the varying soil type and fire severity preferences amongst plant 

species imply a mechanism for maintaining plant diversity in Longleaf pine savannas. 

 

Introduction 

Feedbacks between fire and pyrophilic plants produce the recurrent, low severity fires that 

maintain pyrophilic grasslands and savannas.  Such feedbacks, prominent in warm, high-light-

severity and mesic environments, are driven by plant traits that result in the rapid, post-fire 

production of flammable fine fuels (Singh 1993; Brewer & Platt 1994; Platt et al. 2016b; 

Beckage et al. 2019; Simpson et al. 2020).  These pyrophilic traits may include enhanced 

germination and growth in post-fire environments, which can provide a competitive advantage 

over less fire tolerant species (Platt 1999; Keeley & Fotheringham 2000; Gagnon et al. 2010; 

Harms et al. 2017; Resco de Dios 2020) and replenish fuel loads quickly.  Consequently, post-

fire community-level fuel loads within 1-2 growing seasons can help fires spread, and sustain the 

recurrent, low severity fire regimes that favor pyrophilic taxa (Birk & Bridges 1989; Beckage & 

Ellingwood 2008; Beckage et al. 2011; Gagnon et al. 2015; Archibald et al. 2018; Schertzer & 

Staver 2018).  How the traits of pyrophilic plants associated with growth (i.e. fuel production) 

are influenced by fire’s effect on soil conditions and the environment needs to be examined, 

however. 

 Plant fuel production is closely linked to soil abiotic conditions that are altered by fire.  

Fire produces short-term flushes of mineral nutrients and pH increases that vary depending on 

fire severity (Certini 2005b).  While C, N, and P levels generally increase after low to mid 

severity fires (Neary et al. 1999a; Butler et al. 2018), higher severity fires can drive net losses of 

these nutrients, particularly N (Raison 1979; Pellegrini et al. 2018).  Fire also transiently 
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increases soil pH due to the combustion of plant fuels and denaturation of organic acids (Certini 

2005).  Therefore, fires in pyrophilic ecosystems may drive frequent nutrient flushes and 

increases in soil pH capable of stimulating post-fire germination and fuel production 

(Daubenmire 1968; Robson 1989; Beckage et al. 2011). The ability of pyrophilic plants to 

become established and produce new fuels after fires should sustain the recurrent, low severity 

fires that favor the persistence of pyrophilic grassland and savanna plants.  Pyrophilic plant 

responses to fire driven soil abiotic changes may not be independent of fire-microbial 

interactions however, as microbes are associated with abiotic soil conditions and can alter plant 

germination and fuel production. 

Fire effects soil microbes in ways that may modify post-fire plant-microbial interactions 

and fuel production.  Since increases in fire severity at ground level directly increase microbial 

mortality (Hamman et al. 2007; Bárcenas-Moreno & Bååth 2009; Pressler et al. 2019), fuel 

production may be altered if microbial groups are differentially affected.  For example, lower 

severity fires have harmful effects on pathogenic microbes in upper soil horizons (Hardison 

1976; Katan 2000; Hopkins et al. 2021), while potentially leaving sub-surface mutualists like 

mycorrhizal fungi unharmed (Klopatek et al. 1988; Hamman et al. 2007).  Such differential 

effects of fires could promote germination and fuel production, as pathogens are removed 

relative to mutualistic mycorrhizae.  On the other hand, more intense fires may reach deeper soil 

horizons, killing hosts and microbes insulated in plant roots (Hamman et al. 2007; Dooley & 

Treseder 2012; Glassman et al. 2016).  If fire’s effects on microbes influence pyrophilic plant 

traits associated with fuel production, this could generate feedbacks on fire regimes.  Interactions 

between fuel production and soil conditions are almost certainly spatially variable however, 
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particularly in savannas (e.g. trees vs. understory), such that locational effects may directly 

influence abiotic and biotic soil components of soil and modify fire severity.  

 Natural heterogeneity in soil conditions and plant fuels may play an important role in 

plant responses to fire.  Since soil and fire characteristics are partially determined by available 

plant fuels (Fill et al. 2015; Platt et al. 2016; Mugnani et al. 2019), heterogenous plant 

communities such as those in savannas (e.g. trees vs. understory; Peet et al. 2018) could 

ultimately influence plant fuel production.  For example, in the grass-pine matrix of Longleaf 

pine savannas, higher levels of soil organic carbon and lower pH are expected near pines where 

needlecast is higher relative to understory soils.  Furthermore, differences in microbial 

communities are expected (e.g. arbuscular mycorrhizal understory plants vs. ectomycorrhizal 

pines) depending on location.  These factors alone can modify plant fuel production, and may be 

further modified by spatial differences in fire severity (Certini 2005; Hamman et al. 2007; 

Taudière et al. 2017).  Fires tend to be more severe near pines due to larger amounts of pine 

needle fuels (Platt et al. 2016), which could increase microbial mortality and drive nutrient 

flushes that effect plant responses to fire.  If plant responses to different fire severities vary in 

ways that alter fuel production, then this could influence the fire-fuel feedbacks that maintain 

pyrophilic ecosystems.   

Here we tested how location and fire severity impacts on soil abiotic and biotic properties 

impact the germination and early growth of plants from an old-growth pine savanna.  Longleaf 

pine savannas contain grass-pine matrices, which make them broadly representative of other 

mesic pyrophilic grasslands and savannas, and useful for testing plant responses to fire’s effect 

on soil conditions. In 2017, we experimentally manipulated pyrogenic fuels (shed needles) of the 

dominant tree species, Pinus palustris, in plots near and away from overstory pines, to create 
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three fire severity treatments (low, medium, and high).  Following prescribed fires, we collected 

soils from the fire severity treatments, as well as seeds from pairs of pine, clonal shrubs, C4 

warm season grasses, and composite forbs that occurred in annually (more pyrophilic taxa) and 

periodically burned (less pyrophilic taxa) sections of the savanna site.  Using the collected soils 

and seeds, we designed a fully factorial greenhouse pot experiment that tested how locational 

(near vs. away from pines) and fire effects on abiotic and biotic soil components modified plant 

life cycle stages important in post-fire environments (germination and growth).  We 

hypothesized that germination rates would be greater for seeds from the more pyrophilic plant 

taxa relative to their less pyrophilic counterparts, and that location and fire severity effects on 

abiotic (nutrients and pH) and biotic (microbes) soil conditions would modify plant germination 

rates and fuel production.  Our findings suggest that pyrophilic plants can take advantage of fire 

in ways that promote their germination and growth in frequently burned Longleaf pine savannas. 

 

Methods 

 

Study System and Field Sampling: We conducted field components of our study on the Arcadia 

Plantation in Thomas County, GA, USA. This reserve, ~80 km north of the Gulf of Mexico, is 

characterized by moderately dissected terrain 25–50 m above sea level on Pliocene sediments of 

the Miccosukee Formation (Lawton and Friddell 1976, Sanders 1981). The soils are Ultisols 

(Typic and Arenic Kandiudults) characterized by sand or sandy loam A and E horizons and sandy 

clay loam Bt subhorizons (Robertson et al. 2019).   

We used the two prescribed fire units on Arcadia Plantation that contain an exemplary old-

growth conservation easement, the Wade Tract Preserve (30° 45’ N; 84° 00’ W). This easement 

contains a discontinuous overstory dominated by variable-aged patches of Pinus palustris, longleaf 
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pine (Platt et al. 1988. Peet et al. 2018) and a ground layer with diverse grasses, forbs, and shrubs 

(Mugnani et al. 2019). The fire units containing the old-growth easement are characterized by 

century-old stands of longleaf pine from which large trees have been periodically harvested using 

a single-tree selection method and an intact ground layer that has never been plowed or grazed. 

These fire units, historically burned every 1-3 years by lightning-ignited fires and more recently 

by open-woods burning, have been managed for the past several decades using annual/biennial 

prescribed ground layer fires (Robertson et al. 2019). Each unit has been burned in 11 prescribed 

fires during the 12-year period from 2009–2020 (average return interval 1.1 years). These fires 

have been applied from March-May with mean dates for both units in mid-April with standard 

deviations of about one-two weeks (Robertson et al., 2019). This prescribed fire program has 

resulted in shifting mosaics of unburned patches located within a more extensive background 

matrix of almost annually burned grassland (Robertson et al.2019, Semenova-Nelsen et al. 2019).  

We established replicated plots and applied experimental treatments prior to the 2017 

prescribed fires.  In the fall of 2016, we selected eight locations in the Wade Tract conservation 

easement. Half of the locations contained an overstory of longleaf pine and the other half were 

open areas away from overstory pines.  Within each of the four pine overstory locations, we 

established six 2 x 2 m (4m2) plots within 10 meters of multiple overstory pines (hereafter, near 

pines).  Within each of the four no overstory pine locations, we established six 2 x 2 m (4m2) plots 

at least 10 meters away from overstory pines (hereafter, away from pines).  Each of the 24 plots 

was marked and randomly assigned to a fuel treatment. 

We manipulated fuel loads in plots to create three fire severity treatments on the Wade Tract.  

We manipulated the density of longleaf pine needles, known to increase maximum temperatures 

and durations of surface temperatures >60°C at the ground surface (Platt et al. 2016).  We applied 
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one of three treatments to each plot: no manipulation of pine needles, removal of pine needles, and 

addition of pine needles.  No-manipulation plots represented the natural accumulation of pine 

needles in addition to other fine fuels from plants in the ground layer vegetation. Removal of pine 

needles, which was accomplished by lightly raking and hand-removing pine needles within a few 

days of planned prescribed fires, produced fine fuels of only ground layer vegetation.  Removed 

needles were weighed to measure the fuel reductions involved.  To generate pine needle addition 

treatments, we collected and stored fallen pine needles from along the sides of a dirt road through 

the conservation easement in the fall and winter of 2016-2017.  A week prior to prescribed fires in 

March and April 2017, we manually added 2000 g/m2 as uniformly as we could to simulate natural 

needlefall in marked 4m2 plots.    

We sampled fuel loads before and after 2017 prescribed fires. Within the week prior to 2017 

prescribed fires, we randomly established paired subplots of 30 x 30 cm within each 4m2 plot. We 

collected the above-ground fuels (live vegetation and litter) within one randomly selected subplot 

within each plot.  Fuels were sorted into five categories (pine needles, grass, forb, shrub, litter), 

dried, and weighed.  After prescribed fires, residual fuels from the other paired plot were collected, 

dried, and weighed.  The proportion of pre-fire fine fuel biomass combusted during the prescribed 

fire was then estimated.  

We measured characteristics of fires in the 2017 prescribed fires.  We used thermocouples and 

data loggers to record fire temperatures in ways described in Platt et al. (2016). 

We collected and processed soil following the prescribed fires. Soil from the upper 5 cm of 

each plot was extracted and combined with soil collected from similar fuel/fire treatments in 

separate buckets.  Buckets were then kept cool and shipped to the University of Kansas (Lawrence, 

USA), where they were stored at 4˚Celsius.  Prior to sterilization, portions of the collected soil 
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from each severity treatment were set aside for use as live innocula treatments (low, medium, and 

high severities).  The remainder of the soil was sterilized using ultraviolet radiation.  Soil from 

each of the three treatments was spread ~2.54 cm deep in sterile planters and irradiated for 10 

minutes with 18 Watt UV-C bulbs (Rexim LLC, Watertown, USA) placed 20 cm above the soil 

surface.  Then soil was sterilely mixed in each planter and received two more 10 minute treatments, 

with mixing between each irradiation.  The sterilization process was conducted separately for each 

soil severity treatment.  Sterilization exposed the soil to a dose of ~2081 mJ/cm2, which should be 

fatal for most bacterial and fungal species (ClorDiSys 2014).  Following sterilization, the soil was 

stored in sterile, 19 L bags until use.  Additionally, sterile control treatments were created using 

sterilized abiotic soil matching the abiotic severity treatment of the respective pot. 

Seeds of eight plant species were collected for this study from the annually burned fire blocks 

containing the Wade Tract easement.  We selected two species from each of the four major life 

forms in the pine savanna: tree, grass, forb, and shrub in the fall of 2017, at the times seeds were 

naturally being dispersed from plants.  One of each pair of different life forms (hereafter, more-

pyrophilic plants) occurred abundantly in the annually burned ground layer throughout the fire 

blocks; the other was more typical of less-frequently burned patches scattered throughout and 

along the periphery of the fire blocks (hereafter, less-pyrophilic plants).  The four more-pyrophilic 

species were Pinus palustris (tree), Sorghastrum secundum (grass), Pityopsis graminifolia (forb), 

and Callicarpa americana (shrub).  The four complimentary less-pyrophilic species were: Pinus 

taeda (tree), Sorghastrum nutans (grass), Bidens bipinata (forb), and Rhus copallinum (shrub). 

Soil Analyses: Samples of all collected soils were analyzed for total phosphorus, ammonium, 

nitrate, total carbon, total nitrogen, average pH, and C:N ratios.  Soil phosphorus was measured 

using the Mehlich-3 method on a Lachat Quickchem 8000 (Lachat Instruments, Loveland, 
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Colorado; (Mehlich 1984).  Total soil nitrogen and carbon samples were measured on a LECO 

TruSpec CN Carbon/Nitrogen combustion analyzer (LECO Corporation, St. Joseph, Michigan).  

NH4
+ and NO3

- were extracted using 2 M KCl on 2 g of soil, and then, cadmium reduction for 

nitrate and colorimetric procedures were used, followed by flow analysis for ion quantification 

(Brown 1998).  Average pH was determined by combining three separate soil sub-samples 1:1 

with H2O (pH 7) and averaging the pH output.  C:N ratios were determined by dividing total carbon 

by total nitrogen measurements.  

Greenhouse Study Procedures: Seeds were planted in a temperature regulated greenhouse at the 

University of Kansas Between October and November 2017.  We used  1-Liter “Deep” pots 

(Steuwe & Sons Inc., Tangent, USA) that were first stuffed with two sheets of sterile paper towel 

to prevent soil loss from the pot, then filled with a 500 mL of sterilized sand, followed by 167 mL 

of sterilized soil (abiotic treatment), 167 mL of live soil (biotic treatment) and seeds (20 seeds for 

all species but pines, which received 5 seeds).  Seeds were then covered with 167 mL of sterilized 

soil (abiotic treatment; Fig.12a).  Savanna soil types were kept uniform in each pot (i.e. sterile 

abiotic and biotic treatments added to each pot were each from pine or understory soils).  Using a 

fully factorial set-up (Fig. 12b), we had 8 plant species, 3 abiotic soil severity treatments, 4 biotic 

soil severity treatments, and 2 savanna soil types, all at 5 replications each.  This gave 960 total 

pots, which were then randomized within fire adapted/non-fire adapted species pairings.  Pots were 

watered every other day for two minutes using drip irrigation with 8 L/hr emitter fittings to mimic 

natural conditions.  Above each experimental block, Sun System® Sun Blaze® light supplement 

lamps (Sunlight Supply® Inc., Vancouver, USA) were hung 1.22 meters from the tops of pots, and 

provided supplemental light from 7am to 7pm each day. 
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Pots were monitored monthly for germination and encroachment by non-desired species.  

Germination rate was quantified by dividing the total number of plants that germinated in each pot 

by the total number seeds added to the pot.  Pots were harvested between March 26th and April 

16th, 2018, which allowed for 3 months of growth time.  Important to note, all non-pyrophilic 

species, with the exception of P. taeda, had germination rates too low for downstream analyses of 

growth.  This trend was exemplified by S. nutans, which germinated in only 10 of 120 pots.  Due 

to the general lack of growth, all non-pyrophilic adapted species were not considered in 

downstream analyses aside from analysis of germination rates.   

Soil was gently washed from roots, and the above and below ground biomass were weighed 

separately.  After drying for at least 1 month, the above and below ground biomass from each pot 

was weighed dry and the total combined biomass was determined. 

Statistical Analysis: All statistical analyses were completed in R 3.5.1 (R Core Team 2020) using 

the Emmeans package (Lenth 2018).  Differences in germination rates between plant species were 

tested using type three analyses of variance (ANOVAs) with a custom apriori contrast that 

compared fire tolerant and less fire tolerant plant species with the contrast function.  Then, 

ANOVAs were used to test for treatment effects (e.g. abiotic severity, biotic severity, and savanna 

soil type) on pine needle fuels, soil factors, fire characteristics, fine fuel combustion, and total 

plant biomass for each fire tolerant plant species.  When ANOVAs denoted significant main 

effects, specific apriori contrasts comparing fire treatment and pine proximity effects were applied 

using the contrast function.  
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RESULTS  

Fuel manipulation treatment effects on fine fuel loads: The fine fuel manipulation treatments, as 

well as natural variation in needle fall based on proximity to overstory pines generated differences 

in the amount of pine needle fuels.  The amount of pine needle fuels differed based on fuel 

manipulation treatment (F2,38=491.8, p<0.001; Figure 13a; Table 13; Ch.4 App. Table 1), with the 

lowest amounts of pine fuels in the low severity treatment (0.1 g), intermediate amounts in the 

medium severity treatment (8.11 g), and the most pine fuels in the high severity treatments (126.5 

g; Ch.4 App. Table 1).  Additionally, proximity to overstory Longleaf pine trees also influenced 

the amount of pine needle fuels (F1,38=3.97, p=0.054), as there were slightly higher amounts of 

pine fuels in near relative to away from pines plots (14 g).  In summary, the amount of pine needle 

fuels increased with the projected severity of the fuel manipulation treatment, and due to higher 

needle fall in near pines plots. 

Fuel manipulation treatment effects on fire severity and fine fuel combustion: The fuel 

manipulation treatments generated differences in fire characteristics associated with fire severity.  

As the projected severity of fuel manipulation treatments increased, maximum surface (F2,33=64.5, 

p<0.001; Figure 13b; Table 13; Ch.4 App. Table 2) and soil temperature increases (F2,33=21.3, 

p<0.001; Figure 13c; Ch.4 App. Table 3) became larger, and surface temperature durations >60 

°C lengthened (F2,32=37.2, p<0.001; Figure 13d; Ch.4 App. Table 4).  Additionally, maximum soil 

temperature increases also differed due to an interaction between fuel manipulation treatment and 

proximity to overstory pines (F2,33=3.61, p=0.04).  Specifically, the maximum soil temperature 

increases were higher in near pines, high severity treatment plots, relative to away from pines, high 

severity treatment plots. 
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 The fuel manipulation treatments also drove differences in fine fuel combustion.  As the 

projected severity of fuel manipulation treatments increased, fine fuel combustion increased 

(F2,33=26.2, P<0.001; Figure 14a; Table 14; Ch.4 App. Table 5), with the lowest combustion in the 

low severity plots, intermediate combustion in the medium severity plots, and the highest 

combustion in the high severity plots.  Overall, the fuel manipulation treatments successfully 

generated differences in fire severity and fine fuel combustion. 

Fuel manipulation treatment effects on abiotic soil characteristics: Soil factors differed between 

fire severity treatments.  Fire manipulation treatments altered total phosphorus levels (F2,38=3.038, 

p=0.06; Figure 14b; Table 14; Ch.4 App. Table 6), with phosphorus levels highest in the high 

severity treatment as compared to medium severity treatments (p=0.022).  There were no statistical 

differences between the low and medium severity or low and high treatments.  Ammonium levels 

also varied between fire severity treatments (F2,38=3.408, p=0.044; Figure 14c; Table 14; Ch.4 

App. Table 7), with ammonium availability higher in the high severity versus low severity 

treatment (p=0.014).  Ammonium levels did not differ statistically between medium and low or 

medium and high treatments, however.  Soil pH was affected by fire severity (F2,38=16.38, p < 

0.001; Figure 14d; Table 14; Ch.4 App. Table 8), with pH levels higher in high (p < 0.001) and 

medium (p < 0.001) versus low severity treatments. Soil pH in high and medium severity 

treatments did not differ statistically.  Total nitrogen (F2,38=2.01, p=0.15; Figure 14e; Table 14), 

nitrate (F2,38=0.26, p=0.77; Figure 14f; Table 14), total carbon (F2,38=0.3, p=0.74; Figure 14g; 

Table 14), and C:N ratios (F2,38=1.27, p=0.29; figure 14h; Table 14), did not differ between fire 

severity treatments. 

 Soil factors also varied between pine proximity treatments.  Total carbon (F1,38=4.39, p = 

0.043; Table 14) and C:N ratios (F1,38=10.9, p=0.002; Table 14) differed between pine proximity 
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treatments.  Specifically, C:N ratios were higher near pines versus away from pines (p=0.002), and 

these differences were due to increases in total carbon (p=0 .043), and not changes in total nitrogen 

(F1,38=1.25, p=0.27). Soil pH was marginally affected by pine proximity treatments (F1,38=3.23, 

p=0.081; Table 3), with pH values lower in near pines treatments (p=0.081).  Total phosphorus 

(F1,38=0.05, p=0.82), ammonium (F1,38=0.13, p=0.72), and nitrate (F1,38=0.196, p=0.66) levels did 

not differ between pine proximity treatments.  To summarize, higher severity fires generally 

increased nutrient availability (total P, ammonium) and pH levels, while near pines soil had higher 

levels of carbon, C:N ratios, and decreased pH levels.    

Germination responses to treatments: Germination rates varied between plant species and fire 

adaptation groups.  There were overall differences between the eight plant species in terms of 

germination rates (F7,952=352.73, p<0.001; Figure 15; Table 15), with pines having the highest 

rates (~58%) and the forbs with the lowest rates (1-10%).  In addition to species differences, 

pyrophilic plants generally had higher germination rates than their non-pyrophilic counterparts 

(Appendix table 9).  The two pine species (P. palustris & P. taeda) were the only exceptions to 

this trend, as they had similar germination rates of 57.5% and 57.8% respectively.  Despite inherent 

differences in germination rate between plant species, pyrophilic plants germinated more reliably 

than their less pyrophilic counterparts. 

 Due to the poor germination of the less pyrophilic plant species, we were only able to assess 

fuel manipulation treatment effects on the more pyrophilic plant species.  Callicarpa americana 

(shrub) germination rates differed between biotic severity treatments (F2,96=2.71, p=0.05; Figure 

16a; Table 16; Ch.4 App. Table 10), with higher germination rates in the sterile control and 

medium severity treatments relative to the low severity treatments.  
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Pinus palustris (pine) germination rates were influenced by biotic severity treatments, 

however this effect varied between abiotic severity treatments (F3,96=2.51, p=0.03; Figure 16a,b; 

Table 16; Ch.4 App. Table 11).  In low severity abiotic treatments, P. palustris germination rates 

were highest in sterile and low severity biotic treatments.  The direction of this effect shifted in the 

medium severity abiotic treatments however, where P. palustris germination rates were higher in 

non-sterile treatments.  In high severity abiotic treatments, P. palustris germination was not 

influenced by biotic severity treatments. 

Pityopsis gramminifolia (forb) germination rates responded to abiotic (F2,96=9.7, p<0.001; 

Figure 16b; Table 16; Ch.4 App. Table 12) and biotic (F3,96=3.7, p=0.01; Figure 16a; Table 16; 

Ch.4 App. Table 13) severity treatments, however these responses were modified by soil type.  

Abiotic severity treatments favored P. gramminifolia germination in low and medium severity 

treatments when in pine soil, and in high severity treatments when in understory soil.  Biotic 

severity treatments favored germination in sterile control and low severity treatments in pine soil, 

and in medium severity treatments in understory soil. 

Sorghastrum secundum (grass) germination rates varied between abiotic severity 

treatments, and this effect was modified by soil type (F2,96=3.9, p=0.02; Figure 16b; Table 16; Ch.4 

App. Table 13).  When grown in pine soil, abiotic severity treatment did not influence S. secundum 

germination, however, in understory soil germination rates were highest in medium and high 

severity treatments relative to low severity treatments.  To summarize, pyrophilic plant 

germination rates varied based on biotic and abiotic severity treatments, but the direction of this 

effect was often dependent on soil type. 

Shrub growth response to treatments: Callicarpa americana growth varied between abiotic soil 

severity treatments and savanna soil types.  There was a clear trend in growth amongst abiotic 
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severity treatments (F2,96=11.907, P<0.001; Figure 17a; Table 17; Ch.4 App. Table 14), with 

medium severity treatments having the most biomass, followed by low, and then high severity 

treatments.  Additionally, savanna soil type had an important effect on total biomass (F1,96=7.881, 

P=0.006), with plants growing larger in pine soil.   

The effect of savanna soil type also interacted with abiotic severity treatments (F2,96=8.107, 

P<0.001; Fig.17a; Table 17; Ch.4 App. Table 14), and showed that abiotic soil severity effects 

were strongest when plants grew in pine soil.  Growth of C. americana in pine soil was largest in 

medium severity treatments, followed by low, and then high severities.  In conclusion, savanna 

soil type and abiotic treatment effects were the primary drivers of C. americana growth, and 

suggested that differences between pine and understory soils can moderate the importance of 

abiotic severity treatment effects. 

Pine growth response to treatments:  Pinus palustris plant growth was not responsive to fire 

severity related effects or savanna soil types.  Specifically, P. palustris plant biomass did not vary 

between abiotic soil severities (F2,96=0.126, P=0.88; Figure 17a; Table 17), biotic soil severities ( 

F3,96=0.66, P=0.58; Fig.18b), savanna soil types (F1,96=0.19, P=0.66), or any interactions of these 

treatments.  To summarize, P. palustris growth was not responsive to any combination of 

experimental treatments. 

Forb growth response to treatments: Pityopsis graminifolia growth was responsive to interactions 

between experimental treatments and soil type.  In terms of biotic soil severity treatments 

(F3,96=2.95, P=0.04; Fig.17b; Table 17; Ch.4 App. Table 15), P. graminifolia generally preferred 

low severity treatments (P<0.05,) and did noticeably poor in the high severity treatments (P<0.05).  

Response to soil biotas varied when considering savanna soil type however (F3,96=4.116, P=0.009).  

When grown in pine soil, biomass was highest in the low severity treatment and lowest in the high 
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severity treatment (P<0.05).  When grown in understory soil however, the largest differences were 

between live and control treatments, with more biomass when soil biota were present (P=0.044).   

In addition to biotic treatment effects, P. graminifolia growth also varied between abiotic soil 

severity treatments based on savanna soil type (F2,96=11.605, P<0.000; Fig. 17a; Table 17; Ch.4 

App. Table 15).  In pine soil, biomass was greater in the low (P=0.006) and medium (P=0.005) 

severity treatments than in the high severity treatment.  In understory soil, the trend flipped 

however, and biomass was greater in low (P=0.025) and high treatments (P=0.002) than in medium 

treatments.  To summarize, abiotic and biotic effects on P. graminifolia growth were largely 

dependent on savanna soil type, and generally favored plants grown in lower severity abiotic 

treatments and with soil biota present.  

Grass growth response to treatments: Sorghastrum secundum plant growth varied between biotic 

and abiotic soil severity treatments, and was modified by an interaction between abiotic soil 

severity and savanna soil type.  When considering the biotic soil severity treatments (F3,96=3.98, 

P=0.01; Figure 17b; Table 17; Ch.4 App. Table 16), the primary differences were between sterile 

and live treatments.  Specifically, S. secundum plants produced more biomass when soil microbes 

were present (e.g. low, medium, and high versus sterile control treatment).   

Sorghastrum secundum biomass also varied between abiotic soil severity treatments 

(F2,96=13.77, P<0.0001; Fig.17a; Table 17; Ch.4 App. Table 16), with a clear preference for 

medium (best), low, and then high (worst) severity soils.  Abiotic soil severity effects were 

modified by savanna soil type however (F2,96=6.243, P=0.003).  Grasses generally grew larger in 

pine soil, with low and medium severities promoting growth the most.  Plant growth was generally 

lower in understory as compared to pine soil, but plants produced the most biomass of any 

treatment in understory medium severity treatments.  In summary, S. secundum growth was highly 
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responsive to experimental treatments, and displayed preferences for the presence of soil biota, 

pine soil treatments, and low to medium severity fires.  

 

Discussion 

Pyrophilic plants utilize high germination rates and rapid growth to take advantage of post-fire soil 

conditions and variations in fire severity.  Work in other pyrophilic ecosystems supports these 

findings (Birk & Bridges 1989; Singh 1993; Beckage & Ellingwood 2008; Schertzer & Staver 

2018), and suggests that post-fire regrowth by pyrophilic plants can replenish the community level 

fuel loads necessary for maintaining recurrent, low severity fires (Mutch 1970; Platt 1999; 

Beckage & Ellingwood 2008; Beckage et al. 2009; Nerlekar & Veldman 2020).  The recurrent 

fires in turn can promote the formation of pyrophilic plant communities whose life histories are 

associated with flammability and survival in post-fire conditions (Pausas & Bond 2019; Cui et al. 

2020; Simpson et al. 2020).  Despite the general ability to promote and take advantage of fire, we 

also show that pyrophilic plants display varied responses to fire severity effects on soil conditions.  

Differential responses to natural variations in fire severity could generate the naturally diverse 

understory communities in fire frequented systems (Carr et al. 2009; Mugnani et al. 2019), and 

select for plants with traits that function post-fire. 

 Pyrophilic plants are hypothesized to possess traits that enhance germination and rapid 

growth in post-fire environments (Daubenmire 1968; Whelan 1995; Keeley & Fotheringham 

2000).  Our study supports these hypotheses, and shows that pyrophilic plants have higher 

germination rates than their less pyrophilic counterparts, and are able to quickly take advantage of 

post-fire changes to soil conditions.  Successful post-fire germination should allow pyrophilic 

plants to rapidly occupy available space and then assimilate resources.  The general ability to take 
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advantage of post-fire conditions may then provide a competitive advantage over less fire tolerant 

species (Daubenmire 1968; Keeley 1991; Singh 1993), and drive feedbacks on future fires since 

fuel loads would replenish quickly following fire (Beckage et al. 2011; Platt et al. 2016).  While 

community fuel loads likely regenerate quickly in pyrophilic systems, differential responses to fire 

severity effects on soil conditions may influence fuel production and the severity of future fires.  

Therefore fire effects on soil conditions may be just as important as pyrophilic plant life history 

traits in determining the feedbacks between fire and plant fuels in fire recurrent ecosystems. 

 Pyrophilic plant germination and growth varied due to fire severity associated changes in 

abiotic soil conditions.  Fire commonly drives changes to soil conditions and nutrient availability, 

and as fire severity increases, factors like pH, phosphorus, and nitrogen availability also increase 

(Neary et al. 1999; Johnson & Curtis 2001; Butler et al. 2018).  In our study, increasingly severe 

fires increased soil pH, and increased the availability of phosphorus and ammonium.  These 

conditions then influenced the germination of Pinus palustris, Pityopsis graminifolia, and 

Sorghastrum secundum.  While all of the pyrophilic plants included in this study displayed high 

germination rates, germination responses differed based on species and fire severity.  The 

differential responses to fire severity suggest that pyrophilic taxa are adapted to take advantage of 

different conditions following fire, with P. palustris preferring medium severity treatments, and 

P. graminifolia and S. secundum preferring pine, or medium to high severity treatment soils.  

Higher germination in the medium to high severity treatments may have been due to increased soil 

pH levels, that were more favorable to germination (Shoemaker & Carlson 1990).  Pyrophilic plant 

growth also responded to soil abiotic severity treatments, however, only understory species were 

affected.  Calicarpa americana (shrub) and S. secundum growth were promoted in medium 

severity soil treatments when grown in pine and understory soil respectively.  P. graminifolia 
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growth was generally favored in low severity treatments, and reduced when grown in medium 

severity understory soil and high severity pine soil.  The different soil abiotic severity preferences 

among understory plants suggests that pyrophilic plants benefit from natural variations in fire 

severity due to different nutrient and soil pH requirements.  This could promote the natural 

heterogeneity of savanna understories (Tilman et al. 1997; Carr et al. 2009; Mugnani et al. 2019), 

as fires of varying severities stimulate nutrient pulses that favor the growth of different pyrophilic 

plant taxa, and potentially their associated soil microbes. 

 Fire severity effects on soil microbes (i.e. biotic soil severity treatments) also influenced 

the germination rates and growth of pyrophilic plant species.  The effect of biotic soil severity 

treatments varied between plant species, with C. americana and P. palustris germination 

benefiting in higher severity treatments, P. graminifolia germination benefiting at lower severity 

treatments (particularly in pine soil), and S. secundum germination being unaffected by biotic fire 

severity treatment.  The differences in germination responses may have been due to the 

presence/absence of microbial pathogens, and the importance of soil microbes to plant species.  C. 

americana and P. palustris seeds may be less resistant to soil pathogens, which are killed off at 

higher fire severities (Hardison 1976; Katan 2000; Hopkins et al. 2021), such as those created 

following locally severe fires (Platt et al. 2016; Mugnani et al. 2019).  Since increasing the severity 

of fire also increases microbial mortality and reduces pathogen loads (Katan 2000; Hamman et al. 

2007; Bárcenas-Moreno & Bååth 2009; Peay et al. 2009, but not mycorrhizal colonization Ch. 4 

App. Table 17, 18), P. palustris seeds may rely on severe fires to remove potentially harmful 

microbes.  P. graminifolia on the other hand, may be more reliant on beneficial soil microbes that 

are negatively impacted as fire severity increases (Hamman et al. 2007; Peay et al. 2009; Pressler 

et al. 2019).  Biotic soil severity treatments also caused differences in savanna understory plant 
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growth.  P. graminifolia grew larger when microbes were present, however, when fires became 

more severe (particularly those near pines), growth decreased.  S. secundum also preferred the 

presence of soil microbes, but, the severity of soil biotic treatment did not influence growth 

responses.  C. americana and P. palustris growth did not vary between biotic soil severity 

treatments.  These results mirror those for abiotic soil severity treatments in that pyrophilic plants 

display varying preferences for fire severity effects on soils.  The preference for lower biotic 

severity treatments in P. graminifolia  suggests that it does best in savanna understory sections 

where fires are lower in severity (Platt et al. 2016), which may allow important microbial 

mutualists to survive fire and promote the growth of post-fire colonizers.  S. secundum’s preference 

for microbes across severity treatments implies that it can be an effective post-fire colonizer 

regardless of fire severity.  The general success of S. secundum in post-fire environments may 

explain its importance in stabilizing the fire regimes of savanna systems (Beckage et al. 2011), 

and general dominance in fire recurrent, pine savanna ecosystems (Platt 1999; Peet et al. 2018).  

While specific preferences for fire severity differ, the pyrophilic plants used in this study were all 

able to take advantage of post-fire conditions.  Since fire alters both abiotic and biotic soil 

conditions, and this can drive differences in post-fire fuel production, interactions between fire, 

plants, and soil factors should be incorporated into models of the fire-fuel feedbacks that structure 

pyrophilic ecosystems. 

Pyrophilic ecosystems comprise ~40% of Earth’s terrestrial surface (Archibald et al. 2018), 

and rely on frequent, low severity fires for their maintenance.  The recurrent fires required by 

pyrophilic ecosystems necessitate the presence of pyrophilic plant species capable of rapidly 

producing flammable fine fuels after fire (Mutch 1970; Platt 1999; Beckage & Ellingwood 2008; 

Cui et al. 2020; Nerlekar & Veldman 2020).  As a result of this selection, species rich, pyrophilic 
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plant communities develop, and are capable of generating the community level fuel loads 

necessary to maintain fire’s spread across landscapes.  The cyclical relationships between fire and 

pyrophilic plant species suggests a feedback process that engineers the fire recurrent regimes that 

maintain pyrophilic ecosystems.  Furthermore, the fire-plant feedbacks that maintain these systems 

may also explain the occurrence of pyrophilic ecosystems in regions where environmental 

conditions predict the presence of forests and less fire tolerant systems (Beckage & Ellingwood 

2008; Nerlekar & Veldman 2020). 

 In conclusion, we show that pyrophilic plant species possess life history traits that allow 

them to take advantage of post-fire conditions.  Specifically, pyrophilic plants utilize high 

germination rates, followed by rapid post-fire growth which allow them to take advantage of post-

fire nutrient and soil pH changes, as well as changes in soil microbial communities.  The ability to 

succeed following fire ensures the quick production of flammable plant fuels that can maintain the 

frequent, low severity fires in pyrophilic systems.  While pyrophilic plants possess common traits 

that promote their success following fire, they also display varying responses to fire severity, 

which suggests a potential mechanism for generating the species rich, heterogenous nature of 

pyrophilic plant communities.  Future work can explore the exact mechanisms by which fire 

severity driven changes to abiotic and biotic soil factors generate plant growth responses, and how 

variation in plant response to fire severity influences natural differences in fuel loads and fire 

characteristics.  Feedbacks between fire and pyrophilic plant communities result in the fire regimes 

that maintain pyrophilic ecosystems (Mutch 1970; Beckage et al. 2009; Platt et al. 2016).  Thus, 

understanding the mechanisms that underly pyrophilic systems can explain their persistence 

amongst Earth’s terrestrial ecosystems. 
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Chapter 4 - Tables 

 

Table 14: ANOVA results for fuel manipulation treatment and pine proximity effects on fuel 

combustion and soil abiotic factors. 

*: p < 0.1, **: p < 0.05, ***: p < 0.001 

 

Table 15: ANOVA results for germination rate differences between more and less pyrophilic plant 

pairs. 

 
 

Table 16: ANOVA results for soil severity and soil type effects on pyrophilic plant germination 

rates. 

 

 

 

 

 

 

Model term F-ratio p-value

plant species 352.727 <.001***

Model term  F-ratio p-value  F-ratio p-value  F-ratio p-value  F-ratio p-value

fuel manipulation treatment 491.799 <.0001*** 69.466 <.0001** 37.199 <.0001** 21.256 <.0001**

pine proximity 3.969 0.0536* 0 0.9915 0.001 0.981 0.774 0.3855

fuel x pine 1.062 0.3559 0.297 0.7454 1.581 0.2214 3.606 0.0383*

Pine fuels (g)

*: p < 0.1, **: p < 0.05, ***: p < 0.001

Max. Surf. Temp. Inc. Surf. Dur. >60C Max Soil Temp. Inc.

Table 13: ANOVA results for fuel manipulation treatment and pine proximity effects on pine fuels 

and prescribed fire characteristics. 

Model term  F-ratio p-value  F-ratio p-value  F-ratio p-value  F-ratio p-value

fuel manipulation treatment 26.202 <.001*** 3.038 0.0597* 3.408 0.0435** 16.382 <.001***

pine proximity 1.953 0.1715 0.05 0.8239 0.13 0.7208 3.225 0.0805*

fuel x pines 0.967 0.3907 0.324 0.7255 0.23 0.7953 1.193 0.3143

fuel manipulation treatment 0.259 0.7732 2.009 0.1482 0.303 0.7403 1.27 0.2926

pine proximity 1.245 0.2716 0.196 0.6607 4.394 0.0428** 10.927 0.0021**

fuel x pines 1.713 0.1939 0.033 0.9676 1.75 0.1875 0.591 0.5589

Fuel combustion (%)

Total Nitrogen Nitrate Total Carbon C:N Ratio

ammonium Soil pHInorganic Phosphorus

Model term  F-ratio p-value  F-ratio p-value  F-ratio p-value  F-ratio p-value

abiotic treatment 1.09 0.34 3.892 0.0237** 0.289 0.7498 13.767 <.0001***

biotic treatment 2.71 0.05** 1.231 0.3029 2.207 0.0922* 3.98 0.0101**

pine proximity 2.19 0.14 0.065 0.8 2.285 0.1339 1.789 0.1842

abiotic x biotic 1.23 0.3 2.507 0.0269** 0.854 0.5315 0.189 0.9791

abiotic x pines 2.31 0.11 0.667 0.5158 9.7 0.0001*** 6.243 0.0028**

biotic x pines 1.27 0.29 1.861 0.1413 3.777 0.0131** 0.647 0.5865

abiotic x biotic x pines 0.936 0.47 1.231 0.2975 1.598 0.1561 0.353 0.9065

C. americana P. palustris P. graminifolia S. secundum

*: p < 0.1, **: p < 0.05, ***: p < 0.001
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Table 17: ANOVA results for soil severity and soil type effects on pyrophilic plant growth. 

 

Model term  F-ratio p-value  F-ratio p-value  F-ratio p-value  F-ratio p-value

abiotic treatment 11.907 <.001*** 0.126 0.8815 1.019 0.3648 13.767 <.001***

biotic treatment 2.031 0.1146 0.66 0.5787 2.95 0.0366** 3.98 0.0101**

pine proximity 7.881 0.0061** 0.19 0.6638 2.602 0.11 1.789 0.1842

abiotic x biotic 0.93 0.4775 0.387 0.8855 0.977 0.445 0.189 0.9791

abiotic x pines 8.107 <0.001*** 0.394 0.6756 11.605 <.001*** 6.243 0.0028**

biotic x pines 1.001 0.3961 2.087 0.107 4.116 0.0086** 0.647 0.5865

abiotic x biotic x pines 1.003 0.4278 0.607 0.7242 1.099 0.3689 0.353 0.9065

C. americana P. palustris P. graminifolia S. secundum

*: p < 0.1, **: p < 0.05, ***: p < 0.001



111 
 

Chapter 4 - Figures 

 

 
Figure 12: Pot setup and experimental design.  a) Pot setup for greenhouse experiment. Two sterile 

paper towels were first placed in the bottom of the pot to prevent soil loss during watering.  500 

mL of sterile sand was then filled in, followed by 167 mL of abiotic soil severity treatment, 167 

mL of biotic soil severity treatment, and 167 mL of abiotic soil severity treatment.  Plant seeds 

were planted in the biotic soil layer, with 20 seeds for shrubs, forbs, and grasses and 5 for tree 

species.  Note that soil used in each pot was either all grass or pine understory soil.  b) A partial 

diagram of the Greenhouse experimental design.  Eight plant species were grown in full factorial 

combinations of two soil types, four biotic soil severities, and three abiotic soil severities, with 

five replications for each combination.  These combinations combined for 960 pots total, with 120 

pots per plant species. 
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Figure 13: Pine needle fuel and fire characteristics for fuel manipulation treatments.  Low indicates 

pine needle removal, medium indicates natural pine needle densities, and high indicates pine 

needle addition to natural pine needle densities. Vertical bars indicate mean ± one standard error.  

Dark grey bars denote plots near, and white bars denote plots away from overstory Longleaf pines.  

a) Pine needle fuels, b) maximum surface temperature increases, c) log surface temperature 

durations > 60°C, and d) maximum soil temperature increases during 2017 prescribed fires. 
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Figure 14: Fine fuel combustion and soil abiotic factor responses to fuel manipulation treatments 

and proximity to overstory Longleaf pine proximity.  Vertical bars indicate the mean ± one 

standard error.  Dark grey bars denote plots near overstory Longleaf pines, and white bars denote 

plots away from overstory Longleaf pines. a) Fuel combustion (%), b) log inorganic phosphorus 

(ppm), c) ammonium (ppm), d) soil pH, e) total nitrogen (%), f) nitrate (ppm), g) total carbon (%), 

and h) carbon to nitrogen ratios following 2017 prescribed fires. 
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Figure 15: Germination rates of representative specie of four life forms (pines, shrubs, grasses, 

forbs).  Vertical bars indicate means + 95% CI. Dark grey indicates species typical of very 

frequently burned open pine savanna; white indicates species typical of less frequently burned 

transitions from pine savanna to hardwood forest.  Numerical coefficients above bar are the mean 

germination rates (%) for each of the included species. 
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Figure 16: Pyrophilic plant germination responses to a) biotic and b) abiotic soil severity 

treatments and savanna soil type.  Vertical bars denote the mean ± one standard error.  Grey bars 

represent pots containing pine soil, and white bars represent pots containing understory soil. 
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Figure 17: Pyrophilic plant growth responses to a) abiotic and b) biotic soil severity treatments and 

savanna soil type.  Vertical bars denote the mean ± one standard error.  Grey bars represent pots 

containing pine soil, and white bars represent pots containing understory soil. 
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Conclusion 

Fire alters fungal community structure and function in ways that modify the plant fuel loads of 

pyrophilic ecosystems.  Since feedbacks between plant fuel loads and fire engineer pyrophilic fire 

regimes (Beckage et al. 2009, 2011; Platt et al. 2016), this implies that fungi play foundational 

roles in pyrophilic systems.  Fungal roles in pyrophilic ecosystems are dynamic across time due to 

the complex direct and indirect effects of fire on fungal communities.  The nature of fire-fungal 

interactions shifts with time since fire, and is closely related to fire’s well known effects on fungal 

community structure (Hamman et al. 2007; Dove & Hart 2017), environmental conditions (Raison 

1979; Certini 2005; Butler et al. 2018), and plant-fungal interactions (Hardison 1976; Katan 2000; 

Hart et al. 2005).  By putting these processes into an ecological framework, I show the relative 

importance of these factors across time, and produce a simplified context for understanding fire-

fungal interactions in pyrophilic systems.  The nature of fire-fungal interactions suggests that they 

are best envisioned in two parts: fire’s effect on fungal communities and the local environment, 

and the downstream impact on fungal functions associated with plant fuel loads. 

 Fire altered the structure and seasonal trajectories of fungal communities in a similar 

manner across two pyrophilic ecosystems.  Early after fire, these changes were related to the 

turnover of dominant taxa and altered nutrient availability, rather than heat related mortality 

following fire.  Other studies in Longleaf pine savannas (Brown et al. 2013; Hansen et al. 2019; 

Semenova‐Nelsen et al. 2019), and different pyrophilic ecosystems (e.g. Mediterranean 

shrublands, oak savannas, and ponderosa pine forests; Bárcenas-Moreno et al. 2011; Carson et al. 

2019; Owen et al. 2019), mirror these changes, which suggests that fire favors specific fungal taxa 

across ecosystems.  These taxa likely possess traits which help them survive the passage of fire 

(e.g. truffle forming mycorrhizae: Horton et al. 1998; Glassman et al. 2016; Owen et al. 2019, and 
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thermotolerant taxa: Sharma 1981; Peay et al. 2009), and persist in harsh, post-fire environments 

(stress tolerant taxa: McMullan-Fisher et al. 2011; Hansen et al. 2013; Persiani & Maggi 2013).  

Interestingly, while fire favored some mycorrhizal taxa that can promote the production of new 

plant fuels, it also suppressed taxa known to be plant pathogens, implying that fire may reduce 

pathogen loads and negative effects on plant fuel production (Hardison 1976; Katan 2000).  With 

increasing time since fire, fire associated changes to nutrient availability were no longer strong 

drivers of fungal community structure, however, burned communities remained distinct from 

neighboring unburned communities.  This suggests that initial fire related changes to fungal 

community structure altered the seasonal trajectory of fungi, and led to the formation of alternative 

communities.  In summary, fire’s effect on fungal communities and the local environment persisted 

during the year following fire, and hinted at potential shifts in post-fire fungal functions associated 

with plant fuel loads. 

 Fire driven changes to fungal communities were collocal with changes in fungal related 

functions like decomposition and plant-fungal interactions.  While the association was not 

explicitly tested, burned sites exhibited both altered fungal community structure and slowed 

decomposition.  The strength of fire’s effect on decomposition was determined by fire regime 

components like fire history and severity, which slowed decomposition of new plant fuels as fires 

became more frequent and intense.  This trend is supported by other studies relating frequent fires 

to slowed decomposition (Ficken & Wright 2017; Butler et al. 2019), and extends our knowledge 

by exploring the pathways through which fire alters decomposition across time.  In our model, fire 

severity and history alter decomposition through direct, unmeasured pathways, as well as 

indirectly through changes to nutrient availability.  Fire’s effect on decomposition is strongest at 

earlier time points following fire, and gradually decreased at later time points as fire related 
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changes to nutrient availability become more important.  The lessening of fire’s direct effects may 

have been due to the post-fire recovery of fire effected fungal taxa (Smith et al. 2004; Bárcenas-

Moreno et al. 2011), and the beginning of the growing season, at which time plant-fungal 

interactions may have masked fire’s effect due to increased competition between plants and fungi 

for nutrients (Lipson et al. 1999; Zhu et al. 2016).  Fire also altered plant-fungal interactions in 

ways that effected the production of new plant fuels.  Three of the four plant taxa (C. americana, 

P. gramminifolia, S. secundum) used in these studies displayed clear preferences for low to 

medium severity fire treated soil.  This suggests that pyrophilic plants can take advantage of fire 

treated microbial communities and post-fire nutrient flushes.  Interestingly, these same plants 

showed decreases in fuel production when fires were most severe, perhaps due to the negative 

effect of high severity fires on beneficial members of microbial communities (e.g. mycorrhizae; 

Hamman et al. 2007; Dove & Hart 2017; Taudière et al. 2017, although this was not reflected in 

colonization data Ch. 4 appendix Table 17, 18), and/or increased volatilization and loss of nutrients 

like N and P (Raison 1979; Certini 2005).  The complex, interacting pathways through which fire 

alters fungal functions like decomposition and roles in plant-fungal interactions reiterates the close 

associations between fungi and their local environment (Andrew et al. 2016; Averill et al. 2019).  

Furthermore, the dynamic nature of fire’s effect on fungi and their associated functions across time 

illustrates the importance of considering fire-fungal interactions in a temporal context.  If the sum 

of fire’s effects across time acts to increase the production and amount of plant fuels, then this 

could drive feedbacks on future fire characteristics. 

 Feedbacks between fire and plant fuels engineer the fire regimes of pyrophilic ecosystems, 

and determine the characteristics of individual fires.  Since interactions between fire and fungi 

directly modify fungal functions associated with plant fuel loads (e.g. decomposition and plant-
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soil interactions), fire-fungal interactions may also contribute to fuel related feedbacks on future 

fires.  I showed that as fires became more frequent and intense, decomposition of new plant fuels 

slowed, and larger portions of fuels remained at the end of the study period.  Since plant fuel load 

accumulation and fire are not independent from one and other (Platt et al. 2016; Tiribelli et al. 

2018), fire-fungal interactions may increase the frequency and severity of fire regimes.  Fires may 

also be modified by complex interactions between pyrophilic plant taxa and fungi.  Many 

pyrophilic plant taxa have high post-fire germination and growth rates (this work, as well as 

Beckage & Ellingwood 2008; Beckage et al. 2009; Archibald et al. 2018), and also possess traits 

which make them difficult to decompose (e.g. high lignin content, high C:N ratios, and low shoot 

N content; Heckathorn & Delucia 1996; Cornelissen et al. 2017).  The rapid, post-fire production 

of recalcitrant plant fuels could cause fuels to accumulate quickly, and favor recurrent fires.  Fire-

fungal effects on fuel loads may be further modified by the timing of fire, as many fungal taxa 

follow seasonal trends (Santos-Gonzalez et al. 2007; Averill et al. 2019; Štursová et al. 2020) that 

could be sensitive to fire at critical points in the season.  For example, fires early in the growing 

season can reduce fungal pathogen loads (this work, Hardison 1976; Katan 2000) and benefit plant 

fuel accumulation and increase the likelihood of fire.  Fungi’s ability to modify plant fuel loads 

illustrates the importance of considering both fungal and plant community roles in pyrophilic 

ecosystems.  Since fungal functions associated with plant fuels are generally ubiquitous across 

ecosystems,  fire-fungal interactions may also be applicable to other terrestrial ecosystems as well.  

 While many terrestrial systems are not adapted to recurrent fires, the processes that 

engineer fire regimes in pyrophilic systems likely apply.  In less fire tolerant systems such as 

temperate and boreal forests, fungi modify plant fuels through saprotrophic, pathogenic, and 

mutualistic interactions, however, fire occurs far less frequently (Archibald et al. 2013).  Longer 
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fire return intervals allow for greater accumulation of plant fuels and higher severity fires, with 

exacerbated effects on fungal communities (Kalies & Yocom Kent 2016; Kolden 2019; Roos et 

al. 2020).  Manipulating the high severity fires of less fire tolerant systems is both extremely 

difficult and dangerous, but pyrophilic systems can act as a safe substitute for exploring fire-fungal 

interactions.  Additionally, exploring fire-fungal interactions in pyrophilic systems is far easier, as 

plant fuel loads can be directly manipulated, and questions can be explored in an ecological 

framework.  Furthermore, when comparing across ecosystems, other factors with large inter-

system variation and known effects on fungal communities (e.g. pH, soil moisture, and climate; 

Andrew et al. 2016; Delgado-Baquerizo et al. 2018) can be readily added to this framework.  

Considering fire-fungal interactions in an ecological context allows for a framework that may be 

adaptable to other disturbance mediated systems. 

 Disturbance mediated ecosystems are relatively common (Lubchenco & Menge 1978; 

Blom 1999; Beckage & Ellingwood 2008; Archibald et al. 2013; Blaser 2016), and can provided 

useful models for understanding community assembly processes.  As in pyrophilic systems, 

disturbance regimes influence community assembly, and may act as a recurrent, selective force if 

disturbances are frequent and/or intense enough.  Microbiome-antibiotic interactions are one such 

system, where repeated doses of antibiotics can control microbiome structure and function by 

limiting microbial pathogens (Blaser 2016; Letten et al. 2021).  In order to limit pathogens, 

antibiotic doses must be relatively frequent and intense enough to reduce the fitness of pathogens 

and provide a competitive advantage to other taxa.  The importance of repeated doses parallels the 

stronger effect of frequent fires vs. fire severity on fungal communities in pyrophilic systems, and 

suggests that disturbance history and frequency may play larger roles in community assembly 

processes than single disturbance events.  While single disturbance events still have important 
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effects on microbial community assembly, increasing the frequency of disturbance can impose a 

relatively constant selective filter on microbial communities that favors specific sets of traits.  

Similar processes may also be at work in agricultural systems (Mbuthia et al. 2015; Turley et al. 

2020), where tillage and pesticide application are frequent, and known to select for specific 

microbial taxa and functional groups.  Future work considering disturbance effects on community 

assembly processes can consider how disturbance regimes influence associations between 

taxonomic and functional diversity, modify natural seasonal variations in community structure, 

and interact with other assembly associated forces like dispersal, drift, and selection.  

 In conclusion, my thesis illustrates how fire alters  fungal community assembly and 

function in ways that modify plant loads during the year following fire.  The relative importance 

of different pathways linking fire and fungal communities are dynamic, and shift with time since 

fire.  Early after fire, direct changes to fungal communities and the local environment have the 

strongest effect, and drive collocal shifts in decomposition and plant-fungal interactions.  With 

increasing time since fire, indirect changes to the local environment become increasingly 

important as fire’s direct effects weaken.  By describing fire-fungal interactions in an ecological 

context across time, I have created a generalizable model for testing the effects of disturbance on 

microbial community assembly in disturbance mediated ecosystems.  Since many of Earth’s 

systems are maintained by recurrent disturbances like fire, including disturbance-microbial 

interactions in community assembly models can improve our understanding of the processes that 

structure ecosystems and biological communities.  Furthermore, improving our understanding of 

the disturbance-microbe interactions can help us respond to climate and anthropogenic driven 

changes in global disturbance regimes.  In summary, disturbance plays an important role in 
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community assembly processes and function, and has the potential to drive feedbacks on 

disturbance regimes. 
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Chapter 1 - Appendix 

 

------------- 

Site Maps 

------------- 

 
Figure S1: Longleaf pine savanna site map.  Site was located at the Wade Tract (30˚ 45’ N; 84˚ 

00’ W; Thomas County, Georgia, USA) 
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Figure S2: Tallgrass prairie site maps.  Rockefeller (39° 2’ N; 95° 12’ W) and Dogleg prairies 

(39° 3’ N; 95° 11’ W), are located at the University of Kansas Field Station (Leavenworth 

County, Kansas). 

 

 

--------------------- 

Contrast Tables 

--------------------- 

Table S1:  Results (t-values and significance) of PERMANOVA apriori contrasts testing 

differences in Longleaf pine savanna fungal community composition between pine 

proximity*burn treatment interaction groups.  All contrasts used 999 permutations and P-values 

were derived from permutations. 

 

Side Pine Proximity Contrast T-value P-value 

west near burn vs. no burn 1.449 0.003** 

west away burn vs. no burn 1.6251 0.001*** 

east near burn vs. no burn 1.2433 0.072* 

east away burn vs. no burn 1.1503 0.165 

*≤ 0.1, **≤0.05, ***≤0.001 
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Table S2:  Results (t-values and significance) of PERMANOVA apriori contrasts testing changes 

in Longleaf pine savanna fungal community composition across sampling times.  All contrasts 

used 999 permutations and P-values were derived from permutations. 

 

Contrast T-Value P-value 

pre-fire vs. 1 month 1.3671 0.021** 

1 month vs 2 months 1.2578 0.018** 

2 months vs. 3 months 1.3404 0.005** 

2 months vs. 4 months 1.6061 0.001*** 

4 months vs. 6 months 1.2917 0.035** 

5 months vs. 7 months 1.1638 0.168 

*≤ 0.1, **≤0.05, ***≤0.001 

 

 

Table S3:  Results (t-values and significance) of PERMANOVA apriori contrasts testing 

differences in Longleaf pine savanna fungal community composition across sampling times and 

fire management units.  All contrasts used 999 permutations and P-values were derived from 

permutations. 

 

Side Contrast T-value P-value 

west 1 mon vs. 2 mon 1.2215 0.035** 

west 1 mon vs. 4 mon 1.8469 0.001*** 

west 1 mon vs. 6 mon 1.6886 0.001*** 

west 2 mon vs. 4 mon 1.6162 0.001*** 

west 2 mon vs. 6 mon 1.3792 0.006** 

west 4 mon vs. 6 mon 1.3184 0.038** 

east 2 mon vs. 3 mon 1.2746 0.028** 

east 2 mon vs. 5 mon 1.5796 0.003** 

east 2 mon vs. 7 mon 1.4846 0.002** 

east 3 mon vs. 5 mon 1.3211 0.024** 

east 3 mon vs. 7 mon 1.0146 0.403 

east 5 mon vs. 7 mon 1.1579 0.183 

*≤ 0.1, **≤0.05, ***≤0.001 
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Table S4:  Results (t-values and significance) of PERMANOVA apriori contrasts testing changes 

in burned Longleaf pine savanna fungal community composition across sampling times.  All 

contrasts used 999 permutations and P-values were derived from permutations. 

 

Contrast T-Value P-value 

pre-fire vs. 1 month 1.3616 0.04** 

1 month vs. 2 months 1.1378 0.089* 

2 months vs. 3 months 1.3138 0.008** 

2 months vs. 4 months 1.3977 0.005** 

3 months vs. 5 months 1.3204 0.027** 

4 months vs. 6 months 1.0535 0.315 

5 months vs. 7 months 0.96109 0.527 

*≤ 0.1, **≤0.05, ***≤0.001 

 

 

Table S5:  Results (t-values and significance) of PERMANOVA apriori contrasts testing changes 

in non-burned Longleaf pine savanna fungal community composition across sampling times.  All 

contrasts used 999 permutations and P-values were derived from permutations. 

 

Contrast T-Value P-value 

1 month vs. 2 months 1.0756 0.29 

2 months vs. 3 months 1.0444 0.367 

2 months vs. 4 months 1.2643 0.055* 

3 months vs. 5 months 0.93802 0.631 

4 months vs. 6 months 1.0643 0.338 

5 months vs. 7 months 1.1104 0.3371 

*≤ 0.1, **≤0.05, ***≤0.001 

 

 

Table S6:  Results (t-values and significance) of PERMANOVA apriori contrasts testing 

differences in tallgrass prairie fungal community composition across sampling times.  All contrasts 

used 999 permutations and P-values were derived from permutations. 

 

Contrast T-value P-value 

pre - 2 weeks 1.4493 0.013** 

2 weeks - 1 month 1.1023 0.249 

1 month - 2 months 1.179 0.113 

2 months - 4 months 1.321 0.017** 

4 months - 7 months 1.242 0.058* 

7 months - 8 months 1.1136 0.234 

*≤ 0.1, **≤0.05, ***≤0.001 
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Table S7:  Results (t-values and significance) of PERMANOVA apriori contrasts testing 

differences in burned tallgrass prairie fungal community composition across sampling times.  All 

contrasts used 999 permutations and P-values were derived from permutations. 

 

Contrast T-value P-value 

pre - 2 weeks 1.7093 0.006** 

2 weeks - 1 month 1.3638 0.038** 

1 month - 2 months 1.1028 0.288 

2 months - 4 months 1.4171 0.019** 

4 months - 7 months 1.3266 0.037** 

7 months - 8 months 1.0382 0.459 

*≤ 0.1, **≤0.05, ***≤0.001 

 

 

Table S8:  Results (t-values and significance) of PERMANOVA apriori contrasts testing 

differences in non-burned tallgrass prairie fungal community composition across sampling times.  

All contrasts used 999 permutations and P-values were derived from permutations. 

 

Contrast T-value P-value 

pre - 2 weeks 0.93654 0.553 

2 weeks - 1 month 0.80075 0.687 

1 month - 2 months 1.3778 0.082* 

2 months - 4 months 1.1217 0.322 

4 months - 7 months 1.1846 0.195 

7 months - 8 months 1.1641 0.305 

*≤ 0.1, **≤0.05, ***≤0.001 
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-------------------- 

Bioinformatics 

-------------------- 

 

 

1) Extract Barcodes 

 

extract_barcodes.py \ 

 -f Undetermined_S0_L001_I1_001.fastq \ 

 -r Undetermined_S0_L001_I2_001.fastq \ 

 -c barcode_paired_end --bc1_len 8 --bc2_len 8 \ 

 -o processed_pair_seqs12 

 

2) Validate mapping file 

 

validate_mapping_file.py \ 

 -m Map.txt \ 

 -o mapcheck 

 

 

3) Split Libraries 

 

split_libraries_fastq.py \ 

 -i Undetermined_S0_L001_R1_001.fastq \ 

 -b processed_pair_seqs12/barcodes.fastq \ 

 -m mapcheck.txt \ 

 -o FF17_splitF/ \ 

 -q 29 --max_barcode_errors 1 --barcode_type 16 

 

4) Pick Open Reference OTUs 

 

pick_open_refrence_otus.py \ 

 -i FF17_splitF/seqs.fna \ 

 -r “$REFERENCE_SEQ” \ 

 -o F17L_5OTU_sosu \ 

 -s 0.1 \ 

 -a0 16 \ 

 -f --suppress_taxonomy_assignment -- suppress_align_and_tree --min_otu_size 5 \ 

 -m sortmerna_sumaclust \ 

 -p “$PARAMS”* 

 

* Median sequence length for quality filtering was set to 270 and 277 for pine savanna samples 

and tallgrass prairie samples respectively.  OTUs were clustered at the 97% similarity level, and 

OTUS w/ fewer than 5 counts were removed. 
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5) Look at OTU Table 

 

biom summarize-table \ 

 -i otu_table_mc5.biom \ 

 -o Fire17_sum.txt 

6) Assign taxonomy with RDP Classifier 

 

parallel_assign_taxonomy_rdp.py \ 

 -i rep_set.fna \ 

 -r sh_refs_qiime_ver7_dynamic_s_01.08.2015.txt \ 

 -c 0.9 \ 

 -O 16 --rdp_max_memory 25000 \ 

 -o rdp_assign_taxonomy 

 

7) Add taxonomy to OTU table and transfer in excel table 

 

biom add-metadata \ 

 -i otu_table_mc5.biom \ 

-o F17try_wTax.biom --observation-metadata-fp rep_set_taxN.txt --sc-separated 

taxonomy --float-fields confidence 

 

8) Normalization w/ Deseq2 

 

filter_samples_from_otu_table.py \ 

 -i otu_table_mc5.biom \ 

 -o F17S_5k.biom \ 

 -n 5000 

 

biom convert \ 

 -i F17S_5k.txt \ 

 -o F17S_5k.biom --to-json --table-type=”OTU table” 

 

normalize_table.py \ 

 -i F17S_5k.biom -a DESeq2 --DESeq_negatives_to_zero \ 

 -o F17S_deseq.biom 

 

biom add-metadata \ 

 -i F17S_deseq.biom \ 

 -o F17S_deseq.tax.biom --sample-metadata-fp map.txt --observation-metadata-fp 

rep_set_tax_N.txt --sc-separated taxonomy --float-fields confidence 

 

biom convert \ 

 -i F17S_deseq.tax.biom \ 

 -o  F17S_deseq_tax.txt --to-tsv   --table-type=”OTU table” --header-key taxonomy
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Table S9: Indicator species for burned Longleaf pine savanna plots.  A represents the “A statistic,” 

B the “B statistic,” and Comb. Stat. is the combined A and B statistics.  Taxonomy describes the 

lowest taxonomic level prescribed to the OTU.  Putative ecology and citation are provided for each 

OTU when available. 

 
 

Table S10:  Indicator species for non-burned Longleaf pine savanna plots.  A represents the “A 

statistic,” B represents the “B statistic,” and Comb. Stat. is the combined A and B statistics.  

Taxonomy describes the lowest taxonomic level prescribed to the OTU.  Putative ecology and 

citation are provided for each OTU when available. 

 

A B
Comb. 

Stat.
P-Value Taxonomy Ecology Citation

0.78 0.67 0.73 0.001 *** Geminibasidium considered a pyrophilic and xerotolerant genus Nguyen et al. 2013

0.87 0.52 0.68 0.003 ** Trichoderma endophyte/opportunistic wood fungus and quick post-fire colonizer Sharma 1981

0.80 0.52 0.65 0.004 ** Chaetothyriales found in arid conditions, resistant to high temperatures Villaseñor C. R. 2004, Sterflinger et al. 1999

0.81 0.51 0.64 0.004 ** Cordycipitaceae insect pathogens Kepler et al. 2017

0.92 0.44 0.64 0.002 ** Hydnangiaceae family of ectomycorrhizal taxa Cannon and Kirk 2007

0.86 0.48 0.64 0.011 ** Penicillium known to be quick post-fire colonizers McMullan-Fisher et al. 2011, Sharma 1981

0.89 0.44 0.63 0.002 ** Fungi

0.89 0.43 0.62 0.004 ** Rhizopogon ectomycorrhizal, false truffles, commonly found post-fire Owen et al 2019, Glassman et al. 2016

0.80 0.48 0.62 0.007 ** Myrothecium commonly considered plant pathogenic taxa Chen 2016

0.79 0.44 0.59 0.011 ** Trichocomaceae Saprobes, aggressive colonizers, adaptable to extreme conditions McGee et al. 2016

0.82 0.41 0.58 0.014 ** Talaromyces Talaromyces  range from mesophilic to strongly thermophilic Stolk and Samson 1972

A B
Comb. 

Stat.
P-Value Taxonomy Ecology Citation

0.80 0.76 0.78 0.001 *** P. livistonae originally described in assocation with palm species Crous et al. 2012

0.81 0.67 0.74 0.001 *** Ascomycota

0.81 0.67 0.74 0.001 *** Ascomycota

0.78 0.67 0.72 0.001 *** Preussia genus consists of dung and soil fungi Kirk et al. 2008

0.76 0.58 0.66 0.004 ** Trimmatostroma common leaf pathogens Dick and Gadgil 2009

0.88 0.48 0.65 0.001 *** Capnodiales order of sooty molds and plant pathogens Crous et al. 2009

0.88 0.48 0.65 0.001 *** Cortinarius common mycorrhizal species Kirk et al . 2008

0.77 0.55 0.65 0.001 *** Ascomycota

0.92 0.45 0.65 0.001 *** Ascomycota

0.71 0.58 0.64 0.010 ** fungi

0.84 0.48 0.64 0.001 *** M. carmichaelii member of plant pathogenic genus Chen et al. 2016

0.74 0.55 0.63 0.004 ** Ascomycota

0.72 0.52 0.61 0.004 ** Dothideomycetes class contains endophytes, pathogens, and saprobes Kirk et al. 2008

0.75 0.48 0.61 0.001 *** Ascomycota

0.84 0.42 0.60 0.003 ** Ascomycota

0.78 0.45 0.60 0.010 ** Ascomycota

0.83 0.42 0.59 0.002 ** Inocybe nodulosa mycorrhizal, indicator of non-burned plots in comparitive study Owen et al. 2019

0.72 0.48 0.59 0.008 ** Mycosphaerellaceae family of sac fungi well known to be plant pathogens Videira et al. 2017

0.71 0.42 0.55 0.014 * Ascomycota

0.62 0.42 0.51 0.011 * Basidiomycota



142 
 

Table S11:  Tallgrass prairie indicator species: 2 weeks post-fire.  A represents the “A statistic,” 

B represents the “B statistic,” and Comb. Stat. is the combined A and B statistics.  Taxonomy 

describes the lowest taxonomic level prescribed to the OTU.  Putative ecology and citation are 

provided for each OTU when available. 

 

 

 

 

 

A B
Comb. 

Stat.
P-Value Taxonomy Ecology Citation

0.82 1.00 0.91 0.002 ** Fungi

0.82 1.00 0.91 0.002 ** Spizellomyces plurigibbosus commercially available

0.82 1.00 0.91 0.004 ** Fungi

0.88 0.89 0.88 0.005 ** Fusarium tricinctum plant pathogen isolated from surface sterilized soils
DOE Joint Genome Institute - JFI 

MycoCosm: Fusarium tricinctum

0.87 0.89 0.88 0.004 ** Fungi

0.95 0.78 0.86 0.006 ** Fungi

0.83 0.89 0.86 0.010 ** Cortinarius diasemospermus some Cortinarius taxa are indicative of frequent fires McMullan-Fisher et al. 2011

0.94 0.78 0.86 0.003 ** Fungi

0.91 0.78 0.84 0.012 * Myrothecium cinctum member of plant pathogenic genus Chen et al. 2016

0.89 0.78 0.83 0.010 ** Lophiostoma sp. wood saprotroph Holm L. 1988

0.86 0.78 0.82 0.011 * Powellomyces sp. chytrid Simmons D.R. 2011

1.00 0.67 0.82 0.011 * Fungi

0.83 0.78 0.81 0.022 * Coprinellus disseminatus wood saprotroph Kuo M. 2008

0.97 0.67 0.81 0.013 * Fungi

0.83 0.78 0.80 0.012 * Fungi

0.94 0.67 0.79 0.011 * Sporobolomyces beijingensis likely saprotrophic Wang and Bai 2004

0.80 0.78 0.79 0.036 * Fungi

0.93 0.67 0.79 0.024 * Talaromyces purpureus Talaromyces is a sexual state of Penicillium, which are post-fire colonizersMcMullan-Fisher et al. 2011, Sharma 1981

0.92 0.67 0.78 0.026 *  Agaricales large order containing saprobes, parasites, and some mycorrhizal taxaKirk et al. 2008

0.68 0.89 0.78 0.049 *  Basidiomycota

0.78 0.78 0.78 0.041 *  Ascomycota

0.88 0.67 0.77 0.029 *  Entoloma most members are saprotrophic, with some mycorrhizal speciesKirk et al. 2008

0.86 0.67 0.76 0.044 * Capnodium sp. sooty molds, plant pathogens Lumbsch and Huhndorf 2007

0.85 0.67 0.75 0.035 *  Dothideomycetes diverse class of fungi containing endophytes, pathogens, and saprobesKirk et al. 2008

0.84 0.67 0.75 0.046 *  Ascomycota

1.00 0.56 0.75 0.027 *  Agaricomycetes large class containing saprobes, parasites, and some mycorrhizal taxaKirk et al. 2008

1.00 0.56 0.75 0.033 *  Basidiomycota

1.00 0.56 0.75 0.034 *  Geastraceae earth stars, wood saprotrophs Kirk et al. 2008

1.00 0.56 0.75 0.027 *  Lasiosphaeriaceae wood and dung associated Cannon and Kirk 2007

1.00 0.56 0.75 0.037 *  Pleosporales order of saprotrophic, pathogenic, and endophytic fungi Zhang et al. 2009

1.00 0.56 0.75 0.033 * Coprinellus sp. many member taxa are associated with wood decay Peiris et al. 2007

1.00 0.56 0.75 0.032 * Fungi

1.00 0.56 0.75 0.033 * Fungi

1.00 0.56 0.75 0.032 * Fungi

0.97 0.56 0.73 0.032 *  Pyronemataceae specialization to burnt ground, saprobe/ectomycorrhizal Hansen et al. 2013

0.94 0.56 0.72 0.034 *  Dothideomycetes diverse class of fungi containing endophytes, pathogens, and saprobesKirk et al. 2008

0.93 0.56 0.72 0.034 * Fungi

0.91 0.56 0.71 0.035 * Minimedusa sp. likely a cellulytic saprotroph Pinzari et al. 2014

0.91 0.56 0.71 0.028 *  Entolomataceae saprotrophic Noordeloos and Gates 2012

0.89 0.56 0.70 0.029 * Fungi

0.89 0.56 0.70 0.034 * Scolecobasidium constrictum dark walled mold

0.87 0.56 0.70 0.036 * Urnula craterium wood saprotroph and Oak parasite Huffman et al. 2008
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Table S12:  Tallgrass prairie indicator species: pre-fire.  A represents the “A statistic,” B 

represents the “B statistic,” and Comb. Stat. is the combined A and B statistics.  Taxonomy 

describes the lowest taxonomic level prescribed to the OTU.  Putative ecology and citation are 

provided for each OTU when available. 

 

 

A B Comb. Stat. P-Value Taxonomy Ecology Citation

0.98 1.00 0.99 0.002 ** Acremonium implicatum endophytic fungus of Brachiaria grasses Dongyi H. and Kelemu S. 2004

0.90 1.00 0.95 0.002 **  Pleosporales order of saprotrophic, pathogenic, and endophytic fungi Zhang et al. 2009

1.00 0.89 0.94 0.002 **  Ascomycota

1.00 0.89 0.94 0.002 **  Ascomycota

1.00 0.89 0.94 0.002 **  Phaeosphaeriaceae family of plant associated nectrotrophs and saprobes Cannon and Kirk 2007

1.00 0.89 0.94 0.002 ** Stictis genera of wood saprobes and lichenized fungi Wedin et al. 2006

0.88 1.00 0.94 0.002 ** Tubeufiaceae family of plant pathogens and saprobes Rossman 1987

0.98 0.89 0.93 0.003 ** Glomerobolus gelineus halotolerant species Schoch et al. 2006

0.87 1.00 0.93 0.002 **  Capnodiales order of sooty molds and plant pathogens Crous et al. 2009

0.87 1.00 0.93 0.003 **  Cryptococcus common genus of soil saprobes and opportunistic human pathogensMay et al. 2016

0.96 0.89 0.93 0.002 ** trimmatostroma common leaf pathogens Dick and Gadgil 2009

0.85 1.00 0.92 0.002 **  Ascomycota

0.94 0.89 0.92 0.002 ** Phoma genus containing many plant pathogenic taxa Kirk et al. 2008, Harshberger 1917

0.83 1.00 0.91 0.002 **  Ascomycota

0.83 1.00 0.91 0.005 **  Ascomycota

0.81 1.00 0.90 0.003 ** bulleribasidium oberjochense anamorphic form of Bullera, likely myco-parasite Kirk et al. 2008, Golubev et al. 1997

0.91 0.89 0.90 0.006 ** Mrakiella aquatica isolated from freshwater samples Jones and Slooff 1966

0.80 1.00 0.89 0.003 **  Ascomycota

0.79 1.00 0.89 0.002 **  Phaeosphaeriaceae family of plant associated nectrotrophs and saprobes Cannon and Kirk 2007

0.79 1.00 0.89 0.002 ** Periconia saprotroph Markovskaja and Kačergius 2014

0.89 0.89 0.89 0.003 **  Lachnum genus of wood and leaf saprotrophs

0.79 1.00 0.89 0.004 ** Phialophora livistonae originally described in assocation with palm species Crous et al. 2012

1.00 0.78 0.88 0.004 **  Ascomycota

0.87 0.89 0.88 0.004 **  Capnodiales order of sooty molds and plant pathogens Crous et al. 2009

1.00 0.78 0.88 0.008 **  Tremellales order of mycoparsitic taxa Kirk et al. 2008

1.00 0.78 0.88 0.004 ** Cryptococcus dimennae genus of saprotrophic and opportunistic human pathogen taxa May et al. 2016

0.83 0.89 0.86 0.007 ** articulospora aquatic associated Seena et al. 2018

0.93 0.78 0.85 0.002 **  Ascomycota

0.82 0.89 0.85 0.009 ** Tubeufiaceae family of plant pathogens and saprobes Rossman 1987

0.81 0.89 0.85 0.014 *  Helotiales order predominantly composed of wood saprobes Kirk et al. 2008

0.92 0.78 0.85 0.007 **  Capnodiales order of sooty molds and plant pathogens Crous et al. 2009

0.90 0.78 0.84 0.017 *  Ascomycota

0.90 0.78 0.84 0.013 *  Zymoseptoria genus of grass pathogens Quaedvlieg et al. 2011

0.79 0.89 0.84 0.020 *  Pleosporales order of saprotrophic, pathogenic, and endophytic fungi Zhang et al. 2009

0.88 0.78 0.83 0.016 *  Leotiomycetes class of plant pathogens and saprobes Wang Z. 2007

0.76 0.89 0.82 0.018 * Dothideomycetes diverse class of fungi containing endophytes, pathogens, and saprobesKirk et al. 2008

0.86 0.78 0.82 0.010 **  Ascomycota

0.75 0.89 0.82 0.032 * Fungi

1.00 0.67 0.82 0.015 *  Ascomycota

1.00 0.67 0.82 0.009 **  Basidiomycota

0.86 0.78 0.82 0.023 *  Basidiomycota

1.00 0.67 0.82 0.012 *  Capnodiales order of sooty molds and plant pathogens Crous et al. 2009

1.00 0.67 0.82 0.015 *  Rachicladosporium genus containing several plant pathogens Crous et al. 2014, Crous et al. 2018

1.00 0.67 0.82 0.010 ** Tubeufiaceae family of plant pathogens and saprobes Rossman 1987

1.00 0.67 0.82 0.013 * Tubeufiaceae family of plant pathogens and saprobes Rossman 1987

0.85 0.78 0.82 0.021 * Herpotrichiellaceae family of wood saprobes and animal pathogens Gueidan C. 2008

0.74 0.89 0.81 0.010 **  Dothioraceae family of nectrotroph and wood associated taxa Cannon and Kirk 2007

0.83 0.78 0.81 0.015 *  Mycosphaerellaceae plant pathogen Pérez et al. 2013, Taylor et al. 2003

0.96 0.67 0.80 0.010 ** Orbiliomycetes class of nematode and invertebrate trapping taxa Baral et al. 2018

0.95 0.67 0.80 0.006 **  Chaetomiaceae family of human and animal pathogens Plumlee et al. 2017

0.95 0.67 0.80 0.022 *  Chaetothyriales often found in arid conditions and known to be resistant to high temperaturesVillaseñor C. R. 2004, Sterflinger et al. 1999

0.81 0.78 0.80 0.020 *  Dioszegia genus of plant associated taxa Renker et al. 2004

0.95 0.67 0.80 0.011 * Eurotiomycetes 

0.81 0.78 0.79 0.029 * Ascochyta genus of grass pathogens Sprague and Johnson 2018

0.81 0.78 0.79 0.040 * Fungi

0.71 0.89 0.79 0.037 * Phaeosphaeria genus of plant pathogens El-Demerdash 2018

0.94 0.67 0.79 0.018 * Hannaella luteola isolated from plant leaves Global Catalogue of Microorganisms - Hannaella luteola

0.94 0.67 0.79 0.023 * Periconia saprotroph Markovskaja and Kačergius 2014
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----------- 

Nutrients 

----------- 

 

Table S13: Longleaf pine savanna fungal community variance explained by nutrient availability 

table.  Numerical values in the table represent R2 values from the envfit() function. 

 

Non-Burned   Burned 

Sampling 

Time 

Total 

Carbon 

Total 

Nitrogen 

Total 

Phosphorus 
  

Sampling 

Time 

Total 

Carbon 

Total 

Nitrogen 

Total 

Phosphorus  

month 1 0.7 0.94 0.04   month 1 0.14 0.16 0.29 

month 2 0.06 0.17 0.5   month 2 0.17 0.13 0.04 

month 3 na na na   month 3 0.56 0.62 0.8** 

month 4 na na na   month 4 0.09 0.09 0.4 

month 5 na na na   month 5 0.31 0.39 0.28 

month 6 0.51 0.99 0.14   month 6 0.15 0.25 0.2 

month 7 na na na   month 7 0.2 0.14 0.18 

*≤0.1, **≤0.05, ***≤0.001 

 

Table S14:  Treatment effects on Longleaf pine savannas total soil carbon (%).  Type III ANOVAs 

were used.   

0.93 0.67 0.79 0.018 *  Ramichloridium likely plant pathogen Arzanlou et al. 2007

0.91 0.67 0.78 0.018 * Periconia saprotroph Markovskaja and Kačergius 2014

0.78 0.78 0.78 0.033 * Savoryella aquatica water associated Hyde K.D. 1993

0.89 0.67 0.77 0.027 *  Helotiales order predominantly composed of wood saprobes Kirk et al. 2008

0.88 0.67 0.77 0.036 * Geoglossum likely saprotroph Kuo M. 2019

0.85 0.67 0.75 0.047 *  Ascomycota

0.85 0.67 0.75 0.042 * Metacordyceps chlamydosporia arthropod parasite Kepler et al. 2012

0.84 0.67 0.75 0.048 *  Cyphellophora associatd with some plant diseases Gao et al. 2015

0.84 0.67 0.75 0.033 *  Montagnulaceae family containing saprotrophic, endophytic, and pathogenic taxaAriyawansa et al. 2014

1.00 0.56 0.75 0.037 *  Ascomycota

1.00 0.56 0.75 0.038 *  Ascomycota

1.00 0.56 0.75 0.032 *  Ascomycota

1.00 0.56 0.75 0.032 *  Ascomycota

1.00 0.56 0.75 0.034 *  Ascomycota

1.00 0.56 0.75 0.021 *  Ascomycota

1.00 0.56 0.75 0.049 *  Basidiomycota

1.00 0.56 0.75 0.038 *  Capnodiales order of sooty molds and plant pathogens Crous et al. 2009

1.00 0.56 0.75 0.043 *  Chaetothyriales often found in arid conditions and known to be resistant to high temperaturesVillaseñor C. R. 2004, Sterflinger et al. 1999

1.00 0.56 0.75 0.027 *  Eurotiomycetes

1.00 0.56 0.75 0.028 *  Ophiocordycipitaceae insect parasite Sung et al. 2007

1.00 0.56 0.75 0.022 *  Periconia saprotroph Markovskaja and Kačergius 2014

1.00 0.56 0.75 0.027 * Bullera pseudoalba saprotroph Nakase and Suzuki 1986

1.00 0.56 0.75 0.037 * Eurotiomycetes 

1.00 0.56 0.75 0.030 * Eurotiomycetes 

1.00 0.56 0.75 0.038 * Helicoma many member taxa are found on dead wood and leaves Goos R.D. 1986

1.00 0.56 0.75 0.021 * Pleomassariaceae wood saprotrophs Cannon and Kirk 2007

0.82 0.67 0.74 0.037 * Sarcinomyces

0.98 0.56 0.74 0.037 * Stictis genera of wood saprobes and lichenized fungi Weden et al. 2006

0.96 0.56 0.73 0.034 *  Adisciso contains leaf associated taxa Tanaka et al. 2011

0.96 0.56 0.73 0.029 *  Ascomycota

0.94 0.56 0.72 0.028 *  Ascomycota

0.78 0.67 0.72 0.043 *  Stachybotrys mold

0.93 0.56 0.72 0.047 *  Capnodiales order of sooty molds and plant pathogens Crous et al. 2009

0.91 0.56 0.71 0.039 *  Ascomycota

0.91 0.56 0.71 0.047 * Fungi
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Pine Savanna - Total Carbon (%) 

model term d.f.1 d.f.2 F ratio P-value 

fire treatment 1 63.02 6.683 0.0121** 

pine proximity 1 63.01 1.776 0.1874 

time 6 56.06 0.003 1 

fire x pine 1 63.01 3.958 0.051* 

fire x time 6 63.05 0.303 0.933 

*≤0.1, **≤0.05, ***≤0.001 

 

 

Table S15:  Treatment effects on Longleaf pine savannas total soil nitrogen (%).  Type III 

ANOVAs were used.   

Pine Savanna - Total Nitrogen (%) 

model term d.f.1 d.f.2 F ratio P-value 

fire treatment 1 63.01 5.338 0.0242** 

pine proximity 1 63.01 2.02 0.1602 

time 6 62.92 0.082 0.9978 

fire x pine 1 63.01 0.194 0.6613 

fire x time 6 63.02 0.474 0.8249 

*≤0.1, **≤0.05, ***≤0.001 

 

 

 

 

 

 

Table S16:  Treatment effects on Longleaf pine savannas total inorganic soil phosphorus (ppm).  

Type III ANOVAs were used.   

Pine Savanna - Log Total Inorganic Phosphorus (ppm) 

model term d.f.1 d.f.2 F ratio P-value 

fire treatment 1 63.01 0.578 0.4501 

pine proximity 1 63 2.431 0.124 

time 6 63.08 0.074 0.9983 

fire x pine  1 63 8.184 0.0057*** 

fire x time 6 63.02 0.548 0.7694 

*≤0.1, **≤0.05, ***≤0.001 

 

 

Table S17: Tallgrass prairie fungal community variance explained by nutrient availability table.  

Numerical values in the table represent R2 values from the envfit() function. 

Non-Burned   Burned 

Sampling 

Time 

Total 

Carbon  

Total 

Nitrogen  

Total 

Phosph.  
  

Sampling 

Time 

Total 

Carbon  

Total 

Nitrogen 

Total 

Phosph. 

pre-

treatment 
0.6 0.2 0.75   

pre-

treatment 
0.2 0.14 0.39 
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week 2 0.5 0.63 0.34   week 2 0.59** 0.54* 0.59** 

month 1 0.53 0.86 0.34   month 1 0.74** 0.81** 0.61* 

month 2 0.71 0.29 0.67   month 2 0.74** 0.6** 0.01 

month 4 0.24 0.08 0.49   month 4 0.22 0.24 0.29 

month 7 0.67 0.77 0.74   month 7 0.04 0.03 0.09 

month 8 0.79 0.78 0.9   month 8 0.22 0.35 0.15 

*≤0.1, **≤0.05, ***≤0.001 

 

Table S18:  Treatment effects on tallgrass prairie total soil carbon (%).  Type III ANOVAs were 

used.   

model term d.f.1 d.f.2 F ratio p-value 

fire treatment 1 89 55.251 <.0001*** 

time 6 89 8.321 <.0001*** 

fire x time 6 89 0.401 0.8767 

*≤0.1, **≤0.05, ***≤0.001 

 

Table S19:  Treatment effects on tallgrass prairie total soil nitrogen (%).  Type III ANOVAs 

were used.   

model term d.f.1 d.f.2 F ratio p-value 

fire treatment 1 89 61.222 <.0001*** 

time 6 89 7.122 <.0001*** 

fire x time 6 89 0.474 0.8263 

*≤0.1, **≤0.05, ***≤0.001 

 

 

Table S20:  Treatment effects on tallgrass prairie total inorganic soil phosphorus (ppm).  Type 

III ANOVAs were used.   

model term d.f.1 d.f.2 F ratio p-value 

fire treatment 1 89 18.387 <.0001*** 

time 6 89 3.209 0.0067** 

fire x time 6 89 0.945 0.467 

*≤0.1, **≤0.05, ***≤0.001 
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Chapter 2 - Appendix 

 

Table S1: Description of variables included in structural equation model fitting process. Table 

contains the name, type, coding, applied transformations, and a brief description of each variable. 

Variable name 
SEM 

code 
Transform Mean sd Description 

Number of Fires 

0-0-0 = 0    

0-0-1 = 1    

1-0-1 = 2    

0-1-1 = 2    

1-1-1 = 3 

none 
0-0-0 is 

reference 
na 

Describes the number of fires 

during the prior three years as a 

summation. 

Pine Proximity near, away none 
away is 

reference 
na 

Type of litter contained by litter 

bags at each site. Near = litter 

within 10m of nearest pine,  

Away = litter from 10 m away of 

nearest pine. 

Surface Fire 

Duration above 

60˚C 

  square root 193.02 144.79 
Amount of time (seconds) 2016 

fires remained over 60˚C. 

Maximum Instant 

Surface 

Temperature 

Increase (°C) 

  square root 177.72 113.08 
Maximum temperature (˚C) 

recorded in the plant litter layer. 

Maximum Instant 

Soil Temperature 

Increase (°C) 
  square root 12.26 12.26 

Maximum temperature (˚C) 

recorded in the upper soil layer. 

Pine Needle 

Fuels (g) 
  square root 11.72 10.35 

Weight of longleaf pine needles 

in each plot (grams). 

Total Fine Fuels 

(g) 
  none 85.08 36.53 

Weight of all fine fuels in each 

plot (grams). 

NH4+ (ppm)   square root 16.14 12.08 
Concentration of ammonium in 

plot (parts per million). 

NO3- (ppm)   square root 1.66 1.48 
Concentration of nitrate in plot 

(ppm). 

Inorganic Soil 

Phosphorus 

(ppm) 

  log10 44.74 42.85 
Determined by Mehlich III 

method (ppm). 

Total Soil Carbon 

(%) 
  none 4.28 1.71 

Total organic and inorganic 

carbon. 

Total Soil 

Nitrogen (%) 
  natural log 0.23 0.64 

Total organic and inorganic 

nitrogen. 

2 Month 

Decomposition 

Rate (%/day) 

  none 0.15 0.07 
Decomposition rate through 2 

month post-fire time point. 

4 Month 

Decomposition 

Rate (%/day) 

  none 0.12 0.05 
Decomposition rate through 4 

month post-fire time point. 
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6 Month 

Decomposition 

Rate (%/day) 

  none 0.08 0.04 
Decomposition rate through 6 

month post-fire time point. 

8 Month 

Decomposition 

Rate (%/day) 

  none 0.07 0.03 
Decomposition rate through 8 

month post-fire time point. 
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Table S1.5: Initial SEM model.   

 

Response Variable Explanatory Variable(s) Justification Citation

Number of Fires NH4
+ 

decreases w/ recurrent fires Christensen 1977

Max Ins. Surface Temp. Increase (˚C) Nitrogen volatilizes at 200°C Raison 1979

Max Ins. Soil Temp. Increase (˚C) Nitrogen volatilizes at 200°C Raison 1979

Surface Fire Duration > 60˚C longer duration leads to greater combustion and loss

Number of Fires High fire frequencies are associated with slow decomposition Ficken and Wright 2017

NH4+ NH4
+ 

is readily utilized by microbes for enzyme production Taylor et al. 1989

Pine Proximity Pine needles are harder to decompose and produce more intense fires Hobbie 2000

Phosphorus N:P ratios control decomposition

Soil Carbon High C:N ratios slow decomposition Taylor et al. 1989

Soil Nitrogen Low C:N ratios increase decomposition Taylor et al. 1989

NO3
-

NO3
- 
is readily utilized by microbes for enzyme production Taylor et al. 1989

Max Ins. Surface Temp. Increase (˚C) High temperature jumps can increase microbial mortality Bárcenas-Moreno and Bååth 2009

Max Ins. Soil Temp. Increase (˚C) High temperature jumps can increase microbial mortality Bárcenas-Moreno and Bååth 2010

Surface Fire Duration > 60˚C Longer heating durations can increase microbial mortality Peay et al. 2009

Number of Fires High fire frequencies are associated with slow decomposition Ficken and Wright 2017

Soil Carbon High C:N ratios slow decomposition Taylor et al. 1989

Soil Nitrogen Low C:N ratios increase decomposition Taylor et al. 1989

2 Month Decomposition Rate Decomposition is successional process Voříšková and Baldrian 2013

Phosphorus N:P ratios control decomposition

NH4+ NH4
+ 

is readily utilized by microbes for enzyme production Taylor et al. 1989

NO3- NO3
- 
is readily utilized by microbes for enzyme production Taylor et al. 1989

Pine Proximity Pine needles are harder to decompose and produce more intense fires

Max Ins. Surface Temp. Increase (˚C) High temperature jumps can increase microbial mortality Bárcenas-Moreno and Bååth 2009

Surface Fire Duration > 60˚C High temperature jumps can increase microbial mortality Bárcenas-Moreno and Bååth 2009

Max Ins. Soil Temp. Increase (˚C) Longer heating durations can increase microbial mortality Peay et al. 2009

Soil Carbon High C:N ratios slow decomposition Taylor et al. 1989

Soil Nitrogen Low C:N ratios increase decomposition Taylor et al. 1989

NO3- NO3
- 
is readily utilized by microbes for enzyme production Taylor et al. 1989

NH4+ NH4
+ 

is readily utilized by microbes for enzyme production Taylor et al. 1989

Pine Proximity Pine needles are harder to decompose and produce more intense fires Hobbie 2000

Number of Fires High fire frequencies are associated with slow decomposition Ficken and Wright 2017

Phosphorus N:P ratios control decomposition

Max Ins. Surface Temp. Increase (˚C) High temperature jumps can increase microbial mortality Bárcenas-Moreno and Bååth 2009

Max Ins. Soil Temp. Increase (˚C) High temperature jumps can increase microbial mortality Bárcenas-Moreno and Bååth 2009

Surface Fire Duration > 60˚C Longer heating durations can increase microbial mortality Peay et al. 2009

2 Month Decomposition Rate Decomposition is successional process Voříšková and Baldrian 2013

4 Month Decomposition Rate Decomposition is successional process Voříšková and Baldrian 2013

Number of Fires High fire frequencies are associated with slow decomposition Ficken and Wright 2017

2 Month Decomposition Rate Decomposition is successional process Voříšková and Baldrian 2013

4 Month Decomposition Rate Decomposition is successional process Voříšková and Baldrian 2014

6 Month Decomposition Rate Decomposition is successional process Voříšková and Baldrian 2013

Soil Carbon High C:N ratios slow decomposition Taylor et al. 1989

Soil Nitrogen Low C:N ratios increase decomposition Taylor et al. 1989

Phosphorus N:P ratios control decomposition

NO3- NO3
- 
is readily utilized by microbes for enzyme production Taylor et al. 1989

NH4+ NH4
+ 

is readily utilized by microbes for enzyme production Taylor et al. 1989

Pine Proximity plant fuel traits differ near/away from pines

Max Ins. Surface Temp. Increase (˚C) High temperature jumps can increase microbial mortality Bárcenas-Moreno and Bååth 2009

Max Ins. Soil Temp. Increase (˚C) High temperature jumps can increase microbial mortality Bárcenas-Moreno and Bååth 2009

Surface Fire Duration > 60˚C Longer heating durations can increase microbial mortality Peay et al. 2009

Pine Needles Pine needles are highly flammable fuels that control fire characteristics Ellair and Platt 2013

Total Fine Fuels more fuels should intensify fire characteristics

Pine Proximity plant fuel traits differ near/away from pines Platt et al. 2016

Number of Fires frequent fires may reduce plant fuel loads

Pine Needles Pine needles are highly flammable fuels that control fire characteristics Ellair and Platt 2013

Pine Proximity plant fuel traits differ near/away from pines

Total Fine Fuels more fuels should intensify fire characteristics

Number of Fires frequent fires should reduce fuel load

Litter Fire Duration > 60˚C longer heating duration at surface should increase soil temperatures Peay et al. 2009

Max Ins. Surface Temp. Increase (˚C) higher temperatures are associated with longer burn durations Bárcenas-Moreno and Bååth 2009

Number of Fires frequent fires should reduce fuel load

Pine Needles Pine needles are highly flammable fuels that control fire characteristics Ellair and Platt 2013

Total Fine Fuels more fuels should intensify fire characteristics

Pine Proximity plant fuel traits differ near/away from pines

Number of Fires frequent low severity fires are associated with increased C storage Czimczik et al. 2005

Soil Nitrogen
High amounts of available N can control C released through 

decomposition
linked through C:N ratio

Max Ins. Surface Temp. Increase (˚C) higher temps. Increase nutrient availability

Max Ins. Soil Temp. Increase (˚C) higher temps. Increase nutrient availability

Surface Fire Duration > 60˚C longer duration leads to greater combustion and loss

Number of Fires frequent fires reduce nitrogen availability Bell and Binkley 1989

NO3- more nitrate = more soil nitrogen

Max Ins. Surface Temp. Increase (˚C) Nitrogen volatilizes at 200°C Raison 1979

Max Ins. Soil Temp. Increase (˚C) Nitrogen volatilizes at 200°C Raison 1979

Surface Fire Duration > 60˚C longer duration leads to greater combustion and loss

NH4+ more nitrate = more soil nitrogen

Number of Fires fire increases phosphorus availability Butler et al. 2018

Soil Carbon linked through C:P ratio

Soil Nitrogen linked through C:N ratio

Max Ins. Surface Temp. Increase (˚C) P availability increases with fire temperature Butler et al. 2018

Max Ins. Soil Temp. Increase (˚C) P availability increases with fire temperature Butler et al. 2018

Surface Fire Duration > 60˚C longer duration leads to more P released from organic matter longer duration leads to greater combustion and loss

Number of Fires frequent fires reduce nitrogen availability Christensen 1977

Max Ins. Surface Temp. Increase (˚C) Nitrogen volatilizes at 200°C Raison 1979

Max Ins. Soil Temp. Increase (˚C) Nitrogen volatilizes at 200°C Raison 1979

Surface Fire Duration > 60˚C longer duration leads to greater combustion and loss

Pine Needles (g) Pine Proximity more pine needles near longleaf pines

NO3
- 
(ppm)

NH4
+ 

(ppm)

2 Month Decomposition Rate

4 Month Decomposition Rate

6 Month Decomposition Rate

8 Month Decomposition Rate

Maximum Instantaneous 

Surface Temperature Rise 

(˚C)

Maxiumum Instantaneous 

Soil Temperature Rise (˚C)

Surface Fire Duration > 60˚C

Soil Carbon (%)

Soil Nitrogen (%)

Soil Phosphorus (ppm)
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Fine Fuels Section 

 

 

Figure S1: Pre-fire fine fuel characteristics for experimental plots.  When comparing near and 

away from pines plots, the only differences in fine fuels were amounts and proportions of pine 

needles.  In near plots, there were larger amounts of pine needles and pine needles made up larger 

proportions of fuel loads.  The other differences in plant fuel loads were with total fine fuel loads 

and non-pine fuels.  In plots that burned twice in the final two years of the experiment, plant fuel 

loads were smaller and contained fewer non-pine fuels. 
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Table S2: Fine Fuel ANOVA tables. 

Fine Fuel ANOVA Tables 

Pine Needle Fuels 

model term df1 df2 F.ratio p.value 

fire 4 59 3.314 0.0162** 

litter 1 59 33.363 <.0001*** 

fire:litter 4 59 2.222 0.0774* 

          

Total Final Fuels 

model term df1 df2 F.ratio p.value 

fire 4 59 7.338 0.0001*** 

litter 1 59 3.66 0.0606* 

fire:litter 4 59 0.434 0.7837 

          

Non-Pine Fuels 

model term df1 df2 F.ratio p.value 

fire 4 59 7.372 0.0001*** 

litter 1 59 0.217 0.6429 

fire:litter 4 59 0.791 0.536 

          

Percent Pine Needles 

model term df1 df2 F.ratio p.value 

fire 4 59 5.089 0.0014** 

litter 1 59 22.276 <.0001*** 

fire:litter 4 59 2.296 0.0697* 

  * = p ≤ 0.1, ** = p ≤ 0.05, *** = p ≤ 0.001. 
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Post-Fire Nutrients Section 

 

 

Figure S2: Post-fire nutrient levels.  As fire frequency increased, total soil nitrogen, phosphorus, 

and ammonium levels decreased, while C:N ratios and Nitrate levels increased.  Note that nitrate 

actually decreased when sites were burned twice in the final two years of the study. 
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Table S3: Nutrient ANOVA tables.   

Nutrient ANOVA Tables 

Total Soil Carbon 

model term df1 df2 F.ratio p.value 

fire 4 60 1.023 0.4028 

litter 1 60 0.923 0.3405 

fire:litter 4 60 0.846 0.5016 

          

Total Soil Nitrogen 

model term df1 df2 F.ratio p.value 

fire 4 59 5.172 0.0012** 

litter 1 59 0.117 0.7338 

fire:litter 4 59 0.686 0.6044 

          

C:N 

model term df1 df2 F.ratio p.value 

fire 4 60 10.391 <.0001*** 

litter 1 60 1.821 0.1822 

fire:litter 4 60 0.552 0.6985 

          

Ammonium 

model term df1 df2 F.ratio p.value 

fire 4 60 10.636 <.0001*** 

litter 1 60 2.452 0.1226 

fire:litter 4 60 0.535 0.7106 

          

Nitrate 

model term df1 df2 F.ratio p.value 

fire 4 60 3.385 0.0146** 

litter 1 60 2.556 0.1151 

fire:litter 4 60 0.09 0.9852 

          

Phosphorus 

model term df1 df2 F.ratio p.value 

fire 4 60 4.492 0.0031** 

litter 1 60 0.016 0.9001 

fire:litter 4 60 0.261 0.902 

* = p ≤ 0.1, ** = p ≤ 0.05, *** = p ≤ 0.001. 
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2016 Prescribed Burn Characteristics Section 

 

 

Figure S3: 2016 fire characteristics.  During the 2016 prescribed burns, burned treatments did not 

vary significantly from one and other in terms of fire characteristics.  The primary differences were 

between the unburned and burned plots.  Note that no fire characteristics were recorded for 

unburned (000) sites.  Any negative values reflect the addition of 0.1 prior to natural log 

transformation for surface temperature increase and surface fire duration.  
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Table S4: Fire characteristic ANOVA tables.   

Fire Characteristic ANOVA Tables 

Max. Inst. Surface Temp. Increase 

model term df1 df2 F.ratio p.value 

fire 4 51 105.116 <.0001*** 

litter 1 51 0.355 0.5538 

fire:litter 4 51 0.24 0.9144 

          

Surface Fire Duration >60C 

model term df1 df2 F.ratio p.value 

fire 4 51 25.3 <.0001*** 

litter 1 51 0.175 0.6779 

fire:litter 4 51 0.043 0.9963 

          

Max Inst. Soil Temp. Increase 

model term df1 df2 F.ratio p.value 

fire 4 51 3.753 0.0094** 

litter 1 51 1.303 0.259 

fire:litter 4 51 0.537 0.709 

          

Percent Fine Fuel Combustion 

model term df1 df2 F.ratio p.value 

fire 4 51 72.553 <.0001*** 

litter 1 51 0.311 0.5793 

fire:litter 4 51 0.526 0.7171 

* = p ≤ 0.1, ** = p ≤ 0.05, *** = p ≤ 0.001. 
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Decomposition Rate ANOVA Tables: 

 

Table S5: Analysis of Variance and apriori contrast table for 2 month decomposition rates.  * = p 

≤ 0.1, ** = p ≤ 0.05, *** = p ≤ 0.001. 

Month 2 Decomp Rate ANOVA Table 

model term df1 df2 F.ratio p.value   

fire 4 46 26.752 <.0001***   

litter 1 46 0.013 0.9099   

fire:litter 4 46 3.83 0.0091**   

            

Month 2 Decomp Rate Contrasts 

contrast estimate SE df t.ratio p.value 

near vs. away 0.00586 0.0515 46 -0.114 0.9099 

no fire vs. fire 0.91862 0.1031 46 8.914 <.0001*** 

1 vs 2 fires 0.20648 0.0564 46 3.662 0.0006*** 

1 vs 3 fires 0.15769 0.0326 46 4.836 <.0001*** 

2 vs 3 fires 0.10889 0.0564 46 1.931 0.0596* 

 

 

Table S6: Analysis of Variance and apriori contrasts table for 4 month decomposition rates 

Month 4 Decomp Rate ANOVA Table 

model term df1 df2 F.ratio p.value   

fire 4 47 22.088 <.0001***   

litter 1 47 0.451 0.5054   

fire:litter 4 47 0.558 0.6941   

            

Month 4 Decomp Rate Contrasts 

contrast estimate SE df t.ratio p.value 

near vs. away -0.0289 0.043 47 -0.671 0.5054 

no fire vs. fire 0.77 0.0871 47 8.839 <.0001*** 

1 vs 2 fires 0.1246 0.0484 47 2.577 0.0132** 

1 vs 3 fires 0.0726 0.0283 47 2.567 0.0135** 

2 vs 3 fires 0.0205 0.0469 47 0.438 0.6637 
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Table S7: Analysis of Variance and apriori contrasts table for 6 month decomposition rates 

Month 6 Decomp Rate ANOVA Table 

model term df1 df2 F.ratio p.value   

fire 4 46 16.1 <.0001***   

litter 1 46 8.441 0.0056**   

fire:litter 4 46 1.441 0.2356   

            

Month 6 Decomp Rate Contrasts 

contrast estimate SE df t.ratio p.value 

near vs. away -0.0953 0.0328 46 -2.905 0.0056** 

no fire vs. fire 0.4463 0.0661 46 6.754 <.0001*** 

1 vs 2 fires 0.1358 0.036 46 3.771 0.0005*** 

1 vs 3 fires 0.0739 0.0209 46 3.528 0.001*** 

2 vs 3 fires 0.012 0.036 46 0.334 0.7398 

 

 

Table S8: Analysis of Variance and apriori contrasts table for 8 month decomposition rates 

Month 8 Decomp Rate ANOVA Table 

model term df1 df2 F.ratio p.value   

fire 4 44 19.327 <.0001***   

litter 1 44 2.081 0.1562   

fire:litter 4 44 2.235 0.0805*   

            

Month 8 Decomp Rate Contrasts 

contrast estimate SE df t .ratio p.value 

near vs. away -0.042 0.0291 44 -1.443 0.1562 

no fire vs. fire 0.4297 0.0598 44 7.187 <.0001*** 

1 vs 2 fires 0.1285 0.0316 44 4.063 0.0002*** 

1 vs 3 fires 0.0832 0.0183 44 4.559 <.0001*** 

2 vs 3 fires 0.038 0.0316 44 1.201 0.2362 
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Structural Equation Model Fitting Steps: 

 

 Data was first checked for normality and homoscedasticity of variance between variables. 

Due to some deviations from normality and heteroscedastic variance, the data transformed 

appropriately and then scaled before further analysis.  

 After scaling the data, a highly saturated model containing decomposition rates, nutrient 

variables, short-term fire history treatments, fire characteristics, and fuel traits was specified. See 

lavaan code below: 

 

Step 1: 

Model 1 <- ' 

decomprate2 ~ burns + C + N + P + no3 + nh4 + prox + litt.inc + soil.inc + dur60 

decomprate4 ~ burns + C + N + P + no3 + nh4 + prox + decrate2 + litt.inc + soil.inc + dur60 

decomprate6 ~ burns + C + N + P + no3 + nh4 + prox + decrate2 + decrate4 + litt.inc + soil.inc + 

dur60 

decomprate8 ~ burns + C + N + P + no3 + nh4 + prox + decrate2 + decrate4 + decrate6 + litt.inc 

+ soil.inc + dur60 

litt.inc ~ needle + tot.fuel + burns + prox 

soil.inc ~ litt.inc + needle + tot.fuel + burns + dur60 + prox 

dur60 ~ litt.inc + needle + tot.fuel + burns + prox 

C ~ burns + N + litt.inc + soil.inc + dur60 

N ~ burns + nh4 + no3 + litt.inc + soil.inc + dur60 

P ~ burns + C + N + litt.inc + soil.inc + dur60 

no3 ~ burns + litt.inc + soil.inc + dur60 

nh4 ~ burns + litt.inc + soil.inc + dur60 

needle ~ prox 

' 

 
lavaan 0.6-4 ended normally after 89 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                        113 
 
                                                  Used       Total 
  Number of observations                            68          69 
  Number of missing patterns                         9 
 
  Estimator                                         ML 
  Model Fit Test Statistic                      83.625 
  Degrees of freedom                                30 
  P-value (Chi-square)                           0.000 
 
Model test baseline model: 
 
  Minimum Function Test Statistic              899.498 
  Degrees of freedom                               117 
  P-value                                        0.000 
 
User model versus baseline model: 
 
  Comparative Fit Index (CFI)                    0.931 
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  Tucker-Lewis Index (TLI)                       0.733 
 
Loglikelihood and Information Criteria: 
 
  Loglikelihood user model (H0)               -727.653 
  Loglikelihood unrestricted model (H1)       -685.840 
 
  Number of free parameters                        113 
  Akaike (AIC)                                1681.306 
  Bayesian (BIC)                              1932.110 
  Sample-size adjusted Bayesian (BIC)         1576.266 
 
Root Mean Square Error of Approximation: 
 
  RMSEA                                          0.162 
  90 Percent Confidence Interval          0.121  0.204 
  P-value RMSEA <= 0.05                          0.000 
 
Standardized Root Mean Square Residual: 
 
  SRMR                                           0.076 

 

Despite convergence, the model was not a good fit for the data (X2=83.625, p = 0).  Note that in 

structural equation modeling, Chi-Squared tests compare the covariance matrix of the model to the 

covariance matrix of the included data.  A significant difference between the two covariance 

matrices is considered a poor fitting model, signified by p < 0.05.  To improve model fit, 

relationships in the model with a p value of 0.75 or greater were removed. 

 

 

Step 2: 

Model 2 <- ' 

decomprate2 ~ burns + C + N + P + no3 + nh4 + prox + litt.inc + dur60 

decomprate4 ~ burns + P + no3 + nh4 + prox + decrate2 + litt.inc + soil.inc + dur60 

decomprate6 ~ burns + C + N + P + no3 + nh4 + prox + decrate2 + decrate4 + litt.inc 

decomprate8 ~ burns + decrate2 + decrate4 + decrate6 + litt.inc + soil.inc + dur60 

litt.inc ~ needle + tot.fuel + burns + prox 

soil.inc ~ litt.inc + needle + tot.fuel + burns + dur60 + prox 

dur60 ~ litt.inc + needle + burns + prox 

C ~ burns + N + litt.inc + soil.inc + dur60 

N ~ burns + nh4 + no3 + litt.inc + soil.inc + dur60 

P ~ burns + C + N + litt.inc + soil.inc + dur60 

no3 ~ burns + litt.inc + soil.inc + dur60 

nh4 ~ burns + litt.inc + soil.inc + dur60 

needle ~ prox 

' 

 
lavaan 0.6-4 ended normally after 78 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                        101 
 
                                                  Used       Total 
  Number of observations                            68          69 
  Number of missing patterns                         9 
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  Estimator                                         ML 
  Model Fit Test Statistic                      85.112 
  Degrees of freedom                                42 
  P-value (Chi-square)                           0.000 
 
Model test baseline model: 
 
  Minimum Function Test Statistic              899.498 
  Degrees of freedom                               117 
  P-value                                        0.000 
 
User model versus baseline model: 
 
  Comparative Fit Index (CFI)                    0.945 
  Tucker-Lewis Index (TLI)                       0.847 
 
Loglikelihood and Information Criteria: 
 
  Loglikelihood user model (H0)               -728.396 
  Loglikelihood unrestricted model (H1)       -685.840 
 
  Number of free parameters                        101 
  Akaike (AIC)                                1658.792 
  Bayesian (BIC)                              1882.963 
  Sample-size adjusted Bayesian (BIC)         1564.907 
 
Root Mean Square Error of Approximation: 
 
  RMSEA                                          0.123 
  90 Percent Confidence Interval          0.085  0.160 
  P-value RMSEA <= 0.05                          0.002 
 
Standardized Root Mean Square Residual: 
 
  SRMR                                           0.077 

 

This model was an improvement compared to step 1, however its Chi-Square value suggested that 

it was still a poor fit to the data (X2=85.112, p = 0).  To improve model fit, relationships in the  

model with a p value of 0.5 or greater were removed. 

 

 

Step 3: 

Model 3 <- ' 

decomprate2 ~ burns + N + P + no3 + nh4 + prox + litt.inc + dur60 

decomprate4 ~ burns + P + nh4 + prox + decrate2 + soil.inc + dur60 

decomprate6 ~ C + N + P + no3 + nh4 + prox + decrate4 + litt.inc 

decomprate8 ~ burns + decrate2 + decrate4 + decrate6 + litt.inc + dur60 

litt.inc ~ needle + burns + prox 

soil.inc ~ litt.inc + needle + tot.fuel + burns + prox 

dur60 ~ litt.inc + burns + prox 

C ~ burns + N + litt.inc + dur60 

N ~ burns + nh4 + litt.inc + soil.inc + dur60 

P ~ burns + C + N + litt.inc + soil.inc + dur60 

no3 ~ burns + litt.inc + dur60 

nh4 ~ burns + soil.inc 

needle ~ prox 
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' 

 

 
lavaan 0.6-4 ended normally after 79 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                         87 
 
                                                  Used       Total 
  Number of observations                            68          69 
  Number of missing patterns                         9 
 
  Estimator                                         ML 
  Model Fit Test Statistic                      91.963 
  Degrees of freedom                                56 
  P-value (Chi-square)                           0.002 
 
Model test baseline model: 
 
  Minimum Function Test Statistic              899.498 
  Degrees of freedom                               117 
  P-value                                        0.000 
 
User model versus baseline model: 
 
  Comparative Fit Index (CFI)                    0.954 
  Tucker-Lewis Index (TLI)                       0.904 
 
Loglikelihood and Information Criteria: 
 
  Loglikelihood user model (H0)               -731.822 
  Loglikelihood unrestricted model (H1)       -685.840 
 
  Number of free parameters                         87 
  Akaike (AIC)                                1637.644 
  Bayesian (BIC)                              1830.741 
  Sample-size adjusted Bayesian (BIC)         1556.772 
 
Root Mean Square Error of Approximation: 
 
  RMSEA                                          0.097 
  90 Percent Confidence Interval          0.060  0.132 
  P-value RMSEA <= 0.05                          0.024 
 
Standardized Root Mean Square Residual: 
 
  SRMR                                           0.077 

 

 

Model 3 converged, and fit statistics suggested that it was a better fit to the data than previous 

models (X2=91.963, p = 0.002, RMSEA = 0.097, SRMR = 0.077).  The model covariance matrix 

was still significantly different than the data covariance matrix however, so poorly supported 

relationships were again parsed out of the model.  In this case, poorly suppored relationships were 

defined as p > 0.5 and/or estimate effects < 0.1. 

 

 

Step 4: 

 

Model 4 <- ' 
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decomprate2 ~ burns + P + no3 + nh4 + prox + litt.inc + dur60 

decomprate4 ~ burns + litter + decrate2 + soil.inc + dur60 

decomprate6 ~ C + N + P + no3 + nh4 + prox + decrate4 + litt.inc 

decomprate8 ~ decrate2 + decrate4 + decrate6 + litt.inc + dur60 

litt.inc ~ needle + burns + prox 

soil.inc ~ litt.inc + needle + tot.fuel + burns + prox 

dur60 ~ litt.inc + burns + prox 

C ~ burns + N + litt.inc + dur60 

N ~ burns + nh4 + litt.inc + soil.inc + dur60 

P ~ burns + C + N + litt.inc + soil.inc + dur60 

no3 ~ burns + litt.inc + dur60 

nh4 ~ burns + soil.inc 

needle ~ prox 

' 

 
lavaan 0.6-4 ended normally after 77 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                         83 
 
                                                  Used       Total 
  Number of observations                            68          69 
  Number of missing patterns                         9 
 
  Estimator                                         ML 
  Model Fit Test Statistic                      94.598 
  Degrees of freedom                                60 
  P-value (Chi-square)                           0.003 
 
Model test baseline model: 
 
  Minimum Function Test Statistic              899.498 
  Degrees of freedom                               117 
  P-value                                        0.000 
 
User model versus baseline model: 
 
  Comparative Fit Index (CFI)                    0.956 
  Tucker-Lewis Index (TLI)                       0.914 
 
Loglikelihood and Information Criteria: 
 
  Loglikelihood user model (H0)               -733.139 
  Loglikelihood unrestricted model (H1)       -685.840 
 
  Number of free parameters                         83 
  Akaike (AIC)                                1632.279 
  Bayesian (BIC)                              1816.498 
  Sample-size adjusted Bayesian (BIC)         1555.125 
 
Root Mean Square Error of Approximation: 
 
  RMSEA                                          0.092 
  90 Percent Confidence Interval          0.054  0.126 
  P-value RMSEA <= 0.05                          0.036 
 
Standardized Root Mean Square Residual: 
 
  SRMR                                           0.077 
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Model 4 converged and was a marginally good fit to the data (X2=94.598, p = 0.003, RMSEA = 

0.092, SRMR = 0.077).  The chi-squared test and non-significant relationships in the model still 

suggested that the model could be improved, however.  To improve model fit, relationships with 

p > 0.25 were removed.  

 

 

Step 5: 

 

Model 5 <- ' 

decomprate2 ~ burns + P + no3 + nh4 + dur60 

decomprate4 ~ burns + decrate2 + soil.inc 

decomprate6 ~ C + N + no3 + nh4 + prox + decrate4 + litt.inc 

decomprate8 ~ decrate2 + decrate4 + decrate6 + litt.inc + dur60 

litt.inc ~ needle + burns + prox 

soil.inc ~ litt.inc + needle + burns 

dur60 ~ litt.inc + burns + prox 

C ~ burns + N + litt.inc + dur60 

N ~ burns + nh4 + soil.inc + dur60 

P ~ burns + C + N + litt.inc + soil.inc + dur60 

no3 ~ burns + litt.inc + dur60 

nh4 ~ burns + soil.inc 

needle ~ prox 

' 

 
lavaan 0.6-4 ended normally after 74 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                         75 
 
  Number of observations                            69 
  Number of missing patterns                        10 
 
  Estimator                                         ML 
  Model Fit Test Statistic                      65.801 
  Degrees of freedom                                55 
  P-value (Chi-square)                           0.151 
 
Model test baseline model: 
 
  Minimum Function Test Statistic              874.536 
  Degrees of freedom                               104 
  P-value                                        0.000 
 
User model versus baseline model: 
 
  Comparative Fit Index (CFI)                    0.986 
  Tucker-Lewis Index (TLI)                       0.973 
 
Loglikelihood and Information Criteria: 
 
  Loglikelihood user model (H0)               -746.934 
  Loglikelihood unrestricted model (H1)       -714.033 
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  Number of free parameters                         75 
  Akaike (AIC)                                1643.868 
  Bayesian (BIC)                              1811.426 
  Sample-size adjusted Bayesian (BIC)         1575.215 
 
Root Mean Square Error of Approximation: 
 
  RMSEA                                          0.053 
  90 Percent Confidence Interval          0.000  0.097 
  P-value RMSEA <= 0.05                          0.433 
 
Standardized Root Mean Square Residual: 
 
  SRMR                                           0.057 

 

 

Model 5 converged and was an excellent fit to the data (X2=65.801, p = 0.151*, RMSEA = 

0.053*, SRMR = 0.057*).  At this point, further model fitting stopped, as fit statistics determined 

that the model covariance matrix and residuals did not differ significantly from the full 

covariance matrix and residual errors did not differ significantly from 0. 

 

 

 

model name Converged DF X
2 
value X

2
 p-value RMSEA RMSEA 90% CI RMSEA CI p-value CFI RMR NNFI SRMR R2 < 0.2

model 1 TRUE 30 83.625 0 0.162 0.121-0.204 0 0.931 0.072 0.733 0.076 none

model 2 TRUE 42 85.112 0 0.123 0.085-0.16 0.002 0.945 0.072 0.847 0.077 none

model 3 TRUE 56 91.963 0.002 0.097 0.06-0.132 0.024 0.954 0.073 0.904 0.077 none

model 4 TRUE 60 94.598 0.003 0.092 0.054-0.126 0.036 0.956 0.073 0.914 0.077 none

model 5 TRUE 55 65.801 0.151* 0.053 0-0.097 0.433* 0.986* 0.051* 0.973* 0.057* none

Table S10: Expanded Fit Statistics for SEM Fitting. Table contains all fit statistics used for model 

fitting. Note that Chi-Square and RMSEA P-Values are significant when greater than 0.05. RMSEA 

statistics are considered optimal when less than 0.05. RMR and SRMR suggest good fit when less than 

0.1. CFI and NNFI suggest good fit when greater than 0.95. Finally, all model R squared coefficients 

should be greater than 0.2. 
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Chapter 3 - Appendix 

 

Table S1: Initial SEM model table. 

 
 

Response Variable Explanatory Variable(s) Justification

maximum surface temperature increase Ellair & Platt (2013) & Platt et al. (2016)

maximum soil temperature increase Ellair & Platt (2013) & Platt et al. (2016)

surface duration > 60˚C Ellair & Platt (2013) & Platt et al. (2016)

fire energy release fire intensity treatment intensity treatments increase fuel loads

total carbon linked through C:N ratio

fire energy release Raison 1979

fire intensity treatment Raison 1979

fire energy release Johnson and Curtis 2001

fire intensity treatment Johnson and Curtis 2001

fire energy release Bárcenas-Moreno and Bååth 2009

fire intensity treatment Bárcenas-Moreno and Bååth 2009

total carbon Taylor et al. 1989

total nitrogen Taylor et al. 1989

pine proximity Hobbie 2000

fire energy release Bárcenas-Moreno and Bååth 2009

fire intensity treatment Bárcenas-Moreno and Bååth 2009

total carbon Taylor et al. 1989

total nitrogen Taylor et al. 1989

pine proximity Hobbie 2000

mon. 2 mass loss Voříšková and Baldrian 2013

fire energy release Bárcenas-Moreno and Bååth 2009

fire intensity treatment Bárcenas-Moreno and Bååth 2009

total carbon Taylor et al. 1989

total nitrogen Taylor et al. 1989

pine proximity Hobbie 2000

mon. 2 mass loss Voříšková and Baldrian 2013

mon. 4 mass loss Voříšková and Baldrian 2013

fire energy release Bárcenas-Moreno and Bååth 2009

fire intensity treatment Bárcenas-Moreno and Bååth 2009

total carbon Taylor et al. 1989

total nitrogen Taylor et al. 1989

pine proximity Hobbie 2000

mon. 2 mass loss Voříšková and Baldrian 2013

mon. 4 mass loss Voříšková and Baldrian 2013

mon. 8 mass loss Voříšková and Baldrian 2013

month 6 percent 

mass loss

month 8 percent 

mass loss

Latent variables

Regression paths

Covariance structures

maximum surface temperature increase ~ surface duration >60°C

Fire energy release

total nitrogen

total carbon

month 2 percent 

mass loss

month 4 percent 

mass loss
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SEM model specification: 

 Data was first checked for normality and homoscedasticity of variance between variables.  

Due to some deviations from normality and heteroscedastic variance, the data was transformed 

appropriately before further analysis (see table 2).   

 After transforming the data, a latent variable construct was created to model fire severity 

using maximum litter and soil temperatures and litter duration > 60˚C (see lavaan code below). 

 

latent <- ' 

# latent variable 

severity =~ surfpeak + surfdur + soilpeak 

# regressions 

mon2loss ~ severity 

# variance structures 

surfpeak ~~ surfdur 

' 
lavaan 0.6-3 ended normally after 30 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                          9 
 
  Number of observations                           285 
 
  Estimator                                         ML 
  Model Fit Test Statistic                       0.013 
  Degrees of freedom                                 1 
  P-value (Chi-square)                           0.911 

 

 The latent variable model converged, and implied excellent fit (see model fit table at end 

of appendix).  Since the latent variable model described fire severity well, we moved forward in 

the modeling process by including other measured variables.  The first model tested was a highly 

saturated one, which contained microbial decomposition, soil nutrient, pine proximity, and fire 

severity related variables.  Antibiotics were not included in the SEM due to their weak effect in 

the LMER models and because of the difficulty in using non-ordinal factor variables in SEM. 

 

sem1 <- ' 

# latent variable 

severity =~ surfpeak + surfdur + soilpeak 

 

# regressions 

sev.code ~ severity 

totn ~ totc + severity + sev.code 

totc ~ severity + sev.code 

mon2per ~ severity + sev.code + totc + totn + pines 

mon4per ~ severity + sev.code + totc + totn + pines + mon2per 

mon6per ~ severity + sev.code + totc + totn + pines + mon2per + mon4per 

mon8per ~ severity + sev.code + totc + totn + pines + mon2per + mon4per + mon6per 

 

# variance structures 



174 
 

surfpeak ~~ surfdur 

' 
lavaan 0.6-3 ended normally after 194 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                         85 
 
                                                  Used       Total 
  Number of observations                           278         285 
 
  Estimator                                         ML 
  Model Fit Test Statistic                     344.974 
  Degrees of freedom                                34 
  P-value (Chi-square)                           0.000 

 

 This model converged, however it was not well supported by the data (MFTS = 344.974, 

P-value = 0, for more fit measures see model fit table at end of appendix).  To improve model fit, 

all model pathways with an r-squared coefficient < 0.1 were removed.  This led to the creation of 

a second model: 

 

sem2 <- ' 

# latent variable 

severity =~ surfpeak + surfdur + soilpeak 

 

# regressions 

sev.code ~ severity 

totn ~ totc + severity + sev.code 

mon2per ~ severity + sev.code + totc + totn + pines 

mon4per ~ severity + sev.code + totc + totn + pines + mon2per 

mon6per ~ severity + sev.code + totc + totn + pines + mon2per + mon4per 

mon8per ~ severity + sev.code + totc + totn + pines + mon2per + mon4per + mon6per 

 

# variance structures 

surfpeak ~~ surfdur 

' 
lavaan 0.6-2 ended normally after 110 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                         43 
 
                                                  Used       Total 
  Number of observations                           278         285 
 
  Estimator                                         ML 
  Model Fit Test Statistic                     140.452 
  Degrees of freedom                                20 
  P-value (Chi-square)                           0.000 

 

 The second model converged, and while it had a lower MFTS than the prior model, it was 

still poorly supported by the data (MFTS = 140.452, P-value = 0).  To further improve model fit, 

all relationships in the model with p-values > 0.5 were removed. 
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sem3 <- ' 

# latent variable 

severity =~ surfpeak + surfdur + soilpeak 

 

# regressions 

sev.code ~ severity 

totn ~ totc 

mon2per ~ severity + sev.code + totc + pines 

mon4per ~ severity + totn + pines + mon2per 

mon6per ~ severity + totc + pines + mon2per + mon4per 

mon8per ~ severity + sev.code + totc + totn + mon2per + mon4per + mon6per 

 

# variance structures 

surfpeak ~~ surfdur 

' 
lavaan 0.6-2 ended normally after 98 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                         35 
 
                                                  Used       Total 
  Number of observations                           278         285 
 
  Estimator                                         ML 
  Model Fit Test Statistic                     145.841 
  Degrees of freedom                                28 
  P-value (Chi-square)                           0.000 

 The third model also, converged but again was poorly supported (MFTS = 145.841, P-

value = 0).  Due to the continued presence of non-significant relationships in the model, all 

relationships with P-values > 0.2 were parsed to create a fourth model. 

 

sem4 <- ' 

# latent variable 

severity =~ surfpeak + surfdur + soilpeak 

 

# regressions 

sev.code ~ severity 

totn ~ totc 

mon2per ~ severity + totc + pines 

mon4per ~ severity + totn + mon2per 

mon6per ~ totc + pines + mon2per + mon4per 

mon8per ~ severity + sev.code + mon2per + mon4per + mon6per 

 

# variance structures 

surfpeak ~~ surfdur 

' 
lavaan 0.6-2 ended normally after 83 iterations 
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  Optimization method                           NLMINB 
  Number of free parameters                         30 
 
                                                  Used       Total 
  Number of observations                           278         285 
 
  Estimator                                         ML 
  Model Fit Test Statistic                     157.008 
  Degrees of freedom                                33 
  P-value (Chi-square)                           0.000 

 The fourth model was poorly supported (MFTS = 157.008, P-value = 0), so in a final 

attempt to improve model fit all non-significant relationships (P > 0.05) were removed. 

 

 

sem5 <- ' 

# latent variable 

severity =~ surfpeak + surfdur + soilpeak 

 

# regressions 

sev.code ~ severity 

totn ~ totc 

mon2per ~ severity + totc + pines 

mon4per ~ severity + totn + mon2per 

mon6per ~ totc + pines + mon2per + mon4per 

mon8per ~ mon2per + mon4per + mon6per 

 

# variance structures 

surfpeak ~~ surfdur 

' 
lavaan 0.6-2 ended normally after 78 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                         29 
 
                                                  Used       Total 
  Number of observations                           278         285 
 
  Estimator                                         ML 
  Model Fit Test Statistic                     150.913 
  Degrees of freedom                                34 
  P-value (Chi-square)                           0.000 

 This model converged, and was a better fit than the prior model, however it was still not 

well supported by the data (MFTS = 150.913, P-value = 0).  After running the fifth model, it was 

noticed that the severity code (“sev.code”) was not a good predictor of microbial decomposition, 

so the pathway linking the severity latent variable to sev.code was removed, and the model rerun. 

 

sem6 <- ' 

# latent variable 

severity =~ surfpeak + surfdur + soilpeak 

 

# regressions 
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totn ~ totc 

mon2per ~ severity + totc + pines 

mon4per ~ severity + totn + mon2per 

mon6per ~ totc + pines + mon2per + mon4per 

mon8per ~ mon2per + mon4per + mon6per 

 

# variance structures 

surfpeak ~~ surfdur 

' 

 

 

 
lavaan 0.6-2 ended normally after 73 iterations 
 
  Optimization method                           NLMINB 
  Number of free parameters                         26 
 
                                                  Used       Total 
  Number of observations                           278         285 
 
  Estimator                                         ML 
  Model Fit Test Statistic                      35.382 
  Degrees of freedom                                26 
  P-value (Chi-square)                           0.104 

 This final model converged, and was an excellent fit to the data (MFTS 35.382, P-value = 

0.104).  SEM fit statistics for this model were then determined (see table at end of appendix) 

according to Hooper et al. 2008.  The fit statistics described the model as an excellent fit to the 

data, so model fitting was stopped, and interpretation of the model began.  

 

Table S1: 

 

 

 

 

 

 

Model MFTS P-value DF RMSEA 90% CI RMSEA CI p-value CFI RMR NNFI SRMR R
2 

< 0.2

fire severity latent variable 0.013 0.911 1 0 - 0.064** 0.937 1** 0** 1.009** 0.001** yes

model 1 344.974 0 34 0.164-0.199 0 0.908* 0.025** 0.715 0.067 yes

model 2 140.452 0 20 0.125-0.171 0 0.926* 0.025** 0.8 0.054* yes

model 3 145.81 0 28 0.104-0.143 0 0.928* 0.025** 0.86 0.052* yes

model 4 157.008 0 33 0.098-0.135 0 0.924* 0.025** 0.876 0.053* yes

model 5 150.913 0 34 0.093-0.130 0 0.928* 0.025** 0.886 0.053* yes

final model 35.382 0.104 26 0 - 0.063** 0.774 0.993** 0.017** 0.988** 0.054* yes

** = good fit in Hooper et al. 2008

* = acceptable fit in Hooper et al. 2008
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Figure S1: Map of Wade Tract and experimental plots.  The above map shows the extent of the 

Wade Tract (black dashed line), fire severity treatment plots (see legend for treatment type), access 

roads (solid red line), and near/away from pines classifications (orange polygon = near pines, blue 

polygon = away from pines).  Note that unburned plots are not always grouped with other 

experimental units, however they are still classified near/away. 
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Chapter 4 - Appendix 

 

Appendix Tables 

 

Table 1: Apriori contrasts for fuel manipulation treatment x pine proximity effects on pine fuels. 

 
 

Table 2: Apriori contrasts for fuel manipulation treatment effects on maximum surface 

temperature increase. 

 
 

Table 3: Apriori contrasts for fuel manipulation treatment effects on log surface temperature 

duration >60°C. 

 
 

Table 4: Apriori contrasts for fuel manipulation treatment x pine proximity effects on log 

maximum soil temperature increase. 

 
 

 

 

Contrast Estimate SE d.f. T-ratio P-value

low vs. med -3.834 0.304 38 -12.609 <.0001***

low vs. high -9.457 0.304 38 -31.103 <.0001***

med vs. high -5.623 0.299 38 -18.8 <.0001***

away vs. near -0.738 0.37 38 -1.992 0.0536*

low:away vs. low:near 0 0.218 38 0 1

med:away vs. med:near -0.305 0.211 38 -1.443 0.1571

high:away vs. high:near -0.433 0.211 38 -2.045 0.0478**

*: p < 0.1, **: p < 0.05, ***: p < 0.001

Contrast Estimate SE d.f. T-ratio P-value

low vs. med -173 77.4 33 -2.239 0.032**

low vs. high -906 82.1 33 -11.035 <.0001***

med vs. high -732 78 33 -9.39 <.0001***

*: p < 0.1, **: p < 0.05, ***: p < 0.001

Contrast Estimate SE d.f. T-ratio P-value

low vs. med -0.538 0.298 32 -1.806 0.0803*

low vs. high -2.518 0.309 32 -8.147 <.0001***

med vs. high -1.98 0.298 32 -6.648 <.0001***

*: p < 0.1, **: p < 0.05, ***: p < 0.001

Contrast Estimate SE d.f. T-ratio P-value

low vs. med -0.5563 0.473 33 -1.176 0.2479

low vs. high -3.0503 0.502 33 -6.082 <.0001***

med vs. high -2.494 0.477 33 -5.232 <.0001***

away vs. near -0.5212 0.593 33 -0.88 0.3855

low:away vs. low:near 0.386 0.352 33 1.096 0.2809

med:away vs. med:near 0.0115 0.316 33 0.037 0.9711

high:away vs. high:near -0.9188 0.357 33 -2.573 0.0148**

*: p < 0.1, **: p < 0.05, ***: p < 0.001
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Table 5: Apriori contrasts for fuel manipulation treatment effects on fuel combustion. 

 
 

Table 6: Apriori contrasts for fuel manipulation treatment effects on log inorganic phosphorus. 

 
 

Table 7: Apriori contrasts for fuel manipulation treatment effects on ammonium. 

 
 

Table 8: Apriori contrasts for fuel manipulation treatment effects on soil pH. 

 
 

Table 9: Apriori contrasts for differences in germination rates between more and less pyrophilic 

plant species. 

 
 

Table 10: Apriori contrasts for biotic soil severity effects on C. americana germination rate. 

 

Contrast Estimate SE d.f. T-ratio P-value

low vs. med -0.226 0.0685 33 -3.307 0.0023**

low vs. high -0.482 0.0676 33 -7.134 <.0001***

med vs. high -0.256 0.0608 33 -4.208 0.0002**

*: p < 0.1, **: p < 0.05, ***: p < 0.001

Contrast Estimate SE d.f. T-ratio P-value

medium vs. low -0.427 0.64 38 -0.667 0.5088

high vs. medium 1.506 0.629 38 2.394 0.0217**

high vs. low 1.08 0.64 38 1.688 0.0995*

Contrast Estimate SE d.f. T-ratio P-value

medium vs. low 0.411 0.385 38 1.066 0.2931

high vs. medium 0.588 0.379 38 1.55 0.1293

high vs. low 0.999 0.385 38 2.591 0.0135**

*: p < 0.1, **: p < 0.05, ***: p < 0.001

Contrast Estimate SE d.f. T-ratio P-value

medium vs. low 0.266 0.161 38 1.655 0.1061

high vs. medium 0.626 0.158 38 3.956 0.0003***

high vs. low 0.893 0.161 38 5.548 <.0001***

*: p < 0.1, **: p < 0.05, ***: p < 0.001

Contrast Estimate SE d.f. T-ratio P-value

pyrophilic vs. 

non-pyrophilic
0.524 0.0363 952 14.43 <.001***

*: p < 0.1, **: p < 0.05, ***: p < 0.001

Contrast Estimate SE d.f. T-ratio P-value

live vs. sterile 0.12 0.0819 96 1.465 0.1463

ctr vs. low 0.0817 0.0334 96 2.442 0.0165**

ctr vs. med 0 0.0334 96 0 1

ctr vs. high 0.0383 0.0334 96 1.146 0.2546

low vs. med -0.0817 0.0334 96 -2.442 0.0165**

low vs. high -0.0433 0.0334 96 -1.296 0.1982

med vs. high 0.0383 0.0334 96 1.146 0.2546

*: p < 0.1, **: p < 0.05, ***: p < 0.001



181 
 

Table 11: Apriori contrasts for abiotic x biotic soil severity interaction effects on P. palustris 

germination rate. 

 
 

 

 

 

 

 

 

 

 

 

Contrast Estimate SE d.f. T-ratio P-value

abiotic effects

low v med -0.52 0.1929 96 -2.696 0.0083**

low v high -0.14 0.1929 96 -0.726 0.4697

med v high 0.38 0.1929 96 1.97 0.0517*

low

sterile vs. live 0.48 0.2362 96 2.032 0.0449**

ctr v low 0.06 0.0964 96 0.622 0.5353

ctr v med 0.26 0.0964 96 2.696 0.0083**

ctr v high 0.16 0.0964 96 1.659 0.1004

low v med 0.2 0.0964 96 2.074 0.0408**

low v high 0.1 0.0964 96 1.037 0.3024

med v high -0.1 0.0964 96 -1.037 0.3024

reference

sterile vs. live -0.6 0.2362 96 -2.54 0.0127**

ctr v low -0.26 0.0964 96 -2.696 0.0083**

ctr v med -0.14 0.0964 96 -1.452 0.1498

ctr v high -0.2 0.0964 96 -2.074 0.0408**

low v med 0.12 0.0964 96 1.244 0.2164

low v high 0.06 0.0964 96 0.622 0.5353

med v high -0.06 0.0964 96 -0.622 0.5353

high

sterile vs. live -0.06 0.2362 96 -0.254 0.8

ctr v low -0.04 0.0964 96 -0.415 0.6792

ctr v med -0.08 0.0964 96 -0.83 0.4088

ctr v high 0.06 0.0964 96 0.622 0.5353

low v med -0.04 0.0964 96 -0.415 0.6792

low v high 0.1 0.0964 96 1.037 0.3024

med v high 0.14 0.0964 96 1.452 0.1498
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Table 12: Apriori contrasts for abiotic severity treatment x soil type and biotic severity treatment 

x soil type interaction effects on P. graminifolia germination rate. 

 
 

 

Table 13: Apriori contrasts for abiotic soil severity treatment x soil type interaction effects on S. 

secundum germination rate. 

 
 

 

 

 

 

 

 

 

 

Contrast Estimate SE d.f. T-ratio P-value

abiotic x pines

near: l vs m -0.025 0.0239 96 -1.047 0.2976

near: l vs h 0.0575 0.0239 96 2.409 0.0179**

near: m vs h 0.0825 0.0239 96 3.456 0.0008***

away: l vs m 0.0325 0.0239 96 1.362 0.1765

away: l vs h -0.0325 0.0239 96 -1.362 0.1765

away: m vs h -0.065 0.0239 96 -2.723 0.0077**

biotic x pines

near: ctr vs l 0.00333 0.0276 96 0.121 0.904

near: ctr vs m 0.05 0.0276 96 1.814 0.0728

near: ctr vs h 0.08667 0.0276 96 3.144 0.0022**

near: l vs m 0.04667 0.0276 96 1.693 0.0937

near: l vs h 0.08333 0.0276 96 3.023 0.0032**

near: m vs h 0.03667 0.0276 96 1.33 0.1866

away: ctr vs l -0.03667 0.0276 96 -1.33 0.1866

away: ctr vs m -0.05667 0.0276 96 -2.056 0.0425**

away: ctr vs h -0.02333 0.0276 96 -0.847 0.3994

away: l vs m -0.02 0.0276 96 -0.726 0.4698

away: l vs h 0.01333 0.0276 96 0.484 0.6297

away: m vs h 0.03333 0.0276 96 1.209 0.2295

Contrast Estimate SE d.f. T-ratio P-value

near: low vs. med 0.0075 0.0396 96 0.189 0.8504

near: low vs. high 0.0125 0.0396 96 0.315 0.7532

near: med vs. high 0.005 0.0396 96 0.126 0.8999

away: low vs. med -0.085 0.0396 96 -2.144 0.0346*

away: low vs high -0.1425 0.0396 96 -3.594 0.0005***

away: med vs high -0.0575 0.0396 96 -1.45 0.1502
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Table 14: Apriori contrasts for abiotic soil severity treatment and abiotic soil severity treatment 

x soil type interaction effects on C. americana plant biomass. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contrast Estimate SE d.f. T-ratio P-value

abiotic treatment

low vs med -1.59 0.624 96 -2.55 0.0124**

low vs high 1.452 0.624 96 2.328 0.022**

med vs high 3.042 0.624 96 4.878 <.0001***

abiotic x pines

near: low vs med -1.776 0.441 96 -4.028 0.0001***

near: low vs high 0.914 0.441 96 2.073 0.0409**

near: med vs high 2.69 0.441 96 6.101 <.0001***

away: low vs med 0.186 0.441 96 0.422 0.6741

away: low vs high 0.538 0.441 96 1.22 0.2254

away: med vs high 0.352 0.441 96 0.798 0.4267
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Table 15: Apriori contrasts for biotic soil severity treatment, biotic soil severity x soil type, and 

abiotic soil severity x soil type interaction effects on P. graminifolia biomass. 

 
 

 

 

 

 

 

 

 

 

Contrast Estimate SE d.f. T-ratio P-value

biotic treatment

bio: ctr vs live -1.0706 1.734 96 -0.618 0.5384

bio: ctr vs low -1.34 0.708 96 -1.893 0.0613*

bio: ctr vs med -0.4446 0.708 96 -0.628 0.5314

bio: ctr vs high 0.714 0.708 96 1.009 0.3156

bio: low vs med 0.8954 0.708 96 1.265 0.2089

bio: low vs high 2.054 0.708 96 2.902 0.0046**

bio: med vs high 1.1586 0.708 96 1.637 0.1049

biotic x pines

near: ctr vs live 1.436 1.226 96 -1.171 0.2444

near: ctr vs low -0.45 0.5 96 -0.899 0.3708

near: ctr vs med 0.368 0.5 96 0.735 0.464

near: ctr vs high 1.518 0.5 96 3.033 0.0031**

near: low vs med 0.818 0.5 96 1.634 0.1054

near: low vs high 1.968 0.5 96 3.932 0.0002***

near: med vs high 1.15 0.5 96 2.298 0.0237**

away: ctr vs live -2.5066 1.226 96 2.045 0.0436**

away: ctr vs low -0.89 0.5 96 -1.778 0.0785*

away: ctr vs med -0.8126 0.5 96 -1.624 0.1077

away: ctr vs high -0.804 0.5 96 -1.606 0.1115

away: low vs med 0.0774 0.5 96 0.155 0.8774

away: low vs high 0.086 0.5 96 0.172 0.8639

away: med vs high 0.0086 0.5 96 0.017 0.9863

abiotic x pines

near: low vs med -0.444 0.578 96 -0.768 0.4442

near: low vs high 1.636 0.578 96 2.831 0.0057**

near: med vs high 2.08 0.578 96 3.599 0.0005***

away: low vs med 1.32 0.578 96 2.284 0.0246**

away: low vs high -0.5306 0.578 96 -0.918 0.3608

away: med vs high -1.8506 0.578 96 -3.202 0.0019**
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Table 16: Apriori contrasts for abiotic soil severity treatment, biotic soil severity treatment, and 

abiotic soil severity treatment x soil type interaction effects on S. secundum biomass. 

 
 

Table 17: Arbuscular mycorrhizal fungi colonization data for chapter 4. 

Number Species Function Miss Hit Arbuscule Vesicle Coil 

178 Rhus sp. shrub           

180 Rhus sp. shrub           

233 Rhus sp. shrub           

64 C. americana shrub 0 20 3 4 0 

206 Rhus sp. shrub           

230 Rhus sp. shrub 6 14 7 5 0 

21 C. americana shrub 0 20 3 4 1 

214 Rhus sp. shrub 3 17 12 1 0 

127 Rhus sp. shrub           

104 C. americana shrub 0 20 16 4 0 

168 Rhus sp. shrub           

207 Rhus sp. shrub           

62 C. americana shrub 0 20 15 6 0 

50 C. americana shrub 0 20 9 0 1 

95 C. americana shrub 0 20 10 5 0 

134 Rhus sp. shrub           

73 C. americana shrub 4 16 12 1 0 

Contrast Estimate SE d.f. T-ratio P-value

abiotic treatment

low vs. medium -2.242 0.929 96 -2.413 0.0177**

low vs. high 2.628 0.929 96 2.829 0.0057**

medium vs. high 4.87 0.929 96 5.242 <.0001***

abiotic x pines

near: low vs. med 0.4 0.657 96 0.609 0.5441

near: low vs. high 1.54 0.657 96 2.344 0.0211**

near: med vs. high 1.14 0.657 96 1.735 0.0859*

away: low vs. med -2.642 0.657 96 -4.022 0.0001***

away: low vs high 1.088 0.657 96 1.656 0.101

away: med vs high 3.73 0.657 96 5.678 <.0001***

biotic treatment

 ctr vs live -6.058 1.971 96 -3.074 0.0028**

 ctr vs low -1.598 0.805 96 -1.986 0.0499**

 ctr vs med -1.71 0.805 96 -2.125 0.0361**

 ctr vs high -2.75 0.805 96 -3.418 0.0009***

 low vs med -0.112 0.805 96 -0.139 0.8896

 low vs high -1.152 0.805 96 -1.432 0.1555

 med vs high -1.04 0.805 96 -1.293 0.1993
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220 Rhus sp. shrub           

5 C. americana shrub 1 19 6 2 1 

66 C. americana shrub 0 20 14 2 0 

57 C. americana shrub 0 20 4 6 2 

6 C. americana shrub 0 20 3 10 0 

9 C. americana shrub 0 20 21 2 0 

167 Rhus sp. shrub           

101 C. americana shrub 0 20 11 3 0 

132 Rhus sp. shrub 11 9 9 3 0 

48 C. americana shrub 0 20 11 10 0 

14 C. americana shrub 3 17 16 0 0 

193 Rhus sp. shrub           

86 C. americana shrub 0 20 11 4 1 

17 C. americana shrub 2 18 13 3 0 

75 C. americana shrub 0 20 24 2 0 

82 C. americana shrub 0 20 18 11 0 

237 Rhus sp. shrub           

221 Rhus sp. shrub           

154 Rhus sp. shrub           

124 Rhus sp. shrub 2 18 9 2 0 

7 C. americana shrub           

52 C. americana shrub 0 20 12 10 1 

199 Rhus sp. shrub           

147 Rhus sp. shrub 0 20 5 4 0 

161 Rhus sp. shrub           

27 C. americana shrub 1 19 14 4 0 

171 Rhus sp. shrub           

201 Rhus sp. shrub           

18 C. americana shrub 2 18 11 2 3 

139 Rhus sp. shrub           

85 C. americana shrub 1 19 20 0 0 

158 Rhus sp. shrub           

42 C. americana shrub 0 20 10 8 3 

43 C. americana shrub 0 20 7 7 0 

166 Rhus sp. shrub 7 13 7 2 0 

218 Rhus sp. shrub           

223 Rhus sp. shrub 3 17 6 9 0 

126 Rhus sp. shrub           

25 C. americana shrub 2 18 14 2 0 

80 C. americana shrub 0 20 10 11 2 

212 Rhus sp. shrub 14 6 3 1 0 

68 C. americana shrub 0 20 16 0 0 

58 C. americana shrub 2 18 13 17 0 

22 C. americana shrub 0 20 11 12 0 

190 Rhus sp. shrub 12 8 2 1 0 
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92 C. americana shrub           

117 C. americana shrub 0 20 19 4 0 

74 C. americana shrub 0 20 14 4 0 

164 Rhus sp. shrub 4 16 6 8 0 

163 Rhus sp. shrub           

179 Rhus sp. shrub           

234 Rhus sp. shrub 4 16 15 5 0 

219 Rhus sp. shrub           

184 Rhus sp. shrub           

70 C. americana shrub 0 20 13 2 0 

111 C. americana shrub 0 20 14 5 0 

90 C. americana shrub 0 20 9 3 0 

175 Rhus sp. shrub           

13 C. americana shrub 1 19 11 7 0 

182 Rhus sp. shrub           

236 Rhus sp. shrub 7 13 4 2 0 

112 C. americana shrub 0 20 15 8 0 

34 C. americana shrub 0 20 13 3 0 

186 Rhus sp. shrub           

129 Rhus sp. shrub           

118 C. americana shrub 0 20 18 5 0 

145 Rhus sp. shrub           

183 Rhus sp. shrub           

150 Rhus sp. shrub           

1 C. americana shrub 3 17 5 4 0 

225 Rhus sp. shrub           

191 Rhus sp. shrub           

177 Rhus sp. shrub 3 17 13 1 0 

203 Rhus sp. shrub 1 19 16 5 0 

94 C. americana shrub 2 18 19 3 0 

192 Rhus sp. shrub           

217 Rhus sp. shrub           

71 C. americana shrub 0 20 5 4 0 

224 Rhus sp. shrub           

93 C. americana shrub 1 19 14 8 2 

174 Rhus sp. shrub           

131 Rhus sp. shrub 4 16 8 7 2 

173 Rhus sp. shrub 5 15 4 1 0 

98 C. americana shrub 0 20 9 2 0 

202 Rhus sp. shrub           

87 C. americana shrub 6 14 5 1 0 

128 Rhus sp. shrub           

138 Rhus sp. shrub           

185 Rhus sp. shrub           

176 Rhus sp. shrub           
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156 Rhus sp. shrub           

222 Rhus sp. shrub           

31 C. americana shrub 2 18 10 1 0 

10 C. americana shrub 0 20 7 5 0 

169 Rhus sp. shrub           

210 Rhus sp. shrub 5 15 14 3 0 

89 C. americana shrub 0 20 9 2 0 

41 C. americana shrub 1 19 15 1 0 

148 Rhus sp. shrub 2 18 16 1 0 

196 Rhus sp. shrub           

113 C. americana shrub 0 20 16 6 1 

195 Rhus sp. shrub           

19 C. americana shrub 2 18 14 9 0 

197 Rhus sp. shrub           

123 Rhus sp. shrub 0 20 10 15 1 

162 Rhus sp. shrub 1 19 5 3 0 

88 C. americana shrub 0 20 12 2 0 

49 C. americana shrub 1 19 6 4 1 

45 C. americana shrub 0 20 14 8 0 

38 C. americana shrub 0 20 13 3 1 

103 C. americana shrub 0 20 16 9 6 

78 C. americana shrub 0 20 17 2 0 

24 C. americana shrub 0 20 12 11 0 

211 Rhus sp. shrub           

32 C. americana shrub 2 18 17 2 0 

151 Rhus sp. shrub           

181 Rhus sp. shrub           

227 Rhus sp. shrub           

157 Rhus sp. shrub           

76 C. americana shrub 1 19 16 5 1 

67 C. americana shrub 2 18 5 5 0 

116 C. americana shrub 2 18 6 8 1 

84 C. americana shrub 1 19 11 6 2 

142 Rhus sp. shrub 2 18 12 9 0 

72 C. americana shrub 2 18 13 8 0 

20 C. americana shrub 3 17 7 3 1 

33 C. americana shrub 0 20 10 7 0 

140 Rhus sp. shrub 3 17 1 6 0 

200 Rhus sp. shrub           

81 C. americana shrub 0 20 13 14 2 

2 C. americana shrub 0 20 16 5 0 

53 C. americana shrub 1 19 18 3 1 

102 C. americana shrub 1 19 13 4 0 

106 C. americana shrub 5 15 7 10 0 

209 Rhus sp. shrub           
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39 C. americana shrub 0 20 23 6 1 

56 C. americana shrub 2 18 8 2 0 

4 C. americana shrub 4 16 2 8 0 

59 C. americana shrub 1 19 9 11 0 

122 Rhus sp. shrub 9 11 3 2 0 

159 Rhus sp. shrub 8 12 2 6 0 

187 Rhus sp. shrub           

231 Rhus sp. shrub 14 6 4 0 0 

60 C. americana shrub 2 18 14 5 0 

240 Rhus sp. shrub 1 19 7 8 0 

120 C. americana shrub 0 20 9 2 0 

54 C. americana shrub 4 16 13 3 0 

23 C. americana shrub 0 20 20 7 1 

16 C. americana shrub 0 20 12 7 0 

110 C. americana shrub 0 20 14 4 0 

146 Rhus sp. shrub           

37 C. americana shrub           

30 C. americana shrub 0 20 8 3 0 

79 C. americana shrub 0 20 11 5 0 

29 C. americana shrub 0 20 17 4 0 

28 C. americana shrub 0 20 12 4 1 

119 C. americana shrub 0 20 12 1 1 

213 Rhus sp. shrub           

194 Rhus sp. shrub 1 19 4 6 0 

26 C. americana shrub 2 18 11 3 2 

198 Rhus sp. shrub 8 12 3 1 0 

160 Rhus sp. shrub 3 17 5 6 0 

152 Rhus sp. shrub           

107 C. americana shrub           

130 Rhus sp. shrub 2 18 12 4 0 

115 C. americana shrub 0 20 10 10 0 

189 Rhus sp. shrub           

61 C. americana shrub 0 20 20 4 0 

165 Rhus sp. shrub 3 17 10 3 0 

133 Rhus sp. shrub           

144 Rhus sp. shrub 0 20 12 6 0 

65 C. americana shrub 2 18 6 10 1 

100 C. americana shrub 0 20 14 5 0 

155 Rhus sp. shrub           

136 Rhus sp. shrub           

141 Rhus sp. shrub 3 17 14 4 0 

108 C. americana shrub 2 18 6 3 1 

188 Rhus sp. shrub           

96 C. americana shrub 0 20 23 5 2 

36 C. americana shrub 0 20 18 5 1 
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69 C. americana shrub 0 20 13 4 1 

97 C. americana shrub 0 20 11 10 2 

215 Rhus sp. shrub           

170 Rhus sp. shrub           

35 C. americana shrub 0 20 7 5 0 

143 Rhus sp. shrub           

77 C. americana shrub           

205 Rhus sp. shrub           

15 C. americana shrub 0 20 6 1 0 

114 C. americana shrub 1 19 16 2 0 

229 Rhus sp. shrub 7 13 9 1 0 

109 C. americana shrub 6 14 10 1 0 

55 C. americana shrub 1 19 21 5 1 

232 Rhus sp. shrub           

83 C. americana shrub 0 20 8 8 3 

12 C. americana shrub 1 19 12 8 1 

125 Rhus sp. shrub           

63 C. americana shrub 1 19 18 4 1 

208 Rhus sp. shrub           

228 Rhus sp. shrub 9 11 5 1 0 

172 Rhus sp. shrub           

105 C. americana shrub 0 20 15 9 0 

47 C. americana shrub 0 20 18 4 0 

238 Rhus sp. shrub           

8 C. americana shrub 2 18 12 7 0 

153 Rhus sp. shrub 0 20 10 3 1 

216 Rhus sp. shrub 0 20 10 4 2 

235 Rhus sp. shrub           

91 C. americana shrub 0 20 12 13 2 

239 Rhus sp. shrub           

226 Rhus sp. shrub           

204 Rhus sp. shrub           

135 Rhus sp. shrub           

40 C. americana shrub 0 20 18 4 2 

121 Rhus sp. shrub 4 16 10 7 0 

3 C. americana shrub 0 20 10 5 0 

149 Rhus sp. shrub 2 18 8 8 0 

44 C. americana shrub 2 18 10 1 1 

51 C. americana shrub 2 18 7 10 1 

99 C. americana shrub 0 20 19 5 1 

137 Rhus sp. shrub           

46 C. americana shrub 2 18 16 3 2 

11 C. americana shrub 1 19 11 3 1 

393 S. nutans grass           

266 S. secundum grass 6 14 7 1 0 
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282 S. secundum grass 14 6 0 0 0 

463 S. nutans grass           

265 S. secundum grass 4 16 11 3 0 

346 S. secundum grass 12 8 4 0 0 

284 S. secundum grass           

434 S. nutans grass           

316 S. secundum grass 9 11 3 0 0 

300 S. secundum grass 8 12 8 1 1 

375 S. nutans grass           

365 S. nutans grass           

326 S. secundum grass 1 19 6 2 2 

352 S. secundum grass 7 13 10 0 2 

283 S. secundum grass 11 9 7 2 0 

255 S. secundum grass           

415 S. nutans grass           

412 S. nutans grass           

384 S. nutans grass           

423 S. nutans grass 8 12 1 0 0 

438 S. nutans grass           

400 S. nutans grass           

405 S. nutans grass           

409 S. nutans grass           

345 S. secundum grass 12 8 4 2 0 

468 S. nutans grass 3 17 17 1 0 

337 S. secundum grass 2 18 15 3 0 

342 S. secundum grass 14 6 4 0 0 

444 S. nutans grass           

385 S. nutans grass           

359 S. secundum grass 9 11 5 1 0 

280 S. secundum grass 5 15 4 1 2 

397 S. nutans grass           

272 S. secundum grass 6 14 5 2 0 

462 S. nutans grass           

360 S. secundum grass 10 10 8 1 0 

248 S. secundum grass 12 8 3 1 0 

257 S. secundum grass 16 4 0 0 0 

436 S. nutans grass           

407 S. nutans grass           

418 S. nutans grass           

376 S. nutans grass           

301 S. secundum grass 11 9 4 0 0 

420 S. nutans grass           

358 S. secundum grass 15 5 3 0 0 

250 S. secundum grass           

432 S. nutans grass           
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254 S. secundum grass 9 11 5 1 0 

348 S. secundum grass 10 10 3 1 1 

275 S. secundum grass 6 14 14 1 0 

338 S. secundum grass 7 13 2 2 0 

390 S. nutans grass           

267 S. secundum grass 7 13 11 1 0 

336 S. secundum grass 6 14 7 3 1 

480 S. nutans grass           

363 S. nutans grass           

330 S. secundum grass 6 14 4 1 0 

477 S. nutans grass           

268 S. secundum grass 14 6 1 1 0 

404 S. nutans grass 10 10 1 1 0 

386 S. nutans grass           

333 S. secundum grass 14 6 1 1 0 

295 S. secundum grass           

335 S. secundum grass 7 13 6 4 0 

429 S. nutans grass           

322 S. secundum grass 7 13 10 1 0 

399 S. nutans grass           

454 S. nutans grass           

364 S. nutans grass           

357 S. secundum grass 5 15 7 3 1 

293 S. secundum grass 0 20 15 0 0 

356 S. secundum grass 8 12 9 1 0 

378 S. nutans grass           

421 S. nutans grass           

311 S. secundum grass 4 16 5 1 1 

461 S. nutans grass           

410 S. nutans grass           

302 S. secundum grass 10 10 3 1 0 

245 S. secundum grass 9 11 1 1 0 

403 S. nutans grass           

473 S. nutans grass 11 9 3 0 0 

288 S. secundum grass           

374 S. nutans grass           

321 S. secundum grass 9 11 3 0 1 

472 S. nutans grass           

290 S. secundum grass 2 18 7 0 0 

362 S. nutans grass           

424 S. nutans grass           

285 S. secundum grass 0 20 3 1 0 

247 S. secundum grass           

433 S. nutans grass           

391 S. nutans grass           
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244 S. secundum grass 3 17 8 2 0 

320 S. secundum grass 4 16 10 3 0 

243 S. secundum grass           

329 S. secundum grass 11 9 4 0 1 

269 S. secundum grass 5 15 9 4 0 

367 S. nutans grass           

297 S. secundum grass 5 15 2 2 0 

445 S. nutans grass           

349 S. secundum grass 5 15 10 2 0 

474 S. nutans grass           

453 S. nutans grass           

327 S. secundum grass 5 15 22 2 0 

307 S. secundum grass 15 5 1 1 1 

402 S. nutans grass           

340 S. secundum grass 1 19 8 3 1 

377 S. nutans grass           

467 S. nutans grass           

439 S. nutans grass 3 17 3 2 0 

289 S. secundum grass 4 16 10 0 1 

323 S. secundum grass 3 17 15 1 1 

372 S. nutans grass           

478 S. nutans grass           

366 S. nutans grass           

331 S. secundum grass 2 18 11 1 1 

317 S. secundum grass 11 9 3 0 0 

313 S. secundum grass 7 7 5 0 0 

371 S. nutans grass           

303 S. secundum grass 9 11 8 0 0 

383 S. nutans grass           

296 S. secundum grass 4 16 1 0 0 

262 S. secundum grass 7 13 6 3 0 

394 S. nutans grass           

455 S. nutans grass           

310 S. secundum grass 8 12 4 1 0 

281 S. secundum grass           

343 S. secundum grass           

464 S. nutans grass           

370 S. nutans grass           

251 S. secundum grass 12 8 5 4 2 

419 S. nutans grass           

450 S. nutans grass 4 16 9 0 0 

279 S. secundum grass           

465 S. nutans grass           

287 S. secundum grass 2 18 8 3 0 

430 S. nutans grass           
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422 S. nutans grass           

315 S. secundum grass 6 14 8 2 0 

286 S. secundum grass 0 20 8 1 0 

440 S. nutans grass           

264 S. secundum grass 7 13 7 1 0 

426 S. nutans grass           

425 S. nutans grass           

460 S. nutans grass           

249 S. secundum grass 11 9 6 0 1 

273 S. secundum grass 13 7 6 0 0 

373 S. nutans grass           

319 S. secundum grass 4 16 13 1 1 

475 S. nutans grass           

270 S. secundum grass 4 16 4 6 0 

392 S. nutans grass           

459 S. nutans grass           

291 S. secundum grass           

442 S. nutans grass           

344 S. secundum grass 10 10 7 0 0 

354 S. secundum grass 12 8 2 2 0 

387 S. nutans grass           

458 S. nutans grass           

242 S. secundum grass           

298 S. secundum grass 7 13 5 1 0 

369 S. nutans grass           

308 S. secundum grass 10 10 7 0 0 

446 S. nutans grass           

379 S. nutans grass 9 11 0 1 0 

241 S. secundum grass 11 9 1 0 0 

334 S. secundum grass           

398 S. nutans grass           

256 S. secundum grass 11 9 2 0 0 

325 S. secundum grass 10 10 2 0 0 

414 S. nutans grass           

469 S. nutans grass           

260 S. secundum grass 5 15 7 1 0 

246 S. secundum grass 14 6 3 0 0 

261 S. secundum grass 4 16 13 1 0 

259 S. secundum grass 11 9 7 0 1 

411 S. nutans grass           

437 S. nutans grass           

292 S. secundum grass 3 17 10 4 0 

341 S. secundum grass 11 9 14 2 0 

294 S. secundum grass           

435 S. nutans grass           
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304 S. secundum grass 3 17 5 3 0 

448 S. nutans grass           

382 S. nutans grass           

328 S. secundum grass 7 13 8 3 0 

353 S. secundum grass 6 14 8 0 0 

427 S. nutans grass 6 14 4 0 1 

456 S. nutans grass           

351 S. secundum grass 7 13 7 2 0 

457 S. nutans grass           

355 S. secundum grass 13 7 4 0 0 

449 S. nutans grass           

441 S. nutans grass           

451 S. nutans grass           

396 S. nutans grass           

274 S. secundum grass 9 11 1 1 0 

476 S. nutans grass           

452 S. nutans grass           

380 S. nutans grass           

350 S. secundum grass 9 11 14 0 0 

413 S. nutans grass           

278 S. secundum grass 10 10 2 4 0 

389 S. nutans grass           

401 S. nutans grass           

431 S. nutans grass           

263 S. secundum grass 3 17 10 1 0 

417 S. nutans grass 8 12 6 0 0 

332 S. secundum grass 7 13 12 0 0 

299 S. secundum grass 5 15 9 3 2 

277 S. secundum grass 5 15 10 2 1 

381 S. nutans grass           

339 S. secundum grass 3 17 17 6 0 

305 S. secundum grass 9 11 7 1 0 

395 S. nutans grass           

388 S. nutans grass           

253 S. secundum grass 11 9 6 1 0 

318 S. secundum grass 5 15 8 3 0 

470 S. nutans grass 3 17 14 2 0 

258 S. secundum grass 8 12 3 0 0 

276 S. secundum grass 9 11 8 4 0 

479 S. nutans grass           

309 S. secundum grass 6 14 7 1 0 

271 S. secundum grass 10 10 9 0 0 

312 S. secundum grass 13 7 5 0 0 

443 S. nutans grass           

324 S. secundum grass 3 17 4 0 0 
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306 S. secundum grass 3 17 12 3 0 

447 S. nutans grass           

428 S. nutans grass           

466 S. nutans grass           

314 S. secundum grass 3 17 10 0 0 

471 S. nutans grass           

347 S. secundum grass           

406 S. nutans grass           

408 S. nutans grass           

252 S. secundum grass           

416 S. nutans grass           

368 S. nutans grass           

361 S. nutans grass           

942 pityopsis forb           

863 pityopsis forb           

1026 Bidens bipinata forb 2 18 6 1 0 

878 pityopsis forb 0 20 6 2 0 

967 Bidens bipinata forb 4 16 2 4 1 

963 Bidens bipinata forb 11 9 4 1 1 

955 pityopsis forb           

1030 Bidens bipinata forb 8 12 3 5 0 

1034 Bidens bipinata forb           

1025 Bidens bipinata forb           

949 pityopsis forb           

968 Bidens bipinata forb 10 10 1 0 1 

973 Bidens bipinata forb 1 19 6 0 0 

1048 Bidens bipinata forb 1 19 7 1 2 

982 Bidens bipinata forb 9 11 5 0 0 

846 pityopsis forb 0 20 2 10 1 

958 pityopsis forb 2 18 10 8 0 

1004 Bidens bipinata forb 9 11 4 0 0 

953 pityopsis forb 9 11 7 0 0 

932 pityopsis forb 0 20 7 9 0 

872 pityopsis forb           

844 pityopsis forb 0 20 5 1 0 

1053 Bidens bipinata forb 3 17 3 1 2 

919 pityopsis forb           

943 pityopsis forb           

864 pityopsis forb           

852 pityopsis forb 2 18 8 3 1 

977 Bidens bipinata forb           

861 pityopsis forb           

1005 Bidens bipinata forb 8 12 2 0 0 

1055 Bidens bipinata forb 12 8 8 0 0 

901 pityopsis forb 0 20 7 2 0 
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969 Bidens bipinata forb 0 20 11 3 0 

841 pityopsis forb 0 20 7 3 0 

941 pityopsis forb 8 12 6 3 3 

1008 Bidens bipinata forb 1 19 3 5 0 

882 pityopsis forb 9 11 3 2 1 

929 pityopsis forb 3 17 0 2 1 

1022 Bidens bipinata forb           

1056 Bidens bipinata forb 3 17 9 1 0 

885 pityopsis forb 1 19 2 18 0 

1040 Bidens bipinata forb 5 15 8 1 0 

858 pityopsis forb 5 15 2 2 0 

948 pityopsis forb 7 13 3 0 0 

961 Bidens bipinata forb 7 13 3 3 6 

915 pityopsis forb           

1052 Bidens bipinata forb           

1073 Bidens bipinata forb           

847 pityopsis forb 3 17 8 4 2 

1023 Bidens bipinata forb 5 15 3 0 0 

1019 Bidens bipinata forb           

918 pityopsis forb 1 19 6 2 2 

853 pityopsis forb           

860 pityopsis forb           

854 pityopsis forb 1 19 4 3 2 

924 pityopsis forb           

867 pityopsis forb 1 19 4 0 2 

908 pityopsis forb 1 19 5 6 1 

1029 Bidens bipinata forb 17 3 0 0 0 

1020 Bidens bipinata forb 3 17 3 1 6 

894 pityopsis forb 1 19 9 1 1 

1079 Bidens bipinata forb           

913 pityopsis forb 8 12 1 1 0 

1039 Bidens bipinata forb 2 18 14 2 2 

922 pityopsis forb 0 20 8 11 0 

971 Bidens bipinata forb           

1064 Bidens bipinata forb 0 20 6 2 0 

923 pityopsis forb 0 20 2 22 1 

1069 Bidens bipinata forb           

946 pityopsis forb           

904 pityopsis forb 2 18 7 1 0 

933 pityopsis forb 0 20 1 15 1 

892 pityopsis forb 1 19 5 7 0 

1046 Bidens bipinata forb 4 16 1 1 0 

964 Bidens bipinata forb 0 20 5 1 0 

927 pityopsis forb 0 20 5 6 1 

1047 Bidens bipinata forb 2 18 5 2 0 
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1061 Bidens bipinata forb 12 8 5 0 1 

956 pityopsis forb           

1045 Bidens bipinata forb           

876 pityopsis forb           

990 Bidens bipinata forb 11 9 1 2 1 

870 pityopsis forb 4 16 2 2 2 

1063 Bidens bipinata forb           

1017 Bidens bipinata forb 10 10 1 0 1 

1068 Bidens bipinata forb 13 7 3 0 3 

875 pityopsis forb 1 19 2 0 1 

940 pityopsis forb           

950 pityopsis forb           

965 Bidens bipinata forb 13 7 2 1 0 

1003 Bidens bipinata forb 1 19 5 2 0 

905 pityopsis forb           

972 Bidens bipinata forb 1 19 5 0 0 

881 pityopsis forb 3 17 4 4 0 

897 pityopsis forb 6 14 2 0 1 

1016 Bidens bipinata forb 12 8 2 0 0 

993 Bidens bipinata forb           

1044 Bidens bipinata forb 3 17 5 0 2 

1000 Bidens bipinata forb           

868 pityopsis forb           

856 pityopsis forb 0 20 3 4 1 

1009 Bidens bipinata forb           

898 pityopsis forb 3 17 4 1 0 

981 Bidens bipinata forb           

1062 Bidens bipinata forb           

891 pityopsis forb 2 18 1 11 1 

997 Bidens bipinata forb 3 17 6 0 1 

1032 Bidens bipinata forb 7 13 6 2 0 

1077 Bidens bipinata forb           

978 Bidens bipinata forb 12 8 5 0 0 

1015 Bidens bipinata forb           

954 pityopsis forb           

842 pityopsis forb 3 17 5 3 0 

1042 Bidens bipinata forb 1 19 3 1 0 

1014 Bidens bipinata forb 1 19 15 9 1 

914 pityopsis forb 3 17 7 2 0 

979 Bidens bipinata forb 1 19 0 1 1 

1074 Bidens bipinata forb 8 12 3 0 0 

970 Bidens bipinata forb 1 19 7 0 2 

906 pityopsis forb 1 19 15 2 0 

928 pityopsis forb 1 19 6 4 1 

1070 Bidens bipinata forb 0 20 5 4 4 
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895 pityopsis forb 0 20 4 4 0 

999 Bidens bipinata forb 2 18 3 0 1 

1066 Bidens bipinata forb 0 20 11 0 5 

890 pityopsis forb 1 19 6 1 0 

959 pityopsis forb           

986 Bidens bipinata forb 7 13 5 1 0 

980 Bidens bipinata forb 12 8 1 0 0 

947 pityopsis forb           

910 pityopsis forb 0 20 8 4 2 

1071 Bidens bipinata forb 3 17 3 1 0 

874 pityopsis forb           

1041 Bidens bipinata forb 2 18 6 2 2 

884 pityopsis forb 2 18 6 0 2 

886 pityopsis forb 2 18 1 6 0 

902 pityopsis forb           

998 Bidens bipinata forb 6 14 5 2 1 

945 pityopsis forb 2 18 6 0 0 

912 pityopsis forb 0 20 5 9 3 

992 Bidens bipinata forb 1 19 5 10 5 

944 pityopsis forb 0 20 5 2 1 

985 Bidens bipinata forb 12 8 2 1 0 

862 pityopsis forb           

866 pityopsis forb 2 18 6 1 0 

966 Bidens bipinata forb 8 12 1 1 0 

848 pityopsis forb 1 19 3 17 0 

865 pityopsis forb           

930 pityopsis forb 0 20 3 9 0 

991 Bidens bipinata forb           

1038 Bidens bipinata forb           

1059 Bidens bipinata forb           

1067 Bidens bipinata forb 10 10 6 0 0 

1037 Bidens bipinata forb 1 19 7 3 0 

843 pityopsis forb 0 20 3 1 1 

1001 Bidens bipinata forb 4 16 5 0 0 

859 pityopsis forb 0 20 2 18 2 

1006 Bidens bipinata forb 12 8 3 0 1 

926 pityopsis forb 0 20 3 6 0 

935 pityopsis forb           

988 Bidens bipinata forb 12 8 3 0 0 

1078 Bidens bipinata forb           

989 Bidens bipinata forb 7 13 4 0 2 

976 Bidens bipinata forb           

937 pityopsis forb           

925 pityopsis forb 1 19 6 4 5 

1080 Bidens bipinata forb           
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1021 Bidens bipinata forb 14 6 3 2 0 

888 pityopsis forb 3 17 6 3 4 

931 pityopsis forb 0 20 0 0 0 

936 pityopsis forb 0 20 5 2 1 

920 pityopsis forb           

850 pityopsis forb           

1051 Bidens bipinata forb 0 20 6 3 0 

871 pityopsis forb           

1075 Bidens bipinata forb 4 16 7 2 0 

938 pityopsis forb           

1031 Bidens bipinata forb 13 7 1 1 0 

907 pityopsis forb 3 17 7 2 3 

1054 Bidens bipinata forb 14 6 1 0 1 

1002 Bidens bipinata forb 11 9 8 0 0 

939 pityopsis forb           

857 pityopsis forb 1 19 4 1 1 

1065 Bidens bipinata forb 6 14 11 1 1 

1058 Bidens bipinata forb 6 14 16 1 2 

880 pityopsis forb 3 17 5 7 2 

851 pityopsis forb 0 20 7 7 0 

903 pityopsis forb 2 18 5 0 2 

1057 Bidens bipinata forb 6 14 10 1 0 

1049 Bidens bipinata forb 0 20 6 1 0 

899 pityopsis forb 6 14 6 2 1 

1012 Bidens bipinata forb 3 17 7 1 1 

909 pityopsis forb 2 18 11 5 4 

893 pityopsis forb 3 17 3 4 1 

1050 Bidens bipinata forb 4 16 4 0 0 

1018 Bidens bipinata forb 9 11 6 0 0 

1011 Bidens bipinata forb           

960 pityopsis forb           

889 pityopsis forb 1 19 8 6 2 

1027 Bidens bipinata forb           

845 pityopsis forb 5 15 10 1 2 

849 pityopsis forb 1 19 7 3 2 

975 Bidens bipinata forb 8 12 9 0 0 

921 pityopsis forb 2 18 3 3 0 

911 pityopsis forb 0 20 6 1 3 

1060 Bidens bipinata forb 2 18 12 2 0 

996 Bidens bipinata forb 1 19 14 0 0 

1013 Bidens bipinata forb 2 18 5 1 0 

987 Bidens bipinata forb           

1076 Bidens bipinata forb 5 15 5 2 2 

962 Bidens bipinata forb           

1007 Bidens bipinata forb 5 15 4 2 1 
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869 pityopsis forb           

1024 Bidens bipinata forb 5 15 4 1 0 

1072 Bidens bipinata forb 2 18 5 5 4 

917 pityopsis forb           

877 pityopsis forb           

994 Bidens bipinata forb 6 14 4 0 0 

887 pityopsis forb 3 17 5 2 4 

1010 Bidens bipinata forb 1 19 6 2 1 

1035 Bidens bipinata forb 2 18 6 1 1 

957 pityopsis forb           

1043 Bidens bipinata forb 1 19 7 3 1 

974 Bidens bipinata forb 14 6 2 0 0 

984 Bidens bipinata forb 3 17 9 5 4 

995 Bidens bipinata forb           

952 pityopsis forb           

1033 Bidens bipinata forb 6 14 6 1 0 

916 pityopsis forb           

855 pityopsis forb 0 20 7 14 0 

983 Bidens bipinata forb 2 18 16 1 3 

934 pityopsis forb           

896 pityopsis forb 2 18 2 3 3 

900 pityopsis forb 8 12 1 0 2 

1028 Bidens bipinata forb 1 19 7 2 1 

1036 Bidens bipinata forb 7 13 4 1 0 

873 pityopsis forb 3 17 6 2 1 

951 pityopsis forb 4 16 7 0 2 

879 pityopsis forb 2 18 4 2 2 

883 pityopsis forb 8 12 3 0 1 

 

 

Table 18: Ectomycorrhizal fungi colonization data for chapter 4 

Number Species Infected Non-infected Infected % 

510 P. taeda 75 28 0.72815534 

750 P. palustris 53 62 0.460869565 

586 P. taeda 83 66 0.55704698 

762 P. palustris 39 39 0.5 

511 P. taeda 73 47 0.608333333 

580 P. taeda 71 35 0.669811321 

792 P. palustris 58 75 0.436090226 

521 P. taeda 87 54 0.617021277 

736 P. palustris 61 58 0.512605042 

515 P. taeda 72 46 0.610169492 

836 P. palustris 55 65 0.458333333 

562 P. taeda 21 39 0.35 

828 P. palustris 77 64 0.546099291 
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512 P. taeda 74 44 0.627118644 

819 P. palustris 66 58 0.532258065 

829 P. palustris 62 77 0.446043165 

812 P. palustris 70 73 0.48951049 

837 P. palustris 77 53 0.592307692 

529 P. taeda 68 60 0.53125 

530 P. taeda 62 48 0.563636364 

591 P. taeda 53 72 0.424 

725 P. palustris 78 96 0.448275862 

584 P. taeda 8 11 0.421052632 

753 P. palustris 31 75 0.29245283 

556 P. taeda 68 52 0.566666667 

520 P. taeda 50 29 0.632911392 

730 P. palustris 28 57 0.329411765 

551 P. taeda 49 50 0.494949495 

497 P. taeda 78 64 0.549295775 

780 P. palustris 65 112 0.367231638 

759 P. palustris 44 65 0.403669725 

553 P. taeda 82 46 0.640625 

525 P. taeda 67 55 0.549180328 

811 P. palustris 50 54 0.480769231 

593 P. taeda 72 61 0.541353383 

832 P. palustris 34 59 0.365591398 

597 P. taeda 63 76 0.45323741 

540 P. taeda 61 50 0.54954955 

791 P. palustris 71 85 0.455128205 

505 P. taeda 65 42 0.607476636 

572 P. taeda 47 33 0.5875 

723 P. palustris 56 55 0.504504505 

821 P. palustris 83 78 0.51552795 

490 P. taeda 56 73 0.434108527 

767 P. palustris 50 92 0.352112676 

758 P. palustris 54 65 0.453781513 

808 P. palustris 72 78 0.48 

541 P. taeda 55 75 0.423076923 

749 P. palustris 84 65 0.563758389 

783 P. palustris 45 46 0.494505495 

734 P. palustris 45 73 0.381355932 

781 P. palustris 54 70 0.435483871 

563 P. taeda 49 61 0.445454545 

834 P. palustris 34 72 0.320754717 

727 P. palustris 60 94 0.38961039 

825 P. palustris 31 92 0.25203252 

815 P. palustris 65 63 0.5078125 

486 P. taeda 50 61 0.45045045 
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775 P. palustris 39 84 0.317073171 

554 P. taeda 49 39 0.556818182 

509 P. taeda 74 65 0.532374101 

493 P. taeda 33 46 0.417721519 

500 P. taeda 48 57 0.457142857 

724 P. palustris 63 67 0.484615385 

565 P. taeda 45 53 0.459183673 

776 P. palustris 36 64 0.36 

576 P. taeda 50 47 0.515463918 

574 P. taeda 38 45 0.457831325 

534 P. taeda 66 29 0.694736842 

756 P. palustris 32 87 0.268907563 

794 P. palustris 44 76 0.366666667 

588 P. taeda 53 39 0.576086957 

800 P. palustris 39 33 0.541666667 

803 P. palustris 20 65 0.235294118 

579 P. taeda 63 42 0.6 

786 P. palustris 29 52 0.358024691 

542 P. taeda 29 43 0.402777778 

557 P. taeda 80 46 0.634920635 

532 P. taeda 49 65 0.429824561 

527 P. taeda 43 42 0.505882353 

537 P. taeda 40 58 0.408163265 

592 P. taeda 71 37 0.657407407 

545 P. taeda 60 61 0.495867769 

798 P. palustris 47 50 0.484536082 

822 P. palustris 43 52 0.452631579 

752 P. palustris 36 46 0.43902439 

555 P. taeda 67 38 0.638095238 

583 P. taeda 49 61 0.445454545 

502 P. taeda 57 63 0.475 

558 P. taeda 47 32 0.594936709 

755 P. palustris 23 81 0.221153846 

485 P. taeda 49 66 0.426086957 

761 P. palustris 40 84 0.322580645 

543 P. taeda 48 40 0.545454545 

484 P. taeda 46 38 0.547619048 

578 P. taeda 19 22 0.463414634 

801 P. palustris 30 65 0.315789474 

595 P. taeda 65 41 0.613207547 

741 P. palustris 28 54 0.341463415 

739 P. palustris 58 51 0.532110092 

746 P. palustris 33 36 0.47826087 

824 P. palustris 38 45 0.457831325 

594 P. taeda 23 29 0.442307692 
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835 P. palustris 19 48 0.28358209 

766 P. palustris 59 44 0.572815534 

757 P. palustris 34 49 0.409638554 

496 P. taeda 53 46 0.535353535 

817 P. palustris 39 36 0.52 

568 P. taeda 56 54 0.509090909 

747 P. palustris 10 50 0.166666667 

577 P. taeda 51 30 0.62962963 

802 P. palustris 52 60 0.464285714 

524 P. taeda 66 42 0.611111111 

506 P. taeda 60 46 0.566037736 

491 P. taeda 57 29 0.662790698 

590 P. taeda 38 31 0.550724638 

738 P. palustris 43 46 0.483146067 

559 P. taeda 33 20 0.622641509 

729 P. palustris 37 58 0.389473684 

795 P. palustris 57 47 0.548076923 

754 P. palustris 38 57 0.4 

516 P. taeda 44 31 0.586666667 

535 P. taeda 71 54 0.568 

779 P. palustris 47 83 0.361538462 

772 P. palustris 76 64 0.542857143 

514 P. taeda 57 46 0.553398058 

721 P. palustris 46 68 0.403508772 

587 P. taeda 26 30 0.464285714 

567 P. taeda 42 39 0.518518519 

582 P. taeda 50 35 0.588235294 

745 P. palustris 21 48 0.304347826 

726 P. palustris 32 44 0.421052632 

787 P. palustris 64 43 0.598130841 

827 P. palustris 63 49 0.5625 

770 P. palustris 44 62 0.41509434 

810 P. palustris 43 66 0.394495413 

482 P. taeda 48 51 0.484848485 

526 P. taeda 58 38 0.604166667 

733 P. palustris 46 48 0.489361702 

805 P. palustris 18 17 0.514285714 

771 P. palustris 54 53 0.504672897 

538 P. taeda 63 45 0.583333333 

760 P. palustris 36 37 0.493150685 

546 P. taeda 68 50 0.576271186 

777 P. palustris 59 54 0.522123894 

503 P. taeda 26 34 0.433333333 

573 P. taeda 27 22 0.551020408 

728 P. palustris 22 76 0.224489796 
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494 P. taeda 43 60 0.417475728 

823 P. palustris 23 89 0.205357143 

513 P. taeda 36 62 0.367346939 

501 P. taeda 27 58 0.317647059 

744 P. palustris 15 68 0.180722892 

807 P. palustris 61 88 0.409395973 

596 P. taeda 36 58 0.382978723 

489 P. taeda 62 63 0.496 

799 P. palustris 48 104 0.315789474 

564 P. taeda 20 26 0.434782609 

531 P. taeda 44 47 0.483516484 

522 P. taeda 70 64 0.52238806 

569 P. taeda 21 39 0.35 

818 P. palustris 43 77 0.358333333 

504 P. taeda 45 60 0.428571429 

748 P. palustris 39 76 0.339130435 

814 P. palustris 47 87 0.350746269 

519 P. taeda 48 64 0.428571429 

838 P. palustris 31 67 0.316326531 

813 P. palustris 73 103 0.414772727 

544 P. taeda 59 60 0.495798319 

507 P. taeda 41 72 0.362831858 

523 P. taeda 63 62 0.504 

585 P. taeda 71 53 0.572580645 

575 P. taeda 56 67 0.455284553 

765 P. palustris 27 99 0.214285714 

581 P. taeda 29 41 0.414285714 

517 P. taeda 35 55 0.388888889 

561 P. taeda 45 57 0.441176471 

735 P. palustris 48 97 0.331034483 

495 P. taeda 66 99 0.4 

778 P. palustris 32 50 0.390243902 

804 P. palustris 41 82 0.333333333 

809 P. palustris 35 71 0.330188679 

571 P. taeda 51 57 0.472222222 

589 P. taeda 44 59 0.427184466 

488 P. taeda 33 87 0.275 

764 P. palustris 60 86 0.410958904 

743 P. palustris 31 86 0.264957265 

566 P. taeda 47 56 0.45631068 

518 P. taeda 49 58 0.457943925 

539 P. taeda 49 62 0.441441441 

552 P. taeda 14 35 0.285714286 

751 P. palustris 35 46 0.432098765 

785 P. palustris 36 80 0.310344828 
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790 P. palustris 13 68 0.160493827 

548 P. taeda 56 52 0.518518519 

740 P. palustris 52 90 0.366197183 

498 P. taeda 33 71 0.317307692 

788 P. palustris 44 59 0.427184466 

570 P. taeda 56 60 0.482758621 

737 P. palustris 39 62 0.386138614 

599 P. taeda 51 50 0.504950495 

533 P. taeda 71 58 0.550387597 

549 P. taeda 48 34 0.585365854 

820 P. palustris 33 79 0.294642857 

492 P. taeda 41 79 0.341666667 

499 P. taeda 1 3 0.25 

763 P. palustris 37 92 0.286821705 

598 P. taeda 48 69 0.41025641 

816 P. palustris 19 92 0.171171171 

830 P. palustris 51 79 0.392307692 

722 P. palustris 56 54 0.509090909 

826 P. palustris 55 93 0.371621622 

508 P. taeda 36 37 0.493150685 

806 P. palustris 62 66 0.484375 

481 P. taeda 53 53 0.5 

774 P. palustris 20 78 0.204081633 

547 P. taeda 46 41 0.528735632 

483 P. taeda 50 68 0.423728814 

839 P. palustris 44 59 0.427184466 

833 P. palustris 34 80 0.298245614 

560 P. taeda 54 59 0.477876106 

536 P. taeda 49 63 0.4375 

773 P. palustris 30 97 0.236220472 

731 P. palustris 42 81 0.341463415 

550 P. taeda 42 37 0.53164557 

793 P. palustris 24 60 0.285714286 

782 P. palustris 44 45 0.494382022 

831 P. palustris 31 89 0.258333333 

528 P. taeda 73 58 0.557251908 

769 P. palustris 28 96 0.225806452 

768 P. palustris 29 114 0.202797203 

840 P. palustris 19 59 0.243589744 

 
 

 

 


