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Abstract

The observation of macroscopic quantum tunneling (MQT) manifests the quantum-

ness of macroscopic variables, such as the phase difference across a Josephson junc-

tion (JJ). Since then, MQT has become a hallmark experiment to show the quantum

nature of JJ-based devices. It has also paved a way to test other macroscopic quantum

effects and has led to engineering a variety of artificial atoms, i.e., qubits. However, in

the progress of quantum circuits for different applications, it is crucial to understand

the influence of thermal and quantum fluctuations, dissipation, and noise to various

quantum devices. Thus, the role of the factors mentioned above and the junction pa-

rameters EJ (Josephson coupling energy) and EC (charging energy) can be scrutinized

by understanding the dynamics of the fictitious phase particle. Similarly, in the appli-

cation perspective, Szilard engine based on SET device are too slow to convert heat

into work and are not efficient in-terms of power performance. To overcome the draw-

backs, we proposed a high-efficiency fast Szilard engine based on a flux logic device

(FLD) and investigated its property numerically and optimize its performance.

In the first part of the dissertation, we studied the phase dynamics of moderately

damped Josephson junctions. The time of flight technique is used to measure the

switching current distributions (SCDs). Different dynamical states, thermal activation

(TA), MQT, and phase diffusion (PD) are identified from SCDs through well-defined

criteria. We observed unambiguous evidence of MQT when temperature is below

∼ 0.5-0.8 K. The importance of the tilt in the phase dynamics of the junctions, which

has been overlooked in previous studies, is clarified. We found that the junction with
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larger EJ but the same ωp0 requires greater tilt and lower temperature to enter MQT

regime.

In the second part of the dissertation, to overcome the limitation of the SET based

Szilard engine, we used superconducting quantum interference device (SQUID) as a

one-bit flux logic cell to realize a fast Szilard engine for optimal power. In the past

decade, due to technological advancement, the study of energy fluctuations in nano-

scale systems such as optical or electrical traps and single-electron tunneling (SET)

devices has transformed Szilard’s engine to experimental realizations. However, the

heat engine realized are slow to convert heat into work limiting their performance in

speed and power. The SQUID-based flux logic device (FLD) has a high characteristic

frequency, ωp/2π ∼1010 Hz, making it an excellent candidate for realizing a high-

efficiency Szilard engine with unprecedented performance. We showed that, on aver-

age, the proposed heat engine can extract kBT ln2 of heat per cycle from the thermal

reservoir in the quasi-static (QS) limit. In addition, we showed that the FLD-based

Szilard engine delivers maximum power when operated about 200 times faster than

the threshold speed of quasi-static operation. Our result demonstrates that Szilard’s

engine’s performance based on FLD exceeds other nano-device implementations by

orders of magnitude.
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Chapter 1

Introduction

This chapter aims to build a theoretical framework needed behind the experimental results pre-

sented in this dissertation.

1.1 Superconductivity

In 1911, Heike Kamerlingh Onnes discovered that the resistivity, ρ of mercury, drops suddenly to

zero when cooled below a specific temperature. He observed that above this specific temperature

a.k.a. critical temperature Tc, ρ varies linearly, but when T ≤ Tc = 4.2 K, ρ drops sharply to zero

[1, 2]. This finding leads to the discovery of a new family of conductors named superconductors,

for which ρ = 0 when cooled below Tc (which is the characteristic of the material). Thus, perfect

conductivity becomes the first hallmark property of superconductivity. This experimental finding

provided a clear picture that a phase transition from a normal metal state to a superconducting

state exists. The exponential rise in heat capacity near Tc and the transition being continuous in-

dicated the phase transition without a latent heat. Besides the abnormal specific heat capacity,

there are several other peculiar macroscopic properties of the superconductor, such as the Meiss-

ner effect (expulsion of the magnetic field from the interior of the superconductor), and the Isotope
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effect (dependence of Tc on the isotopic mass) [3]. The zero resistivity of such materials pointed

towards the direction of several exciting applications such as lossless transmission cables, the pro-

duction of high-power electromagnets, and even energy storage devices. Besides, the discovery

of the Josephson effect in 1962 opened up the exciting potential for the use of superconductors in

metrology such as voltage standard, ultra sensitive magnetometer (SQUID), and high-speed digital

electronic circuits (RSFQ) [4–8].

1.1.1 Phenomenological theory of Superconductivity

H. London developed a linear electrodynamical response theory of the superconductivity [9, 10].

The London equations successfully explained the two hallmark properties of superconductors:

perfect conductivity and perfect diamagnetism (Meissner effect). London’s equations are based

on the two-fluid model (proposed by Gorter and Casimir, 1934), a simple yet useful model for

a superconductor’s behavior at finite temperature. The model assumes that the superconducting

electrons are grouped together and localized in space such that the mean momentum (kinetic plus

the field momentum) of the superconducting electrons is zero, i.e. 〈P〉 = msvs + esA/c = 0 [1].

The assumption leads to the direct relation between the supercurrent density (Js) and the vector

potential A of the local magnetic field as

Js = nses〈vs〉=−
nse2

s A
msc

, (1.1)

where ns is the superconducting electron density, ms is the mass of the super-electron carrying the

charge es and c is the speed of light. Take the time derivative and the curl on both side of the

Eq. (1.1) yields the simplified form of the London’s equation (1.2a) and (1.2b). Eqs. (1.2a) and

(1.2b) provide a macroscopic electrodynamic behavior of superconductors [11]. They relate the
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local electric (E) and magnetic (B) fields to the supercurrent density (Js) as

E = µ0λ
2
L

∂ (Js)

∂ t
(1.2a)

B =−µ0λ
2
L ∇× (Js), (1.2b)

where λL =
√

ms/µ0ns e2
s is a material-dependent phenomenological constant known as the Lon-

dons penetration depth. The first London equation expresses perfect conductivity in that the elec-

tric field accelerates the super-electrons whereas the second equation describes the Meissner effect.

The exponential decaying of the magnetic field inside the superconductor is obtained by taking the

curl of the Maxwell’s relation, ∇×B = µ0Js and inserting the value into Eq. (1.2b) , which leads

to ∇2B = B/λ 2
L . The general solution for a semi-infinite superconductor is B = B0 exp(−x/λL)

where x is the distance from the surface of the bulk superconductor. It shows that magnetic field

penetrates into the superconductor a distance, λL [12].

The Ginzburg-Landau (GL) theory (1950) is a modification to London’s theory based on Lan-

dau’s mean-field theory of second-order phase transition [9]. They realized that superconductivity

is a quantum phenomenon in which all the superconducting electrons (superfluid) reside in the

"macroscopic quantum ground state" described by a macroscopic complex order parameter (wave

function) by

Ψ(r) =
√

ns(r)eiϕ(r), (1.3)

where ϕ is the phase of the order parameter [13]. The superconducting current density is related

to the order parameter as

Js =−
(esh̄ns

2ms

)
∇ϕ−

(nse2
s

msc

)
A. (1.4)

We can obtain the second London equation if there is no spacial dependent order parameter. Be-

yond the results obtained from the London equations, the GL theory predicted a second character-

istic length scale ξ , over which spatial changes in Ψ occur. From the macroscopic theory point
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of view, it represents the spatial distance over which the superconducting to normal transitions oc-

curs. The coherence length is material dependent and a strong function of the lattice imperfections.

Thus, the fundamental characteristic length, London penetration depth (λL), and Coherence length

(ξ ) were brought into light, which defines the behavior of a superconductor. Superconductors with

ξ > λL are called Type I, while Type II superconductors have ξ < λL [14].

1.1.2 BCS theory

Even though GL theory was able to explain certain properties of superconductors by introducing

the spacial dependent order parameter, the theory failed to address observations such as the appear-

ance of a gap in the energy spectrum of superconductors, the exponential rise in heat capacity near

Tc, and the isotope effect where Tc ∝ M−1/2, where M is the atomic mass of the isotope [15]. The

existence of the energy gap hinted a phase transition in which there was a kind of condensation,

like a Bose-Einstein condensation, while the evidence for electron-phonon interaction for forming

the superconducting phase came from the isotope effect [10].

In 1957, a complete microscopic theory of conventional superconductivity was developed by

Bardeen-Cooper-Schrieffer (BCS) based on the experimental observations mentioned above [16].

From a microscopic perspective, the electron’s uncorrelated motion is responsible for conduction

in normal state. However, in the superconducting state, all Cooper pairs condense in momentum

space causes the loss of individual microscopic degree of freedom associated with each electron

(fermion). A collective macroscopic coordinate such as the center of mass (CM) of the condensate

governs the system’s dynamics. The Cooper pairs’ net momentum remains zero in the condensate

as discussed in section 1.2. Furthermore, the zero resistance is possible due to the unique macro-

scopic collective quantum behavior of super electrons, described by a single coherent wavefunction

that extends over the superconductor’s volume.
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The main idea behind the BCS theory is the concept of Cooper pairs. According to the BCS the-

ory, the attractive interaction between electrons to form Cooper pairs (bosons) is phonon-mediated

(lattice vibration). When an electron moves through a crystal lattice, due to Coulomb attraction,

the lattice gets deformed, creating a region of higher positive charge density around the moving

electron’s vicinity. The magnitude of the lattice deformation depends on the isotopic mass of

the positive ions, and the larger the ions mass lesser the development of the positive charge den-

sity. This electron-phonon interaction makes the second electron energetically favorable to move

closer to a higher positive charge area, creating an effective, attractive interaction between the two

electrons. This net interaction results from an interplay between the attractive phonon-mediated

interaction and the repulsive screened Coulomb interaction. This correlated pair of electrons have

opposite spin and momentum and is referred to as a Cooper pair and can move through the crystal

lattice without resistance when all Cooper pairs form a condensate. The correlation appears to be

of a long-range (at the scale of coherence length) of the order of several nm, and the energy of the

pairing interaction is relatively weak, of the order of 10−3 eV depending on the material properties

[10]. Thus, the Cooper pairs being bosons can condensate into the same zero momentum quantum

ground state, which gives rise to the superconducting state which is protected by the supercon-

ducting energy gap (∆). The superconducting state can cease when sufficient energy is supplied to

break Cooper pairs. The thermal energy from the crystal lattice’s vibrations (implies the existence

of a critical temperature of Tc), magnetic energy from the magnetic field (suggests the presence of

a critical magnetic field Hc) or large kinetic energy associated with high current density can break

Cooper pairs and thus destroys superconductivity.

BCS theory uses mean-field theory to introduce the effective phonon mediated weak electron-

electron (e-e) interaction of the form

Veff(ω) = |geff|2
1

ω2−ω2
D
, (1.5)
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where, geff is an effective constant of electron-phonon interaction and ωD is a cut-off frequency,

above which the interaction becomes repulsive [10]. For ω < ωD, phonon mediated interaction is

constant and attractive, Veff(ω) = −|geff|2, which produces Cooper pairing and causes the energy

gap in the density of electron states at T and relates to Tc as

∆(0)' 2h̄ωD exp
(
− 1

N(εF)geff

)
' 1.76kBTc, (1.6)

where N(εF) refers to the electrons density of states at the Fermi surface. The BCS formula, Eq.

(1.6) is valid only in the limit N(εF)geff << 1, in the so-called weak electron-phonon interaction

regime and holds for most of the conventional superconductors. Physically, the energy gap is one-

half of the minimum value of energy require to break a Cooper pair into two ordinary electrons.

The natural explanation of the isotope effect comes from the relation Tc ∝ ωD ∝ M−1/2, in agree-

ment with the experimental observation. The most significant prediction of the BCS theory is that

∆(0)/kBTc ' 1.76 takes the universal constant independent of material for all weak-coupling su-

perconductors [10].

1.2 Josephson effect

The fundamental concept of quantum mechanics, the wave nature of particles, successfully ex-

plains the quantum tunneling phenomena observed in various fields of science. The detailed un-

derstanding of quantum tunneling has led to many applications such as electron tunneling in the

field-effect transistor, the scanning tunneling microscope (STM), and the single-electron transistor

(SETs) [17–19].

Tunneling of electrons and Cooper pairs can occur through different types of junction structures.

Junctions can be formed by connecting two electrodes by a thin barrier layer. The electrodes can
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be superconductors (S), normal metals (N), or the combination of a normal metal and a supercon-

ductor. The barrier layer can be a thin native oxide, an artificial oxide layer, a semiconductor, or a

ferromagnetic material [20]. These structures have provided a platform to study the fundamental

physics of the Josephson effect, Andreev reflection, Coulomb blockade, and even solid-state re-

frigeration and thermometry [21–25]. Our focus here is on the tunneling of electrons/Cooper pairs

between the superconducting electrodes separated by a thin insulating layer (I). Thanks to Brian

D. Josephson and Ivar Giaever for providing a clear theoretical understanding and experimental

knowledge of physics behind the Josephson effect [26, 27].

Two superconductors connected by a thin insulating layer (S-I-S) are called a Josephson tunnel

junction (JJ). According to BCS theory, at low temperature, a superconductor is a macroscopic

quantum object described by a single quantum state occupied by all Cooper pairs. The macro-

scopic wavefunction representing the state of all Cooper pairs decays exponentially outside of

the superconductor. When two superconductors are separated by a macroscopic distance (thick

insulating layer), they behave as two independent quantum objects described by two individual

superconducting order parameters. However, when the thickness of the insulating layer is gradu-

ally reduced coupling between the two superconductor electrodes can occur. The exponential tails

of the order parameter of the superconducting electrodes overlap inside the thin insulating layer,

enabling Cooper pair tunneling. Significant coupling can be created between the superconducting

electrodes by fabricating junctions with a thin insulating layer (∼ nm scale). This phenomenon is

known as the Josephson effect [28].

Josephson theoretically predicted the "Josephson effect," which involves Cooper pair tunneling

and manifests in two unique phenomena. First, the DC Josephson effect describes Cooper pairs’

dissipationless tunneling, allowing one to observe a tunneling current at zero voltage. Second, the

AC Josephson effect describes the transfer of Cooper pairs across the tunnel barrier, when there is

a finite voltage (V ) across the junction, via emitting a photon of energy E = hν and therefore acts

7



as a perfect voltage to frequency (ν) converter 2eV = hν , where e denotes the elementary charge

and h is Planck’s constant [29].

It is a good idea to recall a straightforward derivation of the Josephson relations done by Feynman,

Figure 1.1. Schematic of a typical trilayer sandwich-type superconducting tunnel Josephson junction (S-

I-S). ΨL and ΨR are the order parameters for the left (SCL) and the right (SCR) ground state of the super-

conductor electrodes respectively. The amplitude of the order parameter decays exponentially inside the

insulator (I). The overlap of the order parameters inside the insulator provides a coupling between them and

allows the Cooper pairs’ tunneling. The supercurrent flow is along the x-axis.

which is based on a “two-level system” picture of a macroscopic quantum object [1, 30]. Without

going into the full derivation, the Josephson relations can be obtained from the time evolution of

the coupled “two-level system” described by the Hamiltonian, H = HL +HR +HI . Here, HL and

HR are the unperturbed Hamiltonian of the ground states of the respective superconductor, whereas

HI is the interaction Hamiltonian. The interaction Hamiltonian is written in terms of the coupling

constant K as HI = K[〈L|R〉+ 〈R|L〉], where |L〉 and |R〉 are the condensate state vectors respec-

tively. It measures the interaction between the two superconductors, which depends on the specific

properties such as geometry, type of barrier, etc., of the junction. Assuming the two supercon-

ducting electrodes to be same, |ΨL|= |ΨR|=
√

ns, and setting ϕ = ϕL−ϕR, we get the following
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equations:

I = Ic sin(ϕ) (1.7a)

∂ϕ

∂ t
=

2e
h̄

V =
2π

Φ0
V, (1.7b)

where Φ0 = h/2e is the flux quantum and Ic = 2K/h̄ns is known as critical current, i.e., maximum

supercurrent that can pass through the junction. As Ic ∝ K, it reflects the coupling strength between

the superconducting electrodes. The tunnel barrier thickness (d), typically on the order of a few

nm (less than the superconducting coherence length), is required for the superconductor electrodes

to remain phase coherent and to produce high Jc because of the exponential dependence of Ic on

the tunnel barrier thickness (d). The Ambegaokar-Baratoff relation gives the magnitude of Ic in

the case of an S-I-S junction

Ic(T ) =
π∆(T )
2eRN

tanh

[
∆(T )
2kBT

]
, (1.8)

where RN is the normal state resistance of the junction [29]. Eq. (1.8) shows Ic depends on T

and the superconducting energy gap ∆. The IcRN product of a tunnel Josephson junction does not

depend on the properties of a particular insulating barrier and at T = 0 is simply related to the

superconducting gap as Vc = IcRN = π∆(0)/2e. Larger the gap, higher would be the characteristic

voltage Vc. Thus, Eqs. (1.7a) and (1.8) describes the zero voltage DC properties of S-I-S Josephson

junctions.

Eq. (1.7b) suggests that for V 6= 0 the phase varies in time as ϕ = ϕ0 +(2e/h̄)Vt and therefore

there exists an alternating supercurrent

I = Ic sin
(

ϕ0 +
2e
h̄

Vt
)
, (1.9)

oscillating with a frequency f = 2eV/h. This is called the AC Josephson effect. The proportional-

ity factor between voltage and frequency is referred to as the Josephson constant, f/V = 2e/h =
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483.6 THz/V [31]. This forms the basis for the definition of the volt and the Josephson voltage

standard. The inverse AC Josephson relation was confirmed experimentally by Shapiro. He ob-

served the current steps (Shapiro steps) in the I-V curve by irradiating the junction with microwave

of frequency ν . The current steps are observed at well-defined constant voltage values, Vn = nhν ,

known as Shapiro steps [32]. Further, Rowell studied the effect of magnetic field B, applied in

the plane of S-I-S junctions. He observed the modulation of critical current Ic, analogous to the

Fraunhofer pattern in a single slit optical diffraction experiment. This observation is a confirmation

of the sinusoidal current phase relation and the uniformity of the junctions [28].

From an electrical circuit point of view, a Josephson junction is a dissipationless nonlinear in-

ductor. This unique property makes tunnel junction a fundamental electronic component for the

superconducting qubits (artificial atoms). The Josephson inductance L(ϕ), instead of being a con-

stant, can be modulated by the current passing through it. The dependence of L(ϕ) on the bias

current (I) can be obtained by differentiating Eq. (1.9)

L(ϕ) =V
(

dI
dt

)−1

=
Φ0

2πIc cosϕ
=

Φ0

2πIc

[
1−
( I

Ic

)2
]−1/2

(1.10)

Since it behaves as an inductor, an essential property of a Josephson junction is the capability to

store energy from the tunneling of Cooper-pairs, known as Josephson energy EJ . The Josephson

energy can be derived by taking the time integral of the power put into the junction, as follows:

WJ =

ˆ
IV dt =

ˆ
Ic sinϕ

h̄
2e

dϕ

dt
dt =−EJ cosϕ, (1.11)

where EJ = IcΦ0/2π is the maximum Josephson energy. It is clear that the energy stored in a JJ

depends on ϕ . The non-linearity of Josephson energy is extremely important to superconducting

circuits. Similarly, two conductors separated by a thin insulating layer act as a capacitor. The en-

ergy store by the capacitive channel is associated with the charging energy EC = e2/2C, where C is

the junction’s capacitance. Note that the ratio between EJ and Ec govern the Josephson junction’s

10



behavior when designing different types of superconducting qubits.

1.3 RCSJ model

Figure 1.2. (a) A circuit diagram for resistively capacitively shunted Josephson junction model (RCSJ).

The Josephson junction is modeled by an equivalent electronic circuit consisting of a Josephson inductor

in parallel with an ohmic resistor R and a capacitor C. (b) The Josephson junction has the cosine potential

energy, which gives rise to the unevenly spaced energy levels.

The resistively and capacitively shunted junction model (RCSJ model) introduced by Stewart and

McCumber in 1968 [33, 34] is successful in explaining the phase dynamics of Josephson junction.

The junction is modeled by an equivalent electronic circuit consisting of a Josephson inductor in

parallel with an ohmic resistor R, which represents its effective shunt resistance accounting for the

dissipation due to the presence of quasiparticles in the finite voltage state, and capacitor C account-

ing for the intrinsic capacitance (geometry dependent) arising from junction’s superconducting

electrodes as shown in FIG. 1.2(b). The dissipation here is modeled as a frequency-independent

resistance, which accounts for other normal conduction channels parallel with the junction. The

current across the junction can be written as the sum of the currents through the three components
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as

I = Ic sinϕ +
V
R
+C

dV
dt

. (1.12)

We can express the equation in terms of phase by using Josephson relations, Eq. (1.7b).

I = Ic sinϕ +
h̄

2eR
dϕ

dt
+

h̄C
2e

d2ϕ

dt2 (1.13)

The dimensionless form of the equation, which has the advantage of reducing the number of system

parameters, is

i = sinϕ +
dϕ

dτ
+βC

d2ϕ

dτ2 , (1.14)

where i≡ I/Ic is the normalized bias current, τ = 2eIcRt/h̄, and βC = 2eIcR2C/h̄ is called Stewart-

Macumber parameter, which determines the type of I-V characteristic of the junction.

Figure 1.3. The schematic I-V characteristics showing the typical hysteretic (βC >> 1) and non-hysteretic

(βC << 1) behavior of a Josephson junction. Is and Ir are the switching and re-trapping current respectively.

The Stewart-Macumber parameter, βC is related to the quality factor as βC = Q2
0.

When the junction is underdamped, βC >> 1, the I-V curve is hysteretic. The tunnel-junction-like

hysteresis has the presence of abrupt switching from the zero to the finite voltage state hence is con-

venient for measuring switching current distribution (SCD). In contrast, for overdamped junctions

βC << 1 the I-V characteristics are nonhysteretic. In this case, switching from the superconduct-

12



ing state (zero voltage state) to the normal state (finite voltage state) is continuous hence it is much

harder to determine switching current accurately.

Based on the RCSJ model, the dynamics of a current biased Josephson junction is analog to a

fictitious phase particle of mass C moving in a washboard potential

U(ϕ) =
IcΦ0

2π

(
− I

Ic
ϕ− cosϕ

)
=−EJ(iϕ + cosϕ), (1.15)

where C is the junction’s shunt capacitance, and ϕ is the gauge-invariant phase difference across

the junction representing position of the phase particle. The potential has the form of a tilted

cosine, for which the tilt is proportional to the normalized bias current i and is therefore called a

washboard potential. FIG. 1.4 shows a plot of U(ϕ) at several values of the normalized bias current

i. Between ϕ = 0 and 2π , the washboard potential has a local minima located at ϕmin = sin−1 i

Figure 1.4. The washboard potential of a Josephson junction plotted for three different tilt controlled by the

ratio I/Ic. A solid black sphere shows the fictitious phase particle at one of the potential minima, which

oscillates with the small oscillation frequency ωp at the bottom of the well.

and a maxima at ϕmax = π− sin−1 i. The barrier height of the metastable potential well for i < 1 is

given by [35]

∆U =U(ϕmax)−U(ϕmin) = 2EJ

(√
1− i2− icos−1 i

)
. (1.16)
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When i = 0, the barrier height becomes maximum ∆U ≡ 2EJ which shows Josephson energy EJ

as the characteristic energy scale involved in the phase dynamics. The barrier height, ∆U can be

fine-tuned by varying i and for i→ 1 is given by

∆U ∼= EJ
4
√

2
3

(1− i)3/2. (1.17)

In the experiment, the bias current I is close to Ic; under this approximation, the shape of the

potential is cubic. The anharmonicity, which leads to a decrease in the spacing of the energy levels

in the well with increasing energy, is crucial to observe ELQ. When the phase particle is trapped in

one of the potential wells, it undergoes a small oscillation at the bottom of the potential well. The

angular frequency of the oscillation can be obtained by knowing the potential’s curvature.

ωp =

√
U ′′

(ϕ)

m
= ωp0(1− i2)1/4 ≡

√
2πIc

CΦ0
(1− i2)1/4, (1.18)

where ωp0 =
√

2πIc/Φ0C is the plasma frequency at zero bias current. For a typical tunnel junc-

tion, the plasma frequency is in the microwave range, with several tens of GHz.

The quality factor (Q0) is the ratio of energy stored to the energy dissipated per cycle. The value

of Q0 approximates the number of periods it takes to dissipate the energy stored in an oscilla-

tor. For Josephson junctions, Q0 is the figure of merit that measures the damping of the system

by the shunt resistance R and is defined as Q0 = ωp0RC. Josephson junctions fall into three dif-

ferent damping regimes: under-damped (Q0 >> 1), moderately damped (1 < Q0 . 5), and over-

damped (Q0 ≤ 1). Although the RCSJ model predicts many properties of the Josephson junction

correctly and straightforward, one should be aware of the fact that the model is simplified by as-

suming a frequency-independent shunt resistance, which neglects any contributions to the junction

impedance at high frequencies arising from the bias circuitry [36–38].
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1.4 Escape from a metastable potential well

Figure 1.5. Washboard potential showing different escape mechanisms. There are three states a phase

particle can be in the washboard potential. Trapped (V = 0), intermediate PD (tiny V ), and the running state

(finite V ). The phase particle escapes from the initial potential well (trapped state) by thermal activation

(TA) or macroscopic quantum tunneling (MQT), depending on the temperature. There are two subsequent

motions of the phase particle in the washboard potential after the initial escape: (1) direct to the running

state; (2) via PD to the running state. In the later subsequent motion, phase particle suffers multiple escapes

and retraps in the subsequent potential wells before transiting to the full running state. This multiple escapes

and retraps of the phase particle give rise to a diffusive motion called phase diffusion (PD).

The I-V curve of the Josephson junction shows that there are two states: (1) the superconducting

state (zero voltage state) and (2) the normal state (finite voltage state). In terms of washboard po-

tential, they correspond to the fictitious phase particle being in a trapped state (V = 0) and running

state (finite V ), respectively. A phase particle is in a trapped state if it always remains in the initial

metastable potential well. On the other hand, in the running state, i.e., after an initial escape, the

phase particle steadily runs down the washboard potential without hindrance. Besides that, there is

an intermediate PD state (tiny V ): after escaping from the initial potential well, the phase particle

suffers from repeated retrapping and escape in the subsequent potential wells before going to the

full running state as i (thus the tilt) is increased. Thus, there are two distinctive transiting sequences

from the trapped state to the running state: (1) Direct; (2) via PD.
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To understand escape mechanism’s from the initial potential well, let us zoom to a particular

metastable well as shown in FIG. 1.5. At T = 0 and i < 1 (maximum ∆U), the phase particle

has an infinite lifetime (τ = 1/Γ, where Γ is the escape rate) in the zero-voltage state (trapped

state). However, in reality, the presence of quantum and thermal fluctuations (∝ T ) allow the phase

particle to oscillate at the bottom of the well with plasma frequency ωp and the probability of

escaping from the well is possible. Thus, there are two mechanisms of escape: thermal activa-

tion (TA) and macroscopic quantum tunneling (MQT) through which the phase particle can escape

from a metastable potential well [39, 40].

1.4.1 Thermal activation (TA)

In the classical regime, the system’s dynamics is described by the classical equation of motion Eq.

(1.13), in which phase difference ϕ is a classical dynamical variable representing the position of

the fictitious phase particle. In this regime, where kBT >> h̄ωp, a well-known theory for the escape

rate was developed by Kramers [41]. Furthermore, it was applied to the case of washboard potential

of current-biased Josephson junctions by Buttiker, Harris, and Landauer [42]. Due to thermal

fluctuations, the phase particle could gain sufficient energy to escape from the potential well by

climbing over the top of the potential barrier. The temperature-dependent thermal activation rate

has the form of the Arrhenius equation:

ΓTA = at
ωp

2π
exp

(
− ∆U

kBT

)
, (1.19)

where at = (1+α2)1/2−α ∈ (0,1) is dimensionless damping dependent factor with α ≡ 1/2Q0.

The importance of thermal activation theory lies in the fact that the escape rate decreases exponen-

tially with the barrier height over temperature.
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1.4.2 Macroscopic quantum tunneling (MQT)

Figure 1.6. In the quantum picture, the phase particle dynamics are described by a wave function Ψ(ϕ), and

the energy of the particle takes discrete values indicated as grey horizontal lines. Each state is shown with

the corresponding squared wavefunctions |Ψ|2. The phase particle in the excited state |1〉 sees the barrier

height reduced by the energy difference E01. Hence the tunneling from the excited state occurs at a rate Γ1

which is exponentially larger than the tunneling rate from the ground state Γ0.

In the quantum regime, h̄ωp >> kBT , the dynamics of the phase particle is described by quantum

mechanics. The phase difference ϕ is a quantum mechanical operator rather than a classical vari-

able. The phase particle behaves as a quantum mechanical object with its state described by a wave

function, Ψ(ϕ), and the phase particle’s energy takes discrete values as shown in FIG. 1.6. Hence,

quantum mechanics allows the wave to leak out of the potential barrier. This leakage of Ψ(ϕ)

enables the phase particle to escape from the potential well by macroscopic quantum tunneling

(MQT) through the barrier [36, 43]. In the limit of weak and moderate damping and T = 0 the

MQT rate is given by

Γq = aq
ωp

2π
exp

(
−7.2bq

∆U
h̄ωp

)
, (1.20)

where aq ≈ [120π(7.2∆U/h̄ωp)]
1/2 and bq ≈

[
1+0.87/Q0+O(Q−2

0 )
]

[43, 44]. It is evident from

Eq. (1.20) that the tunneling rate is independent of temperature (h̄ωp >> kBT ). Furthermore,

quantum mechanics predicts the presence of quantized energy levels in the potential well. The

phase particle in the first excited state sees the barrier height reduced by h̄ωp. Hence, the tunneling
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rate Γ1 is exponentially higher than the ground state rate Γ0. In the experiment, difference between

Γ0 and Γ1 enables one to observe energy level quantization (ELQ). The transition from classical

thermal activation (TA) to quantum tunneling (MQT) occurs at a particular temperature called

crossover temperature,

Tcr =
h̄ωp

2πkB
. (1.21)

The level of damping and the plasma frequency determine the temperature at which quantum ef-

fects take over [45, 46].

1.4.3 Phase diffusion (PD)

We understand that the phase particle can escape from the initial metastable potential well (trapped

state) via TA or MQT. The relative weight of these two escape processes depends on the temper-

ature of the system. After the initial escape the phase particle can enter two different states: (1)

the running state; (2) the state of phase diffusion (PD), from which it can finally reach the running

state as the potential is tilted further. In the latter case, the phase particle undergoes multiple re-

traps and escapes in the subsequent potential wells before transitioning to the running state. The

multiple retraps and escapes of the phase particle give rise to a diffusive motion called phase dif-

fusion. There is no well established analytical rate equation to describe PD but it can be observed

in experiment. Unlike escape mechanisms, PD and its transition to the running state has not been

very well understood [47].

It has been recognized that junction parameters EJ/EC and EJ/T , strength of damping, and ther-

mal (quantum) fluctuations are the factors behind the phase particle’s dynamics in the washboard

potential [48–50]. However, role of bias current has not been appreciated previously. At higher

temperature the phase particle would escape via TA, at lower bias currents which increase the
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probability of retrapping in the subsequent wells. Thus, it is necessary to provide a larger tilt to the

potential to allow the junction to switch from PD to the running state.

1.4.4 Switching current distributions (SCDs)

The rate of escape via TA and MQT are given by Eqs. (1.19) and (1.20). Switching current

distributions can be obtained from the escape rate, if the current ramp rate, dI/dt, is known.

P(I) =
Γ(I)

dI/dt
exp
[
− 1

(dI/dt)

ˆ I

0
Γ(I′)dI′

]
(1.22)

The mean and the variance of the distribution are

〈I〉=
ˆ

IP(I)dI (1.23a)

σ
2 =

ˆ
(I−〈I〉)2P(I)dI. (1.23b)

We studied the escape dynamics of Y-Ba-Cu-O planar Josephson junctions by the time-of-flight

Figure 1.7. SCDs, P(I), obtained from TA and MQT rate using Eq. (1.22). The SCDs overlap in MQT

regime irrespective of the change in temperature.
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technique [51, 52]. The bias current I is increased linearly in time from zero until the junction

switches to the finite voltage state corresponding to the phase particle running down the tilted

washboard potential landscape. The time, and thus the bias current, at which the junction switches

to the running state is recorded. After each switching, I(t) is returned rapidly to zero. This process

is repeated for a large number (e.g., 104) of times to have good statistics.

The SCDs overlap in the MQT regime irrespective of the temperature change which can be seen

as a saturation in mean 〈Is〉 and width σ , i.e., d〈Is〉/dT and dσ/dT = 0. At T < Tcr the mean and

width become nearly T -independent and their values are determined uniquely by the junction’s

parameters (IC, C, R) and to a much lesser extend by the rate of bias current sweep. Notice that

experimental artifacts, such as extrinsic current noise and joule heating, could also cause the mean

and width to saturate at low temperatures. Therefore, caution must be taken to eliminate these

artifacts.

In TA regime, the width of the SCDs has several distinctive characteristics: σ ∝ T 2/3, dσ/dT > 0,

and highly asymmetric P(I). While in PD regime dσ/dT < 0 and the SCDs become symmetric.

Furthermore, as T increases, the skewness, γ3 = µ3/σ3, where µ3 is the third moment of the dis-

tribution becomes less negative and ultimately goes to zero when PD is prevalent [38, 52, 53].
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1.5 SQUID as flux logic device

Figure 1.8. (a) Schematic circuit diagram of rf-SQUID with a dynamical variable as the total magnetic flux

Φ and external flux Φx which modulates the potential. L is the superconducting loop’s inductance, while

Ic is the junction’s critical current. (b) The modification introduced to tune the critical current in situ by

replacing a single junction with two junctions in a small loop, a dc-SQUID, with inductance Ldc.

An rf-SQUID is a superconducting ring interrupted by a Josephson junction, as shown schemat-

ically in FIG. 1.8(a). The junction is characterized by its critical current Ic, shunt capacitance C,

and shunt resistance R according to the RCSJ model. When an external flux Φx is applied to the

superconducting loop, it induces a persistent current is = −Ic sin(2πΦ/Φ0). The total flux in the

loop must satisfy Φ = Φx +Lis where L is the geometrical inductance of the loop. The dynamics

of this device is analog to a fictitious flux particle of mass ‘C’ with kinetic energy CΦ̇2/2 moving

in a potential given by the sum of the magnetic energy and the Josephson energy [54, 55]. In term

of normalized flux φ = Φ/Φ0 the potential is given by

U(φ) =UL

[
(φ −φx)

2

2
− βL

4π2 cos(2πφ)

]
, (1.24)

where, UL = Φ2
0/L sets the overall energy scale of the potential while βL ≡ 2πLIc/Φ0 and φx ≡

Φx/Φ0 determine the shape of the potential. When φx = 1/2 and 1 < βL . 4.6 the potential is

symmetric about φ = 1/2 with two wells separated by a potential barrier. The two potential wells
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correspond to two fluxoid states of the rf-SQUID, with currents circulating in opposite directions

around the loop. Changing φx slightly away from 1/2 tilts the potential, which results in an energy

bias ε ∝ φx between the two fluxiod states.

The problem with this design is that the circuit parameters such as the height of the symmetric

double-well potential ∆U0 and the tunnel splitting ∆, which are important to observe macroscopic

quantum phenomena, cannot be tuned in situ [56]. To solve this problem, the single junction is

replaced by two junctions in a small loop, a dc-SQUID, with inductance Ldc such that L >> Ldc as

shown in FIG. 1.8(b). If Φx,dc is the flux applied to the dc-SQUID loop then Φdc = Φx,dc +Ldcidc

where idc is the current circulating the dc-SQUID loop. This system’s macroscopic dynamical

variables are the magnetic fluxes Φ through the qubit loop and Φdc through the dc-SQUID loop

[57]. Thus the tilt and the barrier height of the two-dimensional potential energy landscape can be

controlled independently. In the limit of L/Ldc >> 1, the modified circuit can be approximated by

Eq. (1.24) with the parameter βL replaced by

βL(φx,dc) = βL0 cos(πφx,dc), (1.25)

where βL0 ≡ 2πLIc/Φ0. The system is analog to a fictitious flux particle moving in a 1D double-

well potential. A SQUID can be thus used as a one-bit logic device having two discrete states,

"-1" and "1" corresponding to the flux particle in the left and right well, respectively. Note that the

flux logic device has a high characteristic frequency, ωp/2π ∼1010 Hz, which makes it an excellent

candidate for realizing a high-efficiency Szilard engine with unprecedented performance [58].
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1.6 Organization of the dissertation

This dissertation’s structure is as follows: Chapter 2 begins with a brief discussion of macroscopic

quantum tunneling (MQT) and its importance. Then, the motivation to use high-Tc Y-Ba-Cu-O

nano-JJs. Next, the experimental techniques and the measurement setups employed to investigate

the quantum behavior of such junctions is discussed. Finally, the chapter is concluded with the re-

sult of T dependence of the switching current distribution (SCD) measurement of these junctions

in the Oxford dilution refrigerator.

In Chapter 3, PD in nano Y-Ba-Cu-O Josephson junction is discussed. We present our finding

that retrapping is prevalent at small bias currents, which leads to PD at small current biases. The

chapter is concluded by demonstrating the importance of potential tilt through the phase diagram.

In Chapter 4, SQUID-based flux logic device as a Szilard engine is investigated. The perfor-

mance of the Szilard engine is optimized in terms of speed and power, via numerical simulation.

The results demonstrate that Szilard engine’s performance can exceed that of other nano-device

implementations by orders of magnitude.

Finally, in Chapter 5, the dissertation concludes with a summary of the main results, outlooks

and direction for future works.
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Chapter 2

Escape from metastable potential

In this chapter we report unambiguous experimental evidence of MQT in Y-Ba-Cu-O planar Joseph-

son junctions fabricated by the focused helium ion beam method [59–65].

2.1 Macroscopic quantum tunneling (MQT) in Josephson junctions

In 1980, Anthony Leggett emphasized that the macroscopic variable such as the flux (Φ) of an

LC oscillator should obey quantum mechanics [66]. He pointed out two crucial requirements the

system must satisfy in order to exhibit quantum behavior. First, the system must be sufficiently

cold such that h̄ωp >> kBT , which ensures that quantum fluctuation is dominant. Second, the

quantum state’s lifetime must be long enough to be measured (Q0 >> 1) [67]. However, even if an

LC oscillator satisfies the requirements mentioned earlier, its energy levels are equally spaced due

to quadratic potential, causing no difference between classical and quantum responses to an exter-

nal sinusoidal perturbation. Later, it was demonstrated that by replacing the LC resonator’s linear

inductor with the non-linear Josephson inductor, the system becomes anharmonic oscillator with

the phase (ϕ) across the Josephson junction as the macroscopic quantum variable [68]. Quantum

mechanics allows the wave function to extend through the barrier allowing phase particle to escape

from the potential well by macroscopic quantum tunneling. Thus, the theoretical work done by
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Anthony Leggett showed the possibility of observing macroscopic quantum tunneling (MQT) of

the phase particle and energy level quantization (ELQ) in an electronic circuit [44].

In 1981, Voss and Webb [69] measured the temperature dependence of probability distributions

for switching out of the superconducting state of 1-µm Nb Josephson junctions for the first time

and presented compelling evidence for quantum tunneling of a macroscopic variable. They found

that the experimental results agree well with the theory derived by Caldeira and Leggett [43, 66].

Later experiments have addressed the effect of environment (damping) and finite temperature on

macroscopic quantum tunneling [70–72].

Furthermore, Devoret, Martinis, and Clarke thoroughly investigated quantum behavior of current

bias Josephson tunnel junctions [67]. Their result demonstrated MQT and provided evidence of

energy level quantization (ELQ) in Josephson junctions. These experiments, along with a few sig-

nificant others [40, 44, 68, 70], had become the manifestations of the quantumness of macroscopic

variables. Thus, observation of MQT and ELQ in superconducting Josephson junctions have paved

a way to test macroscopic quantum effects such as macroscopic resonant tunneling (MRT), photon

assisted tunneling, macroscopic quantum coherence (MQC), etc., and has led to architect a variety

of artificial atoms i.e., qubits [56, 73, 74].

Since a part of the dissertation focuses on studying MQT in high Tc Josephson junctions, I would

like to recall some of the field’s crucial achievements. Studies of cuprate superconductors show

that they have anisotropic superconducting properties and are built on complex material structures.

Due to the presence of nodes in the d-wave order parameter of the cuprates, there are always low

energy quasiparticles responsible for enhancing dissipation which suppresses MQT in HTS devices

[75–77]. Aside from these complications, evidence of MQT in HTS JJs has been reported by many

groups [78–80]. Bauch et al. and L. Longobardi et al. reported for the first time the observation

of MQT in Y-Ba-Cu-O grain boundary biepitaxial JJs [77, 79]. MQT has also been observed in
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c-axis oriented intrinsic junctions made from single-crystal Bi-2212 [52, 81–84].

Superconducting quantum circuit has attracted extensive attention because of its importance to

the investigation of basic concepts in quantum mechanics [43, 68, 69] and its prominent role in

quantum information processing [85–87]. Although significant progress in coherence time and

numbers of entangled qubits have been made in the past two decades, seeking new materials that

could improve the coherence time of superconducting quantum circuits and scalable nanofabri-

cation processes are actively pursued [88–90]. Recently, cuprate superconductor planar Joseph-

son junctions fabricated by FHIB direct-writing exhibits promising properties, and reproducibility

[61, 91, 92]. In this method, a crystalline nano-scale barrier is created in a single layer supercon-

ducting thin film to form a Josephson junction by irradiation of a 0.5-nm FHIB, which is one of the

most straightforward and scalable ways to make circuits containing a moderately large number of

Josephson junctions [93]. To demonstrate quantum nature of this new type of Josephson junctions

for quantum circuit applications, macroscopic quantum tunneling (MQT) is the essential first step

[37, 38, 79].

2.2 HTS Josephson junction

The search for high-Tc superconductors (HTS) are motivated to find new materials which can pos-

sibly superconduct at room temperature and have high critical field and critical current density that

would lead to significant changes in the technological applications. YBa2Cu3O7−δ (Y-Ba-Cu-O)

was the first ceramic material discovered to superconduct at a temperature above the boiling point

of liquid nitrogen (77K). The advantage comes in lowering the cost of large-scale applications

because compared with liquid helium nitrogen is much more abundant much cheaper, and readily

available [94].

The major advantage of HTS is that they have large superconducting energy gap corresponding
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to several THz. HTS JJs mostly have non-hysteretic I-V characteristics, and high characteristic

frequency fc = IcRN/Φ0 which are required for high-speed digital circuits (RSFQ) and microwave

circuits. Also, HTS have the ability to sustain the superconducting state and to carry higher Jc in

large magnetic fields. This property makes them suitable for high field applications [95].

Material Tc (K) ∆(meV) λ (nm) ξ (nm) Hc (T)
Al 1.2 0.2 16.0 1600 0.01
Nb 9.3 1.5 44.0 40 Hc1 ∼0.2; Hc2 ∼0.3

Y-Ba-Cu-O 93 20-25 λ ab
L =150-300; λ c

L=1000 ξ ab=1-4; ξ c ∼0.7 Hab
c2 =250; Hc

c2 ∼120

Table 2.1. Main superconducting parameters for Type-I (Al) and Type-II (Nb and optimally doped Y-Ba-

Cu-O) materials [14, 95]. Tc is the critical temperature and ∆ is the superconducting energy gap. λL and

ξ are the London penetration depth and the coherence length, respectively, while Hc2 represents the upper

critical field. The HTS has anisotropic properties along ab plane and c axis distinguish as superscript in λL,

ξ and Hc2.

The major obstacles to the application of cuprate high-Tc superconductors are: they have complex

crystallographic structures and usually possess a layered structure, and they have anisotropic su-

perconducting properties. The superconducting properties are notably different along the c-axis

compared to in the ab-plane as listed in Table (2.1) [96, 97]. The essential material constraints to

fabricate high-quality JJs are represented by the small and anisotropic coherence length, ceramic

nature (brittle material) and the easy surface and interface degradation of HTS films [98, 99]. Apart

from difficulties, different techniques are implemented to fabricate Y-Ba-Cu-O Josephson junc-

tions suitable for superconducting electronics. The well known techniques used to fabricate HTS

JJs include bicrystal, ramp-edge, and bi-epitaxial. A detailed study about their fabrication meth-

ods and characterization can be found in [100–104]. These methods lack the required stability,

uniformity, and desirable reproducibility to make high-quality HTS junctions and SQUIDs [105].

Thus, researchers are in search of an advanced method to fabricate junctions and SQUIDs that can

provide atomically precise material manipulation to the requirements demanded by various appli-

cations. Another major problem about HTS JJs is that the value of IcRN has been consistently lower
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than the energy gap (∆) [61, 103]. So far, there is no well-established theory for the mechanism

of superconductivity in these strongly correlated electron systems [75, 106]. The understanding of

the microscopic mechanism of the cuprates superconductors is still an outstanding problem.

2.3 Experiment method

2.3.1 Cooling down to millikelvin (mK) temperature

In 1908, Kammerlingh Onnes, for the first time, succeeded to liquefy helium (He), which was later

used to discover the superconductivity in mercury (Hg). Low-temperature physicists investigate

exotic phenomena like Bose-Einstein condensates, superfluids, fractional quantum Hall effect, and

superconductivity, whose energy scale is much smaller than the thermal energy at room temper-

ature, kBT ≈ 26meV. They require the use of liquid helium, which boils at T = 4.2K, which

corresponds to ≈ 0.1meV of thermal energy. There are different cooling techniques to decrease

temperature to below 4.2K. For example, by reducing the liquid helium’s vapor pressure, one

can reach∼ 1.2K. One of the refrigerators that I have used is the physical properties measurement

system (PPMS), which utilizes the evaporative cooling power of liquid helium, whose base temper-

ature is≈ 1.2K. Here, the cooling is achieved due to the latent heat of the evaporated liquid helium.

The quantum phenomena that we are interested in at least require a base temperature of 50mK

to observe. In addition, the quantum electronic circuits’ operation requires temperatures on the

order of 10 mK to initialize the systems in their ground state and avoid errors due to thermal ex-

citation. Therefore, different refrigeration equipments have to be employed, such as the dilution

refrigerators, which are multi-stage coolers based on circulating He3−He4 [107].

The working mechanism of dilution refrigerator (DR) will be briefly described in the following. A

more comprehensive explanation can be found in literature [108, 109]. Nature is kind enough to us
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by providing the two isotopes of helium (He3 and He4) [110]. When a mixture of He3 and He4 is

cooled to below 0.87K (Tri-critical temperature), the mixture separates into two different phases,

with one floating on the top of the other. He3 being lighter creates a concentrated upper phase,

whereas the more massive diluted phase at the bottom mainly contains He4 plus a fraction (6 .4%)

of He3 [107]. The finite solubility of He3 in He4 is the key to dilution refrigeration. He3 from

the diluted phase can be removed due to its low vapor pressure, and this removal forces the He3

from the concentrated phase to occupy the created vacant place in the diluted phase. The transfer

of atoms from the pure phase to the diluted phase increases the system’s entropy, which requires

energy. Thus, heat is absorbed from the environment (sample) in the form of thermal energy during

the process, which cools the sample in the long run. In a closed-loop operation, circulation pumps

are used to continuously pump He3 and return it into the concentrated He3 phase. In this way, it

is possible to generate sufficient cooling power for continuous refrigeration down to temperatures

below 10mK [111].

Even though Y-Ba-Cu-O Josephson junction becomes superconductor at Tc = 93K MQT and ELQ

usually would not be observed above a few kelvins because TA is the prevailing escape mechanism

(h̄ωp >> kBT ).

2.3.2 The measurement circuit

The current and voltage leads from room temperature to low temperature, which are used for

current bias and the measurement of voltage across the junction, are composed of flexible coax-

ial cables, electromagnetic interference (EMI) filters, low pass RC filters, and LC-copper powder

filters (LC-CPF) down to the sample platform. Measuring switching current can be performed

by ramping up the bias current to slightly above Ic causing the junction to switch to the running

state (V 6= 0), then reducing the bias current to zero to prepare for next measurement cycle. This

is accomplished using an arbitrary waveform generator, AWG 33120A, which is programmed to
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generate a triangular current bias waveform. The signal from the AWG goes through an isolation

amplifier to the biasing (Rbias) and sensing (Rsense) resistors to the Josephson junction. To limit the

current (order of 10 µA) to the range just necessary to causing the junction to switch, Rbias is set to

100kΩ.

Figure 2.1. Schematic circuit diagram of the electronic measurement system for switching current distribu-

tion (SCD). The AWG-33120A is programmed to feed the bias current to the junction. The current passes

through the low pass RC (RCF) and LC–copper powder (CPF) filters installed at different cryogenics plates

to mitigate the noise. The voltage dropped across the junction is amplified and sent to the timer, SR620.

The value of Rsense is adjusted to give the maximum current sensitivity while keeping the volt-

age below the maximum input of the current sensing amplifiers. All amplifiers are kept inside

an rf-shielded room to mitigate EM interference. The bias current is passed to the fridge through
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flexible coaxial lines. The low-pass RC filters have cutoff frequency ≈ 100kHz, and are thermally

anchored to the 1K plate of the fridge. Finally, the bias current is applied to junctions through the

LC-CPF maintained at the mixing chamber temperature. The homemade LC-CPF is designed to

have a cut off frequency of about 80MHz and provides more than 90dB attenuation at frequency

greater than 80MHz. The junctions are protected from the stray magnetic field from the environ-

ment by the use of a Mu-metal magnetic shield at room T and a Cryoperm shield at 4.2 K reducing

the residual magnetic field to the order of 50nT [112].

The time-of-flight method is used to measure the SCDs [113]. When the finite voltage appears

across the junction, the signal is passed to the room temperature amplifier and then fed to the timer

SR620. The timer record the time interval between the beginning of the bias current waveform to

the point when the junction suddenly switches to the V 6= 0 state. The information is recorded on

the computer through a GPIB connection. All instruments used in the experimental setup should

have a single ground to avoid the ground loops. To avoid heating, the ramp has been set to reduce

the time the junction spends in the resistive state and a dwell time for I = 0 has been programmed

to increase the time the junction spends in the superconducting state.

2.4 Results and discussion

The nano Josephson junction is characterized in an Oxford dilution refrigerator. A typical current-

voltage (I-V) characteristics of the junction at 50 mK is shown in FIG. 2.2. The normal resistance

RN = 104 Ω is obtained from the linear part of the I-V curve at |V |> 1 mV. The quality factor of

the junction Q0 can be estimated from the degree of hysteresis of IVC and is calculated to be 1.4.
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Figure 2.2. Current-Voltage characteristics (IVC) of the FHIB YBCO junction at 50 mK. The junction

resistance R= 104Ω is obtained from the linear part of the IVC (|V|>1 mV). The retrapping current Ir ≈ 0.9Ic

yields Q0 ≈ (4πIc)/Ir ≈ 1.4.

We experimentally studied the T -dependence of 〈Is〉 and σ between 50 mK and 3.0 K using the

time-of-flight technique with a normalized bias current ramping rate di/dt ≡ I−1
c dI/dt = 1000/ s.

At each temperature 50,000 switching events were acquired to produce a smooth P(I), as shown in

FIG. 2.3(a). FIG. 2.3(b) shows the measured P(I) in the temperature range of 3K≤ T ≤ 50mK for

junction JJ2 (Table 3.1). The different escape mechanisms are reflected in the characteristics of the

measured SCDs: the mean 〈Is〉, the standard deviation σ , and the skewness γ3. The overlapping

SCDs at T < 0.8K, signify the occurrence of MQT. A progressive narrowing of P(I) occurs when

the temperature is increased beyond 0.8K. The shape of the distribution changes gradually from

asymmetric to symmetric as T increases, quantified by the measured skewness γ3, as shown in the

inset of FIG. 2.3(b). The behavior is similar for all of the junctions measured qualitatively despite

having different classical to quantum crossover temperatures Tcr.

For T < 0.8 K the experimental data agree with the result of numerical calculation using the MQT

rate equation Γq (Eq. (1.20)) with Ic and C as the only adjustable parameters while keeping the

value of R = 104 Ω and I−1
c dI/dt = 1000/s constant. The best fit to 〈Is〉 and σ at T < 0.8 K

and the observed crossover temperature Tcr = 0.8 K yields Ic = 7.55 µA and C = 8.0fF , which is

consistent with the result of FastCap simulation. At T > 0.8 K, the measured mean switching cur-
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Figure 2.3. (a) The 50,000 switching events collected for a junction JJ2 at a particular T of 50mK. (b) The

measured switching current distribution (SCD) at different temperatures for a junction JJ2 having parameters

reported in Table 3.1. From right to left are the SCDs taken at 50mK to 3K. For the shake of clarity, only a

few selected SCD’s are shown. Below 0.8K the SCD’s overlap and only one distribution have been shown.

Inset shows the skewness, γ3 of the SCDs. The SCDs in the MQT regime are negatively skewed with a

constant value of ∼−0.5. During the transition from MQT to PD, the SCDs skew gradually decreases with

the rise in T and remains constant ∼−0.27 for higher temperature SCDs.

rent increasingly deviates from the mean escape current 〈Iesc〉 of thermal activation computed from

ΓTA (Eq. (1.19)) due to phase diffusion (PD) which is caused by frequent retrapping of the phase

particle after it escapes from metastable potential wells [114, 115]. In the case of PD, switching

to the running state occurs at a bias current 〈IPD
s 〉 that is higher than the value computed from

Eq. (1.19). At the same time, σ becomes increasingly narrower than if PD was absent. The most

distinctive fingerprint of PD is dσ/dT < 0, which is in stark contrast to dσ/dT > 0 of TA without

PD as shown in FIG. 2.4. Furthermore, as T increases, the skewness, γ3, becomes less negative

and ultimately goes to zero when PD is prevalent [52, 53]. All of these distinctive features of PD

have been observed in our experiment.

In FIG. 2.4(b) saturation of σ(T ) at T < Tcr is observed, which is the most substantial evidence

of MQT, provided it is not caused by extrinsic current noise in the measurement circuit and joule
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Figure 2.4. The temperature dependence of (a) the mean 〈Is〉 and (b) the width σ of switching current

distributions. The triangles are experimental data and the solid lines are the theoretical prediction of MQT

(TA), assuming no phase diffusion.

heating. The possibility of extrinsic current noise can be ruled out by the much narrower width

(less than one-half of the width at low T ) of the data in the phase diffusion regime. To determine

if the saturation below 0.8 K was due to Joule heating, we inserted an idle time, during which

I = 0, of variable length between successive current sweeps. We found no changes in the mea-

sured mean and width as the idle time was varied from about 50 µs to 50 ms, excluding joule

heating as the cause of low-temperature saturation of the mean and width. Furthermore, the solid

line in FIG. 2.4(b) was calculated from the MQT model with the same set of parameters used for

the solid curve in FIG. 2.4(a). Therefore, we conclude that the observed low T saturation of mean

and width provides unambiguous evidence for MQT in the planar Y-Ba-Cu-O Josephson junction

made by FHIB.

In summary, we observed unambiguous evidence of MQT in a moderately damped (Q0 ' 1.4)

planar Y-Ba-Cu-O nano Josephson junction made by FHIB direct-writing. The mean and width

of the measured switching current distributions agree very well with the MQT theory below the

quantum-to-classical crossover temperature Tcr ≈ 0.8 K with junction’s shunt capacitance C and

the damping resistance R constrained by the results of FastCap simulation and the measured I-V

characteristics. The result also shows that above 0.8 K phase diffusion played a significant role in

the phase dynamics of this moderately damped junction. By varying the idle time from 50 µs to 50
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ms we rule out the possibility of that the observed saturation of mean and width of SCD was due to

heating. Furthermore, the observed saturation of width at T < Tcr could not be due to current noise

in the measurement circuit because σ at T > 2 K is much less than σ at T < Tcr. The experimental

confirmation of MQT in FHIB planar Y-Ba-Cu-O Josephson junctions is the first step towards the

realization of coherent quantum behaviour.

In FIG. 2.4(a) at T > 0.8 K, we observed the experimental 〈Is〉 deviates from the 〈Iesc〉 computed

from thermal activation (TA). In the next chapter, we try to address the cause behind the deviation

and discuss the diffusive motion (PD) of the phase particle after the first escape.

35



Chapter 3

Phase diffusion in Josephson junctions

In this chapter, the phase particle’s motion after escaping from the trapped state is investigated

both experimentally and numerically. The result clarifies the critical role played by the tilt of the

potential energy of the Josephson junction, which has been neglected in previous studies of PD.

3.1 Theory of phase diffusion in Josephson junctions

Brownian motion in a periodic potential constitutes one of the fundamental and general prob-

lems of particle transport with numerous applications in various fields of science and technology.

Kramers first studied the noise-activated escape of a particle from a metastable potential well in

different damping regimes [41]. His work provided a framework to understand diffusion’s role in

the dynamical behavior of many systems in science and engineering [116–119]. For example, the

theory has been extended to study thermal ratchets as a possible model for molecular motor pro-

teins [120, 121]. In physics, Josephson junctions have provided excellent testbeds to study escape

dynamics in the tilted washboard potential [36, 115, 122–124]. Because of the design flexibility

and controllability, JJ is used to study the nature of the interaction between the quantum system

and the environment. Also, it has served as a platform to compare different theoretical predic-

tions with experimental data to reveal possible new physics in the tilted periodic potential systems
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Figure 3.1. (a) The equivalent circuit diagram of a Josephson junction according to the RCSJ model in which

R is the effective frequency-independent resistance. (b) The phase dynamics of a current biased Josephson

junction and the measured I-V characteristic. In the superconducting state (zero voltage state), the fictitious

phase particle is trapped in one of the metastable potential wells, where it oscillates back and forth near

the bottom of the well thus the average voltage is zero. The phase particle can escape from the potential

well either by thermal activation (TA) or macroscopic quantum tunneling (MQT). Depending on the tilt of

the potential controlled by the bias current and the damping strength characterized by Q0, there is a finite

probability of the phase particle being retrapped in one of the subsequent wells before the system switches

to the running state. Repeated escape and retrapping in subsequent potential wells gives rise to the diffusive

motion of the phase particle called phase diffusion (PD).

[42, 51, 125]. In addition, depending on junction parameters and characteristics of quantum and

thermal fluctuations, different regimes such as TA, MQT, PD, and quantum phase diffusion, QPD

can be thoroughly investigated [52, 53, 77, 126]. Thus, it is essential to understand the governing

factors behind the different escape dynamics and subsequent motion of Josephson junctions.

As explained in section 1.3, phase dynamics of a current biased Josephson junction is equivalent

to a fictitious phase particle of mass C moving in the tilted washboard potential U(ϕ) described

by Eq. (1.15). The main factors governing the dynamics of the phase particle are the bias current,

which controls the tilt of the potential, damping strength characterized by the quality factor Q0, the

37



thermal (quantum) fluctuations originating from the effective resistance R of the junction, and EJ

and EC parameters of the junction [49, 127]. The role of each factor played in the dynamics of the

phase particle is discussed below.

In the absence of a bias current, the tilt i of the washboard potential is zero and ∆U is maximum.

The phase particle oscillates at the bottom of a metastable potential well with plasma frequency

ωp0. In this case, the time average of ϕ(t) is zero. In the presence of a bias current of I < Ic (i.e.,

i< 1), the washboard potential is tilted reducing barrier height and plasma frequency. For i≥ 1, the

potential has no minima, and the particle rolls down the potential landscape with a finite velocity,

ϕ̇ . This situation corresponds to the case in which the junction switches out of its dissipationless

zero-voltage state to the finite voltage V = (h̄/2e)ϕ̇ state. Thus, the tilt i plays a major role in the

phase particle’s motion in the washboard potential.

Damping also plays an important role in the dynamics of the phase particle. The strength of damp-

ing is measured by the quality factor Q0 = ωpRC. However, the source of damping in Josephson

junctions remains unsettled [126, 128]. Different authors have presented their views about what

determines the effective resistance R. Kautz and Martinis [47] have reported phase diffusion in

small hysteretic Josephson junctions (Ic ∼ nA) and EJ comparable to thermal energy kBT . They

concluded that the high-frequency impedance of the circuitry is the cause of damping. Similarly,

Martinis et al. demonstrated through a detailed measurement that the frequency-dependent dissi-

pation Re[Z(ωp)] rather than the subgap quasi-particle resistance of the junction is responsible for

damping [125]. Washburn et al. has studied the effect of dissipation and temperature on MQT rate

and found that instead of the subgap quasi-particle resistance Rqp, normal resistance R correctly

predicts the MQT rate and the cross-over temperature (Tcr) [70, 71]. In our case, the Y-Ba-Cu-O JJs

measured typically have a normal resistance R considerably smaller than the free space impedance,

Z0 =
√

µ0/ε0 ' 377Ω, and are well described by the RCSJ model with frequency-independent Q0

[115, 125, 129].
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In reality, the experiments are conducted at T > 0 so that the effective damping resistance R ex-

hibits Johnson-Nyquist noise [47, 130]. The noise has physical consequences on the dynamics of

the Josephson junction. In the presence of thermal fluctuations, the phase particle might escape

from the potential well and then run-down the washboard potential even at i < 1. In other words,

thermal fluctuations could cause premature switching of the junction to the finite voltage state. It

also plays an important role in the retrapping of the phase particle after the initial escape [51, 72].

Furthermore, as T → 0, thermal noise is dominated by the zero-point current fluctuations (quan-

tum fluctuation) in the shunt resistor, causing dissipation in the MQT regime [131]. The rate by

which the phase particle escapes from the metastable potential well due to thermal activation (TA)

depends on temperature (section 1.4.1). After the initial escape, there is a finite probability of the

phase particle being retrapped in one of the subsequent potential wells depending on the strength

of the damping Q0 and the tilt of the potential i. At low current bias, the process of escape and

retrapping may occur multiple times, which generates diffusive motion of the phase particle. As

the bias current is ramped up, the potential’s tilt increases and the phase particle’s velocity rises,

which ultimately leads to a switch to the running state. The competition between multiple escapes

and retrapping prevents the junctions from entering the running state. It leads to the appearance of

a tiny non-zero voltage, manifesting as a phase diffusion branch in the I-V characteristic [47, 49].

Thus, the dynamics of the phase particle crucially depend on three metrics: the tilt (i) of the po-

tential, the strength of damping, and thermal (quantum) fluctuations. The interplay between these

factors determines the occurrence of various phenomena, MQT, TA, and PD in the phase dynamics

of Josephson junctions.

In our experiment, we measured the SCD’s of planar Y-Ba-Cu-O nano Josephson junctions and

observed clear evidence of direct transition from MQT triggered escape followed by PD regime.

Here, we are interested in understanding the physics of PD regime. Although we are not the
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first to observe transition from MQT to PD in Josephson junctions our result sheds new light on

an outstanding issue which has not been correctly identified in previous studies. Several authors

to understand of PD by proposing a phase diagram in terms of the ration EJ/Ec and kBT/EJ

[80, 129, 132, 133].

The various regimes of Josephson junction’s phase dynamics can be classified by constructing

a phase diagram [49, 134]. L. Longobardi et al. has observed a direct transition from MQT trig-

gered escape to PD regime in Y-Ba-Cu-O biepitaxial Josephson junctions [77]. They performed

numerical simulations to determine the transition curve between the PD and the running state, and

the various regimes are explored by spanning the parameter space (kBT/EJ , Q0). As discussed

above, tilt i also plays an important role in Josephson junction’s phase dynamics along with Q0

and T . However, the phase diagram they simulated did not consider the effect of tilt i.

3.2 Numerical simulation of retrapping probability

Based on the RCSJ model of Josephson junction and the second Josephson relation }ωp = 2eV , the

equation of motion of a current biased Josephson junction in the presence of thermal fluctuations

is [42]

C
(

Φ0

2π

)2
ϕ̈ +

1
R

(
Φ0

2π

)2
ϕ̇ =−∂U(ϕ)

∂ϕ
+
(

Φ0

2π

)
In(t). (3.1)

The shunt resistance, as shown in FIG. 3.1(a) is the source of current fluctuations at finite tem-

peratures. The noise current In is originated from the Johnson noise of the shunt resistance. The

statistical properties of this noise current, according to the fluctuation-dissipation theorem [135] is
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〈In(t)〉= 0 (3.2a)

〈In(t)In(t
′
)〉= 2kBT

R
δ (t− t

′
) (3.2b)

The dimensionless form of Eq. (3.1), which has the advantage of reducing the number of system

parameters can be obtained by normalizing current to Ic, and time to ω
−1
p0

ϕ̈ +Gϕ̇ =−sinϕ + i+ in(τ), (3.3)

where G= 1/Q0, and τ =ωp0t. Here, single and double overdot on ϕ represent the first and second

derivative with respect to, τ . A finite difference technique [42, 136] is implemented to propagate

Eq. (3.3) with accuracy of O(δτ3), where the time step δτ = 2π/250 is determined through a

convergence test. In a convergence test, δτ is decreased until the result of the simulation does not

change anymore. The time step at which the result becomes stable is chosen for the simulation.

ϕn+1 = 2ϕn−ϕn−1−G(ϕn−ϕn−1)δτ +(i− sinϕn + εqn)δτ
2, (3.4)

where τn = nδτ , ϕn ≡ ϕ(τn), ε =
√

2GkB T/EJδτ , and qn is a Gaussian random process with the

standard normal distribution: 〈qn〉 = 0 and 〈qnqm〉 = δnm.

The washboard potential has a local minima located at ϕmin = sin−1 i and maxima at ϕmax =

π − sin−1 i. The motion of the fictitious phase particle is tracked using Eq. (3.4). We start a

simulation by initializing the fictitious phase particle at ϕmax and release it with an initial forward

velocity determined from the thermal equilibrium condition, kBT/2 =Cϕ̇2/2. We track its trajec-

tory as it moves in the washboard potential for 20 consecutive wells (20×2π). The average time

needed to transit directly to the running state (traverse 20 wells without hindrance) from one of the

potential maxima depends on the T and the tilt i. For T = 4K and i = 0.99, it requires τ = 156 on
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average. Thus, in a trial, τlimit < 251 (to be on the safe side) is taken as the criteria to determine if

the phase particle retrapping had occurred or not. For a given T and tilt i, we run the simulation

for 104 trials to reduce statistical uncertainty. Let Nrun be the number of times the phase particle

directly transits to the running state from which probability of running, Prun is obtained. Finally,

probability of retrapping is calculated as Pretrap = 1−Prun.

3.3 Results and discussion

The temperature dependence of the mean 〈Is〉 and width (σ ) of the P(I) for JJ1 and JJ2 are shown

in FIG. 3.2. JJ1 and JJ2 show similar behavior of escape via MQT followed by PD. The shunt

resistances, R of each junction is determined from the linear part of the I-V curve at V ≥ 1mV.

While the critical current, Ic and capacitance, C is determined by fitting the σ of the SCD’s at

T < Tcr. The key parameters of each junction are listed in Table 3.1. We are unable to fit the PD

data due to a lack of well-established analytical results.

Sample Ic (µA) R(Ω) C (fF) Tcr (K) ωp0(THz) Q0 EJ(K) EJ/EC
JJ1 16.0 60 8.0 0.5 2.47 1.20 381 3282
JJ2 7.55 104 8.0 0.7 1.70 1.41 180 1549

Table 3.1. Device parameters for the Y-Ba-Cu-O Josephson junctions measured.

42



Figure 3.2. (a) and (b) shows temperature (T ) dependence of the mean (〈Is〉) and the width (σ ) of the SCD’s

for the measured junctions JJ1 (blue) and JJ2 (black) respectively. A transition from MQT to PD regime

occurs at a temperature Tx. σ independent of T and negative ∂σ/∂T are the hallmark of the MQT and PD

regime respectively. The junction parameters are determined from the theoretical fit (solid line) to the MQT

regime data. The intersection between MQT and TA determines the cross-over temperature (Tcr).

The combination of junction parameters, leads to the occurrence of two distinct behaviors: switch-

ing to the running state with and without going through the intermediate state of PD, in moderately

damped Y-Ba-Cu-O planar Josephson junctions. The data show that Tcr of the junctions is ∼0.5-

0.8 K reflecting the high characteristic plasma frequency (ωp0/2π ∼ THz) of the junctions. Since

MQT has been discussed previously in chapter 2 we focus on understanding PD observed in these

junctions. FIG. 3.3 shows the normalized mean switching current vs. temperature (normalized to

EJ) of JJ1 and JJ2. The comparison between mean 〈Is〉/Ic of JJ1 and JJ2 show that the junction

with larger EJ but nearly same ωp0 requires greater tilt to enter MQT regime. Consequently, the

junction with smaller EJ has higher Tcr.

The probability of the phase particle being retrapped in subsequent potential wells as a function

of T for different tilt values, i, is shown in FIG. 3.4. For each value of T , Pretrap is obtained by
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Figure 3.3. The normalized mean switching current, 〈Is〉/Ic, as a function of kBT/EJ for junctions JJ1 (blue)

and JJ2 (red). The parameters determined from best-fit obtained for the junctions show that JJ1 has more

than twice the value of EJ compare to JJ2. The tilt required to enter the MQT region for each junction is

different. The larger junction (JJ1) requires greater tilt but smaller value of kBT/EJ to enter the quantum

regime.

averaging over 10,000 simulated retrapping events. For i = 0.86, Pretrap increases as T is increased

and eventually reaches Pmax = 1. The plot shows that, for a smaller tilt, the maximum retrapping

probability is reached at a lower temperature. Even with reduced thermal fluctuations at a lower

temperature, a smaller tilt increases the probability of retrepping of the phase particle.

We report the phase diagram by scanning the parameter space (i,kBT/EJ) as shown in FIG. 3.5

to summarize various escape mechanisms and to emphasize the importance of tilt in determining

phase dynamics of the junctions. The phase diagram is obtained from the numerical simulation

discussed in section 3.2 and calculation using TA and MQT rate Eqs. 1.19 and 1.20. The color bar

shows the probability of being retrapped after escaping via MQT or TA from the initial potential

well. At constant kBT/EJ , Pretrap is an increasing function of tilt. Between the region no PD (blue)

and severe PD (yellow) there is an intermediate transition region, where the particle can either

escape or be retrapped while running down the washboard potential. In FIG. 3.5 red curves are the

normalized mean escape current 〈Iesc〉 due to TA and MQT computed from ΓTA and Γq for JJ1 and

JJ2. At T > Tcr, the mean escape current due to TA takes place at a smaller tilt and falls into the
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Figure 3.4. Result of numerical simulation: The temperature dependence of the retrapping probability,

Pretrap, of the fictitious phase particle in subsequent potential wells. Pretrap for different tilt, i, of JJ2. The tilt

is one of the determining factors of the retrapping probability.

region where Pretrap is high. The superimposed plot shows that after the initial TA-caused escapes,

the phase particle undergoes frequent retrapping giving rise to TA-dominated PD. The magenta

curves are obtained by doubling the value of Ic and C while reducing R to half, while the black

curve is obtained by increasing Ic and C while decreasing R five-fold that of the red curve. In doing

so, EJ (Ec) is increased (decreased) in proportion, while the quality factor Q0 remains the same.

The comparison shows that as EJ/Ec is increased, it requires a greater tilt, i, and smaller kBT/EJ to

enter the MQT regime. Therefore, under the condition of same ωp0 and Q0 junctions with smaller

EJ/EC have greater Tcr.

45



Figure 3.5. (i,kBT/EJ) parameter space, showing different escape regimes for JJ1 (b) and JJ2 (a). The color

bar shows the probability of the phase particle being re-trapped in one of the subsequent potential wells.

The red curve is the normalized mean escape current 〈Iesc〉 due to TA and MQT computed from ΓTA and

Γq for JJ2 and JJ1. The magenta curve is obtained by doubling the value of Ic and C while reducing R to

half, whereas the black curve is obtained by a five-fold increase in Ic and C while decreasing R five-fold

that of the red curve. The dash lines in the plot guide the location of MQT-to-TA crossover temperature, Tcr

respectively.

In summary, we observed a transition from MQT triggered running state to PD regime. After

the initial TA escape from the metastable well, the phase particle undergoes severe retrapping in

subsequent potential wells before finally switching to the running state. The junctions investigated

have comparatively small (small capacitance and low critical current junctions) Josephson coupling

energy EJ and are in the moderately damped regime. Thermal fluctuations lead to premature

switching, and for coincidentally T > Tcr retrapping is significant at low bias current. Also, the

experimental data and the phase diagram obtained from numerical simulation (FIG. 3.5) confirms

that the tilt plays a crucial role in the phase dynamics of JJs. Junctions with larger EJ , but otherwise

having the same ωp0 and Q0, require greater tilt to transit to MQT from TA and/or the PD regime.

Hence, the role of PD is to delay switching to the final running state which results in higher

switching currents in the presence of PD.
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Chapter 4

SQUID as fast Szilard engine

In this chapter, we investigate using SQUID based flux logic device to realize an efficient Szilard

engine by numerical and experiment. Our results show that while the maximum work per engine

cycle is obtained in the quasi-static regime the maximum power is achieved when the engine is run

at a much faster speed.

4.1 Maxwell’s demon thought experiment

In 1867, James Clerk Maxwell conceived a thought experiment known as Maxwell’s Demon to

challenge the Second Law of Thermodynamics [137, 138]. He imagined that an intelligent ob-

server (demon) could decrease the entropy S of the system by separating the fast-moving and

slow-moving molecules into two chambers [139, 140]. The two chambers then would contain

gases with different temperatures, and that temperature difference may be used to power a heat

engine to produce mechanical work in an apparent violation of the second law of thermodynamics

[138, 141].

In 1929, Leo Szilard visualized the Maxwell’s demon experiment with a single particle in a box in

contact with a single heat bath operating in a cyclic fashion. This so-called “Szilard engine” can
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thus convert heat completely into work, which seems to violate the Second Law of thermodynam-

ics. Szilard found that the average amount of work that can be delivered by his engine per cycle

is kBT ln2 [137]. Later in 1961, Rolf Landauer argued that to determine the position and speed

of each molecule, the demon must store information about the state of the molecules [142]. In

order to complete the thermodynamic cycle, the demon’s memory needs to be erased, which is a

thermodynamically irreversible process that costs energy. Landauer showed that the fundamental

energy cost to erase one bit of information from the demon’s memory is equivalent to the amount

of the work extracted, W = kBT ln2, per cycle which rescued the Second Law of thermodynamics

[143]. Landauer’s erasure principle laid one of the bedrocks of information theory. Any logically

irreversible operation, such as AND or OR has a fundamental minimum energy cost because the

loss (erasure) of information.

Figure 4.1. A Szilard engine working in a cycle. The amount of work extracted by the engine from the

heat bath in one cycle should, in fact, be equal to the energy needed to erase information from the demon’s

memory.

For over a century, much effort has been devoted to confirm the link between information and

thermodynamics and to determine experimentally the energy cost of manipulating information
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[144–147]. In past decades, there has been a significant theoretical and experimental progress in

extending stochastic thermodynamics and fluctuation theorems into nano-systems [141, 148–153].

Due to the technological advancement, the study of energy fluctuations in nano-scale systems such

as optical or electrical traps [144, 146, 154] and single-electron tunneling (SET) devices [143, 155]

has transformed the thought experiments such as the Maxwell’s demon and the Szilard’s engine to

experimental realizations.

Recently, Koski et al. [145] demonstrated a Szilard engine using a single electron box that showed

the extraction of kBT ln2 of heat by creating a bit of information. They showed that it is possible

to create a heat engine with only a single thermal reservoir, which apparently violates the Second

Law of thermodynamics [156]. Single-electron tunneling (SET) device has thus paved a way to

understand and design nano-engines with information as fuel [21, 157–159].

To improve the nano-device-based Szilard engine’s performance, it is imperative to understand

factors that are critical to Szilard engine’s performance [160]. The understanding will provide in-

sights into the optimization of nano-motors and devices driven by thermal fluctuations [161]. Fur-

thermore, studies may provide a basis to extend the stochastic thermodynamics into the quantum

regime where quantum heat engines may perform better than their classical counterparts [162–

164].

However, heat engines realized through single-electron circuits have limitations in terms of power

performance, which is the amount of work done by converting heat extracted from the heat bath

per unit time [157]. The SET-based Szilard engines and the bit erasure protocols realized in exper-

iments operated in the frequency range of 10-103 Hz [165], making them slow to convert heat into

work. For example, the typical slow ramp time of SET-based devices is on the orders of ∼ 10−3-1

s [145], which severely limits their performance in terms of the power output.
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In this work, we propose a much faster Szilard engine using a superconducting quantum inter-

ference device (SQUID) that functions as a flux logic device (FLD) under appropriate conditions.

The flux logic device has a single degree of freedom denoted by the dynamical variable Φ, which is

the total magnetic flux threading the loop, as shown in FIG. 1.8. The device has a one-dimensional

(1D) double-well potential separated by a barrier, as shown in FIG. 4.2. An externally applied flux

Φx sets the tilt, ε , of the potential. Thus, in the classical regime, the system’s behavior is equiva-

lent to a fictitious flux particle moving in the 1D double-well potential in contact with a single heat

bath of temperature T . In the following we demonstrate that SQUID functions excellently as a

flux logic device and that SQUID-based logic device is an ideal prototype for constructing Szilard

engines with unprecedented speed and power through numerical simulation. The double-well po-

tential can be treated as a one-bit memory having two discrete states, “−1” and “1” corresponding

to the flux particle in the left and right well, respectively. We first show that in the quasi-static (QS)

limit, on average, the proposed heat engine can extract kBT ln2 of heat per cycle from the thermal

reservoir per bit of information created. Second, we found that the maximum power delivered by

such a Szilard engine is not achieved by operating it in the quasi-static limit but in a region far

away from the QS limit. For most applications, a heat engine that can run fast and deliver greater

power is more desirable than an engine that maximizes the average work done per cycle by going

quasi-static (i.e., slowly) which results in diminishing output power.

4.2 SQUID-based flux logic device

As discussed in section 1.5, dynamics of SQUID-based flux logic device is analogue to a particle

of mass ‘C’ moving in a potential given by Eq. (1.24). Based on the RCSJ model, the deterministic

equation of motion of the flux logic device is given by Eq. (4.9). Eq. (4.9) describes the dynam-

ics of the flux logic device moving in a 1D potential U(Φ) given by Eq. (1.24) with a damping

coefficient R−1 [166]. Two parameters βL and φx determine the shape of the double well potential

(section 1.5). When φx = 1/2 and 1 < βL . 4.6 the potential is symmetric about φ = 1/2 with two
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Figure 4.2. The potential of the flux logic device (FLD) at normalized external flux φx= -0.49 with βL = 1.49.

ε ≡ ∆U+−∆U− is the energy difference between the two potential minima, where ∆U± are the energy

difference between the saddle point and the respective potential minima. Γ± is the escape rate out of the

right and the left potential wells.

wells separated by a potential barrier ∆U0. Changing φx slightly away from 1/2 tilts the potential

which results in an energy bias ε ≡UR−UL ≡ ∆U+−∆U− ∝ δφx ≡ φx−1/2 between states "−1"

(left well) and "1" (right well), where ∆U± is the barrier height of the left and right well as shown

in FIG. 4.2.

4.3 Experiment

4.3.1 Lifetime measurement

The FLD has two well-defined fluxoid states, current circulating clockwise as "−1" and current

circulating anticlockwise as "1". In the classical regime, if the logic device is prepared in the "−1"

state at t = 0, the probability of finding the logic device remaining in the same state at a later time

is

Ps(t) = e−t/τ , (4.1)
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where τ = Γ−1 is the lifetime of the state under consideration. Γ is the escape rate by thermal

activation which is given by Arrhenius law [57], and the escape rate from "−1" state to "1" state,

and vice-versa is given by

Γ± = at(ωp/2π)exp(−∆U±/kBT ). (4.2)

In Eq. (4.2), the exponential term is the Maxwell Boltzmann probability that the particle will have

energy equal to ∆U± and escape to the other state while the term ωp/2π is the attempt frequency.

The dimensionless damping dependent factor, at ∈ (0,1), takes different forms depending on the

strength of the damping. At φx = 1/2, we have ε = 0 and Γ+ = Γ− ≡ Γ0. The energy bias, ε , is

the key parameter to calculate various thermodynamic quantities.

SQUID based flux logic device we used has two superconducting loops. First, the main loop

of inductance L with φx the external flux threading the loop. Second, the dc SQUID loop of in-

ductance Ldc with φx,dc the external flux threading it. φx controls the tilt (ε) of the double-well

potential while φx,dc tunes the barrier height as explained in Eq. (1.25).

Figure 4.3. The magnetometer is operated at the most sensitive region so that it can clearly distinguish the

two fluxoid states of the logic device (a) and the raw signal is digitized using a MATLAB code where state

”±1” represents the distinct fluxoid state of the logic device (b).

In the experiment, the average time the system remains in a given state depends on the barrier
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height, which is controlled by φx,dc and the tilt ε which in turn is proportional to φx. We choose

a suitable φx,dc = 0.29 (βL = 1.49), which is determined from calibrated voltage-to-flux relation

φx,dc = (Vx,dc−Vre f )/Vdc,0, where Vdc,0 = 15.0V corresponds to one flux quantum in dc SQUID

loop while Vre f =−0.8V corresponds to φx,dc = 0. When φx = 1/2, the logic device’s potential is

symmetric, and the lifetime of the two states is same. For φx 6= 1/2, the potential of the system is

tilted, and the transition rates are given by Eq. (4.2). In order to determine the lifetime at specific

φx,dc and ε , the system is allowed to thermalize for a time t >> τ , and the flux in the main loop is

monitored continuously by a dc SQUID magnetometer inductively coupled to the main loop.

Figure 4.4. Histogram to get the lifetime of the state for a particular external main loop voltage, Vx =−3.0V,

and dc voltage, Vx,dc = −5.1V. The time fictitious flux particle spends in the state "1" is τ+ = (2.76±

0.04)ms while τ− = (1.34±0.02)ms.

The time series of the magnetometer’s voltage V (t) is shown in FIG. 4.3(a). FIG. 4.3(b) shows

the digitized form of V (t) corresponding to flux logic device (FLD) in either "−1" or "1" state.

The time the FLD remains in each state is then binned to form histograms. The exponential fits to

histograms (see FIG. 4.4) yield each state’s lifetime at that φx,dc and φx. At temperature T , based

on detailed balance, energy bias ε is related to the transition rates Γ± as

ε

kBT
= ln

(
Γ−
Γ+

)
. (4.3)
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Eq. (4.3) is used to calibrate φx vs. Vx. The plot of ε as a function of Vx is linear as expected FIG.

4.5 . The relationship between Vx and φx is given by

φx = (Vx−Vxsym)/V0, (4.4)

where Vxsym =−3.02V and V0 = 8.1V.

Figure 4.5. Energy bias as a function of Vx. The energy bias is zero at Vx = Vxsym = −3.02V (a) and the

energy bias as a function of δφx = φx−1/2.

4.3.2 Post selection method

In our experiment, a Szilard engine cycle consists of three stages: (i) slow ramp, (ii) measure-

ment, and (iii) fast ramp. In the slow ramp stage, the system has a finite probability of jumping

between two potential wells. During the time interval of δ t = ti+1− ti, the change in energy bias

δε = εi+1− εi increases. Since ε increases during the slow ramp, more heat is absorbed than re-

leased on one round trip of the particle. Here one round trip refers to the particle jumping from

state ”−1” (the left well) to state ”1” (the right well) and subsequently returning back to the same

state. In the measurement stage (ii), ε = 0, the net heat absorbed or released is always zero. The

endpoint of the measurement stage is taken as the feedback point for the post-selection method.

During the fast ramp stage (iii) of the successful cycles, there is no chance for the particle to jump
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Figure 4.6. The post-selection protocol for Szilard engine experiment.

to state ”− 1”, so there is no heat exchange between the FLD and the bath. Theoretically, the

average heat absorbed 〈Q〉 should be kBT ln2 per successful cycle when the slow ramp approaches

the quasi-static limit. The detailed description of the thermodynamics of the engine in each stage

is discussed in section 4.4.1.

The purpose of the experiment is to verify that in QS limit on average each successful cycle con-

verts 〈Q〉 = kBT ln2 into work. In order to perform the Szilard engine experiment, we need to

know Γ at δφx = 0. The experiment is performed at φx,dc = 0.29 for which Γ
−1
(δφx=0) = 3.0 ms. To

circumvent the finite response time of in-situ feedback, we use the post-selection method to select

only the successful cycles to analyze. Based on the state of FLD just before the fast ramp begins

each cycle is assigned either as a “success” or a “failure”. The data are analyzed after rejecting all

failed cycles. Using post selection instead of real time feedback greatly simplifies the control and

measurement circuits without compromising the validity of the result. The time for each cycle of

operation is 200ms. In our experiment, each cycle is started by initializing the FLD in the fluxoid

state ”−1”. δφx is then ramped from δφx =−98.8mΦ0 (Vx =−3.8V) to δφx = 0 (Vx =−3V) in

the slow ramp stage. The time for slow ramp stage is 128ms which is much greater than the life
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Figure 4.7. (a) The flux bias which drives the engine for Szilard engine experiment. The time period for

each cycle is 200ms while the lifetime at ε = 0 is 3ms. (b) The control parameter ε converted using linear

relation ε/kBT = 0.359δφx as shown in FIG. 4.5(b). (c) The magnetometer’s output voltage for the Szilard

engine experiment.

time 3ms to ensure sufficient time for thermalization. After reaching δφx = 0, the FLD is ther-

malized for a time of 60ms to reach thermal equilibrium. Finally, the FLD is driven by fast ramp

for a 2ms to return to δφx = 98.8mΦ0 corresponding to εm = ε/kBT = 35 as shown in FIG. 4.7(b).

4.3.3 Heat absorbed and work done by the engine

The thermodynamics of each engine cycle is characterized quantitatively by the work done (W ) by

the engine and the heat absorbed (Q) from the thermal reservoir. For each leg of the cycle, W and

Q are calculated from the instantaneous energy bias ε(t), which depend linearly on the external

flux bias δφx and the state of FLD. The accumulative work done by the engine and heat absorbed

up to time τi+1 is [58]

Wi+1 =Wi +
1
2

Fi+1(εi+1− εi) (4.5a)

Qi+1 = Qi +
1
2
(Fi+1−Fi)

(
εi+1 + εi

2

)
, (4.5b)
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where Fi = ±1 is the discrete state variable of the SQUID, corresponding to the flux particle in

the right (logic “1”) or the left (logic “−1”) potential well, at time τi. From τi to τi+1, the system

absorbs or releases heat only if the particle jumped from one well to the other, which is calculated

using Eq. (4.5b). The exact time at which the particle jumped is not important because when

averaged over all jumps the middle point between τi and τi+1, i.e., τi + δτ/2 is an excellent ap-

proximation. In contrast, when the particle remains in the same state Fi+1 = Fi, the work done

by the engine from τi to τi+1 is given by the second term on the right side of Eq. (4.5a). Using

Eq. (4.5) it is straightforward to show that for each complete cycle, W = Q. The δφx(t) waveform

depicted in FIG. 4.9 guarantees W = Q ≥ 0 in agreement with the first law of thermodynamics

[144].

57



Figure 4.8. (a) Accumulative work done by the engine based on the average of about 26,000 successful

cycles. Inset shows the zoomed in on (a) to show the average work done by the engine is positive. The

corresponding distribution (red) of the work done by the engine averaged over successful cycles. (b) The

accumulative heat absorbed by the engine averaged over 26,000 successful cycles and its corresponding

distribution (blue). Inset: zoomed in for the slow ramp region. The slow ramp drive rate is ε̇/kBT = 0.87Γ0

where Γ0 = 333s−1 is the thermal activation rate when the potential is symmetric. The average heat absorbed

by the engine per cycle is 〈W 〉/kBT ln2∼= (0.79±0.01), about 20% less than that expected from Landauer’s

principle.

Our data show that for successful cycles the average work done by the engine per cycle is 〈W 〉/kBT ln2∼=

(0.79± 0.01), about 20% less than that expected from Landauer’s principle. For the slow ramp

stage, φx is ramped from δφx = −98.8mΦ0 to δφx = 0 (symmetric double well) linearly so that

ε(t) =−εm +νt, where ν = dε/dt is the ramp rate and εm = 35 (see FIG. 4.7(b)). The transition
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rate from the left well (initial state) to the right well is

Γ(ε) = at
ωp

2π
exp
(
−∆U−

kBT

)
= at

ωp

2π
exp
[
−B
(

∆U0−
ε

2

)]
= Γ0 exp

(
Bε

2

)
,

(4.6)

where ∆U± = ∆U0± ε/2 is the barrier height of the right well and the left well, ∆U0 and the

Γ0 is the barrier height and transition rate when the potential is symmetric (ε = 0), respectively.

B = β = 1/kBT for the thermal activation and κ/h̄ωp for quantum tunneling, where κ depends

on the shape of the potential. For example, κ = 36/5 and 32/3 for cubic potential and quadratic-

plus-quartic potential, respectively. The probability of having a transition to occur between ε and

ε +dε is denoted as p(ε)dε , where the probability distribution function is

p(ε) =
Γ(ε)

ν
exp
[
− 1

ν

ˆ
ε

−εm

Γ(ε
′
)dε

′
]

=
Γ0

ν
exp
(

Bε

2

)
exp
[
− Γ0

ν

ˆ
ε

−εm

exp

(
Bε
′

2

)
dε
′
]

= αB exp
(

Bε

2

)
exp
[
−2α exp

(
Bε

2

)]
= αB exp

[
Bε

2
−2α exp

(
Bε

2

)]
(4.7)

Assume Bεm >> 1 so that exp(−Bεm/2)→ 0. In Eq. (4.7) α ≡ Γ0/Bν is a dimensionless constant.

α >> 1 leads to slow ramp and vice versa. Namely, α can be viewed as the key parameter that

measures the goodness of adiabaticity. The accumulative probability that the particle escapes from

the initial well when ramping from −εm to ε = 0 is

P(0) =
ˆ 0

−εm

p(ε)dε '
ˆ 0

−∞

p(ε)dε = 1− exp(−2α). (4.8)
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The experiment is performed at φx,dc = 0.29 for which Γ0 = 333s−1. The slow ramp drive rate is

ε̇/kBT = 0.87Γ0. Thus, the value of α ≡ Γ0/Bν = 1.22 which gives P = 91.3%, which signifies

the slow ramp is not quasi-static enough to achieve Landauer’s limit of kBT ln2.

Our experiment is limited by a single slow ramp speed ε̇/kBT = 0.87Γ0. To further our under-

standing of FLD Szilard engine we performed Monte-Carlo simulation to study the dependence of

W on the ramp rate.

4.4 Numerical simulation of a fast Szilard engine

In the presence of thermal fluctuations, the dynamics of a SQUID is governed by the following

Langevin equation

CΦ̈+
Φ̇

R
=−∂U

∂Φ
+ In(t). (4.9)

The shunt resistance R is the source of fluctuating current In(t). Eqs. (3.2a) and (3.2b) provide

the statistical properties of this noise current, according to the fluctuation-dissipation theorem.

Inserting the partial derivative of U(Φ) in Eq. (4.9) gives

CΦ̈+
Φ̇

R
=

∆Φ

L
− Ic sin

(
2π

Φ

Φ0

)
+ In(t), (4.10)

where, ∆Φ = Φx−Φ. Let ϕ =
(
2π/Φ0

)
Φ and time in normalized unit τ = ωp0t. We have

ϕ̈ +Gϕ̇ =
∆ϕ

βL
− sinϕ + in(τ), (4.11)

where G = 1/Q0, ∆ϕ = ϕx−ϕ . Eq. (4.11) is the dimensionless form of Eq. (4.9) which reveals

universal behavior of the system. Here, single and double overdot in ϕ represents the first and

second derivative with respect to time, τ . This stochastic second-order differential equation is

simulated numerically using a finite difference technique [42, 136] with accuracy of O(δτ3), where
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the time step δτ = 2π/250 is determined through the convergence test:

ϕn+1 =
(

2−Gδτ− δτ2

βL

)
ϕn− (Gδτ−1)ϕn−1 +

δτ2

βL
ϕx,n− sin(ϕn)δτ

2 +α qn, (4.12)

where, τn = nδτ , ϕx,n ≡ ϕx(τn), ϕn ≡ ϕ(τn), α =
√

2GkB T/EJδτ , and qn is a random process

with the standard normal distribution: 〈qn〉 = 0 and 〈qnqm〉 = δnm. For the sake of concreteness we

performed simulation using a set of realistic device parameters listed in Table 4.1.

Ic (µA) L(pH) C (fF) βL ∆U0 (K) ωp0/2π (GHz)
4.9 100 1200 1.49 20.3 18.0

Table 4.1. Flux logic device parameters

The simulation is performed for under-damped, moderately damped, and over-damped cases by

setting the dimensionless damping factor, G= 0.1, 1, 3, and 10, respectively. The symmetric

double-well transition rate, Γ0 plays an important role in determining how fast the flux logic device

can be operated as a Szilard engine. In this study, the transition rate Γ0 for each damping parameter

G, is found by propagating Eq. (4.12) at φx = 1/2.

G 0.1 1.0 3.0 10
Γ0 (107 s−1) 8.23 6.16 3.05 1.07

Table 4.2. Γ0 for different values of G at T = 4.2 K.

We start the simulation by initializing the fictitious flux particle at the bottom of the left well

and following its trajectory until it escapes into the right well. The time taken for each escape

is recorded, and the procedure is repeated 50,0000 times. The mean escape rate is obtained by

averaging over all escape events for a given potential configuration and temperature. The values
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of Γ0 for different G at T = 4.2 K are listed in Table 4.2. The values of Γ0 are in good agreement

with Eq. (1.19).

4.4.1 Drive-measurement-feedback protocol

The drive-measurement-feedback protocol used to run the proposed fast Szilard engine is illus-

trated in FIG. 4.9 [167]. Each cycle of the Szilard engine consists of three stages: (i) creation of

information, a slow ramp (drive) to extract heat from the bath, (ii) a measurement to determine the

state of the flux logic device, and (iii) erasure of the information, a fast ramp to return the system

to the same initial state without releasing heat back to the bath.

Figure 4.9. (a) Evolution of a flux logic device potential for a complete cycle. (b) Flux bias sequence

as a function of time. Region (i) represents the slow drive for a time of tD, the device is prepared for

the measurement for a time tM (ii), and the fast drive for a time tF (iii). Depending on the outcome of

the measurement, the end point of the cycle is either the same or the mirror image of the initial potential

configuration due to its symmetric nature. Thus, the total cycle time is tcycle = tD + tM + tF. In simulation,

tM and tF are fixed to 0.02ns, while tD is the only control variable.
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The slow ramp stage (i) begins from a highly tilted double-well, with the particle trapped in the

fluxoid state “−1” with certainty. The external flux, δφx is then increased linearly with time from

δφx =−δφxm =−0.01 to δφx = 0, at which point the potential is symmetric, with the slow ramp

time tD. In terms of information theory, this corresponds to driving the system from SH = 0 to

SH = kBln2, where SH = −kB ∑i=0,1 p(i)ln p(i) is the Shannon entropy [168]. This process is

equivalent to creating one bit of information. The system is driven quasi-statically from a zero bit

configuration (particle trapped in a known state) to the one-bit configuration (two equally probable

states). The thermodynamics of each cycle is characterized quantitatively by the work, W , per-

formed by the engine and the heat absorbed, Q, from the thermal reservoir. In particular, when the

slow ramp stage becomes quasi-static (the stage of creation of information), due to an increase in

the inter-well transitions probability (thus decrease the time spent in the “−1” state), the engine

absorbs net heat from the bath, while on average, the engine does a net negative work, WD.

In the measurement stage (ii), the system is idled at δφx = 0 for a short duration tM, which is

set by the time required to perform the measurement. For typical SQUIDs, tM can be 1 µs or less.

The flux particle position is then measured, e.g., by a magnetometer, to determine its state. The

sole purpose is to determine if the system is in the logic state “−1” or “1”. The net heat absorbed

or released is always zero during the measurement stage because energies of the two states are

equal, and so is the work done by the engine, WM = 0.

In the post-measurement fast ramp stage (iii), if the system is in the “−1" (“1") state the flux

bias, δφx is then decreased (increased) rapidly to−δφxm (δφxm). Due to the inversion symmetry of

the potential energy, either path completes a thermodynamic cycle. The duration of the fast ramp

stage must satisfy Γ0 tF << 1 so that the system remains in the same flux state during stage (iii). As

a result there is not enough time for inter-well transitions to occur so that the engine always does a

positive work of WF =U(δφx = 0)−U(δφx =±δφxm) in stage (iii). In the numerical simulation,

the flux logic device is not required to wait for a long time tM to determine its logic state, and the
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fast ramp time is set to 0.02ns. For a complete cycle, one has W = Q according to the first law of

thermodynamics.

4.4.2 Results and discussion

For each value of the damping parameter G, the simulation is performed by varying tcycle. FIG.

4.10(a) shows the three individual trajectories for the under-damped case (G = 0.1) with the cycle

time, tcycle, 25 ns (red), 50 ns (cyan) and 300 ns (blue) respectively. The value of 〈W 〉/kBT ln2 for

the trajectories shown are 0.68, 0.95 and 0.99 respectively. FIG. 4.10(b) shows the distribution

for the above mentioned tcycle obtained by repeating each protocol cycle 50,000 times. The result

shows that when tcycle ≥ 300ns approaches the quasi-static limit, the distribution is a Gaussian

centered at kBT ln2.

FIG. 4.11 shows the average heat absorbed per cycle vs. the slow-ramp time tD for four different

values of the damping parameter G, where each data point is obtained by averaging over 5× 104

simulated cycles. The standard error bar on each point is negligible. When tD approaches the quasi-

static limit, characterized by Γ0 tD >> 1, the average amount of heat absorbed per cycle, 〈Q〉, ap-

proaches the Landauer’s limit kBT ln2. According to information theory, this corresponds to driving

the system from SH = 0 to SH = kBln2 as the Shannon entropy suggest S =−kB ∑i=0,1 p(i)ln p(i)

[168]. This process is equivalent to the creation of one bit of information, in which the system

is driven quasi-statically from a zero bit configuration (particle trapped in a known state) to the

one-bit configuration (two equally probable states). The plot shows that stronger damping requires

longer tD to reach the QS limit. For G = 10, it takes tD = 6000ns to reach 〈Q〉 = 0.95 kBT ln2 while

for G = 0.1, it only requires tD = 350ns. Furthermore, as tD is decreased from Γ
−1
0 , the average

amount of heat absorbed from the heat bath per cycle decreases because less inter-well transitions

occur. We observe a monotonic decrease in 〈Q〉which ultimately reaches zero for respective cutoff

drive time tD depending on the value of G. It is convenient to define two time limits tC and tQS as
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Figure 4.10. (a) Typical trajectories of the particle with cycle time 25 ns (red), 50 ns(cyan) and 300 ns

(blue) respectively following the protocol is G-independent (G = 0.1). The value of W/kBT ln2 for the three

trajectories shown are 0.68, 0.95 and 0.99 respectively. (b) The corresponding probability distribution of the

work done is obtained by repeating the cycle for 50,000 times. The arrows indicate the work done by the

engine associated with the three individual trajectories shown in (a).

the time when 〈Q〉 is 5% and 95% of the kBT ln2 respectively. The lower threshold tC determines

how fast the engine can be run in the drive stage. In addition, one must set tF < tC to avoid inter-

well transitions during the fast ramp stage. We find that for G = 10 (over-damped) and G = 0.1

(under-damped) case tC is 10 and 1ns, respectively.

Since we are also interested in studying the effect of damping on the thermodynamic quantities

and Γ0 is damping dependent, it is instructive to express tD in units of Γ
−1
0 . FIG. 4.12(a) shows

〈W 〉 for different values of G vs. Γ0 tD. Each data points are the average of 50,000 cycles shown

with standard error, σµ ∼ 10−3. Quantitatively, the process becomes quasi-static and the 〈W 〉 ≥

0.95kBT ln2, when tQS ≡ Γ0 tcycle ≥ 40 irrespective of the damping strength. Also, the threshold

time tC is found to be 0.1 for all of the damping strengths.
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Figure 4.11. (a) 〈Q〉 by the logic device as a function of the cycle duration tcycle for G= 0.1, 1.0, 3.0 and

10, corresponding to the under-damped, moderately damped and over-damped cases respectively. Each data

point is averaged over N = 50,000 engine cycles. 〈Q〉 approaches the Landauer’s limit, kBT ln2 , when the

cycle time becoming quasi-static. It is clear that, for the over-damped case, the engine requires longer tcycle

to reach the quasi-static limit than the moderately and under-damped cases do.

We calculated the normalized power output, P = (〈W 〉/kBT )/ Γ0 tD, as shown in FIG. 4.12(b).

The power increases as Γ0 tD increase and eventually reaches a maximum value Pmax, then starts

to decrease with further increase of tD. For G = 0.1, the optimal drive time to generate maximum

power, Pmax = 0.43, is at tmax = Γ0 tD= 0.18.

FIG. 4.13 shows the effect of temperature on 〈W 〉 for a particular G = 0.1. The thermal activa-

tion rate, Γ0 for T = 5 K is 1.68× 108/s which is twice as fast as at T = 4.2 K. However, when

plotted against the normalized drive time they overlap each other within statistical uncertainties.

This confirms to have no effect of T on 〈W 〉.

In conclusion, we proposed a high-efficiency Szilard engine based on the flux logic device and

investigated its properties numerically. It is found that the engine extracts kBT ln2 heat, on average,

per cycle in the quasi-static regime from the thermal reservoir when one-bit information is created,

as predicted by Landauer’s principle. Furthermore, our study reveals an important result that the

output power of the engine is maximum when operated with an optimized speed (Γ0 tD)−1 ∼= 5.5,
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Figure 4.12. (a) Ensemble average of the work done by the logic device as a function of the normalized slow

ramp time Γ0 tD for under-damped (red), moderately damped (green) and over-damped (blue) cases defined

by normalized damping parameter G. Each data point is the average of 50,000 engine cycles shown with

standard error. tC and tQS are the two time limits such that 〈W 〉 is 5 and 95% of the kBT ln2 respectively.

〈W 〉/kBT ln2 approaches the Landauer’s limit when the normalized slow ramp time becomes quasi-static.

(b) The power output, P by the logic device as a function of the normalized slow ramp time Γ0 tD. The

vertical dashed black line shows the location of the maximum power, Pmax = 0.43 at an optimal Γ0 tD = 0.18

or the slow ramp time tD = 2.2ns.

which is more than 200 times faster than the upper speed limit (Γ0 tD)−1∼= 0.025 of the quasi-static

regime. These findings provide valuable insights to the optimization of Szilard engines with infor-

mation as fuel.

So far, in our discussion we have restricted our simulation using one-JJ rf SQUID. In reality,

either one-JJ or two-JJ rf SQUID can be used. The future work can be extended to make the pro-

tocol more efficient, in which tilt and the barrier height are simultaneously varied. The ability to

control the barrier height independently allows the Szilard engine to shorten the minimum drive

time required to satisfy to reach the quasi-static condition [150]. Also, due to miniaturization of

the device, it has become essential to extend stochastic thermodynamics in the quantum realm. It

is possible to do the experiment in the quantum regime in which interwell transitions are caused
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Figure 4.13. The average work done per cycle by the logic device for G = 0.1 at T =4.2 (blue) and 5 K

(brown). The thermal activation rate, Γ0 = 1.68×108/s and 8.21×107/s for T = 5K and 4.2 K respectively.

The two curves overlap within statistical uncertainties showing no effect of T on 〈W 〉 of the Szilard engine.

Each data point is obtained by averaging 50,000 thermodynamic cycles shown with 1σ error bar (however,

they are difficult to see).

by quantum fluctuation and or/ quantum coherence. The open question is, can a quantum engine

do more work than the limit set by the second law of thermodynamics?
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Chapter 5

Summary

In summary, we studied the phase dynamics of moderately damped Josephson junctions. There are

three states of the phase particle in tilted washboard potential, i.e., trapped, PD, and running state.

Thus, there are two sequences of transition from the trapped state to the running state: (1) Direct;

(2) via PD as the intermediate state. The particle can escape from the trapped state by either TA

or MQT, depends on if T is above or below the crossover temperature Tcr. The subsequent motion

can either be a direct switching to the running state or going through the intermediate PD state. In

previous studies, the effect of damping, temperature, and the junction parameters EJ and Ec on PD

is studied. While the role of potential tilt (i) has been mostly overlooked.

First, we observed MQT by measuring their switching current distributions (SCDs) between 50

mK and 3.0 K. The data show that Tcr of the junctions is ∼ 0.5-0.8 K reflecting the high charac-

teristic plasma frequency (ωp0/2π ∼ THz), making them promising for microwave and terahertz

applications. The results also show that the planar FHIB Y-Ba-Cu-O junction is promising for

scalable quantum circuit.

Second, we observed the distinctive signature of phase diffusion, as the appearance of an anti-

correlation between temperature and the width of the SCDs at T > Tcr. After escaping from the
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initial potential well repeated escapes and retrapping lead to phase diffusion. PD is facilitated small

bias current and high temperatures. Thus it is necessary to provide a larger tilt to the potential to

allow the junction to switch to the running state. Therefore, above Tcr the experimental value of

〈Is〉 are larger than the mean escape current, 〈Iesc〉 expected from TA.

Furthermore, the effect of potential tilt in determining the phase dynamics of the Josephson junc-

tions are studied by scanning the parameter space (i,kBT/EJ). We compare the mean escape cur-

rent, 〈Iesc〉 predicted by TA and MQT for junctions having different EJ/EC but same Q0. Junctions

with larger EJ , but otherwise having the same Q0, require greater tilt to transit to MQT from TA or

the PD regime. Thus, in experiments, one observes higher switching currents in the presence of PD.

Finally, we showed that the SQUID-based flux logic device can be modeled as a one-bit memory,

making an ideal prototype for constructing Szilard engines with unprecedented speed and perfor-

mance. First, the proposed engine can extract 95% of kBT ln 2, on average, of work 〈W 〉 per cycle

from the thermal reservoir in the quasi-static (QS) limit, tQS = 350ns, where tQS is the cycle time.

In the QS limit, the engine has sufficient time to thermalize with the thermal bath to absorb more

heat through multiple inter-well transitions. However, the engine operating in the QS limit is slow

because although it maximizes the work done per cycle, it sacrifices speed and the combined effect

results in a lower power P. Furthermore, we found that the lower bound of the drive limit tC = 1ns,

at which 〈W 〉 is 5% of kBT ln 2, which again leads to poor performance in terms of power. In be-

tween these two extreme limits, we identify an optimal cycle time, tcycle = 1.8ns, which produces

maximum power desirable for many applications. Our result demonstrates that FLD-based Szilard

engines’ performance can exceed other nano-device implementations by orders of magnitude.

To sum up, this dissertation covers the study of the phase dynamics of moderately damped pla-

nar FHIB Y-Ba-Cu-O Josephson junctions. Different regimes are identified from the statistical

property of the SCDs through well-defined criteria. The observation of MQT in such junctions
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opens a way to explore and test other macroscopic quantum effects. Also, SQUID based flux logic

device as a Szilard engine is not yet realized in the quantum realm. Thus, such devices may provide

an excellent platform to understand quantum thermodynamics.
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Code to simulate a flux logic device as a fast Szilard engine for
optimal power

April 7, 2021

[1]: """ Coded by Suman Dhamala @03/10/2020
A flux logic device is implemented as a fast Szilard engine for optimal power.
The Langevin equation of motion for a 1D flux logic device is solved using the
finite difference technique. The Nyquist noise current follows the fluctuation
dissipation theorem. Moreover, the random process is modeled to follow Gaussian
noise distribution. """

# import the useful libraries for the simulation
# import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import fsolve
from scipy.optimize import curve_fit
#from lmfit import Model
#import seaborn as sea
import operator
import math
pi = math.pi

[2]: # Four independent parameter I_c, C, R and L of the flux logic device
L = 100*1.0e-12 # Inductance in H
I_c0 = 4.9e-06 # Critical current in A
C = 1200e-15 # Capacitance in F
G = 0.1 # Normalized damping parameter

# Deduced parameters beta0/E_J/U0/Omega_p0/G
flux_quantum = 2.068*1.0e-15;
k_B = 1.3807e-23 # Boltzmann constant value
beta0 = 2*pi*L*I_c0/flux_quantum # shape determining parameter
U_0 = (flux_quantum)**2/(4*pi**2* L) # Energy scale
E_J = ( U_0*beta0 ) # Josephson energy
Omega_p0 = np.sqrt(2*pi*I_c0/(flux_quantum*C)) # Angular frequency at zero bias
plasma_f0 = Omega_p0/(2*pi) # Plasma frequency
R = 1/(Omega_p0*G*C) # Resistance in the unit of ohm

1
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[3]: # For this parameters find DU0 (barrier height for phix=0.5 and beta0)
# For the given parameter find epsilon (tilt) for phix=-0.49 and beta0
# Find left, saddle and right position of the fictitious flux particle
# in the potential well for phix=-0.49 and beta0

phix_symmetric = 0.5*2*pi
phix_start = 0.49*2*pi
pot_energy_scale = U_0/k_B
T = 4.2

## derivative of 1 dim. potential
def pot_derv(self):

return (self - phix_start) + beta0* np.sin(self)

## Make a starting guess
init_position = np.array([1.6,3,4.65 ]) # initial guess for phix=0.49/beta0
position = fsolve(pot_derv, init_position)

## finding potential energy value
def pot_energy(self,phix):

return pot_energy_scale*( 0.5*( self- phix )**2 - beta0* np.cos(self) )

Uvalue_phix_start = pot_energy(position, phix_start)
Uvalue_phix_symmetric = pot_energy(position, phix_symmetric)

##
phi_L = position[0] # position in the left well
phi_R = position[2]
phi_saddle = position[1]
DU0 = Uvalue_phix_symmetric[1]- Uvalue_phix_symmetric[0] # barrier height for␣
↪→symmetric potential

Exponent_factor = DU0/T #Exponential factor in the Arrehinious equation
Epsilon_start = (Uvalue_phix_start[0]-Uvalue_phix_start[2])/T
#print(position)
#print(Epsilon_start,DU0)

[4]: # Variables
N_trials = 1 # Number of for loop iterations
dtau = (2*pi/250) # Normalized time step determined from convergence test

#Changing time for each part of the protocol
slow_ramp_time = 200*1.0e-9; # Variable slow ramp time in s
dwell_time = 0.02*1.0e-9; # fixed measurment time in s
fast_ramp_time = 0.02*1.0e-9; # fixed fast ramp time in s

#
a_t = np.sqrt(1+G**2/4)-G/2 #Damping constant in the Arrehenious equation
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Gamma_0 = a_t*plasma_f0* np.exp(-Exponent_factor) #Rate from Arrehenius law
Thermalization_condition = Gamma_0*dwell_time*1.0e-9 #condition is ␣
↪→Gamma_0*t_dwell>>1

#Convert real time to normalized time for simulation
norm_slow_ramp_time = slow_ramp_time*Omega_p0
norm_dwell_time = dwell_time*Omega_p0
norm_fast_ramp_time = fast_ramp_time*Omega_p0

# Convert time series to points
N_slowramp = round(norm_slow_ramp_time/dtau) # no. of data points for slow ramp
N_dwell = round(norm_dwell_time/dtau) #No. of points in flat part
N_fastramp = round(norm_fast_ramp_time/dtau) #No. of points in fast ramp
feedback_point = ( N_slowramp + N_dwell) # feedback point
Tau = (N_slowramp + N_dwell + N_fastramp )*dtau # normalized total time
Tau_array = np.arange(0,Tau,dtau)
realtime_array = (Tau_array)/(Omega_p0)/1.0e-9 ; # converted to nanosecond

# Creating array of External flux and Energy bias according to conditional␣
↪→feedback

Phix1_end = phix_symmetric + (phix_symmetric-phix_start)
phix_slow = np.linspace(phix_start, phix_symmetric, N_slowramp)
phix_dwell = np.ones(N_dwell,)*phix_symmetric
phix1_fast = np.linspace(phix_symmetric+(phix_slow[2]-phix_slow[1]), Phix1_end,␣
↪→N_fastramp )

phix0_fast = np.linspace(phix_symmetric-(phix_slow[2]-phix_slow[1]),␣
↪→phix_start, N_fastramp )

##
phix0_array = np.concatenate((phix_slow, phix_dwell, phix0_fast))
phix1_array = np.concatenate((phix_slow, phix_dwell, phix1_fast))

## creating Epsilon
Epsilon_slow = np.linspace(Epsilon_start, 0, N_slowramp)
Epsilon_dwell = np.zeros(N_dwell,)
Epsilon0_fast = np.linspace(0-(Epsilon_slow[2]-Epsilon_slow[1]), Epsilon_start,␣
↪→N_fastramp )

Epsilon1_fast = np.linspace(0+(Epsilon_slow[2]-Epsilon_slow[1]),␣
↪→-Epsilon_start, N_fastramp )

### Addaing each part to make an Array of phi_x and energy bias
Epsilon0_array = np.concatenate( (Epsilon_slow, Epsilon_dwell, Epsilon0_fast) )
Epsilon1_array = np.concatenate( (Epsilon_slow, Epsilon_dwell, Epsilon1_fast) )

##
from matplotlib import rc

3

87



rc('font', **{'family':'serif','serif':['Palatino']})
rc('text', usetex=True)
fig, ax = plt.subplots(nrows=1, ncols=2, sharey=False,figsize=(12,5))
# plots
ax[0].plot(realtime_array,phix0_array/(2*pi),color="blue", linewidth=1.0,␣
↪→linestyle="-")

ax[0].plot(realtime_array,phix1_array/(2*pi),color="red", linewidth=1.0,␣
↪→linestyle="-")

ax[1].plot(realtime_array,Epsilon0_array,color="blue", linewidth=1.0,␣
↪→linestyle="-")

ax[1].plot(realtime_array,Epsilon1_array,color="red", linewidth=1.0,␣
↪→linestyle="-")

# labels
ax[0].set_ylabel(r'$\phi_{x}$',fontsize=18)
ax[0].set_xlabel('time (ns)',fontsize=18)
ax[1].set_ylabel(r'$\epsilon/k_{B}T$',fontsize=18)
ax[1].set_xlabel('time (ns)',fontsize=18)
# adjust right subfigure axes location
ax[1].yaxis.tick_right()
ax[1].yaxis.set_label_position("right")
# figure settings
fig.suptitle('External flux bias and the energy bias', fontsize=18)
fig.tight_layout()
fig.subplots_adjust(top=0.9) # tight_layout ignores overall titles (current bug)

[5]: # Langevin equation constant terms
inv_beta0 = 1/beta0 # inverse of beta0
dtau2 = dtau**2 # square of the normalized time
dtau3 = dtau**3 #cube of the normalized time
C1 = inv_beta0*dtau2 #constant term for phix_x term
C2 = 2-G*dtau-C1 #constant term for phi_n term
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C3 = G*dtau-1 #constant term for phi_n-1 term
C4 = dtau2 #constant term for sin(phi_n)term
C5 = np.sqrt(2*G*k_B*T*dtau3/E_J) #Noise amplitude

## Initialization of array
phi = np.zeros((len(phix1_array),))
Work_array = np.zeros((N_trials,))
Heat_array = np.zeros((N_trials,))
state = np.zeros((len(phix1_array),))

[6]: for i in range(0,N_trials): #number of iteration for work
## create an array of standard gaussian distributed random numbers for␣

↪→noise term
randnumber = np.random.randn(len(phix1_array))
# Determining change in phi from thermal equilibrium condition 1/2 k_BT = 1/

↪→2 C (Phi_dot)**2
Initial_velocity = (2*pi/flux_quantum)*np.sqrt(k_B*T/(C*Omega_p0**2))
dphi = Initial_velocity*dtau #dphi calculated from thermal condition
#initial values of the position of the particle in the potential
phi[0] = phi_L
phi[1] = phi[0]+ dphi
count = 1
#print("i", i)

#loop to find position of the particle till the feedback point
while count< feedback_point: #len(phix1_array)-1:

phi[count+1] =␣
↪→C1*phix0_array[count]+C2*phi[count]+C3*phi[count-1]-C4*np.
↪→sin(phi[count])+C5*randnumber[count]

count = count + 1

#plt.figure(4)
#plt.plot(phi)

##convert position to state
for ii in range(0,feedback_point+1):

if phi[ii]>phi_saddle:
state[ii]=1

else:
state[ii] = -1

##Feedback process has two fast ramp
if state[feedback_point]==1:

while phix1_array[count]< phix1_array[-1]:
phi[count+1] =␣

↪→C1*phix0_array[count]+C2*phi[count]+C3*phi[count-1]-C4*np.
↪→sin(phi[count])+C5*randnumber[count]
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count = count + 1
state[count]=1

else:
while phix0_array[count]> phix0_array[-1]:

phi[count+1] =␣
↪→C1*phix0_array[count]+C2*phi[count]+C3*phi[count-1]-C4*np.
↪→sin(phi[count])+C5*randnumber[count]

count = count + 1
state[count]= -1

## Select energy bias accordig the feedback point
if state[feedback_point]==1:

Epsilon_choosen = Epsilon1_array
else:

Epsilon_choosen = Epsilon0_array

## calculate heat and work
dizWork = np.zeros((len(phix1_array),))
Qheat = np.zeros((len(phix1_array),))
for k in range(0,len(state)-1):

if state[k+1]== state[k]:
dizWork[k+1]= dizWork[k]+ 0.

↪→5*state[k+1]*(Epsilon_choosen[k+1]-Epsilon_choosen[k])
Qheat[k+1]= Qheat[k]

else:
dizWork[k+1]= dizWork[k]
Qheat[k+1]= Qheat[k] - 0.5*( state[k+1]-state[k] )*(␣

↪→Epsilon_choosen[k+1]+Epsilon_choosen[k] )*0.5

Work_array[i] = dizWork[-1]
Heat_array[i] = Qheat[-1]

print('The accumulative workdone and heat absorbed in a cycle is W={} and Q={}'.
↪→format(dizWork[-1], Qheat[-1]))

The accumulative workdone and heat absorbed in a cycle is W=0.9686693885037513
and Q=0.9686693885037505

[7]: ##
fig, ax = plt.subplots(nrows=1, ncols=2, sharey=False,figsize=(12,5))
# plots
ax[0].plot(realtime_array,phi,color="blue", linewidth=1.0, linestyle="-")
ax[1].plot(realtime_array,state,color="red", linewidth=1.0, linestyle="-")
# labels
ax[0].set_ylabel(r'$\varphi$',fontsize=20)
ax[0].set_xlabel('time (ns)',fontsize=20)
ax[1].set_ylabel('state',fontsize=20)

6

90



ax[1].set_xlabel('time (ns)',fontsize=20)
# adjust right subfigure axes location
ax[1].yaxis.tick_right()
ax[1].yaxis.set_label_position("right")
# figure settings
fig.suptitle('Position of a fictitious phase particle in a cycle', fontsize=18)
fig.tight_layout()
fig.subplots_adjust(top=0.9) # tight_layout ignores overall titles (current bug)

[8]: ##

fig, ax = plt.subplots(nrows=1, ncols=2, sharey=False,figsize=(11,5))
# plots
ax[0].plot(realtime_array,dizWork,color="blue", linewidth=1.0, linestyle="-")
ax[1].plot(realtime_array,Qheat,color="red", linewidth=1.0, linestyle="-")
# labels
ax[0].set_ylabel('$W/k_{B}T$',fontsize=18)
ax[0].set_xlabel('time(ns)',fontsize=18)
ax[1].set_ylabel('$Q/k_{B}T$',fontsize=18)
ax[1].set_xlabel('time(ns)',fontsize=18)
# adjust right subfigure axes location
ax[1].yaxis.tick_right()
ax[1].yaxis.set_label_position("right")
# figure settings
fig.suptitle('Workdone and Heat absorbed by the engine in a cycle', fontsize=18)
fig.tight_layout()
fig.subplots_adjust(top=0.9) # tight_layout ignores overall titles (current bug)
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[9]: """Created on Fri Jul 13 18:19:18 2018 @author: Suman Dhamala
This code is to compute the escape rate from one of the well of
the 1D flux logic device using Monte-carlo method. The simulation
can be performed for different barrier height of the potential
controlled by beta_L and for different tilt controlled by
phi_x. The simulation can be run for different T and potential
configurations."""

# Variables
N_jumps = 5 # no. of ineration for a particular T.
T = [4.2] # Temperature in the unit of K
phix = 0.5*2*pi # phi_x for symmetric potential

## initializ
norm_time_left = np.zeros((N_jumps, len(T)) )

for ii in range(len(T)):
# Determining change in phi from thermal equilibrium condition 1/2 k_BT = 1/2 C␣
↪→(Phi_dot)**2

Initial_velocity = (2*pi/flux_quantum)*np.sqrt(k_B*T[ii]/(C*Omega_p0**2))
dphi = Initial_velocity*dtau #dphi calculated from thermal condition
C5 = np.sqrt(2*G*k_B*T[ii]*dtau3/E_J) # C5 is the coefficient of the noise␣

↪→term

for jump in range(0,N_jumps):
randnumber = np.random.randn()
# Initial position
phi1 = phi_L
phi2 = phi1 + (-1)**jump*dphi
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count=0
phi3 = C1*phix + C2*phi2 + C3*phi1 - C4*np.sin(phi2) + C5*randnumber
phi1 = phi2; # order matters
phi2 = phi3;

while phi2 < phi_saddle:
randnumber = np.random.randn()
count = count+1;
phi3 = C1*phix + C2*phi2 + C3*phi1 - C4*np.sin(phi2) + C5*randnumber
phi1 = phi2 # order matters
phi2 = phi3

##
norm_time_left[jump,ii] = count*dtau

tau_aver_left = np.mean(norm_time_left)
Rate_left = (1/tau_aver_left)*Omega_p0
print('The transition rate for G={} is {}/s'.format(G, Rate_left))

The transition rate for G=0.1 is 139143165.47785825/s
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