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Abstract

Vegetation has profound impacts on the local and regional water and carbon cycles. Classify-

ing different environments and analyzing the response to drought allows us to assess the im-

pacts on the water and carbon fluxes. For classifying the different environments, self-organizing

maps are utilized using different environmental forcing variables with a land-surface model,

Noah-MP. Quantitative statistics and wavelets are used to evaluate the influence that different

vegetation cover has on the local and regional responses and temporal dynamics on the water

and carbon variables. The heterogeneous vegetation cover impacted the results from the self-

organizing maps in demonstrating the local changes in the water and carbon fluxes induced

by differences between the model. The wavelets demonstrated that the temporal dynamics of

these land covers vary little and tend to have higher coherence with environments the vegeta-

tion tend to thrive in. The 2012 drought illustrated the response of the water and carbon fluxes

with an extreme event case. During the drought year, a large reduction in precipitation, evapo-

transpiration, and net ecosystem exchange occurred. However, one year following the drought,

a strong increase in evapotranspiration and net ecosystem exchange is shown. Two years after

drought the water and carbon fluxes showed to return back to pre-drought conditions. This

research increases our knowledge of water and carbon fluxes response to different classified

environments and drought impact.
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Chapter 1

Introduction

Vegetation is an essential variable as it has substantial influence on the local and regional water

and carbon cycles. Vegetation directly impacts the water and carbon cycle via altering the stom-

atal conductance (Collatz et al., 1991), surface characteristics (Sud et al., 1988), and radiative

properties (Betts and Ball, 1997; Bonan et al., 2002). The different characteristics of vegetation

have dissimilar implications on the land-atmospheric interactions between the local water and

carbon dynamics (Quideau et al., 2001; Foley et al., 2000; Weltzin et al., 2003). Furthermore,

extreme events can alter the responses of these water and carbon fluxes for different vegeta-

tion (Brookshire and Weaver, 2015; Hufkens et al., 2016; Van der Molen et al., 2011). This thesis

will analyze how the local water and carbon fluxes are affected by different environments and

drought.

Chapter 2 analyzes how different environments impact the water and carbon fluxes

of three grassland ecosystems throughout the growing season utilizing a land surface model.

Using self-organizing maps (SOMs), we cluster the different environments together using four

environmental variables for each site. Once the different environments are classified, quan-

titative statistics such as root mean square error (RMSE), r-squareds (r2), and Nash-Sutcliffe

efficiency (NSE), are used to calculate between the model and observations the water and car-

bon flux responses to each of the classes. Furthermore, wavelet analysis is used to analyze the

temporal dynamics of these fluxes. This analysis provides insight into which specific environ-

ments do these ecosystems water and carbon fluxes thrive or break down. Also, it gauges how

important heterogeneity between grasslands alters the local water and carbon fluxes pertaining

to different local conditions. This chapter further suggests how modeling heterogeneity in land
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surface models is necessary when analyzing different grassland cover.

Chapter 3 takes an extreme event case, the drought of 2012, and demonstrates the post

drought impacts on the water and carbon fluxes. Major drought events result in a large reduc-

tion in precipitation, evapotranspiration, and net ecosystem exchange (Aires et al., 2008; Ripley

et al., 2007; Wolf et al., 2016). The response of these variables following the drought are less

understood (Yin and Bauerle, 2017; Ruehr et al., 2019; Van der Molen et al., 2011). Here the re-

sponses of these variables are noted two years after the 2012 case. This chapter illustrates the

recovery time and initial response of evapotranspiration and net ecosystem exchange for one

site. As global frequency and intensity of drought is projected to increase (Dai, 2013; Trenberth

et al., 2014; Smith et al., 2009) it is essential to evaluate these impacts major drought has on the

water and carbon cycle.

These two chapters present the impacts that vegetation has on the local and regional

water and carbon fluxes in Kansas grasslands. By allocating to the different environments (Chap-

ter 2) and analyzing the post-drought responses (Chapter 3 of these fluxes, the essential role that

vegetation has on the local and regional climate is demonstrated. Additionally, how important

vegetation’s role is in altering these variables.
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Chapter 2

Different Environmental Impacts on Kansas Grasslands using

Noah-MP

2.1 Introduction

Vegetation has many impacts on global climate, specifically the water and carbon cycles (No-

taro et al., 2006). Vegetation impacts the water and carbon cycle via altering the stomatal con-

ductance (Collatz et al., 1991), directly impacting the carbon assimilation (Thonicke et al., 2001;

Jacobson, 2004). Vegetation also alters the surface characteristics via the surface roughness

which impacts turbulent transport between the surface and the lower atmosphere and bound-

ary layer dynamics, as well as moisture convergence (Sud et al., 1988). The vegetation alters

radiative properties such as albedo (Betts and Ball, 1997), and energy transport via evapotran-

spiration (Bonan et al., 2002). The type, structure and condition of the vegetation has different

implications on the varying climate and regional meteorology (Quideau et al., 2001; Syphard

et al., 2018; Camino-Serrano et al., 2014; Williams and Albertson, 2005; Foley et al., 2000; Bonan

et al., 2003; Sitch et al., 2003; Fattet et al., 2011; Scott et al., 2006; Weltzin et al., 2003; Knapp and

Smith, 2001). Thus, it is important to understand the specific impacts that vegetation type and

land cover may have on regional climate.

In the Midwestern and Central Plains there are numerous different land covers and

types of vegetation (Pielke et al., 2007; Griffith et al., 2002). This land cover heterogeneity across

the Plains leads to changes in local water and carbon dynamics (Brunsell and Anderson, 2011;

Raupach and Finnigan, 1995; Lhomme et al., 1994). Specifically, parts of the Central Plains are
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experiencing woody encroachment, which is further changing the local climate and weather

within the Central Plains (Barger et al., 2011; Huxman et al., 2005; Jackson et al., 2002; Ratajczak

et al., 2012, 2011). Land cover heterogeneity combined with woody encroachment instigates

changes in the vegetation cover throughout the region. These land cover differences will change

the local climate through the alteration of the water and carbon cycles.

Two specific types of land cover that are prominent in the Central Plains are C3 and C4

grasses. These vegetation covers each impacts the atmospheric CO2 and temperature (Liu et al.,

2015; Wittmer et al., 2010; Randerson et al., 2005). These impacts have distinguishing effects on

local climate and agriculture. C3 vegetation is more prominent in areas with lower temperatures

(cooler growing seasons) while C4 vegetation tends to occur in warmer temperatures (warmer

growing seasons) (Liu et al., 2015; Wang et al., 2013). These vegetative differences have clear

implications for altering water and carbon fluxes through the maximum rate of photosynthesis,

transpiration rate, plant growth rate, and seasonal activity cycles (von Fischer et al., 2008; Wynn

and Bird, 2007; Ehleringer and Björkman, 1977; Still et al., 2003). C3 grasses tend to green up

earlier in the spring and fall and are more active under cooler conditions, whereas C4 grasses

are more active during the growing season under much warmer conditions in the mid to late

summer (Collatz et al., 1998; Liu et al., 2015; Wagle and Gowda, 2018). Therefore understanding

how the water and carbon fluxes are impacted by the local environmental conditions will help

understand impacts of future land cover and climatic changes.

Much research has been conducted analyzing the physiological and ecological func-

tions of C3 and C4 grasses (Sage and Kubien, 2007; Smith and Freeman, 2006; Taylor et al., 2010;

Ricotta et al., 2003). These studies ranged from analyzing the elongated records of C3 and C4

vegetation richness and carbon concentrations in different geographical locations (Wang et al.,

2013; Manzoni et al., 2011; Sage, 2004). Research has been done analyzing the specific nature

of water and carbon fluxes within these grasses (Logan and Brunsell, 2015; Brunsell et al., 2014;

Way et al., 2014), however, little research has focused on the behavior of these water and car-

bon fluxes at different stages throughout the growing season and how the local environmental
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conditions directly impact the fluxes.

This study aims to assess the water and carbon fluxes under different environmental

conditions throughout the growing season. This will help facilitate our understanding of how

ecosystems respond to local and regional environmental changes.

2.2 Methods

2.2.1 Study Area

This study utilizes eddy covariance data from three sites in Northeastern Kansas. The first two

eddy covariance sites are located approximately 8 km south of Manhattan, KS at the Konza

Prairie Biological Station (KPBS), a long-term ecological research site that enhances studies

and research of tallgrass prairie ecosystems. The first is an annually burned grassland water-

shed (KON). The other site, KFB, has a prescribed burn every four years. This relatively low-

frequency of burning has led to an increase in woody encroachment at KFB (Logan and Brun-

sell, 2015) while KON is dominated by perennial C4 grass species (Andropogon geradii, Panicum

virgatum, Schizachyrium scopariam, Sorghastrum nutrans). Since KFB has been experiencing

the increase of woody encroachment the soil depths are deeper by about 1-5 m.

The third eddy covariance station is located at the Kansas Field Station (KFS) near

Lawrence, KS approximately 115 km east of the two KPBS sites (Brunsell et al., 2014). There

is a precipitation gradient between KON to KFS, with annual precipitation ranging from 880 to

980 mm respectively. KFS is a heterogeneous site that is comprised of a mixture of both C3 and

C4 grasses including Andropogon virnicus Bromus inermis, Festuca arundinacea, Poa pratensis,

and several other native forbs.

Our goal is to increase our understanding of how the environmental conditions present

at each site impact the water and carbon fluxes as well as the capability to accurately model the

land-atmosphere interactions. Therefore, we utilize the full data records of each site, which are

slightly different; KON data spanned from 2006-2018, KFB spanned 2008-2018 and KFS spanned
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2007-2018. In order to characterize the environmental conditions, we used four environmental

variables: air temperature (Tair, Ta) [K], wind speed (W S) [m s−1], vapor pressure deficit (V PD)

[kPa], and net radiation (Rn) [W m−2]. These four variables were used to classify the environ-

mental conditions utilizing Self Organizing Maps (SOM), described below.

Following the classification of the environment conditions, we analyzed the differ-

ent flux measurements at each site. We used latent heat (LE) [W m−2], sensible heat (H) [W

m−2], gross primary productivity (GPP ) [µmolCO2 m−2 s−1] and net ecosystem exchange (N EE)

[µmolCO2 m−2 s−1]. The data were recorded in half-hourly timesteps but were aggregated to

daily measurements by either averaging or summation depending on the variable. GPP was

calculated using the methods from (Reichstein et al., 2005) for gap filling. Furthermore, the

data were filtered to the defined growing season between April 1st to October 1st. This was to

ensure that we capture the active period of plant growth. All site data were processed using Ed-

dyPro according to Ameriflux standard processing recommendations, see (Brunsell et al., 2014)

and (Logan and Brunsell, 2015) for additional details.

2.2.2 NOAH-MP

The NOAH-MP model is a land-surface model that was updated from the original Noah (LSM)

with improved dynamics and multiparameterization options (Niu et al., 2011; Yang et al., 2011).

The vegetation canopy is confined to the top and bottom of the canopy, crown radius, leaves

and prescribed dimensions, orientation, density, and radiometric properties. We used a dy-

namic vegetation model that allocates carbon to various parts of vegetation throughout the

canopy. The canopy stomatal resistance option used the Ball-Berry approach and the two-

stream radiative transfer framework applied to vegetative fraction for a simplified radiative

budget. The Ball-Berry approach is able to simulate the biotic regulation of evapotranspira-

tion (Bonan et al., 2014). The model was run with hourly timesteps and was aggregated to daily

values by either averaging or summation dependent upon the variable. The model was forced

with NCEP reanalysis forcing, with a spin up period of three years to initialize the soil moisture
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fields. We are not tuning the model to the individual sites and are only using standard options.

This was done intentionally in order to assess how the default characterization of model param-

eters impacts the overall agreement with observations. In particular, this will help us determine

how the model operates when simulating different heterogeneous grasslands.

2.2.3 Statistical Framework

We used three analytical approaches in order to investigate the impact of different environmen-

tal forcing conditions on vegetation dynamics: self-organizing maps (SOMs), model compari-

son statistics, and wavelet analysis. The SOMs were used to classify the environmental con-

ditions, then the model performance was assessed using root mean squared error (RMSE), r-

squared, and Nash-Sutcliffe Efficiency (NSE). Each of these statistics were calculated for each

SOM class and each site.

2.2.3.1 Self Organizing Maps

SOMs are able to capture varying functions and patterns in order to distill different behav-

iors and dependencies (Hewitson and Crane, 2002). We used self-organizing maps to assess

to what extent the model and observations are the same given similar forcing environments.

For each site, we constructed the SOM classes using the observed environmental variables. The

air temperature, wind speed, vapor pressure deficit, and net radiation were selected as the en-

vironmental variables so that we can consistently group conditions as a function of cool/warm,

calm/windy, wet/dry and cloudy/clear. Following the classification of each day into an SOM

class, we subset the model and observations into the appropriate class to facilitate the analysis

of the fluxes and assess model performance for each class.

For the building of the different SOM classes, we used the SOM Kohonen package

(Wehrens and Buydens, 2007; Wehrens and Kruisselbrink, 2018). The SOM building routine

begins with the SOMs defining a random distribution of nodes (classes) within the data space.

Each node is defined by a reference vector of different weighting coefficients of the environ-
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mental input variables. For every node, the n-th coefficient in the reference vector will be asso-

ciated with the number of environmental variables. The distance between each node and the

daily environmental variables was calculated using the Euclidean distance. Then the class is se-

lected as the one that minimizes the distance between the input vector and the reference class

vector. Each node is then updated with the new input reference vectors that are defined as the

process is iterated over the whole dataframe. Here, we used 500 iterations of the dataset to en-

sure the same weights were determined over each node (Wehrens and Buydens, 2007; Wehrens

and Kruisselbrink, 2018). The updates of these weights for the nodes are determined from the

‘winning’ node and all of its neighbors.

Equation 2.1 represents the equation for the winning node:

wn = wn +n(t )∗ gi n(t )∗ (xd −wn) (2.1)

where wn is the winning node that uses the learning rate, n(t ) to understand how to adjust

the weights. gi n(t ) represents the neighborhood kernel function and xd represents the Eu-

clidean distance. For more corresponding information please see (Wehrens and Buydens, 2007;

Wehrens and Kruisselbrink, 2018)

This process is iterated until there are a certain number of classes defined by each of

the reference vectors (Hewitson and Crane, 2002). The number of classes used between all three

sites was determined by the Kullback-Leibler (K-L) divergence, which resulted in five classes

across the three sites having the lowest mean K-L divergence.

This process results in each day being placed into one of the resulting SOM classes.

This will form the basis for our analysis of how grassland ecosystems respond across the differ-

ent environmental conditions. Since the SOM analysis was conducted independently for each

site, we matched SOM classes across sites to the extent possible in order to generalize the SOM

results. This facilitates the comparison between the classes across sites.

8



2.2.3.2 Wavelets

We utilized wavelets to assess to what extent the observed temporal dynamics of the variables

were captured by the model. We computed the wavelet spectra for each site and each SOM class

to quantify the sensitivity of each class to varying temporal scales. The wavelets were computed

using the daily data. In addition to the wavelet spectra, we analyzed the wavelet coherence

between the observations and model for each of the flux variables. The wavelet coherence is

calculated as (Liu, 1994):

γ= (W1(λ, t )∗W2(λ, t ))

(|W1(λ, t )|∗ |W2(λ, t )|) (2.2)

where W 1 and W 2 represent the wavelet coefficients of the observations and model respec-

tively, as a function of the scale parameter (λ) and the location parameter (t ). We used the

Morlet wavelet with a time resolution of one day and had a frequency resolution of 1/20 voices

per octave. The coherence was calculated between the model and observations and then aver-

aged across the temporal domain to produce the average coherence. All of the wavelet analysis

was conducted using the WaveletComp R package (Rösch and Schmidbauer, 2018).

2.3 Results and Discussion

The SOMs were used to classify the different environmental conditions into classes in order to

analyze the implications for the carbon and water fluxes. Following the determination of the

classes, we evaluated the observed data and model on the level of agreement using the SOMs

and wavelets.
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2.3.1 SOM Analysis

2.3.1.1 Determination of the Environmental Classes

In order to facilitate the comparison across sites, we aligned the SOM classes to be most similar

in terms of the means and variances as well as the relative weightings of the environmental vari-

ables. For example, if we have a high average air temperature and low vapor pressure deficit, we

would consider that a warm and dry class. The contribution was determined from the winning

weights defined for each class. An illustrative example is shown in Figure 2.1, where class 2 of

KFS and class 2 of KON have similar means and variances for each variable and had similar vari-

able dependencies (Ta and W S having small contributions to the class). In addition, the timing

of the class within the growing season was taken into account, shown in Figure 2.2. Typically

these classes will occur either throughout the whole growing season or the late spring and early

fall.

Figure 2.1: Contributions of each environmental variable for the initial SOM classes (KON left,
KFB middle and KFS right).

For each class, we calculated the RMSE between the observations and the model for

10



Figure 2.2: Displays each of the observations of each class for the variable, Tai r [K], across all
the years of study for KON.

each of the environmental variables (Table 2.1). N represents the number of days that were in

that class. The RMSEs were only calculated for the environmental variables to understand the

differences between the modeling forcing variables for each environmental class. Tai r RMSEs

ranged from 0.250 to 1.7 K across all the sites and classes. KFB having the smallest RMSEs across

all classes being 0.662 K. W S varied between about 1.2 to 2.9 m s[ −1], while V PD ranged from

4.462 to 13.668 kPa. KON had the smallest average W S across all classes being 1.374 m s−1 and

KFB had the smallest average for V PD of 7.908 kPa. Rn for all classes ranged from about 5 to 49

W m−2 with KFS having he smallest average of 25.795 W m−2. These results indicate a consistent

evaluation of the environmental forcing data across sites and across class.

Following the determination of the initial classes, we matched the classes from each

site into similar environments to facilitate cross-site comparison, Table 2.2. Only if the classes

had similar environmental conditions did we match the classes to one another, and classes that

could not be matched across sites were not used in the comparative analysis. However, the

unmatched classes were still used to assess the overall characteristics of the site. In Table 2.2,

"Condition" represents the environment described by the averaged variables for that specific
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Table 2.1: The root mean squared error (RMSE) between observations and environmental vari-
ables for each site and each SOM class.

Tair WS VPD Rn class N Site
[K] [m s−1] [kPa] [W m−2] - - -

1.012 1.483 11.528 49.404 1 260 KON
1.483 1.231 13.668 9.596 2 338 KON
0.665 1.339 8.254 26.353 3 750 KON
0.405 1.271 4.462 16.751 4 196 KON
1.210 1.545 7.592 26.871 5 179 KON

0.250 2.319 6.097 32.072 1 81 KFB
0.713 2.086 12.209 48.436 2 461 KFB
0.740 2.756 6.225 9.275 3 150 KFB
1.033 2.525 7.182 30.840 4 118 KFB
0.573 2.845 7.825 35.109 5 482 KFB

1.006 1.996 9.773 30.956 1 593 KFS
1.256 1.960 7.954 15.323 2 629 KFS
0.716 1.542 9.991 5.562 3 173 KFS
0.523 2.915 9.032 45.552 4 113 KFS
1.575 2.527 9.316 35.584 5 155 KFS
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Table 2.2: SOM classes matched across sites with average environmental variables and class
condition.

KON KFS KFB Tair WS VPD Rn Condition
- - - [K] [m s−1] [kPa] [W m−2] -

1 1 1 288.743 4.403 6.624 84.798 Cool/Windy/Dry/Cloudy
2 2 2 297.816 2.878 13.776 176.540 Warm/Calm/Wet/Clear
4 – 4 299.650 6.048 16.104 154.335 Warm/Windy/Wet/Clear
5 5 – 284.186 2.076 3.576 54.442 Cool/Calm/Dry/Cloudy

class in order to facilitate understanding of the overall class.

2.3.1.2 Impacts of Environmental Conditions of Water and Carbon Fluxes

The distributions of the modeled and observed fluxes for the different sites and environmen-

tal classes are shown in Figures 2.3-2.5. For LE at KFS the model has a slight over-estimation

reflected in the higher distributions across all the classes. This slight over-estimation could

be due to the model not accounting for the site receiving more precipitation and thus being

slightly more moist (Brunsell et al., 2014). For H , the model and observations generally agree

across the different environments. The model shows generally larger values (more negative) of

N EE at KFS. Interestingly, the GPP at KFS is captured quite well. The model generally captures

the distributions of fluxes at KON and KFB, with the GPP being somewhat larger across some

(classes 2, 3, and 4) of the different environments. T-tests were run across the distributions of

the fluxes for each site not specifically tailoring to each environment. The t-tests indicated that

the distributions between the observations and model fluxes were statistically different from

one another and the means of each variable were statistically different with p-values generally

below 1.759e-15. Only p-value above this was LE at KFB which was 0.027.

The r-squared and Nash-Sutcliffe Efficiency (NSE) were calculated between the ob-

served and modeled fluxes, shown in Tables 2.3 and 2.4. The NSE quantifies if the model is

capable of capturing the mean behavior. Where if the NSE value is negative, indicates that the

mean of the observed variable is a better predictor than the model. A positive value indicates
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Figure 2.3: Distribution of observed and modeled fluxes for site KON. The different panels re-
flect the water and carbon fluxes, latent heat flux [W m−2] (a), sensible heat flux [W m−2] (b),
net ecosystem exchange [µmolCO2 m−2 s−1] (c), and gross primary productivity [µmolCO2 m−2

s−1] (d).
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Figure 2.4: Distribution of observed and modeled fluxes for site KFB. The different panels reflect
the water and carbon fluxes, latent heat flux [W m−2] (a), sensible heat flux [W m−2] (b), net
ecosystem exchange [µmolCO2 m−2 s−1] (c), and gross primary productivity [µmolCO2 m−2

s−1] (d).
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Figure 2.5: Distribution of observed and modeled fluxes for site KFS. The different panels reflect
the water and carbon fluxes, latent heat flux [W m−2] (a), sensible heat flux [W m−2] (b), net
ecosystem exchange [µmolCO2 m−2 s−1] (c), and gross primary productivity [µmolCO2 m−2

s−1] (d).
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that the model is a better predictor than the observed mean. The r-squared value shows if the

variance is being captured by the model. Across all sites, for the fluxes we see for the r-squareds

that we had relatively low r-squareds across the board (<0.5). This is mostly a result of the model

responses in not allocating to the specific sites and being run at base performance. Running

at base parameterization was to evaluate the models response to simulating these sites while

specifically taking out the heterogeneity forcing of the sites. At KON and KFB, we used classes 1,

2, and 4. In general, KON had higher averaged r-squared values but KFB had higher NSE values

across the environmental classes. The r-squared for KON were approximately 0.105 higher for

the fluxes. The NSE was higher for KFB being 1.075. For the individual fluxes, H , N EE , and

GPP the r-squared values were higher for KON being about 0.114, 0.08, and 0.08. The r-squared

for LE was higher for KFB being about 0.04 across all environments. For NSE, H , LE , N EE , and

GPP were all approximately 0.55, 1.3, 3, and 0.6 higher for KFB. Based on these results, we can

state that the model was better able to capture the variance of the observations at KON, however

based on the NSE, the model is more accurate in relation to the means behavior at KFB.

Next, we analyzed the model output for the specific environmental conditions at KON

and KFB. For the cool/windy/dry/cloudy conditions (class 1 for each site), we see for the LE at

KFB was slightly better than KON in the NSE (∼0.86 higher), but has small differences in the r-

squared values (∼0.06 difference). Similarly for H , we see that the NSE was 0.03 higher for KFB

and a small differences of the r-squared of 0.06. The same is found with the carbon variables

with KFB having higher NSE values (NSE 2.2 higher for KFB) but KON having higher r-squared

(0.2 higher for KON).

In the classes that are characterized as warm and clear days (classes 2 and 4) we see

that model captures the means of the water and carbon fluxes better for KFB, shown by the

NSE, and captures the variance better for the LE shown by the r-squared. The variance for both

the carbon fluxes are better captured at KON. The NSE values at KFB for the LE , H , N EE , and

GPP were approximately 0.3, 1.7, 2.1, and 1 higher than at KON. The r-squared values for LE

was about 0.05 higher at KFB. H and GPP the r-squareds were about 0.13 and 0.03 higher at
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KON, while N EE had a difference of 0.0002. For these conditions, the model can capture the

means of the water and carbon fluxes better in both the dry and warm environments for KFB.

However, it does not capture the variance of these variables. This may be a byproduct of the

relationships of each variable at a homogeneous site at KON being easier to capture than the

more heterogeneous vegetation cover at KFB.

Table 2.3: Nash-Sutcliffe Efficiency model agreement values for sensible heat flux (H) [W m−2],
latent heat flux (LE) [W m−2], net ecosystem exchange (NEE) [µmolCO2 m−2 s−1], and gross
primary productivity (GPP) [µmolCO2 m−2 s−1] of the respected sites and classes.

H LE NEE GPP class Site

- 0.707 - 1.000 - 8.839 0.171 1 KON
- 3.295 - 0.438 - 5.849 - 4.140 2 KON
- 1.798 - 0.156 - 5.352 - 0.928 3 KON
- 2.424 - 0.288 - 4.118 - 2.229 4 KON
- 1.347 - 2.551 - 13.450 0.243 5 KON

- 0.480 0.034 - 4.408 0.068 1 KFB
- 1.432 - 0.192 - 3.607 - 3.214 2 KFB
- 3.900 - 0.313 - 0.498 - 3.129 3 KFB
- 0.751 0.108 - 1.829 - 1.147 4 KFB
- 1.184 - 0.352 - 4.494 - 0.454 5 KFB

- 1.493 - 3.034 - 128.235 - 0.099 1 KFS
- 4.024 - 1.405 - 121.730 - 0.835 2 KFS
- 1.623 - 2.863 - 273.444 - 0.163 3 KFS
- 1.726 - 2.610 - 195.521 - 0.359 4 KFS
- 2.289 - 3.362 - 56.761 - 0.461 5 KFS

Next, we compare the KON and KFS sites as a function of the environmental class.

KON was better captured by the model with regard to both the means (NSE) and variances

(r-squared). For the matched classes, we used classes 1, 2, and 5 for each site (Table 2.2). The

overall r-squared values between all classes was approximately 0.106 higher for KON. The NSE

values were about 0.437 higher (23.829 with NEE) for the fluxes across the compared classes.

The largest difference between the r-squared and NSE values occurred in the same environ-

ment being the cool/windy/dry/cloudy cluster (class 1). The r-squared was approximately
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Table 2.4: R-squared model agreement values for sensible heat flux (H) [W m−2], latent heat flux
(LE) [W m−2], net ecosystem exchange (NEE) [µmolCO2 m−2 s−1], and gross primary produc-
tivity (GPP) [µmolCO2 m−2 s−1] of the respected sites and classes.

H LE NEE GPP class Site

0.277 0.388 0.263 0.488 1 KON
0.205 0.133 0.023 0.131 2 KON
0.155 0.261 0.084 0.338 3 KON
0.171 0.193 0.040 0.181 4 KON
0.294 0.249 0.058 0.448 5 KON

0.213 0.395 0.010 0.320 1 KFB
0.073 0.168 0.057 0.108 2 KFB
0.020 0.005 0.037 0.010 3 KFB
0.027 0.253 0.010 0.140 4 KFB
0.105 0.187 0.007 0.252 5 KFB

0.143 0.250 0.034 0.160 1 KFS
0.093 0.248 0.037 0.119 2 KFS
0.107 0.187 0.018 0.039 3 KFS
0.125 0.243 0.073 0.053 4 KFS
0.339 0.193 0.012 0.057 5 KFS
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0.207 higher for KON and the NSE was 1.028 higher (59.801 with NEE) as well. When com-

paring the r-squared values between the water and carbon fluxes there are striking differences

between the environments. For LE across the overall environments the difference of r-squared

values is only 0.013 whereas for the carbon fluxes it’s 0.165. H had a large difference of r-squared

being ∼0.19 higher for KON.

For the carbon variables both the cool, dry, and cloudy environments (classes 1 and

5) had the largest discrepancies between the r-squared values (approximately 0.276 and 0.165,

respectively). Whereas the warm environment (class 2) had small differences for the carbon

fluxes (∼0.001). The NSE did not have large differences across the fluxes between the different

environments. With KON having better results for both the r-squared and NSE, we see that the

model performs better in this grassland than at KFS. Furthermore, for the different environ-

ments, the water fluxes have less differences compared to the carbon fluxes, especially in the

cooler environmental conditions (classes 1 and 5). These results may be due to the model being

more suitable at the more homogeneous C4 vegetation cover represented at KON than the more

heterogeneous grassland cover at KFS (a mixture of C3 and C4 vegetation types) (Brunsell et al.,

2014).

The next site comparison is between KFS and KFB. Overall, there were small differences

in the r-squared values, but the NSE values were higher at KFB. For the matched classes at these

sites, we focus on classes 1 and 2 (Table 2.2). The overall r-squared values for the fluxes were

∼0.033 higher at KFB. While the NSE were ∼30.975 higher at KFB for each environmental class.

For the specific environments, the cool/windy/dry/cloudy environment (class 1) had the largest

difference between the two sites for all of the fluxes. The water and carbon fluxes had r-squared

values about 0.145 and 0.068 higher for KFB. H was ∼0.07 higher at KFB. The LE had an NSE

value about 3 higher and H was ∼1 higher at KFB. The warmer/calm/wet/clear environment

(class 2) had the smallest variability between the fluxes for the r-squared being approximately

0.07 (LE), 0.02 (H), and 0.001 (carbon fluxes) apart (NSE for LE being ∼1.2 higher at KFB). This

demonstrates that the model performed better at KFB specifically in the cooler, windy, dry, and
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cloudy environment than a warm, calm, wet, and clear environment. Overall, these statistics

indicate that modeled fluxes performed better at KFB than KFS.

We find that overall the model performed better at KON and KFB than KFS. This may

be a byproduct of the model being more applicable in homogeneous grasslands than heteroge-

neous grasslands (Schmid, 2002). KON is a C4 grassland, while KFB is a C4 grass invaded by C3

woody species and KFS is a mixture of C3 and C4 grasses. We see at KFB, the model simulated

the LE better in each environmental class than at the other two sites. However, the model under

performed with respect to both the carbon fluxes at this site compared to KON. This suggests

that the model is not accurately simulating the carbon dynamics of woody encroachment. This

is illustrated with the strong variability between the carbon fluxes in each class comparing to

the other sites.

Furthermore, we find that using Noah-MP’s base parameterization scheme and not

tuning the model to the specific sites impacted the ability of the model under certain condi-

tions. In particular, the model was unable to capture the distribution of N EE at KFS under

most environmental conditions as represented by the NSE. The relatively low r-squared values

and NSEs for most of the fluxes illustrate how the model struggles to capture the mean and vari-

ances of the fluxes at each site under different environmental conditions. Within the context of

applying the model in an operational context, these results suggest further efforts are necessary

in parameterizing the heterogeneous vegetation assemblages present in the central U.S.

2.3.2 Wavelet Analysis

Next, we examined how the model was able to characterize the temporal dynamics relative to

the observations at each site. By applying a wavelet analysis to the different environmental

classes we were able to more fully characterize the impacts of the different environments. Fig-

ures 2.6-2.8 illustrates the average coherence of the three sites and Noah-MP for LE , H , N EE ,

and GPP respectively. These figures display the strong signal of the diurnal (period of 1), sea-

sonal (period of 128), and annual (period of 365) components with the average coherence being
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close to one between the model and observations. An average coherency of one demonstrates

that the model and observations are perfectly in sync with respect to the coherency. By subset-

ting the wavelet coefficients to the different classes, we see that the relationships between the

different periods illustrate the ability of the model to capture the different temporal dynamics

of temperature at each site. This is shown by the relatively high coherency (>0.7) throughout,

Figures 2.6-2.8, for each specific panel illustrating each variables average coherency for each

site.

When evaluating between the different environments of the fluxes we see that there

is a high level of coherency between all of the sites at the diurnal to seasonal scales. There

is not much variability between the environments and variables across each site at this fre-

quency. However, we start to see deviation between the different environments and variables

at timescales longer than the seasonal scale. At KFB, for LE and GPP show differences at the

annual frequency between the cool/dry (class 1) and warm/wet (classes 3 and 4) environments.

We see for the cooler drier environment that LE and GPP have a higher coherency (>0.95) than

the warmer environments (∼0.82). Furthermore, for class 1 for both LE and GPP at higher sea-

sonal period KFB has much higher average coherency than the other two sites (∼0.82) (Figure

2.9). This contrast may be related to the model capturing the better environments suitable for

C3 grasses, whereas performing less well under the warmer/wet conditions. For the other two

sites, there is little difference between the other classes seen throughout the changing periods.

These results illustrate that across all sites and variables, the model is able to systemat-

ically capture the same temporal dynamics. The model routinely captures the strength in signal

between the different variables on a diurnal, seasonal, and annual for the fluxes. Furthermore,

the differences between the warmer and cooler environments of the LE and GPP at KFB high-

light how the model is able to capture the responses to where these ecosystems tend to thrive in.

This difference between the environments further illustrates the importance of defining vege-

tation and parameterizing the model, which has implications for the routine application of this

type of model in these heterogeneous vegetation covers that are not easily represented by single
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Figure 2.6: Average Coherency for the site KON. The different panels reflect the water and car-
bon fluxes, LE (a), H (b), NEE (c), and GPP (d).
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Figure 2.7: Average Coherency for the site KFB. The different panels reflect the water and carbon
fluxes, LE (a), H (b), NEE (c), and GPP (d).

24



Figure 2.8: Average Coherency for the site KFS. The different panels reflect the water and carbon
fluxes, LE (a), H (b), NEE (c), and GPP (d).
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Figure 2.9: Average Coherency plots of LE (a,b,c,d) and GPP (e,f,g,h) of the three sites KON
(black), KFB (red), KFS (blue) with the designated classes of Class 1 (a, e), Class 2 (b, f), Class 4
(c, g) and Class 5 (d, h).

26



vegetation classes.

2.4 Conclusion

The vegetation dynamics across Kansas grasslands can be seen to be mostly similar, however

have small differences induced by the heterogeneity of vegetation cover. The SOM results were

able to distinguish between the different environments and demonstrate the importance of the

different grassland species to the water and carbon fluxes. The Noah-MP model was able to

simulate the variations in the water and carbon fluxes. However, the model under performed

when capturing the distributions of the water and carbon fluxes for the more heterogeneous

grasslands. The wavelet analysis showed that the temporal dynamics of the fluxes were similar

across the different frequencies. The model was able to capture the temporal distributions of

the carbon and water variables of the three sites. However, KFB exhibited differences between

the cool and warm environmental classes with the cool class performing better than the warmer

environments which may highlight conditions of which these grasslands tend thrive in (Wang

et al., 2013; Liu et al., 2015).

The implications of this work shows the importance of understanding the different wa-

ter and carbon fluxes when analyzing both homogeneous and heterogeneous grasslands. Un-

der global climate change conditions, it is expected that these grasslands will respond differ-

ently when subjected to different environmental forcings. Therefore, it is essential that we are

able to simulate these potential responses. This paper suggests some areas of improvement are

necessary when examining model responses to these different conditions.
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Chapter 3

Post-drought Recovery Analysis for Water and Carbon Fluxes in

Kansas Grasslands

3.1 Introduction

The frequency and intensity of drought is projected to increase with the intensification of warmer

temperatures in the 21st Century (Dai, 2011, 2013; Trenberth et al., 2014). This projection of

warmer and longer droughts will likely have substantial impacts on climate, weather, agricul-

ture, and other sectors. Previous work has shown the underlying impacts of this prolonged and

more intense projection of drought and other climate extremes (Easterling et al., 2000; Hoover

et al., 2014; Smith et al., 2009). Specifically how drought and other climate extremes affect global

and U.S. grasslands (Brookshire and Weaver, 2015; Dreesen et al., 2012; Haddad et al., 2002;

Hufkens et al., 2016; Van der Molen et al., 2011). Climate and vegetation elements such as the

carbon cycle (Arnone et al., 2011), biomass (De Boeck et al., 2010), vegetation richness (Bres-

hears et al., 2005) are all sensitive to the impacts of climate extremes and drought for grasslands.

As the intensity of climate extremes is expected to increase with projected warmer

global temperatures (Smith et al., 2009), ecosystems and biomes will continue to approach un-

known regions of the climate space (Shi et al., 2014). Furthermore, the effects of climate ex-

tremes on vegetation vary between each ecosystem and local climate (Breshears et al., 2005,

2009; Hanson and Weltzin, 2000; Vicente-Serrano, 2007; Wolf et al., 2014; Teuling et al., 2010).

This opens the possibilities of many questions in climate extremes on all types of vegetation.

Of the climate extremes, droughts play a major role in the reduction in ecosystem function and
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productivity in native grasslands (Hoover et al., 2014; Al-Kaisi et al., 2013). Drought is a ma-

jor constraint limiting crop production, photosynthesis, and reducing water use efficiency in

plants (Farooq et al., 2012; Meir et al., 2008). The intensity and duration of droughts are pro-

jected to increase due to climate change (Fischer and Schär, 2009; Vidale et al., 2007; Swann,

2018), therefore, understanding the impacts of drought on vegetation, specifically the water

and carbon fluxes is essential.

C4 grasses play a major role in global climate, biofuels, and agriculture (Still et al., 2003;

Taub, 2000; Heaton et al., 2008; Sage, 2004). Much research has been conducted on drought im-

pacts on C4 grasslands (Aires et al., 2008; Ripley et al., 2007; Vanaja et al., 2011; Carmo-Silva

et al., 2008; Heckathorn and DeLucia, 1994; Ghannoum, 2009), specifically native C4 grasses

have shown strong responses to different induced periods of drought (Killi et al., 2017; Taylor

et al., 2011; Ripley et al., 2010; Ghannoum et al., 2002). This research (Ripley et al., 2007; Vanaja

et al., 2011; Taylor et al., 2011; Ghannoum et al., 2002; Carmo-Silva et al., 2008) focused on ana-

lyzing the impacts of the water and carbon fluxes to the initial disturbance until the end of the

drought period. However, little research has been conducted analyzing the response of these

water and carbon fluxes for the subsequent years after drought (Yin and Bauerle, 2017; Ruehr

et al., 2019; Van der Molen et al., 2011). We are interested in the response post-drought of the

water and carbon fluxes to return to their pre-drought state specifically with the 2012 drought.

The 2012 drought was noted as a major precipitation deficit and net carbon decrease

across the majority of the Central US (Boyer et al., 2013; Rippey, 2015). The effects of this spe-

cific drought on the environment and are noted in research (Boyer et al., 2013; Rippey, 2015;

Wolf et al., 2016), however little has shown the effects post-drought water and carbon fluxes for

the years after the event. Here we show the effects of the 2012 drought on evapotranspiration

(ET ) and net ecosystem exchange (N EE) as well as the impacts post-drought in 2013 and 2014

using eddy covariance data. This study further demonstrates the strong impact that drought

has on the precipitation, water, and carbon fluxes and the post-drought response of the water

and carbon fluxes.
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In this paper, we will examine the 2012 drought in the Central U.S. and analyze the

recovery of the water and carbon variables back to their pre-drought conditions in a C4 grass-

land. By analyzing the impacts of this specific drought on the water and carbon cycling, this will

further our understanding of the responses to extreme events and their recovery post-drought.

3.2 Methods

3.2.1 Study Area

This study utilizes an eddy covariance site located in Northeastern Kansas that is approximately

8 km south of Manhattan, KS. The Konza Prairie Biological Station (KPBS) is a long-term ecolog-

ical research site that enhances studies and research of tallgrass prairie ecosystems that mon-

itors the eddy covariance site (KON). KON experiences a mid-continental climate with warm,

wet growing season (mean growing season temperature of of 20.8 C and rainfall of 586 mm)

and a cool, dry winter (winter temperature is 4.3 C with a rainfall of 224 mm). KON is an an-

nually burned grassland watershed which consists of native C4 tall grass (Andropogon geradii,

Panicum virgatum, Schizachyrium scopariam, Sorghastrum nutrans).

Our goal is to increase our understanding of how drought impacts the water and car-

bon fluxes and the recovery following the event. We utilized the data from 2006-2014. We used

latent heat flux which was converted to evapotranspiration (ET ) [mm day−1] and net ecosystem

exchange (N EE) [µmolCO2 m−2 s−1] for the desired fluxes. Furthermore we used air tempera-

ture Tai r [K], vapor pressure deficit V PD [kPa] and precipitation (PPT ) [mm]. The data were

recorded in half-hourly timesteps, but were aggregated to daily measurements by averaging

each variable. For ET we note the number of days missing data, 2012 (121 days), 2013 (86 days),

2014 (74 days). N EE had no days of missing data for all years. This site datum were processed

using the EddyPro software according to Ameriflux standard processing recommendations, see

(Brunsell et al., 2014) and (Logan and Brunsell, 2015) for additional details. We defined the pre-

drought baseline for each variable from the average of the data record prior (2006-2011) to the
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drought event (2012). This allowed us to compare these variables to the pre-drought event and

recovery back to the values represented by this baseline period.

3.3 Results/Discussion

3.3.1 2012 Drought

The 2012 drought was a noted as a major precipitation deficit and net carbon decrease across

the majority of the Central US (Boyer et al., 2013; Rippey, 2015). This is confirmed with our

site from analyzing the deficit of annual sum of PPT , ET , and N EE from the baseline period,

shown in Table 3.2. For PPT our pre-drought period calculation for the year was 874.5 mm, ET

was 728.3343 mm day−1, and N EE was -0.00131 µmolCO2 m−2 s−1. We saw a reduction of all

variables in 2012 with KON receiving 568.9 mm of PPT , 405.7975 mm day−1 of ET , and -0.00031

µmolCO2 m−2 s−1 of N EE . These reductions of these variables demonstrates the effects that the

2012 drought had on one site compared to its pre-2012 conditions.

Air temperature and vapor pressure deficit shows little variation between the subse-

quent years from the pre-drought period to the end of 2014. Figure 3.1 and Table 3.1 shows

the air temperature and vapor pressure deficit for the baseline and 2012-2014. We find that the

mean difference for temperature across all years is relatively small ( 1.03 K) with the largest dif-

ference occurring in 2014 (2.0520 K) and smallest in 2013 (0.3904 K). For V PD , we find the mean

difference to be small as well ( 1.06 kPa) with the largest difference occurring in 2012 (1.8025

kPa) and the smallest in 2013 (0.5209 kPa). Furthermore, paired t-tests were ran between the

baseline and subsequent years of which they have similar significance in relation to the means

( p<0.02). We demonstrate that from the environmental conditions, there was not any notable

changes from our pre-drought baseline period to the subsequent years. When considering the

post-drought response, we find that with little change to environmental variables from the pre-

drought period, that the environmental conditions factor much less into the observed behavior

of the water and carbon variables.
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Figure 3.1: Daily Average Air Temperature [K] (a) and Vapor Pressure Deficit [kPa] (b) for the
years 2012 (red), 2013 (green), 2014 (blue) and the baseline period (purple).

Table 3.1: Calculated means and variances for air temperature (Tai r ) [K] and vapor pressure
deficit (V PD) [kPa]

Var Stat Baseline 2012 2013 2014

Tai r Mean 285.7239 286.3776 285.3335 287.7768
Tai r Variance 105.6814 91.2111 144.1766 143.9821
V PD Mean 7.0184 8.8209 7.5393 6.1670
V PD Variance 16.9468 42.2346 34.3155 27.2826
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Figure 3.2: Cumulative sums of PPT [mm] (dotted) and ET [mm day−1] (solid) for the years
2012 (red), 2013 (green), and 2014 (blue).

3.3.2 ET Post-Drought Response

ET is an important variable as it is how much water is evaporated from plants to the atmosphere

which effects water cycle dynamics and carbon dynamics (Allen et al., 1989). For ET , we find

that the total amount of evapotranspiration compared to the baseline (728.3343 mm day−1),

drought-year (409.7985 mm day−1), and subsequent years after was higher in 2013 (781.372

mm day−1) and 2014 (530.09 mm day−1), shown in Table 3.2. The strong reduction in ET in 2012

(409.7985 mm day−1) to the baseline demonstrates the impact that drought had on the water

cycle. Furthermore, for 2013, there was a higher amount of total ET (781.372 mm day−1) relative

to the baseline even with lower amounts of precipitation compared to the baseline, Table 3.2.

This response of ET in 2013 represents one site’s post-drought characteristics as an increase

total amount of ET . Furthermore, in the early growing season (Day of Year 50-180) for 2013

there was a higher amount of ET (367.5763 mm day−1) compared to the baseline (299.5648 mm

day−1), Figure 3.3, and Table 3.3. Where in 2012, we see that for ET it’s very close to the same

between the baseline (difference of 0.04 mm day−1). This large response of ET in the early

growing season illustrates the impacts of post-drought water cycle changes for which a large
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increase in ET is shown the year after drought.

Table 3.2: Cumulative sums of precipitation (PPT ) [mm], evapotranspiration (ET ) [mm day−1

and net ecosystem exchange (N EE) [µmolCO2 m−2 s−1].

Var Baseline 2012 2013 2014

PPT 874.5 568.9 783.4 705.8
ET 728.3343 405.7975 781.372 530.09

N EE -0.00131 -0.00031 -0.00598 -0.00256

As we saw in 2013 with an increase in total growing season ET , for 2014 it exhibited

a return to the baseline early growing season totals (328.2751 mm day−1), Table 3.3 and Fig-

ure 3.3. However, for the yearly totals that 2014 exhibited a smaller total for ET (530.09 mm

day−1) compared to the baseline (728.3343 mm day−1). This may be a result from having a low

amount of PPT for 2014 (705.8 mm) from the pre-drought conditions rather than being a direct

response of post-drought conditions. The primary response of the water cycle conditions is in

the early growing season because it has a larger response to the post-drought conditions. For

the early growing season, ET decreased from 2013 (-39.3012 mm day−1) and moved closer to

the baseline (difference of 28.7103 mm day−1). This suggests that two years post-drought the

ET returns back to pre-drought conditions. This illustrates the sensitivity of ET for one site

after a major drought period and its recovery time back to pre-drought conditions.

3.3.3 N EE Post-Drought Response

The drought year for KON showed an increase in annual sums for N EE of 0.001 µmolCO2 m−2

s−1 from pre-drought conditions. One year after drought there was a 0.00467 µmolCO2 m−2

s−1 decrease in N EE annually, Table 3.2 and Figure 3.4. Furthermore in the early spring and

growing season, we see a decrease of N EE of 0.00229 µmolCO2 m−2 s−1 or three times the base-

line (, Figure 3.4). The large decrease within the early growing season suggests the immediate

carbon response post-drought. A larger assimilation of carbon into the plants is experienced

in the early growing season and throughout the year. This may suggest the plant response to
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Figure 3.3: Cumulative daily sum of ET [mm day−1] for early growing season (DoY 50-180). For
the years 2012 (red), 2013 (green), 2014 (blue) and the baseline period (purple).

drought is to assimilate higher amounts of carbon that was potentially cut-off from the year

prior with drought. The larger response (-0.00332 µmolCO2 m−2 s−1) in the early growing sug-

gests a faster and earlier blooming season with higher amounts of carbon passing to the plants.

The annual sum being nearly five times larger than the baseline period (Table 3.2) further sug-

gests the plants initiative in assimilation higher amounts of carbon as lost a significant portion

during the drought.

Table 3.3: Early growing season (DoY 50-180) sums for evapotranspiration (ET ) [mm day−1]
and net ecosystem exchange (N EE) [µmolCO2 m−2 s−1].

Var Baseline 2012 2013 2014

ET 299.5648 299.1525 367.5763 328.2751
N EE -0.00103 -0.00167 -0.00332 -0.00161

For the early growing season, N EE increases from the strong 2013 year (-0.00161µmolCO2

m−2 s−1). In 2014, the N EE response is similar to that of ET and returns to the baseline state

(difference of 0.00125 µmolCO2 m−2 s−1), Table 3.2. This illustrates the carbon flux returning

to its baseline state after the large deviation of N EE in 2013 (difference of 0.00171 µmolCO2
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m−2 s−1). This suggests that two years after the extreme drought the amount of carbon being

exchanged between this ecosystem returns back to base state. This aligns with the same time

period as ET return back to base state after a strong deviation from the baseline. This further

suggests that the water and carbon cycle show the same change post-drought for this specific

one site case.

ET and N EE demonstrate similar responses in their post-drought recovery times. Both

ET and N EE were impacted over the same period of time in returning back closely to baseline

two years post extreme drought and expressing higher amounts of ET and N EE . However, there

was a strong difference between the magnitudes one year post-drought. N EE had five times the

amount difference of sums between the pre-drought (-0.00131 µmolCO2 m−2 s−1) state to 2013

(0.00598 µmolCO2 m−2 s−1), Table 3.2. Furthermore, in the early growing season its noted to be

already three times larger than the pre-drought period. This suggests for one year post-drought

cases that the carbon will receive a stronger response in magnitude to extreme drought in both

annual total and early growing season.

3.4 Conclusion

There is a large impact on local water and carbon fluxes during extreme drought events. In 2012,

there was a strong reduction in precipitation, evapotranspiration and net ecosystem exchange

annually and early growing season. This reduction conforms to past research (Aires et al., 2008;

Ghannoum, 2009; Ripley et al., 2007; Wolf et al., 2016) where they saw a reduction in these vari-

ables.

In the first year following the drought, there was an increased amount of ET and N EE

annually and especially in the early growing season. This illustrates the alike responses between

the local water and carbon cycles. This strong signal can be linked to ecosystem/plants re-

sponse to the extreme drought case, in that the local climate experienced a much larger amount

of ET and N EE the subsequent year. This demonstrates that with a strong reduction in carbon

being exchanged during drought, the following year received a much larger carbon exchange
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Figure 3.4: Cumulative annual sum of N EE (a) [µmolCO2 m−2 s−1], cumulative early grow-
ing season (DoY 50-180) of N EE (b), and daily average N EE (c) for the years 2012 (red), 2013
(green), 2014 (blue) and the baseline period (purple).
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into the ecosystem. The following year, two years post-drought, we saw that the water and car-

bon fluxes start to return back to pre-drought conditions. This again suggests that it takes about

two years for these ecosystems to return back to pre-drought conditions under small deviations

between air temperature and vapor pressure deficit. One limitation of this study would be only

analyzing one sites response for each of these variables. Further implementation of this work

would stretch out to other various sites and ecosystems to see if they exhibit these characteris-

tics.

The implications of this work shows the responses of the water and carbon fluxes dur-

ing drought and how they respond to extreme drought two years prior. As global frequency and

intensity of drought is projected to increase (Dai, 2013; Trenberth et al., 2014; Smith et al., 2009)

it is essential to monitor and understand these impacts that drought has on these ecosystems

post event. This paper demonstrates the effects that extreme drought has on the water and

carbon fluxes in a C4 cover grassland in the Central Plains.
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Chapter 4

Conclusion

This research aimed to analyze the vegetation impacts on the local and regional water and car-

bon fluxes of Kansas grasslands. By classifying the different environments to evaluate the re-

sponses and temporal dynamics (Chapter 2) and analyzing post-drought responses the impacts

(Chapter 3) from the vegetation are demonstrated. Based on the quantitative and qualitative

analysis from classifying into the different environments, it can be concluded that differences in

vegetation cover alter the responses of the water and carbon fluxes. Furthermore, that different

global climate change conditions will alter the responses differently for each of the represented

grasslands. However, the temporal dynamics of these vegetation covers indicated small vari-

ance across the different environments with one caveat being that KFB had higher coherency

for environments that vegetation tended to thrive. This suggests that although the temporal

dynamics of these variables will not change, the magnitudes and variance along these different

classes induced by climate change will alter the feedbacks between the water and carbon fluxes.

Additionally, Chapter 2 was able to illustrate that under different environmental conditions the

responses of the water and carbon fluxes for these grasslands varied and experienced higher

correlation and smaller variance in environments they tend to thrive in (Wang et al., 2013; Liu

et al., 2015).

Chapter 3 was able to demonstrate how an extreme event, drought, impacted the local

water and carbon fluxes. The year of extreme drought there was a strong reduction in pre-

cipitation, evapotranspiration and net ecosystem exchange. One year following the drought,

there was an increase in evapotranspiration and net ecosystem exchange annually and in the

early growing season. N EE increased five times the amount of the pre-drought period annually
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and three times the amount in the early growing season, demonstrating the strong response

after drought. Two years after drought ET and N EE was shown to return close to baseline

pre-drought conditions suggesting a two year recovery time with extreme drought cases. This

research was able to demonstrate the local water and carbon responses to an extreme drought

case and focused on the post-drought magnitudes and recovery time of these variables.

Based on these conclusions and results, future studies could address the model results

in Chapter 2. Since, Chapter 2 used the base parameterization scheme with NCEP forcing data,

the model results with the different quantitative statistics were relatively low. Understanding

the divergence of the homogeneity/heterogeneity of vegetation would be beneficial in improv-

ing model dynamics in both land-surface and climate models, instead of these models ’under-

standing’ these processes at a site (pixel) level. Furthermore, parameterizing the heterogeneous

vegetation in the model would be useful for allocating to the different water and carbon fluxes

within these ecosystems. Results displayed that in implementing these models there must be

some better parameterization for these different heterogeneous vegetation.

Additionally, in Chapter 3 the results only demonstrated one site’s response to one ex-

treme event case. Further research can be conducted on providing more sites (vegetation) cov-

erage in evaluating the water and carbon variables response to extreme events. This will ensure

that the results from Chapter 3 are either similar or different based on the magnitude or recov-

ery time across each added ecosystem. This will provide further insight as to how vegetation

plays a different role across each ecosystem and how it tailors to each environment. Further-

more, using different cases of drought would prove to be useful in determining the impacts that

drought has on vegetation. For example, using a temporal period as a component for drought

or using different defined ’droughts’ could tailor responses dissimilar to Chapter 3.

These two chapters were able to present the impacts that vegetation has on the local

and regional water and carbon fluxes in Kansas grasslands. By allocating to the different envi-

ronments and analyzing the post-drought responses of these variables we further improve our

understanding of these fluxes. This research further demonstrates how essential vegetation’s
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role is in altering the local climate.
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