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Abstract

Parameter estimation has wide applications in such fields as finance, oil deposit de-

tection, etc. In this dissertation, we discuss the parameter estimation problems in a

stochastic differential equation and a partial differential equation.

In chapter one, we provide a general moment estimator for the Ornstein-Uhlenbeck

Process driven by α-stable Lévy motion. When the noise is an α-stable Lévy motion,

the process does not have the second moment which makes the parametric estimation

problem more difficult. In this case, there are limited papers dealing with the paramet-

ric estimation problem. In previous work, one can only estimate the drift parameter

θ assuming the other parameters (α , σ and β ) are known and under discrete observa-

tions. In most literature, one also needs to assume that the time step h depends on n

and converges to 0 as n goes to infinity. This means that a high frequency data must

be available for the estimators to be effective. The main mathematical tool that we

use is ergodic theory and sample characteristic functions so that we can estimate all

the parameters simultaneously. We also obtain the strong consistency and asymptotic

normality of the proposed joint estimators when the time step h remains constant.

In chapter three, we describe how to use implicit sampling in parameter estimation

problems where the goal is to find parameters of a partial differential equation, such

that the output of the numerical model is compatible with data. We could generate

independent samples, so that some of the practical difficulties one encounters with

Markov Chain Monte Carlo methods, e.g. burn-in time or correlations among depen-

dent samples, are avoided. We describe a new implementation of implicit sampling

for parameter estimation problems that makes use of a class of overlapping Newton
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Krylov-Schwarz algorithms to solve it. With a reasonably large overlap, the Newton

Krylov-Schwarz method is scalable and capable of finding the solution with noise.

The comparison with BFGS method demonstrates the superiority of our method. We

also use the local Karhunan-Loève expansion to reduce the dimension of the parame-

ter which enables the parallel and efficient computation of a possibly large number of

dominant KL modes.

Another important topic considered in this dissertation is in chapter two, a novel ap-

proach for solving optimal price adjustment problems, when the underlying process

is geometric Brownian motion process. Several countries use the administratively-set

fuel prices close to their international free market counterparts. However, chasing a

global market price of energy has the disadvantage that the domestic prices need to

fluctuate daily. This creates uncertainties for households and firms and expose them

to global price shocks. In chapter two, we offers a model of adjustment rule which is

based on optimal lower and upper price barriers. Once the ratio of the domestic and

global price hit the bounds, the domestic price will then be readjusted to the original

desired level. We offer a procedure to use expected hitting time approach to solve the

model, which does not require solving a PDE or running Monte-Carlo simulations. We

characterize the optimal policy behavior as a function of underlying parameters and

also compare the gains from adopting an optimal policy versus a mechanical policy.
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Chapter 1

Generalized moment estimators for α-stable Ornstein–Uhlenbeck

motions from discrete observations

In this chapter, we study the parameter estimation problem for discretely observed Ornstein-

Uhlenbeck processes driven by α-stable Lévy motions. A method of moments via ergodic theory

and via sample characteristic functions is proposed to estimate all the parameters involved in the

Ornstein-Uhlenbeck processes. We obtain the strong consistency and asymptotic normality of the

proposed joint estimators when the sample size n→ ∞ while the sampling time step h remains

arbitrarily fixed. And the numerical simulation illustrate our result.

1.1 Preliminary

Definition 1.1. Generalized Ornstein-Uhlenbeck processes driven by Lévy processes satisfies the

following stochastic Langevin equation

 dXt =−θXtdt +dLt , t ≥ 0

X0 = x0

(1.1.1)

where θ is an unknown parameter, {Lt , t ≥ 0} is a one-dimensional Lévy process. Lévy processes

are closely related to stable distributions.

Definition 1.2. A random variable η is said to follow a stable distribution, denoted by η ∼
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Sα(σ ,β ,γ), if its characteristic function has the following form:

φη(u) = E
[
eiuη

]
=

 exp
{
−σα |u|α

(
1− iβ sgn(u) tan απ

2

)
+ iγu

}
, if α 6= 1

exp
{
−σ |u|

(
1+ iβ 2

π
sgn(u) log |u|

)
+ iγu

}
, if α = 1

In the above definition α ∈ (0,2],σ ∈ (0,∞),β ∈ [−1,1], and γ ∈ (−∞,∞) are called the index of

stability, the scale, skewness, and location parameters, respectively.

We shall assume γ = 0. This means that we consider only strictly α -stable distribution. If in

addition β = 0, we call η symmetric α -stable. Note that η is strictly stable (α = 1) if and only if

β = 0.

Definition 1.3. An Ft − adapted stochastic process {Zt}t>0 is called a standard α -stable Lévy

motion if

(i) Z0 = 0, a.s.;

(ii) Z f −Zs ∼ Sα

(
(t− s)1/α ,β ,0

)
, t > s≥ 0

(iii) For any finite time points 0≤ s0 < s1 < · · ·< sm <∞, the random variables Zs0 ,Zs1−Zs0, · · · ,Zsm−

Zsm−1 are independent.

Suppose that {Lt , t ≥ 0} is a Lévy process generated by the triplet (0,ρ,λ ), i.e. the distribution

of Lt has characteristic function

φLt (u) = E
[
eiuLt

]
= exp

{
itλu+ t

ˆ
R\{0}

(
eiux−1− iux1D(x)

)
ρ(dx)

}
,u ∈ R

where D = {x : |x| ≤ 1} and ρ is the Lévy measure given by

ρ(dx) =
c1

x1+α
1(0,∞)(x)dx+

c2

|x|1+α
1(−∞,0)(x)dx

where 1 < α < 2,c1 ≥ 0,c2 ≥ 0, and c1 + c2 > 0. It is easy to see that (2.1) can be written as

φLt (u) = exp

{
it

(
λ +

ˆ
|x|>1

xρ(dx)

)
u− tσα |u|α

[
1−β sgn(u) tan

(
πα

2

)]}
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where σα = −(c1 + c2)Γ(−α)cos(πα/2) and β = (c1− c2)/(c1 + c2) . Then, by the Itô-Lévy

decomposition, we have

Lt = λ t +
ˆ t

0

ˆ
|x|<1

xÑ(ds,dx)+
ˆ t

0

ˆ
|x|≥1

xN(ds,dx)

where N(dt,dx) is a Poisson random measure defined by

N((0, t],A) = ∑
s≤t

1A (∆Ls)

for A ∈B(R\{0}) and ∆Ls = Ls−Ls− denoting the jump of Ls at time s, and the compensated

Poisson random measure Ñ(dt,dx) is given by

Ñ((0, t],A) = N((0, t],A)− tρ(A)

with

ρ(A) =
ˆ

A
ρ(dx)

The Itô-Lévy decomposition can be rewritten as

Lt = λ t +
ˆ t

0

ˆ
R\{0}

xÑ(ds,dx)+ t
ˆ
|x|≥1

xρ(dx)

=

(
λ +

ˆ
|x|≥1

xρ(dx)

)
t +
ˆ t

0

ˆ
R\{0}

xÑ(ds,dx)
(1.1.2)

Let

m = λ +

ˆ
|x|>1

xρ(dx)

Then

m = λ +
c1− c2

α−1
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Denote

Z̃t =

ˆ t

0

ˆ
R\{0}

xÑ(ds,dx)

Then Z̃t is a α -stable Lévy motion and Z̃t− Z̃s ∼ Sα

(
σ(t− s)1/α ,β ,0

)
for any 0≤ s < t < ∞. We

can renormalize Z̃t and define Zt = Z̃t/σ . Then we can easily see that {Zt , t ≥ 0} is a standard α

-stable Lévy motion (see Janicki and Weron [22]) so that Z1 has a stable distribution Sα(1,β ,0). It

is clear that Lt = mt +σZt and E [Lt ] = mt. If we assume θ > 0, then Xt is ergodic and the solution

of the SDE (1.1.1) can be written in the following way:

Xt = e−θ tx+
ˆ t

0
e−θ(t−s)dLs

= e−θ tx+m
ˆ t

0
e−θ(t−s)ds+σ

ˆ t

0
e−θ(t−s)dZs

(1.1.3)

The general properties of generalized Ornstein-Uhlenbeck processes driven by Lévy processes

have been comprehensively studied in the monograph of Sato [40] We shall use some important

results in Sato [40] freely.

Lemma 1.4. The generalized Ornstein-Uhlenbeck processes {Xt , t ≥ 0} (generated by the triplet

(0,ρ,λ ) ) have a unique invariant distribution µ∞ which is self-decomposable and generated by

the triplet (0,ν ,µ) with

ν(B) =
1
θ

ˆ
R

ρ(dy)
ˆ

∞

0
1B
(
e−sy

)
ds,B ∈B(R)

and

µ =
λ

θ
+

1
θ

ˆ
|y|>1

y
|y|

ρ(dy)

Proof. By Theorem 17.5 of Sato [40], we only need to verify that the Lévy measure ρ satisfies the

following condition ˆ
|x|>2

log |x|ρ(dx)< ∞
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In fact, we have

ˆ
|x|>2

log |x|ρ(dx) =
ˆ
|x|>2

log |x|
(

c1

x1+α
1(0,∞)(x)+

c2

|x|1+α
1(−∞,0)(x)

)
dx

= c1

ˆ
∞

2

logx
x1+α

dx+ c2

ˆ −2

−∞

log(−x)
(−x)1+α

dx

= (c1 + c2)

ˆ
∞

2
logx · x−1−αdx

=
c1 + c2

α2α

(
log2+

1
α

)
< ∞

This completes the proof.

. In the following, we consider the case when m = 0, i.e the Ornstein-Uhlenbeck processed

driven by the α-stable Lévy motion. We can easily find that Xt converges weakly to a random

variable

Xo = σ

ˆ
∞

0
e−θsdZs

Theorem 1.5. (Ergodic theorem)(Luis Barreira, Yakov Pesin[28])

lim
n→∞

1
n

n

∑
k=1

f (Xtk) = E f
(
X̃o
)

almost surely, where we recall that the distribution of X̃o is the invariant measure of the α -stable

Ornstein-Uhlenbeck motion Xt .

Theorem 1.6. (A more sophisticated ergodic theorem)(Luis Barreira, Yakov Pesin[28])

lim
n→∞

1
n

n

∑
k=1

f
(
Xtk ,Xtk+1

)
= E f

(
X̃0, X̃t1

)
where X̃t satisfies (1.1.1) with initial condition X̃0 having the invariant measure (namely, X̃0 and

X̃o have the same probability measure) and being independent of the α-stable motino Zt

Note that the explicit forms of the probability density functions of X̃o and the joint probability

density function of X̃0, X̃t1 are unknown except for some very special parameters. However, it is

5



possible to find the explicit forms of the explicit forms of the characteristic functions of X̃o and that

of X̃0, X̃t1 .

Definition 1.7. 1. Strong Consistency: For every ε > 0 Xt
a.s.→ µ if

P(ω;∩∞
m=1∪∞

t=m {|Xt(ω)−µ|> ε}) = 0

2. Asymptotic Normality. We say that θ̂ is asymptotically normal if

√
n
(
θ̂ −θ0

)
→d N

(
0,σ2

θ0

)
where σ2

θ0
is called the asymptotic variance of the estimate θ̂ . Asymptotic normality says that

the estimator not only converges to the unknown parameter, but it converges fast enough, at a rate

1/
√

n.

1.2 Introduction

Let (Ω,F ,P) be a basic probability space equipped with a right continuous and increasing fam-

ily of σ -algebras (Ft , t ≥ 0) and let (Zt , t ≥ 0) be a standard α-stable Lévy motion with Z1 ∼

Sα(1,β ,0), where α is the stability index and β ∈ [−1,1] is the skewness parameter (we shall

briefly recall the relevant definitions in next section). The so-called α-stable Ornstein-Uhlenbeck

motion X = (Xt , t ≥ 0), starting from a point x0 ∈ R satisfies the following stochastic Langevin

equation

dXt =−θXtdt +σdZt , t ∈ [0,∞) , X0 = x0, (1.2.1)

where θ , σ are some constants. Recalll that if θ > 0, Xt is ergodic and it converges in law

to the random variable Xo = σ
´

∞

0 e−θsdZs. From the above definition we see that the α-stable

Ornstein-Uhlenbeck motion Xt depends on the following parameters: the stability index α , the

skewness parameter β , the drift parameter θ and the dispersion parameter σ . In this work we

assume that the values of these parameters are unknown but the α-stable Ornstein-Uhlenbeck

6



motion (Xt , t ≥ 0) can be observed at discrete time tk (For simplicity, we let tk = kh for some fixed

h > 0). We want to use the available data {Xtk ,k = 1,2, · · · ,n} to estimate the parameters α,β ,θ ,

and σ simultaneously.

The parametric estimation problems for diffusion processes driven by a Lévy process such as

compound Poisson process, gamma process, inverse Gaussian process, variance gamma process,

normal inverse Gaussian process or some generalized tempered stable processes have been studied

earlier. Let us mention the following works: Brockwell et al. [5], Masuda [31], Ogihara and

Yoshida [33], Shimizu[41], Shimizu and Yoshida [42], Spiliopoulos [44], and Valdivieso et al

[46]. In these works it is considered the quasi-maximum likelihood, least squares estimators, or

trajectory-fitting estimator and it is also established the consistency and asymptotic normality for

those estimators. Masuda [13] proposed a self-weighted least absolute deviation estimator for

discretely observed ergodic Ornstein-Uhlenbeck processes driven by symmetric Lévy processes.

For some recent developments on estimation of drift parameters for stochastic processes driven by

small Lévy noises, we refer to Long et al. ([26], [25]) as well as related references therein.

However, all aforementioned papers did not cover the case that the noise is given by an α-

stable Lévy motion. When the noise is an α-stable Lévy motion the process does not have the

second moment which makes the parametric estimation problem more difficult. In this case there

are limited papers dealing with the parametric estimation problem. Let us first summarize some

relevant work. Hu and Long ([18], [17]) proposed the trajectory fitting estimator and least squares

estimators for the drift parameter θ assuming other parameters α , β , and σ are known and under

both continuous or discrete observations. They discovered that the limiting distributions are stable

distributions which are different from the classical ones where asymptotic distributions are normal.

Fasen [10] extended the results of Hu and Long [17] to high dimensions.

To deal with the discrete time observations, which is the common practice and the main focus of

this paper, in most literature, one needs to assume that the time step h depends on n and converges

to 0 as n goes to infinity. This means that a high frequency data must be available for the estimators

to be effective. In some situations such as in finance high frequency data collection is possible.

7



But in many other situations high frequency data collection may be impossible or too expensive.

To construct estimators applicable to this situation, one has to find consistent estimators which

allow h to be an arbitrarily fixed constant. Along with this line, some progresses have been made

in Hu and Song [19] and Hu et al.[16] for Ornstein-Uhlenbeck processes or reflected Ornstein-

Uhlenbeck processes driven by Brownian motion or fractional Brownian motions as well as Zhang

and Zhang [39] for Ornstein-Uhlenbeck processes driven by symmetric α-stable motions. The

idea is to use the ergodic theorems for the underlying Ornstein-Uhlenbeck processes to construct

ergodic type estimators. The strong consistency and the asymptotic normality are proved when the

time step h remains constant (as the number of sample point n goes to infinity). However, in the

above papers, one can only estimate the drift parameter θ . There have been no available estimators

simultaneously for all parameters. The main goal of the present paper is to fill this gap. We want

to simultaneously estimate all the parameters θ ,α,σ and β in the α-stable Ornstein-Uhlenbeck

motion. We still use the generalized method of moments via ergodic theory. But since the α-stable

motion has no second or higher moments we shall use the sample characteristic functions. Namely,

we use the following the ergodic theorem: limn→∞
1
n ∑

n
k=1 f (Xtk) = E f (X̃o) almost surely, where

we recall that the distribution of X̃o is the invariant measure of the α-stable Ornstein-Uhlenbeck

motion Xt . However, this cannot be used to estimate all the parameters θ ,α,σ and β since we

cannot separate all the parameters in the stationary distribution of X̃o (see Remark 1.8). The idea

is then to use a more sophisticated ergodic theorem: limn→∞
1
n ∑

n
k=1 f (Xtk ,Xtk+1) = E f (X̃0, X̃t1),

where X̃t satisfies (1.2.1) with initial condition X̃0 having the invariant measure (namely, X̃0 and

X̃o have the same probability measure) and being independent of the α-stable motion Zt . Note

that the explicit forms of the probability density functions of X̃o and the joint probability density

function of X̃0, X̃t1 are unknown except for some very special parameters. However, it is possible to

find the explicit forms of the characteristic functions of X̃o and that of X̃0, X̃t1 . These characteristic

functions will be used to construct estimators for θ ,α,σ and β .

To validate our approach we have done a number of simulations to illustrate our estimators.

First, we simulate some data from 1.2 assuming some given values of α,β ,θ and σ . Then we

8



apply our estimators to estimate these parameters. The numerical results show that our estimators

are accurate and converge fast to all the true parameters. Our estimators work for all fixed h > 0

(even large h) although we list only h= 0.5 (which is already big enough). As discussed in Rosinski

[20] and Zhang [38], the Euler scheme in simulating Ornstein-Uhlenbeck process driven by a Lévy

process is seldom used. To save computation time we find a way to simulate the α-stable Lévy

motion {Xkh,k = 1, · · · ,n} in a straightforward way without any extra computations.

We note that another method of estimating all the parameters for time series models is the

ECF (empirical characteristic function) method discussed in Knight and Yu [23] and Yu[21]. They

fit the ECF to the theoretical one continuously in frequency by minimizing a distance measure

between the joint CF (characteristic function) and joint ECF. Under certain regularity conditions,

they established consistency, asymptotic normality, and the asymptotic efficiency of the proposed

ECF estimators. The i.i.d. case was discussed much earlier by Paulson et al. [35] and Heathcote

[7], where they called it the integrated squared error method.

In this project, we employ the well-known generalized method of moments (GMM) for param-

eter estimation. GMM is referred to a class of estimators which can be constructed by utilizing the

sample moment counterparts of population moments. It nests the classical method of moments,

least squares method, and maximum likelihood method. GMM has been extensively studied and

widely used in many applications since the seminal work of Hansen [27]. In particular, GMM has

been successfully applied to parameter estimation and inference for stochastic models in finance

including foreign exchange markets and asset pricing in Hansen and Hodrick [14], Hansen and

Singleton [15]. For a comprehensive treatment of GMM, we refer to Hall[1]. For generalization

and improvement on GMM, we refer to Qian and Schmidt [37] and Lynch and Wachter[29]

In Section 1.3, we recall some basic results for α-stable Lévy motions which we need in our

work. In Section 1.4, we construct estimators for all the parameters in the α-stable Ornstein-

Uhlenbeck motion by using ergodic theory and sample characteristic functions. The consistency

of the estimators is established. The asymptotic normality of the joint estimators is obtained and the

asymptotic covariance matrix is computed. The asymptotic covariance depends on the parameters
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we choose in the characteristic function. We also design a procedure of selecting the four grid

points used for the parameter estimation in certain optimal way. Section 1.5 provides validation

of our estimators from numerical simulations. The values of the (true) parameters are given and

then they are used to simulate the α-stable Ornstein-Uhlenbeck motion Xt . With these simulated

values we compute our estimators and compare them with the true parameters. Numerical results

show that our estimators converges fast to the true parameters. Finally, all the lemmas with their

proofs, proof of Theorem 1.9, and the explicit expression of the crucial covariance matrix defined

in Section 1.4 are provided in Section 1.6.

1.3 Limiting distributions of α-stable Ornstein-Uhlenbeck motions

We first recall some basic definitions. A random variable η is said to follow a stable distribution,

denoted by η ∼ Sα(σ ,β ,γ), if its characteristic function has the following form:

φη(u) = E[eiuη ] =

 exp
{
−σα |u|α

(
1− iβ sgn(u) tan απ

2

)
+ iγu

}
, if α 6= 1,

exp
{
−σ |u|

(
1+ iβ 2

π
sgn(u) log |u|

)
+ iγu

}
, if α = 1 .

In the above definition α ∈ (0,2], σ ∈ (0,∞), β ∈ [−1,1], and γ ∈ (−∞,∞) are called the index of

stability, the scale, skewness, and location parameters, respectively.

When Z is an α-stable Lévy motion, the stochastic Langevin equation (1.2.1) has a unique

solution which is given explicitly by

Xt = e−θ tx0 +σ

ˆ t

0
e−θ(t−s)dZs. (1.3.1)

It is known that the α-stable Ornstein-Uhlenbeck motion Xt has a limiting distribution which co-

incides with the distribution of X̃o = σ
´

∞

0 e−θsdZs. It is also well-known that Xt is ergodic. This
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means that for any function f : R
d→ R such that E| f (X̃o)|< ∞ we have

lim
n→∞

1
n

n

∑
j=1

f (Xt j) = E
[

f (X̃o)
]

(1.3.2)

almost surely. The explicit computation of the above right hand side is usually difficult for gen-

eral function f since the the explicit form of the probability density function of X̃o is not avail-

able. But when f has some specific form (the characteristic function), it is explicit which is

given below. The limiting random variable X̃o is α-stable with distribution ( 1
αθ

)1/αSα(σ ,β ,0)

= Sα(σ( 1
αθ

)1/α ,β ,0) (via time change technique and self-similarity). So the characteristic func-

tion of X̃o in this one-dimensional case is given by

φ(u) = E[exp(iuX̃o)] =

 exp
{
−σα

αθ
|u|α

(
1− iβ sgn(u) tan απ

2

)}
, if α 6= 1,

exp
{
−σ

θ
|u|
(
1+ iβ 2

π
sgn(u) log |u|

)}
, if α = 1 .

(1.3.3)

Remark 1.8. Since the probability distribution is uniquely determined by its characteristic func-

tion we see from the above expression (1.3.3) that the probability distribution function of X̃0 is a

function of σα

αθ
. We cannot separate α , σ , and θ . This further implies that for any measurable

function f the expectation E| f (X̃o)| is also a function of σα

αθ
when it is finite.

The ergodic theorem (1.3.2) can then be written as

lim
n→∞

1
n

n

∑
j=1

exp(iuXt j) = φ(u), u ∈ R, a.s. (1.3.4)

This identity will be used to construct statistical estimators of the parameters appeared in (1.2.1).

One may think to use the ergodic theorem (1.3.2) to estimate all the parameters: There are

reasons to support this thought; one may choose f differently to obtain sufficient large number

of different equations, which may be used to obtain all the unknown parameters. However, this

is impossible in our current situation since in the stationary distribution, as we can see from its

characteristic function (1.3.3), one can only estimate σα

αθ
as a whole. For example, one can not

11



separate σ and θ in the characteristic function φ(u) of X̃o. This forces us to seek other possibilities.

To this end we shall use the ergodic theorem for Xtk −Xtk−1 . More precisely, from Theorem 1.1 of

Billingsley [34], it follows

lim
n→∞

1
n

n

∑
k=1

exp[iu(Xtk−Xtk−1)] = E[eiu(X̃h−X̃0)] almost surely , (1.3.5)

for arbitrarily fixed u ∈ R, where X̃t satisfies the Langevin equation (1.2.1) with X̃0 = X̃o. To make

this formula (1.3.5) useful for the statistical estimation of the parameters, we need to find the

explicit form of the characteristic function of X̃h− X̃0. From (1.2.1), we have

X̃h = e−θhX̃0 +σe−θh
ˆ h

0
eθsdZs

and

X̃h− X̃0 = (e−θh−1)X̃0 +σe−θh
ˆ h

0
eθsdZs .

Note that X̃0 = X̃o and σe−θh ´ h
0 eθsdZs∼σ

(
1−e−αθh

αθ

)1/α

Z1. Note also that X̃0 and σe−θh ´ h
0 eθsdZs

are independent. Therefore, we find

ψ(u) := E[exp{iu(X̃h− X̃0)}]

= E[exp{iu(e−θh−1)X̃0)}]E[exp{iuσe−θh
ˆ h

0
eθsdZs}]

=


exp
{
−σα |u|α

αθ

[
(1− e−θh)α

(
1+ iβ sgn(u) tan απ

2

)
+(1− e−αθh)

(
1− iβ sgn(u) tan απ

2

)]}
, if α 6= 1;

exp
{
−2σ(1−e−θh)

θ
|u|
}
, if α = 1 .

(1.3.6)
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1.4 Moment estimation of all parameters

In this section, we assume that all the parameters θ , σ , α and β involved in the α-stable Ornstein-

Uhlenbeck motion (Xt , t ≥ 0) are unknown and we want to estimate them based on the discrete

time observations {Xt1, · · · ,Xtn}, where as in the last section tk = kh for some fixed time step h.

As we explained in Remark 1.8 or paragraphs after that remark, we cannot use (1.3.4) alone to

estimate all the parameters in the α-stable Ornstein-Uhlenbeck motion Xt given by (1.2.1). As

indicated in Section 2, we shall use e.2.5a which motivates us to set 1
n ∑

n
j=1 eiu(Xt j−Xt j−1) = ψ(u).

We define the empirical characteristic functions φ̂n(u) and ψ̂n(v) as follows:

φ̂n(u) :=
1
n

n

∑
j=1

exp(iuXt j), ψ̂n(v) :=
1
n

n

∑
j=1

exp [iv(Xt j −Xt j−1)].

Motivated by (1.3.4) and (1.3.5), we can estimate all the parameters by matching the empirical

characteristic functions φ̂n(u) and ψ̂n(v) with the corresponding theoretical characteristic functions

φ(u) and ψ(v), respectively as given as follows

φ̂n(u) = φ(u) ; (1.4.1)

ψ̂n(v) = ψ(v) , (1.4.2)

where u,v are two constants to be appropriately chosen so that the parametric estimators for all

parameters can be constructed.

1.4.1 Methodology of parameter estimation

Now we provide the details to obtain the estimators for the parameters in the order of α , θ , σ , and

β . We shall first find the moment estimator for α .
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1.4.1.1 Estimator for α

Choose any arbitrarily two non-zero values u1 and u2 such that u1 6= u2. Then, we have

log(− log |φ(u1)|2) = log
(

2σα

αθ

)
+α log |u1|, (1.4.3)

log(− log |φ(u2)|2) = log
(

2σα

αθ

)
+α log |u2|, (1.4.4)

where φ(u) is defined in e.2.1. Subtracting the equation e.3.6 from e.3.5, and replacing φ(u) with

its estimated value φ̂n(u) as indicated in (1.4.1), we find an estimator of α as follows

α̂n =
log
(

log |φ̂n(u2)|
log |φ̂n(u1)|

)
log |u2|
|u1|

. (1.4.5)

Since for any fixed u ∈ R, φ̂n(u) converges to φ(u) almost surely, we see that α̂n converges to α

almost surely.

1.4.1.2 Estimator for θ given α

To construct an estimator for θ (which depends on the estimation of α), we need to use the

characteristic function ψ(u) of X̃t1− X̃0. It is easy to verify from the expressions (1.3.3) and (1.3.6)

of φ(u) and ψ(u)
log |ψ(u)|2

log |φ(u)|2
= (1− e−θh)α +1− e−αθh . (1.4.6)

For any arbitrarily u, denote

δ =
log |ψ(u)|2

log |φ(u)|2
(1.4.7)
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and rewrite equation (1.4.6) as

(1− e−θh)α +1− e−αθh = δ . (1.4.8)

This is a nonlinear algebraic equation of θ , when α and δ are considered as given. To simplify

notation, we denote λ = e−θh and then θ is related to λ via

θ =− logλ/h .

With this substitution, the equation (1.4.8) can be written as an equation for λ :

(1−λ )α +1−λ
α = δ . (1.4.9)

Let ζλ (α,δ ) denote the solution of the above equation. Then we can construct an estimator for θ

by

θ̂n =− log
(

λ̂n

)
/h , where λ̂n = ζλ (α̂n, δ̂n) . (1.4.10)

Here α̂n is the estimator for α defined by (1.4.5) and

δ̂n =
log |ψ̂n(u3)|2

log |φ̂n(u3)|2
(1.4.11)

with φ̂n(u3) and ψ̂n(u3) being defined by (1.4.1) and (1.4.2) when u = u3 6= u2 6= u1. Since α̂n→ α

a.s. and δ̂n→ δ a.s., we have λ̂n→ λ a.s. and θ̂n→ θ a.s.

Our estimator θ̂n depends on the function ζλ (α,δ ), which is the solution to (1.4.9). This is a simple

algebraic equation. There are many methods to solve general algebraic equation numerically. Here

we shall use the Newton’s method. Denote

g(λ ) = g(λ , α̂n, δ̂n) = (1−λ )α̂n +1−λ
α̂n− δ̂n .
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For any fixed value of θ , we can always choose h fixed but small enough (e.g. 0 < h < ln2/θ

) such that λ = e−θh ∈ (1
2 ,1) and 0 < δ̂n < 1. Note that g is decreasing with derivative g

′
(λ ) =

−α̂n[λ
α̂n−1+(1−λ )α̂n−1]< 0 for λ ∈ (1

2 ,1), g(1
2) = 1− δ̂n > 0 and g(1) =−δ̂n < 0. Hence there

is a unique root for g(λ ) in the interval (1
2 ,1). Namely, there exists a unique λ̂n ∈ (1

2 ,1) such that

g(λ̂n) = 0. Then, the Newton’s method to approximate λ̂n is as follows. First, we define λn,0 =
1
2 .

Then, we define

λn,m+1 = λn,m−
g(λn,m)

g′(λn,m)
, m = 0,1,2, · · · (1.4.12)

Note that g
′′
(λ ) = α̂n(α̂n−1)λ 2−α̂n−(1−λ )2−α̂n

λ 2−α̂n(1−λ )2−α̂n > 0 if 1 < α̂n < 2 and λ ∈ (1/2,1). In this case, we

have global convergence of the Newton’s iterations {λn,m}∞
m=1. In fact, let the approximation error

at the (m+1)-th interation be εn,m+1 = λn,m+1− λ̂n. By e.3.13, we have

εn,m+1 = εn,m−
g(λn,m)

g′(λn,m)
. (1.4.13)

Then by Taylor expansion we find that εn,m+1 =
1
2

g
′′
(ξn,m)

g′(λn,m)
ε2

n,m < 0, where ξn,m is between λn,m and

λ̂n. This implies that λn,m < λ̂n for each m≥ 1. Since g is decreasing, we have g(λn,m)> g(λ̂n) = 0.

Thus εn,m+1 > εn,m and λn,m+1 > λn,m for each m ≥ 1. Hence, the two sequences {εn,m}∞
m=1 and

{λn,m}∞
m=1 are increasing and bounded from above. Thus there exist ε∗n and λ ∗n such that

lim
m→∞

εn,m = ε
∗
n , lim

m→∞
λn,m = λ

∗
n .

Thus, by e.3.14, it follows that

ε
∗
n = ε

∗
n −

g(λ ∗n )
g′(λ ∗n )

. (1.4.14)

This implies that g(λ ∗n ) = 0 and consequently λ ∗n = λ̂n.

Now, when 0 < α̂n < 1, we can use similar arguments to show that Newton’s method converges

to the unique root λ̂n of g(λ ) from any starting point (namely we have global convergence of the

Newton’s method).
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1.4.1.3 Estimator for σ given α and θ

Next we turn to the estimation of σ . Let τ = 2σα

αθ
and σ is related to τ by

σ = exp
{

logτ + logα + logθ − log2
α

}
or (1.4.15)

logσ =
logτ + logα + logθ − log2

α
.

Thus, the estimation of σ is reduced to the estimation of τ since we already have estimators for α

and θ .

To obtain an estimator for σ (or for logσ ), we may use any one of the equations e.3.5 and e.3.6.

However, we shall use both of these two equations in the following way, which will eliminate the

explicit dependence on α . Multiply equations e.3.5 by log |u2| and multiply equations e.3.6 by

log |u1|. Taking the difference yields

logτ =
log(|u1|) log

(
− log |φ(u2)|2

)
− log(|u2|) log

(
− log |φ(u1)|2

)
log |u1|
|u2|

. (1.4.16)

From this identity, we construct the estimator for τ as follows

log τ̂n =
log(|u1|) log

(
− log |φ̂n(u2)|2

)
− log(|u2|) log

(
− log |φ̂n(u1)|2

)
log |u1|
|u2|

, (1.4.17)

where φ̂n(u) is given by (1.4.1) . Thus, we can construct the estimator for σ by

σ̂n = exp

{
log τ̂n + log α̂n + log θ̂n− log2

α̂n

}
. (1.4.18)

Based on the almost sure convergence of φ̂n(u) to φ(u), we see easily that σ̂n→ σ almost surely.
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1.4.1.4 Estimator for β given α , θ , and σ

Finally, we discuss the estimation of the skewness parameter β ∈ [−1,1]. Note from (1.3.3)

that for α 6= 1, we have

arctan
(

ℑ(φ(u))
ℜ(φ(u))

)
= β

σα

αθ
tan
(

απ

2

)
|u|αsgn(u) , (1.4.19)

where ℑ(φ(u)) and ℜ(φ(u)) are the imaginary and real parts of the complex valued function φ(u),

respectively. In order to make sure that the right hand side is in the range of arctan, choose u = u4

in e.3.26 such that−π

2 < σα

αθ
tan
(

απ

2

)
|u|αsgn(u)< π

2 . Replacing φ(u4), α , θ , and σ by φ̂n(u4),α̂n,

θ̂n, and σ̂n, we can construct an estimator of β as follows

β̂n =
α̂nθ̂n arctan[(∑n

j=1 sinu4Xt j)/(∑
n
j=1 cosu4Xt j)]

σ̂
α̂n
n tan(α̂nπ/2)|u4|α̂nsgn(u4)

. (1.4.20)

When α = 1, we have

β̂n =−
θ̂n arctan[(∑n

j=1 sinu4Xt j)/(∑
n
j=1 cosu4Xt j)]

σ̂n
2
π

log |u4|sgn(u4)
. (1.4.21)

By the almost sure convergence of α̂n, θ̂n, σ̂n and φ̂n(u4), we can easily get the almost sure con-

vergence of β̂n to β .
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1.4.2 Joint asymptotic behavior of all the obtained estimators

In this subsection, we are going to study the joint behavior of the estimators of all the param-

eters α,θ ,σ , and β . We let η = (α,θ ,σ ,β )T and η̂n = (α̂n, θ̂n, σ̂n, β̂n)
T . Our main task is to

compute the asymptotic covariance of the estimators of all the parameters α,θ ,σ , and β . We want

to compute the covariance matrix of the limiting distribution of
√

n(η̂n−η). Due to the difficulty

that the α-stable Ornstein-Uhlenbeck motion has no second moment, we shall discuss how to find

the asymptotic covariance matrix of
√

n(η̂n−η) in detail.

For any nice function f denote

Sn( f ) =
1
n

n

∑
j=1

f (Xt j) and Tn( f ) =
1
n

n

∑
j=1

f (Xt j −Xt j−1) . (1.4.22)

Let Fu(x) = cos(ux) and Gu(x) = sin(ux). Then φ̂n(u) = Sn(Fu)+ iSn(Gu) and |φ̂n(u)|2 = S2
n(Fu)+

S2
n(Gu). Let Vn1 = Sn(Fu1), Vn2 = Sn(Gu1), Vn3 = Sn(Fu2), Vn4 = Sn(Gu2), Vn5 = Sn(Fu3), Vn6 =

Sn(Gu3), Vn7 = Tn(Fu3), Vn8 = Tn(Gu3), Vn9 = Sn(Fu4), Vn10 = Sn(Gu4). We need first to compute

the asymptotic covariance matrix associated with

Vn = (Vn1,Vn2,Vn3,Vn4,Vn5,Vn6,Vn7,Vn8,Vn9,Vn10)
T .

Then we shall use this computation to find the asymptotic covariance matrix of η̂n.

To compute the asymptotic covariance matrix associated with Vn we consider the functional

Sn( f ) and Tn( f ) as a special case of

Rn( f ) =
1
n

n

∑
j=1

f (Xt j−1,Xt j) ,

where f (x,y) is a function of two variables. It is well-known that for two functions f (x,y) and
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g(x,y), the asymptotic covariance cov (Rn( f ),Rn(g)) of Rn( f ) and Rn(g) is given by

σ f g := lim
n→∞

cov (Rn( f ),Rn(g)) = cov ( f (X̃0, X̃h),g(X̃0, X̃h))

+
∞

∑
j=1

[cov ( f (X̃0, X̃h),g(X̃ jh, X̃( j+1)h))+ cov (g(X̃0, X̃h), f (X̃ jh, X̃( j+1)h))].

The asymptotic covariance matrix of Vn will then be given by the covariance matrix

Σ10 := lim
n→∞

(cov (Vnk,Vnl))1≤k,l≤10 = (σgkgl)1≤k,l≤10 , (1.4.23)

where 

g1(x,y) = Fu1(x) , g2(x,y) = Gu1(x) , g3(x,y) = Fu2(x) ,

g4(x,y) = Gu2(x) , g5(x,y) = Fu3(x), g6(x,y) = Gu3(x) ,

g7(x,y) = Fu3(y− x) , g8(x,y) = Gu3(y− x) ,

g9(x,y) = Fu4(x) , g10(x,y) = Gu4(x) .

Let v = (v1,v2, . . . ,v10)
T , where v j = E[g j(X̃0, X̃h)], j = 1,2, . . . ,10 . The explicit expressions of

the elements in the covariance matrix Σ10 will be provided in the Appendix. For z = (z1, . . . ,z10)
T ,

we define the following functions

 γ̂1(z) = log
(
− log(z2

1 + z2
2)
)
, γ̂2(z) = log

(
− log(z2

3 + z2
4)
)
,

γ̂3(z) =
log(z2

7+z2
8)

log(z2
5+z2

6)
, γ̂4(z) = arctan

(
z10
z9

)
.

Then, basic calculation shows that



γ1(η) := γ̂1(v) = log
(

2σα

αθ

)
+α log |u1| ,

γ2(η) := γ̂2(v) = log
(

2σα

αθ

)
+α log |u2| ,

γ3(η) := γ̂3(v) = (1− e−θh)α +1− e−αθh ,

γ4(η) := γ̂4(v) = β
σα

αθ
tan
(

απ

2

)
|u4|αsgn(u4).

Let γ̂(z) = (γ̂1(z), γ̂2(z), γ̂3(z), γ̂4(z))T for z ∈ R10, γ̂(1)(z) =
(

∂ γ̂ j
∂ zk

)
1≤ j≤4,1≤k≤10

, and γ(η) =
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(γ1(η),γ2(η),γ3(η),γ4(η))T . We have

∂γ1

∂ z1
=

−2z1

(z2
1 + z2

2) log(z2
1 + z2

2)
,

∂γ1

∂ z2
=

−2z2

(z2
1 + z2

2) log(z2
1 + z2

2)

∂γ1

∂ z3
= · · ·= ∂γ1

∂ z10
= 0;

∂γ2

∂ z3
=

−2z3

(z2
3 + z2

4) log(z2
3 + z2

4)
,

∂γ2

∂ z4
=

−2z4

(z2
3 + z2

4) log(z2
3 + z2

4)

∂γ2

∂ z1
= 0 ,

∂γ2

∂ z2
= 0 ,

∂γ2

∂ z5
= · · ·= ∂γ2

∂ z10
= 0;

∂γ3

∂ z5
=
−2z5 log(z2

7 + z2
8)

(z2
5 + z2

6) log2(z2
5 + z2

6)
,

∂γ3

∂ z6
=
−2z6 log(z2

7 + z2
8)

(z2
5 + z2

6) log2(z2
5 + z2

6)

∂γ3

∂ z7
=

2z7

(z2
7 + z2

8) log(z2
5 + z2

6)
,

∂γ3

∂ z8
=

2z8

(z2
7 + z2

8) log(z2
5 + z2

6)

∂γ3

∂ z1
= · · ·= ∂γ3

∂ z4
= 0 ,

∂γ3

∂ z9
=

∂γ3

∂ z10
= 0

∂γ4

∂ z9
=
−z10

z2
9 + z2

10
,

∂γ4

∂ z10
=

z9

z2
9 + z2

10
,

∂γ4

∂ z1
= · · ·= ∂γ4

∂ z8
= 0 .

Let Φn(η)= (Φ1,n(η),Φ2,n(η),Φ3,n(η),Φ4,n(η))T , where Φ j,n(η)= γ̂ j(Vn)−γ j(η), j = 1,2,3,4.

Then, we know that η̂n is the generalized moment estimator of η , which satisfies

Φn(η̂n) = 0. (1.4.24)
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Basic calculation gives

∂γ1

∂α
= logσ − 1

α
+ log |u1|,

∂γ1

∂θ
=− 1

θ
,

∂γ1

∂σ
=

α

σ
,

∂γ1

∂β
= 0;

∂γ2

∂α
= logσ − 1

α
+ log |u2|,

∂γ2

∂θ
=− 1

θ
,

∂γ2

∂σ
=

α

σ
,

∂γ2

∂β
= 0;

∂γ3

∂α
= (1− e−θh)α log(1− e−θh)+θhe−αθh,

∂γ3

∂θ
= αhe−θh(1− e−θh)α−1 +αhe−αθh,

∂γ3

∂σ
= 0,

∂γ3

∂β
= 0;

∂γ4

∂α
=

βσα |u4|αsgn(u4)

αθ

[
log(σ |u4|) tan

(
απ

2

)
−α

−1 tan
(

απ

2

)
+

π

2
sec2

(
απ

2

)]
,

∂γ4

∂θ
=−β

σα

αθ 2 tan
(

απ

2

)
|u4|αsgn(u4),

∂γ4

∂σ
= β

σα−1

θ
tan
(

απ

2

)
|u4|αsgn(u4),

∂γ4

∂β
=

σα

θ
tan
(

απ

2

)
|u4|αsgn(u4).

Note that

∇ηΦn(η) =−∇ηγ(η), (1.4.25)

where

∇ηγ(η) =



∂γ1(η)
∂α

∂γ1(η)
∂θ

∂γ1(η)
∂σ

∂γ1(η)
∂β

∂γ2(η)
∂α

∂γ2(η)
∂θ

∂γ2(η)
∂σ

∂γ2(η)
∂β

∂γ3(η)
∂α

∂γ3(η)
∂θ

∂γ3(η)
∂σ

∂γ3(η)
∂β

∂γ4(η)
∂α

∂γ4(η)
∂θ

∂γ4(η)
∂σ

∂γ4(η)
∂β


. (1.4.26)

For convenience, let I(η) = ∇ηγ(η).

Finally we have the following main result.

Theorem 1.9. Fix an arbitrary h > 0. Denote η = (α,θ ,σ ,β )T and η̂n = (α̂n, θ̂n, σ̂n, β̂n)
T , where

α̂n, θ̂n, σ̂n, β̂n are given by (1.4.5), (1.4.10), (1.4.18), (1.4.20) and (1.4.21), respectively. Then we
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have the following statements. (i) The ergodic estimators η̂n converges to η almost surely as

n→ ∞. (ii) As n→ ∞ we have the following central limit type theorem:

√
n(η̂n−η)

d→ N(0,Σ4), (1.4.27)

where

Σ4 = (I(η))−1
γ̂
(1)(v)Σ10(γ̂

(1)(v))T ((I(η))−1)T .

Now we provide all the necessary lemmas with their proofs and the proof of Theorem 3.1.

Let U = (U1,U2, . . . ,U10)
T ∼ N(0,Σ10). Then, we have the following result:

Lemma 1.10. We have the CLT
√

n(Vn− v) d→U. (1.4.28)

Proof. Let U = (U1,U2, . . . ,U10)
T be a normally distributed random vector with mean 0 and co-

variance matrix Σ10. Then for any non-zero vector a = (a1,a2, . . . ,a10)
T ∈ R10, we have aTU ∼

N(0,aT Σ10a). By the Cramer-Wold device (Theorem 29.4 of Billingsley 1995), it suffices to prove

that

aT√n(Vn− v) d→ aTU.

Define K = aT (g1,g2, . . . ,g10)
T and K̄ = K−E[K(X̃0, X̃h)] = aT (ḡ1, ḡ2, . . . , ḡ10)

T . Note that the

underlying Ornstein-Uhlenbeck process is stationary and exponentially α-mixing (see Theorem

2.6 of Masuda 2007). Then by the univariate CLT Theorem 18.6.3 of Ibragimov and Linnik (1971)

for stationary process with α-mixing condition, we have

aT√n(Vn− v) =
√

nTn(K̄)
d→ N(0,σ2

K), (1.4.29)

where

σ
2
K = Eµ [K̄2(X̃0, X̃h)]+2

∞

∑
j=1

Eµ [K̄(X̃0, X̃h)K̄(X̃ jh, X̃( j+1)h)] = aT
Σ10a.
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Therefore, we have aT√n(Vn−v) d→ aTU for any non-zero a ∈ R10. The proof is complete. �

Lemma 1.11. We have the following CLT

√
nΦn(η)

d→ γ̂
(1)(v)U. (1.4.30)

Proof. Note that
√

nΦn(η) =
√

n(γ̂(Vn)− γ̂(v)). The result follows directly from Lemma 1.10 and

the delta method (see, e.g., Lemma 5.3.3 of Bickel and Doksum 2001). �

Now we are ready to prove our main result Theorem 3.1.

Proof of Theorem 1.9. (i) It is obvious since each component of η̂n converges to the corresponding

component of η almost surely as n→ ∞ as discussed in subsections 3.1.1-3.1.4.

(ii) By Taylor’s formula, we have

Φn(η̂n)−Φn(η) =

ˆ 1

0
∇ηΦn(η + s(η̂n−η))ds · (η̂n−η). (1.4.31)

Let In(η) =−
´ 1

0 ∇ηΦn(η + s(η̂n−η))ds be invertible. Note that Φn(η̂n) = 0. Then, we have

√
n(η̂n−η) = (In(η))−1 ·

√
nΦn(η). (1.4.32)

Note that (In(η))−1 → (I(η))−1 a.s. since η̂n → η a.s. Therefore by using Lemma 1.11 and

Slutsky’s Theorem, we have

√
n(η̂n−η)

d→ (I(η))−1
γ̂
(1)(v)U.

The proof is complete. �
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1.4.3 Optimal selection of the four grid points {u1,u2,u3,u4}

Following some ideas in Zhang and He [48], we shall discuss how to select the four grid points

{u1,u2,u3,u4} in certain optimal way. We first choose a relatively extensive grid set consisting of

K grid points defined by

∆K =

{
ka
K
,k = 1,2, · · · ,K

}
,

where a is a fixed positive number, and K is a relatively large positive integer. For example,

we can set a = 5 (or 8, 10 etc) and K = 200 (or 400, 500 etc). For a finite set A, we use

min−argminx∈A f (x) to denote the minimal value of x ∈ A that minimizes f (x). Note that the

values that minimize f (x) are not always unique. We will use the following two steps to select four

grid points {u1,u2,u3,u4} optimally.

Step 1. We choose

{u∗1,u∗2,u∗3,u∗4}= {û∗1,n, û∗2,n, û∗3,n, û∗4,n} ⊂ ∆K

arbitrarily in an increasing order, i.e. u∗1 < u∗2 < u∗3 < u∗4. Then we compute η̂n = (α̂n, θ̂n, σ̂n, β̂n),

Σ∗4,n = Σ4(η̂n,{û∗1,n, û∗2,n, û∗3,n, û∗4,n}) (which is the matrix Σ4 computed by replacing η with η̂n in

Theorem 1.9) as well as the closeness measure m(Σ∗4,n) = tr(Σ∗4,n) (namely the trace of Σ∗4,n).

Step 2. Adjust the location of {u∗1,u∗2,u∗3,u∗4} to {u∗∗1 ,u∗∗2 ,u∗∗3 ,u∗∗4 } by

u∗∗1 = û∗∗1,n = min−arg min
u∈{u∈∆K :u<û∗2,n,u6=û∗1,n}

m(Σ4(η̂n,{u, û∗2,n, û∗3,n, û∗4,n})),

u∗∗2 = û∗∗2,n = min−arg min
u∈{u∈∆K :û∗∗1,n<u<û∗3,n,u6=û∗2,n}

m(Σ4(η̂n,{û∗∗1,n,u, û∗3,n, û∗4,n})),

u∗∗3 = û∗∗3,n = min−arg min
u∈{u∈∆K :û∗∗2,n<u<û∗4,n,u6=û∗3,n}

m(Σ4(η̂n,{û∗∗1,n, û∗∗2,n,u, û∗4,n})),

u∗∗4 = û∗∗4,n = min−arg min
u∈{u∈∆K :u>û∗∗3,n,u6=û∗4,n}

m(Σ4(η̂n,{û∗∗1,n, û∗∗2,n, û∗∗3,n,u})).

Step 3. Compute m(Σ∗∗4,n), where
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Σ
∗∗
4,n = Σ4(η̂n,{u∗∗1 ,u∗∗2 ,u∗∗3 ,u∗∗4 }).

Then compute

ρ̂n =
m(Σ∗4,n)−m(Σ∗∗4,n)

m(Σ∗4,n)
.

Step 4. If ρ̂n > ε (a pre-specified error value like 0.001), then set {u∗∗1 ,u∗∗2 ,u∗∗3 ,u∗∗4 } to be {u∗1,u∗2,u∗3,u∗4}

and repeat steps 2-3; else stop and output

{u1,u2,u3,u4}= {u∗∗1 ,u∗∗2 ,u∗∗3 ,u∗∗4 }.

Thus, we get our optimal selection of four grid points {u1,u2,u3,u4} and the corresponding

estimator η̂n in terms of these four points.

The explicit expressions of the elements in the covariance matrix Σ10 are given in this subsec-

tion.

1.4.4 Computation of the covariance matrix Σ10

By using the characteristic function φ(u) given in (1.3.3), we define

A0(u) = E(cosuX̃0) (1.4.33)

= exp
{
− σα

αθ
|u|α

}
cos
(

σα

αθ
|u|αβ sin(u) tan

απ

2

)
.

B0(u) = E(sinuX̃0) (1.4.34)

= exp
{
− σα

αθ
|u|α

}
sin
(

σα

αθ
|u|αβ sin(u) tan

απ

2

)
.
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Computation of σg1g1 . From the definition of g1 we have

σg1g1 = cov (cosu1X̃0,cosu1X̃0),+2
∞

∑
j=1

[cov (cosu1X̃0,cosu1X̃ jh)]

= E((cosu1X̃0)
2)− (E(cosu1X̃0))

2

+2
∞

∑
j=1

{
E(cosu1X̃0 cosu1X̃ jh)−E(cosu1X̃0)E(cosu1X̃ jh)

}
. (1.4.35)

The first term in (1.4.35) is given by

E((cosu1X̃0)
2) = E

(
cos2u1X̃0 +1

2

)
=

1
2
+

1
2

E(cos2u1X̃0)

=
1
2
+

1
2

A0(2u1). (1.4.36)

To compute the second term in (1.4.35) one needs

E(cosu1X̃0) = A0(u1). (1.4.37)

Notice that E(cosu1X̃ jh) = E(cosu1X̃0) and then the second summand in the sum of (1.4.35) is also

given by the above formula. We write

uX̃0 + vX̃ jh = (u+ ve−θ jh)X̃0 + vσe−θ jh
ˆ jh

0
eθsdZs

and then we see

E[exp{iuX̃0 + ivX̃ jh}]

= E[exp{i(u+ ve−θ jh)X̃0}]E[exp{ivσeθ jh
ˆ jh

0
eθsdZs}]

= exp
{
− σα

αθ
[|u+ ve−θ jh|α(1− iβ sin(u+ ve−θ jh) tan

απ

2
)

+|v|α(1− e−αθ jh)(1− iβ sin(v) tan
απ

2
)]

}
. (1.4.38)
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Let

A j(u,v) (1.4.39)

= E(cos(uX̃0 + vX̃ jh))

= exp
{
− σα

αθ
[|u+ ve−θ jh|α + |v|α(1− e−αθ jh)]

}
cos
(

σα

αθ
β tan

απ

2
[|u+ veθ jh|α sin(u+ ve−θ jh)+ |v|α(1− e−αθ jh)sin(v)]

)
,

B j(u,v) (1.4.40)

= E(sin(uX̃0 + vX̃ jh))

= exp
{
− σα

αθ
[|u+ ve−θ jh|α + |v|α(1− e−αθ jh)]

}
sin
(

σα

αθ
β tan

απ

2
[|u+ veθ jh|α sin(u+ ve−θ jh)+ |v|α(1− e−αθ jh)sin(v)]

)
.

From this computation we have the following formula for the first summand in the sum of

e.6.7.

E(cosu1X̃0 cosu1X̃ jh) =
E(cosu1(X̃0 + X̃ jh))+E(cosu1(X̃0− X̃ jh))

2

=
A j(u1,u1)+A j(u1,−u1)

2
. (1.4.41)

Substituting (1.4.36)-(1.4.37), (1.4.39), and (1.4.41) into (1.4.35) gives the computation for

σg1g1 .

Computation of σg2g2 . From the definition of g2 we have

σg2g2 = cov (sinu1X̃0,sinu1X̃0)+2
∞

∑
j=1

[cov (sinu1X̃0,sinu1X̃ jh)]

= E((sinu1X̃0)
2)− (E(sinu1X̃0))

2

+2
∞

∑
j=1

E(sinu1X̃0 sinu1X̃ jh)−E(sinu1X̃0)E(sinu1X̃ jh) . (1.4.42)
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The first term in (1.4.42) is given by

E((sinu1X̃0)
2) = E

(
1− cos2u1X̃0

2

)
=

1
2
− 1

2
E(cos2u1X̃0)

=
1
2
− 1

2
A0(2u1). (1.4.43)

The other terms appeared in (1.4.42) are given by

E(sinu1X̃0) = B0(u1) (1.4.44)

and

E(sinu1X̃0 sinu1X̃ jh) =
E(cosu1(X̃0− X̃ jh))−E(cosu1(X̃0 + X̃ jh))

2

=
A j(u1,−u1)−A j(u1,u1)

2
(1.4.45)

We can get σg2g2 from equation (1.4.42).

The method of getting σg3g3 , σg4g4 , σg5g5 , σg6g6 , σg9g9 and σg10g10 are essentially the same as

σg1g1 and σg2g2 by simply changing the value of u.

Computation of σg7g7 . From the definition of g7 we have

σg7g7 = cov (cosu3(X̃h− X̃0),cosu3(X̃h− X̃0))

+2
∞

∑
j=1

[cov (cosu3(X̃h− X̃0),cosu3(X̃( j+1)h− X̃ jh))]

= E((cosu3(X̃h− X̃0))
2)− (Ecosu3(X̃h− X̃0))

2

+2
∞

∑
j=1

E(cosu3(X̃h− X̃0)cosu3(X̃( j+1)h− X̃ jh))

−E(cosu3(X̃h− X̃0))E(cosu3(X̃( j+1)h− X̃ jh)) . (1.4.46)
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The first term in (1.4.46) is given by

E((cosu3(X̃h− X̃0))
2) = E

(
cos2u3(X̃h− X̃0)+1

2

)
=

1
2
+

1
2

E(cos2u3(X̃h− X̃0))

=
1
2
+

1
2

A1(−2u3,2u3). (1.4.47)

The second term in (1.4.46) is given by

E(cosu3(X̃h− X̃0)) = A1(−u3,u3). (1.4.48)

For any real numbers u and v we have

u(X̃h− X̃0)+ v(X̃( j+1)h− X̃ jh) (1.4.49)

= [u(e−θh−1)+ v(e−θ( j+1)h− e−θ jh)]X0

+

ˆ
∞

0
uσe−θheθs1[0,h](s)dZs +

ˆ
∞

0
vσe−θ( j+1)heθs1[0,( j+1)h](s)dZs

−
ˆ

∞

0
vσe−θ jheθs1[0, jh](s)dZs .
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Therefore, we have

w j(u,v) := E[exp{iu(X̃h− X̃0)+ iv(X̃( j+1)h− X̃ jh)}]

= E[exp{i[u(e−θh−1)+ v(e−θ( j+1)h− e−θ jh)]X0]

E[exp{i(uσe−θh
ˆ

∞

0
eθs1[0,h](s)dZs− vσe−θ jh

ˆ
∞

0
eθs1[0, jh](s)dZs

+vσe−θ( j+1)h
ˆ

∞

0
eθs1[0,( j+1)h](s)dZs}]

= exp
{
− σα

αθ
[|u(e−θh−1)+ v(e−θ( j+1)h− e−θ jh)|α

(1− iβ (u(e−θh−1)+ v(e−θ( j+1)h− e−θ jh)) tan
απ

2
)

+|ue−θh + ve−θ( j+1)h− ve−θ jh|α(eαθh−1)

(1− iβ (ue−θh + ve−θ( j+1)h− ve−θ jh) tan
απ

2
)

+|v|α(1− e−θh)α(1− e−αθ( j−1)h)(1+ iβ (v) tan
απ

2
)

+|v|α(1− e−αθh)(1− iβ (v) tan
απ

2
)]

}
. (1.4.50)

Then the first summand of the sum in (1.4.46) is given by

E(cosu3(X̃h− X̃0)cosu3(X̃( j+1)h− X̃ jh))

=
1
2

[
E(cosu3((X̃h− X̃0)+(X̃( j+1)h− X̃ jh))

+E(cosu3((X̃h− X̃0)− (X̃( j+1)h− X̃ jh))

]
=

1
2

ℜ
[
w j(u3,u3)+w j(u3,−u3)

]
. (1.4.51)

Then we can get σg7g7 from equation (1.4.46).
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Computation of σg8g8 . From the definition of g8 we have

σg8g8 = cov (sinu3(X̃h− X̃0),sinu3(X̃h− X̃0))

+2
∞

∑
j=1

[cov (sinu3(X̃h− X̃0),sinu3(X̃( j+1)h− X̃ jh))]

= E((sinu3(X̃h− X̃0))
2)− (Esinu3(X̃h− X̃0))

2

+2
∞

∑
j=1

E(sinu3(X̃h− X̃0)sinu3(X̃( j+1)h− X̃ jh))

−E(sinu3(X̃h− X̃0))E(sinu3(X̃( j+1)h− X̃ jh)) . (1.4.52)

E((sinu3(X̃h− X̃0))
2) = E

(
1− cos2u3(X̃h− X̃0)

2

)
=

1
2
− 1

2
E(cos2u3(X̃h− X̃0))

=
1
2
− 1

2
A1(−2u3,2u3). (1.4.53)

Esinu3(X̃h− X̃0) = B1(−u3,u3). (1.4.54)

E(sinu3(X̃h− X̃0)sinu3(X̃( j+1)h− X̃ jh))

=
1
2
[
E(cos(u3(X̃h− X̃0)−u3(X̃( j+1)h− X̃ jh)))

− E(cos(u3(X̃h− X̃0)−u3(X̃( j+1)h− X̃ jh)))
]

=
1
2

ℜ
[
w j(u3,−u3)−w j(u3,u3)

]
. (1.4.55)

Then we can get σg8g8 from equation (1.4.52).
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Computation of σg1g2 . From the definition of g1 and g2 we have

σg1g2 = cov (cosu1X̃0,sinu1X̃0)+
∞

∑
j=1

[cov (cosu1X̃0,sinu1X̃ jh)

+cov (sinu1X̃0,cosu1X̃ jh)]

= E(cosu1X̃0 sinu1X̃0)−E(cosu1X̃0)E(sinu1X̃0)

+
∞

∑
j=1

[E(cosu1X̃0 sinu1X̃ jh)−E(cosu1X̃0)E(sinu1X̃ jh)

+E(sinu1X̃0 cosu1X̃ jh)−E(sinu1X̃0)E(cosu1X̃ jh)], (1.4.56)

where

E(cosu1X̃0 sinu1X̃0) =
E(sin2u1X̃0)

2
=

1
2

B0(2u1), (1.4.57)

E(cosu1X̃0) = A0(u1), (1.4.58)

E(sinu1X̃0) = B0(u1), (1.4.59)

E(cosu1X̃0 sinu1X̃ jh) =
E(sinu1(X̃0 + X̃ jh))−E(sinu1(X̃0− X̃ jh))

2

=
B j(u1,u1)−B j(u1,−u1)

2
, (1.4.60)

E(sinu1X̃0 cosu1X̃ jh) =
E(sinu1(X̃0 + X̃ jh))+E(sinu1(X̃0− X̃ jh))

2

=
B j(u1,u1)+B j(u1,−u1)

2
. (1.4.61)

Similarly, we can get σg3g4 , σg5g6 , σg9g10 by changing u1 to u2, u3 and u4.
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Computation of σg1g3 . From the definition of g1 and g3 we have

σg1g3 = cov (cosu1X̃0,cosu2X̃0)+
∞

∑
j=1

[cov (cosu1X̃0,cosu2X̃ jh)

+cov (cosu2X̃0,cosu1X̃ jh)]

= E(cosu1X̃0 cosu2X̃0)−E(cosu1X̃0)E(cosu2X̃0)

+
∞

∑
j=1

[
E(cosu1X̃0 cosu2X̃ jh)−E(cosu1X̃0)E(cosu2X̃ jh)

+E(cosu2X̃0 cosu1X̃ jh)−E(cosu2X̃0)E(cosu1X̃ jh)

]
, (1.4.62)

where

E(cosu1X̃0 cosu2X̃0) (1.4.63)

=
1
2
[E(cos(u1 +u2)X̃0)+E(cos(u1−u2)X̃0)]

=
1
2
[A0(u1 +u2)+A0(u1−u2)] ,

E(cosu1X̃0) = A0(u1), E(cosu2X̃0) = A0(u2), (1.4.64)

E(cosu1X̃0 cosu2X̃ jh) =
Ecos(u1X̃0 +u2X̃ jh)+Ecos(u1X̃0−u2X̃ jh))

2

=
A j(u1,u2)+A j(u1,−u2)

2
, (1.4.65)

E(cosu2X̃0 cosu1X̃ jh) =
Ecos(u2X̃0 +u1X̃ jh)+Ecos(u2X̃0−u1X̃ jh))

2

=
A j(u2,u1)+A j(u2,−u1)

2
. (1.4.66)

Then we can get σg1g3 from equation (1.4.62).

Similarly, we can get σg1g5 , σg1g9 , σg3g5 , σg3g9 , and σg5g9 .
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Computation of σg1g4 . From the definition of g1 and g4 we have

σg1g4 = cov (cosu1X̃0,sinu2X̃0)+
∞

∑
j=1

[cov (cosu1X̃0,sinu2X̃ jh)

+cov (sinu2X̃0,cosu1X̃ jh)]

= E(cosu1X̃0 sinu2X̃0)−E(cosu1X̃0)E(sinu2X̃0)

+
∞

∑
j=1

E(cosu1X̃0 sinu2X̃ jh)−E(cosu1X̃0)E(sinu2X̃ jh)

+
∞

∑
j=1

E(sinu2X̃0 cosu1X̃ jh)−E(sinu2X̃0)E(cosu1X̃ jh) , (1.4.67)

where

E(cosu1X̃0 sinu2X̃0) =
1
2
[E(sin(u1 +u2)X̃0)−E(sin(u1−u2)X̃0)]

=
1
2
[B0(u1 +u2)−B0(u1−u2)] , (1.4.68)

E(cosu1X̃0) = A0(u1), E(sinu2X̃0) = B0(u2), (1.4.69)

E(cosu1X̃0 sinu2X̃ jh) =
Esin(u1X̃0 +u2X̃ jh)−Esin(u1X̃0−u2X̃ jh))

2

=
B j(u1,u2)−B j(u1,−u2)

2
, (1.4.70)

E(sinu2X̃0 cosu1X̃ jh) =
Esin(u2X̃0 +u1X̃ jh)−Esin(u2X̃0−u1X̃ jh))

2

=
B j(u2,u1)−B j(u2,−u1)

2
. (1.4.71)

Then we can get σg1g4 from equation (1.4.67).

Similarly, we can get σg1g6 , σg1g10 , σg3g2 , σg3g6 , σg3g10 , σg5g2 , σg5g4 , σg5g10 , σg9g2 , σg9g4 , and

σg9g6 by changing the value of u1 and u2.
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Computation of σg2g4 . From the definition of g2 and g4 we have

σg2g4 = cov (sinu1X̃0,sinu2X̃0)+
∞

∑
j=1

[cov (sinu1X̃0,sinu2X̃ jh)

+cov (sinu2X̃0,sinu1X̃ jh)]

= E(sinu1X̃0 sinu2X̃0)−E(sinu1X̃0)E(sinu2X̃0)

+
∞

∑
j=1

E(sinu1X̃0 sinu2X̃ jh)−E(sinu1X̃0)E(sinu2X̃ jh)

+
∞

∑
j=1

E(sinu2X̃0 sinu1X̃ jh)−E(sinu2X̃0)E(sinu1X̃ jh), (1.4.72)

where

E(sinu1X̃0 sinu2X̃0) =
1
2
[E(cos(u1−u2)X̃0)−E(cos(u1 +u2)X̃0)]

=
1
2
[A0(u1−u2)−A0(u1 +u2)] , (1.4.73)

E(sinu1X̃0) = B0(u1), E(sinu2X̃0) = B0(u2), (1.4.74)

E(sinu1X̃0 sinu2X̃ jh) =
Ecos(u1X̃0−u2X̃ jh)−Ecos(u1X̃0 +u2X̃ jh))

2

=
A j(u1,−u2)−A j(u1,u2)

2
, (1.4.75)

E(sinu2X̃0 sinu1X̃ jh) =
Ecos(u2X̃0−u1X̃ jh)−Ecos(u2X̃0 +u1X̃ jh))

2

=
A j(u2,−u1)−A j(u2,u1)

2
. (1.4.76)

Then we can get σg2g4 from equation (1.4.72).

Similarly, we can get σg2g6 , σg2g10 , σg4g6 , σg4g10 , and σg6g10 by changing the value of u1 and u2.
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Computation of σg7g8 . From the definition of g7 and g8 we have

σg7g8 = cov (cosu3(X̃h− X̃0),sinu3(X̃h− X̃0))

+
∞

∑
j=1

[cov (cosu3(X̃h− X̃0),sinu3(X̃( j+1)h− X̃ jh))

+cov (sinu3(X̃h− X̃0),cosu3(X̃( j+1)h− X̃ jh))]

= E(cosu3(X̃h− X̃0)sinu3(X̃h− X̃0))

−Ecosu3(X̃h− X̃0))Esinu3(X̃h− X̃0))

+
∞

∑
j=1

[E(cosu3(X̃h− X̃0)sinu3(X̃( j+1)h− X̃ jh))

−E(cosu3(X̃h− X̃0))E(sinu3(X̃( j+1)h− X̃ jh))

+E(sinu3(X̃h− X̃0)cosu3(X̃( j+1)h− X̃ jh))

−E(sinu3(X̃h− X̃0))E(cosu3(X̃( j+1)h− X̃ jh))], (1.4.77)

where

E(cosu3(X̃h− X̃0)sinu3(X̃h− X̃0)) = E

(
sin2u3(X̃h− X̃0)

2

)
=

1
2

B1(−2u3,2u3), (1.4.78)

E(cosu3(X̃h− X̃0)) = A1(−u3,u3), (1.4.79)

E(sinu3(X̃h− X̃0)) = B1(−u3,u3), (1.4.80)
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E(cosu3(X̃h− X̃0)sinu3(X̃( j+1)h− X̃ jh)) (1.4.81)

=
1
2

[
E(sin(u3(X̃h− X̃0))+u3(X̃( j+1)h− X̃ jh))

−E(sin(u3(X̃h− X̃0)−u3(X̃( j+1)h− X̃ jh))

]
=

1
2

ℑ
[
w j(u3,u3)−w j(u3,−u3)

]
,

E(sinu3(X̃h− X̃0)cosu3(X̃( j+1)h− X̃ jh)) (1.4.82)

=
1
2

[
E(sin(u3(X̃h− X̃0))+u3(X̃( j+1)h− X̃ jh))

+E(sin(u3(X̃h− X̃0)−u3(X̃( j+1)h− X̃ jh))

]
=

1
2

ℑ
[
w j(u3,u3)+w j(u3,−u3)

]
.

Then we can get σg7g8 from equation (1.4.77).

Computation of σg1g7 . From the definition of g1 and g7 we have

σg1g7 = cov (cosu1X̃0,cosu3(X̃h− X̃0))

+
∞

∑
j=1

[cov (cosu1X̃0,cosu3(X̃( j+1)h− X̃ jh))

+cov (cosu3(X̃h− X̃0),cosu1X̃ jh)]

= E(cosu1X̃0 cosu3(X̃h− X̃0))−Ecosu1X̃0Ecosu3(X̃h− X̃0))

+
∞

∑
j=1

[E(cosu1X̃0 cosu3(X̃( j+1)h− X̃ jh))

−E(cosu1X̃0)E(cosu3(X̃( j+1)h− X̃ jh))

+E(cosu3(X̃h− X̃0)cosu1X̃ jh)

−E(cosu3(X̃h− X̃0))E(cosu1X̃ jh))] . (1.4.83)

Note that

Ecosu3(X̃h− X̃0) = A1(−u3,u3),Ecosu1X̃0 = A0(u1). (1.4.84)
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We write

uX̃0 + v(X̃( j+1)h− X̃ jh) = (u+ ve−θ( j+1)h− ve−θ jh)X̃0

+vσe−θ( j+1)h
ˆ ( j+1)h

0
eθsdZs− vσe−θ jh

ˆ jh

0
eθsdZs .

Let

ρ j(u,v) := E[exp{iuX̃0 + iv(X̃( j+1)h− X̃ jh)}]

= E[exp{i[u+ v(e−θ( j+1)h− e−θ jh)]X0]

= E[exp{i(vσe−θ( j+1)h
ˆ

∞

0
eθs1[0,( j+1)h](s)dZs

−vσe−θ jh
ˆ

∞

0
eθs1[0, jh](s)dZs})]

= exp
{
− σα

αθ
[|u+ v(e−θ( j+1)h− e−θ jh)|α

(1− iβ (u+ v(e−θ( j+1)h− e−θ jh)) tan
απ

2
)

+|v|α(1− e−θh)α(1− e−αθ jh)(1+ iβ (v) tan
απ

2
)

+|v|α(1− e−αθh)(1− iβ (v) tan
απ

2
)]

}
. (1.4.85)

Then

E(cosu1X̃0 cosu3(X̃( j+1)h− X̃ jh))

=
1
2

[
E(cos(u1X̃0 +u3(X̃( j+1)h− X̃ jh))

+E(cos(u1X̃0−u3(X̃( j+1)h− X̃ jh))

]
=

1
2

ℜ
[
ρ j(u1,u3)+ρ j(u1,−u3)

]
. (1.4.86)
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We write

uX̃ jh + v(X̃h− X̃0) = (ue−θ jh + v(e−θh−1))X̃0

+uσe−θ jh
ˆ jh

0
eθsdZs + vσe−θh

ˆ h

0
eθsdZs .

Let

κ j(u,v) := E[exp{iuX̃ jh + iv(X̃h− X̃0)}]

= E[exp{i[ue−θ jh + v(e−θh−1)]X̃0]

×E[exp{i(uσe−θ jh
ˆ jh

0
eθsdZs + vσe−θh

ˆ h

0
eθsdZs)]

= exp
{
− σα

αθ
[ue−θ jh + v(e−θh−1)|α

(1− iβ (ue−θ jh + v(e−θh−1)) tan
απ

2
)

+|ue−θ jh + ve−θh|α(eαθh−1)

(1− iβ (ue−θ jh + ve−θh) tan
απ

2
)

+|u|α(1− e−αθ( j−1)h)(1− iβ (u) tan
απ

2
)]

}
. (1.4.87)

Then

E(cosu3(X̃h− X̃0)cosu1X̃ jh) =
1
2

[
E(cos(u1X̃ jh +u3(X̃h− X̃0)))

+E(cos(u1X̃ jh−u3(X̃h− X̃0)))

]
=

1
2

ℜ
[
κ j(u1,u3)+κ j(u1,−u3)

]
. (1.4.88)

Then we can get σg1g7 from equation (1.4.83). By changing the value of u1, we can get σg3g7 ,σg5g7

, and σg9g7 .
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Computation of σg1g8 . From the definition of g1 and g8 we have

σg1g8 = cov (cosu1X̃0,sinu3(X̃h− X̃0))

+
∞

∑
j=1

[cov (cosu1X̃0,sinu3(X̃( j+1)h− X̃ jh))

+cov (cosu3(X̃h− X̃0),sinu1X̃ jh)]

= E(cosu1X̃0 sinu3(X̃h− X̃0))−Ecosu1X̃0Esinu3(X̃h− X̃0))

+
∞

∑
j=1

[E(cosu1X̃0 sinu3(X̃( j+1)h− X̃ jh))

−E(cosu1X̃0)E(sinu3(X̃( j+1)h− X̃ jh))

+E(sinu3(X̃h− X̃0)cosu1X̃ jh)

−E(sinu3(X̃h− X̃0))E(cosu1X̃ jh))] , (1.4.89)

where

Ecosu1X̃0 = A0(u1), Esinu3(X̃h− X̃0) = B1(−u3,u3). (1.4.90)

By equations (1.4.85) and (1.4.87), we get

E(cosu1X̃0 sinu3(X̃( j+1)h− X̃ jh)) (1.4.91)

=
1
2

[
E(sin(u1X̃0 +u3(X̃( j+1)h− X̃ jh))

−E(sin(u1X̃0−u3(X̃( j+1)h− X̃ jh))

]
=

1
2

ℑ
[
ρ j(u1,u3)−ρ j(u1,−u3)

]
,

E(sinu3(X̃h− X̃0)cosu1X̃ jh) (1.4.92)

=
1
2

[
E(sin(u1X̃ jh +u3(X̃h− X̃0)))

−E(sin(u1X̃ jh−u3(X̃h− X̃0)))

]
=

1
2

ℑ
[
κ j(u1,u3)−κ j(u1,−u3)

]
.
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Then we can get σg1g8 from equation (1.4.89). By changing the value of u1, we can get σg3g8 ,σg5g8 ,

and σg9g8 .

Computation of σg2g7 . From the definition of g2 and g7 we have

σg2g7 = cov (sinu1X̃0,cosu3(X̃h− X̃0))

+
∞

∑
j=1

[cov (sinu1X̃0,cosu3(X̃( j+1)h− X̃ jh))

+cov (cosu3(X̃h− X̃0),sinu1X̃ jh)]

= E(sinu1X̃0 cosu3(X̃h− X̃0))−Esinu1X̃0Ecosu3(X̃h− X̃0))

+
∞

∑
j=1

[E(sinu1X̃0 cosu3(X̃( j+1)h− X̃ jh))

−E(sinu1X̃0)E(cosu3(X̃( j+1)h− X̃ jh))

+E(cosu3(X̃h− X̃0)sinu1X̃ jh)

−E(cosu3(X̃h− X̃0))E(sinu1X̃ jh))]. (1.4.93)

Note that

Esinu1X̃0 = B0(u1), Ecosu3(X̃h− X̃0) = A1(−u3,u3). (1.4.94)

By equations (1.4.85) and (1.4.87), we get

E(sinu1X̃0 cosu3(X̃( j+1)h− X̃ jh))

=
1
2

[
E(sin(u1X̃0 +u3(X̃( j+1)h− X̃ jh))

+E(sin(u1X̃0−u3(X̃( j+1)h− X̃ jh))

]
=

1
2

ℑ
[
ρ j(u1,u3)+ρ j(u1,−u3)

]
(1.4.95)
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and

E(cosu3(X̃h− X̃0)sinu1X̃ jh)

=
1
2

[
E(sin(u1X̃ jh +u3(X̃h− X̃0)))

+E(sin(u1X̃ jh−u3(X̃h− X̃0)))

]
=

1
2

ℑ
[
κ j(u1,u3)+κ j(u1,−u3)

]
. (1.4.96)

Then we can get σg2g7 from equation (1.4.93). By changing the value of u1, we can get σg4g7 ,

σg6g7 , and σg10g7 .

Computation of σg2g8 . From the definition of g2 and g8 we have

σg2g8 = cov (sinu1X̃0,sinu3(X̃h− X̃0)) (1.4.97)

+
∞

∑
j=1

[cov (sinu1X̃0,sinu3(X̃( j+1)h− X̃ jh))

+cov (sinu3(X̃h− X̃0),sinu1X̃ jh)]

= E(sinu1X̃0 sinu3(X̃h− X̃0))

−Esinu1X̃0Esinu3(X̃h− X̃0))

+
∞

∑
j=1

[E(sinu1X̃0 sinu3(X̃( j+1)h− X̃ jh))

−E(sinu1X̃0)E(sinu3(X̃( j+1)h− X̃ jh))

+E(sinu3(X̃h− X̃0)sinu1X̃ jh)

−E(sinu3(X̃h− X̃0))E(sinu1X̃ jh))] .

Note that

Esinu1X̃0 = B0(u1), Esinu3(X̃h− X̃0) = B1(−u3,u3). (1.4.98)
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By equations (1.4.85) and (1.4.87), we find

E(sinu1X̃0 sinu3(X̃( j+1)h− X̃ jh)) (1.4.99)

=
1
2

[
E(cos(u1X̃0−u3(X̃( j+1)h− X̃ jh))

−E(cos(u1X̃0 +u3(X̃( j+1)h− X̃ jh))

]
=

1
2

ℜ
[
ρ j(u1,−u3)−ρ j(u1,u3)

]
.

E(sinu3(X̃h− X̃0)sinu1X̃ jh) (1.4.100)

=
1
2
[
E(cos(u1X̃ jh−u3(X̃h− X̃0)))

− E(cos(u1X̃ jh +u3(X̃h− X̃0)))
]

=
1
2

ℜ
[
κ j(u1,−u3)−κ j(u1,u3)

]
.

Then we can get σg2g8 by equation (1.4.97). Similarly, we can get σg4g8 ,σg6g8 ,and σg10g8 .

Thus, we have obtained the explicit expression of Σ10 = (σgkgl)1≤k,l≤10.

1.5 Simulation

In this section we shall validate our estimators discussed in Section 1.4. We consider the following

specific α-stable Ornstein-Uhlenbeck motion determined by (1.2.1) which we restate as follows:

dXt =−θXtdt +σdZt , X0 is given . (1.5.1)

First we describe our approach to simulate the above process. There have been numerous schemes

to simulate the above process. However, in all the existing schemes one needs to divide the interval

[0,T ] into small intervals 0= t0 < t1 < · · ·< tN = T = nh̃ such that the partition step size tk+1−tk =
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h̃ goes to zero. This means that we would need to simulate nh/h̃ many random variables. As we

need n→ ∞ and we allow h to be a constant, this will require too large amount of computations.

For this specific equation (1.5.1), we shall use the following scheme. This scheme may also be

useful in other applications. For our scheme we can allow h̃ = h. From (1.5.1) we see easily that

Xt = e−θ(t−s)Xs +σ

ˆ t

s
e−θ(t−r)dZr.

Thus

Xk+1 = e−θhXk +σ

ˆ (k+1)h

kh
e−θ((k+1)h−r)dZr.

Since f (r) = σe−θ((k+1)h−r) is a deterministic function we see that

σ

ˆ (k+1)h

kh
e−θ((k+1)h−r)dZr

d
=

(ˆ (k+1)h

kh
f α(t)dt

) 1
α

DZk,

where DZk are iid α-stable random variables. Janicki and Weron (1994) proposed numerical sim-

ulation of independent α-stable random variables. However, there is an error in Janicki and Weron

(1994), which is corrected in Weron and Weron (1995). We shall use the following formula to

simulate DZk:

DZk = Dsin(αUk +αC)

(
cos(Uk−α(Uk +C))

Wk

) 1−α

α

/cos(Uk)
1
α .

Here, Uk are iid uniformly distributed on (−π

2 ,
π

2 ), Wk are iid exponentially distributed with mean

1, D =
(
1+β 2 tan2 απ

2

) 1
2α and C =

(
arctan(β tan απ

2 )
)
/α

Then, we have the iteration as

Xk+1 = e−θhXk +σ
1

(θα)
1
α

(1− e−αθh)
1
α DZk .

To be specific we choose the following baseline parameter values and simulate the process in the

interval [0,T ] with nh = T = 10000. We shall fix h = 0.5. For the four grid points u1, u2, u3 and
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u4, we select them in a certain optimal way which is discussed in detail in the Subsection 3.3 and

here we choose the a = 12, K = 120 and ε = 10−3. Values of the four parameters used are given

in Table 2.1. Here we use two sets of values.

Table 1.1 Parameter for the following
tables.

Variable β α σ θ

Assumed Value 0.4 1.7 0.2 2

Assumed Value -0.6 0.6 0.4 5

The following two tables give the mean and standard deviation of the estimators with the first

set of assumed values as the value n changing from a smaller value to a greater value. For the

grid points, we are choosing them in the optimal way. So they are different for different sample

paths, here we just list one set of values. The optimal grid points we got from one sample path is

{4.97,5.92,6.04,10.80}. We can see that as the value of n is getting larger, the standard deviation

will become smaller.

Table 1.2 Mean the estimators α̂ , θ̂ , σ̂ , β̂ with h = 0.5 through 500 paths at
different value of n. Case: α = 1.7, θ = 2, σ = 0.2, β = 0.4

Mean n (×104)

0.8 1.2 1.6 2

α 1.7008 1.69458 1.6980 1.6994

θ 2.0158 2.0117 2.0087 2.0049

σ 0.2007 0.1989 0.1997 0.1998

β 0.3975 0.4063 0.4009 0.4029
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Table 1.3 Standard deviation of the estimators α̂ , θ̂ , σ̂ , β̂ with h = 0.5
through 500 paths at different value of n. Case: α = 1.7, θ = 2, σ = 0.2,
β = 0.4

Std n (×104)

0.8 1.2 1.6 2

α 0.0233 0.0229 0.0169 0.0162

θ 0.0716 0.0604 0.0492 0.0405

σ 0.0069 0.0066 0.0060 0.0051

β 0.0573 0.0435 0.0312 0.0278

The following two tables give the mean and standard deviation of the estimators with the sec-

ond set of assumed values as the value n changing from a smaller value to a greater value. In

this case, 0 < α < 1 and β < 0. And the optimal grid points we got from one sample path is

{0.2,3.08,6.05,9.03}. It will be different for other paths.

Table 1.4 Mean the estimators α̂ , θ̂ , σ̂ , β̂ with h = 0.5 through 500 paths at
different value of n. Case: α = 0.6, θ = 5, σ = 0.4, β =−0.6

Mean n (×104)

0.8 1.2 1.6 2

α 0.5926 0.5874 0.5907 0.5958

θ 5.0948 5.1334 5.1137 5.0479

σ 0.3933 0.3888 0.3919 0.3925

β −0.6378 −0.6560 −0.6442 −0.6018
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Table 1.5 Standard deviation of the estimators α̂ , θ̂ , σ̂ , β̂ with h = 0.5
through 500 paths at different value of n. Case: α = 0.6, θ = 5, σ = 0.4,
β =−0.6

Std n (×104)

0.8 1.2 1.6 2

α 0.0188 0.0185 0.0160 0.0118

θ 0.5300 0.3922 0.2761 0.2101

σ 0.0547 0.0312 0.0279 0.0271

β 0.0639 0.0627 0.0515 0.0446
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Chapter 2

The Expected Hitting Time Approach to Optimal Price Adjust-

ment Problems

In this chapter, we offer a novel approach for solving optimal price adjustment problems, when

the underlying process is a Geometric Brownian Motion (GBM) process. Our approach relies on

characterizing the cumulative cost of deviation and the cost of adjusting price until the hitting time

of the lower or upper barriers. Using this approach, we are able to derive an analytical expression

for the cost function, that does not require solving a PDE or running Monte-Carlo simulations. We

apply our framework to the real world problem of adjusting domestic energy prices in countries

that adopt administratively-set energy price rules.

2.1 Preliminary

Definition 2.1. A stochastic process St is said to follow a GBM if it satisfies the following stochas-

tic differential equation (SDE):

dSt = µStdt +σStdWt

where Wt is a Wiener process, and µ (drift) and σ (volatility) are constants.

Most economists prefer geometric Brownian motion as a simple model for market prices be-

cause it is everywhere positive (with probability 1), in contrast to Brownian Motion, or even Brow-

nian Motion with drift. Furthermore, as we see from the stochastic differential equation for geo-

metric Brownian motion, the relative change is combination of a deterministic term similar to the

inflation or interest rate plus a normally distributed random term. For an arbitrary initial value
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S0, by a straightforward application of Itô’s lemma the above SDE has the analytic solution:

St = S0 exp
((

µ− σ2

2

)
t +σWt

)

The above solution St (for any value of t) is a log-normally distributed random variable with the

expected value and variance given by

E(St) = S0eµt

Var(St) = S2
0e2µt

(
eσ2t−1

)
Properties 2.1. The product or quotion of two uncorrelated geometric Brownian motions remains

geometric Brownian motion.

Proof. Let

dY/Y = adt +bdWY

dZ/Z = f dt +gdWZ

where 〈dWY ,dWZ〉= 0, consider the process U ≡ Y ∗Z. By applying the Ito’s lemma, we have

dU =ZdY +Y dZ +dY dZ

=ZY (adt +bdWY )+Y Z ( f dt +gdWZ)

+Y Z (adt +bdWY )( f dt +gdWZ)

=U(a+ f )dt +UbdWY +UgdWZ

Thus
dU/U = (a+ f )dt +bdWY +gdWZ

= (a+ f )dt +
√

b2 +g2dWU
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Definition 2.2. (First Hitting Time) The mathematical definition for the first hitting time H = Ha,b

for the real valued stochastic process V to reach (or cross) the barrier a or b, assuming that the

process starts with V (0)← (a,b), is given by the equation:

H = Ha,b = min{s : Vs /∈ (a,b)}

2.2 Introduction

Several countries use the administratively-set fuel prices (which are offered in domestic currency)

close to their international free market counterparts ([8], [24]). However, chasing a global market

price of energy/fuel has the disadvantage that domestic prices need to fluctuate daily. This creates

uncertainties for households and firms, and exposes them to global price shocks. A solution be-

tween the two extremes, one totally floating and one completely detached from global prices, is to

fix prices for a certain time interval (e.g., a season or a year) and then re-adjust and announce new

prices at the beginning of the new period.

The limitation of the adjustment on a fixed time interval is that if global prices deviate too much

from the domestically announced prices, one side of the domestic market may bear large costs. For

example, if the global price starts rising or the country’s domestic currency devaluates quickly, the

domestic prices may become too cheap (compared to the global benchmark) and the government

needs to fill the gap by paying a large subsidy. On the other hand, if global prices drop significantly

(similar to what happened after 2008 or in 2014), domestic prices will be more expensive than the

global equilibrium price and consumers are forced to pay an extra price. Given the high level of

volatility in global fuel markets, those deviations from the optimal level are likely and can include

substantial costs.

We offer a model of adjustment rules which is based on optimal lower and upper price barriers.

Instead of adjusting domestic prices in calendar time, the policy maker observes the dynamics of

global prices and the exchange rate. More precisely, the policy maker observes the system up to a

certain random time as opposed to a fixed time horizon, known as a sequential plan. The domestic
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price will be intact as long as the ratio of global and domestic prices (using the same currency)

stays inside of the optimal range. Once the ratio of the two prices hits the lower or upper bound,

the domestic price will then be re-adjusted to the original desired level. We formulate this intuitive

rule as a simplified impulse control problem and solve it explicitly.

2.3 Model

We first present a general form of the model and its solutions and then discuss the specific appli-

cation of domestic energy price setting in Section 2.5.

The regulator is controlling a stochastic process R=(Rt : t ≥ 0). We assume the process follows

a Geometric Brownian Motion (GBM) structure:

dR
R

= µdt +σdW, µ ∈ (−∞,∞),σ ∈ (0,∞), (2.3.1)

where W = (Wt : t ≥ 0) is a standard Brownian motion on a filtered probability space (Ω,F ,P).

The process R = (Rt : t ≥ 0) is assumed to start from 1 but through the time it can become bigger

or smaller than 1.

We assume that when R deviates from 1 (in either direction) the system is out of the desired

condition and incurs some deviation costs. The controller’s goal is to keep the process R as close

as possible to 1, while minimizing the recurring cost of adjusting the process.

(s,S)-Policies We assume that the regulator is committed to a (s,S)-type policy, in which the

process is reset to R = 1 once it hits either the lower or upper barrier (see Figure 2.1). Several

papers (e.g., [45]) have shown that the (s,S)-policy is the unique optimal for such impulse control

problems. Thus, given a (s,S)-type policy as given, we focus on characterizing the optimal values

of upper and lower barriers (henceforth, denoted as U∗ and L∗, respectively)

Cost structure: The regulator will choose to adjust the stochastic process only when the process R

deviates substantially away from 1. This is determined by two boundary values L < 1 <U . When
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Figure 2.1: Conceptual Model of the Problem. The process is reset to one (the desired level) once
it hits either the upper or the lower bound.

the process R hits one of the boundaries L or U at time t, then the process is reset to its initial level

at time t. The principle to choose the optimal lower and upper boundaries L∗ and U∗ is through the

following three functions.

The cost function C(R) maps the level of deviation from the equilibrium level to a penalty.

A popular choice of C(x) = c1(x−1)2 is a quadratic function that penalizes positive and negative

deviations in a symmetric manner. Since the process R is always positive, when Rt > 1 is arbitrarily

large the penalty can be arbitrarily large. However, when Rt < 1 is small, the penalty cannot be

arbitrarily large since Rt is always positive. For this reason, we use the cost function C(x) =

c1(x− 1)2 + c2(
1
x − 1)2. The part (x− 1)2 penalizes the deviation above the equilibrium price

and the part (1
x − 1)2 penalizes the deviation below the equilibrium price. The penalty weighting

constants c1 and c2 can be chosen differently.

2.3.1 Optimization Problem

Since the regulator brings the process back to R= 1 after every adjustment, we do not need to solve

an infinite horizon problem. Our approach enables us to focus only on a single cycle of adjustment.

In this way, we do not need to include a discount factor, which is essential to make sure the sum of
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infinite series of costs is a bounded function.

The cost function Z(L,U) (for single cycle) is given by:

Z(L,U) ≡ 1
E[H(L,U)]

{
E

[ˆ H(L,U)

0

[
c1(Rt−1)2 + c2

(
1
Rt
−1
)2
]

dt

]}
︸ ︷︷ ︸

Cost of Deviation

(2.3.2)

+
KL(L)

E[H(L,U)1R(H)=L]
+

KU(U)

E[H(L,U)1R(H)=U ]︸ ︷︷ ︸
Cost of Adjusting

, (2.3.3)

where H ≡ H(L,U) is the first exit time of the GBM (Rt) from the region between lower and

upper bounds (L,U). The integral term in (2.3.2) captures the implicit costs of tolerating a devi-

ation from the equilibrium price until price adjustment, whereas the terms in (2.3.3) represent the

expected cost of adjusting the process. In (2.3.2), c1,c2 ∈ (0,∞) are given constants representing

the weights for each associated unit deviation cost. Also, the constants KL(L),KU(U) ∈ (0,∞) in

(2.3.3) represent the cost of adjusting R from the lower boundary L and upper boundary U , respec-

tively. Our goal is to determine two optimally chosen adjustment barriers L∗ and U∗, such that the

cost function is minimized.

min
L<1<U

Z(L,U). (2.3.4)

The factor 1
E[H(L,U)] in (2.3.2) and the terms 1

E[H(L,U)1R(H)=L]
, 1

E[H(L,U)1R(H)=U ] in (2.3.3) divide

deviation and adjustment costs by the length of the expected adjustment cycle. Thus, we express

both components of the cost function as the stream of per unit of time (e.g., equivalent annualized

costs if the time unit is one year) cost flow.

2.4 Analysis

Our problem can be classified as a special class of optimal stopping time problems if we replace

the first hitting time H(L,U) by a general stopping time. This problem has been studied by many

researchers. It can be related to a variational inequality or free boundary problem ([3], [36], [43]).
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However, as in many stochastic control problems it is usually impossible to find the explicit so-

lution. In our model, we shall use the explicit computations for expectations of the hitting time

H(L,U) and associated cost functions to obtain the explicit formula for the objective function.

Then we can minimize such a function to obtain the optimal barriers L∗ and U∗.

We decompose the cost function Z(L,U) into multiple components. First, we shall deal with

the cost of deviation terms. Note that since both the upper limit of integration and the integrand

are random variables, calculating the cost of deviation terms requires knowledge about the joint

distribution of the integral of the instantaneous deviation cost function and the first hitting time. In

other words, we find the join probability distribution of M1 and M2, where M1 = [
´ X

0 Rn
t dt],n ∈ Z

and M2 = H(L,U).

If we expand the squares in the cost of deviation term in Z(a,b), we will encounter the follow-

ing expectations:

(I) E

[ˆ H(L,U)

0
Rtdt

]
, (II) E

[ˆ H(L,U)

0
R2

t dt

]
, (III) E [H(L,U)] ,

(IV) E

[ˆ H(L,U)

0

1
Rt

dt

]
, (V) E

[ˆ H(L,U)

0

1
R2

t
dt

]
. (2.4.1)

All the above quantities can be computed explicitly by using some special functions such as

Bessel functions. Recall the GBM process in (2.3.1). Letting ν ≡ 1
σ2

{
µ− 1

2σ2}, we see that

Rt = exp
{

σ2νt +σWt
}

. Then, the cost function is explicitly given by:

Z(L,U) =
1

E[H(L,U)]

[
c1E
ˆ H

0
R2

t dt−2c1E
ˆ H

0
Rtdt + c2E

ˆ H

0

1
R2

t
dt−2c2E

ˆ H

0

1
Rt

dt
]

+(c1 + c2)+
KL(L)

E[H(L,U)1R(H)=L]
+

KU(U)

E[H(L,U)1R(H)=U ]

=
1

(III)
[c1(II)−2c1(I)+ c2(V)−2c2(IV)]+ (c1 + c2)−

KL(L)
C1
− KU(U)

C2
,
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where

(I) =−LνA1−UνA2, (II) =−LνB1−UνB2, (III) =−C1−C2,

(IV) =−LνD1−UνD2, (V) =−LνE1−UνE2. (2.4.2)

(I): Using [4, Formula 3.20.7(a), (b)] with α = 0, β = 1
2 , and γ2 replaced by

√
2γ , we have

Eexp

(
−γ

ˆ H(L,U)

0
Rtdt

)

= E

{
exp

(
−γ

ˆ H(L,U)

0
Rtdt

)
;RH(L,U)=L

}
+E

{
exp

(
−γ

ˆ H(L,U)

0
Rtdt

)
;RH(L,U)=U

}

=
S2|ν |(

2
√

2γU
σ

, 2
√

2γ

σ
)

L|ν |−νS2|ν |(
2
√

2γU
σ

, 2
√

2γL
σ

)
+

S2|ν |(
2
√

2γ

σ
, 2
√

2γL
σ

)

U |ν |−νS2|ν |(
2
√

2γU
σ

, 2
√

2γL
σ

)
≡ g1(γ) , (2.4.3)

where the special functions Sν(x,y), Iν(x), Kν(x) are defined as follows:



Sν(x,y)≡ (xy)−ν(Iν(x)Kν(y)−Kν(x)Iν(y)) ;

Iν(x)≡
∞

∑
k=0

( x
2)

ν+2k

k!Γ(ν + k+1)
;

Kν(x)≡
π

2sin(νπ)
(I−ν(x)− Iν(x)) .

(2.4.4)

(2.4.5)

(2.4.6)

From the equation (.1.1), we see that

E

[ˆ H(L,U)

0
Rtdt

]
=− d

dγ

∣∣∣∣
γ=0

g1(γ) .

Thus, computation of the term E
[´ H(L,U)

0 Rtdt
]

can be given by computing d
dγ

∣∣∣∣
γ=0

g1(γ). To com-

pute this derivative, we first substitute the expression of Kν into the expression for Sν in (.1.2) to
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obtain

Sν(x,y) =
π

2sin(νπ)
(xy)−ν

(
Iν(x)(I−ν(y)− Iν(y))− (I−ν(x)− Iν(x))Iν(y)

)
=

π

2sin(νπ)
(xy)−ν(Iν(x)I−ν(y)− I−ν(x)Iν(y)) . (2.4.7)

Then, we have

g1(γ) = LνA1(γ)+UνA2(γ) ,

where

A1(γ)≡
I2|ν |(

2
√

2γU
σ

)I−2|ν |(
2
√

2γ

σ
)− I−2|ν |(

2
√

2γU
σ

)I2|ν |(
2
√

2γ

σ
)

I2|ν |(
2
√

2γU
σ

)I−2|ν |(
2
√

2γL
σ

)− I−2|ν |(
2
√

2γU
σ

)I2|ν |(
2
√

2γL
σ

)

and

A2(γ)≡
I2|ν |(

2
√

2γ

σ
)I−2|ν |(

2
√

2γL
σ

)− I−2|ν |(
2
√

2γ

σ
)I2|ν |(

2
√

2γL
σ

)

I2|ν |(
2
√

2γU
σ

)I−2|ν |(
2
√

2γL
σ

)− I−2|ν |(
2
√

2γU
σ

)I2|ν |(
2
√

2γL
σ

)
.

To compute the derivative of g1(γ), we need first to compute the derivative of the modified Bessel

function Iν in (.1.3). We shall use the series expansion to compute the relevant derivatives. First,

by the definition of the modified Bessel function Iν , we have

I2|ν |(
2
√

2γU
σ

) =
∞

∑
k=0

(
√

2γU
σ

)2|ν |+2k

k!Γ(2|ν |+ k+1)
= (

2γU
σ2 )|ν |

∞

∑
k=0

(2γU
σ2 )

k

k!Γ(2|ν |+ k+1)

= (
2γU
σ2 )|ν |

(
1

Γ(2|ν |+1)
+

2γU
σ2Γ(2|ν |+2)

+o(γ2)

)
.

Similarly, we have

I2|ν |(
2
√

2γL
σ

) = (
2γL
σ2 )|ν |

(
1

Γ(2|ν |+1)
+

2γL
σ2Γ(2|ν |+2)

+o(γ2)

)
.

Again by the definition of the modified Bessel function of negative index, we have

I−2|ν |(
2
√

2γU
σ

) = (
2γU
σ2 )−|ν |

(
1

Γ(−2|ν |+1)
+

2γU
σ2Γ(−2|ν |+2)

+o(γ2)

)
.

57



Thus, we can compute the derivative of A1(γ) and A2(γ) as follows:

A1 ≡
d
dγ

∣∣∣∣
γ=0

A1(γ) =
A′11(γ)A12(γ)−A′12(γ)A11(γ)

A2
12(γ)

∣∣∣∣
γ=0

=

{
2

σ2(−2|ν |+1)
(U2|ν |L−|ν |−L|ν |−L−|ν |U−U2|ν |L−|ν |+1 +L−|ν |+1 +L|ν |U)

+
2

σ2(2|ν |+1)
(U−2|ν |L|ν |−L|ν |U−L−|ν |+L−|ν |U +L|ν |+1−U−2|ν |L|ν |+1)

}
/[(U/L)|ν |− (L/U)|ν |]2 , (2.4.8)

and from noticing A12 = A22, we have

A2 ≡
d
dγ

∣∣∣∣
γ=0

A2(γ) =
A′21(γ)A22(γ)−A′22(γ)A21(γ)

A2
22(γ)

∣∣∣∣
γ=0

=

{
2

σ2(−2|ν |+1)
(U−|ν |L2|ν |−U−|ν |L−U |ν |+U |ν |L+U−|ν |+1−U−|ν |+1L2|ν |)

+
2

σ2(2|ν |+1)
(U |ν |L−2|ν |−U−|ν |−U |ν |L−U |ν |+1L−2|ν |+U |ν |+1 +U−|ν |L)

}
/[(U/L)|ν |− (L/U)|ν |]2 . (2.4.9)

Combining all of the above computations, we obtain the following explicit expression for the first

term (I) in (2.4.1).

Proposition 2.3. The term (I) in (2.4.1) is given by the following explicit formula:

(I) = E

[ˆ H(L,U)

0
Rtdt

]
=−LνA1−UνA2 , (2.4.10)

where A1 and A2 are defined by (.1.7) and (.1.8), respectively. We can further simplify the expres-

sion as

(I) =
2(U−L+U−2ν(L−1)+L−2ν(1−U))

σ2(2ν +1)(U−2ν −L−2ν)
.

Similarly we can find the explicit formula for the other terms. And we can find the explicit

computation in the appendix.
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2.5 Application to Energy Pricing Adjustment

In this section we consider the problem of domestic fuel pricing adjustments to provide a showcase

for applications of the model, and to estimate some empirically calibrated parameters to observe

the behavior of the model.

We use historical time-series data of gasoline prices and also the exchange rate fluctuations of a

typical oil-based economy to estimate the drift and volatility of the underlying stochastic processes.

2.5.1 Setup

The global price of fuel PG = (Pt
G, t ≥ 0) is given by a geometric Brownian motion (GBM) process:

dPG

PG
= µGdt +σGdWG , (2.5.1)

and the exchange rate E = (Et , t ≥ 0) follows a GBM process:

dE
E

= µEdt +σEdWE , (2.5.2)

where WG and WE are one-dimensional standard Brownian motions. We also assume that the

shocks to global price and exchange rate are independent, namely, 〈dWG,dWE〉= 0.

We call the domestic price optimal when the domestic price is equal to international price

multiplied by the current exchange rate. The optimal domestic price PD = (Pt
D, t ≥ 0) is simply

given by the domestic equivalent of the global price: PD = PGE. Since both PG and E are GBM, it

follows that PD is also a GBM process, following the dynamics of

dPD

PD
= µDdt +σDdW. (2.5.3)

Supposing at time 0 the government sets the domestic price at its equilibrium price and defining

the equilibrium domestic price at time t = 0 by P∗D = P0
GE0, the gap price will be the ratio of the

administrative price (which is equal to P∗D) to the hypothetical equilibrium price given by:
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Rt =
Pt

GEt

P∗D
; (2.5.4)

Denote

σ ≡
√

σ2
G +σ2

E and ν ≡ 1
σ2

{
µG +µE −

1
2
[
σ

2
G +σ

2
E
]}

.

Then

Rt = R0 exp
{

σ
2
νt +σWt

}
, t ≥ 0, (2.5.5)

is a GBM, where W is a Brownian motion. We assume R0 = 1. We can then use the ratio process as

the underlying process and apply the results obtained in the previous section. The solution of the

model enables us to characterize the optimal barriers for adjusting the prices and also to calculate

the expected saving associated with intermittent adjustment of domestic prices, in comparison to a

policy of no adjustment or continuous adjustment.

We use empirical data (collected from the publicly available sources of US Energy Information

Administrative (EIA) (for fuel prices) and the Central Bank of Iran (for exchange rate)) on PE ,PG to

estimate the set of model parameters σE ,σG,µG,µE and hence obtain estimates for mean µD and

volatility parameter σD of the PD process. The negative deviation cost parameters c2 represents

the subsidy costs of keeping fuel below the international prices. On the other hand, the positive

deviation cost parameter c1 represents the distortion in the economy because of setting fuel prices

too high.

Since point estimates for c1,c2,kL,kU are not available, we solve the problem for a wide range

of values for these parameters. We explore the impacts of σD on the expected optimized costs,

the width of the adjustment band (U∗− L∗), and the expected length of the adjustment period

E[H(L,U)]. We also examine the impact of unit costs c1, c2 and unit adjustment costs kL, kU on
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the optimal barriers L∗ and U∗, and the expected time of adjustment period E[H(L,U)].

The baseline parameter values we considered are provided in Table 2.1.

Parameter Definition Baseline Value Source
µG Drift of the gasoline price process 0.002 Empirical estimation
σG Volatility of the gasoline price process 0.04 Empirical estimation
µE Drift of the exchange rate process 0.012 Empirical estimation
σE Volatility of the exchange rate process 0.09 Empirical estimation
µD Drift of the R process 0.009 Empirical estimation
σD Volatility of the R process 0.1 Empirical estimation
c1 Cost of deviation 8 Assumption
c2 Cost of deviation 12 Assumption
kL Fixed cost of upward adjustment 100 Assumption
kU Fixed cost of downward adjustment 100 Assumption

Table 2.1 Key Benchmark Values of Parameter

2.5.2 Behavior of the Cost Function

Before solving the problem to find the optimal barriers, we look at the overall behavior of the

cost function when arbitrary lower and upper barriers are chosen. For our method to work it is

important to observe a smooth and convex objective function, which has a unique minimum. The

behavior of the cost function and the expected hitting times are depicted in Figure 2.2. In the next

step we use a Matlab optimization solver (using the fminsearch() function) to find the set of lower

and upper barriers, which minimize the cost function for a given set of structural parameters.

2.5.3 Sensitivity Analysis of the Optimal Solution

After inspecting the overall behavior of the objective function, we examine the response of the

optimal solution as well as the associated costs and expected adjustment period to changes in the

underlying parameters. One goal of this exercise is to observe the quantitative and qualitative

behavior of the model as a way to backtest the validity and the robustness of the solution approach.
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Figure 2.2: Graph of the cost function (Z(L,U)) for arbitrary (non-optimized) values of lower
and upper bound. We observe a well behaved function, which contains a unique minimum. The
optimal solution will pick values for the lower and upper bounds to minimize the cost function.
As one moves lower and upper bounds closer to one, deviation costs converge to zero; however,
adjustment costs become very large. As we move the barrier away from one, the expected heating
time also significantly increases.
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Figure 2.3: Impact of Adjustment Costs (KL,KU) on the Optimal Behavior. We change the value
of fixed costs associated with upward and downward adjustments and observe the response of
the optimal solutions. When adjustment costs approach zero (i.e the optimal solution converges
to instantaneous control) the barriers collapse to one. The response of optimized total costs to
adjustment costs is concave; when the adjustment costs become too large, the problem chooses a
boundary far from one. Since the likelihood of hitting a distant barrier is very small the expected
adjustment costs behave in a concave fashion.

2.5.3.1 Effect of Adjustment Costs

Figure 2.3 plots the behavior of the solution when the adjustment costs associated with upward and

downward corrections are changed. As expected, a higher adjustment cost will further penalize the

model for frequent adjustments. Therefore, the optimal solution tends to widen the barriers and

reduces the frequency of hitting the barriers (of course at the cost of higher deviation costs).

2.5.3.2 Effect of Volatility

Volatility is a key parameter for optimal adjustment policy. A higher volatility is equivalent to a

more turbulent system, which typically requires a more frequent adjustment. In Figure 2.4 we plot

the response of key variables to changes of the underlying process volatility.
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Figure 2.4: Effect of Volatility on the Optimal Solution for a Set of Upward Deviation Cost
Coefficients. We observe a non-monotonic response of the width of the optimal barriers and the
expected hitting times to increased volatility. An increase in the initial levels of volatility causes
the expected hitting times to first increase and then decrease and converge toward zero.

64



Observation From the graphs, we find that the optimal barriers L∗, U∗, the width of the op-

timal control band, (U∗− L∗), and the expected hitting time, and the minimum cost Z are all

non-monotone with respect to the volatility. This is in line with the intuition offered by [12], in

which it shown that the probability of hitting barriers behaves non-monotonically as the volatility

increases. /

2.5.4 Policy Implications

We compare the outcome of our method with a policy, that regulates the process in pre-determined

time epochs. We refer to the former as the “optimal" policy and the latter as the “mechanical"

policy. As a popular example of the mechanical policy, we consider an annual revision of energy

prices and compare it to our (s,S)-type adjustment policy.

To estimate the cost of the mechanical policy, we use a Monte Carlo exercise and simulate

1000 paths of the global price process for 360 months (30 years). Deviation and adjustment costs

for each path is recorded. The exercise is repeated 1000 times to produce a robust estimate. We

assume that the mechanical policy adjusts fuel prices every 12 months (at the beginning of the

fiscal year) regardless of the size of the deviation.

Figure 2.5 compares the cost behavior of the mechanical and optimal policies and also reports

the gains from implementing an optimal policy. Figure 2.6 provides a more detailed comparison by

breaking down the cost function to adjustment and deviation cost components. We notice that, for

a certain range of the volatility parameter, the mechanical method entails a lower adjustment cost

compared to the optimal one. However, the total cost of the optimal method is always substantially

lower than the mechanical method.

2.6 Conclusion

We introduced a model of costly price adjustments and formulated it as a stochastic optimal control

problem. The key contribution is to offer a new solution approach based on the expected hitting
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Figure 2.5: Gain from Implementing Optimal Policy. We compare the expected cost of a mechan-
ical policy (adjusting every 12 months) with the optimal adjustment solution. When the volatility
is very small, the difference between the two policies converges to zero. As the volatility of the
underlying process increases, the expected cost of the mechanical policy increases in a convex
fashion; whereas, the cost of the optimal solution (which adjusted the location of optimal barriers
in response to changes in the volatility) only goes up linearly. The gains from adopting an optimal
solution is convex in the volatility of the underlying process.
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Figure 2.6: Decomposition of the Gain from Implementing Optimal Policy. As expected, when
the volatility increases the adjustment cost of the optimal solution is larger than the mechanical
policy because the latter does not change the frequency of adjusting; however, the gain from a
lower deviation cost associated with the optimal policy dominates higher adjustment costs and the
optimal policy provides a lower overall cost.
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time to the barriers. This approach allows us to derive closed-form expressions of the cost function,

which does not rely on solving functional equations or PDE representations.

To demonstrate the robustness of the model it is applied to a real-world case of optimal domes-

tic energy price adjustment. We characterize the optimal policy behavior as a function of underly-

ing parameters and also compare the gains from adopting an optimal policy versus a mechanical

policy.

68



Chapter 3

Parameter estimation by implicit sampling

3.1 Introduction

In this chapter we describe how to use implicit sampling to find parameters of a PDE equation.

We use the Bayesian approach in which the posterior probability density describes the probability

of the parameter conditioned on data and compute an empirical estimate of this posterior with im-

plicit sampling. The approach generates independent samples and avoid some issues encountered

with Markov Chain Monte Carlo such as the estimation of burn-in and strong correlations among

the samples. We describe a new implementation of implicit sampling for parameter estimation

problems, the Newton-Krylov-Schwarz optimization method which is scalable compared with the

BFGS methods that is used in. We also provide an example involves an elliptic PDE and dis-

cussed the global and local Karhunan-Loève expansion expansions by which we can get the finite

dimensional approximation of the parameter that we plan to estimate.

3.2 Bayesian Framework

Estimating the parameters in a partial differential equation is a main problem in many applications.

For example, we have a PDE that describes the subsurface flow where we want to know the sub-

surface structures from pressure measurements of flow through a porous medium. The uncertain

quantity in this problem is the permeability which describes the subsurface structures we are inter-

ested in.
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Let me introduce the forward model and inverse problem at first.

Z = F(ρ)+ ε

where F is the forward model, ρ is the parameter, ε is the random error which is assumed to be

Gaussian and Z is the observation data. We want to estimate the parameter ρ and this is a non-

linear inverse problem. In applications, it can be derived from the discretization of PDEs.

Uncertainty may come from the measurement errors, model errors or the uncertainty of the prior in-

formation. We assume that all available information we already know before the experiment about

the parameter is available and is summarized by the prior probability density function (pdf) p0(θ).

The Bayesian approach combines the prior information with the likelihood function p(z|θ) which

measures how likely the data would be for a given parameter where z denotes the observations to

find the posterior density

p(θ |z) ∝ p0(θ)p(z|θ)

The posterior pdf defines which parameters of the numerical model are compatible with the data

z. It incorporates information from both the historical information and the observations. Our goal

is to compute the posterior function. We do not need a full description of the posterior, instead,

we can estimate and quantify the uncertainty of the parameters by the mean and variance of the

posterior density. If the prior and likelihood are Gaussian, then the posterior is also Gaussian. We

just need to compute the mean and covariance of θ |z. The posterior mean and covariance are the

minimizer and inverse of the Hessian of the negative logarithm of a Gaussian posterior pdf. In

nonlinear and non-Gaussian problems, we can compute the posterior mode or the maximum a pos-

terior (MAP) point by minimizing the negative logarithm of the posterior, and use the MAP point

as an approximation of the parameter θ . The inverse of the Hessian of the negative logarithm of

the posterior can be used to measure the uncertainty of the approximation.
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3.3 Markov Chain Monte Carlo

In the previous section, we introduced the Bayesian inference. Most of Bayesian inference is

concerned with posterior

p(θ |z) ∝ p0(θ)p(z|θ)

without knowing the constant of proportionality. This leads to the general sampling problem:

Suppose we are given a distribution function

p(z) =
1

Zp
p̃(z)

where p̃(z) ≥ 0 is easy to compute but Zp is hard to compute. So in the Bayesian models where

p̃(θ) = p(z|θ)p(θ) is easy to compute but Zp = p(z) =
´

θ
p(θ)p(z|θ)dθ can be very difficult or

impossible to compute. So the sampling problem is the problem of simulating from p(z) without

knowing the constant Zp.

The most common choice for exploring the posterior is Markov chain Monte Carlo (MCMC),

which generates a serial of samples to evaluate the statistical information. In this section we will

introduce basics of MCMC and some popular algorithms which are widely used in practice. Monte

Carlo is a technique for randomly sampling a probability distribution and from the samples that are

drawn, we can then estimate the sum or the integral quantity as the mean or variance of the drawn

samples. Markov chain is a systematic method for generating a sequence of random variables

where the current value is probabilistically dependent on the value of the prior variable. Combin-

ing these two methods, Markov Chain Monte Carlo allows random sampling of high-dimensional

probability distributions that honors the probabilistic dependence between samples by constructing

a Markov Chain that comprise the Monte Carlo samples. MCMC is for estimating a quantity for

probability distributions where independent samples from the distribution cannot be drawn eas-

ily. Samples are drawn from the probability distribution by constructing a Markov Chain, where

the next sample that is drawn from the probability distribution is dependent upon the last sample
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that was drawn. So although the first sample may be generated from the prior the sequence is

constructed so that successive samples are generated from distribution that get closer and closer

to the desired posterior. In the following, we will see the design of Metropilis-Hastings MCMC

algorithm.

Suppose we want to sample from a distribution p(x) = p̃(x)/Zp. To do this we first construct a

Markov chain as follows. Let Xt = x be the current state. We then perform the following two steps

repeatedly:

1. Generate Y∼ Q(·|x) for some Markov transition matrix Q. Let y be the generated value.

2. Set Xt+1 = y with probability α(y|x) = min{ p̃(y)
p̃(x) ·

Q(x|y)
Q(y|x) ,1}. Otherwise set Xt+1 = x.

Claim: The resulting Markov chain is reversible with stationary distribution p(x) = p̃(x)/Zp. We

can therefore sample from p(x) by running the algorithm until stationary is achieved and then using

generated points as our samples.

Proof. We simply check that p(x) satisfies the detailed balance equations. We have

α(y|x)Q(y|x)︸ ︷︷ ︸
P(y|x)

p(x) = min
{

p(y)
p(x)

· Q(x|y)
Q(y|x)

,1
}

Q(y|x)p(x)

= min{Q(x|y)p(y),Q(y|x)p(x)}

= min
{

1,
p(x)
p(y)

· Q(y|x)
Q(x|y)

}
Q(x|y)p(y)

= α(x|y)Q(x|y)︸ ︷︷ ︸
P(x|y)

p(y)

So the Markov chain is reversible and p is therefore the stationary distribution of the Markov chain

since we have

∑
x

P(y|x)p(x) = ∑
x

P(x|y)p(y) = p(y)

However, there are still some practical issues of choosing the appropriate proposal distribution

Q(·|·) since it influences how much time is required to reach stationarity and it is difficult to provide
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a theoretical answer of when the stationarity is achieved.

3.4 Implicit Sampling

Implicit sampling method acts as a special formulation of importance sampling to improve sample

performance by providing an important function based on optimization. The importance sam-

pling method is a popular Monte Carlo method which generated independent samples without any

Gaussian assumption. The idea is to draw samples from another easy-sampling importance func-

tion with a weight of each sample instead of drawing samples from the target distribution itself,

which is usually difficult to explore directly. But if the variance of the weights is large, the effective

sample size may be very small and the number of samples required can increase quickly with the

dimension of problem. Suppose we wish to estimate an m-dimensional parameter vector θ from

data. One can present the posterior by M weighted samples, The samples θ j, j = 1, . . . ,M are

obtained from an importance function π(θ), and the j− th sample is assigned the weight

ω j ∝
p(θ j)p(z|θ j)

π(θ j)

The weights describes how likely the samples is in view of the posterior. The weighted samples

{θ j,ω j} form an empirical estimate of p(θ |z) so that for a smooth function u,

EM(u) =
M

∑
j=0

u(θ j)ω̂ j

where ω̂ j = ω j/
M
∑
j=0

ω j, converges almost surly to the expected value of u as M→ ∞.

Choosing important function appropriately is crucial to the implementation of the importance sam-

ple. A good choice of the importance density should have the following properties:

1. should be easy to simulate.

2. should be close to the posterior density.

For example, if we choose the importance function be the prior, then the weights are proportional
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to the likelihood. There are two scenarios in which the samples we draw from the prior have a

low posterior probability so that the estimate of the posterior is inaccurate. The prior may have

probability mass in a small region of the space in which the likelihood is small. And in second

scenario, the prior may be broad while the likelihood is sharply peaked. Poor choices of the impor-

tance function may lead to huge amount of computational waste on samples that contribute little

or even nothing (e.g. q and p are singular to each other) to the posterior density. And the number

of samples required can increase dramatically with the dimension. So the importance sampling

algorithm cannot be applied to the high-dimensional problem.

The implicit sampling method provides a general framework to construct the importance func-

tion for the importance sampling method, which has a significant overlap with the posterior density.

Let us denote the negative logarithm of the posterior density by F(θ)

F(θ) =− log(p(θ)p(z|θ))

The first step of implicit sampling is to locate the high region of posterior density by minimizing

F(θ). we denote φ as the minimum value of F(θ) and µ as the minimizer and it is the same as

finding the MAP (maximum a posterior) point. Our goal is to construct an importance function that

assigns high probability to generate samples around the MAP point. We first pick up a reference

random variable ξ with pdf g(ξ ) ∝ exp(−G(ξ )) and define φG = minG. The samples for θ are

generated by first first drawing samples from ξ and then solving the algebraic equation

F(θ)−φF = G(ξ )−φG (3.4.1)

By a change of variables, we can derive that the associated weights for the samples are given by

w j ∝ J(θ) where J is the Jacobian of the map from θ to ξ provided that the map ξ → x is one-to-

one and onto. Since the samples of ξ are independent and close to the MAP point, the samples of

θ will also be independent to each other and forced to lie near the MAP point µ .
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3.4.1 Solving the implicit equation

We want to solve for a Gaussian ξ with mean 0 and covariance matrix H−1, where H is the Hessian

of the function F at the minimum. With this ξ , equation 3.4.1 becomes

F(θ)−φF =
1
2

ξ
T Hξ (3.4.2)

Two strategies [?linearmap] for solving the equation are popular: random and linear map.

Random map. We seek the solution of 3.4.1 in the form

θ = µ +λ (ξ )ξ (3.4.3)

Here λ can be computed by substituting into and solving for the scalar λ (ξ ) with Newton’s

method. A formula for the Jacobian of the random map was derived in [??????]:

w ∝ |J(ξ )|=
∣∣∣∣λ m−1 ξ T Hξ

∇θ F ·ξ

∣∣∣∣ (3.4.4)

where m is the number of nonzero eigenvalues of H.

Linear map. We first expand the F(θ) to the second order:

F(θ)≈ φF +
1
2
(θ −µ)T H(θ −µ) = F0(θ)

where H is the Hessian at µ . We solve the equation

F0(θ)−φ =
1
2

ξ
T Hξ (3.4.5)
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We solve the equation

F0(θ)−φF =
1
2

ξ
T Hξ (3.4.6)

We simply shift ξ by the mode: θ = µ +ξ . The bias created by solving (3.4.6) instead of (3.4.1)

can be removed by the weights

w ∝ exp(F0(θ)−F(θ))

3.4.2 Optimization

The first step in implicit sampling is to find the MAP point by minimizing F . This can be done

numerically by Newton, quasi-Newton methods. We will introduce how to use BFGS and Newton-

Krylov-Schwarz optimization in the example below. We also compare these two methods and

find that the Newton-Krylov-Schwarz method is scalable which also enables us to do the parallel

computing.

3.5 Application to subsruface flow problem

As a test of the performance of various sampling algorithms introduced in this chapter, we apply

these methods to a subsurface flow problem, where we estimate subsurface subsurface structures

from pressure measurements of flow through a porous medium. (see [9]) We consider the elliptic

problem

−∇ · (ρ∇u) = f (3.5.1)

on a domain Ω, with Neumann boundary conditions, where k is the permeability and describes the

subsurface structures we are interested in, ∇u is the pressure gradient across the porous medium

and f represents externally prescribed inward or outward flow rates.

The uncertain quantity in this problem is the permeability parameter ρ , and we assume for each

ρ , a unique solution of (3.5.1) exists. We want to estimate the ρ on the basis of noisy measurements
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of the pressure at n locations so that we have the equation

z = f (ρ(u),x,y)+ r (3.5.2)

We consider a 2D problem on the domain Ω = [0,1]× [0,1] and discritize (3.5.1) with a piece-

wise linear finite element method on a uniform (N +1)× (N +1) mesh of triangular elements.

Au = f

where A is a (N+1)2×(N+1)2 matrix and u and f are (N+1)2 vectors. We could first decompose

the domain into smaller sundomains and then solve the subdomain interface problem. Then solving

the PDE equivalents to solving the linear systerm.

In the numerical experiments, the data equation is

z = u+ r

So we assume we have observations on every point and the data are perturbed with a Gaussian

random variable r ∼N (0,R) where R is a diagonal covariance matrix. We know the dimension

of ρ is mesh dependent. So if the mesh is fine, the dimension of ρ is large. We will introduce two

methods that help us reduce the dimension of ρ .

3.5.1 The log-normal prior, discretization, and dimensional reduction

We assume that the prior density function is log-normal with exponential covariance function

K (x1,x2,y1,y2) = exp

(
−(x1− x2)

2

l2
x

− (y1− y2)
2

l2
y

)
(3.5.3)
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where (x1,y1) and (x2,y2) are the points in the domain and lx, ly are the correlation length. Then

the elements of the covariance matrix Σ is

Σ(i, j) = K
(
xi,x j,yi,y j

)
, i, j = 1, . . . ,N

where N is the number of grid points in each direction. Then we perform a dimension reduction

by Karhunen–Loève (KL) expansions [11] and use the resulting low rank approximation of the

covariance matrix Σ for all subsequent computations. We obtain the low-rank approximation for

the covariance matrix on the grid from the SVD of the covariance:

Σ̂ =V T
ΛV

where Λ is a diagonal matrix whose diagonal elements are the m largest eigenvalues of Σ and V is

an m×N matrix whose columns are the corresponding eigenvectors.

Thus, in the reduced dimension on the grid, the prior is

ρ̂ ∼ logN (µ̂, Σ̂)

With the linear change of the variables

θ =V T
Λ
−0.5

ρ̂

the prior for the variable θ is

p(θ) = N(µ, Im)

where µ =V T Λ−0.5µ̂ Then ρ can be written as ρ = exp(Uθ) where U =V Λ0.5 and we will do the

computation in the reduced coordinate θ instead of the original parameter ρ . This will reduce the

effective dimension for the parameter ρ from N2 to m. Local dimension reduction:

We also use a local dimension reduction method [2] which is suitable to the parallel com-
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putation of the KL decomposition. It uses a domain decomposition approach to conventinently

distribute the computational load among several processors and recast in a reduced eigenvalue

problem. The computational domain is partitioned into smaller non-overlapping subdomains, over

which indepedent local KL decompositions are performed to generate local bases which are sub-

sequently used to discretize the global modes over the entire domain. Later We can see the number

of the iterations are almost the same for the optimization no matter which KL expansion is used

for the vector ρ .

3.5.2 Optimization

Implicit sampling requires the minimization of F . In this section, we introduce solve the optimiza-

tion problem using the Newton-Krylov-Schwarz method and BFGS method. The optimization

problem takes the form

J(ρ) =
1
2

ˆ
Ω

(u− z)2dx+
1
2

ˆ
Ω

|ρ|2dx (3.5.4)

3.5.2.1 BFGS method

Under the discretization, the cost function could be written as

J(ρ) =
1
2

ˆ (
∑(ui− zi)φi

)2 dx+
1
2

ˆ
|ρi|2 dx

=
1
2
(u− z)T M(u− z)+

a
2

ρ
T

ρ

where M =
(´

φ T
i φ j
)

i, j, a is the area of each element, ρ = exp(Uθ). Now, let us deal with the

gradient of the cost function ∇J.

Since Au = f , where Ai, j = ∑`ρk
´

∇φ j∇φi

∂A
∂ρ

u+A
∂u
∂ρ

= 0

79



i.e
∂u
∂ρ

=−A−1 ∂A
∂ρ

u

Then
∂J
∂ρ j

= (u− z)T M
∂u
∂ρ j

+a j ∗ρ j

=−(u− z)T MA−1 ∂A
∂ρ j

u+a j ∗ρ j

=−
(
A−T MT (u− z)

)T ∂A
∂ρ j

u+a j ∗ρ j

where a j is the area of the element corresponding to ρ j. Thus

∇Jρ(ρ) =−
(
A−T MT (u− z)

)T


∂A
∂ρ1

u
...

∂A
∂ρN2

u

+a j ∗ρ

Since ρ = exp(Uθ), we finally have

∇θ J(θ) =−UT ∗diag(ρ)
(
A−T MT (u− z)

)T


∂A
∂θ1

u
...

∂A
∂θm

u

+a j ∗U ∗diag(ρ)∗ρ

The gradient is used in BFGS method with a cubic interpolation line search (see [32], [30]).

3.5.2.2 Newton–Krylov-Schwarz method

Here, we introduce another method to solve the optimization problem [47]. Instead of solving the

constraint optimization problems, we turn to solving the saddle point problems associated with the

Lagrangian functional L :

L (ρ,u,λ ) =
1
2

ˆ
Ω

(u− z)2dx−
ˆ

Ω

(∇ ·ρ∇u+ f )λdx+
1
2

ˆ
Ω

|ρ|2dx
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Find (ρ,u,λ ) such that


∇ρL = 0

∇uL = 0

∇λ L = 0

Then we can get 
F(ρ) ≡ ρ +∇u ·∇λ = 0

F(u) ≡−∇ · (ρ∇λ )+(u− z) = 0

F(λ ) ≡−∇ · (ρ∇u)− f = 0

with boundary conditions 
u = 0

λ = 0

∂ρ

∂n = 0

By Galerkin’s method, we can discretize the equations as

F(ρ)
j ≡ ρne ·a j +

n

∑
i=1

n

∑
k=1

uiλk

ˆ
∇φi∇φk = 0

F(u)
j ≡ ρne

n

∑
k=1

λk

ˆ
∇φk∇φ j +

n

∑
i=1

(ui− zi)

ˆ
φiφ j = 0

F(λ )
j ≡ ρne

n

∑
k=1

uk

ˆ
∇φk∇φ j−

ˆ
f φ j = 0

where a j is the area of the jth element, ρne is the value of ρ in the element which corresponds to

the u or λ , φi is the basic functions.

Ordering of unknowns:

We use the so-called fully coupled ordering[47], by which we mean that all three variables defined

at the same mesh point are always together throughout the calculations. Since here we use the
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piece-wise linear function and KL expansion for ρ , we cannot use this coupled ordering anymore.

Here, the unknowns are ordered in the order θ , ui j, λi j, that is

U =
(
θ1,θ2, . . .θN ,λ11,u11,λ21,u21, . . . ,λnxny ,unxny ,

)T

And we order the functions in exactly the same order

F =
(

F(θ)
11 ,F(θ)

12 , . . .F(θ)
1N ,F(u)

11 ,F(λ )
11 ,F(u)

21 ,F(λ )
21 , . . . ,F(u)

nxny,F
(λ )
nxny

)T
= 0

The Newton–Krylov–Schwarz (NKS) methods are a family of general-purpose parallel algorithms

for solving systems of nonlinear NKS and it has three main components: (i) an inexact Newton

method for the nonlinear system; (ii) restarted GMRES for the Jacobian systems; and (iii) an

additive Schwarz type preconditioner. Newton iterations are as follows:

Uk+1 =Uk−λkJ (Uk)
−1 F (Uk) ,k = 0,1, . . . ,

where U0 is an ininitial approximation to the solution, J (Uk) = F ′ (Uk) is the Jacobian at Uk , and

λk is the steplength determined by a linesearch procedure [9;10]. Here we do not solve the Jacobian

systems exactly, the accuracy of the Jacobian solver is determined by

‖F (Uk)+ J (Uk)sk‖ ≤ ηk ‖F (Uk)‖ .

where ηk ∈ [0,1). The algorithm can be described as follows:

(1) Inexactly solve the linear system J (Uk)sk =−F (Uk) for sk using a preconditioned GMRES(30).

(2) Perform a full Newton step with λ0 = 1 in the direction sk .

(3) If the full Newton step is unacceptable, we backtrack using the cubic back-tracking procedure

until a new λ is obtained that makes U++λksk an tracking procedure until a new λ is obtained that

makes U+ =Uk+λksk an acceptable step. (4) Set Uk+1 =U+ and return to step 1 unless a stopping
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condition has been met. In step 1 above the vector sk is obtained by approximately solving the

right preconditioned Jacobian system

J (Uk)M−1
k s′k =−F (Uk)

where M−1
k is a one-level additive Schwart preconditioner and sk = M−1

k s′k

(4) Set Uk+1 =U+ and return to step 1 unless a stopping condition has been met.

One-level additive Schwarz preconditioning

We first partion the domain into nonverlapping ing subdomains Ωl, l = 1, . . . ,N,. In order to obtain

an overlaping decomposition of the domain, we extend each subdomain Ωt to a larger region Ω′l,

that is, Ωl ⊂ Ω′l. On each extended subdomain Ω′l, we construct a subdomain preconditioner Bl

which is the discretization of the Frechet derivative taken at the current iteration,

J =


∂F(θ)

∂θ

∂F(θ)

∂λ

∂F(θ)

∂u

∂F(u)

∂θ

∂F(u)

∂λ

∂F(u)

∂u

∂F(2)

∂θ

∂F(λ )

∂λ

∂F(λ )

∂u


Since ρ = exp(U ∗θ), Fθ =

(
∂ρ

∂θ

)T ·Fρ where

∂ρ

∂θ
=



∂ρ1
∂θ1

∂ρ1
∂θ2

· · · ∂ρ2
∂θN

∂ρ2
∂θ1

∂ρ2
∂θ2

· · · ∂ρ2
∂θN

. . .

∂ρn
∂θ1

∂ρn
∂θ2

· · · ∂ρn
∂θN


Suppose

U =



a11 a12 · · · a1N

a21 a22 · · · a2N

. . .

an1 an2 · · · anN
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then

∂ρ

∂θ
=



a11ρ1 a12ρ1 · · · a1Nρ1

a21ρ2 a22ρ2 · · · a2Nρ2

. . .

an1ρn an2ρn · · · anNρn


∂Fθ

∂u
=
(∂ρ

∂θ

)T ·
∂Fρ

∂u

∂Fθ

∂λ
=
(∂ρ

∂λ

)T ·
∂Fρ

∂λ

If we write Fθ explicitly, we have

∂Fθ

∂θ
=
(∂ρ

∂θ

)T ·
∂Fρ

∂ρ
· ∂ρ

∂θ
+UT ∗ repmat(Fρ ,1,N)T ∗ ∂ρ

∂θ

∂Fλ

∂θ
=
(∂Fλ

∂ρ

)T · ∂ρ

∂θ

∂Fu

∂θ
=
(∂Fu

∂ρ

)T · ∂ρ

∂θ

In the test runs, we stop the Newton iteration if the following condition is satisfied

‖F (Uk)‖ ≤max
{

10−6 ‖F (U0)‖ ,10−10
}

For the Jacobian solver, the GMRES iteration is stopped if

‖F (Uk)+ J (Uk)s‖ ≤max
{

10−6 ‖F (Uk)‖ ,10−10
}

Once the minimization is completed, we could generate the samples using either the linear map or

random map methods we described above to generate the samples.
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3.5.3 Test case

We next describe our test case with the observation function

z(x,y) = sin(πx)sin(πy)

Test. we take Ω = (0,1)× (0,1), and the right side f is constructed such that ρ = 1+6x2y(1− y)

is the elliptic coefficient to be identified.

3.5.3.1 Results

We can see as the dimension of θ getting larger, the number of iterations that required by BFGS

method is increasing. For the Newton-Krylov-Schwarz method, as the dimension of θ increasing,

the number of iterations almost stay the same. So we can see the Newton-Krylov method is more

scalable and it can be easily implemented in parallel. Also the number of iterations of the local KL

expansion and global KL expansion are almost the same. But the local KL expansion enables the

efficient computation of a possibly large number of dominant KL modes.

θ 5 8 10
BFGS 39 63 75
Function evaluation 86 136 164

Table 3.1 NVM=4, nvm=8, Global KL expansion, BFGS method

θ 5 8 10
Newton 5 6 6
GMRES(200) 44.4 71.67 75.83

Table 3.2 NVM=4, nvm=8, Global KL expansion, Newton-Krylov method

θ 5 8 10
Newton 5 6 6
GMRES(200) 46.2 73.3 72.5

Table 3.3 NVM=4, nvm=8, Local KL expansion, Newton-Krylov method
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.1 Appendix for: The Expected Hitting Time Approach to Optimal Price

Adjustment Problems

In this section we are going to provide details on the explicit computations of all the terms (I)–(V)

in Equation (2.4).

(I): Using [4, Formula 3.20.7(a), (b)] with α = 0, β = 1
2 , and γ2 replaced by

√
2γ , we have

Eexp

(
−γ

ˆ H(L,U)

0
Rtdt

)

= E

{
exp

(
−γ

ˆ H(L,U)

0
Rtdt

)
;RH(L,U)=L

}
+E

{
exp

(
−γ

ˆ H(L,U)

0
Rtdt

)
;RH(L,U)=U

}

=
S2|ν |(

2
√

2γU
σ

, 2
√

2γ

σ
)

L|ν |−νS2|ν |(
2
√

2γU
σ

, 2
√

2γL
σ

)
+

S2|ν |(
2
√

2γ

σ
, 2
√

2γL
σ

)

U |ν |−νS2|ν |(
2
√

2γU
σ

, 2
√

2γL
σ

)
≡ g1(γ) , (.1.1)

where the special functions Sν(x,y), Iν(x), Kν(x) are defined as follows:



Sν(x,y)≡ (xy)−ν(Iν(x)Kν(y)−Kν(x)Iν(y)) ;

Iν(x)≡
∞

∑
k=0

( x
2)

ν+2k

k!Γ(ν + k+1)
;

Kν(x)≡
π

2sin(νπ)
(I−ν(x)− Iν(x)) .

(.1.2)

(.1.3)

(.1.4)

From the equation (.1.1), we see that

E

[ˆ H(L,U)

0
Rtdt

]
=− d

dγ

∣∣∣∣
γ=0

g1(γ) .

Thus, computation of the term E
[´ H(L,U)

0 Rtdt
]

can be given by computing d
dγ

∣∣∣∣
γ=0

g1(γ). To com-

pute this derivative, we first substitute the expression of Kν into the expression for Sν in (.1.2) to
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obtain

Sν(x,y) =
π

2sin(νπ)
(xy)−ν

(
Iν(x)(I−ν(y)− Iν(y))− (I−ν(x)− Iν(x))Iν(y)

)
=

π

2sin(νπ)
(xy)−ν(Iν(x)I−ν(y)− I−ν(x)Iν(y)) . (.1.5)

Then, we have

g1(γ) = LνA1(γ)+UνA2(γ) ,

where

A1(γ)≡
I2|ν |(

2
√

2γU
σ

)I−2|ν |(
2
√

2γ

σ
)− I−2|ν |(

2
√

2γU
σ

)I2|ν |(
2
√

2γ

σ
)

I2|ν |(
2
√

2γU
σ

)I−2|ν |(
2
√

2γL
σ

)− I−2|ν |(
2
√

2γU
σ

)I2|ν |(
2
√

2γL
σ

)

and

A2(γ)≡
I2|ν |(

2
√

2γ

σ
)I−2|ν |(

2
√

2γL
σ

)− I−2|ν |(
2
√

2γ

σ
)I2|ν |(

2
√

2γL
σ

)

I2|ν |(
2
√

2γU
σ

)I−2|ν |(
2
√

2γL
σ

)− I−2|ν |(
2
√

2γU
σ

)I2|ν |(
2
√

2γL
σ

)
.

We denote the numerators of A1 and A2 by A11(γ) and A21(γ) and the denominators of A1 and A2

by A12(γ) and A22(γ), respectively. Thus we can write

A1(γ) =
A11(γ)

A12(γ)
, A2(γ) =

A21(γ)

A22(γ)
. (.1.6)

[Notice that A12(γ) = A22(γ).] To compute the derivative of g1(γ), we need first to compute the

derivative of the modified Bessel function Iν in (.1.3). We shall use the series expansion to compute

the relevant derivatives. First, by the definition of the modified Bessel function Iν , we have

I2|ν |(
2
√

2γU
σ

) =
∞

∑
k=0

(
√

2γU
σ

)2|ν |+2k

k!Γ(2|ν |+ k+1)
= (

2γU
σ2 )|ν |

∞

∑
k=0

(2γU
σ2 )

k

k!Γ(2|ν |+ k+1)

= (
2γU
σ2 )|ν |

(
1

Γ(2|ν |+1)
+

2γU
σ2Γ(2|ν |+2)

+o(γ2)

)
.

Similarly, we have

I2|ν |(
2
√

2γL
σ

) = (
2γL
σ2 )|ν |

(
1

Γ(2|ν |+1)
+

2γL
σ2Γ(2|ν |+2)

+o(γ2)

)
.
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Again by the definition of the modified Bessel function of negative index, we have

I−2|ν |(
2
√

2γU
σ

) = (
2γU
σ2 )−|ν |

(
1

Γ(−2|ν |+1)
+

2γU
σ2Γ(−2|ν |+2)

+o(γ2)

)
.

Combining the above computations, we have

A11(γ) = U |ν |
(

1
Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γU

σ2Γ(2|ν |+2)Γ(−2|ν |+1)

+
2γ

σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
−U−|ν |

(
1

Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γ

σ2Γ(2|ν |+2)Γ(−2|ν |+1)
+

2γU
σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
+o(γ2) .

Its derivative is then

d
dγ

∣∣∣∣
γ=0

A11(γ) = U |ν |
(

2U
σ2Γ(2|ν |+2)Γ(−2|ν |+1)

+
2

σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
−U−|ν |

(
2

σ2Γ(2|ν |+2)Γ(−2|ν |+1)
+

2U
σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
+o(γ) .

As for A12, we have by a similar computation

A12(γ) = U |ν |L−|ν |
(

1
Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γU

σ2Γ(2|ν |+2)Γ(−2|ν |+1)

+
2γL

σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
−U−|ν |a|ν |

(
1

Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γL

σ2Γ(2|ν |+2)Γ(−2|ν |+1)
+

2γU
σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
+o(γ2) .

Its derivative is

d
dγ

A12(γ) = U |ν |L−|ν |
(

2U
σ2Γ(2|ν |+2)Γ(−2|ν |+1)

+
2L

σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
−U−|ν |L|ν |

(
2L

σ2Γ(2|ν |+2)Γ(−2|ν |+1)
+

2U
σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
+o(γ) .
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We also compute the expression for A21(γ):

A21(γ) = L−|ν |
(

1
Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γ

σ2Γ(2|ν |+2)Γ(−2|ν |+1)

+
2γL

σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
−L|ν |

(
1

Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γL

σ2Γ(2|ν |+2)Γ(−2|ν |+1)
+

2γ

σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
+o(γ2) .

Hence, the derivative takes the form:

d
dγ

A21(γ) = L−|ν |
(

2
σ2Γ(2|ν |+2)Γ(−2|ν |+1)

+
2a

σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
−L|ν |

(
2L

σ2Γ(2|ν |+2)Γ(−2|ν |+1)
+

2
σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
+o(γ) .

Finally, we need the following expression for the denominator of the derivative:

A2
12(γ) =

(
U |ν |L−|ν |−U−|ν |L|ν |

)2 1
Γ(2|ν |+1)2Γ(−2|ν |+1)2 +o(γ2) .

Thus, we can compute the derivative of A1(γ) and A2(γ) as follows:

A1 ≡
d
dγ

∣∣∣∣
γ=0

A1(γ) =
A′11(γ)A12(γ)−A′12(γ)A11(γ)

A2
12(γ)

∣∣∣∣
γ=0

=

{
2

σ2(−2|ν |+1)
(U2|ν |L−|ν |−L|ν |−L−|ν |U−U2|ν |L−|ν |+1 +L−|ν |+1 +L|ν |U)

+
2

σ2(2|ν |+1)
(U−2|ν |L|ν |−L|ν |U−L−|ν |+L−|ν |U +L|ν |+1−U−2|ν |L|ν |+1)

}
/[(U/L)|ν |− (L/U)|ν |]2 , (.1.7)
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and from noticing A12 = A22, we have

A2 ≡
d
dγ

∣∣∣∣
γ=0

A2(γ) =
A′21(γ)A22(γ)−A′22(γ)A21(γ)

A2
22(γ)

∣∣∣∣
γ=0

=

{
2

σ2(−2|ν |+1)
(U−|ν |L2|ν |−U−|ν |L−U |ν |+U |ν |L+U−|ν |+1−U−|ν |+1L2|ν |)

+
2

σ2(2|ν |+1)
(U |ν |L−2|ν |−U−|ν |−U |ν |L−U |ν |+1L−2|ν |+U |ν |+1 +U−|ν |L)

}
/[(U/L)|ν |− (L/U)|ν |]2 . (.1.8)

Combining all of the above computations, we obtain the following explicit expression for the first

term (I) in (2.4.1).

The term (I) in (2.4.1) is given by the following explicit formula:

(I) = E

[ˆ H(L,U)

0
Rtdt

]
=−LνA1−UνA2 , (.1.9)

where A1 and A2 are defined by (.1.7) and (.1.8), respectively. We can further simplify the expres-

sion as

(I) =
2(U−L+U−2ν(L−1)+L−2ν(1−U))

σ2(2ν +1)(U−2ν −L−2ν)
.

(II): Now we compute the second term (II) in (2.4.1). Using [4, Formula 3.20.7(a), (b)] with

α = 0, β = 1, and γ2

2 replaced by γ , we have

Eexp

(
−γ

ˆ H(L,U)

0
R2

t dt

)

= E

{
exp

(
−γ

ˆ H(L,U)

0
R2

t dt

)
;RH(L,U)=L

}
+E

{
exp

(
−γ

ˆ H(L,U)

0
R2

t dt

)
;RH(L,U)=U

}

=
S|ν |(

√
2γU
σ

,
√

2γ

σ
)

L|ν |−νS|ν |(
√

2γU
σ

,
√

2γL
σ

)
+

S|ν |(
√

2γ

σ
,
√

2γL
σ

)

U |ν |−νS|ν |(
√

2γU
σ

,
√

2γL
σ

)
≡ g2(γ) .
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Then, by (.1.5) we have that g2(γ) = LνB1(γ)+UνB2(γ), where

B1 ≡
I|ν |(

√
2γU
σ

)I−|ν |(
√

2γ

σ
)− I−|ν |(

√
2γU
σ

)I|ν |(
√

2γ

σ
)

I|ν |(
√

2γU
σ

)I−|ν |(
√

2γL
σ

)− I−|ν |(
√

2γU
σ

)I|ν |(
√

2γL
σ

)
=

B11(γ)

B12(γ)
,

B2 ≡
I|ν |(

√
2γ

σ
)I−|ν |(

√
2γL
σ

)− I−|ν |(
√

2γ

σ
)I|ν |(

√
2γa
σ

)

I|ν |(
√

2γb
σ

)I−|ν |(
√

2γL
σ

)− I−|ν |(
√

2γU
σ

)I|ν |(
√

2γL
σ

)
=

B21(γ)

B22(γ)
. (.1.10)

Now we can compute B11, B12, B21, and B22 as follows:

B11(γ) = L|ν |
(

1
Γ(|ν |+1)Γ(−|ν |+1)

+
γU2

2σ2Γ(|ν |+2)Γ(−|ν |+1)

+
γ

2σ2Γ(−|ν |+2)Γ(|ν |+1)

)
−L−|ν |

(
1

Γ(|ν |+1)Γ(−|ν |+1)

+
γ

2σ2Γ(|ν |+2)Γ(−|ν |+1)
+

γU2

2σ2Γ(−|ν |+2)Γ(|ν |+1)

)
+o(γ2) ,

B12(γ) = U |ν |L−|ν |
(

1
Γ(|ν |+1)Γ(−|ν |+1)

+
γU2

2σ2Γ(|ν |+2)Γ(−|ν |+1)

+
γL2

2σ2Γ(−|ν |+2)Γ(|ν |+1)

)
−U−|ν |L|ν |

(
1

Γ(|ν |+1)Γ(−|ν |+1)

+
γL2

2σ2Γ(|ν |+2)Γ(−|ν |+1)
+

γU2

2σ2Γ(−|ν |+2)Γ(|ν |+1)

)
+o(γ) .

Also, it can be seen that

B21(γ) = L−|ν |
(

1
Γ(|ν |+1)Γ(−|ν |+1)

+
γ

2σ2Γ(|ν |+2)Γ(−|ν |+1)

+
γL2

2σ2Γ(−|ν |+2)Γ(|ν |+1)

)
−L|ν |

(
1

Γ(|ν |+1)Γ(−|ν |+1)

+
γL2

2σ2Γ(|ν |+2)Γ(−|ν |+1)
+

γ

2σ2Γ(−|ν |+2)Γ(|ν |+1)

)
+o(γ2) .
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By the same method of computing g1(γ), we have that

B1 ≡
d
dγ

∣∣∣∣
γ=0

B1(γ)

=

{
1

2σ2(−|ν |+1)
(U2|ν |L−|ν |−L−|ν |U2−L|ν |−U2|ν |L2−|ν |+L|ν |U2 +L2−|ν |)

+
1

2σ2(|ν |+1)
(U−2|ν |L|ν |−L−|ν |−L|ν |U2 +L2+|ν |+L−|ν |U2−U−2|ν |L|ν |+2)

}
/[(U/L)|ν |− (L/U)|ν |]2 , (.1.11)

B2 ≡
d
dγ

∣∣∣∣
γ=0

B2(γ)

=

{
1

2σ2(−|ν |+1)
(L2|ν |U−|ν |−U |ν |−U−|ν |L2 +U2−|ν |+U |ν |L2−L2|ν |U2−|ν |)

+
1

2σ2(|ν |+1)
(U |ν |L−2|ν |−U |ν |L2−U−|ν |−U2+|ν |L−2|ν |+U2+|ν |+U−|ν |L2)

}
/[(U/L)|ν |− (L/U)|ν |]2 . (.1.12)

Then, we have the following explicit expression for the second term (II) in (2.4.1).

The term (II) in (2.4.1) has the following explicit formula:

(II) = E

[ˆ H(L,U)

0
R2

t dt

]
=−LνB1−UνB2 , (.1.13)

where B1 and B1 are defined by (.1.11) and (.1.12), respectively. Further simplifying, we obtain

(II) =
U2−L2 +U−2ν(L2−1)+L−2ν(1−U2)

2σ2(ν +1)(U−2ν −L−2ν)
.

(III): Using [4, Formula 3.0.5(a)] and [4, Formula 3.0.5(a)], we have

E
{

e−αH(L,U)
}

= E
{

e−αH(L,U) ;RH(L,U)=L

}
+E

{
e−αH(L,U) ;RH(L,U)=U

}
≡ C1 +C2 ≡ g3(α) ,
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where

C1(α) ≡ Lν U
√

ν2+2α/σ2−U−
√

ν2+2α/σ2

(U/L)
√

ν2+2α/σ2− (L/U)
√

ν2+2α/σ2
, (.1.14)

and

C2(α) ≡ Uν L−
√

ν2+2α/σ2−L
√

ν2+2α/σ2

(U/L)
√

ν2+2α/σ2− (L/U)
√

ν2+2α/σ2
. (.1.15)

Then we have that

C1 ≡
d

dα

∣∣∣∣
α=0

C1(α)

=
Lν

|ν |σ2
2lnU(L−|ν |−L|ν |)+ lnL[(U/L)|ν |+(U/L)−|ν |](U |ν |−U−|ν |)

[(U/L)|ν |− (U/L)−|ν |]2
, (.1.16)

C2 ≡
d

dα

∣∣∣∣
α=0

C2(α)

=
Uν

|ν |σ2
2lnL(U−|ν |−U |ν |)− lnU [(U/L)|ν |+(U/L)−|ν |](L−|ν |−L|ν |)

[(U/L)|ν |− (U/L)−|ν |]2
. (.1.17)

In particular, when ν < 0,

C1 =
Lν

−νσ2
2lnU(Lν −L−ν)+ lnL[(U/L)−ν +(U/L)ν ](U−ν −Uν)

[(U/L)−ν − (U/L)ν ]2
, (.1.18)

C2 =
Uν

−νσ2
2lnL(Uν −U−ν)− lnU [(U/L)−ν +(U/L)ν ](Lν −L−ν)

[(U/L)−ν − (U/L)ν ]2
. (.1.19)

Multiplying the numerator and denominator by (UL)−2ν

U−2ν−L−2ν , we have the following simplified ex-

pression known in the literature [6, Equation (56)]

−C1−C2 =
(lnL)U−2ν − (lnU)L−2ν + lnU− lnL

νσ2(U−2ν −L−2ν)
. (.1.20)
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The third term (III) in (2.4.1) is given by the following explicit formula:

(III) = E[H(L,U)] =−C1−C2 , (.1.21)

where C1 and C2 are given by (.1.18) and (.1.19) respectively.

In summary, the first term in the Cost of Deviation of (2.3.2) becomes

c1E

[ˆ H(L,U)

0
(Rt−1)2dt

]
= c1E

ˆ H(L,U)

0
R2

t dt−2c1E
ˆ H(L,U)

0
Rtdt + c1EH(L,U) ,

where the above first, second and third expectations are given by (.1.13), (.1.9) and (.1.21), respec-

tively.

(IV): We first use [4, Formula 3.19.7(a), (b)] with α = 0, to obtain

Eexp

(
−γ

ˆ H(L,U)

0

1
Rt

dt

)

= E

{
exp

(
−γ

ˆ H(L,U)

0

1
Rt

dt

)
,RH(L,U)=L

}
+E

{
exp

(
−γ

ˆ H(L,U)

0

1
Rt

dt

)
,RH(L,U)=U

}

= L|ν |+ν
S2|ν |(

2
√

2γ

σ
√

U
, 2
√

2γ

σ
)

S2|ν |(
2
√

2γ

σ
√

U
, 2
√

2γ

σ
√

L
)
+U |ν |+ν

S2|ν |(
2
√

2γ

σ
, 2
√

2γ

σ
√

L
)

S2|ν |(
2
√

2γ

σ
√

U
, 2
√

2γ

σ
√

L
)
≡ LνD1(γ)+UνD2(γ)≡ g4(γ) ,

where

D1(γ) ≡
I2|ν |(

2
√

2γ

σ
√

U
)I−2|ν |(

2
√

2γ

σ
)− I−2|ν |(

2
√

2γ

σ
√

U
)I2|ν |(

2
√

2γ

σ
)

I2|ν |(
2
√

2γ

σ
√

U
)I−2|ν |(

2
√

2γ

σ
√

L
)− I−2|ν |(

2
√

2γ

σ
√

U
)I2|ν |(

2
√

2γ

σ
√

L
)
=

D11(γ)

D12(γ)
,

D2(γ) ≡
I2|ν |(

2
√

2γ

σ
)I−2|ν |(

2
√

2γ

σ
√

L
)− I−2|ν |(

2
√

2γ

σ
)I2|ν |(

2
√

2γ

σ
√

L
)

I2|ν |(
2
√

2γ

σ
√

U
)I−2|ν |(

2
√

2γ

σ
√

L
)− I−2|ν |(

2
√

2γ

σ
√

U
)I2|ν |(

2
√

2γ

σ
√

L
)
=

D21(γ)

D22(γ)
.

We also need to compute the derivative of g4(γ) to find (IV) = E

[ˆ H(L,U)

0

1
Rt

dt

]
. The compu-

tation involves in computing the derivative of the modified Bessel function Iν as we performed
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earlier. We just list some computation results and omit the details:

D11(γ) = U−|ν |
(

1
Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γ

σ2UΓ(2|ν |+2)Γ(−2|ν |+1)

+
2γ

σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
−U |ν |

(
1

Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γ

σ2Γ(2|ν |+2)Γ(−2|ν |+1)
+

2γ

σ2UΓ(−2|ν |+2)Γ(2|ν |+1)

)
+o(γ2) ;

D22(γ) = U−|ν |L|ν |
(

1
Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γ

σ2UΓ(2|ν |+2)Γ(−2|ν |+1)

+
2γ

σ2LΓ(−2|ν |+2)Γ(2|ν |+1)

)
−U |ν |L−|ν |

(
1

Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γ

σ2LΓ(2|ν |+2)Γ(−2|ν |+1)
+

2γ

σ2UΓ(−2|ν |+2)Γ(2|ν |+1)

)
+o(γ2) ;

and

D21(γ) = L|ν |
(

1
Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γ

σ2Γ(2|ν |+2)Γ(−2|ν |+1)

+
2γ

σ2LΓ(−2|ν |+2)Γ(2|ν |+1)

)
−L−|ν |

(
1

Γ(2|ν |+1)Γ(−2|ν |+1)

+
2γ

σ2LΓ(2|ν |+2)Γ(−2|ν |+1)
+

2γ

σ2Γ(−2|ν |+2)Γ(2|ν |+1)

)
+o(γ2) .

Thus,

D1 ≡
d
dγ

∣∣∣∣
γ=0

D1(γ)

=

{
2

σ2(−2|ν |+1)
(U−2|ν |L|ν |−L−|ν |−L|ν |U−1−U−2|ν |L|ν |−1 +L|ν |−1 +L−|ν |U−1)

+
2

σ2(2|ν |+1)
(U2|ν |L−|ν |−L|ν |−L−|ν |U−1 +L−|ν |−1 +L|ν |U−1−U2|ν |L−|ν |−1)

}
/[(U/L)|ν |− (L/U)|ν |]2 ; (.1.22)
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D2 ≡
d
dγ

∣∣∣∣
γ=0

D2(γ)

=

{
2

σ2(−2|ν |+1)
(L−2|ν |U |ν |−U−|ν |−U |ν |L−1 +U−|ν |L−1 +U |ν |−1−U |ν |−1L−2|ν |)

+
2

σ2(2|ν |+1)
(L2|ν |U−|ν |−U−|ν |L−1−U |ν |−L2|ν |U−|ν |−1 +U−|ν |−1 +U |ν |L−1)

}
/[(U/L)|ν |− (L/U)|ν |]2 . (.1.23)

Summarizing the above, we obtain: The fourth term (IV) in (2.4.1) is given explicitly by the

following expression:

(IV) = E

[ˆ H(L,U)

0

1
Rt

dt

]
= −LνD1−UνD2 , (.1.24)

where D1 and D2 are defined by (.1.22) and (.1.23), respectively. Then, further simplification

shows

(IV) =
2(L−1−U−1 +U−2ν(1−L−1)+L−2ν(U−1−1))

σ2(1−2ν)(U−2ν −L−2ν)
.

(V): Lastly, in order to complete the computation of Z(L,U) it remains to compute the fifth term

(V) in (2.4.1). At first glance, there is no relevant formula in [4] to compute E
[´ H(L,U)

0
1

R2
t
dt
]
. This

seems presenting a challenge for the explicit computation of Z(a,b). However, we can overcome

this difficulty by using the following facts:

(i) Letting R̃t ≡ 1
Rt

= exp(−σ2ν −σWt), R̃ is also a GBM with parameter ν replaced by −ν

(note that there is no need to replace σ by −σ since −W is also a Brownian motion);

(ii) The first exit time H(L,U) is the same as the exit time of R̃t from (1/U,1/L).

Thus, we conclude

E

[ˆ H(L,U)

0

1
R2

t
dt

]
= E

[ˆ H( 1
U , 1

L )

0
R̃2

t dt

]

and we only need to replace the associated terms in the expression of E
[´ H(L,U)

0 R2
t dt
]

with ν

replaced by −ν , L by 1
L , and U by 1

U . In this way, we can obtain the following result.

99



The fifth term (V) in (2.4.1) is given explicitly by the following:

(V) = E

[ˆ H(L,U)

0

1
R2

t
dt

]
=−LνE1−UνE2 , (.1.25)

where

E1 ≡
{

1
2σ2(−|ν |+1)

(L−2|ν |U |ν |−U |ν |L−2−U−|ν |−L−2|ν |U |ν |−2 +U−|ν |L−2 +U |ν |−2)

+
1

2σ2(|ν |+1)
(L2|ν |U−|ν |−U |ν |−U−|ν |L−2 +U−2−|ν |+U |ν |L−2−L2|ν |U−|ν |−2)

}
/[(U/L)|ν |− (U/L)−|ν |]2

and

E2 ≡
{

1
2σ2(−|ν |+1)

(U−2|ν |L|ν |−L−|ν |−L|ν |U−2 +L|ν |−2 +L−|ν |L−2−U−2|ν |L|ν |−2)

+
1

2σ2(|ν |+1)
(L−|ν |U2|ν |−L−|ν |U−2−L|ν |−L−2−|ν |U2|ν |+L−2−|ν |+L|ν |U−2)

}
/[(U/L)|ν |− (U/L)−|ν |]2 .

After simplification, we obtain

(V) =
U−2−L−2 +U−2ν(L−2−1)+L−2ν(1−U−2)

2σ2(1−ν)(U−2ν −L−2ν)
.

Finally, for the cost of adjustment term KL(L)
E(H(L,U);RH=L)+

KU (U)
E(H(L,U);RH=U) , it can be expressed by

−KL(L)
C1
− KU (U)

C2
from the equations (.1.18) and (.1.19).

100


	Generalized moment estimators for -stable Ornstein–Uhlenbeck motions from discrete observations
	Preliminary
	Introduction
	Limiting distributions of -stable Ornstein-Uhlenbeck motions
	Moment estimation of all parameters
	Methodology of parameter estimation
	Estimator for 
	Estimator for  given 
	Estimator for  given  and 
	Estimator for  given , , and 

	Joint asymptotic behavior of all the obtained estimators
	Optimal selection of the four grid points {u1, u2, u3, u4}
	Computation of the covariance matrix 10

	Simulation

	The Expected Hitting Time Approach to Optimal Price Adjustment Problems
	Preliminary
	Introduction
	Model
	Optimization Problem

	Analysis
	Application to Energy Pricing Adjustment
	Setup
	Behavior of the Cost Function
	Sensitivity Analysis of the Optimal Solution
	Effect of Adjustment Costs
	Effect of Volatility

	Policy Implications

	Conclusion

	Parameter estimation by implicit sampling
	Introduction
	Bayesian Framework
	Markov Chain Monte Carlo
	Implicit Sampling
	Solving the implicit equation
	Optimization

	Application to subsruface flow problem
	The log-normal prior, discretization, and dimensional reduction
	Optimization
	BFGS method
	Newton–Krylov-Schwarz method

	Test case
	Results


	Appendix for: The Expected Hitting Time Approach to Optimal Price Adjustment Problems


