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Abstract

In this dissertation, we study some problems related to the convergence in distribution of func-

tionals of Gaussian processes. The approach used to address the problems presented in this thesis

is based on Malliavin calculus techniques.

In Chapter 1, we prove the convergence in distribution of sequences of Itô and Skorohod in-

tegrals with integrands having singular asymptotic behavior. These sequences include stochastic

convolutions and generalize the example
√

n
´ 1

0 tnBtdBt first studied by Peccati and Yor in 2004.

In Chapter 2, we prove a functional central limit theorem for the spatial average of the mild

solution to the 2D stochastic wave equation driven by a Gaussian noise, which is temporally white

and spatially colored described by the Riesz kernel. We also establish a quantitative central limit

theorem for the marginal and the rate of convergence is described by the total-variation distance.

A fundamental ingredient in our proofs is the pointwise Lp-estimate of the Malliavin derivative,

which is of independent interest.

In Chapter 3, we prove a quantitative central limit theorem for the spatial average of the mild

solution to the 1D stochastic heat equation driven by space time white noise with an initial con-

dition given by an independent white noise. As part of this chapter, we also prove the existence,

uniqueness, stationarity and differentiability (in the Malliavin calculus sense) of the mild solution.

The projects in this thesis are joint work between the author and professors David Nualart,

Denis Bell and Guanqu Zheng. The first chapter corresponds to the research article [3] by Denis

Bell, the author and David Nualart. The second chapter consists of the manuscript [15] by the

author, Guanqu Zheng and David Nualart. Lastly, chapter three represents the most recent work

between the author and David Nualart.
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Resumen

En esta tesis, estudiamos algunos problemas relacionados con la convergencia en distribución de

funcionales de procesos Gaussianos. El enfoque utilizado para abordar los problemas presentados

en esta tesis se basa en técnicas de cálculo de Malliavin.

En el Capítulo 1, probamos la convergencia en distribución de sucesiones de integrales de Itô

y Skorohod donde los integrandos tienen un comportamiento asintótico singular. Estas sucesiones

incluyen convoluciones estocásticas y generalizan el ejemplo
√

n
´ 1

0 tnBtdBt primeramente estudi-

ado por Peccati y Yor en el año 2004.

En el Capítulo 2, demostramos un teorema límite central funcional para el promedio en es-

pacio de la solución de la ecuación de onda estocástica en dimensión dos dirigida por un ruido

Gaussiano que es blanco en tiempo y espacialmente coloreado descrito por el núcleo de Riesz. En

este capítulo, también establecemos un teorema límite central cuantitativo donde la convergencia

es cuantificada empleando la distancia de variación total. Un ingrediente fundamental en nuestras

demostraciones es la estimación puntual de la norma Lp de la derivada de Malliavin, la cual tiene

un interés independiente.

En el capítulo 3, probamos un teorema límite central cuantitativo para el promedio en espacio

de la solución de la ecuación de calor estocástica en dimensión dirigida por un ruido Gaussiano que

es blanco en espacio y tiempo, y donde la condición inicial es dada por un ruido blanco indepen-

diente. Como parte de este capítulo, demostramos también la existencia, unicidad, estacionaridad

y diferenciabilidad (en el sentido de cálculo de Malliavin) de la solución.

Los proyectos de esta tesis son un trabajo conjunto entre el autor y los profesores David Nualart,

Denis Bell y Guanqu Zheng. El primer capítulo corresponde al artículo [3] de Denis Bell, el autor

y David Nualart. El segundo capítulo consta del manuscrito [15] del autor, Guanqu Zheng y David

Nualart. Por último, el capítulo tres contiene el trabajo más reciente entre el autor y David Nualart.
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Introduction

The Malliavin calculus is an infinite-dimensional differential calculus whose operators act on func-

tionals of an underlying Gaussian process. It was first introduced by Paul Malliavin in the 1970s

to provide a probabilistic proof of Hörmander’s hypoellipticity theorem. The theory was further

developed to incorporate other significant applications including stochastic calculus for fractional

Brownian motion, anticipative stochastic calculus, stochastic partial differential equations, limit

theorems for functionals of Gaussian processes, and mathematical finance.

The problems studied in this dissertation correspond to particular cases of limit theorems for

functionals of a fractional Brownian motion (fBm for short) and limit theorems for random fields

arising from stochastic partial differential equations (SPDEs for short). The former is presented in

Chapter 1, whereas the latter is developed on Chapter 2 and Chapter 3. In all three chapters, the

problems are address by using an approach based on Malliavin calculus.

In this introduction, we give some motivation and a literature overview for the chapters devel-

oped in this thesis. This introduction also serves to briefly describe our projects and present the

main contributions of our work.

Our discussion about Chapter 1 begins with the study of the convergence in distribution of the

sequence of Skorohod integrals given by

Fn =

ˆ 1

0
nHtnBH

t δBH
t ,

where BH
t is a fBm with Hurst parameter H in the range (1/4,1). For this sequence, it is known

that Fn converges in law to a random variable of the form
√

HΓ(2H)BH
1 Z, where Z is a standard

normal random variable, which is independent of the fBm BH
t , and Γ is the Gamma function. We

proceed to recall some previous work where this convergence result has been proved.
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The paper [40] by Peccati and Yor was the first to prove this result in the particular case when

H = 1/2. In this case, fBm coincides with the classical Brownian motion and the Skorohod inte-

grals are, in fact, Itô integrals. This case was also considered by Peccati and Taqqu in [39] and by

Nourdin and Nualart in [25].

The case H ∈ [1/2,1) was covered by Nourdin, Nualart & Peccati in [29] by means of a general

theorem from Malliavin calculus. Their arguments provided quantitative bounds for the rate of

convergence of the sequence Fn in terms of the Wasserstein and Kolmogorov distances. Lastly,

Pratelli & Rigo studied the case H ∈ (1/4,1) in [42], and improved the rates of convergence

previously obtained by Nourdin, Nualart & Peccati in [29].

In this context, our motivation in Chapter 1 was to develop a new approach to prove conver-

gence in distribution of the aforementioned sequence Fn. Roughly speaking, our approach can be

described in two steps. First, we introduce a new sequence of random variables, say Gn, and show

that the new sequence is suitably close to Fn. Second, we deduce the convergence in distribution

of Fn by using Gn instead.

As we implemented this methodology, we realized that only specific properties of the function

nHtn and the process BH
t were necessary for our arguments to work. This motivated us to consider

a more general problem and study the convergence in distribution of a sequence of Skorohod

integrals given by ˆ 1

0
φn(t)ut δBH

t ,

where the function φn(t) and the process ut satisfy some suitable conditions. Essentially, this is

how Chapter 1 was born.

To end our discussion about the first chapter, we proceed to record our main contributions there.

These are:

(1) We provide a new approach to study the limit in distribution of the sequence of Skorohod

integrals given by Fn =

ˆ 1

0
nHtnBH

t δBH
t , where BH

t is a fBm with Hurst parameter H in

the range (1/4,1). More precisely, we prove Theorems 1.2.1, Theorem 1.3.1, and Theorem

2



1.3.3, which can be applied to the sequence Fn as a particular case.

(2) We apply our methodology to prove Theorem 1.2.5 regarding the limit in distribution of

the stochastic convolution (u ∗B ψn)(t) :=
ˆ

∞

0

√
nψ(n(t− s))us dBs, where B is a standard

Brownian motion, us is a suitable process and nψ2(nt) is an approximation of the identity.

We also establish Proposition 1.2.2 concerning the convergence of the finite-dimensional

distribution of the stochastic convolution.

(3) We obtain Theorem 1.4.1 and Theorem 1.4.3 about the convergence in total variation of the

sequences of Itô integrals studied throughout Chapter 1.

The discussion for Chapter 2 and Chapter 3 is independent of Chapter 1. Generally speaking,

in these chapters, we consider specific stochastic partial differential equations and study central

limit theorems for the spatial average of the solution. The methodology involved in these chapters

is based on what is nowadays known as the Malliavin-Stein approach.

The Malliavin-Stein approach was introduced by Nourdin and Peccati in [26] by combining

arguments from Malliavin calculus with Stein’s method to, among other things, quantify Nualart

and Peccati’s fourth moment theorem in [33]. Roughly speaking, this approach provides bounds

for the distance between the law of the standard Gaussian distribution and the law of a random

variable given by a divergence also known as Skorohod integral (see e.g. Proposition 2.0.8).

Before entering into the specifics for Chapter 2 and Chapter 3, let us provide a brief overview

of some previous work that motivated our results. In this sense, we must talk about the articles

[12], [16], and [17].

The paper [16] by Huang, Nualart, and Viitasaari, is the first of many to study central limit

theorems for spatial averages of solutions to stochastic partial differential equations. In this paper,

the authors consider the stochastic heat equation with one spatial dimension driven by space-time

white noise. An innovative aspect of their methodology is to take into account that the Itô–Walsh

integral appearing in the solution of the SPDE corresponds to a particular case of the Skorohod

integral. In this way, the authors implemented the Malliavin-Stein approach to obtain a quantitative

3



central limit theorem, and also a functional central limit theorem for the spatial average of the

solution. A fundamental ingredient in their arguments is a Lp estimate for the Malliavin derivative

of the solution.

Soon after [16] was completed, the same authors and Zheng investigated the same equation

in higher dimension; in their paper [17], the spatial correlation is described by the Riesz kernel.

They were able to obtain similar results to those in [16] by implementing the same methodology.

Finally, in the article [12], Delgado, Nualart, and Zheng considered the stochastic wave equation

where spatial dimension is one and the driving Gaussian noise is white in time and fractional in

space. They also were successful in obtaining similar results to those in [16] by using the same

approach.

The aforementioned articles motivated many results concerning the study of limit theorems for

spatial averages of solutions to SPDE’s. In this context, some important results are [1], [21], [36],

[38], and, of course, Chapter 2 and Chapter 3 in this dissertation.

In Chapter 2, we consider a 2D stochastic wave equation driven by a Gaussian noise, which is

temporally white and spatially colored described by the Riesz kernel. Our main contributions in

this chapter are:

(1) We prove Theorem 2.0.4, which gives a functional central limit theorem for the spatial aver-

age of the solution, as well as a quantitative central limit theorem for the marginal where the

rate of convergence is described by the total-variation distance.

(2) We obtain Theorem 2.0.6, which provides a pointwise Lp-estimate for the Malliavin deriva-

tive of the solution.

We end our discussion about Chapter 2 by mentioning that, although, a similar problem was stud-

ied in [12], our analysis in Chapter 2 is significantly different from [12]. This happens because

a few helpful properties of the fundamental wave solution in dimension one do not hold in the

corresponding two-dimensional setting. For example, the fundamental wave solution in dimension

one is bounded, whereas, the fundamental wave solution in dimension two has a singularity. These
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differences made our problem more difficult than in [12].

Finally, in Chapter 3, we consider the 1D stochastic heat equation driven by space-time white

noise, with an initial condition given by an independent white noise. In this setting, our study of a

central limit theorem for the solution began with proving results about the existence, uniqueness,

stationarity, and differentiability (in the sense of Malliavin calculus) of the mild solution. Addi-

tionally, since there are two noises appearing in our setting, we needed to incorporate Malliavin

derivatives and divergences for both noises, and we also needed to implement the Malliavin-Stein

methodology for the case of the sum of two divergences. This last point is the main difference

between Chapter 3 and [16]. Our contributions in this chapter are the following:

(1) We prove Theorem 3.2.1 and Theorem 3.2.2 concerning the existence, uniqueness, and sta-

tionarity of the solution to our SPDE.

(2) We establish Theorem 3.3.1, Theorem 3.3.2, Theorem 3.3.6 and Theorem 3.3.7 about the

differentiability (in the sense of Malliavin calculus) of the mild solution, and estimates for

the norm of the Malliavin derivative of the mild solution in terms of the fundamental heat

solution.

(3) We prove Theorem 3.4.1 regarding a quantitative central limit theorem for the spatial average

of the solution to our SPDE.

We conclude our introduction by bringing to the attention of the reader the website

https://sites.google.com/site/malliavinstein/home,

maintained by Ivan Nourdin. In this online address, the interested reader can find many research

articles related to the Malliavin-Stein approach.
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Chapter 1

Limit theorems for singular Skorohod integrals

In this chapter, we study the limit in distribution of sequences of random variables defined by

Skorohod integrals

Fn =

ˆ 1

0
φn(t)utδBH

t , (1.1)

where BH is fractional Brownian motion (fBm for short) with Hurst parameter H lying in the

range (1/4,1), ut is a process continuous in L2(Ω), and φn is a sequence of deterministic kernels

converging to a delta function based at 1 (hence the “singular" in the title of the chapter). We show,

under suitable conditions on φn and u, that the couple (BH ,Fn) has a limit distribution of the form

(BH ,cu1Z), where Z is a N(0,1) random variable, independent of BH and c is a scaling parameter.

The study of limit problems of this type was motivated by the particular case

F̃n =

ˆ 1

0
nHtnBH

t δBH
t . (1.2)

For this case, the limit in distribution F̃n corresponds to a random variable of the form
√

HΓ(2H)BH
1 Z,

where Z is a standard normal random variable, which is independent of the fBm BH
t , and Γ is the

Gamma function. We proceed to briefly refer to some work related to the sequence F̃n.

The case H = 1
2 , was introduced in Proposition 2.1 of [40]. In this case, BH

t is standard Brow-

nian motion and the integrals are of classical Itô type. The case of a fBm with H ∈ [1/2,1), was

studied in Proposition 18 of [39], and Example 4.2 in [25]. Quantitative bounds for the rate of

convergence for integrals of the form (1.2) with H ≥ 1
2 have been established by Nourdin, Nualart

& Peccati [29] by using estimates derived from Malliavin calculus and, more recently, by Pratelli

6



& Rigo in [42] for H ∈ (1/4,1), by means of a more elementary argument.

In this chapter, we provide a new approach to study the limit distribution of (1.2). The idea is

as follows. Instead of studying the convergence in distribution of Fn directly, we introduce a new

sequence Gn,δ (or Gn), and show this new sequence is suitably close to Fn in distribution. Then,

the desired convergence in law can be obtained using Gn,δ (or Gn) instead. Our main results to

implement this methodology are Lemma 1.1.3 and Lemma 1.1.4.

This approach was based on the following observation. In the Brownian motion case H = 1/2,

the singular asymptotic behavior of the kernels φn in (1.1) at the endpoint t = 1 implies that the limit

distribution of the integrals Fn is determined by integration over arbitrarily small time intervals

[1−δ ,1]. This allows for a reduction of the problem whereby the integrals Fn are replaced by the

more tractable random variables

Gn,δ = u1−δ

ˆ 1

1−δ

φn(t)dBt = u1−δ In,δ , (1.3)

where δ ∈ (0,1), and the integral is an Itô integral with respect to the Brownian motion B. The Itô

integrals In,δ in (1.3) have convergent variance and are asymptotically uncorrelated with B. Since

In,δ and B are Gaussian, the desired result follows by first taking the limit of Gn,δ as n→ ∞ and

then letting δ tend to 0.

The remaining of this chapter is organized as follows. In Section 1.1, we introduce some

preliminary definitions and results which are used throughout the chapter. In particular, we recall

some basic facts of fractional Brownian motion and Malliavin calculus, and we explain how the

Skorohod integrals appearing in (1.1) are defined.

In Section 1.2.1, we implement the aforementioned methodology for the case H = 1/2 (clas-

sical Brownian motion) when the process ut is jointly measurable and adapted. The basic result

in this section is Theorem 1.2.1. As a special case of this theorem, we derive the limit law of the

aforementioned sequence
√

n
ˆ 1

0
tnBtdBt .

7



Theorem 1.2.1 is extended in Theorems 1.2.3 and 1.2.4 to double, and multiple, integrals respec-

tively.

In Section 1.2.2, we apply our methodology to address a similar problem for the stochastic

convolution
´

∞

0
√

nψ(n(t − s))us dBs, where B is a standard Brownian motion, us is a suitable

process and nψ2(nt) is an approximation of the identity. Our main results in this section are

Theorem 1.2.5 and Proposition 1.2.7.

In Section 1.3, we study the case of fractional Brownian motion (H 6= 1/2). Here it turns out

to be more convenient to work with the approximating sequence

Gn =

ˆ 1

0
φn(t)u1δBH

t .

As is usual in this subject, the cases H ∈ (1/2,1) and H ∈ (1/4,1/2) seem to require slightly

different hypotheses and analyses, with the latter proving more involved. Analogues of Theorem

1.2.1 are presented in Theorems 1.3.1 and 1.3.3 for these two cases. The proof involves the use

of the divergence operator on Wiener space and, in this sense, has a flavor of Malliavin calculus.

As a special case of these theorems, we obtain a different proof for the convergence in law of the

sequence nH ´ 1
0 tnBH

t dBH
t , for H in the range (1/4,1), studied in [42].

In section 1.4, we revisit the sequence of Itô integrals introduced in Section 1.2 and study its

convergence in total variation by means of Theorem 3.1 in [28] and Theorem 1 in [41].

1.1 Preliminaries

1.1.1 Fractional Brownian motion and Malliavin calculus

Fractional Brownian motion (fBm for short) with Hurst parameter H ∈ (1/4,1), BH = {BH
t , t ∈

[0,1]} is a zero mean Gaussian process with a covariance function given by

RH(t,s) := E[BtBs] =
1
2
(
t2H + s2H−|t− s|2H) , (1.4)

8



where s, t ∈ [0,1]. In particular, when H = 1/2, the covariance function (1.4) reduces to s∧ t and

fBm corresponds to a classical Brownian motion.

The covariance function (1.4) induces a Hilbert Space H which is defined as the closure of the

space of step functions E on [0,1] endowed with the scalar product

〈1[0,t],1[0,s]〉H = RH(t,s).

Then the mapping BH : 1[0,t]→ BH
t can be extended to a linear isometry between H and the Gaus-

sian space H1 spanned by BH .

The Hilbert space H plays a fundamental role in this chapter. Consequently, let us record a few

results regarding H and the inner product 〈·, ·〉H.

When H = 1
2 , BH is just a standard Brownian motion and H= L2([0,1]). In particular,

〈 f ,g〉H =

ˆ 1

0
f (t)g(t)dt,

in this case.

When H ∈
(1

2 ,1
)
, the inner product of two step functions φ ,ψ ∈ E can be expressed as

〈φ ,ψ〉H = αH

ˆ 1

0

ˆ 1

0
φ(s)ψ(t)|t− s|2H−2dsdt,

where αH = H(2H−1). The space of measurable functions φ on [0,1], such that

‖φ‖2
|H| := αH

ˆ 1

0

ˆ 1

0
|φ(s)||φ(t)||t− s|2H−2dsdt < ∞,

denoted by |H|, is a Banach space and we have the continuous embeddings L
1
H ([0,1])⊂ |H| ⊂ H.

When H ∈ (1/4,1/2), the covariance of the fractional Brownian motion BH can be expressed

as

RH(t,s) =
ˆ s∧t

0
KH(s,u)KH(t,u)du,

9



where KH(t,s) is a square integrable kernel defined as

KH(t,s) = dH

(( t
s

)H− 1
2
(t− s)H− 1

2 − (H− 1
2
)s

1
2−H
ˆ t

s
vH− 3

2 (v− s)H− 1
2 dv

)
,

for 0 < s < t, with dH being a constant depending on H. Two important properties of the kernel

KH are the following estimates

|KH(t,s)| ≤ cH

(
(t− s)H− 1

2 + sH− 1
2

)
, (1.5)

and ∣∣∣∣∂KH

∂ t
(t,s)

∣∣∣∣≤ c′H(t− s)H− 3
2 , (1.6)

for all s < t and for some constants cH ,c′H .

Define a linear operator K∗H from E to L2([0,1]) as follows

(K∗Hφ)(s) =
(

KH(1,s)φ(s)+
ˆ 1

s
(φ(t)−φ(s))

∂KH

∂ t
(t,s)dt

)
. (1.7)

The operator K∗H can be extended to a linear isometry between the Hilbert space H and L2([0,1]),

in other words, for any φ ,ψ ∈ H, the inner product in H can be written as

〈φ ,ψ〉H = 〈K∗Hφ ,K∗Hψ〉L2([0,1]). (1.8)

The space of Hölder continuous functions of order γ > 1
2 −H is included in H.

After this brief discussion about the Hilbert space H, let us introduce the elements from Malli-

avin calculus that are used throughout the chapter. We start by introducing the derivative operator

and its adjoint, the divergence.

Consider a smooth and cylindrical random variable of the form F = f (BH
t1 , . . . ,B

H
td ), where

f ∈C∞
p (Rd) ( f and its partial derivatives have at most polynomial growth). We define its Malliavin

10



derivative as the H-valued random variable DF given by

DsF =
d

∑
i=1

∂ f
∂xi

(BH
t1 , . . . ,B

H
td )1[0,ti](s).

For any real number p≥ 1, we define the Sobolev space D1,p as the closure of the space of smooth

and cylindrical random variables with respect to the norm ‖ · ‖1,p given by

‖F‖p
1,p = E(|F |p)+E

(
‖DF‖p

H

)
.

Similarly, we can define the Sobolev space of H-valued random variables D1,p(H).

The adjoint of the Malliavin derivative operator D, denoted as δ , is called the divergence op-

erator. A random element u ∈ L2(Ω;H) belongs to the domain of δ , denoted as Domδ , if there

exists a positive constant cu depending only on u such that

|E(〈DF,u〉H)| ≤ cu‖F‖L2(Ω)

for any F ∈D1,2. If u∈Domδ , then the random variable δ (u) is defined by the duality relationship

E(Fδ (u)) = E(〈DF,u〉H) ,

for any F ∈ D1,2. We make use of the notation δ (u) =
´ 1

0 utδBH
t and call δ (u) the Skorohod

integral of u with respect to the fractional Brownian motion BH . The Skorohod integral satisfies

the following isometry property for any element u ∈ D1,2(H)⊂ Domδ :

E(δ (u)2) = E(‖u‖2
H)+E(〈Du,(Du)∗〉H⊗H),

where (Du)∗ is the adjoint of Du. As a consequence, we have

E(δ (u)2)≤ E(‖u‖2
H)+E(‖Du‖2

H⊗H). (1.9)

11



Another important property used in this chapter is the following Lemma.

Lemma 1.1.1. Let F ∈ D1,2 and let g ∈ H. Then the process Fg belongs to the domain of δ and

δ (Fg) =
ˆ 1

0
FgtδBH

t = Fδ (g)+ 〈DF,g〉H.

We refer to [30] and the references therein for a more detailed account of the properties of

fractional Brownian motion and its associated Malliavin calculus (and to [2] for an introduction to

the latter subject).

1.1.2 Stable convergence and technical results

Throughout the chapter we will make use of the notion of stable convergence provided in the next

definition.

Definition 1.1.2. Fix d ≥ 1. Let Fn be a sequence of random variables with values in Rd , all

defined on the probability space (Ω,F ,P). Let F be a Rd-valued random variable defined on

some extended probability space (Ω′,F ′,P′). That means Ω ∈F ′, and the restriction of F ′ and

P′ to Ω coincide with F and P, respectively. We say that Fn converges stably to F, if

lim
n→∞

E
[
Zei〈λ ,Fn〉Rd

]
= E′

[
Zei〈λ ,F〉Rd

]
(1.10)

for every λ ∈ Rd and every bounded F -measurable random variable Z.

In our setting, we assume that the fractional Brownian motion BH is defined in a probability

space (Ω,F ,P), where F is the P-completion of the σ -field generated by BH . Then, condition

(1.10) is equivalent to saying that the couple (BH ,Fn) converges in law to (BH ,F) in the space

C([0,1])×Rd (see, for instance, [18, Chapter 4]).

The following lemmas which are a consequence of Theorem 3.1 and Theorem 3.2 in [4], are

the main tool for the proofs of the results in Sections 3 and 4.
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Lemma 1.1.3. Let {Fn} be a sequence of random elements with values in a complete separable

metric space (X ,ρ). Assume there are X-valued random elements Fn,δ , {Gn,δ}, Gδ and G such

that

1) ∀0 < δ < 1: lim
n→∞

E(ρ(Fn,Fn,δ )) = 0

2) limδ→0+ limsupn→∞E(ρ(Fn,δ ,Gn,δ )) = 0

3) For any 0 < δ < 1 we have the convergence in law Gn,δ → Gδ as n→ ∞.

4) Gδ converges in law to G as δ → 0+

Then Fn converges in law to G as n→ ∞

Lemma 1.1.4. Let Fn be a sequence of random elements with values in a separable metric space

(X ,ρ). Assume there are X-valued random elements Gn and G such that

1) lim
n→∞

E(ρ(Fn,Gn)) = 0.

2) Gn converges in law to G as n→ ∞.

Then Fn converges in law to G as n→ ∞.

We conclude this subsection with the following property of the Gamma function.

Lemma 1.1.5. For any a,b positive

lim
n→∞

Γ(n+a)nb−a

Γ(n+b)
= 1.

Proof. This is an application of the well known limit lim
z→∞

Γ(z+1)
√

z
( z

e

)z =
√

2π , or in other words, an

application of Stirling’s formula.
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1.2 Singular limits of sequences of Itô integrals

Let B = {Bt , t ≥ 0} be a standard Brownian motion. Denote by Ft the natural filtration generated

by B. In this section, we will study the asymptotic behavior of two types of sequences of Itô

integrals. First, we discuss a class of integrals on [0,1] that include a sequence of deterministic

kernels φn converging to a delta function based at 1. Secondly, we apply our argument to stochastic

convolutions with similar asymptotic behavior.

1.2.1 Stochastic integrals concentrating at t = 1

Consider a sequence of bounded, nonnegative Borel measurable functions φn(t) on [0,1], that

satisfies the following condition:

(h1) :
ˆ 1

0
φ

2
n (t)dt→ L > 0 and

ˆ 1−δ

0
φ

2
n (t)dt→ 0 for all δ ∈ (0,1).

The aim of this section is to study the asymptotic behavior of the sequence of Itô integrals

Fn :=
ˆ 1

0
φn(t)ut dBt , n≥ 1, (1.11)

where u = {ut , t ∈ [0,1]} is an appropriate adapted and jointly measurable process.

Theorem 1.2.1. Suppose the process u is continuous in L2(Ω) at t = 1. Assume (h1) holds and

one of the following conditions is satisfied

(i) sups∈[0,1]E(u2
s )< ∞.

(ii)
ˆ 1

0
E(u2

t )dt < ∞ and

(h2): for all δ ∈ (0,1) sup
t∈[0,1−δ ]

φn(t)→ 0 as n→ ∞.

Then, the sequence Fn introduced in (1.11) converges stably, as n→ ∞ to
√

Lu1 Z, where Z is a

N(0,1) random variable independent of the process B.
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Proof. Our goal is to apply Lemma 1.1.3 with the complete, separable metric space (X ,ρ) where

X := C([0,1])×R and ρ((x,y),(x′,y′)) = ‖x− x′‖∞ + |y− y′|. For the sake of simplicity, we will

only prove part (i), the proof of part (ii) being similar.

We divide the proof in 4 steps.

Step 1.

Take F̄n =
(

B,
´ 1

0 φn(t)utdBt

)
and for each δ ∈ (0,1) set Fn,δ =

(
B,
´ 1

1−δ
φn(t)utdBt

)
. Then

E(ρ(F̄n,Fn,δ )) = E

(∣∣∣∣∣
ˆ 1−δ

0
φn(t)utdBt

∣∣∣∣∣
)

which converges to 0 as n→ ∞ by (i) and hypothesis (h1), because

E

(ˆ 1−δ

0
φn(t)utdBt

)2
≤ sup

s∈[0,1]
E(u2

s )

ˆ 1−δ

0
φ

2
n (t)dt→ 0.

Step 2.

Take Gn,δ =
(

B,
´ 1

1−δ
φn(t)u1−δ dBt

)
. Note that

E(ρ(Fn,δ ,Gn,δ )) = E
(∣∣∣∣ˆ 1

1−δ

φn(t)(ut−u1−δ )dBt

∣∣∣∣) .

Therefore,

E

[(ˆ 1

1−δ

φn(t)(ut−u1−δ )dBt

)2]
=

ˆ 1

1−δ

E
[
(ut−u1−δ )

2]
φ

2
n (t)dt

≤ sup
t∈[1−δ ,1]

E
[
(ut−u1−δ )

2]ˆ 1

0
φ

2
n (t)dt,

which implies lim
δ↓0+

limsup
n→∞

E(ρ(Fn,δ ,Gn,δ )) = 0, due to (h1) and the L2(Ω)-continuity of ut at 1.

Step 3.
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Note that Gn,δ =
(

B,
´ 1

1−δ
φn(t)u1−δ dBt

)
can be written as

Gn,δ =

(
B, u1−δ

ˆ 1

1−δ

φn(t)dBt

)
:= (B,u1−δ Zn,δ ).

We want to show that for each δ ∈ (0,1), (B,Zn,δ ) converges in law to (B,
√

LZ) as n→∞ with

Z independent of B. In view of the fact that B is a Gaussian process, this will follow from the next

two properties:

i) For any δ ∈ (0,1), E(Z2
n,δ )→ L as n→ ∞ due to (h1).

ii) For any δ ∈ (0,1), and any t0 ∈ (0,1), lim
n→∞

E(Zn,δ Bt0) = 0. In fact, for t0 ∈ (0,1) we have,

in view of (h1), that

E(Zn,δ Bt0) =

ˆ t0

1−δ

φn(t)dt ≤
√

t0

(ˆ t0

0
φ

2
n (t)dt

)1/2

→ 0, as n→ ∞.

In particular Z is independent of Bt0 for every 0≤ t0 < 1 and consequently independent also

from B1.

As a corollary, for each δ ∈ (0,1), Gn,δ converges in law to (B,
√

Lu1−δ Z) as n → ∞ with Z

independent of B.

Step 4.

Set Gδ = (B,
√

Lu1−δ Z). It is clear that Gδ converges in law to
(
B,
√

Lu1Z
)

as δ → 0. It

follows from Steps 1 to 3 and Lemma 1.1.3 that (B,
´ 1

0 φn(t)utdBt) converges in law in the space

C([0,1]×R) to (B,
√

Lu1Z). This completes the proof.

An example of a sequence of functions satisfying condition (h1) with L = 1
2 is

φn(t) =
√

ntn.
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Indeed, a direct calculation for condition (h1) gives

n
ˆ 1

0
t2ndt =

n
2n+1

→ 1
2

as n→ ∞,

and

n
ˆ 1−δ

0
t2ndt =

n(1−δ )2n

2n+1
→ 0 as n→ ∞ for all δ ∈ (0,1).

Thus we have proved the following.

Proposition 1.2.2. The sequence of Itô integrals

√
n
ˆ 1

0
tnBtdBt

converges stably, as n→ ∞, to 1√
2
B1Z, where Z is a N(0,1) random variable independent of the

process B.

Remark

(i) We note that Proposition 1.2.2 was obtained by Nourdin, Nualart & Peccati in [4, Proposition

3.7] as a corollary of a theorem proved by Malliavin calculus.

(ii) Theorem 1.2.1 can be extended to processes u continuous in probability at 1 that satisfy

sups∈[0,1] |us|< ∞, a.s or
´ 1

0 u2
s ds < ∞ a.s and (h2). Under these assumptions, the Itô integral

of u is defined using the convergence in probability and the convergence in law is proved

using the truncated sequence (ut ∧M)∨ (−M), where M > 0 is an integer.

The next result is an extension of Theorem 1.2.1 to the case of double stochastic Itô integrals,

which is proved by similar arguments.

Theorem 1.2.3. Let u = {us,t ,0 ≤ s ≤ t ≤ 1} be a two-parameter process continuous at (1,1) in

the L2(Ω) sense. Assume that us,t is Fs-measurable for s≤ t, (h1) holds and one of the following

conditions is satisfied
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(i) sup(s,t)∈[0,1]2 E(u2
s,t)< ∞.

(ii)
´ 1

0

´ t
0 E(u

2
t,s)dsdt < ∞ and

(h3): for all δ ∈ (0,1),
(
sup0≤t≤1−δ φn(t)

)(
sup0≤t≤1 φn(t)

)
→ 0 as n→ ∞.

Consider the sequence of iterated Itô integrals

Fn :=
ˆ 1

0

ˆ t

0
φn(s)φn(t)us,tdBs dBt , n≥ 1,

Then Fn converges stably, as n→ ∞ to 1
2Lu1,1H2(Z), where Z ∼ N(0,1) is independent of the

process B, and H2(x) = x2−1 is the second Hermite polynomial.

Proof. We proceed as in the proof of Theorem 1.2.1. We will only prove part (ii), the proof of part

(i) being similar.

Step 1:

Take F̄n = (B,
´ 1

0

´ t
0 φn(s)φn(t)us,tdBs dBt) and for δ ∈ (0,1) set

Fn,δ = (B,
ˆ 1

1−δ

ˆ t

1−δ

φn(s)φn(t)us,tdBs dBt).

Then

E(ρ(F̄n,Fn,δ )) = E

(∣∣∣∣∣
ˆ 1

0

ˆ t∧(1−δ )

0
φn(t)φn(s)us,tdBsdBt

∣∣∣∣∣
)

converges to 0 as n→ ∞ because by condition (ii)

E

(ˆ 1

0

ˆ t∧(1−δ )

0
φn(t)φn(s)us,tdBsdBt

)2
=

ˆ 1

0

ˆ t∧(1−δ )

0
φ

2
n (t)φ

2
n (s)E(u2

s,t)dsdt

≤

(
sup

0≤t≤1−δ

φn(t)

)2(
sup

0≤t≤1
φn(t)

)2

×
ˆ 1

0

ˆ t

0
E(u2

s,t)dsdt→ 0.
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Step 2.

Take Gn,δ =
(

B,
´ 1

1−δ

´ t
1−δ

φn(t)φn(s)u1−δ ,1−δ dBsdBt

)
. Then

E(ρ(Fn,δ ,Gn,δ )) = E
(∣∣∣∣ˆ 1

1−δ

ˆ t

1−δ

φn(t)φn(s)(us,t−u1−δ .1−δ )dBsdBt

∣∣∣∣) .

Therefore

E

[(ˆ 1

1−δ

ˆ t

1−δ

φn(t)φn(s)(us,t−u1−δ .1−δ )dBsdBt

)2]

=

ˆ 1

1−δ

ˆ t

1−δ

E
[
(us,t−u1−δ .1−δ )

2]
φ

2
n (t)φ

2
n (s)dsdt

≤ sup
t∈[1−δ ,1]

E
[
(us,t−u1−δ ,1−δ )

2](ˆ 1

0
φ

2
n (t)dt

)2

,

which implies lim
δ↓0+

limsup
n→∞

E(ρ(Fn,δ ,Gn,δ )) = 0, due to condition (h1) and the L2(Ω)- continuity

of us,t at (1,1).

Step 3.

The term Gn,δ can be written as

Gn,δ =

(
B,u1−δ ,1−δ

ˆ 1

1−δ

ˆ t

1−δ

φn(t)φn(s)dBs dBt

)
:= (B,u1−δ ,1−δ Rn,δ ).

Furthermore, in view of Proposition 4.1.2 in [31], Rn,δ can be expressed

Rn,δ =

ˆ 1

1−δ

ˆ t

1−δ

φn(s)φn(t)dBs dBt =
1
2
‖φn1[1−δ ,1]‖2

L2 H2


ˆ 1

1−δ

φn(t)dBt

‖φn1[1−δ ,1]‖L2([0,1])

 ,

where H2(x) = x2−1 is the second Hermite polynomial.

Set Sn,δ :=

´ 1
1−δ

φn(t)dBt

‖φn1[1−δ ,1]‖L2([0,1])
. A similar argument to the one used in Step 3 of Theorem

1.2.1 proves that (B,Sn,δ ) converges in law to (B,Z) with Z independent of B, and it follows that
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(B,Rn,δ ) converges in law to (B, 1
2LH2(Z)). As a corollary we obtain the convergence in law of

(B,u1−δ ,1−δ Rn,δ ) to (B, 1
2Lu1−δ ,1−δ H2(Z)), as n tends to ∞.

Step 4.

Set Gδ = (B, 1
2Lu1−δ ,1−δ H2(Z). It is clear that Gδ converges in law to G := (B, 1

2Lu1,1H2(Z))

as δ → 0. Then, the conclusion follows from Steps 1 to 3 and Lemma 1.1.3.

Remarks:

(i) The previous theorem applies to the particular case φn(t) =
√

ntn, as before.

(ii) One can consider the more general situation of a sequence of bounded symmetric functions

φn(s, t) on [0,1]2, satisfying the following conditions:

(h12): For all δ ∈ (0,1)

lim
n→∞

ˆ 1

1−δ

ˆ 1

1−δ

φ
2
n (s, t)dsdt = lim

n→∞

ˆ 1

0

ˆ 1

0
φ

2
n (s, t)dsdt = L > 0.

(h22): For any δ ∈ (0,1], sup0≤s≤1−δ ,0≤t≤1 |φn(s, t)| → 0 as n→ ∞.

In this case we need to compute the limit in law of I2(φn1[1−δ ,1]2), which is a more compli-

cated problem that requires additional conditions on the sequence φn. We will not treat this

problem here.

Theorem 1.2.3 can be extended to higher dimensions. The proof is similar and omitted.

Theorem 1.2.4. Let u = {ut1,...,tm ,0 ≤ t1 ≤ ·· · ≤ tm ≤ 1} be an m-parameter stochastic process,

continuous at (1, . . . ,1) ∈ Rm in the L2(Ω) sense. Assume that ut1,...,tm is Ft1-measurable, (h1)

holds and one of the following condition is satisfied:

i) supt1,..,tm E(u
2
t1,..,tm)< ∞.

ii)
ˆ 1

0

ˆ tm

0
· · ·
ˆ t2

0
E
(
u2

t1,...,tm

)
dt1dt2 · · ·dtm < ∞ and

(h3m): for any δ ∈ (0,1),
(
sup0≤t≤1−δ φn(t)

)(
sup0≤t≤1 φn(t)

)m−1→ 0 as n→ ∞.
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Consider the sequence of iterated Itô integrals

Fn :=
ˆ 1

0

ˆ tm

0
· · ·
ˆ t2

0
φn(t1) · · ·φn(tm)ut1,...,tmdBt1 · · ·dBtm−1dBtm , n≥ 1,

Then, Fn converges stably, as n→ ∞, to (m!)−1L
m
2 u1,...,1Hm(Z), where Z ∼ N(0,1) is independent

of the process B and Hm is the mth Hermite polynomial.

1.2.2 Asymptotic behavior of stochastic convolutions

As before, let B = {Bt , t ≥ 0} be a standard Brownian motion and set H = L2([0,∞)). Consider

a nonnegative, bounded, Borel measurable function ψ(x) on R, such that
´

∞

−∞
ψ2(x)dx = 1. Let

ψn(x) =
√

nψ(nx). Then ψ2
n is an approximation to the identity.

Let u = {ut , t ≥ 0} be an adapted, jointly measurable and square integrable process. Define the

stochastic convolution

(u∗B ψn)t =

ˆ
∞

0
usψn(t− s)dBs, t ≥ 0.

In this subsection, we are interested in the asymptotic behavior of (u∗B ψn)t as n tends to infinity.

The limit in law will have the form utZt , where Z is a Gaussian process independent of B.

The following theorem is the main result of this subsection.

Theorem 1.2.5. Consider a nonnegative, bounded, Borel measurable function ψ(x) on R, such

that
´

∞

−∞
ψ2(x)dx = 1. Assume u = {ut , t ≥ 0} is an adapted, jointly measurable, square integrable

process and continuous at a fixed time t > 0 in the L2(Ω) sense. Assume one of the following

conditions is satisfied:

i) lim|x|→∞ |x|ψ2(x) = 0

ii) supsE(u2
s )< ∞.

Then, the stochastic convolution (u∗B ψn)t converges stably to utZ as n→∞, where Z is a standard

Gaussian random variable independent of B.
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Proof. Our plan is to use Lemma 1.1.4. The complete, separable space (X ,ρ) will be X :=

C([0,∞))×R with ρ((x,y),(x′,y′)) = ∑
∞
n=0 2−n supt∈[n,n+1] |x(t)− x′(t)|+ |y− y′|. We divide the

proof in 2 steps.

Step 1: Fix the continuity point t > 0. Set

F̄n := (B,(u∗B ψn)t).

Let αn be a sequence decreasing to 0 so that nαn→ ∞. Set

Gn := (B,u(t−αn)+Sn) =: (B,Hn),

where Sn =

ˆ
Rn(t)

ψn(t − s)dBs with Rn(t) = {s ≥ 0 : |t − s| ≤ αn}. Note that Sn is a centered

normal random variable with variance

E(S2
n) =

ˆ
Rn(t)

ψ
2
n (t− s)ds =

ˆ
|r|≤αn,r≤t

ψ
2
n (r)dr =

ˆ
|z|≤nαn,z≤nt

ψ
2(z)dz→ 1 as n→ ∞.

Our goal is to show that

lim
n→∞

E(ρ(F̄n,Gn)) = 0 (1.12)

for which it suffices to show (u∗B ψn)t−Hn converges to 0 in L2(Ω).

Since u(t−αn)+ is F(t−αn)+ measurable we can write

Hn =

ˆ
Rn(t)

u(t−αn)+ψn(t− s)dBs

and therefore

E(H2
n ) =

ˆ
Rn(t)

E(u2
(t−αn)+

)ψ2
n (t− s)ds = E(u2

(t−αn)+
)

ˆ
|s|≤αn,s≤t

ψ
2
n (s)ds→ E(u2

t ).
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On the other hand, by Ito’s isometry property we can write

E
(
(u∗B ψn)

2
t
)
=

ˆ
∞

0
E(u2

s )ψ
2
n (t− s)ds.

That means, E
(
(u∗B ψn)

2
t
)

is the convolution of s→ E(u2
s ) with ψ2

n and in view of either condition

i) or ii) and Theorems 9.8, 9.9 in [45], we deduce

lim
n→∞

E
[
(u∗B ψn)

2
t
]
= E(u2

t ).

Finally, by Itô’s isometry and the L2-continuity of u at t

E [(u∗B ψn)tHn] =

ˆ
Rn(t)

E(usu(t−αn)+)ψ
2
n (t− s)ds

=

ˆ
Rn(t)

E(u(t−αn)+(us−u(t−αn)+))ψ
2
n (t− s)ds

+E(u2
(t−αn)+

)

ˆ
Rn(t)

ψ
2
n (t− s)ds→ E(u2

t ),

as n→ ∞. Thus (u∗B ψn)t−Hn
L2(Ω)−−−→ 0 as n→ ∞, and (1.12) holds.

Step 2: For each n, u(t−αn)+ and Sn are independent random variables such that u(t−αn)+ con-

verges to ut and Var(S2
n)→ 1. This implies that Gn converges in law to (B,utZ) with Z a standard

normal random variable independent of B, and the result follows from Lemma 1.1.4.

As in the proof of Theorem 1.2.5, if αn is a sequence decreasing to 0 so that nαn→ ∞, we can

consider for each t > 0 the sequence of random variables

St
n :=
ˆ
|t−r|≤αn,r≥0

ψn(t− r)dBr. (1.13)

The next lemma establishes the asymptotic behavior of the sequence of processes {St
n, t > 0}.

Lemma 1.2.6. The finite-dimensional distributions of the process {St
n, t > 0} introduced in (1.13)

converge stably to those of a centered Gaussian process {Zt , t > 0} independent of B and with
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covariance function given by

E(ZtZs) =


1 if s = t

0 if s 6= t.
(1.14)

Proof. Let 0 < t1 < t2 < · · ·< tk. We need to prove the convergence in law

(B,St1
n , . . . ,S

tk
n )

Law−−→ (B,Zt1, . . . ,Ztk)

in the space C(R+)×Rk. We can choose N large enough so that for n≥ N, the Gaussian random

variables Sti
n become uncorrelated and hence independent. Then as in the proof of Theorem 1.2.5,

it holds that

(St1
n , . . . ,S

tk
n )

Law−−→ (Zt1, . . . ,Ztk),

where the random vector (Zt1 , . . . ,Ztk) has a standard Gaussian distribution on Rk and is indepen-

dent of B. This completes the proof.

Notice that we cannot expect that the convergence in Lemma 1.2.6 holds in C([0,∞)). Indeed,

although under some mild conditions the stochastic convolution has a continuous version, the

process Z does not have a continuous version.

The following proposition establishes the convergence of the stochastic convolution as a pro-

cess in the sense of the finite-dimensional distributions.

Proposition 1.2.7. Under the assumptions of Theorem 1.2.5, suppose that the process u is con-

tinuous in [0,∞) in the L2(Ω)-sense. Then the finite-dimensional distributions of the process

{(u∗B ψn)t , t > 0} converge stably to those of {utZt , t > 0}, where {Zt , t > 0} is a Gaussian process

independent of B with covariance function given by (1.14).

Proof. Let 0 < t1 < t2 < · · ·< tk. We want to show that

(B,(u∗B ψn)t1,(u∗B ψn)t2), . . . ,(u∗B ψn)tk)
Law−−→ (B,ut1Zt1 ,ut2Zt2, . . . ,ut1Ztk), (1.15)
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where the random vector (Zt1 , . . . ,Ztk) has a standard Gaussian distribution on Rk and is indepen-

dent of B. As in the proof of Theorem 1.2.5, if αn is a sequence decreasing to 0 such that nαn→∞,

we can consider for each t > 0 the sequence of random variables St
n defined in (1.13). Then, we

have that, by the proof of theorem 1.2.5, for each i = 1, . . . ,k,

(u∗B ψn)ti−u(ti−αn)+Sti
n

L2
−→ 0.

Also, by the L2-continuity of u and the Cauchy-Schwartz inequality, we can write

u(ti−αn)+Sti
n−utiS

ti
n

L1
−→ 0.

In particular, the above convergence holds also in probability, so that

Ati
n := (u∗B ψn)ti−utiS

ti
n

P−→ 0

for i = 1, . . . ,k. As a consequence,

(At1
n ,A

t2
n , . . . ,A

tk
n )

P−→ (0,0, . . . ,0).

Then by Slutsky’s theorem (1.15) follows from the convergence in law

(B,ut1St1
n , . . . ,utkStk

n )
Law−−→ (B,ut1Zt1 , . . . ,utkZtk),

which is a consequence of Lemma 1.2.6. This completes the proof.

1.3 Skorohod integrals with respect to fractional Brownian Motion

Consider a fractional Brownian motion BH = {BH
t , t ∈ [0,1]} with Hurst parameter H ∈ (0,1).

That is, BH is a zero mean Gaussian process with covariance function (1.4). In this section, we
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will study the asymptotic behavior as n→ ∞ of a sequence of Skorohod integrals of the form

Fn =

ˆ 1

0
φn(t)ut δBH

t , n≥ 1, (1.16)

where u is a stochastic process verifying some suitable conditions. We split our study in two cases

according to whether H > 1/2 or H < 1/2.

1.3.1 The case H > 1/2

We will assume the following conditions on the sequence φn of nonnegative and bounded functions:

(h4): limn→∞ ‖φn‖2
H = L > 0.

(h5): limn→∞ ‖φn‖r = 0 for some r < 1
H (where here, and in the sequel, || · ||r denotes the Lr-norm

on [0,1]).

We are now ready to state and prove the main results of this section.

Theorem 1.3.1. Assume BH is a fractional Brownian motion with Hurst parameter H > 1/2.

Consider a sequence of nonnegative and bounded functions φn on [0,1] satisfying conditions (h3),

(h4) and (h5). Let u be a stochastic process satisfying the following conditions:

(i) For any t ∈ [0,1], ut ∈ D1,2 and the mapping t→‖ut‖1,2 belongs to H.

(ii) ut is continuous in D1,2 at t = 1.

(iii)
´ 1

0 (E[|Dsu1|])pds < ∞ where 1
p +

1
r = 2H, and r is the number appearing in condition (h5).

Consider the sequence of Skorohod integrals introduced in (1.16). Then Fn converges stably as

n→ ∞ to u1
√

LZ, where Z is a N(0,1) random variable independent of BH .

Proof. Notice first that conditions (i) and (ii) imply that φn(t)ut belongs to D1,2(H) ⊂ Domδ . In

the context of Lemma 1.1.4, the complete, separable space (X ,ρ) will be X :=C([0,1])×R with

ρ((x,y),(x′,y′)) = ‖x− x′‖∞ + |y− y′|. We divide the proof in 3 steps.
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Step 1: Set F̄n := (BH ,

ˆ 1

0
φn(t)utδBH

t ) and Hn := (BH ,

ˆ 1

0
φn(t)u1δBH

t ). In order to show that

limn→∞E(ρ(F̄n,Hn)) = 0 it suffices to prove that

E

[(ˆ 1

0
φn(t)(ut−u1)δBH

t

)2]
→ 0.

Denoting αH = H(2H−1), in view of (1.9) we can write

E

[(ˆ 1

0
φn(t)(ut−u1)δBH

t

)2]
≤ E(‖φn(t)(ut−u1)‖2

H)+E(‖φn(t)D(ut−u1)‖2
H⊗H)

= αH

ˆ 1

0

ˆ 1

0
φn(t)φn(s)E

[
(ut−u1)(us−u1

]
|t− s|2H−2 dsdt

+αH

ˆ 1

0

ˆ 1

0
φn(t)φn(s)E

[
〈D(ut−u1),D(us−u1)〉H

]
|t− s|2H−2dsdt

= A1,n +A2,n. (1.17)

Both terms in (1.17) are handled similarly and we will show the details only for the second one.

Let 0 < δ < 1. Then, separating the second term in two integrals, yields

A2,n = αH

ˆ 1

0

ˆ 1

0
1{s∧t≤1−δ}φn(t)φn(s)E

[
〈D(ut−u1),D(us−u1)〉H

]
|t− s|2H−2dsdt

+αH

ˆ 1

1−δ

ˆ 1

1−δ

φn(t)φn(s)E
[
〈D(ut−u1),D(us−u1)〉H

]
|t− s|2H−2dsdt. (1.18)

At this step, note that by condition (i)

ˆ 1

0

ˆ 1

0
|E(〈D(ut−u1),D(us−u1)〉H) ||t− s|2H−2dsdt

≤
ˆ 1

0

ˆ 1

0
‖ut−u1‖1,2‖us−u1‖1,2|t− s|2H−2dsdt < ∞.

So there is a constant C such that the first term in (1.18) is bounded by

C sup
s∧t≤1−δ

φn(s)φn(t),

27



which converges to 0 as n→ ∞ by condition (h3).

On the other hand, for the second term in (1.18), it follows from Cauchy-Schwartz inequality

that

ˆ 1

1−δ

ˆ 1

1−δ

φn(t)φn(s)E
[
〈D(ut−u1),D(us−u1)〉H

]
|t− s|2H−2dsdt

≤ sup
t∈[1−δ ,1]

E
[
‖D(ut−u1)‖2

H

](ˆ 1

0

ˆ 1

0
φn(s)φn(t)|t− s|2H−2dsdt

)
.

By condition (h4), the sequence
´ 1

0

´ 1
0 φn(s)φn(t)|t− s|2H−2dsdt is bounded and by condition (ii)

the first factor tends to zero as δ → 0. This shows that A2,n tends to zero as n→ ∞. Repeating the

same argument, we obtain that A1,n tends to zero as n→ ∞.

Step 2: Set

Gn := (BH , u1

ˆ 1

0
φn(t)δBH

t ) := (BH , u1B1,n).

Applying Lemma 1.1.1 we obtain

E(ρ(Hn,Gn)) = αHE(|B2,n|), (1.19)

where B2,n =
´ 1

0

´ 1
0 |t−s|2H−2φn(t)Dsu1 dsdt. Let p be as in the statement of the theorem and note

that p > 1. Applying Hölder’s inequality with 1
p +

1
q = 1, yields

E[|B2,n|]≤
(ˆ 1

0
(E[|Dsu1|])pds

) 1
p
(ˆ 1

0

(ˆ 1

0
|t− s|2H−2

φn(t)dt
)q

ds

) 1
q

.

The second factor is the Lq-norm of the fractional integral of order 2H− 1 of the function φn on

[0,1]. By the Hardy-Littlewood inequality, this factor is bounded by a constant times ‖φn‖Lr([0,1]),

where 1
r = 1

q + 2H − 1 = 2H − 1
p . Taking into account conditions (iii) and (h5), we deduce that

(1.19) converges to 0 as n→ ∞ which together with Step 1 implies E(ρ(F̄n,Gn))→ 0 as n→ ∞.

Step 3: In order to complete the proof of the theorem, we need to show Gn converges in law in
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the space C([0,1])×R to G := (BH ,
√

Lu1Z) where Z is a N(0,1) random variable independent of

BH . To this end, it suffices to show that (BH ,B1,n) converges in law in the space C([0,1])×R) to

(BH ,
√

LZ). In view of the fact that BH is a Gaussian process, this will follow from the next two

properties:

(a): limn→∞E[B2
1,n] = L, which follows from property (h4).

(b): For any t0 ∈ [0,1], limn→∞E[B1,nBH
t0 ] = 0. In fact, using property (h5), we obtain for 1

r +
1
r′ = 1,

E[B1,nBH
t0 ] = αH

ˆ 1

0

ˆ t0

0
φn(t)|t− s|2H−2 dsdt

≤ αn‖φn‖r

(ˆ 1

0

(ˆ t0

0
|t− s|2H−2ds

)r′

dt

)1/r′

→ 0,

as n→ ∞.

Theorem 1.3.1 can be applied to the example φn(t) = nHtn, and in this case, L = HΓ(2H).

Indeed, condition (h3) is obvious. Condition (h4) follows from Lemma 1.3.2 below. Condition

(h5) holds for any r < 1
H . This means that in condition (iii), it suffices to show that the integral is

bounded for some p > 1
H .

Lemma 1.3.2. For any n,m ∈ N and r >−1

ˆ 1

0

ˆ 1

0
tnsm|t− s|r dsdt =

Γ(m+1)Γ(r+1)
(n+m+ r+2)Γ(2+m+ r)

+
Γ(n+1)Γ(r+1)

(n+m+ r+2)Γ(2+n+ r)
.

In particular for H > 1/2

lim
n→∞

n2H
ˆ 1

0

ˆ 1

0
xnyn|x− y|2H−2 dydx = Γ(2H−1).

Proof. First of all, note that using y = zx yields

ˆ x

0
ym(x− y)r dy = xm+1+r

ˆ 1

0
zm(1− z)r dz = xm+1+rB(m+1,r+1),
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where B denotes the Beta function. Then

ˆ 1

0

ˆ 1

0
tnsm|t− s|r dsdt

=

ˆ 1

0

ˆ t

0
tnsm(t− s)r dsdt +

ˆ 1

0

ˆ s

0
tnsm(s− t)r dt ds

=

ˆ 1

0
tn+m+r+1B(m+1,r+1)dt +

ˆ 1

0
sn+m+r+1B(n+1,r+1)

=
B(m+1,r+1)+B(n+1,r+1)

n+m+ r+2
,

The first part of the lemma now follows from the well-known relationship between the Beta and

Gamma functions. The second part follows by taking n = m and using Lemma 1.1.5.

1.3.2 The case 1/4 < H < 1/2

We assume the following conditions on the sequence φn of nonnegative and bounded functions:

(h6): supn

ˆ 1

0
(s2H−1 +(1− s)2H−1)φ 2

n (s)ds < ∞.

(h7): For any δ ∈ (0,1], we have

lim
n→∞

ˆ 1−δ

0

(ˆ 1−δ

s
|φn(t)−φn(s)|(t− s)H− 3

2 dt

)2

ds = 0.

(h8): lim
n→∞

ˆ 1

0
|(K∗Hφn)(s)|pds = 0 for some p > 1.

Theorem 1.3.3. Assume BH is a fractional Brownian motion with Hurst parameter 1/4<H < 1/2.

Consider a sequence of nonnegative and bounded functions φn on [0,1] satisfying conditions (h3),

(h4), (h6), (h7) and (h8). Let u be a stochastic process satisfying the following conditions:

(i) For all t ∈ [0,1], ut ∈ D1,2.

(ii) The mapping t→ ut is Hölder continuous of order γ > 1/2−H from [0,1] into D1,2.
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(iii) We have

ˆ 1

0
E(|(K∗HDu1)(s)|q)ds < ∞,

where 1
p +

1
q = 1 and p is the exponent appearing in condition (h8).

Consider the sequence of Skorohod integrals introduced in (1.16). Then Fn converges stably as

n→ ∞ to u1
√

LZ, where Z is a N(0,1) random variable independent of BH .

Proof. As in the case H > 1/2, we divide the proof into 3 steps using the same complete, separable

space (X ,ρ).

Step 1: Set F̄n := (BH ,

ˆ 1

0
φn(t)utδBH

t ) and Hn := (BH ,

ˆ 1

0
φn(t)u1δBH

t ). In order to show that

limn→∞E(ρ(F̄n,Hn)) = 0 it suffices to prove that

E

[(ˆ 1

0
φn(t)(ut−u1)δBH

t

)2]
→ 0.

As in the proof of theorem 1.3.1, we can write

E

[(ˆ 1

0
φn(t)(ut−u1)δBH

t

)2]
≤ E(‖φn(t)(ut−u1)‖2

H )+E(‖φn(t)D(ut−u1)‖2
H ⊗H )

=: C1,n +C2,n.

We only work with C2,n, the analysis of C1,n being similar by changing φn(t)D(ut −u1) and H

appropriately by φn(t)(ut−u1) and R in the argument below. We have, using (1.8) and (1.7),

C2,n = E

(∥∥∥KH(1,s)φn(s)D(us−u1)

+

ˆ 1

s
(φn(t)D(ut−u1)−φn(s)D(us−u1))

∂KH

∂ t
(t,s)dt

∥∥∥2

L2([0,1];H)

)
.
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Since

(φn(t)D(ut−u1)−φn(s)D(us−u1)) = φn(s)D(ut−us)+(φn(t)−φn(s))D(ut−u1),

we obtain

C2,n ≤ 9E
(
‖KH(1,s)φn(s)D(us−u1)‖2

L2([0,1];H)

)
+9E

(∥∥∥∥ˆ 1

s
φn(s)D(ut−us)

∂KH

∂ t
(t,s)dt

∥∥∥∥2

L2([0,1];H)

)

+9E

(∥∥∥∥ˆ 1

s
(φn(t)−φn(s))D(ut−u1)

∂KH

∂ t
(t,s)dt

∥∥∥∥2

L2([0,1];H)

)

=: R1,n +R2,n +R3,n.

To handle the term R1,n we note that, by (1.5), there is a constant dH such that

K(1,s)2 ≤ dH((1− s)2H−1 + s2H−1). (1.20)

We will denote by C a generic constant that may vary from line to line. Then by Minkowski’s

inequality and condition (ii) for any δ ∈ [0,1) we obtain

R1,n ≤ 9E
(ˆ 1

0
KH(1,s)2

φ
2
n (s)‖D(us−u1)‖2

H ds
)

≤C
ˆ 1

0
KH(1,s)2

φ
2
n (s)‖D(us−u1)‖2

L2[Ω;H] ds

≤C
ˆ 1−δ

0
KH(1,s)2

φ
2
n (s)(1− s)2γds

+C
ˆ 1

1−δ

KH(1,s)2
φ

2
n (s)(1− s)2γds

=: R12,n +R22,n.
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The term R12,n can be estimated as follows

R12,n ≤C sup
0≤s≤1−δ

φ
2
n (s)
ˆ 1

0
KH(1,s)2(1− s)2γds,

Taking into account that
´ 1

0 KH(1,s)2(1− s)2γds < ∞, we deduce from condition (h3) that R12,n

converges to zero as n→ ∞. For R22,n we can write

R22,n ≤C(δ )2γ

ˆ 1

0
KH(1,s)2

φ
2
n (s)ds.

From (1.20) and condition (h6), we deduce that supn R22,n→ 0 as δ ↓ 0. Therefore, we have proved

that

lim
n→∞

R1,n = 0. (1.21)

Concerning the term R2,n, using Minkowski’s inequality, the estimate (1.6) and condition (ii), we

obtain

R2,n = 9E

(∥∥∥∥ˆ 1

s
φn(s)D(ut−us)

∂KH

∂ t
(t,s)dt

∥∥∥∥2

L2([0,1];H)

)

≤C
ˆ 1

0

(ˆ 1

s
φn(s)‖D(ut−us)‖L2(Ω;H)

∣∣∣∣∂KH

∂ t
(t,s)

∣∣∣∣ dt
)2

ds

≤C
ˆ 1

0
φ

2
n (s)

(ˆ 1

s
(t− s)γ(t− s)H−3/2 dt

)2

ds

≤C
ˆ 1

0
φ

2
n (s)(1− s)2γ+2H−1ds.

Then, for any δ ∈ (0,1], the integral
ˆ 1−δ

0
φ

2
n (s)(1− s)2γ+2H−1ds converges to zero as n→∞ due

to condition (h3), whereas, by condition (h6),

ˆ 1

1−δ

φ
2
n (s)(1− s)2γ+2H−1ds≤ δ

2γ

ˆ 1

0
φ

2
n (s)(1− s)2H−1ds≤C δ

2γ → 0,
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as δ ↓ 0. Therefore, we have proved that

lim
n→∞

R2,n = 0. (1.22)

Finally for R3,n taking 0 < δ < 1, it follows from Minkowski’s inequality that

R3,n = 9E

(∥∥∥∥ˆ 1

s
(φn(t)−φn(s))D(ut−u1)

∂KH

∂ t
(t,s)dt

∥∥∥∥2

L2([0,1];H)

)

≤C
ˆ 1

0

(ˆ 1

s
(φn(t)−φn(s))‖D(ut−u1)‖L2(Ω;H)

∣∣∣∣∂KH

∂ t
(t,s)

∣∣∣∣ dt
)2

ds

≤C
ˆ 1−δ

0

(ˆ 1−δ

s
(φn(t)−φn(s))‖D(ut−u1)‖L2(Ω;H)

∣∣∣∣ ∂KH

∂ t
(t,s)

∣∣∣∣ dt

)2

ds

+C
ˆ 1−δ

0

(ˆ 1

1−δ

(φn(t)−φn(s))‖D(ut−u1)‖L2(Ω;H)

∣∣∣∣∂KH

∂ t
(t,s)

∣∣∣∣ dt
)2

ds

+C
ˆ 1

1−δ

(ˆ 1

s
(φn(t)−φn(s))‖D(ut−u1)‖L2(Ω;H)

∣∣∣∣∂KH

∂ t
(t,s)

∣∣∣∣ dt
)2

ds

=: T1,n +T2,n +T3,n.

At this step, we study each term separately. For both T2,n and T3,n note that 1−δ ≤ t so condition

(ii) gives

‖D(ut−u1)‖L2(Ω;H) ≤Cδ
γ .
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Also,
∣∣∣∣∂KH

∂ t
(t,s)

∣∣∣∣=−∂KH

∂ t
(t,s) so that

T2,n +T3,n ≤Cδ
2γ

ˆ 1

0

(ˆ 1

s
(φn(t)−φn(s))

∣∣∣∣∂KH

∂ t
(t,s)

∣∣∣∣ dt
)2

ds

=Cδ
2γ

ˆ 1

0

(ˆ 1

s
(φn(t)−φn(s))

∂KH

∂ t
(t,s)dt

)2

ds

≤ 2Cδ
2γ

ˆ 1

0

(
KH(1,s)φn(s)+

ˆ 1

s
(φn(t)−φn(s))

∂KH

∂ t
(t,s)dt

)2

ds

+2Cδ
2γ

ˆ 1

0
K2

H(1,s)φ
2
n (s)ds

= 2Cδ
2γ‖φn‖2

H+2Cδ
2γ

ˆ 1

0
K2

H(1,s)φ
2
n (s)ds.

By condition (h4), ‖φn‖2
H is bounded uniformly in n, and by condition (h6),

ˆ 1

0
K2

H(1,s)φ
2
n (s)ds

is bounded as well. Therefore,

lim
δ↓0

sup
n
(T2,n +T3,n) = 0.

Thus, in order to show that C2,n converges to zero as n→ ∞, it suffices to show that, for a fixed

δ ∈ (0,1),

lim
n→∞

T1,n = 0. (1.23)

Using Minkowski’s inequality, condition (ii) and the estimate (1.6), we can write

T1,n =C
ˆ 1−δ

0

(ˆ 1−δ

s
|φn(t)−φn(s)|‖D(ut−u1)‖L2(Ω;H)

∣∣∣∣∂KH

∂ t
(t,s)

∣∣∣∣ dt

)2

ds

≤C
ˆ 1−δ

0

(ˆ 1−δ

s
|φn(t)−φn(s)|(t− s)H− 3

2 dt

)2

ds,

which converges to 0 as n→ ∞ by condition (h7). This completes the proof of step 1.

Step 2: Set

Gn := (BH , u1

ˆ 1

0
φn(t)δBH

t ) := (BH , u1B1,n).
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Applying Lemma 1.1.1, we obtain

E(ρ(Hn,Gn) = E(|〈φn,Du1〉H)|). (1.24)

Our goal is to show, using condition (iii), that (1.24) converges to 0 as n→ ∞. Fix δ ∈ [0,1). We

can write, by Hölder’s inequality

E(|〈φn,Du1〉H|) = E(|〈(K∗Hφn),(K∗HDu1)〉L2([0,1])|)

≤
(ˆ 1

0
|(K∗Hφn)(s)|pds

) 1
p
(ˆ 1

0
E(|(K∗HDu1)(s)|q)ds

) 1
q

.

The first factor converges to zero as n→ ∞ by property (h8) and the second one is bounded by

condition (iii). Therefore, (1.24) holds, which together with Step 1 implies E(ρ(Hn,Gn)→ 0.

Step 3: As in the case H > 1/2, it remains to show that (BH ,

ˆ 1

0
φn(t)δBH

t ) converges in law

in the space C([0,1])×R to (BH ,
√

LZ), where Z is a N(0,1) random variable independent of BH .

This claim follows from the next two properties

a) Var(
ˆ 1

0
φn(t)δBH

t )→ L, which follows from condition (h4) because

lim
n→∞

E

(∣∣∣∣ˆ 1

0
φn(t)δBH

t

∣∣∣∣2
)

= L.

b) For any t0 ∈ [0,1], limn→∞E
[

BH
t0

ˆ 1

0
φn(t)δBH

t

]
= 0. Indeed, we can write

E
[

BH
t0

ˆ 1

0
φn(t)δBH

t

]
= 〈1[0,t0],φn〉H
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and

|〈1[0,t0],φn〉H|=
∣∣∣∣ˆ 1

0
(K∗Hφn)(s)(K∗H1[0,t0])(s)ds

∣∣∣∣
≤ ‖K∗Hφn‖Lp([0,1[)‖K∗H1[0,t0]‖Lq([0,1]),

where 1
p +

1
q = 1. Then the result follows from property (h8) and the fact that

‖K∗H1[0,t0]‖Lq([0,1]) < ∞.

This completes the proof.

Theorem 1.3.3 can be applied to the example φn(t) = nHtn, when H > 1
4 . Indeed, condition

(h4), again with L = HΓ(2H), holds by Lemma 1.3.4 below. Condition (h3) is obvious. Property

(h6) follows from the following computations:

ˆ 1

0
((1− s)2H−1 + s2H−1)φ 2

n (s)ds

= n2H
ˆ 1

0
((1− s)2H−1s2n + s2H−1+2n)ds

=
n2HΓ(2H)Γ(2n+1)

Γ(2n+2H +1)
+

n2HΓ(2n+2H)

Γ(2n+2H +1)
,

which is uniformly bounded by Lemma 1.1.5. In order to show property (h7), we write, for any

δ ∈ (0,1],
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n2H
ˆ 1−δ

0

(ˆ 1−δ

s
(tn− sn)(t− s)H− 3

2 dt

)2

ds

= n2H
ˆ 1−δ

0

(ˆ 1−δ

s

n−1

∑
k=0

tksn−1−k(t− s)H− 1
2 dt

)2

ds

≤ n2H+2(1−δ )2n−2
ˆ 1−δ

0

(ˆ 1−δ

s
(t− s)H− 1

2 dt

)2

ds

=Cn2H+2(1−δ )2n−2

which converges to zero as n→ ∞.

To show property (h8), we write

ˆ 1

0
|K∗Hφn|p(s)ds≤CnpH

ˆ 1

0
|K(1,s)|psnpds+CnpH

ˆ 1

0

∣∣∣∣ˆ 1

s
(tn− sn)(t− s)H− 3

2 dt
∣∣∣∣p ds

≤CnpH
ˆ 1

0
((1− s)p(H− 1

2 )+ sp(H− 1
2 ))snpds

+CnpH+2
ˆ 1

0

∣∣∣∣ˆ 1

s
tn−1(t− s)H− 1

2 dt
∣∣∣∣p ds

=: B1,n +B2,n.

For the term B1,n, we have

B1,n ≤C

(
npHΓ(p(H− 1

2)+1)Γ(np+1)

Γ(p(H + 1
2)+2+np)

+
npH

p(H− 1
2 +n)+1

)

By Lemma 1.1.5, this term converges to zero as n→ ∞, provided p < 2. The same conclusion can

be deduced for the term B2,n using Young’s inequality.

Lemma 1.3.4. For any H ∈ (0,1/2), we have

lim
n→∞

nH‖tn‖H =
√

HΓ(2H).
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Proof. Using the operator K∗H and integrating by parts, we can write

n2H‖tn‖2
H = n2H‖K∗H(tn)‖2

L2([0,1])

= n2H
ˆ 1

0

(
KH(1,s)sn +

ˆ 1

s
(tn− sn)

∂KH

∂ t
(t,s)dt

)2

ds

= n2H
ˆ 1

0

(
KH(1,s)−n

ˆ 1

s
tn−1KH(t,s)dt

)2

ds

= n2H
ˆ 1

0
KH(1,s)2 ds−2n2H+1

ˆ 1

0

ˆ 1

s
tn−1KHt,s)KH(1,s)dt dsdt

+n2H+2
ˆ 1

0

(ˆ 1

s
tn−1KH(t,s)dt

)2

ds

=: A1,n +A2,n +A3,n. (1.25)

At this step, we work each term in (1.25) separately. Since

RH(t,s) =
ˆ t∧s

0
KH(t,u)KH(s,u)du,

the first term is A1,n = n2HR(1,1) = n2H . Changing the order of integration in the second term

yields

A2,n = 2n2H+1
ˆ 1

0

ˆ t

0
tn−1KH(t,s)KH(1,s)dsdt

= 2n2H+1
ˆ 1

0
tn−1R(1, t)dt

= n2H+1
ˆ 1

0
tn−1(1+ t2H− (1− t)2H)dt

= n2H +
n2H+1

n+2H
− n2H+1Γ(n)Γ(2H +1)

Γ(n+2H +1)
.

Writing the third term as a triple integral, changing the order of integration and using Lemma 1.3.2
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gives

A3,n = n2H+2
ˆ 1

0

ˆ 1

s

ˆ 1

s
tn−1KH(t,s)un−1KH(u,s)dudt ds

= n2H+2
ˆ 1

0

ˆ t

0

ˆ u

0
tn−1KH(t,s)un−1KH(u,s)dsdudt

+n2H+2
ˆ 1

0

ˆ 1

t

ˆ t

0
tn−1KH(t,s)un−1KH(u,s)dsdudt

= n2H+2
ˆ 1

0

ˆ t

0
tn−1un−1RH(t,u)dudt +n2H+2

ˆ 1

0

ˆ 1

t
tn−1un−1RH(t,u)dudt

=
n2H+2

2

ˆ 1

0

ˆ 1

0
tn−1un−1(t2H +u2H−|t−u|2H)dudt

=
n2H+1

2(n+2H)
+

n2H+1

2(n+2H)
− n2H+2

2

ˆ 1

0

ˆ 1

0
tn−1un−1|t−u|2H dudt

=
n2H+1

(n+2H)
− n2H+2 2 Γ(n)Γ(2H +1)

2(2n+2H) Γ(n+1+2H)
.

Thus (1.25) simplifies to

n2H+1Γ(n)Γ(2H +1)
Γ(n+2H +1)

− n2H+2Γ(n)Γ(2H +1)
2(n+H) Γ(n+1+2H)

,

which, due to Lemma 1.1.5, converges to

Γ(2H +1)− Γ(2H +1)
2

=
Γ(2H +1)

2
= HΓ(2H).

1.4 Convergence in total variation for the sequence of Itô integrals

In this section, we study the convergence in total variation of the sequences
´ 1

0 φn(t)utdBt and

(u∗B ψn)t introduced in Section 3. We will do so by using Theorem 3.1 from [28], and Theorem 1

from [41], respectively.

Given two real valued random variables X ,Y , we let dW (X ,Y ) and dTV (X ,Y ) be the Wasserstein
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distance and total variation distance between the laws of X and Y , respectively. More precisely,

dTV(X ,Y ) := sup
A

∣∣P(X ∈ A)−P(Y ∈ A)
∣∣, dW(X ,Y ) := sup

h

∣∣E[h(X)−h(Y )]
∣∣,

where the first supremum runs over all Borel subsets of R and the second supremum runs overs all

functions h : R→ R such that ‖h‖Lip ≤ 1, where

‖h‖Lip = sup
x 6=y,x,y∈R

||h(x)−h(y)|
|x− y|

We also recall the the Fortet-Mourier distance dFM given by

dFM(X ,Y ) := sup
h

∣∣E[h(X)−h(Y )]
∣∣,

where the supremum runs overs all bounded functions h such that ‖h‖∞ +‖h‖Lip ≤ 1.

Recall that when H = 1
2 , the mapping 1[0,t]→ Bt can be extended to a linear isometry between

H = L2([0,1]) and the Gaussian space H1 spanned by B. Let us denote this isometry also by B.

For every integer q≥ 1, we let Hq be the qth Wiener chaos of B, that is, the closed linear subspace

of L2(Ω) generated by the random variables {Hq(B(h)),h ∈ H,‖h‖H = 1)}, where Hq is the qth

Hermite polynomial defined by

Hq(x) = (−1)qex2/2 dq

dxq (e
−x2/2).

We denote by H0 the space of constant random variables.

In [28], the convergence in total variation of sequences living in a finite sum of Wiener chaos

Theorem is studied. In particular, as a consequence of Theorem 3.1 in [28], we have the following

result.

Theorem 1.4.1. Under the assumptions of Theorem 1.2.1, assume that for each t > 0 ut ∈
⊕p

j=0 H j.
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Then, there exists a constant c > 0 (independent of n) such that

dTV (Fn,
√

Lu1Z)≤ cdW (Fn,
√

Lu1Z)1/(3+2p). (1.26)

Furthermore, Fn converges to
√

Lu1Z in total variation as n→ ∞.

Proof. Notice that Fn ∈
⊕p+1

j=0 H j. As a consequence of Theorem 1.2.1, the sequence Fn converges

in distribution to the nonzero random variable
√

Lu1Z. Then, by Theorem 3.1 in [28], there is a

constant c > 0 such that

dTV (Fn,
√

Lu1Z)≤ cdFM(Fn,
√

Lu1Z)1/(1+2(p+1)),

Since dFM ≤ dW we obtain (1.26).

On the other hand, it is proved in Theorem 1.2.1 that supnE(F2
n )<∞, and hence Fn is uniformly

integrable. Since E(|Fn|)+E(|u1Z|)< ∞ for all n, it follows that dW (Fn,
√

Lu1Z) converge to 0 as

n→ ∞ (see section 2.1 in [41]). In view of (1.26), this completes the proof.

We remark that the rate provided by Theorem 1.4.1 is not optimal. For instance, in the special

case φn(t) =
√

ntn and u = B, the rate obtained in [42] is better.

We proceed now to study the convergence in total variation of the stochastic convolution Gn :=

(u ∗B ψn)t by means of Theorem 1 from [41]. In particular, the total variation distance will be

estimated in terms of the sequences

dn := dW (Gn,utZ) (1.27)

and

In = 2
ˆ

∞

0
r|E
(

eirGn
)
|dr. (1.28)

Theorem 1 in [41] will provide not only the convergence in total variation but also a rate of con-

vergence.
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We start by showing that under the assumptions of Theorem 1.2.5, the Wasserstein distance

between Gn and utZ converges to 0.

Lemma 1.4.2. dn defined in (1.27) converges to 0 as n→ ∞.

Proof. As a result of Theorem 1.2.5, the sequence Gn converges in distribution to utZ. Further-

more, it is shown in the proof of Theorem 1.2.5, supnE(G2
n) < ∞ and hence Gn is uniformly

integrable. Then, the conclusion follows because E(|Gn||+E|utZ|)< ∞ for all n (See section 2.1

in [41]).

As a consequence of Theorem 1 in [41], we obtain our main result of this section for the

stochastic convolution.

Theorem 1.4.3. Under the conditions of Theorem 1.2.5, suppose that C1 = E(1/|ut |)< ∞, ψ has

compact support and us is measurable with respect to F(s−τ)+ for all s ≥ 0 and some constant

τ > 0. Assume

C2 = 2sup
n
E

((ˆ
∞

0
ψ

2
n (t− s)u2

s ds
)−1

)
< ∞. (1.29)

Consider the sequence defined by the stochastic convolution Gn =

ˆ
∞

0
ψn(t−s)us dBs. Then, there

is a positive integer n0 (depending on the support of ψ and τ) and a constant C independent of n

such that

dTV (Gn,utZ)≤Cd1/3
n for all n≥ n0. (1.30)

In particular, Gn converges in total variation to utZ.

Proof. Since ψ has compact support, there is R > 0 such that ψn(t− s) = 0 whenever n|t− s|> R.

Then, we can write

Gn =

ˆ t+R/n

(t−R/n)+
ψn(t− s)us dBs.

Choose n0 large enough so that R/n0 ≤ τ, and let n≥ n0. Then, for all s ∈ [t−R/n, t +R/n], us is
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Ft-measurable. Consequently,

E(eirGn) = E(E(eirGn|Ft)) = E
(

e
−r2/2

´ t+R/n
(t−R/n)+

ψ2
n (t−s)u2

s ds
)
= E

(
e−r2/2

´
∞

0 ψ2
n (t−s)u2

s ds
)
.

Therefore

In = 2
ˆ

∞

0
r|E
(

eirGn
)
|dr = 2

ˆ
∞

0
rE
(

e−r2/2
´

∞

0 ψ2
n (t−s)u2

s ds
)

dr

= 2E
(ˆ

∞

0
re−r2/2

´
∞

0 ψ2
n (t−s)u2

s ds dr
)

= 2E

[(ˆ
∞

0
ψ

2
n (t− s)u2

s ds
)−1

]

In view of (1.29), this implies

sup
n≥n0

In ≤C2. (1.31)

On the other hand, it is proved in Theorem 1.2.5 that supnE(G2
n) < ∞. Then, it follows from

Theorem 1 in [41] that there is a constant k, independent of n, such that

dTV (Gn,utZ)≤ d1/2
n (1+C1)+ k

(
Ind1/2

n

)2/3
. (1.32)

Therefore (1.30) follows from (1.31) and (1.32). Finally, the convergence in total variation is a

consequence of Lemma 1.4.2.
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Chapter 2

Averaging 2D stochastic wave equation

In this chapter, we consider the 2D stochastic wave equation

∂ 2u
∂ t2 = ∆u+σ(u)Ẇ , (2.1)

on R+×R2, where ∆ is Laplacian in the space variables and Ẇ is a Gaussian centered noise with

covariance given by

E[Ẇ (t,x)Ẇ (s,y)] = δ0(t− s)‖x− y‖−β (2.2)

for any given β ∈ (0,2). In other words, the driving noise Ẇ is white in time and it has an homo-

geneous spatial covariance described by the Riesz kernel. Here Ẇ is a distribution-valued field and

is a notation for ∂ 3W
∂ t∂x1∂x2

, where the noise W will be formally introduced later.

Throughout this chapter, we fix the boundary conditions

u(0,x) = 1,
∂

∂ t
u(0,x) = 0 (2.3)

and assume σ : R→ R is Lipschitz with Lipschitz constant L ∈ (0,∞) such that σ(1) 6= 0. It is

well-known (see e.g. [11]) that equation (2.1) has a unique mild solution, which is adapted to the

filtration generated by W , such that sup
{
E
[
|u(t,x)|2

]
: (t,x) ∈ [0,T ]×R2} < ∞ for any finite T

and

u(t,x) = 1+
ˆ t

0

ˆ
R2

Gt−s(x− y)σ(u(s,y))W (ds,dy), (2.4)

where the above stochastic integral is defined in the sense of Dalang-Walsh (see [10, 44]) and
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Gt−s(x−y) denotes the fundamental solution to the corresponding deterministic 2D wave equation,

i.e.

Gt(x) =
1

2π
√

t2−‖x‖2
1{‖x‖<t}.

Because of the choice of boundary conditions (2.3), {u(t,x) : x ∈ R2} is strictly stationary for any

fixed t > 0, meaning that the finite-dimensional distributions of {u(t,x+y) : x∈R2} do not depend

on y; see e.g. [12, Footnote 1]. Then it is natural to view the solution u(t,x) as a functional over the

homogeneous Gaussian random field W . Such Gaussian functional has been a recurrent topic in

probability theory, for example, the celebrated Breuer-Major theorem (see e.g. [5, 6, 34]) provides

the Gaussian fluctuation for the average of a functional subordinated to a stationary Gaussian

random field. Therefore, one may wonder whether or not the spatial average of u(t,x) admits

Gaussian fluctuation, that is, as R→+∞

does
ˆ
{‖x‖≤R}

(u(t,x)−1) dx converge to N (0,1), after proper normalization?

Here t > 0 is fixed, u(t,x) solves (2.1) and N (0,1) denotes the standard normal distribution.

Recently, the above question has been investigated for stochastic heat equations (see [9, 16, 17,

35]) and for the 1D stochastic wave equation (see [12]). Our work can be seen as an extension

of the work [12] to the two-dimensional case. In Theorem 2.0.4 below we provide an affirmative

answer to the above question.

Let us first fix some notation that will be used throughout this Chapter.

Notation. (1) The expression a . b means a≤ Kb for some immaterial constant K that may vary

from line to line.

(2) ‖ · ‖ denotes the Euclidean norm on R2 and we write BR = {x : ‖x‖ ≤ R}. We define for

each t ∈ R+ := [0,∞),

FR(t) =
ˆ

BR

(u(t,x)−1) dx. (2.5)

(3) We fix β ∈ (0,2) throughout this article and there are two relevant constants cβ ,κβ defined
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by

cβ =
Γ(1− β

2 )

π4β/2Γ(β/2)
, κβ =

ˆ
R2

dξ‖ξ‖β−4J1(‖ξ‖)2, (2.6)

where J1(·) is the Bessel function of first kind with order 1, given by (see, for instance, [22,

(5.10.4)])

J1(x) =
x
π

ˆ
π

0
sin2

θ cos(xcosθ)dθ . (2.7)

We point out that the quantity κβ is finite, since J1(ρ) is uniformly bounded on R+ and equiv-

alent to constant timesρ as ρ ↓ 0; see e.g. [35, Lemma 2.1]. Furthermore, 4π2cβ κβ =
´

B2
1
‖y−

z‖−β dydz; see Remark 2.1.3 below.

(4) We write ‖X‖p for the Lp(Ω)-norm of a real random variable X .

Now we are in a position to state our main result.

Theorem 2.0.4. Recall FR(t) defined in (2.5). As R → ∞, the process
{

R
β

2−2FR(t) : t ∈ R+

}
converges in law to a centered Gaussian process G in the space C(R+;R) of continuous functions,

equipped with the topology of uniform convergence on compact sets, where

E
[
Gt1Gt2

]
= 4π

2cβ κβ

ˆ t1∧t2

0
(t1− s)(t2− s)ξ 2(s)ds,

with ξ (s) = E[σ(u(s,0))] and cβ ,κβ being the two constants given in (2.6). For any fixed t > 0,

dTV
(
FR(t)/σR,Z

)
. R−β/2, (2.8)

where Z ∼N (0,1) and σR :=
√

Var(FR(t))> 0 for every R > 0.

Remark 2.0.5. (1) The limiting process G has the following stochastic integral representation:

{Gt : t ∈ R+}
(d)
=

{
2π
√

cβ κβ

ˆ t

0
(t− s)ξ (s)dYs : t ∈ R+

}
,

where {Yt : t ∈ R+} is a standard Brownian motion.

47



(2) We point out that σR > 0 is part of our main result. Indeed, it is a consequence of our

standing assumption σ(1) 6= 0. In fact, we have the following equivalences:

σR = 0, ∀R > 0⇔∃R > 0, s.t. σR = 0⇔ σ(1) = 0⇔ lim
R→∞

σ
2
RRβ−4 = 0.

The proof can be done similarly as in [12, Lemma 3.4] and by using Proposition 2.32.

(3) The total-variation distance dTV induces a much stronger topology than that induced by the

Fortet-Mourier distance dFM, where the latter is equivalent to that of convergence in law. For real

random variables X ,Y ,

dTV(X ,Y ) := sup
A

∣∣P(X ∈ A)−P(Y ∈ A)
∣∣, dFM(X ,Y ) := sup

h

∣∣E[h(X)−h(Y )]
∣∣,

where the first supremum runs over all Borel subsets of R and the second supremum runs overs all

bounded Lipschitz functions h with ‖h‖∞ +‖h′‖∞ ≤ 1. Our quantitative CLT (3.4) is obtained by

the Malliavin-Stein approach that combines Stein’s method of normal approximation with Malli-

avin’s differential calculus on a Gaussian space; see the monograph [27] for a comprehensive

treatment. One can also obtain the rate of convergence in other frequently used distances, such

as the 1-Wassertein distance and Kolmogorov distance, and the corresponding bounds are of the

same order as in (3.4).

Now let us sketch a few paragraphs to briefly illustrate our methodology in proving Theorem

2.0.4. The main ingredient is the following fundamental estimate on the p-norm of the Malliavin

derivative Du(t,x) of the solution u(t,x). It is well-known (see e.g. [24]) that Du(t,x) ∈ Lp(Ω;H)

for any p∈ [1,∞), where H is the Hilbert space associated to the noise W , defined as the completion

of C∞
c (R+×R2) under the inner product

〈 f ,g〉H : =
ˆ
R+×R4

f (s,y)g(s,z)‖y− z‖−β dydzds (2.9)

= cβ

ˆ
R+×R2

F f (s,ξ )Fg(s,−ξ )‖ξ‖β−2dξ ds, (2.10)
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where cβ is given in (2.6) and F f (s,ξ ) =
´
R2 e−ix·ξ f (s,x)dx.

Theorem 2.0.6. The Malliavin derivative Du(t,x) is a random function denoted by (s,y) 7→Ds,yu(t,x)

and for any p ∈ [2,∞) and any t > 0, the following estimates hold for almost all (s,y) ∈ [0, t]×R2:

Gt−s(x− y)‖σ(us,y)‖p ≤
∥∥Ds,yu(t,x)

∥∥
p ≤Cβ ,p,t,Lκp,tGt−s(x− y), (2.11)

where the constants Cβ ,p,t,L and κp,t are given in (2.53) and (2.51), respectively.

Remark 2.0.7. Theorem 2.0.6 echoes the comment after [17, Lemma 2.1] and generalizes [12,

Lemma 2.2] to the solution of a 2D stochastic wave equation. Although the expression in (2.11)

looks the same as in [12, Lemma 2.2], i.e. Lp-norm of the Malliavin derivative is bounded by

the fundamental solution to the corresponding deterministic wave equation, we would like to em-

phasize that the proof in the 2D setting is much more involved and requires new techniques in

dealing with the singularity of Gt−s(x− y) while in the 1D case the fundamental solution is the

bounded function 1
21{|x−y|<t−s}. Modulo sophisticated integral estimates, our proof of Theorem

2.0.6 is treated through a harmonious combination of tools from Gaussian analysis (Clark-Ocone

formula, Burkholder inequality) and Hardy-Littlewood-Sobolev’s lemma.

Now let us first sketch the main steps for the proof of Theorem 2.0.4 and then we will present

the key steps in proving (2.11).

The typical proof of the functional CLT consists in three steps:

(S1) We establish the limiting covariance structure, this is the content of Section 2.2.1. In particu-

lar, the variance of the spatial average FR(t) is of order R4−β , as R→ ∞. As one will see shortly,

the important part of this step is the proof of the limit (2.34): Cov
[
σ(u(s,y)),σ(u(s,z))

]
→ 0 as

‖y− z‖ → ∞. This limit is straightforward when σ(u) = u and in the general case, we will apply

the Clark-Ocone formula (see Lemma 2.1.5) to first represent σ(u(s,y)) as a stochastic integral

and then apply the Itô’s isometry in order to break the nonlinearity for further estimations.

(S2) From (S1), we have the covariance structure of the limiting Gaussian process G . Then we
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will prove the convergence of
{

R
β

2−2FR(t) : t ∈ R+

}
to
{
Gt : t ∈ R+

}
in finite-dimensional distri-

butions. This is made possible by the following multivariate Malliavin-Stein bound that we borrow

from [16, Proposition 2.3] (see also [27, Theorem 6.1.2]). We denote by D the Malliavin derivative

and by δ the adjoint operator of D that is characterized by the integration-by-parts formula (3.6).

Moreover, D1,2 is the Sobolev space of Malliavin differentiable random variables X ∈ L2(Ω) with

E
[
‖DX‖2

H

]
< ∞ and Domδ is the domain of δ ; see Section 2.1 for more details.

Proposition 2.0.8. Let F = (F(1), . . . ,F(m)) be a random vector such that F(i) = δ (v(i)) for v(i) ∈

Domδ and F(i) ∈ D1,2, i = 1, . . . ,m. Let Z be an m-dimensional centered Gaussian vector with

covariance matrix (Ci, j)1≤i, j≤m. For any C2 function h : Rm → R with bounded second partial

derivatives, we have

∣∣E[h(F)]−E[h(Z)]
∣∣≤ m

2
‖h′′‖∞

√
m

∑
i, j=1

E
[(

Ci, j−〈DF(i),v( j)〉H
)2
]
, (2.12)

where ‖h′′‖∞ := sup
{∣∣ ∂ 2

∂xi∂x j
h(x)

∣∣ : x ∈ Rm , i, j = 1, . . . ,m
}

.

In view of (2.4), we write u(t,x)− 1 = δ
(
Gt−•(x−∗)σ(u(•,∗))

)
so that FR(t) can be repre-

sented as

FR(t) =
ˆ

BR

δ
(
Gt−•(x−∗)σ(u(•,∗))

)
dx = δ

(
ϕt,R(•,∗)σ(u(•,∗))

)
(2.13)

by Fubini’s theorem, with

ϕt,R(r,y) =
ˆ

BR

Gt−r(x− y)dx; (2.14)

see Section 2.1.2. Putting Vt,R(s,y) = ϕt,R(s,y)σ(u(s,y)), and applying the fundamental estimate

(2.11), we will establish that, for any t1, t2 ∈ (0,∞),

R2β−8Var
(
〈DFR(t1),Vt2,R〉H

)
. R−β for R≥ t1 + t2. (2.15)

Then, we will show that Proposition 2.0.8 together with the estimate (2.15) imply the convergence
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in law of the finite-dimensional distributions.

The bound (2.15) for t1 = t2 = t together with the following 1D Malliavin-Stein bound (see,

e.g. [16, 31, 37]) will lead to the quantitative result (3.4).

Proposition 2.0.9. Let F = δ (v) for some H-valued random variable v∈Domδ . Assume F ∈D1,2

and E[F2] = 1 and let Z ∼N (0,1). Then,

dTV(F,Z)≤ 2
√

Var
[
〈DF,v〉H

]
. (2.16)

(S3) The last step is to show tightness, which follows from the tightness of the processes restricted

to [0,T ] for any finite T . To show the tightness of
{

R
β

2−2FR(t) : t ∈ [0,T ]
}

, in view of the well-

known criterion of Kolmogorov-Chentsov (see e.g. [19, Corollary 16.9]), it is enough to show that

for any p ∈ [2,∞),

‖FR(t)−FR(s)‖p . R2− β

2 |t− s|1/2 for s, t ∈ [0,T ], (2.17)

where the implicit constant does not depend on t,s or R. This will proves Theorem 2.0.4.

Finally let us pave the plan of proving the fundamental estimate (2.11). The story begins with

the usual Picard iteration: We define u0(t,x) = 1 and for n≥ 0,

un+1(t,x) = 1+
ˆ t

0

ˆ
R2

Gt−s(x− y)σ
(
un(s,y)

)
W (ds,dy). (2.18)

It is a classic result that un(t,x) converges in Lp(Ω) to u(t,x) uniformly in x ∈ R2 for any p ≥ 2;

see e.g. [11, Theorem 4.3]. Now it has become clear that if we assume σ(1) = 0, we will end up

in the trivial case where u(t,x)≡ 1, in view of the above iteration.

For each n ≥ 0, un+1(t,x) is Malliavin differentiable, as one can show by induction on n. Our

strategy is to first obtain the uniform estimate of sup
{
‖Ds,yun(t,x)‖p : n ≥ 0

}
and then one can

hope to transfer this estimate to ‖Ds,yu(t,x)‖p. As mentioned before, Du(t,x) lives in the space

H that contains generalized functions. To overcome this, we will carefully apply the following

inequality of Hardy-Littlewood-Sobolev to show Du(t,x) is a random variable in L
4

4−β (R+×R2),
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with β ∈ (0,2) fixed throughout this paper.

Lemma 2.0.10 (Hardy-Littlewood-Sobolev). If 1 < p < p0 < ∞ with p−1
0 = p−1−αn−1, then

there is some constant C that only depends on p, α and n, such that

‖Iαg‖Lp0(Rn) ≤C‖g‖Lp(Rn),

for any locally integrable function g : R2→ R, where with α ∈ (0,n),

(
Iαg
)
(x) :=

ˆ
Rn
‖x− y‖α−ng(y)dy.

For our purpose, with n = 2, α = 2−β , p = 2q = 4/(4−β ) and p0 = 4/β , we deduce from

Hölder’s inequality that

〈 f ,g〉H0 :=
ˆ
R2

f (x)g(y)‖x− y‖−β dxdy (2.19)

≤ ‖ f‖L2q(R2)‖I2−β g‖L4/β (R2)

≤Cβ‖ f‖L2q(R2)‖g‖L2q(R2), (2.20)

for any f ,g ∈ L2q(R2); see e.g. [43, pages 119-120].

Once we obtain the uniform estimate of sup
{
‖Ds,yun(t,x)‖p : n ≥ 0

}
and prove Du(t,x) ∈

L
4

4−β (R+×R2), that is, (s,y) 7−→ Ds,yu(t,x) is indeed a random function, we proceed to the proof

of (2.11). In view of the Clark-Ocone formula (see Lemma 2.1.5), we have E[Ds,yut,x|Fs
]
=

Gt−s(x− y)σ(u(s,y)) almost surely, where {Fs : s ∈ R+} is the filtration generated by the noise;

see Section 2.1.2. Then, the lower bound in (2.11) follows immediately from the conditional Jensen

inequality. The upper bound follows from the uniform estimates of ‖Ds,yun(t,x)‖p by a standard

argument.

Before we end this introduction, let us point out another technical difficulty in this paper. After

the application of Lemma 2.0.10 during the process of estimating ‖Ds,yun(t,x)‖p, we will en-

52



counter integrals of the form

ˆ t

s

(ˆ
R2

G2q
t−r(x− z)G2q

r−s(z)dz
)δ

dr (2.21)

where q ∈ (1/2,1) and δ ∈ [1,1/q]. In the case of stochastic heat equation, the estimation of

the above integrals is straightforward due to the semi-group property. However, for the wave

equation the kernel Gt does not satisfy the semi-group property and the estimation of the above

integrals is quite involved. For the case of the 1D stochastic wave equation, as one can see from

the paper [12], the computations take advantage of the simple form of the fundamental solution

(i.e. 1
21{|x−y|<t−s}). For our 2D case, the singularity within the fundamental solution Gt−s(x− y)

puts the technicality to another level and we have to estimate the convolution G2q
t−r ∗G2q

r−s by exact

computations. A basic technical tool used in this problem is the following lemma.

Lemma 2.0.11. For 0≤ s < t < ∞, with ‖z‖= w > 0 and q ∈ (1/2,1), we have

G2q
t ∗G2q

s (z). 1{w<s}
[
t2− (s−w)2]1−2q

+
[
t2− (s+w)2]1−2q1{t>s+w}

+1{|s−w|<t<s+w}
[
(w+ s)2− t2]−q+ 1

2
[
t2− (s−w)2]−q+ 1

2 , (2.22)

where the implicit constant only depends on q.

The rest of this article is organized as follows: Section 2 collects some preliminary facts for

our proofs, Section 3 contains the proof of Theorem 2.0.4 and Section 4 is devoted to proving the

fundamental estimate (2.11).

2.1 Preliminaries

This section provides some preliminary results that are required for further sections. It consists

of two subsections: Section 2.1.1 contains several important facts on the function Gt−s(x− y) and

Section 2.1.2 is devoted to a minimal set of results from stochastic analysis, notably the tools from

Malliavin calculus.
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2.1.1 Basic facts on the fundamental solution

Let us fix some more notation here.

Notation. For p ∈ R, we write (v)p
+ = vp if v > 0 and (v)p

+ = 0 if v≤ 0. Then, we can write

Gt(x) =
1

2π
(t2−‖x‖2)

−1/2
+ .

Recall the function ϕt,R(r,y) introduced in (3.31):

ϕt,R(s,y) =
ˆ

BR

Gt−r(x− y)dx.

In what follows, we put together several useful facts on the function Gt(z).

Lemma 2.1.1. (1) For any p ∈ (0,1) and t > 0.

ˆ
R2

G2p
t (z)dz =

(2π)1−2p

2−2p
t2−2p. (2.23)

(2) For t > s, we have ϕt,R(s,y)≤ (t− s)1{‖y‖≤R+t} and
ˆ
R2

ϕt,R(s,y)dy = (t− s)πR2.

The proof of Lemma 2.1.1 is omitted, as it follows from simple and exact computations. As a

consequence of Lemma 2.1.1-(2), we have

ˆ
R2

ϕt,R(s,z+ξ )ϕt,R(s,z)dz≤ π(t− s)2R2. (2.24)

The following lemma is also a consequence of Lemma 2.1.1.

Lemma 2.1.2. For t1, t2 ∈ (0,∞), we put

ΨR(t1, t2;s) := Rβ−4
ˆ
R4

ϕt1,R(s,y)ϕt2,R(s,z)‖y− z‖−β dydz.

Then
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(i) ΨR(t1, t2;s) is uniformly bounded over s ∈ [0, t2∧ t1] and R > 0;

(ii) For any s ∈ [0, t2∧ t1], ΨR(t1, t2;s) converges to 4π2cβ κβ (t1− s)(t2− s), as R→ ∞.

Here the quantities cβ and κβ are given in (2.6).

Proof. By using Fourier transform as in (2.10), we can write

ΨR(t1, t2;s) = Rβ−4
ˆ

B2
R

dxdx′
ˆ
R4

Gt1−s(x− y)Gt2−s(x′− z)‖y− z‖−β dydz

= cβ Rβ−4
ˆ

B2
R

dxdx′
ˆ
R2

dξ e−i(x−x′)·ξ
(

sin((t1− s)‖ξ‖)
‖ξ‖

sin((t2− s)‖ξ‖)
‖ξ‖

)
‖ξ‖β−2

= cβ

ˆ
B2

1

dxdx′
ˆ
R2

dξ e−i(x−x′)·ξ sin((t1− s)‖ξ‖R−1)

‖ξ‖R−1
sin((t2− s)‖ξ‖R−1)

‖ξ‖R−1 ‖ξ‖β−2,

where in the last equality we made the change of variables ξ → ξ R−1.

The Fourier transform of x ∈ R2 7−→ 1{‖x‖≤1} is ξ ∈ R2 7−→ 2π‖ξ‖−1J1(‖ξ‖) (see, for in-

stance, Lemma 2.1 in [35]), where J1 is the Bessel function of first kind with order 1 introduced in

(2.7). Then, we can rewrite ΨR(t1, t2;s) as

cβ

ˆ
R2

[
2π‖ξ‖−1J1(‖ξ‖)

]2
(

sin((t1− s)‖ξ‖R−1)

‖ξ‖R−1
sin((t2− s)‖ξ‖R−1)

‖ξ‖R−1

)
‖ξ‖β−2dξ .

Since sin((t− s)‖ξ‖R−1)/(‖ξ‖R−1) is uniformly bounded over s ∈ (0, t] and converges to t− s as

R→ ∞, then the statement (i) holds true and

ΨR(t1, t2;s) R→∞−−−→ 4π
2cβ κβ (t1− s)(t2− s).

by the dominated convergence theorem with the dominance condition κβ < ∞.

Remark 2.1.3. By inverting the Fourier transform, we have

(2π)2cβ κβ = cβ

ˆ
R2
(2π)2J1(‖ξ‖)2‖ξ‖−2‖ξ‖β−2dξ =

ˆ
B2

1

‖y− z‖−β dydz.
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2.1.2 Basic stochastic analysis

Let H be defined (see (2.9) and (2.10)) as the completion of C∞
c (R+×R2) under the inner product

〈 f ,g〉H =

ˆ
R+×R4

f (s,y)g(s,z)‖y− z‖−β dydzds for f ,g ∈C∞
c (R+×R2).

Consider an isonormal Gaussian process associated to the Hilbert space H, denoted by W ={
W (φ) : φ ∈H

}
. That is, W is a centered Gaussian family of random variables such that E

[
W (φ)W (ψ)

]
=

〈φ ,ψ〉H for any φ ,ψ ∈ H. As the noise is white in time, a martingale structure naturally appears.

First we define Ft to be the σ -algebra generated by P-null sets and
{

W (φ) : φ ∈ C∞(R+×R2)

has compact support contained in [0, t]×R2}, so we have a filtration F = {Ft : t ∈ R+}. If{
Φ(s,y) : (s,y) ∈ R+×R2} is an F-adapted random field such that E

[
‖Φ‖2

H

]
<+∞, then

Mt =

ˆ
[0,t]×R2

Φ(s,y)W (ds,dy),

interpreted as the Dalang-Walsh integral ([10, 44]), is a square-integrable F-martingale with quadratic

variation given by

〈M〉t =
ˆ
[0,t]×R4

Φ(s,y)Φ(s,z)‖y− z‖−β dydzds =
∥∥Φ(•,∗)1{•≤t}

∥∥2
H
.

Let us record a suitable version of Burkholder-Davis-Gundy inequality (BDG for short); see e.g.

[20, Theorem B.1].

Lemma 2.1.4 (BDG). If
{

Φ(s,y) : (s,y) ∈R+×R2} is an adapted random field with respect to F

such that ‖Φ‖H ∈ Lp(Ω) for some p≥ 2, then

∥∥∥∥∥
ˆ
[0,t]×R2

Φ(s,y)W (ds,dy)

∥∥∥∥∥
2

p

≤ 4p

∥∥∥∥∥
ˆ
[0,t]×R4

Φ(s,z)Φ(s,y)‖y− z‖−β dydzds

∥∥∥∥∥
p/2

. (2.25)

We refer interested readers to the book [20] for a nice introduction to Dalang-Walsh’s the-

ory. For our purpose, we will often apply BDG as follows. If Φ is F-adapted and ‖Gt−•(x−
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∗)Φ(•,∗)‖H ∈ Lp(Ω) for some p≥ 2, then BDG implies

∥∥∥∥∥
ˆ
[0,t]×R2

Gt−s(x− y)Φ(s,y)W (ds,dy)

∥∥∥∥∥
2

p

≤ 4p

∥∥∥∥∥
ˆ
[0,t]×R4

Gt−s(x− z)Gt−s(x− y)Φ(s,y)Φ(s,z)‖y− z‖−β dsdzdy

∥∥∥∥∥
p/2

, (2.26)

by viewing
´
[0,t]×R2 Gt−s(x− y)Φ(s,y)W (ds,dy) as the martingale

{ˆ
[0,r]×R2

Gt−s(x− y)Φ(s,y)W (ds,dy) : r ∈ [0, t]

}
evaluated at at time t.

Now let us recall some basic facts on the Malliavin calculus associated with W . For any unex-

plained notation and result, we refer to the book [30]. We denote by C∞
p (Rn) the space of smooth

functions with all their partial derivatives having at most polynomial growth at infinity. Let S be

the space of simple functionals of the form F = f (W (h1), . . . ,W (hn)) for f ∈C∞
p (Rn) and hi ∈ H,

1≤ i≤ n. Then, the Malliavin derivative DF is the H-valued random variable given by

DF =
n

∑
i=1

∂ f
∂xi

(W (h1), . . . ,W (hn))hi .

The derivative operator D is closable from Lp(Ω) into Lp(Ω;H) for any p≥ 1 and we define D1,p

to be the completion of S under the norm ‖F‖1,p =
(
E
[
|F |p

]
+E
[
‖DF‖p

H

])1/p
.

The chain rule for D asserts that if F1,F2 ∈ D1,2 and h1,h2 : R → R are Lipschitz, then

h1(F1)h2(F2) ∈ D1,1 and hi(Fi) ∈ D1,2 with

D
(
h1(F1)h2(F2)

)
= h2(F2)Y1DF1 +h1(F1)Y2DF2, (2.27)

where Yi is some σ{Fi}-measurable random variable bounded by the Lipschitz constant of hi for

i = 1,2; ; when the hi are differentiable, we have Yi = h′i(Fi), i = 1,2 (see, for instance, [30,

Proposition 1.2.4]).
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We denote by δ the adjoint of D given by the duality formula

E[δ (u)F ] = E[〈u,DF〉H] (2.28)

for any F ∈ D1,2 and u ∈ Domδ ⊂ L2(Ω;H), the domain of δ . The operator δ is also called the

Skorohod integral and in the case of the Brownian motion, it coincides with an extension of the

Itô integral introduced by Skorohod (see e.g. [14, 32]). In our context, the Dalang-Walsh integral

coincides with the Skorohod integral: Any adapted random field Φ that satisfies E
[
‖Φ‖2

H

]
< ∞

belongs to the domain of δ and

δ (Φ) =

ˆ
∞

0

ˆ
R2

Φ(s,y)W (ds,dy).

The proof of this result is analogous to the case of integrals with respect to the Brownian motion

(see [30, Proposition 1.3.11]), by just replacing real processes by H0-valued processes, where H0

is defined in (2.19). As a consequence, the equation (2.4) can be written as

u(t,x) = 1+δ
(
Gt−•(x−∗)σ(u(•,∗))

)
.

The operators D and δ satisfy the commutation relation

[D,δ ]V := (Dδ −δD)(V ) =V. (2.29)

By Fubini’s theorem and the duality formula (3.6), we can interchange the Skorohod integral

and Lebesgue integral: Suppose fx ∈ Domδ is adapted for each x in some finite measure space

(E,µ) such that
´

E fxµ(dx) also belongs to Domδ and E
´

E ‖ fx‖2
Hµ(dx)< ∞, then

δ

(ˆ
E

fxµ(dx)
)
=

ˆ
E

δ ( fx)µ(dx) almost surely. (2.30)
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Indeed, for any F ∈S ,

E
[

Fδ

(ˆ
E

fxµ(dx)
)]

= E
〈
DF,
ˆ

E
fxµ(dx)

〉
H
=

ˆ
E
E
〈
DF, fx

〉
H

µ(dx)

=

ˆ
E
E
[
Fδ ( fx)

]
µ(dx) = E

[
F
ˆ

E
δ ( fx)µ(dx)

]
,

which gives us (2.30). In particular, the equalities in (2.13) are valid.

With the help of the derivative operator, we can represent F ∈D1,2 as a stochastic integral. This

is the content of the following two-parameter Clark-Ocone formula, see e.g. [8, Proposition 6.3]

for a proof.

Lemma 2.1.5 (Clark-Ocone formula). Given F ∈ D1,2, we have almost surely

F = E[F ]+

ˆ
R+×R2

E
[
Ds,yF |Fs

]
W (ds,dy).

We end this section with the following useful fact: If
{

Φs : s∈R+

}
is a jointly measurable and

integrable process satisfying
´
R+

(
Var(Φs)

)1/2ds < ∞, then

√
Var
(ˆ

R+

Φsds
)
≤
ˆ
R+

√
Var(Φs)ds. (2.31)

2.2 Gaussian fluctuation of the spatial averages

We follow the three steps described in our introduction.

2.2.1 Limiting covariance structure

Proposition 2.2.1. Suppose t1, t2 ∈ (0,∞). We have, with ξ (s) = E
[
σ(u(s,0))

]
,

E
[
FR(t1)FR(t2)

]
R4−β

R→∞−−−→ 4π
2cβ κβ

ˆ t1∧t2

0
(t1− s)(t2− s)ξ 2(s)ds (2.32)
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with κβ =
´
R2 dξ‖ξ‖β−4J1(‖ξ‖)2 ∈ (0,∞). In particular, for any t > 0,

Var
(
FR(t)

)
Rβ−4 R→∞−−−→ 4π

2cβ κβ

ˆ t

0
(t− s)2

ξ
2(s)ds.

Proof. Recall that FR(t) =
´ t

0

´
R2 ϕt,R(s,y)σ(u(s,y))W (ds,dy). Then, by Itô’s isometry,

E
[
FR(t1)FR(t2)

]
=

ˆ t1∧t2

0

ˆ
R4

ϕt1,R(s,y)ϕt2,R(s,z)‖y− z‖−βE
[
σ(u(s,y))σ(u(s,z))

]
dydzds.

We claim that, as R→ ∞,

Rβ−4
ˆ t1∧t2

0

ˆ
R4

ϕt1,R(s,y)ϕt2,R(s,z)‖y− z‖−β Cov
[
σ(u(s,y)),σ(u(s,z))

]
dydzds→ 0. (2.33)

Assuming (2.33), we can deduce from Lemma 2.1.2, the stationarity of the process {u(t,x) : x ∈

R2} and dominated convergence that

lim
R→∞

E
[
FR(t1)FR(t2)

]
R4−β

= lim
R→∞

ˆ t1∧t2

0
ξ

2(s)ΨR(t1, t2;s)ds = RHS of (2.32),

where ξ (s) = E[σ(u(s,0))] is uniformly bounded over s ∈ [0, t1∧ t2].

We need to prove (2.33) now and it is enough to show for any s ∈ (0, t1∧ t2]

lim
‖y−z‖→∞

Cov
[
σ(u(s,y)),σ(u(s,z))

]
= 0. (2.34)

Indeed, if (2.34) holds for any given s ∈ (0, t1∧ t2], then for arbitrarily small ε > 0, there is some

K = K(ε,s) such that Cov
[
σ(u(s,y)),σ(u(s,z))

]
< ε , for ‖y− z‖ ≥ K. By Lemma 2.1.2, we

deduce

Rβ−4
ˆ
‖y−z‖≥K

ϕt,R(s,y)ϕt,R(s,z)‖y− z‖−β Cov
[
σ(u(s,y)),σ(u(s, ,z))

]
dydz

≤ εΨR(t1, t2;s). ε,
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while using the uniform L2-boundedness of u(t,x), we get

Rβ−4
ˆ
‖y−z‖<K

ϕt,R(s,y)ϕt,R(s,z)‖y− z‖−β Cov
[
σ(u(s,y)),σ(u(s,z))

]
dydz

. Rβ−4
ˆ
‖y−z‖<K

ϕt,R(s,y)ϕt,R(s,z)‖y− z‖−β dydz

= Rβ−4
ˆ
‖ξ‖<K

dξ‖ξ‖−β

(ˆ
R2

ϕt,R(s,z+ξ )ϕt,R(s,z)dz
)
. Rβ−2

ˆ
‖ξ‖<K

dξ‖ξ‖−β by (2.24)

. Rβ−2 R→∞−−−→ 0.

That is, we just proved for any s ∈ (0, t1∧ t2],

Rβ−4
ˆ
R4

ϕt,R(s,y)ϕt,R(s,z)‖y− z‖−β Cov
[
σ(u(s,y)),σ(u(s,z))

]
dydz R→∞−−−→ 0,

where the LHS is uniformly bounded in R > 0 and s ∈ (0, t1∧ t2] in view of Lemma 2.1.2. Then

the claim (2.33) follows from the dominated convergence.

It remains to verify (2.34). By Theorem 2.0.6, for any 0 < s < t,

‖Ds,yu(t,x)‖p . Gt−s(x− y).

By Lemma 2.1.5,

σ(u(s,y)) = E
[
σ(u(s,y))

]
+

ˆ s

0

ˆ
R2

E
[
Dr,γ
(
σ(u(s,y))

)
|Fr

]
W (dr,dγ).

As a consequence,

E
[
σ(u(s,y))σ(u(s,z))

]
= ξ

2(s)+T (s,y,z),

where

T (s,y,z) =
ˆ s

0

ˆ
R4

E
(
E
[
Dr,γ(σ(u(s,y)))|Fr

]
E
[
Dr,γ ′

(
σ(u(s,z))

)
|Fr
])
‖γ− γ

′‖−β dγdγ
′dr.
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By the chain-rule (3.4) for the derivative operator,

Dr,γ
(
σ(u(s,y))

)
= Σs,yDr,γu(s,y)

with Σs,y an adapted random field uniformly bounded by L, where we recall that L is the Lipschitz

constant of σ . This implies,

∣∣∣E(E[Dr,γ(σ(u(s,y)))|Fr
]
E
[
Dr,γ ′

(
σ(u(s,z))

)
|Fr
])∣∣∣. ∥∥Dr,γu(s,y)

∥∥
2

∥∥Dr,γ ′u(s,z)
∥∥

2

. Gs−r(γ− y)Gs−r(γ
′− z).

Thus,

|T (s,y,z)|.
ˆ s

0

ˆ
R4

Gs−r(γ− y)Gs−r(γ
′− z)‖γ− γ

′‖−β dγdγ
′dr.

Suppose ‖y− z‖> 2s, then

Gs−r(γ− y)Gs−r(γ
′− z)‖γ− γ

′‖−β ≤ Gs−r(γ− y)Gs−r(γ
′− z)

(
‖y− z‖−2s

)−β

from which we get

|T (s,y,z)|.
(
‖y− z‖−2s

)−β

ˆ s

0

ˆ
R4

Gs−r(γ− y)Gs−r(γ
′− z)dγdγ

′dr
‖y−z‖→∞−−−−−−→ 0.

This implies (2.34) and hence concludes our proof.
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2.2.2 Convergence of finite-dimensional distributions

As it was explained in the introduction, a basic ingredient for the convergence of finite-dimensional

distributions is the following estimate

R2β−8Var
(
〈DFR(t1),Vt2,R〉H

)
. R−β for R≥ t1 + t2, (2.35)

where we recall that Vt,R(s,y) = ϕt,R(s,y)σ(u(s,y)) and ϕt,R is defined in (3.31).

Note that the Malliavin-Stein bound (2.16) and the above bound (2.35) with t1 = t2 = t lead

to the quantitative CLT in (3.4). In fact, from (2.35) and (2.16), we have for any fixed t > 0 and

Z ∼N (0,1),

dTV
(
FR(t)/σR,Z

)
≤ 2

σ2
R

√
Var
(
〈DFR(t),Vt,R〉H

)
.

1
σ2

R
R4− 3β

2 , R≥ 2t;

by Proposition 2.2.1, σ2
RRβ−4 converges to some explicit positive constant, see (2.32). So we can

write, for all R≥ Rt

dTV
(
FR(t)/σR,Z

)
≤CR−β/2,

where Rt is some constant that does not depend on R. As the total variation distance is aways

bounded by 1, we can write for R≤ Rt ,

dTV
(
FR(t)/σR,Z

)
≤ 1≤ (Rt)

β/2R−β/2,∀R≤ Rt .

Therefore, the bound (3.4) follows.

Note that (2.35), together with Proposition 2.0.8, implies the convergence in law of the finite

dimensional distributions. In fact, fix any integer m ≥ 1 and choose m points t1, . . . , tm ∈ (0 ,∞),

then consider the random vector ΦR =
(
FR(t1), . . . ,FR(tm)

)
and let G = (G1 , . . . ,Gm) denote a
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centered Gaussian random vector with covariance matrix (Ci, j)1≤i, j≤m given by

Ci, j := 4π
2cβ κβ

ˆ ti∧t j

0
(ti− s)(t j− s)ξ 2(s)ds.

Recall from (2.13) that FR(ti) = δ (Vti,R) for all i = 1, . . . ,m. Then, by (2.12) we can write

∣∣E(h(R β

2−2
ΦR))−E(h(G))

∣∣≤ m
2
‖h′′‖∞

√
m

∑
i, j=1

E
(∣∣Ci, j−Rβ−4〈DFR(ti) ,Vt j,R〉H

∣∣2) (2.36)

for every h ∈C2(Rm) with bounded second partial derivatives. Thus, in view of (2.36), in order to

show the convergence in law of R
β

2−2
ΦR to G, it suffices to show that for any i, j = 1, . . . ,m,

lim
R→∞

E
(∣∣∣Ci, j−Rβ−4〈DFR(ti) ,Vt j,R〉H

∣∣∣2)= 0. (2.37)

Notice that, by the duality relation (3.6) and the convergence (2.32), we have

Rβ−4E
(〈

DFR(ti) ,Vt j,R
〉
H

)
= Rβ−4E

[
FR(ti)δ (Vt j,R)

]
= Rβ−4E

[
FR(ti)FR(t j)

] R→∞−−−→Ci, j. (2.38)

Therefore, the convergence (2.37) follows immediately from (2.38) and (2.35). Hence the finite-

dimensional distributions of {R
β

2−2FR(t) : t ∈ R+} converge to those of G as R→ ∞.

The rest of this subsection is then devoted to the proof of (2.35).

Proof of (2.35). Recall from (2.13) that

FR(t) =
ˆ

BR

(u(t,x)−1)dx = δ (Vt,R) with Vt,R(s,y) = ϕt,R(s,y)σ(u(s,y)).

The commutation relation (3.7) implies for s≤ t,

Ds,yFR(t) = Ds,yδ (Vt,R) =Vt,R(s,y)+δ (Ds,yVt,R). (2.39)
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By the chain rule for the derivative operator (see (3.4))

Ds,y[Vt,R(r,z)] = ϕt,R(r,z)D[σ(u(r,z))] = ϕt,R(r,z)Σr,zDs,yu(r,z), (2.40)

where Σr,z is an adapted random field bounded by the Lipschitz constant of σ . Substituting (2.56)

into (2.39), yields, for s≤ t,

Ds,yFR(t) = ϕt,R(s,y)σ(u(s,y))+
ˆ t

s

ˆ
R2

ϕt,R(r,z)Σr,zDs,yu(r,z)W (dr,dz).

Then, for t1, t2 ∈ (0,∞), we can write
〈
DFR(t1),Vt2,R

〉
H
= A1 +A2, with

A1 =
〈
Vt1,R,Vt2,R

〉
H
=

ˆ t1∧t2

0

ˆ
R4

ϕt1,R(s,y)ϕt2,R(s,z)σ(u(s,y))σ(u(s,z))‖y− z‖−β dydzds

and

A2 =

ˆ t1∧t2

0

ˆ
R4

(ˆ t1

s

ˆ
R2

ϕt1,R(r,z)Σr,zDs,yu(r,z)W (dr,dz)
)

×‖y− y′‖−βVt2,R(s,y
′)dsdydy′.

(i) Estimation of Var(A1). From (2.31), we deduce that Var(A1) is bounded by

(ˆ t2∧t1

0

(
Var
ˆ
R4

ϕt1,R(s,y)ϕt2,R(s,z)σ(u(s,y))σ(u(s,z))‖y− z‖−β dydz
)1/2

ds

)2

. (2.41)

Note that the variance term in (2.41) is equal to

ˆ
R8

ϕt1,R(s,y)ϕt2,R(s,z)ϕt1,R(s,y
′)ϕt2,R(s,z

′)‖y− z‖−β‖y′− z′‖−β

×Cov
[
σ(u(s,y))σ(u(s,z)),σ(u(s,y′))σ(u(s,z′))

]
dydzdy′dz′. (2.42)
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To estimate the covariance term, we apply the Clark-Ocone formula (see Lemma 2.1.5) to write

σ(u(s,y))σ(u(s,z))−E[σ(u(s,y))σ(u(s,z))]

=

ˆ s

0

ˆ
R2

E
{

Dr,γ
(
σ(u(s,y))σ(u(s,z))

)
|Fr

}
W (dr,dγ).

Then we apply Itô’s isometry to obtain

Cov
[
σ(u(s,y))σ(u(s,z)),σ(u(s,y′))σ(u(s,z′))

]
(2.43)

=

ˆ s

0

ˆ
R4

E

[
E
{

Dr,γ
(
σ(u(s,y))σ(u(s,z))

)
|Fr
}
E
{

Dr,γ ′
(
σ(u(s,y′))σ(u(s,z′))

)
|Fr
}]

×‖γ− γ
′‖−β dγdγ

′dr,

where, by the chain rule (3.4),

Dr,γ
(
σ(u(s,y))σ(u(s,z))

)
= σ(u(s,y))Σs,zDr,γu(s,z)+σ(u(s,z))Σs,yDr,γu(s,y).

Then by Cauchy-Schwarz inequality and Theorem 2.0.6, we can see that the above covariance term

(2.43) is bounded by

ˆ s

0

ˆ
R4

∥∥∥Dr,γ
(
σ(u(s,y))σ(u(s,z))

)∥∥∥
2

∥∥∥Dr,γ ′
(
σ(u(s,y′))σ(u(s,z′))

)∥∥∥
2
‖γ− γ

′‖−β dγdγ
′dr

.
ˆ s

0
dr
ˆ
R4

dγdγ
′‖γ− γ

′‖−β

(
‖Dr,γu(s,z)‖4 +‖Dr,γu(s,y)‖4

)
×
(
‖Dr,γ ′u(s,z

′)‖4 +‖Dr,γ ′u(s,y
′)‖4

)
.
ˆ s

0
dr
ˆ
R4

dγdγ
′‖γ− γ

′‖−β
(
Gs−r(z− γ)+Gs−r(y− γ)

)(
Gs−r(z′− γ

′)+Gs−r(y′− γ
′)
)
.
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Now we can plug the last estimate into (2.42) for further computations:

Var
(ˆ

R4
ϕt1,R(s,y)ϕt2,R(s,z)σ(u(s,y))σ(u(s,z))‖y− z‖−β dydz

)
.
ˆ s

0
dr
ˆ
R12

ϕt1,R(s,y)ϕt2,R(s,z)ϕt1,R(s,y
′)ϕt2,R(s,z

′)‖y− z‖−β‖y′− z′‖−β‖γ− γ
′‖−β

×
(
Gs−r(z− γ)+Gs−r(y− γ)

)(
Gs−r(z′− γ

′)+Gs−r(y′− γ
′)
)
dγdγ

′dydzdy′dz′. (2.44)

In order to obtain Var(A1). R8−3β , it is enough to show sups≤t1∧t2 Ts . R8−3β with

Ts : =
ˆ s

0
dr
ˆ
R12

ϕt1,R(s,y)ϕt2,R(s,z)ϕt1,R(s,y
′)ϕt2,R(s,z

′)‖y− z‖−β‖y′− z′‖−β

×‖γ− γ
′‖−β Gs−r(z− γ)Gs−r(z′− γ

′)dγdγ
′dydzdy′dz′

as other terms from (2.44) can be estimated in the same way with the same bound.

For s ∈ (0, t1∧ t2], we write, using (3.31),

Ts =

ˆ s

0
dr
ˆ

B4
R

ˆ
R12

Gt1−s(x1− y)Gt1−s(x′1− y′)Gt2−s(x2− z)Gt2−s(x′2− z′)Gs−r(z− γ)

×Gs−r(z′− γ
′)‖γ− γ

′‖−β‖y− z‖−β‖y′− z′‖−β dγdγ
′dydzdy′dz′dx1dx′1dx2dx′2.

Making the change of variables

(γ,γ ′,y,z,y′,z′,x1,x′1,x2,x′2)→ R(γ,γ ′,y,z,y′,z′,x1,x′1,x2,x′2)

and using Gt(Rz) = R−1GtR−1(z) for every t,R > 0 yields

R−14+3β Ts =

ˆ s

0
dr
ˆ

B4
1

ˆ
R12

G t1−s
R
(x1− y)G t1−s

R
(x′1− y′)G t2−s

R
(x2− z)G t2−s

R
(x′2− z′)

×G s−r
R
(z− γ)G s−r

R
(z′− γ

′)‖γ− γ
′‖−β‖y− z‖−β‖y′− z′‖−β dγdγ

′dydzdy′dz′dx1dx′1dx2dx′2.
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Using the fact (2.23), we can integrate out x1,x′1,x2,x′2 to bound R−14+3β Ts by

R−10+3β (t1− s)2(t2− s)2
ˆ s

0
dr
ˆ
R12

1{‖y‖∨‖y′‖∨‖z‖∨‖z′‖∨‖γ‖∨‖γ ′‖≤1+(t1+t2)R−1}

×G s−r
R
(z− γ)G s−r

R
(z′− γ

′)‖γ− γ
′‖−β‖y− z‖−β‖y′− z′‖−β dγdγ

′dydzdy′dz′. (2.45)

Suppose R≥ t1 + t2 and notice that

sup
z∈B2

ˆ
B2

‖y− z‖−β dy≤
ˆ

B4

‖y‖−β dy =
2π

2−β
42−β < ∞.

Therefore, integrating out y,y′ in (2.45), we obtain

Ts .R10−3β

ˆ s

0
dr
ˆ
R8

1{‖z‖∨‖z′‖∨‖γ‖∨‖γ ′‖≤2}G s−r
R
(z− γ)G s−r

R
(z′− γ

′)‖γ− γ
′‖−β dγdγ

′dzdz′.

We further integrate out z,z′ and use (2.23) again to write

sup
s≤t1∧t2

Ts .R8−3β

ˆ
R8

1{‖γ‖∨‖γ ′‖≤2}‖γ− γ
′‖−β dγdγ

′ . R8−3β .

So we obtain Var(A1). R8−3β for R≥ t1 + t2, where the implicit constant does not depend on R.

Next we estimate the variance of A2.

(ii) Estimate of Var(A2). Using again (2.31), we write

Var(A2)≤

(ˆ t1∧t2

0

{
Var
ˆ
R4

(ˆ t1

s

ˆ
R2

ϕt1,R(r,z)Σr,zDs,yu(r,z)W (dr,dz)
)
‖y− y′‖−β

×ϕt2,R(s,y
′)σ(u(s,y′))dydy′

}1/2

ds

)2

=:
(ˆ t1∧t2

0

√
Usds

)2

.

As before, we will show sups≤t2∧t1 Us . R8−3β .

First note that ˆ t1

s

ˆ
R2

ϕt1,R(r,z)Σr,zDs,yu(r,z)W (dr,dz) =Ms,y(t1),
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where
{
Ms,y(τ) : τ ∈ [s, t1]

}
is the square-integrable martingale given by

Ms,y(τ) :=
ˆ

τ

s

ˆ
R2

ϕt1,R(r,z)Σr,zDs,yu(r,z)W (dr,dz).

Then we deduce from the martingale property that

E
[
σ(u(s,y′))Ms,y(t1)

]
= E

[
σ(u(s,y′))E(Ms,y(t1)|Fs)

]
= 0,

that is, M(t1) and σ
(
u(s,y′)

)
are uncorrelated. Moreover, by Itô’s formula,

Ms,y(t1)Ms,ỹ(t1) =
ˆ t1

s
Ms,y(τ)dMs,ỹ(τ)+

ˆ t1

s
Ms,ỹ(τ)dMs,y(τ)︸ ︷︷ ︸

martingale−part

+〈Ms,y,Ms,ỹ〉t1 ,

where the bracket 〈Ms,y,Ms,ỹ〉t1 between both martingales is equal to

ˆ t1

s

ˆ
R4

ϕt1,R(r,z)Σr,z
(
Ds,yu(r,z)

)
ϕt1,R(r, z̃)Σr,z̃

(
Ds,ỹu(r, z̃)

)
‖z− z̃‖−β dzdz̃dr.

So, using the estimate (2.11), we obtain

E
[
Ms,y(t1)Ms,ỹ(t1)σ(u(s,y′))σ(u(s, ỹ′))

]
= E

[
E
(
Ms,y(t1)Ms,ỹ(t1)|Fs

)
σ(u(s,y′))σ(u(s, ỹ′))

]
.
∥∥〈Ms,y,Ms,ỹ〉t1

∥∥
2

.
ˆ t1

s

ˆ
R4

ϕt1,R(r,z)‖Ds,yu(r,z)‖4ϕt1,R(r, z̃)‖Ds,ỹu(r, z̃)‖4‖z− z̃‖−β dzdz̃dr

.
ˆ t1

s

ˆ
R4

ϕt1,R(r,z)Gr−s(y− z)ϕt1,R(r, z̃)Gr−s(ỹ− z̃)‖z− z̃‖−β dzdz̃dr.
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As a consequence, the variance-term Us is indeed a second moment and

Us =

ˆ
R8

dydy′dỹdỹ′‖y− y′‖−β‖ỹ− ỹ′‖−β
ϕt2,R(s,y

′)ϕt2,R(s, ỹ′)

×E
[
Ms,y(t1)Ms,y′(t1)σ(u(s,y′))σ(u(s, ỹ′))

]
.
ˆ t1

s
dr
ˆ
R12

dzdz̃dydy′dỹdỹ′‖y− y′‖−β‖ỹ− ỹ′‖−β‖z− z̃‖−β

×ϕt2,R(s,y
′)ϕt2,R(s, ỹ′)ϕt1,R(r,z)ϕt1,R(r, z̃)Gr−s(y− z)Gr−s(ỹ− z̃),

which has the same kind of expression as Ts. The same arguments that led to the uniform estimate

of Ts yields

sup
s≤t1∧t2

Us . R8−3β ,

for R≥ t1 + t2, thus we obtain Var(A2). R8−3β for R≥ t1 + t2. Hence, for R≥ t1 + t2,

R2β−8Var
(
〈DFR(t1),Vt2,R〉H

)
. R2β−8[Var(A2)+Var(A1)

]
. R−β .

This completes the proof of (2.35).

2.2.3 Tightness

Set q = 2
4−β
∈ (1/2,1). As explained in the introduction, by the Kolmogorov-Chentsov criterion

for tightness, it is enough to prove the inequality (2.17): For any T > 0, p≥ 2 and for any 0≤ s <

t ≤ T ≤ R,

∥∥FR(t)−FR(s)
∥∥

p . R1/q√t− s, (2.46)

where the implicit constant does not depend on t,s or R.

Proof of (2.46). Recall that FR(t) =
´ t

0

´
R2 ϕt,R(s,y)σ(u(s,y))W (ds,dy). Then by BDG inequality
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(2.25) and (2.20) we have, with the convention that ϕs,R(r,y) = 0 if r > s,

∥∥FR(t)−FR(s)
∥∥2

p .

∥∥∥∥∥
ˆ
[0,t]×R4

(ϕt,R(r,y)−ϕs,R(r,y)
)
σ(u(r,y))(ϕt,R(r,z)−ϕs,R(r,z)

)
×σ(u(r,z))‖y− z‖−β dydzdr

∥∥∥∥∥
p/2

.

∥∥∥∥∥
ˆ t

0
dr
(ˆ

R2

∣∣∣(ϕt,R(r,y)−ϕs,R(r,y)
)
σ(u(r,y))

∣∣∣2q
dy
)1/q

∥∥∥∥∥
p/2

.

Applying Minkowski’s inequality yields

∥∥FR(t)−FR(s)
∥∥2

p .
ˆ t

0
dr
(ˆ

R2

∣∣ϕt,R(r,y)−ϕs,R(r,y)
∣∣2q‖σ(u(r,y))‖2q

p dy
)1/q

.
ˆ t

0
dr
(ˆ

R2

∣∣ϕt,R(r,y)−ϕs,R(r,y)
∣∣2qdy

)1/q

. (2.47)

Note that

∣∣ϕt,R(r,y)−ϕs,R(r,y)
∣∣= 1{r≥s}

ˆ
BR

Gt−r(x− y)dx

+1{r<s}

ˆ
BR

1{‖x−y‖<s−r}
[
Gs−r(x− y)−Gt−r(x− y)

]
dx

+1{r<s}

ˆ
BR

1{‖x−y‖≥s−r}Gt−r(x− y)dx

=: S1 +S2 +S3.

The first summand S1 is bounded by 1{r≥s}(t−r)1{‖y‖≤R+t}≤ (t−s)1{‖y‖≤R+t}, in view of Lemma
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2.1.1-(2). For the second summand, we can write

S2 ≤ 1{r<s}1{‖y‖≤R+s}

ˆ
BR

1{‖x‖<s−r}
[
Gs−r(x)−Gt−r(x)

]
dx

≤ 1{r<s}1{‖y‖≤R+s}

ˆ
{‖x‖<s−r}

(
1

2π
√

(s− r)2−‖x‖2
− 1

2π
√

(t− r)2−‖x‖2

)
dx

= 1{r<s}1{‖y‖≤R+s}
√

t− s
(√

t + s−2r−
√

t− s
)

by explicit computation

.
√

t− s1{‖y‖≤R+s};

In the same way, the third summand can be bounded as follows

S3 ≤ 1{r<s}1{‖y‖≤R+t}

ˆ
R2

1{s−r≤‖x‖<t−r}Gt−r(x)dx . 1{‖y‖≤R+t}
√

t− s.

Therefore, we can continue with (2.47) to write

∥∥FR(t)−FR(s)
∥∥2

p .
ˆ t

0
dr
(ˆ

R2
(t− s)q1{‖y‖≤R+t}dy

)1/q

. (t− s)(R+ t)2/q.

This implies (2.46).

2.3 Fundamental estimate on the Malliavin derivative

This section is devoted to the proof of Theorem 2.0.6. After a useful lemma, we study the conver-

gence and moment estimates for the Picard approximation in Section 3.15. The main body of the

proof of Theorem 2.0.6 is given in Section 2.3.2 and we leave proofs of two technical lemmas to

Section 2.3.3. Recall that β ∈ (0,2) is fixed throughout this paper.

Lemma 2.3.1. Given any random field {Φ(r,z) : (r,z) ∈ R+×R2}, we have for any x ∈ R2, 0 ≤
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s < t < ∞ and p≥ 2,

∥∥∥∥ˆ t

s
dr
ˆ
R4

dydzGt−r(x− y)Gt−r(x− z)Φ(r,z)Φ(r,y)‖y− z‖−β

∥∥∥∥
p/2

≤ Kβ t
(2−2q)2

2q

ˆ t

s
dr
ˆ
R2

dzG2q
t−r(x− z)

∥∥Φ(r,z)
∥∥2

p, (2.48)

where q = 2
4−β
∈ (1/2,1) and the constant Kβ only depends on β .

Proof. By (2.20), there exists some constant Cβ that only depends on β such that

ˆ
R4

dydzGt−r(x− y)Gt−r(x− z)Φ(r,z)Φ(r,y)‖y− z‖−β

≤Cβ

(ˆ
R2

dyG2q
t−r(x− y)|Φ(r,y)|2q

)1/q

≤Cβ

(
(2π)1−2q

2−2q
(t− r)2−2q

) 1
q−1ˆ

R2
dyG2q

t−r(x− y)|Φ(r,y)|2

≤ Kβ t
(2−2q)2

2q

ˆ
R2

dyG2q
t−r(x− y)|Φ(r,y)|2,

where we have used the fact that G2q
t−r(y)dy, with 2q < 2, is a finite measure on R2 with total mass

(2π)1−2q

2−2q (t− r)2−2q in view of (2.23) and we have put Kβ = Cβ

( (2π)1−2q

2−2q

) 1
q−1. Therefore, a further

application of Minkowski’s inequality yields the bound in (2.48).

2.3.1 Moment estimates for the Picard approximation

Recall the Picard iteration introduced in (2.18): u0(t,x) = 1 and

un+1(t,x) = 1+
ˆ t

0

ˆ
R2

Gt−s(x− y)σ
(
un(s,y)

)
W (ds,dy) for n≥ 0. (2.49)
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Using the estimates (2.26) and (2.48), we can write with 2q = 4
4−β
∈ (1,2), p≥ 2 and n≥ 1,

‖un(t,x)‖2
p ≤ 2+8p

×

∥∥∥∥∥
ˆ
[0,t]×R4

Gt−s(x− z)Gt−s(x− y)σ(un(s,y))σ(un(s,z))‖y− z‖−β dsdzdy

∥∥∥∥∥
p/2

≤ 2+8pKβ t
(2−2q)2

2q

ˆ t

0
ds
ˆ
R2

G2q
t−s(x− y)‖σ(un−1(s,y))‖2

pdy.

Then, using (2.23), we can write

‖un(t,x)‖2
p ≤ 2+8pKβ t

(2−2q)2
2q

ˆ t

0
ds
ˆ
R2

G2q
t−s(x− y)

(
2σ(0)2 +2L2‖un−1(s,y)‖2

p

)
dy

≤ 2+
16pKβ (2π)1−2q

(2−2q)(3−2q)
t
(2−2q)2

2q +3−2q
σ(0)2

+16pKβ t
(2−2q)2

2q L2
ˆ t

0
ds
ˆ
R2

G2q
t−s(x− y)‖un−1(s,y)‖2

pdy,

where L is the Lipschitz constant of σ . This leads to

Hn(t)≤ c1 + c2

ˆ t

0
dsHn−1(s), (2.50)

where Hn(t) = supx∈R2 ‖un(t,x)‖2
p,

c1 := 2+
pK∗

β
σ(0)2

3−2q
t
(2−2q)2

2q +3−2q and c2 := pK∗
β

L2t
(2−2q)2

2q +2−2q,

where K∗
β
=

16Kβ (2π)1−2q

2−2q = 16Cβ

( (2π)1−2q

2−2q

)1/q is a constant depending only on β . Therefore, by

iterating the inequality (2.50) and taking into account that H0(t) = 1, yields

Hn(t)≤ c1 exp(c2t).

74



In what follows, we will denote by C∗
β

a generic constant that only depends on β and may be

different from line to line. In this way, we obtain

‖un(t,x)‖p ≤
(√

2+
√

pC∗
β

t
3−β

2 |σ(0)|
)

exp
(

pC∗
β

t2−β L2).
As a consequence,

‖σ(un(t,x))‖p ≤ |σ(0)|+L
(√

2+
√

pC∗
β

t
3−β

2 |σ(0)|
)

exp
(

pC∗
β

t2−β L2)=: κp,t . (2.51)

2.3.2 Proof of Theorem 2.0.6

The proof will be done in several steps.

Step 1. In this step, we will establish the following estimate (2.52) for the p-norm of the Malliavin

derivative of the Picard iteration.

Proposition 2.3.2. For any n≥ 3 and any p≥ 2

∥∥Ds,yun+1(t,x)
∥∥

p ≤Cβ ,p,t,Lκp,tGt−s(x− y), (2.52)

for almost all (s,y) ∈ [0, t]×R2, where κp,t is defined in (2.51) and the constant Cβ ,p,t,L is given by

Cβ ,p,t,L := 1+
√

pLC∗
β

t
1
q−

1
2 + pC∗

β
L2t

2
q−1 +

∞

∑
k=3

(pC∗
β

L2)k/2√
(k−2)!

tk( 1
q−

1
2 ), (2.53)

with C∗
β

a constant only depending on β .

One key ingredient for proving Proposition 2.3.2 is the following Lemma 2.3.3, which is a

consequence of the technical Lemma 2.0.11. Both Lemma 2.0.11 and Lemma 2.3.3 will be proved

in Section 2.3.3.
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Lemma 2.3.3. For q ∈ (1/2,1), δ ∈ [1,1/q] and s < t, we have

Ks,t(z) :=
ˆ t

s
dr
[
G2q

t−r ∗G2q
r−s(z)

]δ
. (t− s)1−δ (2q−1)Gδ (2q−1)

t−s (z). (2.54)

where the implicit constant only depends on q.

Proof of Proposition 2.3.2. Fix (t,x) ∈ R+×R2 and p ≥ 2. Let us first establish the following

weaker estimate:

un(t,x) ∈ D1,p and ‖Ds,yun(t,x)‖p ≤CGt−s(x− y), (2.55)

for almost all (s,y)∈ [0, t]×R2, where the constant C may depend on n. It follows from (2.49) that

the claim (2.55) holds true for n= 0,1, because Ds,yu0(t,x) = 0 and Ds,yu1(t,x) = σ(1)Gt−s(x−y).

Now suppose the claim (2.55) holds true for n≥ 1, then taking the Malliavin derivative in both sides

of equality (2.49) and using the commutation relationship (3.7) and the chain rule (3.4), we obtain

Ds,yun+1(t,x) = Gt−s(x− y)σ
(
un(s,y)

)
+

ˆ t

s

ˆ
R2

Gt−r(x− z)Σ(n)
r,z Ds,yun(r,z)W (dr,dz),

where
{

Σ
(n)
s,y : (s,y) ∈ R+×R2} is an adapted random field that is uniformly bounded by L, for

each n. We recall that the constant L is the Lipschitz constant of the function σ appearing in (2.1).

It follows that

∥∥Ds,yun+1(t,x)
∥∥2

p ≤ 2κ
2
p,tG

2
t−s(x− y)+8p

∥∥∥∥∥
ˆ t

s

ˆ
R4

Gt−r(x− z)Gt−r(x− z′)Σ(n)
r,z

×Ds,yun(r,z)Σ
(n)
r,z′Ds,yun(r,z′)‖z− z′‖−β dzdz′dr

∥∥∥∥∥
p/2

by BDG (2.26)

≤ 2κ
2
p,tG

2
t−s(x− y)+8pL2C2

n

ˆ t

s

∥∥Gt−r(x−•)Gr−s(y−•)
∥∥2
H0

dr,

by applying Minkowski’s inequality and using the induction hypothesis, where κp,t is defined in
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(2.51) and H0 has been introduced in (2.19). Note that Lemma 2.0.10 (see (2.20)) implies

ˆ t

s

∥∥Gt−r(x−•)Gr−s(y−•)
∥∥2
H0
≤Cβ

ˆ t

s
dr
(
G2q

t−r ∗G2q
r−s
)1/q

(x− y)≤C∗
β

t
1
q−1G

2− 1
q

t−s (x− y),

where the last inequality follows from Lemma 2.3.3 with δ = 1/q and C∗
β

is a constant that only

depends on β . Finally, using

G
2− 1

q
t−s (x− y)≤

[
2π(t− s)

] 1
q G2

t−s(x− y), (2.56)

we get ‖Ds,yun+1(t,x)‖p ≤Cn+1Gt−s(x−y) with Cn+1 =

√
2κ2

p,t + pL2C2
nC∗

β
t

2
q−1 and thus by rou-

tine computations, we can show un+1(t,x) ∈ D1,p; see also Step 2. This shows (2.55) for each n.

Moreover, we point out that Ds,yun+1(t,x) = 0 if s≥ t.

To obtain the uniform estimate in (2.52), we proceed with the finite iterations

Ds,yun+1(t,x) = Gt−s(x− y)σ
(
un(s,y)

)
+

ˆ t

s

ˆ
R2

Gt−r1(x− z1)Σ
(n)
r1,z1Gr1−s(z1− y)σ(un−1(s,y))W (dr1,dz1)

+
n

∑
k=2

ˆ t

s
· · ·
ˆ rk−1

s

ˆ
R2k

Grk−s(zk− y)σ
(
un−k(s,y)

)
×

k

∏
j=1

Gr j−1−r j(z j−1− z j)Σ
(n+1− j)
r j,z j W (dr j,dz j) =:

n

∑
k=0

T (n)
k , (2.57)

where T (n)
k denotes the kth item in the sum and r0 = t,z0 = x. For example, T (n)

0 = Gt−s(x−

y)σ
(
un(s,y)

)
and

T (n)
1 =

ˆ t

s

ˆ
R2

Gt−r1(x− z1)Σ
(n)
r1,z1Gr1−s(z1− y)σ(un−1(s,y))W (dr1,dz1).

We are going to estimate the p-norm of each of term T (n)
k for k = 0, . . . ,n.

Case k = 0: It is clear that

‖T (n)
0 ‖p ≤ κp,tGt−s(x− y), (2.58)
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where κp,t is the constant defined in (2.51).

Case k = 1: Applying (2.26), Minkowski’s inequality and (2.20), we can write

‖T (n)
1 ‖

2
p ≤ 4p

∥∥∥∥∥
ˆ t

s

ˆ
R4

Gt−r1(x− z1)Gt−r1(x− z′1)Gr1−s(z1− y)Gr1−s(z′1− y)

×‖z1− z′1‖−β
Σ
(n)
r1,z1Σ

(n)
r′1,z
′
1
σ

2(un−1(s,y))dz1dz′1dr1

∥∥∥∥∥
p/2

≤ 4pL2
κ

2
p,t

ˆ t

s

∥∥Gt−r1(x−•)Gr1−s(y−•)
∥∥2
H0

dr1 with H0 introduced in (2.19)

≤ 4pL2
κ

2
p,tCβ

ˆ t

s

(ˆ
R2

G2q
t−r1

(x− z1)G
2q
r1−s(z1− y)dz1

)1/q

dr1,

with q = 2/(4−β ). Then, we can deduce immediately from Lemma 2.3.3 (with δ = 1/q) that

‖T (n)
1 ‖

2
p ≤ pL2

κ
2
p,tC

∗
β

t
1
q−1G

2− 1
q

t−s (x− y), (2.59)

for some generic constant C∗
β

, which only depends on β . Taking (2.56) into account, we obtain

‖T (n)
1 ‖p ≤

√
pLκp,tC∗β t

1
q−

1
2 Gt−s(x− y). (2.60)

Case k = 2: We can write

T (n)
2 =

ˆ t

s

ˆ
R2

W (dr1,dz1)Gt−r1(x− z1)Σ
(n)
r1,z1Nr1,z1

with Nr1,z1 defined to be

Nr1,z1 =

ˆ r1

s

ˆ
R2

Gr2−s(z2− y)σ
(
un−2(r2,z2)

)
Gr1−r2(z1− z2)Σ

(n−1)
r2,z2 W (dr2,dz2),

which is clearly Fr1-measurable. Applying again (2.26), Minkowski’s inequality and (2.20), we
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can bound ‖T (n)
2 ‖2

p by

4p

∥∥∥∥∥
ˆ t

s

ˆ
R4

Gt−r1(x− z1)Gt−r1(x− z′1)‖z1− z′1‖−β
Σ
(n)
r1,z1Σ

(n)
r′1,z
′
1
Nr1,z1Nr1,z′1

dz1dz′1dr1

∥∥∥∥∥
p/2

≤ 4pL2
ˆ t

s

ˆ
R4

Gt−r1(x− z1)Gt−r1(x− z′1)Gr1−s(z1− y)Gr1−s(z′1− y)

×‖Nr1,z1‖p‖Nr1,z′1
‖p‖z1− z′1‖−β dz1dz′1dr1

≤ 4pL2Cβ

ˆ t

s

(ˆ
R2

G2q
t−r1

(x− z1)‖Nr1,z1‖
2q
p dz1

)1/q

dr1. (2.61)

The same arguments used to obtain the bound (2.60) for ‖T (n)
1 ‖p yield

‖Nr1,z1‖p ≤
√

pLκp,tC∗β t
1
q−

1
2 Gr1−s(z1− y). (2.62)

Substituting (2.62) into (2.61) and applying Lemma 2.3.3 with δ = 1/q, we obtain

‖T (n)
2 ‖

2
p ≤ 4pL2Cβ (

√
pLκp,tC∗β t

1
q−

1
2 )2
ˆ t

s

(ˆ
R2

G2q
t−r1

(x− z1)G
2q
r1−s(z1− y)dz1

)1/q

dr1

≤ p2L4
κ

2
p,tC

∗
β

t
3
q−2G

2− 1
q

t−s (x− y),

which implies

‖T (n)
2 ‖p ≤ pL2

κp,tC∗β t
3

2q−1G
1− 1

2q
t−s (x− y). (2.63)

In view of (2.56), we obtain

‖T (n)
2 ‖p ≤ pL2

κp,tC∗β t
2
q−1Gt−s(x− y). (2.64)

Case 3≤ k ≤ n: The strategy to handle these cases will be slightly different. We need to get rid of

the power 1
q in order to iterate the integrals in the time variables and obtain a summable series. We

can write

T (n)
k =

ˆ t

s

ˆ
R2

W (dr1,dz1)Gt−r1(x− z1)Σ
(n)
r1,z1N̂r1,z1
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with N̂r1,z1 defined to be

N̂r1,z1 =

ˆ
s<rk<···<r2<r1

ˆ
R2k−2

Grk−s(zk− y)σ
(
un−k(s,y)

)
×

k

∏
j=2

Gr j−1−r j(z j−1− z j)Σ
(n+1− j)
r j,z j W (dr j,dz j),

which is Fr1-measurable. Then, we deduce from (2.26) and (2.48) that

∥∥T (n)
k

∥∥2
p ≤ 4p

∥∥∥∥∥
ˆ t

s
dr1

ˆ
R4

Gt−r1(x− z1)Σ
(n)
r1,z1N̂r1,z1Gt−r1(x− z′1)Σ

(n)
r1,z′1

N̂r1,z′1

×‖z′1− z1‖−β dz1dz′1

∥∥∥∥∥
p/2

≤ 4pKβ L2t
(2−2q)2

2q

ˆ t

s
dr1

ˆ
R2

dz1G2q
t−r1

(x− z1)‖N̂r1,z1‖
2
p.

Now we can iterate the above process to obtain

∥∥T (n)
k

∥∥2
p ≤

(
4pL2Kβ t

(2−2q)2
2q

)k−1ˆ t

s
dr1

ˆ r1

s
dr2 · · ·

ˆ rk−2

s
drk−1

ˆ
R2k−2

dz1 · · ·dzk−1

×G2q
t−r1

(x− z1)G
2q
r1−r2

(z1− z2) · · ·G2q
rk−2−rk−1

(zk−2− zk−1)
∥∥Ñrk−1,zk−1

∥∥2
p, (2.65)

where Ñrk−1,zk−1 is defined to be

ˆ rk−1

s

ˆ
R2

W (drk,dzk)σ
(
un−k(s,y)

)
Grk−1−rk(zk−1− zk)Σ

(n+1−k)
rk,zk Grk−s(zk− y).

Therefore, the same arguments for estimating ‖T (n)
1 ‖2

p (see (2.59)), lead to

∥∥Ñrk−1,zk−1

∥∥2
p ≤ pκ

2
p,tL

2C∗
β

t
1
q−1G

2− 1
q

rk−1−s
(
zk−1− y), (2.66)

with C∗
β

being a generic constant that only depends on β . On the other hand, applying Lemma
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2.3.3 with δ = 1, we can write

ˆ rk−3

rk−1

drk−2

ˆ
R2

dzk−2G2q
rk−3−rk−2

(zk−3− zk−2)G
2q
rk−2−rk−1

(zk−2− zk−1)

. t2−2qG2q−1
rk−3−rk−1

(zk−3− zk−1), (2.67)

with the convention z0 = x and r0 = t. Plugging the estimates (2.66) and (2.67) into (2.65), yields

∥∥T (n)
k

∥∥2
p ≤ κ

2
p,t

(
pL2C∗

β
t

2(1−q)2
q

)k

t5−4q− 1
q

×
ˆ t

s
dr1

ˆ r1

s
dr2 · · ·

ˆ rk−3

s
drk−1

ˆ
R2k−4

dz1 · · ·dzk−3dzk−1

×G2q
t−r1

(x− z1) · · ·G2q
rk−4−rk−3

(zk−4− zk−3)

×G2q−1
rk−3−rk−1

(zk−3− zk−1)G
2− 1

q
rk−1−s

(
zk−1− y)

By Cauchy-Schwartz inequality and (2.23),

ˆ
R2

G2q−1
rk−3−rk−1

(zk−3− zk−1)G
2− 1

q
rk−1−s

(
zk−1− y)dzk−1

≤
[ˆ

R2
G4q−2

rk−3−rk−1
(z)dz

ˆ
R2

G
4− 2

q
rk−1−s(z)dz

]1/2

≤C∗
β

t1−2q+ 1
q .

In this way, we obtain

∥∥T (n)
k

∥∥2
p ≤ κ

2
p,t(pL2C∗

β
t

2(1−q)2
q )kt6(1−q)1{‖x−y‖<t−s} (2.68)

×
ˆ t

s
dr1

ˆ r1

s
dr2 · · ·

ˆ rk−3

s
drk−1

ˆ
R2k−6

dz1 · · ·dzk−3

×G2q
t−r1

(x− z1) · · ·G2q
rk−4−rk−3

(zk−4− zk−3)

The indicator function 1{‖x−y‖<t−s} appears in (2.68), because

1{‖zk−1−y‖<rk−1−s,‖zk−3−zk−1‖<rk−3−rk−1,...,‖x−z1‖<t−r1} ≤ 1{‖x−y‖<t−s}.
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Now, we can perform the integration with respect to dzk−3, . . . ,dz1 one by one to get

ˆ
R2k−6

dz1 · · ·dzk−3G2q
t−r1

(x− z1)G
2q
r1−r2

(z1− z2) · · ·G2q
rk−4−rk−3

(zk−4− zk−3)

=

(
(2π)1−2q

2−2q

)k−3

×
k−3

∏
j=1

(
r j−1− r j

)2−2q ≤
(
(2π)1−2q

2−2q
t2−2q

)k−3

,

in view of the equality (2.23). Together with the integration on the simplex {t > r1 > · · ·> rk−3 >

rk−1 > s}, we get ∥∥T (n)
k

∥∥2
p ≤

(pC∗
β

L2)k

(k−2)!
κ

2
p,tt

k( 2
q−1)−21{‖x−y‖<t−s}.

Thus, taking into account that

1{‖x−y‖<t−s} ≤
[
2π(t− s)

]2G2
t−s(x− y),

we obtain for k ∈ {3, . . . ,n},

∥∥T (n)
k

∥∥
p ≤ κp,t

(pC∗
β

L2)k/2√
(k−2)!

t k( 1
q−

1
2 )Gt−s(x− y). (2.69)

Hence, we deduce from (2.58), (2.60) and (2.69) that for any n≥ 3,

∥∥Ds,yun+1(t,x)
∥∥

p ≤
n

∑
k=0

∥∥T (n)
k

∥∥
p ≤Cβ ,p,t,Lκp,tGt−s(x− y),

where the constant Cβ ,p,t,L is defined in (2.53). This proves Proposition 2.3.2.

Step 2. We are going to show that Ds,yu(t,x) is a real-valued random variable. As a consequence
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of (2.20), (2.52) and (2.23), we have for any p≥ 2 and with q = 2/(4−β )

E
[
‖Dun+1(t,x)‖p

H

]2/p
=

∥∥∥∥ˆ
R+

ds
∥∥Ds,•un+1(t,x)

∥∥2
H0

∥∥∥∥
p/2

.

∥∥∥∥∥
ˆ
R+

ds
(ˆ

R2
|Ds,yun+1(t,x)|2qdy

)1/q
∥∥∥∥∥

p/2

.
ˆ
R+

ds
(ˆ

R2

∥∥Ds,yun+1(t,x)
∥∥2q

p dy
)1/q

by applying Minkowski twice

.
ˆ
R+

ds
(ˆ

R2
G2q

t−s(x− y)dy
)1/q

.
ˆ t

0
(t− s)

2−2q
q ds . 1.

One can first read from the above estimates that {Dun+1(t,x),n ≥ 1} is uniformly bounded in

Lp(Ω;H
)
, which together with the Lp-convergence of un(t,x) to u(t,x) implies the convergence

of Dun+1(t,x) to Du(t,x) in the weak topology on Lp(Ω;H
)

up to a subsequence; this fact is

well-known in the literature, see for instance [24]. One can deduce from the same arguments that

{Dun+1(t,x),n≥ 1} is uniformly bounded in Lp(Ω;L2q(R+×R2)
)
:

∥∥Dun+1(t,x)
∥∥p

Lp(Ω;L2q(R+×R2))
=

∥∥∥∥ˆ
R+×R2

|Ds,yun+1(t,x)|2qdyds
∥∥∥∥ p

2q

p
2q

≤
(ˆ

R+×R2

∥∥Ds,yun+1(t,x)
∥∥2q

p dyds
) p

2q

.

(ˆ
R+×R2

G2q
t−s(x− y)dyds

) p
2q

. 1.

So up to a subsequence, Dun(t,x) also converges to Du(t,x) in the weak topology on Lp(Ω;L2q(R+×

R2)
)
. In particular, we have (2q < 2≤ p < ∞)

sup
(t,x)∈[0,T ]×R2

∥∥∥∥ˆ
R+×R2

|Ds,yu(t,x)|2qdyds
∥∥∥∥

p
2q

<+∞ (2.70)

and Ds,yu(t,x) is a real function in (s,y).

Step 3. Let us prove the lower bound. By Lemma 2.1.5, we can write

u(t,x)−1 =

ˆ t

0

ˆ
R2

E
[
Ds,yu(t,x)|Fs

]
W (ds,dy),

83



so that a comparison with (2.4) yields E
[
Ds,yu(t,x)|Fs

]
= Gt−s(x− y)σ(u(s,y)) almost every-

where in Ω×R+×R2. It follows that

∥∥E[Ds,yu(t,x)|Fs]
∥∥

p = Gt−s(x− y)
∥∥σ(us,y)

∥∥
p,

thus by conditional Jensen, we have

∥∥Ds,yu(t,x)
∥∥

p ≥ Gt−s(x− y)
∥∥σ(us,y)

∥∥
p,

which is exactly the lower bound in (2.11).

Step 4. We are finally in a position to prove the upper bound in (2.11). Put p? = p/(p−1), which

is the conjugate exponent for p. Let us pick a nonnegative function M ∈Cc(R+×R2) and random

variable Z ∈ Lp?(Ω) with ‖Z ‖p? ≤ 1. Since Dun(t,x) converges to Du(t,x) in the weak topology

on Lp(Ω;L2q(R+×R2)
)

along some subsequence (say Dunk(t,x)), we have, in view of (2.52)

ˆ
R+×R2

M(s,y)E
[
ZDs,yu(t,x)

]
dsdy = lim

k→∞

ˆ
R+×R2

M(s,y)E
[
ZDs,yunk(t,x)

]
dsdy

≤Cβ ,p,t,Lκp,t

ˆ
R+×R2

M(s,y)Gt−s(x− y)dsdy.

This implies that for almost all (s,y) ∈ [0, t×R2,

E
[
ZDs,yu(t,x)

]
≤Cβ ,p,t,Lκp,tGt−s(x− y)

Taking the supremum over {Z : ‖Z ‖p? ≤ 1} yields

‖Ds,yu(t,x)‖p ≤Cβ ,p,t,Lκp,tGt−s(x− y),

which finishes the proof.
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2.3.3 Proof of technical lemmas

For convenience, let us recall Lemma 2.0.11 below.

Lemma 2.0.11. For t > s, with ‖z‖= w > 0 and q ∈ (1/2,1)

G2q
t ∗G2q

s (z). 1{w<s}
[
t2− (s−w)2]1−2q

+
[
t2− (s+w)2]1−2q1{t>s+w}

+1{|s−w|<t<s+w}
[
(w+ s)2− t2]−q+ 1

2
[
t2− (s−w)2]−q+ 1

2 , (2.22)

where the implicit constant depends only on q.

Proof of Lemma 2.0.11. We are interested in estimating

I =
ˆ
R2

(
t2−‖x‖2)−q

+

(
s2−‖x− z‖2)−q

+
dx,

where (v)−q
+ = v−q for v > 0 and (v)−q

+ = 0 for v ≤ 0. Because the convolution of two radial

functions is radial, the quantity I depends only on s, t and ‖z‖. Hence, we can assume additionally

that z = (w,0), where w > 0. Note that the integral I vanishes if t + s<w and we can write, putting

x = (ξ ,η),

I =
ˆ
R2

(
t2−ξ

2−η
2)−q

+

(
s2− (ξ −w)2−η

2)−q
+

dξ dη .

Making the change of variables (x,y) =
(
ξ 2 +η2,(w−ξ )2 +η2) yields

I =
1
2

ˆ
D
(t2− x)−q(s2− y)−q[(√x+w)2− y

]−1/2[y− (
√

x−w)2]−1/2dxdy, (2.71)

where

D =
{
(x,y) ∈ R2 : 0 < x < t2,0 < y < s2,

(√
x−w

)2
< y <

(√
x+w

)2
}
.

To derive the expression (2.71) for I, we have used the fact that the Jacobian of the change of
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variables is ∣∣∣∣ ∂ (x,y)
∂ (ξ ,η)

∣∣∣∣= 4w|η |= 2
[
(
√

x+w)2− y
]1/2[y− (

√
x−w)2]1/2

.

Then, integrating first in the variable y yields

I =
1
2

ˆ t2

0
dx(t2− x)−q

ˆ
D(x)

dy (s2− y)−q[(√x+w)2− y
]−1/2[y− (

√
x−w)2]−1/2

=:
1
2

ˆ t2

0
(t2− x)−qSq(x)dx,

where

D(x) =
{

y ∈ R : (x,y) ∈ D
}
=
{

y ∈ R : y < s2,
(√

x−w
)2

< y <
(√

x+w
)2
}

and

Sq(x) =
ˆ

D(x)
dy (s2− y)−q[(√x+w)2− y

]−1/2[y− (
√

x−w)2]−1/2
. (2.72)

Let us first deal with Sq(x) for every x ∈ (0, t2). There are two possible cases, depending on

the value of x:

(A) When (
√

x−w)2 < s2 < (
√

x+w)2,

Sq(x) =
ˆ s2

(
√

x−w)2
(s2− y)−q[(√x+w)2− y

]−1/2[y− (
√

x−w)2]−1/2dy

≤ Beta(1/2,1−q)
[
(
√

x+w)2− s2)
]−1/2[s2− (

√
x−w)2]−q+ 1

2

.
[
(
√

x+w)2− s2)
]−1/2[s2− (

√
x−w)2]−q+ 1

2 . (2.73)

Throughout this section, Beta(a,b) denotes the usual beta function:

Beta(a,b) =
ˆ 1

0
xa−1(1− x)b−1dx, a,b ∈ (0,∞).
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(B) When (
√

x−w)2 < (
√

x+w)2 < s2,

Sq(x) =
ˆ (
√

x+w)2

(
√

x−w)2
(s2− y)−q[(√x+w)2− y

]−1/2[y− (
√

x−w)2]−1/2dy

≤ (s2− (
√

x+w)2)−q
ˆ (
√

x+w)2

(
√

x−w)2

[
(
√

x+w)2− y
]−1/2[y− (

√
x−w)2]−1/2dy

= Beta(1/2,1/2)
[
s2− (

√
x+w)2]−q

.
[
s2− (

√
x+w)2]−q

.

Note that three positive numbers a,b,c can form sides of a triangle if and only if the sum of any

two of them is strictly bigger than the third one, which is equivalent to saying that |a− b| < c <

a+b. It follows that

(
√

x−w)2 < s2 < (
√

x+w)2⇔
√

x,w,s can be the sides of a triangle

⇔ (s−w)2 < x < (s+w)2.

Furthermore, it is trivial that (
√

x−w)2 < (
√

x+w)2 < s2⇔ x < (s−w)2 and s > w.

Now we decompose the integral 2I =
´ t2

0 (t2− x)−qSq(x)dx into two parts corresponding to

the cases (A) and (B):

2I = IA + IB,

where

IA =

ˆ t2∧(s+w)2

(s−w)2
(t2− x)−qSq(x)dx and IB =

ˆ (s−w)2∧t2

0
(t2− x)−qSq(x)dx.

Estimation of IA. We first write, using (2.73),

IA .
ˆ t2∧(s+w)2

(s−w)2
(t2− x)−q[(√x+w)2− s2)

]−1/2[s2− (
√

x−w)2]−q+ 1
2 dx

=

ˆ t2∧(s+w)2

(s−w)2
(t2− x)−q[(w+ s)2− x

]−q+ 1
2
[
x− (w− s)2]−q+ 1

2
[
(
√

x+w)2− s2]q−1dx.
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Recall in this case
√

x+w > s, which implies (
√

x+w)2− s2 > x− (s−w)2 > 0. Therefore,

IA .
ˆ t2∧(s+w)2

(s−w)2
(t2− x)−q[(w+ s)2− x

]−q+ 1
2
[
x− (w− s)2]−1/2dx.

Now we consider the following two sub-cases:

(A1) If s+w < t, then for (s−w)2 < x < (s+w)2 < t, we have, with γ = 2−q−1,

(t2− x)−q ≤
[
t2− (s+w)2]−qγ[

(s+w)2− x
]−q+qγ

=
[
t2− (s+w)2]1−2q[

(s+w)2− x
]q−1

.

Thus,

IA .
[
t2− (s+w)2]1−2q

ˆ (s+w)2

(s−w)2

[
(w+ s)2− x

]−1/2[x− (w− s)2]−1/2dx

= Beta(1/2,1/2)
[
t2− (s+w)2]1−2q

.

(A2) If (s−w)2 < t2 < (s+w)2 (i.e. s,w, t form triangle sides), then

IA .
ˆ t2

(s−w)2
(t2− x)−q[(w+ s)2− x

]−q+ 1
2
[
x− (w− s)2]−1/2dx

≤
[
(w+ s)2− t2]−q+ 1

2

ˆ t2

(s−w)2

(
t2− x

)−q[x− (w− s)2]−1/2dx

.
[
(w+ s)2− t2]−q+ 1

2
[
t2− (s−w)2]−q+ 1

2

because
´ b

a (b−x)−q(x−a)−1/2dx = Beta(1/2,1−q)(b−a)−q+ 1
2 for any 0≤ a < b < ∞ and

for any q < 1.

Combining (A1) and (A2), we have obtained

IA .
[
t2− (s+w)2]1−2q1{t>s+w}+1{|s−w|<t<s+w}

[
(w+ s)2− t2] 1−2q

2
[
t2− (s−w)2] 1−2q

2 . (2.74)
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Estimation of IB. In this case,
√

x < s−w and w < s, then

s2− (
√

x+w)2 > (s−w)2− x > 0.

Therefore, Sq(x).
[
(s−w)2− x

]−q and the quantity IB can be bounded as follows

IB =

ˆ (s−w)2

0
(t2− x)−qSq(x)dx .

ˆ (s−w)2

0
(t2− x)−q[(s−w)2− x

]−qdx

.
[
t2− (s−w)2]1−2q

, (2.75)

because for any 0 < a < b < ∞ and any p,q ∈ (1/2,1)

ˆ a

0
(b− x)−p(a− x)−qdx =

ˆ a

0
(b−a+ y)−py−qdy = (b−a)1−p−q

ˆ a
b−a

0
y−q(1+ y)−pdy

≤ (b−a)1−p−q
ˆ

∞

0
y−q(1+ y)−pdy . (b−a)1−p−q.

Our proof is done by combining the estimates (2.74) and (2.75) to get (2.22).

Now let us apply Lemma 2.0.11 to prove Lemma 2.3.3.

Proof of Lemma 2.3.3. Put µ = (t− r)∧ (r− s) and ν = (t− r)∨ (r− s) and assume µ 6= ν . We

apply Lemma 2.0.11 to write

(
G2q

t−r ∗G2q
r−s(z)

)δ
.
(

1{w<µ}
[
ν

2− (µ−w)2]1−2q
+
[
ν

2− (µ +w)2]1−2q1{ν>µ+w}

+1{|µ−w|<ν<µ+w}
[
(w+µ)2−ν

2]−q+ 1
2
[
ν

2− (µ−w)2]−q+ 1
2
)δ

. 1{w<µ}
[
ν

2− (µ−w)2]δ (1−2q)
+
[
ν

2− (µ +w)2]δ (1−2q)1{ν>µ+w}

+1{|µ−w|<ν<µ+w}
[
(w+µ)2−ν

2]δ ( 1
2−q)[

ν
2− (µ−w)2]δ ( 1

2−q)
,
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where w = ‖z‖> 0 and 0 > δ (1−2q)≥ 1
q −2 >−1. Define

K(1)
s,t (z) : =

ˆ t

s
dr1{w<µ}

[
ν

2− (µ−w)2]δ (1−2q)

=

ˆ t

s
dr1{w<µ}

[
(ν +µ−w)(ν−µ +w)

]δ (1−2q)

and note that t− r > r− s if and only if r < t+s
2 . Then, by exact computations and decomposing

the integral in the intervals [s,(t + s)/2] and [(t + s)/2, t], yields

K(1)
s,t (z) = 1{w< t−s

2 }

ˆ (t+s)/2

s+w
(t− s−w)δ (1−2q)(t + s+w−2r)δ (1−2q)dr

+1{w< t−s
2 }

ˆ t−w

(t+s)/2
(t− s−w)δ (1−2q)(2r+w− t− s)δ (1−2q)dr

= 2×1{w< t−s
2 }

(t− s−w)δ (1−2q) 1
2(δ (1−2q)+1)

×
[
(t− s−w)δ (1−2q)+1−wδ (1−2q)+1

]
≤ (t− s)δ (1−2q)+1

δ (1−2q)+1
1{w< t−s

2 }
(t− s−w)δ (1−2q)

. (t− s)δ (1−2q)+1(t− s)δ (1−2q)1{w< t−s
2 }

. (t− s)δ (1−2q)+1[(t− s)2−‖z‖2]δ ( 1
2−q)1{‖z‖<t−s}. (2.76)

By the same arguments, we can get

K(2)
s,t (z) : =

ˆ t

s
dr
[
ν

2− (µ +w)2]δ (1−2q)1{ν>µ+w}

=

ˆ t

s
dr
[
(ν +µ +w)(ν−µ−w)

]δ (1−2q)1{ν>µ+w}

= 1{t−s>w}(t− s+w)δ (1−2q)
ˆ (t+s−w)/2

s

(
t + s−2r−w

)δ (1−2q)dr

+1{t−s>w}(t− s+w)δ (1−2q)
ˆ t

(t+s+w)/2

(
2r− s− t−w

)δ (1−2q)dr

= 1{t−s>w}(t− s+w)δ (1−2q) 1
2(δ (1−2q)+1)

(t− s−w)δ (1−2q)+1×2

. (t− s)δ (1−2q)+1[(t− s)2−‖z‖2]δ ( 1
2−q)1{‖z‖<t−s}. (2.77)
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Similarly, we first write

K(3)
s,t (z) : =

ˆ t

s
dr1{|µ−w|<ν<µ+w}

[
(w+µ)2−ν

2]δ ( 1
2−q)[

ν
2− (µ−w)2]δ ( 1

2−q)

=

ˆ t

s
dr1{ν−µ<w<µ+ν}

[
(µ +ν)2−w2]δ ( 1

2−q)
(w+µ−ν)δ ( 1

2−q)(w+ν−µ)δ ( 1
2−q)

=
[
(t− s)2−w2]δ ( 1

2−q)
ˆ t

s
dr1{ν−µ<w<µ+ν}(w+µ−ν)δ ( 1

2−q)(w+ν−µ)δ ( 1
2−q).

Recall t− r > r− s if and only if r < t+s
2 . Then

ˆ (t+s)/2

s
dr1{ν−µ<w<µ+ν}(w+µ−ν)δ ( 1

2−q)(w+ν−µ)δ ( 1
2−q)

= 1{w<t−s}

ˆ t+s
2

t+s−w
2

dr (w− t− s+2r)δ ( 1
2−q)(w+ t + s−2r)δ ( 1

2−q)

= 1{w<t−s}2
δ (1−2q)

ˆ b

a
(r−a)−δ ( 1

2−q)(c− r)δ ( 1
2−q)dr,

where a =
t + s−w

2
< b =

t + s
2

< c =
t + s+w

2
. It is easy to show that

ˆ b

a
(r−a)δ ( 1

2−q)(c− r)δ ( 1
2−q)dr = (c−a)δ (1−2q)+1

ˆ b−a
c−a

0
tδ ( 1

2−q)(1− t)δ ( 1
2−q)dt

≤ (c−a)δ (1−2q)+1
ˆ 1

0
tδ ( 1

2−q)(1− t)δ ( 1
2−q)dt

= Beta(δ (
1
2
−q)+1,δ (

1
2
−q)+1))(c−a)δ (1−2q)+1.

Therefore,

ˆ (t+s)/2

s
dr1{ν−µ<w<µ+ν}(w+µ−ν)δ ( 1

2−q)(w+ν−µ)δ ( 1
2−q)

. 1{w<t−s}wδ (1−2q)+1 ≤ (t− s)δ (1−2q)+11{‖z‖<t−s}.
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In the same manner, we can get

ˆ t

(t+s)/2
dr1{ν−µ<w<µ+ν}(w+µ−ν)δ ( 1

2−q)(w+ν−µ)δ ( 1
2−q)

= 1{w<t−s}

ˆ t+s+w
2

t+s
2

dr (w− t− s+2r)δ ( 1
2−q)(w+ t + s−2r)δ ( 1

2−q)

= 1{w<t−s}2
δ (1−2q)

ˆ c

b
(c− r)δ ( 1

2−q)(r−a)δ ( 1
2−q)dr (2.78)

≤ 1{w<t−s}2
δ (1−2q)(c−a)δ (1−2q)+1Beta(δ (

1
2
−q)+1,δ (

1
2
−q)+1)

. 1{w<t−s}wδ (1−2q)+1 ≤ (t− s)δ (1−2q)+11{‖z‖<t−s},

where a =
t + s−w

2
< b =

t + s
2

< c =
t + s+w

2
. Thus, we obtain

K(3)
s,t (z). (t− s)δ (1−2q)+1[(t− s)2−‖z‖2]δ ( 1

2−q)
+

1{‖z‖<t−s}, (2.79)

with δ (q− 1
2) ≤ 1− 1

2q ∈ (0, 1
2). Combining the estimates (2.76), (2.77) and (2.79) allows us to

finish the proof.

92



Chapter 3

A central limit theorem for the stochastic heat equation with

random initial condition

In this chapter, we consider the following nonlinear stochastic heat equation


∂u
∂ t

=
1
2

∂ 2u
∂x2 +σ(u) ∂ 2

∂ t∂xη for (t,x) ∈ (0,∞)×R,

u(0,x) = ξ (x),
(3.1)

where σ is a Lipschitz function with constant L ∈ (0,∞), η is a space-time Gaussian white noise

and ξ is a Gaussian white noise. We consider that both ξ and η are defined on the same probability

space (Ω,F ,P) and are independent of each other.

As in [44], by a mild solution to (3.1) we mean a random field u = {u(t,x), t > 0, x ∈ R}

satisfying some measurability conditions which will be specified later, and the following stochastic

integral equation,

u(t,x)=
ˆ
R

pt(x− y)ξ (dy)+
ˆ t

0

ˆ
R

pt−s(x− y)σ(u(s,y))η(ds,dy), a.s. for t > 0, x ∈ R, (3.2)

where pt(x) = (2πt)−1/2e−x2/(2t) for (t,x)∈R+×R. As usual in this framework, we set pt(·) := 0

for t ≤ 0.

Our main purpose in this chapter is to establish a quantitative central limit theorem for the

spatial average of the mild solution to (3.1). Our main result, Theorem 3.4.1, basically says that if

u(t,x) is the mild solution to 3.1, then, after proper normalization,
ˆ R

−R
u(t,x)dx converges in total

variation to a standard normal random variable when R→ ∞.
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Although the main result in this chapter is Theorem 3.4.1, there are other important contribu-

tions throughout chapter. We proceed now to briefly refer to those. First of all, the existence and

uniqueness of the mild solution in our setting is not directly covered by the work of Le Chen in

[7] or by the work of Dalang in [10]. For this reason, our study of the quantitative central limit

theorem, starts by proving existence and uniqueness of the mild solution. Additionally, we prove

that the mild solution to (3.1) is stationary. Furthermore, since our problem involves two indepen-

dent noises, some modifications to the usual Malliavin-Stein approach are necessary. To starters,

we need to introduce Malliavin derivatives with respect to both noises, and prove the differentia-

bility (in the sense of Malliavin calculus) of the mild solution. Similarly, we need to introduce two

divergences, and include both of them in the implementation of the Malliavin-Stein methodology.

The rest of the chapter is organized as follows. In Section 3.1, we define define the noise η and

ξ , and collect the elements of stochastic analysis, Malliavin calculus and Stein’s method that are

necessary for the rest of the chapter.

In Section 3.2, we state and prove Theorem 3.2.1 and Theorem 3.2.2 concerning the existence,

uniqueness and stationarity of the solution to (3.1).

In Section 3.3, we establish Theorem 3.3.1 and Theorem 3.3.2 about the differentiability (in the

sense of Malliavin calculus) of the solution to (3.1). In the second part of this section, we obtain

estimates for norm of the Malliavin derivative of the mild solution in terms of the fundamental heat

solution. These estimates correspond to Theorem 3.3.6, and Theorem 3.3.7, and represent a key

ingredient in the proof of Theorem 3.4.1.

Finally, in Section 3.4, we present our main result which is the quantitative central limit theo-

rem for the spatial average of the solution to (3.1).

Throughout the Chapter we denote by C a generic constant which can vary from line to line.

However, we will specify dependence where we feel it may be relevant. We also use the following

notation introduced in Chapter 2.

(1) The expression a . b means a ≤ Kb for some immaterial constant K that may vary from line

to line.
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(2) We write ‖X‖p for the Lp(Ω)-norm of a real random variable X .

3.1 Preliminaries

This section provides some preliminary results that are required for further sections. It consists of

three subsections: Subsection 3.1.1 contains several important facts from stochastic analysis, Sub-

section 3.1.2 is devoted to introduce concepts and results from Malliavin calculus and Subsection

3.1.3 details the so called, Malliavin-Stein methodology. It is worth mentioning that the appli-

cation of Malliavin calculus and the Malliavin-Stein approach in this chapter is slightly different

from Chapter 2 because there are two independent isonormal Gaussian processes involved.

3.1.1 Stochastic Analysis

We start by introducing the white noise in R+×R. Denote by B2
f (R+×R) the collection of Borel

sets A⊂R+×R with finite Lebesgue measure, denoted by |A|. Consider a centered Gaussian fam-

ily of random variables η = {η(A), A ∈B2
f }, defined on a complete probability space (Ω,F ,P),

with covariance given by

E [η(A)η(B)] = |A∩B|.

Note that the mapping 1A → η(A) for A ∈ B2
f can be extended to a linear isometry between

L2(R+×R) and the Gaussian space spanned by η . In this way, η = {η(h), h ∈ L2(R+×R)}

is a centered Gaussian family of random variables satisfying

E[〈η(h)η(g)〉] = 〈h,g〉L2(R+×R) ,

for all h,g ∈ L2(R+×R). This makes η an isonormal Gaussian process.

Let us now define the white noise on R. Denote by B1
f (R) the collection of Borel sets A ⊂ R

with finite Lebesgue measure. Let ξ = {ξ (A), A ∈B1
f } be a centered Gaussian family of random
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variables defined on the same probability space (Ω,F ,P) with covariance

E [ξ (A)ξ (B)] = |A∩B|,

and independent of η . By proceeding similarly to what we did for η , we obtain a centered Gaussian

family of random variables ξ = {ξ (g), g ∈ L2(R)} such that E[〈ξ (h)ξ (g)〉] = 〈h,g〉L2(R) , for all

g,h ∈ L2(R). In this way, ξ is also an isonormal Gaussian process.

At this point, we proceed to set up the filtered probability space. In other words, we introduce

the filtration Ft .

For all t > 0, we take F η

t to be the σ -algebra generated by the P-null sets and {η(1[0,s]×A),0≤

s ≤ t, A ∈B2
f }. Although {F η

t }t>0 defines a filtration, this is not the appropriate filtration for

our purpose because we need to include ξ as well. To fix this, we denote by F ξ the σ -algebra

generated by ξ and we set Ft := F η

t ∨F ξ . Then, we have constructed a filtration F= {Ft : t ∈

R+} suitable for our purposes. Equipped with this filtration, we proceed now to recall some facts

about stochastic integration.

As proved in [44], for any jointly measurable, F-adapted random field {X(s, t), (s, t)∈R+×R}

such that, ˆ
∞

0

ˆ
R
E
[
X(s,y)2] dyds < ∞,

the following stochastic integral

ˆ
∞

0

ˆ
R

X(s,y)η(ds,dy)

interpreted as the Dalang-Walsh integral ([10, 44]), is well-defined.

We have now all the necessary concepts to give a precise definition to what is means to be a

mild solution to (3.1).

Definition 3.1.1. A random field u = {u(t,x), (t,x) ∈ R+×R} is a mild solution to (3.1) if

(1) u is adapted, i.e. for all (t,x) ∈ R+×R, u(t,x) is Ft-measurable;
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(2) u is jointly measurable with respect to B(R+×R)×F ;

(3) u satisfies (3.2) a.s., for all (t,x) ∈ R+×R.

Let us now recall a fundamental inequality for estimating the Lp-norm of a Dalang-Walsh

integral. More precisely, let us record a suitable version of Burkholder-Davis-Gundy inequality

(BDG for short); see e.g. [20, Theorem B.1].

Lemma 3.1.2 (BDG). If
{

Φ(s,y) : (s,y) ∈R+×R2} is an adapted random field with respect to F

such that ‖Φ‖L2(R+×R) ∈ Lp(Ω) for some p≥ 2, then

∥∥∥∥∥
ˆ
[0,t]×R

Φ(s,y)η(ds,dy)

∥∥∥∥∥
2

p

≤ 4p

∥∥∥∥∥
ˆ
[0,t]×R

Φ
2(s,z)dzds

∥∥∥∥∥
p/2

.

As a manner of fact, we will often apply BDG inequality together with Minkowski integral

inequality. Informally, Minkowski integral inequality says that the norm of an integral is less than

the integral of the norm (see e.g. [43, A.1]. The precise statement from combining BDG with

Minkowski’s inequality is the content of the following Lemma.

Lemma 3.1.3. If
{

Φ(s,y) : (s,y) ∈ R+×R2} is an adapted random field with respect to F such

that ‖Φ‖L2(R+×R) ∈ Lp(Ω) for some p≥ 2, then

∥∥∥∥∥
ˆ
[0,t]×R

Φ(s,y)η(ds,dy)

∥∥∥∥∥
2

p

≤ 4p
ˆ
[0,t]×R

‖Φ2(s,z)‖p/2dzds = 4p
ˆ
[0,t]×R

‖Φ(s,z)‖2
pdzds. (3.3)

Most of the discussion in Section 3.3 and Section 3.4 relies on Malliavin calculus. For this

reason, we will introduce some basic elements of this topic in the next subsection. We point out

that the content of Subsection 3.1.2 is slightly different from what is discussed in Chapter 2 because

now we need to incorporate the two independent isonormal Gaussian processes involved. For any

unexplained notation and result, we refer to the book [30] (see also [27, Chapter 2]).

97



3.1.2 Malliavin Calculus

Set H1 := L2(R) and H2 := L2(R+×R). As seen in Subsection 3.1.1 ξ = {ξ (h), h ∈ H1} and

η = {η(g), g ∈ H2} are independent isonormal Gaussian processes on the same probability space

(Ω,F ,P). As it happens, the Hilbert spaces H1 and H2 can be combined into another separable

Hilbert space, denoted by H := H1⊕H2 consisting of the set of all pairs (h1,h2) where hi ∈ Hi,

i = 1,2, and inner product given by

〈(x1,y1),(x2,y2)〉H = 〈x1,y1〉H1
+ 〈x2,y2〉H2

.

Then, the process X = {X(h,g) = ξ (h)+η(g), (h,g) ∈ H} turns out to be an isonormal Gaussian

process.

Denote by C∞
p (Rn) the space of smooth functions with all their partial derivatives having at

most polynomial growth at infinity. Let S be the space of simple functionals of the form F =

f (X(h1), . . . ,X(hn)) for f ∈C∞
p (Rn) and hi ∈ H, 1 ≤ i ≤ n. Then, the Malliavin derivative DF is

the H-valued random variable given by

DF =
n

∑
i=1

∂ f
∂xi

(X(h1), . . . ,X(hn))hi .

Note that since H= H1⊕H2, we can project DF onto H1 and H2. In this way, we define Dξ F and

DηF as the projections of DF onto H1 and H2 respectively; see e.g. section 5 in [13] for a similar

discussion.

The derivative operators Dη is closable from Lp(Ω) into Lp(Ω;H2) for any p≥ 1 and we define

D1,p
η to be the completion of S under the norm ‖F‖1,p =

(
E
[
|F |p

]
+E
[
‖DηF‖p

H2

])1/p
.

The chain rule for Dη asserts that if F ∈ D1,2
η and h : R→ R is Lipschitz, then h(F) ∈ D1,2

η

with

Dη
(
h(F)

)
= Y DηF, (3.4)

where Y is some σ{F}-measurable random variable bounded by the Lipschitz constant of h. In
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fact, when h is differentiable, we have Y = h′(F) (see, for instance, [30, Proposition 1.2.4]).

The following Lemma (see, for instance, [30, Proposition 1.5.3]), provides a useful criteria to

show a random variable F belongs to D1,p
η .

Lemma 3.1.4. Let {Fn, n ≥ 1} be a sequence of random variables converging to F in Lp(Ω) for

some p > 1. Suppose that the sequence {an, n≥ 1} given by

an =
(
E[‖DηFn‖p

H2
]
)1/p

= ‖DηFn‖Lp(Ω;H1),

is bounded. Then F ∈ D1,p
η .

The divergence operator δ η is introduced as the adjoint of the derivative operator Dη . More

precisely, an element u in L2(Ω,H2), belongs to the domain of δ η , if there is a constant cu > 0

satisfying ∣∣∣E[〈DηF,u〉H2

]∣∣∣≤ c
√
E|F2| for all F ∈ D1,2

η . (3.5)

In particular, for any u∈Dom δ η , condition (3.5) means that the linear operator F→E
[
〈DηF,u〉H2

]
is continuous from D1,2

η , equipped with the L2(Ω) norm, into R. Thus, we can extend this linear op-

erator to a linear operator from L2(Ω) to R. Consequently, Riesz representation theorem gives the

existence of a unique element in L2(Ω), denoted by δ η(u), such that E[δ η(u)F ] =E[〈u,DηF〉HH2 ]

for all F ∈D1,2
η . In other words, for u ∈ Dom δ η , δ η(u) is the unique element of L2(Ω) character-

ized by the duality formula

E[δ η(u)F ] = E[〈u,DηF〉H2] (3.6)

for any F ∈ D1,2
η .

The aforementioned definitions for D1,p
η , δ η are minimally modified to define D1,p

ξ
and δ ξ .

Similarly, the chain rule and Lemma 3.1.4 also hold when η is replaced by ξ .

The operators Dη and δ η satisfy the commutation relation

(Dη
δ

η −δ
ηDη)(V ) =V, (3.7)
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which is useful when one needs to take the derivative of an element given by a divergence. The

same relation holds for ξ as well.

In our context, the Dalang-Walsh integral coincides with δ η . More precisely, we have the

following Lemma

Lemma 3.1.5. Any adapted random field Φ that satisfies E
[
‖Φ‖2

H2

]
< ∞ belongs to the domain of

δ η and

δ
η(Φ) =

ˆ
∞

0

ˆ
R

Φ(s,y)η(ds,dy).

The proof of this result is analogous to the case of integrals with respect to the Brownian motion

(see [30, Proposition 1.3.11]), by just replacing real processes by H2-valued processes.

With the help of the derivative operator Dη , we can represent F ∈ D1,2
η as a stochastic inte-

gral. To be precise, we have the the following two-parameter Clark-Ocone formula, see e.g. [8,

Proposition 6.3] for a proof.

Lemma 3.1.6 (Clark-Okone formula). Given F ∈ D1,2
η , we have almost surely

F = E(F)+

ˆ
∞

0

ˆ
R
E
[
Dη

s,yF |Fs
]

η(ds,dy).

Using Jensen’s inequality for conditional expectation, Clark-Okone formula leads to the fol-

lowing following Poincaré type inequality.

Corollary 3.1.7 (Poincaré type formula). If F,G ∈ D1,2
η , then

|Cov[F,G]| ≤
ˆ

∞

0

ˆ
R
‖Dη

s,yF‖2‖Dη
s,yG‖2 dyds.

We finish this subsection with a simple, but important Remark (see Section 3.4).

Remark 3.1.8.

(a) If G(x) ∈ H1, then δ ξ (G) =

ˆ
R

G(x)ξ (dx).
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(b) For a process Φ = {Φ(s), s ∈ [0, t]} such that
√

Var(Φs) is integrable on [0, t], we have

√
Var
(ˆ t

0
Φ(s)ds

)
≤
ˆ t

0

√
Var(Φs)ds.

3.1.3 Malliavin-Stein methodology

Theorem 3.4.1 in Section 5 relies on a combination of Malliavin calculus and Stein’s method.

Hence, in this subsection we will introduce basic elements of this methodology. We refer the

interested reader to the monograph [27] for a comprehensive treatment.

Stein’s method is a probabilistic technique which allows one to measure the distance between

a probability distribution and a target distribution, which for our purpose will be the normal distri-

bution. Recall that the total variation distance between two random variables F and G is defined

by

dTV (F,G) := sup
B∈B(R)

|P(F ∈ B)−P(G ∈ B)| , (3.8)

where B(R) is the collection of all Borel sets in R. We point out that dTV (F,G) only depends on

the laws of F and G and defines a metric on the set of probability measures on R. Furthermore, the

topology induced by dTV is strictly stronger than the topology of convergence in distribution, see

e.g. [27, Proposition C.3.1].

The following theorem provides an upper bound for the total variation distance between any

random variable and a random variable with standard normal distribution. We refer the reader to

[27, Theorem 3.3.1] for a proof.

Theorem 3.1.9. For Z ∼N (0,1) and for any random variable F,

dTV (F,Z)≤ sup
f∈FTV

∣∣E[ f ′(F)]−E[F f (F)]
∣∣ , (3.9)

where FTV is the class of continuously differentiable functions f : R→R such that ‖ f‖∞ ≤
√

π/2

and ‖ f ′‖∞ ≤ 2.
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By borrowing ideas from the Malliavin-Stein approach introduced by Nourdin and Pecatti in

[26], Theorem 3.1.9 can be combined with Malliavin calculus to get the following proposition.

Proposition 3.1.10. Let F = δ ξ (v)+δ η(u) for some H1-valued random variable v ∈ Domδ ξ and

some H2-valued random variable u ∈ Domδ η . Assume F ∈ D1,2
ξ

, F ∈ D1,2
η and E[F2] = 1 and let

Z ∼N (0,1). Then we have

dTV (F,Z)≤ 2
√

2
√

Var
[〈

Dξ F,v
〉
H1

]
+Var

[
〈DηF,u〉H2

]
(3.10)

Proof. Let f ∈ FTV . By our assumption on F and (3.6) applied to δ ξ and δ η , we have

E(F f (F)) = E
[(

δ
ξ (v)+δ

η(u)
)

f (F)
]

= E
[

f ′(F)
〈

v,Dξ F
〉
H1

]
+E

[
f ′(F)〈u,DηF〉H2

]
.

Consequently, by Theorem 3.1.9

dTV (F,Z)≤ sup
f∈FTV

∣∣E( f ′(F)−F f (F)
)∣∣

= sup
f∈FTV

∣∣∣∣E[ f ′(F)

(
1−
〈

v,Dξ F
〉
H1
−〈u,DηF〉H2

)]∣∣∣∣
≤ 2E

[∣∣∣∣1−〈v,Dξ F
〉
H1
−〈u,DηF〉H2

∣∣∣∣] . (3.11)

By using the duality relation (3.6), we have

E
[〈

v,Dξ F
〉
H1

+ 〈u,DηF〉H2

]
= E

[
δ

ξ (v)F +δ
η(u)F

]
= E(F2) = 1.

Thus, (3.11) implies

dTV (F,Z)≤ 2
√

Var
(〈

v,Dξ F
〉
H1

+ 〈u,DηF〉H2

)
.
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The desired result follows from the well known inequality

Var
(〈

v,Dξ F
〉
H1

+ 〈u,DηF〉H2

)
≤ 2Var

(〈
v,Dξ F

〉
H1

)
+2Var

(
〈u,DηF〉H2

)
.

3.2 Existence, uniqueness and stationarity.

In this section, we state and prove the existence, uniqueness and strict stationarity of the mild

solution to (3.1). The precise statements of our main results are the following.

Theorem 3.2.1 (Existence and uniqueness). There is a unique mild random-field solution u(t,x)

to (3.1) such that for all p≥ 2, T > 0 and t ∈ (0,T ]

sup
x∈R
‖u(t,x)‖2

p ≤ Cb(t), (3.12)

where b(t) = 1√
t , and the constant C depends on T , p and the function σ(x).

Theorem 3.2.2. Let u(t,x) be the random field given by Theorem 3.2.1. Then {u(t,x) : x ∈ R} is

stationary for any fixed t > 0.

The proof of existence and uniqueness follows the standard Picard’s iteration scheme, while the

proof of stationarity uses the same ideas of the proof of Lemma 7.1 in [8]. We postpone the proof

of these Theorems until Subsection 3.2.2. We do so, to present some results, which are heavily

used in the proof of Theorem 3.2.1 and in Section 3.3. This is the content of the next subsection.

3.2.1 Some basic results

We start this subsection with three simple, but important, observations. We omit their proofs as

they follow explicit calculations and straightforward arguments.

Observation 3.2.3.
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(a) The Gaussian kernel pt(x) satisfies that for any t > 0

ˆ
R

p2
t (z)dz =

1√
4πt

.

(b) Since the function σ(x) is assumed to be Lipschitz with Lipschitz constant L, then for any

p ≥ 1 there exist a constant C > 0 (depending on p, L and σ(0)) such that if z(t,y) is a

random field in Lp(Ω), then

‖σ(z(t,y))‖2
p ≤C(1+‖z(t,y)‖2

p). (3.13)

(c) Let T > 0. The function b(t) = 1√
t satisifes 1≤

√
T b(t) for any t ∈ (0,T ].

A key ingredient when working with Picard iterations is a Gronwall type inequality. This is

the content of the following results. We point out that Proposition 3.2.4 and Lemma 3.2.5 are a

consequence of Theorem 1 in [46]. Hence, we refer the reader to [46] for the corresponding proofs.

Proposition 3.2.4. Let T > 0. Suppose a(t) is a nonnegative function locally integrable on 0≤ t ≤

T and g(t) is a nonnegative, bounded, nondecreasing continuous function defined on 0≤ t ≤ T ,and

suppose u(t) is nonnegative and locally integrable on 0≤ t ≤ T satisfying

u(t)≤ a(t)+g(t)
ˆ t

0
(t− s)−1/2u(s)ds

on this interval. Then

u(t)≤ a(t)+
ˆ t

0

[
∞

∑
n=1

(g(t)Γ(1/2))n

Γ(n/2)
(t− s)n/2−1a(s)

]
ds, for all 0≤ t ≤ T.

Lemma 3.2.5. Let g and u be as in Theorem 3.2.4. Define for 0≤ t ≤ T

[Au](t) = g(t)
ˆ t

0
(t− r)−1/2u(r)dr.
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Then for all n ∈ N

[Anu](t)≤ (g(t)Γ(1/2))n

Γ(n/2)

ˆ t

0
(t− r)n/2−1u(r)dr (3.14)

One immediate consequence of Lemma 3.2.5, is the following summability condition satisfied

by [Anu](t).

Corollary 3.2.6. Let r ≥ 0. Then,
∞

∑
n=1

([Anu](t))1/r

converges uniformly on [0,T ].

Proof. For n sufficiently large n/2−1 > 0. Then (3.14) implies

(Anu(t))1/r≤
(
(g(t)Γ(1/2))n

Γ(n/2)

ˆ t

0
(t− s)n/2−1u(s)ds

)1/r

≤
(
(g(T )Γ(1/2))n

Γ(n/2)
T n/2−1

ˆ T

0
u(r)dr,

)1/r

.

The desired conclusion follows because

∞

∑
n=1

(g(T )Γ(1/2))n/r

(Γ(n/2))1/r
T (n/2−1)/r < ∞,

by, say, Stirling’s formula and the root test for series.

3.2.2 Proof of main results

Proof of Theorem 3.2.1

The proof consist of three steps.
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Step 1:

Consider the Picard iteration scheme

u0(t,x) =
ˆ
R

pt(x− y)ξ (dy)

un+1(t,x) = u0(t,x)+
ˆ t

0

ˆ
R

pt−s(x− y)σ(un(s,y))η(ds,dy) for n≥ 0. (3.15)

We prove that the following statements hold for all n ∈ N

(i) un(t,x) is well defined and adapted to Ft .

(ii) For any p≥ 2 and T > 0, the following estimate holds for all 0 < t ≤ T

sup
x∈R
‖un(t,x)‖2

p ≤C b(t),

where the constant C depends on T , p and the function σ(x).

(iii) In(t,x) :=
ˆ t

0

ˆ
R

pt−s(x− y)σ(un(s,y))η(ds,dy) is well defined. Further, there is a version

of In(t,x) which is jointly measurable.

Naturally, the proof will be done by induction.

For the case n = 0, statement (i) is clear from the definition of u0(t,x). Let p≥ 2. Note that Itô

isommetry and Observation 3.2.3(a) imply

E[u2
0(t,x)] =

ˆ
R

p2
t (x− y)dy = (4π)−1/2b(t).

Actually, since u0(t,x) is Gaussian, there exists C > 0 (depending only p) so that E[up
0(t,x)] ≤

CE[u2
0(t,x)]

p/2. We conclude

‖u0(t,x)‖2
p ≤Cb(t) for all x ∈ R.
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In particular, for all t > 0

sup
x∈R
‖u0(t,x)‖2

p ≤C b(t),

which proves statement (ii) holds for n= 0. For statement (iii), we note that Observation 3.2.3(a),(b),

and the previous inequality imply

ˆ t

0

ˆ
R

p2
t−s(x− y)‖σ(u0(s,y))‖2

2 dsdy≤C
ˆ t

0

ˆ
R

p2
t−s(x− y)(1+‖u0(s,y)‖2

2)dsdy

≤C
ˆ t

0

1√
t− s

(1+b(s))ds.

However, explicit calculations show that
ˆ t

0

1√
t− s

(1+b(s))ds < ∞. Then

ˆ t

0

ˆ
R

p2
t−s(x− y)‖σ(u0(s,y))‖2

2 dsdy < ∞. (3.16)

In particular, the stochastic integral

ˆ t

0

ˆ
R

pt−s(x− y)σ(u0(s,y))η(dy, ds),

is well defined. In fact, condition (3.16) implies also the existence of a version of In(t,x) which is

jointly measurable. This verifies statement (iii) holds true for the case n = 0.

Assume there is n∈N so that statements (i), (ii) and (iii) hold true for any k ∈N with 0≤ k≤ n.

Since un+1(t,x) = u0(t,x)+ In(t,x), it follows that un+1(t,x) is well defined. Further, un+1(t,x) is

adapted to Ft because both u0(t,x) and In(t,x) are adapted. This verifies statement (i) for n+1.
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Let k ∈ N with 0≤ k ≤ n. Let p≥ 2 and T > 0. An application of (3.3), implies that for some

constants Cp

‖uk+1(t,x)‖2
p ≤Cp‖u0(t,x)‖2

p +Cp

∥∥∥∥ˆ t

0

ˆ
R

p2
t−r(x− z)σ2(uk(r,z))dr dz

∥∥∥∥
p/2

≤Cp‖u0(t,x)‖2
p +Cp

ˆ t

0

ˆ
R

p2
t−r(x− z)

∥∥σ
2(uk(r,z))

∥∥
p/2 dr dz

≤Cp‖u0(t,x)‖2
p +Cp

ˆ t

0

ˆ
R

p2
t−r(x− z)‖σ(uk(r,z))‖2

p dr dz.

At this step, we will introduce some notation. Set

ũk(t) := sup
x∈R
‖uk(t,x)‖2

p.

Then, Observation 3.2.3(a),(b),(c) together with the inequality ‖u0(t,x)‖2
p ≤Cb(t) imply

ũk+1(t)≤Cb(t)+C
ˆ t

0

1√
t− r

ũk(r)dr

for some constant C depending on p, T , and the function σ(x). In fact, we can rewrite the previous

inequality in the form

ũk+1(t)≤Cb(t)+ [Aũk](t), (3.17)

for the operator A introduced in Lemma 3.2.5 with g(t) =C. By iterating (3.17), we obtain

ũn+1(t)≤Cb(t)+C
n

∑
k=1

Akb(t)+An+1ũ0(t).

However, since ũ0(t). b(t), we conclude

ũn+1(t)≤Cb(t)+C
n+1

∑
k=1

[Akb](t), (3.18)

for some constant C > 0 depending only on p, T and the function σ .
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At this point, we note b(t) is integrable on (0,T ]. Then Corollary 3.2.6 (taking r = 1), implies
∞

∑
k=1

[Akb](t) converges uniformly on (0,T ]. In particular, there is a constant CT depending only

on T so that
∞

∑
k=1

Akb(t) < CT for all t ∈ (0,T ]. However, Observation 3.2.3(c) implies CT . b(t).

Therefore, we conclude from (3.18) that for any 0 < t ≤ T

ũn+1(t)≤Cb(t),

where the constant C depends on T , p and the function σ(x). This proves statement (ii) holds for

n+1. Finally, statement (iii) holds for n+1 because

ˆ t

0

ˆ
R

p2
t−s(x− y)‖σ(un+1(s,y))‖2

2 dsdy≤C
ˆ t

0

1√
t− s

(1+b(s))ds < ∞.

This finishes step 1.

Step 2:

We prove the existence of the random field u(t,x) which is jointly measurable, Ft-adapted, and

satisfies (3.1) and (3.12). This is done by proving the L2(Ω)-convergence of the Picard iteration

scheme.

Let n ∈ N. For each k ∈ N with 0≤ k ≤ n, set

Hk(t) = sup
x∈R
‖uk+1(t,x)−uk(t,x)‖2

p.

In view of statement (ii) in Step 1, Hk(t) is well defined. Moreover, H0(t) . b(t) and similar

arguments to the ones used to obtain (3.17) yield the existence of a constant C > 0 so that

Hk(t)≤C
ˆ t

0

1√
t− r

Hk−1(r) = [AHk−1](t).
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We conclude

Hn(t)≤ AnH0(t). [Anb](t).

In view of Corollary 3.2.6), we have
∞

∑
n=1

Hn(t)1/2 converges uniformly on (0,T ] for any T > 0.

Consequently, un(t,x) converges in Lp(Ω) uniformly on (0,T ]×R for any T > 0. Let us denote

by u(t,x) the Lp limit of un(t,x). Then, we note the following

(1) Each un(t,x) is jointly measurable and adapted to Ft , so the same holds for u(t,x).

(2) u(t,x) satisfies (3.12). Indeed, this is a consequence of statement (ii) in Step 1 and Fatou’s

lemma.

(3) u(t,x) satisfies (3.2). Indeed, this follows from the definition

un+1(t,x) =
ˆ
R

pt(x− y)ξ (dy)+
ˆ t

0

ˆ
R

pt−r(x− y)σ(un(r,y))η(dr,dy),

and the fact that un(t,x) converges to u(t,x) in Lp(Ω).

This finishes Step 2.

Step 3:

We prove the uniqueness (up to a modification) of the solution by using Proposition 3.2.4. More

precisely, assume u(t,x) and v(t,x) are two jointly measurable, Ft-adapted random fields satisfy-

ing (3.2) and (3.12). Let T > 0 and p ≥ 2. Set D(t) = supx∈R ‖u(t,x)− v(t,x)‖2
p. This is well

define because both u,v satisfy (3.12). Similar arguments to the ones used to obtain (3.17) imply

the existence of a constant C > 0 so that

D(t)≤C
ˆ t

0

1√
t− r

D(r)dr for all 0≤ t < T.

It follows from Theorem 3.2.4 that R(t) = 0 for all 0 ≤ t < T . This proves the uniqueness of the

solution and finishes the proof.
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Proof of Theorem 3.2.2

Fix t > 0. We start by noticing the following facts

(i) The shift noise ξy defined by

ξy(φ) =

ˆ
R

φ(x− y)ξ (dx), φ ∈ H1

has the same distribution as the noise ξ .

(ii) The shift noise ηy defined by

ηy(φ) =

ˆ
R+

ˆ
R

φ(s,x− y)η(ds,dx) φ ∈ H2

has the same distribution as the noise η .

Furthermore, for each y ∈ R, uniqueness of the mild solution imply that {u(t,x+ y), x ∈ R} co-

incides almost surely with the random field u driven by ξy and ηy. We conclude that the finite

dimensional distributions of {u(t,x+ y), x ∈ R} do not depend on y, in other words, we have

shown the strict stationarity of u(t,x) for t > 0 fixed (see e.g. Lemma 7.1 in [8] for similar argu-

ments).

Before moving to the next section, where we concern ourselves with the differentiability in

the sense of Malliavin calculus of the random field u(t,x), let us record a Remark which will

be important in Section 3.4. We point out that the first part of the Remark is a consequence of

Theorem 3.2.1 and Observation 3.2.3(b), while the second is a consequence of Theorem 3.2.2.

Remark 3.2.7.

(i) The following estimate holds for all p≥ 2, T > 0 and t ∈ (0,T ]

sup
x∈R
‖σ(u(t,x))‖2

p ≤ Cb(t),

where b(t) = 1√
t , and the constant C depends on T , p and the function σ(x).
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(ii) For any r > 0, E(σ2(u(r,y)) does not depend on y.

3.3 Malliavin derivatives of u(t,x).

In this section, we prove results regarding the Malliavin derivatives of the mild solution to (3.1.

We point out that the estimates given by Theorem 3.3.6 and Theorem 3.3.7 are key ingredients in

the proof of Theorem 3.4.1 in Section 3.4.

Theorem 3.3.1. Let u(t,x) be the random field given by Theorem 3.2.1. Then u(t,x) ∈ D1,2
ξ

, and

the derivative Dξ u(t,x) satisfies

Dξ
y u(t,x) = pt(x− y)+

ˆ t

0

ˆ
R

pt−r(x− z)Σξ (r,z)D
ξ
y u(r,z)η(dr dz),

where Σξ (r,z) is an adapted random field bounded by the Lipschtiz constant of σ(x).

Proof. Consider the Picard iteration scheme (3.15). Since u0(t,x) =
ˆ
R

pt(x− z)ξ (dz), it is clear

that u0(t,x) ∈ D1,2
ξ

and Dξ
y u0(t,x) = pt(x− y). Similarly, if we assume un(t,x) ∈ D1,2

ξ
for some

n ∈ N, then we can apply Dξ to

un+1(t,x) = u0(t,x)+
ˆ t

0

ˆ
R

pt−s(x− y)σ(un(s,y))η(ds,dy),

to obtain that un+1(t,x) ∈ D1,2
ξ

and

Dξ
y un+1(t,x) = pt(x− y)+

ˆ t

0

ˆ
R

pt−r(x− z)Σξ ,n(r,z)D
ξ
y un(r,z)η(dr,dz), (3.19)

where Σξ ,n(r,z) is a random field uniformly bounded by L. In this way, we conclude that un(t,x) ∈

D1,2
ξ

for any t > 0, x ∈ R and all n ∈ N.

Now, we will prove that for any t > 0 and x ∈ R

sup
n∈N
‖Dξ un(t,x)‖2

L2(Ω;H1)
< ∞.
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As a manner of fact, we will prove the stronger result

sup
n∈N

Ψn(t)< ∞, (3.20)

where Ψn(t) := sup
x∈R
‖Dξ un(t,x)‖2

L2(Ω;H1)
.

Let us start by computing Ψ0(t) explicitly. In this case, Dξ
y u0(t,x) = pt(x− y) and by Obser-

vation 3.2.3(a), we have

‖Dξ u0(t,x)‖2
Lp(Ω;H1)

= E
[ˆ

R

(
Dξ

y u0(t,x)
)2

dy
]

=

ˆ
R

p2
t (x− y)dy

=
1√
4π

1√
t
.

Hence, Ψ0(t) =
1√
4π

1√
t
.

Let n ∈ N. It follows from (3.19)

‖Dξ un+1(t,x)‖2
L2(Ω;H1)

≤ 2‖pt(x−•)‖2
Lp(Ω;H1)

+2
∥∥∥∥ˆ t

0

ˆ
R

pt−r(x− z)Σξ ,(n)(r,z)D
ξ
•un(r,z)η(dr,dz)

∥∥∥∥2

L2(Ω;H1)

.

For the moment, let us focus on the second expression. Combining the isometry with the uniform
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boundedness of Σξ ,n(r,z), we have

∥∥∥∥ˆ t

0

ˆ
R

pt−r(x− z)Σξ ,(n)(r,z)D
ξ
•un(r,z)η(dr,dz)

∥∥∥∥2

L2(Ω;H1)

= E

[ˆ
R

(ˆ t

0

ˆ
R

pt−r(x− z)Σξ ,(n)(r,z)D
ξ
y un(r,z)η(dr,dz)

)2

dy

]

≤ L2
ˆ
R

ˆ t

0

ˆ
R

p2
t−r(x− z)E

[
|Dξ

y un(r,z)|2
]

dzdr dy

= L2
ˆ t

0

ˆ
R

p2
t−r(x− z)

(
E
[ˆ

R
|Dξ

y un(r,z)|2 dy
])

dzdr

= L2
ˆ t

0

ˆ
R

p2
t−r(x− z)‖Dξ

•un(r,z)‖2
L2(Ω;H1

dzdr.

Then

‖Dξ un+1(t,x)‖2
L2(Ω;H1)

≤ 2Ψ0(t)+2L2
ˆ t

0

ˆ
R

p2
t−r(x− z)‖Dξ

•un(r,z)‖2
L2(Ω;H1

dzdr.

In view of Observation 3.2.3(a), we conclude

Ψn+1(t)≤ 2Ψ0(t)+Aψn(t), (3.21)

for the operator A introduced in Lemma 3.2.5 with g(t) = L2/
√

π . We iterate (3.21) to obtain

Ψn+1(t)≤ 2Ψ0(t)+2
n

∑
k=1

[Ak
Ψ0](t)+ [An+1

Ψ0](t)≤ 2Ψ0(t)+2
n+1

∑
k=1

[Ak
Ψ0](t).

In view of Corollary 3.2.6, we have
∞

∑
k=1

[Ak
Ψ0](t) < ∞ . Finally, since n ∈ N was arbitrary, we

conclude

sup
n∈N

Ψn+1(t)≤ 2Ψ0(t)+2
∞

∑
k=1

[Ak
Ψ0](t),

which proves (3.20).

Taking into account that un(t,x) converges to u(t,x) in L2(Ω) for all p ≥ 1, we deduce from

Lemma 3.1.4 u(t,x) ∈ D1,2
ξ

. In fact, Dξ un(t,x) converges to Dξ u(t,x) in the weak topology of
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L2(Ω;H1) see e.g. [30, Proposition 1.2.3]. Finally, applying the operator Dξ to both members of

(3.2), we deduce the desired formula for Dξ u(t,x).

Theorem 3.3.2. Let u(t,x) be the random field given by Theorem 3.2.1. Then u(t,x) ∈ D1,p
η for all

p≥ 2, and the derivative Dηu(t,x) satisfies

Dη
s,yu(t,x) = pt−s(x− y)+

ˆ t

s

ˆ
R

pt−r(x− z)Ση(r,z)Dη
s,yu(r,z)η(dr dz).

if s < t, and Dη
s,yu(t,x) = 0 for s > t, where Ση(r,z) is an adapted random field bounded by L.

Proof. Let p ≥ 2. As in the proof the proof of Theorem 3.3.1, we will use the Picard’s iteration

scheme (3.15). By using similar arguments, we conclude un(t,x) ∈ D1,p
η for any t > 0 , x ∈ R and

all n ∈ N. Since un(t,x) converges to u(t,x) in Lp(Ω) and given Lemma 3.1.4, it suffices to prove

that for all t > 0, x ∈ R

sup
n∈N
‖Dη
•,∗un(t,x)‖Lp(Ω,H2) < ∞.

In fact, we will prove that for any T > 0

sup
n∈N

sup
t∈[0,T ]

sup
x∈R
‖Dη
•,∗un(t,x)‖2

Lp(Ω,H2)
< ∞. (3.22)

Before entering in the details, we make the following important observations.

(i) For all n, un(t,x) is adapted and satisfies E(‖un(t,x)‖2
H2
)<∞. Consequently, Dη

s,yun(t,x) = 0

if s > t. The proof of this result is analogous to the case of integrals with respect to the

Brownian motion (see e.g. [31, Lemma 3.4.1]).

(ii) If s < t and n≥ 0, then

Dη
s,yun+1(t,x) = pt−s(x− y)σ(un(s,y))

+

ˆ t

s

ˆ
R

pt−r(x− z)Ση(r,z)Dη
s,yun(r,z)η(dr,dz).
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Indeed, this is a consequence of (3.7) combined with Observation (i) and the fact that the

Dalang-Walsh integral appearing in un+1(t,x) can be written as a divergence. Nevertheless,

it will be more convenient to write

Dη
s,yun+1(t,x) = pt−s(x− y)σ(un(s,y))

+

ˆ t

0

ˆ
R

pt−r(x− z)Ση(r,z)Dη
s,yun(r,z)η(dr,dz).

As the expression for Dη
s,yun+1(t,x) contains two terms, we will study each of them separately.

Let T > 0. In order to control the term pt−s(x− y)σ(un(s,y)), we will prove

sup
n∈N

sup
t∈[0,T ]

sup
x∈R
‖pt−•(x−∗)σ(un(•,∗))‖2

Lp(Ω;H2)
< ∞. (3.23)

Indeed, by Minkowski’s integral inequality

‖pt−•(x−∗)σ(un(•,∗))‖2
Lp(Ω;H2)

=

∥∥∥∥ˆ t

0

ˆ
R

p2
t−s(x− y)σ2(u0(s,y))dyds

∥∥∥∥
p/2

≤
ˆ t

0

ˆ
R

p2
t−s(x− y)‖σ(u0(s,y))‖2

p dyds,

As shown in the proof of Theorem 3.2.1, there is a constant C depending on T , p and the function

σ(x), so that ‖u0(s,y)‖2
p ≤ Cb(s), for all y ∈ R, where b(s) = 1√

s . Then, Observation 3.2.3(b)

implies the same inequality holds for ‖σ(u0(s,y))‖2
p. In this way, Observation 3.2.3(a) implies

‖pt−·(x−∗)σ(un(·,∗))‖p
Lp(Ω;H2)

≤C
ˆ t

0

b(s)√
4π
√

t− s
ds.

Since explicit calculation show
ˆ t

0

b(s)√
4π
√

t− s
ds is bounded for t ∈ [0,T ], we deduce (3.23).

The term
ˆ t

0

ˆ
R

pt−r(x−z)Ση(r,z)Dη
s,yun(r,z)η(dr,dz) is a little bit different to control. Burkholder’s

inequality for Hilbert-valued process (see e.g [23, page 212]) and Minkowski’s integral inequality,
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yield

∥∥∥∥ˆ t

0

ˆ
R

pt−r(x− z)Ση(r,z)D
η
•,∗un(r,z)η(dr,dz)

∥∥∥∥2

Lp(Ω;H2)

≤Cp L2
ˆ t

0

ˆ
R

p2
t−r(x− z)

×
∥∥Dη

s,yun(r,z)
∥∥2

Lp(Ω;H2)
dzdr.

(3.24)

Then

∥∥Dη
•,∗un+1(t,x)

∥∥2
Lp(Ω;H2)

≤ 2‖pt−•(x−∗)σ(un(•,∗))‖2
Lp(Ω;H2)

+

∥∥∥∥ˆ t

0

ˆ
R

pt−r(x− z)Ση(r,z)Dη
s,yun(r,z)η(dr,dz)

∥∥∥∥2

Lp(Ω;H2)

.

In particular, (3.23) and (3.24) imply

∥∥Dη
•,∗un+1(t,x)

∥∥2
Lp(Ω;H2)

≤C+C
ˆ t

0

ˆ
R

p2
t−r(x− z)

∥∥Dη
s,yun(r,z)

∥∥2
Lp(Ω;H2)

dzdr (3.25)

for all t ∈ [0,T ], where the constant C depends on T , p and the function σ(x). Set

Vn(t) := sup
x∈R

∥∥Dη
•,∗un(t,x)

∥∥2
Lp(Ω;H2)

.

Note that (3.23) implies V1(t) is uniformly bounded. Furthermore, (3.25) and Observation 3.2.3(a)

imply

Vn+1(t)≤C+C
ˆ t

0

1√
t− r

Vn(t)dr.

Iterating the above inequality, and using Corollary 3.2.6 shows that sup
n∈N

sup
t∈[0,T ]

Vn(t) < ∞. This

proves (3.22). Therefore, u(t,x) ∈ D1,p
η for all p ≥ 2. The desired formula for Dηu(t,x) follows

from applying Dη to both sides of (3.2) together with similar arguments to those used in Observa-

tion (i) and (ii) at the beginning of this proof.

The remaining of this section is dedicated to establishing fundamental estimates for the Malli-
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avin derivatives of the mild solution to (3.1). However, let us make one important comment about

these upcoming results. Until now, we have relied on Lemma 3.2.5 and Corollary 3.2.6 to iterate

recursive inequalities and obtain the summability of the expressions appearing there. Well, obtain-

ing the Lp estimates for the Malliavin derivative will continue with this sort of argument, but we

will need other results to replace Lemma 3.2.5 and Corollary 3.2.6. These results correspond to

Proposition 3.3.4 and Corollary 3.3.5.

Let us start by recalling a simple Lemma involving the Gamma function.

Lemma 3.3.3. Let α,β > 0. Then,

ˆ t

r
(t− s)α−1(s− r)β−1 ds = (t− r)α+β−1 Γ(α)Γ(β )

Γ(α +β )
.

Proof. The proof follows from using the change of variables s = r+ z(t− r), the definition of the

beta function

β (a,b) =
ˆ 1

0
xa−1(1− x)b−1 dx for a,b > 0,

and the well known relation β (a,b) =
Γ(a)Γ(b)
Γ(a+b)

.

By combining mathematical induction, the previous Lemma and the following property of the

Gaussian kernel

ˆ
R

p2
t−r(x− z)p2

r−s(z− y)dz =
1√

4π
√
(t− r)

√
r− s

√
t− s p2

t−s(x− y),

for any 0≤ s < r < t and x,y ∈ R, we can obtain the following Proposition. We leave the proof as

an exercise to the reader.

Proposition 3.3.4. Set h(s,y, t,x) = p2
t−s(x− y) for 0≤ s < t and x,y ∈ R. Define

[Lh](s,y, t,x) =
ˆ t

s

ˆ
R

p2
t−r(x− z)h(s,y,r,z)dzdr,
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and [Ln+1h](s,y, t,x) =
ˆ t

s

ˆ
R

p2
t−r(x− z)[Lnh](s,y,r,z)dzdr, for n ∈N, n≥ 1. Then, for all n ∈N

[Lnh](s,y, t,x) = (
√

4π)−n/2(t− s)n/2 Γ(1/2)n+1

Γ
(n+1

2

) h(s,y, t,x).

An important consequence of Proposition 3.3.4, is the following Corollary.

Corollary 3.3.5. Fix T > 0. Let C ∈ R. Then for any 0≤ s < t ≤ T and x,y ∈ R

∞

∑
n=1

Cn[Lnh](s,y, t,x)≤CT h(s,y, t,x),

where CT =
∞

∑
n=1

(
√

4π)−n/2T n/2Cn Γ(1/2)n+1

Γ
(n+1

2

) .

Proof. Note that for 0≤ s < t < T , we have t− s≤ T . Then, Proposition 3.3.4 implies

[Lnh](s,y, t,x)≤ (
√

4π)−n/2T n/2 Γ(1/2)n+1

Γ
(n+1

2

) h(s,y, t,x).

Thus we only need to show that

CT =
∞

∑
n=1

(
√

4π)−n/2T n/2Cn Γ(1/2)n+1

Γ
(n+1

2

) ,

is finite. However, this is an immediate consequence of say, the root test and Stirling’s formula.

We are finally ready to prove the estimates for the Malliavin derivative of u(t,x).

Theorem 3.3.6. For any p ∈ [2,∞), 0 ≤ t ≤ T and x ∈ R, we have that for almost every (s,y) ∈

[0,T ]×R,

∥∥Dη
s,yu(t,x)

∥∥
p ≤Cpt−s(x− y)

√
b(s), (3.26)

for some constant C which depends on T , p and the function σ .

Proof. The proof will be done in two steps.
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Step 1:

Let p ∈ [2,∞). For n ∈ N, set gn(s,y, t,x) := ‖Dη
s,yun(t,x)‖2

p where un is defined by the Pi-

card iteration scheme introduced in (3.15). As seen in the proof of Theorem 3.3.1, we have

Dη
s,yu0(t,x) = 0, Dη

s,yu1(t,x) = pt−s(x−y)σ(u0(s,y)). Therefore g0(s,y, t,x) = 0 and g1(s,y, t,x) =

p2
t−s(x− y)‖σ(u0(s,y))‖2

p. We deduce from Observation 3.2.3(b) and Step 1 in the proof of Theo-

rem 3.2.1, the existence of a constant C > 0 depending on p and the function σ(x) so that

g1(s,y, t,x)≤Cp2
t−s(x− y)b(s).

Let n ∈ N. We know

Dη
s,yun+1(t,x) = pt−s(x− y)σ(un(s,y))+

ˆ t

s

ˆ
R

pt−r(x− z)Σ(n)
η (r,z)Dη

s,yun(r,z)η(dr dz),

where Σ
(n)
η (r,z) is an adapted random field bounded by L. This, together with (3.3) imply the

existence of a constant C > 0 (depending on p and the function σ(x)) such that

‖Dη
s,yun+1(t,x)‖2

2 ≤Cp2
t−s(x− y)‖σ(un(s,y))‖2

p +C
ˆ t

s

ˆ
R

p2
t−r(x− z)‖Dη

s,yun(r,z)‖2
p dzdr.

Consequently, we deduce

‖Dη
s,yun+1(t,x)‖2

2 ≤Cp2
t−s(x− y)b(s)+C

ˆ t

s

ˆ
R

p2
t−r(x− z)‖Dη

s,yun(r,z)‖2
p dzdr.

At this point, we rewrite the above inequality as

gn+1(s,z, t,x)≤Ch(s,y, t,x)b(s)+C[Lgn](s,z, t,x), (3.27)

where h and L are defined in Lemma 3.3.4 and C > 0 is a constant depending on T , p and

the function σ(x). Iterating (3.27) and using Observation 3.2.3(c) together with the fact that
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g1(s,y, t,x). h(s,y, t,x), we conclude

gn+1(s,y, t,x)≤Ch(s,y, t,x)b(s)+Cb(s)
n+1

∑
j=1

C j[L jh](s,y, t,x),

where C depends only on T , p and the function σ(x). Consequently, Corollary 3.3.5 implies

gn(s,y, t,x)≤ C h(s,y, t,x)b(s) for all n ∈ N.

Substituting gn(s,y, t,x) and h(s,y, t,x) for their equivalent expressions, yield

‖Dη
s,yun(t,x)‖2

p ≤Cp2
t−s(x− y)b(s). (3.28)

for a constant C depending on T ,p and the function σ(x). In this way, we have shown the respective

version to Theorem 3.3.6 for the Picard iterations. This finishes Step 1.

Step 2:

Put q = p/(p− 1) which is the conjugate exponent for p. Let us pick a nonnegative function

M ∈Cc(R+×R) and random variable Z ∈ Lq(Ω) with ‖Z ‖q ≤ 1. Since Dηun(t,x) converges to

Dηu(t,x) in the weak topology on Lp(Ω;H2
)
, we have, in view of Step 1

ˆ
R+×R

M(s,y)E
[
ZDη

s,yu(t,x)
]
dyds = lim

n→∞

ˆ
R+×R

M(s,y)E
[
ZDη

s,yun(t,x)
]
dyds

≤C
ˆ
R+×R

M(s,y)pt−s(x− y)
√

b(s)dyds.

This implies that for almost all (s,y) ∈ R+×R,

E
[
ZDη

s,yu(t,x)
]
≤Cpt−s(x− y)

√
b(s)
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Taking the supremum over {Z : ‖Z ‖q ≤ 1} yields

‖Dη
s,yu(t,x)‖p ≤Cpt−s(x− y)

√
b(s),

which finishes the proof.

We end this section with the corresponding estimate for the L2-norm of Dξ .

Theorem 3.3.7. For any 0≤ t ≤ T and x ∈ R, we have for almost every z ∈ R,

∥∥Dξ
z u(t,x)

∥∥
2 ≤Cpt(x− z), (3.29)

for some constant C which depends on T and L.

Proof. The proof is analogous to the proof of Theorem 3.3.6, with only minor modifications.

For example, the Malliavin derivative Dξ does not have s, but one can follow the same proof

as in Theorem 3.3.6 by taking s = 0. More precisely, set gn(0,z, t,x) := ‖Dξ
z un(r,y)‖2

2. Then,

g0(0,z, t,x) = p2
t (x− z) = h(0,z, t,x). Furthermore, the same arguments leading to (3.27), now

imply

gn+1(0,z, t,x)≤Ch(0,z, t,x)+C[Lgn](0,z, t,x)

This leads to the desired inequality for the Picard iterations. From there, similar arguments to those

in Step 2 from the proof of Theorem 3.3.6, yield the desired result. We leave the remaining details

to the reader.

3.4 Quantitative Central Limit Theorem

This section is dedicated to proving a quantitative central limit theorem for the process FR(t), where

FR(t) :=
ˆ R

−R
u(t,x)dx, (3.30)
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and u(t,x) is the random field from Theorem 3.2.1. Our precise statement is the following.

Theorem 3.4.1. For every t > 0, there exist a constant c(t), such that

dTV

(
FR(t)

σR
,Z
)
≤ c(t)R−1/2,

where σR =
√

Var(FR(t)) and Z has law N(0,1).

The proof of this Theorem is postponed to Subsection 3.4.2. We do so, to introduce some

technical results, which are used when proving Theorem 3.4.1. These results are presented in the

next subsection.

3.4.1 Some Prerequisites

First, we need to establish the behavior of σR as R→∞. To this end, let us introduce some notation.

For R > 0 and y ∈ R, we define

ϕt,R(s,y) :=
ˆ R

−R
pt−s(x− y)dx. (3.31)

As it happens, studying σR as R→∞ can be achieved by understanding 〈ϕt,R(s,•),ϕt,R(s,•)〉L2(R).

This is the content of Lemma 3.4.2.

Lemma 3.4.2. Let t1, t2 > 0 and let 0≤ s < t1∧ t2. We have

ˆ
R

ϕt1,R(s,y)ϕt2(s,y)dy = 2
ˆ 2R

0
pt1+t2−2s(z)(2R− z)dz.

Proof. We start by noticing that pt2−s(x′− y) = pt2−s(y− x′). Then, Tonelli’s theorem and the
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semigroup property of the Gaussian kernel, imply

ˆ
R

ϕt1,R(s,y)ϕt2(s,y)dy =
ˆ
R

ˆ R

−R

ˆ R

−R
pt1−s(x− y)pt2−s(x′− y)dxdx′dy

=

ˆ R

−R

ˆ R

−R

ˆ
R

pt1−s(x− y)pt2−s(y− x)dydxdx′

=

ˆ R

−R

ˆ R

−R
pt1+t2−2s(x− x′)dxdx′.

By using the change of variables u = x− x′ and v = x+ x′, we obtain

ˆ
R

ϕt1,R(s,y)ϕt2(s,y)dy =
1
2

ˆ ˆ
Ruv

pt1+t2−2s(u)dvdu,

where Ruv is the square with vertices (2R,0), (0,2R), (−2R,0) and (0,−2R). At this point, we

note that both the region Ruv and the function pt1+t2−2s(u) are symmetric. Hence, we can integrate

only in the part where u,v≥ 0 and multiply by 4. Thus,

ˆ
R

ϕt1,R(s,y)ϕt2(s,y)dy = 4 · 1
2

ˆ 2R

0

ˆ 2R−u

0
pt1+t2−2s(u)dvdu

= 2
ˆ 2R

0
pt1+t2−2s(u)(2R−u)du.

A simple application of Lemma 3.4.2, leads to the following Proposition.

Proposition 3.4.3. For any t1, t2 > 0

lim
R→∞

1
R
E [FR(t1)FR(t2)] = 2+2

ˆ t1∧t2

0
ρ(r)dr,

where ρ(r) = E(σ2(u(r,y)). In particular, for all t > 0 we have that σ2
R ∼ R as R→ ∞.

Proof. Recall that

FR(t1) =
ˆ
R

ϕt1,R(0,y)W (dy)+
ˆ t1

0

ˆ
R

ϕt1,R(r,z)σ(u(r,z))η(dr dz),
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and similarly FR(t2). Further, each stochastic integral satisfies an isometry and they are uncorre-

lated because η and W were independent. It follows

1
R
E[FR(t1)FR(t2)] =

1
R

ˆ
R

ϕt1,R(0,y)ϕt2,R(0,y)dy+
ˆ t1∧t2

0

(
1
R

ˆ
R

ϕt1,R(0,y)ϕt2,R(0,y)dy
)
E[σ2(u(s,y))]ds,

where we are using Remark 3.2.7(ii) to move E[σ2(u(s,y))] outside the integral in y. Moreover,

by our previous Lemma

lim
R→∞

1
R

ˆ
R

ϕt1,R(0,y)ϕt2,R(0,y)dy = 2
ˆ

∞

0
pt1+t2−2s(u) ·2du = 2.

This together with the dominated convergence theorem gives the first assertion of the result. The

second assertion follows directly from the first.

We end this Subsection with the following Lemma, which is a technical result whose purpose

is to simplify some calculations in the proof of Theorem 3.4.1.

Lemma 3.4.4. Let 0≤ s < r < t. Set

Ss,r,t(R) :=
ˆ
R2

ˆ
R

ϕt,R(s,y)ϕt,R(s,y′)ϕ2
t,R(r,z)pr−s(z− y)pr−s(z− y′)dzdydy′.

Then, Ss,r,t(R)≤ 2R for all R > 0. In fact, the same inequality holds for

Tr,s,t(R) :=
ˆ
R2

ˆ
R

ϕ
2
t,R(s,y)ϕ

2
t,R(s,y

′)ps−r(y− z)ps−r(y′− z)dzdydy′,

when 0≤ r < s < t.

Proof. For the sake of simplicity, we will only prove the inequality for Ss,r,t(R), the proof of
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Tr,s,t(R) being similar. In view of (3.31), we can write

Ss,r,t(R) =
ˆ
R2

ˆ
[−R,R]4

ˆ
R

pt−s(x− y)pt−s(x′− y′)pt−r(x̃− z)

× pt−r(x̃′− z)pr−s(z− y)pr−s(z− y′)dzdxdx′dx̃dx̃′dydy′.

Now, we interchange the order of integration to dx̃dx̃′dy′dydzdxdx′. Then, we make the following

observations

(i) The integrals of pt−r(x̃− z) and pt−r(x̃′− z) with respect to x̃, x̃′ are bounded by 1 because

we can replace [−R,R] by R.

(ii) When we integrate y, y′, we can use the semigroup property. In fact, we can use this property

again when we integrate z.

In this way,

Ss,r,t(R)≤
ˆ
[−R,R]2

p2t+2r−4s(x− x′)dxdx′.

Integrating x over R and then x′ over [−R,R] yields the desired result.

We are finally ready to prove our main result from this Section.

3.4.2 Proof of Theorem 3.4.1.

Let t > 0.Thanks to Fubini’s theorem for stochastic integration, and in view of (3.31), we can write

FR(t) =
ˆ
R

ϕt,R(0,y)ξ (dy)+
ˆ t

0

ˆ
R

ϕt,R(r,z)σ(u(r,z))η(dr dz).

In fact, by Lemma 3.1.5 and Remark 3.1.8(a), we can express

FR(t) = δ
ξ (vR(t))+δ

η(uR(t)),
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where vR(t) = ϕt,R(0,y) and uR(t) = 1[0,t]ϕt,R(r,z)σ(u(r,z)). Proposition 3.1.10, implies

dTV

(
FR(t)

σR
,Z
)
≤ 2
√

2
σ2

R

√
Var
[〈

Dξ FR,vR
〉
H1

]
+Var

[
〈DηFR,uR〉H2

]
. (3.32)

In view of the basic inequality
√

a+b≤
√

a+
√

b for a,b≥ 0, we deduce from (3.32) that

dTV

(
FR(t)

σR
,Z
)
≤ 2
√

2
σ2

R

(√
Var
[〈

Dξ F,v
〉
H1

]
+

√
Var
[
〈DηF,u〉H2

])
.

On the other hand, Proposition 3.4.3 implies σ2
R ∼ R as R→ ∞. Therefore, it suffices to show the

existence of two constants c1(t) and c2(t) so that

√
Var
[〈

Dξ FR(t),vR(t)
〉
H1

]
≤ c1(t)

√
R, (3.33)√

Var
[
〈DηFR(t),uR(t)〉H2

]
≤ c2(t)

√
R, (3.34)

Let us start with the part corresponding to Dξ . For this case, vR(t) = ϕt,R(0,y) and

Dξ
z FR(t) = ϕt,R(0,z)+

ˆ t

0

ˆ
R

ϕt,R(s,y)Σξ (s,y)Dξ
z u(s,y)η(ds, dy),

Consequently,

〈
Dξ FR(t),vR(t)

〉
H1

=

ˆ
R

ϕ
2
t,R(0,z)dz

+

ˆ
R

ϕt,R(0,z)
(ˆ t

0

ˆ
R

ϕt,R(s,y)Σξ (s,y)Dξ
z u(s,y)η(ds,dy)

)
dz.

Note that since the first term is deterministic, it has variance equal to 0. Thus, we only need to

consider

Var
(ˆ

R
ϕt,R(0,z)

(ˆ t

0

ˆ
R

ϕt,R(r,y)Σξ (r,y)D
ξ
z u(r,y)η(dr,dy)

)
dz
)
.

Then, the isometry of the stochastic integral together with Cauchy-Schwartz and the estimate
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‖Dξ
z u(r,y)‖2 . pr(y− z) (Theorem 3.3.7), imply

Var
(ˆ

R
ϕt,R(0,z)

(ˆ t

0

ˆ
R

ϕt,R(r,y)Σξ (r,y)D
ξ
z u(r,y)η(dr,dy)

)
dz
)

=

ˆ
R2

ϕt,R(0,z)ϕt,R(0,z′)
ˆ t

0

ˆ
R

ϕ
2
t,R(r,y)E

[∣∣∣Σ2
ξ
(r,y)Dξ

z (r,y)D
ξ

z′(r,y)
∣∣∣] dydr dzdz′

≤ L2
ˆ
R2

ϕt,R(0,z)ϕt,R(0,z′)
ˆ t

0

ˆ
R

ϕ
2
t,R(r,y)‖Dξ

z (r,y)‖2‖Dξ

z′(r,y)‖2dydr dzdz′

≤C
ˆ t

0

(ˆ
R2

ˆ
R

ϕt,R(0,z)ϕt,R(0,z′)ϕ2
t,R(r,y)pr(y− z)pr(y− z′)dydzdz′

)
ds

for some constant C depending on t and the function σ(x). Since the expression inside the paren-

thesis corresponds to the function S0,r,t(R) introduced in Lemma 3.4.4, this same Lemma implies

Var
(ˆ

R
ϕt,R(0,z)

(ˆ t

0

ˆ
R

ϕt,R(s,y)Σξ (s,y)D
ξ
z u(s,y)η(ds,dy)

)
dz
)
≤ 2CRt,

which leads to (3.33).

We now study the term corresponding to Dη . The proof is similar to the proof of Theorem 1.1

in [16], although some adjustments are necessary. First, unlike [16], we do not have the condition

sup
0≤s≤t

sup
y∈R
‖σ(u(s,y))‖p < ∞,

in our setting. Additionally, the function b(s) = 1√
s appears in our estimates for the Lp-norm of

Ds,yu(t,x), whereas the estimate corresponding estimate in [16] (Theorem A.1) involves only the

fundamental heat solution.

Recall that for this case, vR(s,y) = 1[0,t](s)ϕt,R(s,y)σ(u(s,y)) and

Dη
s,yFR = ϕt,R(s,y)+

ˆ t

s

ˆ
R

ϕt,R(s,z)Ση(s,z)Dη
s,yu(s,z)η(ds, dz),
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where Ση(r,z) is a bounded random field. It follows,

〈DηFR,vR〉H2
=

ˆ t

0

ˆ
R

ϕt,R(s,z)2
σ

2(u(s,z))dzds

+

ˆ t

0

ˆ
R

ϕt,R(s,y)σ(u(s,y))
(ˆ t

s

ˆ
R

ϕt,R(r,z)Ση(r,z)Dη
s,yu(r,z)η(dr,dz)

)
dyds.

Then Remark 3.1.8(b), implies

√
Var
[
〈DηFR,vR〉H2

]
≤ A1 +A2, (3.35)

where

A1 =

ˆ t

0

(ˆ
R2

ϕt,R(s,y)2
ϕt,R(s,y′)Cov[σ2(u(s,y))σ2(u(s,y′))]dydy′

)1/2

ds

and

A2 =

ˆ t

0

(ˆ
R2

ϕt,R(s,y)ϕt,R(s,y′)

×
ˆ t

s

ˆ
R

ϕ
2
t,R(r,z)E[σ(u(s,y))σ(u(s,y′))Σ2

η(r,z)D
η
s,yu(r,z)Dη

s,y′u(r,z)]dzdrdydy′
)1/2

ds.

At this point, we divide the proof in two steps.

Step 1:

Let us estimate the term A1. In fact, we start by estimating Cov[σ2(u(s,y))σ2(u(s,y′)). It is for

this term that we need the Poincaré type inequality and the chain rule. More precisely, Corollary

3.1.7, implies

Cov[σ2(u(s,y))σ2(u(s,y′))≤
ˆ

∞

0

ˆ
R
‖Dη

r,zσ
2(u(s,y)‖2‖Dη

r,zσ
2(u(s,y′)‖2 dzdr.
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However, by the chain rule

Dη
r,zσ

2(u(s,y) = 2σ(u(s,y))Ση(s,y)Dη
r,zu(s,y),

where the random field is uniformly bounded. Additionally, we have a similar expression for

Dη
r,zσ

2(u(s,y′). An application of Cauchy-Schwartz leads to

Cov[σ2(u(s,y))σ2(u(s,y′))

≤ L2
ˆ

∞

0

ˆ
R
‖σ(u(s,y))‖4‖σ(u(s,y′))‖4‖Dη

r,zu(s,y)‖4‖Dη
r,zu(s,y)‖4 dzdr

≤ L2
ˆ s

0

ˆ
R
‖σ(u(s,y))‖4‖σ(u(s,y′))‖4‖Dη

r,zu(s,y)‖4‖Dη
r,zu(s,y)‖4 dzdr,

where for the last step, we used Dr,zu(s,y) = 0 if r > s. Note that in the context of the term A1, we

have s < t. Therefore, for the term A1, we are considering 0≤ r < s < t. Then, in view of Remark

3.2.7 and Theorem 3.3.6, we conclude

Cov[σ2(u(s,y))σ2(u(s,y′))≤Cb(s)
ˆ s

0

ˆ
R

ps−r(y− z)ps−r(y′− z)b(r)dzdr. (3.36)

where the constant C depends on t and the function σ(x). We are finally ready to estimate A1.

In view of (3.36) and Lemma 3.4.4, we have

A1 =

ˆ t

0

(ˆ
R2

ϕ
2
t,R(s,y)ϕ

2
t,R(s,y

′)Cov[σ2(u(s,y))σ2(u(s,y′))]dydy′
)1/2

ds

≤C
ˆ t

0

(ˆ
R2

ϕt,R(s,y)2
ϕt,R(s,y′)b(s)

ˆ s

0

ˆ
R

ps−r(y− z)ps−r(y′− z)b(r)dzdr dydy′
)1/2

ds

=C
ˆ t

0

√
b(s)

(ˆ s

0
b(r)Tr,s,t dr

)1/2

ds≤C
√

2R
ˆ t

0

√
b(s)

(ˆ s

0
b(r)dr

)1/2

ds.

As a manner of fact, explicit calculations show that

ˆ t

0

√
b(s)

(ˆ s

0
b(r)dr

)1/2

ds < ∞.
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This leads to A1 .
√

R as desired.

Step 2:

Now we estimate the term A2. We start by applying Hölder’s inequality to obtain

E[σ(u(s,y))σ(u(s,y′))Σ2
η(r,z)D

η
s,yu(r,z)Dη

s,y′u(r,z)]

≤ L2‖σ(u(s,y))‖4‖σ(u(s,y′))‖4‖Dη
s,yu(r,z)‖4‖Dη

s,y′u(r,z)‖4.

Then,

A2 ≤L
ˆ t

0

(ˆ t

s

ˆ
R2

ˆ
R

ϕt,R(s,y)ϕt,R(s,y′)ϕ2
t,R(r,z)

×‖σ(u(s,y))‖4‖σ(u(s,y′))‖4‖Dη
s,yu(r,z)‖4‖Dη

s,y′u(r,z)‖4dzdydy′ dr
)1/2

ds.

We note that since 0≤ s < r < t, Remark 3.2.7 and Theorem 3.3.6, imply

E[σ(u(s,y))σ(u(s,y′))Σ2
η(r,z)D

η
s,yu(r,z)Dη

s,y′u(r,z)]≤Cb2(s)pr−s(y− z)pr−s(z− y′).

for a constant C depending on t and the function σ(x). It follows,

A2 .
ˆ t

0
b(s)

(ˆ t

s

[ˆ
R2

ˆ
R

ϕt,R(s,y)ϕt,R(s,y′)ϕ2
t,R(r,z)pr−s(y− z)pr−s(z− y′)dzdydy′

]
dr
)1/2

ds.

Again, we use Lemma 3.4.4 to obtain

A2 .
√

2R
ˆ t

0
b(s)
√

t− sds.

Explicit calculations show
ˆ t

0
b(s)
√

t− sds < ∞. Consequently, A2 .
√

R. This, together with

Step 1 and (3.35), prove (3.34). The proof is now complete.
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