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Abstract 

 

The Golden Hour has been used as an ideal measure of patients’ access to trauma centers. It is 

the one hour after any traumatic event, including a traffic crash. It was shown that if patients can 

arrive at the hospital within one hour after a traumatic injury, the chances for survival increase. 

Therefore, this study aimed to identify the determining factors for patients involved in a traffic 

crash to arrive at the trauma center within the Golden Hour. For this, four years (2018-2021) of 

Kansas traffic crash data were investigated. Among the eight factors analyzed in the study, the 

time of the crash and lighting conditions were found to be the most important factors. The result 

showed that crashes that occurred when it was dark with no streetlights experienced the highest 

total transport time (TTT), which was 61.3 minutes. It may be an indication that crashes with 

longer TTT occurred in rural remote locations. TTT did not exceed the Golden Hour for any 

other factor. This study also showed that the distance between the crash location and the trauma 

center was not the only factor for increased total transport time (TTT). For example, crashes 

occurring within 5 miles of trauma centers can experience TTT higher than 60 minutes. This 

could happen if a crash goes unnoticed for a long period of time or if time is needed to extricate 

the patients.  
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Chapter 1: Introduction 

 

Thousands of people die annually across the United States (U.S.) from road traffic 

crashes. According to the National Highway Traffic Safety Administration (NHTSA), 42,795 

people died in road traffic crashes in the United States (U.S.) in 2022, while this number was 

42,939 in 2021 (National Highway Traffic Safety Administration, 2023). Data from the Centers 

for Disease Control and Prevention (CDC) showed that road traffic crash was the second largest 

cause of unintentional deaths (accounting for 22.6% of total unintentional death from 2015-

2020) in the US (Centers for Disease Control and Prevention, 2020). As a result, many initiatives 

have been taken to reduce traffic crashes and mitigate post-crash trauma on road users. Recently, 

NHTSA proposed the “Safe System Approach (SSA)” to confront traffic crashes (Ritter et al., 

2022). Post-crash care is one of the critical components of this SSA.  

 

One of the strategies of post-crash care is the idea of the “Golden Hour.” The Golden hour is a 

concept used in trauma and emergency management (Rogers et al., 2015).  It refers to the first 

hour after a crash (e.g., traffic crash, fire). It is believed that if trauma patients are given proper 

treatment within the first hour of a crash, then the chances of survival increase.  

 

Although the Golden Hour concept was widely accepted, no concrete evidence supported or 

negated this.  A paper (Lerner and Moscati, 2001) reviewed the previous articles that mentioned 

Golden Hour . The goal was to find the origin and scientific evidence supporting the Golden 

Hour concept. After reviewing some of the earliest articles on Golden Hour, the authors reported 

that they found little evidence to support the Golden Hour concept. They reported that the 

Golden Hour could neither be proven nor disproven.  
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A recent study (Hashmi et al., 2019) in the US analyzed the number of possible traumatic deaths 

which could be preventable by timely access (within one hour after the incident) to a trauma 

center. The study collected state-level adult ( ≥15 years old) traumatic death data between 1999-

2016 from multiple sources, including the Centers for Disease Control and Prevention.  Deaths 

from drowning, fire/flame, hot objects/substances, natural/environmental, overexertion, 

poisoning, and suffocation were excluded from the analysis. In total, 1,949,375 adult trauma 

deaths were included in the analysis. The statistical analysis showed an inverse correlation (r=-

0.64) between the proportion of the population with access to Level I/II trauma centers within 

one hour and the ratio of prehospital deaths to in-hospital deaths. The result also found an 

inverse correlation (r=-0.71) between the ratio of prehospital death to in-hospital death and age-

adjusted mortality rate per 100,000 population. Both results were statistically significant 

(p<0.05).  

1.1 Problem Statement 

A  study (Branas et al., 2005) in the US  estimated the percentage of the population 

getting access to trauma centers. The study collected trauma centers and population data on all 

50 states and the District of Columbia. The result showed that nationally 69.2% and 84.1% of the 

population had access to Level I or II trauma centers within 45 and 60 minutes, respectively. 

However, had lower numbers, with 48.5% and 62.3% of the Kansas population have no access to 

Level I or II trauma centers within 45 and 60 minutes, respectively.  The study was conducted in 

2005 and did not differentiate between injury due to traffic crashes and other types of traumas.  

 

A recent study (Hu et al., 2018) estimated the travel distances from Level I or II trauma centers 

for fatal traffic crashes. The result showed that in the Midwest, the average route and linear 



3 

 

distance from the trauma center was 33.6 miles (54.1 kilometer (km)) and 27.6 miles (44.4 km), 

respectively. For Kansas, these distances were 62.6 miles (100.7 km) and 53.4 miles (85.9 km), 

respectively.   

 

These two studies showed that Kansas had lower access to Level I or II trauma centers than the 

national average, and the distances of traffic crashes from trauma centers were also more than its 

neighboring states.  Increased distance will tend to increase the transport time to a trauma center, 

Therefore, it is essential to understand how faster road traffic trauma patients can access trauma 

centers and possible measures to improve accessibility. For this, it is necessary to know the 

factors affecting accessibility to trauma centers.  

1.2 Research Objectives 

The objective of this study was to investigate the accessibility of road trauma patients to 

trauma care within the Golden Hour. To do so, this study analyzed factors that affect 

accessibility.  

1.3 Research Benefits 

This analysis will help to target any factors that delay accessibility to trauma care. In 

addition, the study will highlight road networks that are not reachable within the Golden Hour. 

By doing so, this study can answer what percentage of road trauma patients can have access to 

trauma centers within the Golden Hour.  This will guide to help better post-crash management 

and future distribution of trauma care infrastructure. 

1.4 Thesis Organization 

This thesis is divided into six chapters. The first chapter is ‘Introduction.’ This discussed 

the thesis's objective, problem statement, and research benefits. The second chapter, ‘Literature 
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Review,’ shows previous research studies related to the thesis topic. This chapter also finds the 

literature's limitations, emphasizing this thesis's importance. The third chapter is about the 

applied methodology to conduct research and the source of data collection. A short description of 

the data is also included in this chapter. The fourth chapter discusses the results of the data 

analysis and compares the results with the findings from previous research. The Conclusion and 

Recommendation’ is the final chapter. This chapter recommends the application of the results 

and possible future works. In addition, the final chapter also shows the limitations in conducting 

the research and the possible ways to improve the outcome. 
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Chapter 2: Literature Review 

 

Throughout the last few decades, many studies have been conducted to investigate the 

accessibility of people to trauma centers across the world. Those studies investigated all types of 

traumatic incidents, including traffic crashes. Studies analyzed accessibility to trauma centers 

from different points of view. Most studies focused on the travel time and distance of incidents 

from emergency centers as deciding factors for trauma center accessibility. Studies also analyzed 

the impact of the location of emergency vehicles (ambulance) centers, the location of the 

incident, traffic congestion, the number of emergency calls on ambulance response time (ART), 

and on-time admission to the hospital. While some studies focused on a single factor that affects 

trauma center accessibility and ART, most studies investigated the influence of multiple factors. 

 

Based on the literature review, studies can be organized under the following broad categories:   

➢ Influence of travel-distance and travel-time;  

➢ Influence of traffic volume; 

➢ Influence of emergency centers location; 

➢ Influence of rural and urban areas; 

➢ Others; and  

➢ Conclusions. 

This literature review did not include all the studies related to trauma center accessibility 

conducted throughout the last few decades worldwide. Yet the literature review was intended to 

reflect an understanding of this field. As field triage patterns and emergency services (e.g., 

modernization of emergency vehicles) might change significantly every decade, recent works 

were reviewed with special emphasis. A particular interest of the literature review was focused 



6 

 

on studies that included traffic crash data to analyze trauma center accessibility. While road 

traffic fatalities accounted for a significant portion of traumatic deaths, only a handful of studies 

were found to investigate the accessibility to a trauma center for patients involved in a traffic 

crash. When a study involves road traffic crash data, it will be specifically mentioned to 

differentiate it from other trauma.  

 

Throughout the literature review, a few terms like “response time,” “notification time,” and 

“transport time interval” will be noticed. As the study location for reviewed studies were not the 

same, the definition and meanings of these terms were not the same for each country. To avoid 

ambiguity and confusion, definitions of any relevant term will be given right after mentioning a 

term, if needed.    

2.1 Influence of Travel-Distance and Travel-Time 

 

A significant portion of the reviewed studies focused on the travel distance between the 

crash location and emergency service center (ambulance center and trauma center) locations. 

Sometimes travel time was also used to see if the patients had access to the trauma center within 

the Golden Hour. Travel time was estimated using the travel distance and road speed limit. ESRI 

ArcGIS Network Analyst tools made this estimation possible. Hence, travel distance and travel 

time are interrelated and discussed here.  

 

A recent United States (U.S.) study compared the estimated time from the crash location to the 

trauma center (Hu et al., 2020). Estimated time was the travel time from the crash location to the 

trauma center estimated using ArcGIS. The study used FARS data from 2013-2017 for all states 

in the U.S.  The study found that some rural areas' actual time (transport interval) was less than 
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the estimated interval. This indicates that those patients were taken to local hospitals instead of a 

Level I or II trauma center. The same study also analyzed the correlation between mortality rates 

and time intervals. The investigated time intervals, commonly known as rescue intervals, were; 

notification time, transport interval, and arrival interval.  Among these time intervals, the 

estimated interval (estimated using ArcGIS) showed the strongest correlation with mortality 

rates. Conversely, the actual transport interval did not show a statistically significant correlation 

for most of the states. The study concluded that adhering to the Golden Hour without considering 

distance may not be helpful. This study was also limited to fatal crashes, and injury crashes were 

not considered. Involvement in injury crashes might yield different results. 

 

A study published in 2017 analyzed access to a trauma center after road crashes in the U.S. (Hu 

et al., 2018). The study used 2013-2014 Fatality Analysis Reporting System (FARS) data. FARS 

data records fatal crashes, including notification, dispatch, and transport time from the crash 

location to the trauma center. Using ArcGIS, the study investigated the effects of travel distance 

on trauma care access. Two distances, namely linear and routed distance, from the crash location 

to the trauma center were estimated. The result showed that these distances were 53.4 miles (85.9 

km) and 62.6 miles (100.7 km) in Kansas. These were average for all fatal crashes.  Among 

Midwestern states, these distances were higher in South Dakota and North Dakota. For some 

states, these distances were less than half of Kansas’s. These longer distances indicated a longer 

transport time in Kansas from the crash location to a Level I/II trauma center, possibly due to the 

spread of crash locations. However, this study did not include injury crashes in the analysis.   

A case study in South Africa investigated the spread of fatal crashes and access to a trauma 

center within the Golden Hour (Vanderschuren and McKune, 2015). The study assumed 
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notification and admission times were zero, considering the best possible scenario after a traffic 

crash. Dispatch, stabilization, and loading times were loaded from the Provincial Government of 

Western Cape Town (PGWC). Then, transport time was estimated by subtracting all these 

available times (e.g., dispatch time, admission time) from one hour. Among the 13,037.3 miles 

(20,981.5 km) of road analyzed, the study found that 9,123.2 miles (14,682.4 km) was outside 

the Golden Hour. The study also showed that 53.1% of fatal crashes occurred outside of Golden 

Hour. One of the study’s drawbacks was that it assumed ambulance speed to be the same as the 

road speed limit. 

 

In Taiwan, a 2021 study (Wiratama et al., 2021) applied multivariate logistic regression on two 

years of traffic crash data (2017-2019) to measure the effect of travel distance and trauma center 

level on traffic crash fatalities. The study used Euclidean distance (not the actual travel distance) 

from the crash location to the nearest trauma center. A GIS-based nearest neighbor analysis 

measured the distance between the crash location and trauma centers. A 3.1 miles (five km) cut-

off value was used to categorize the distance into ≥ 3.1 miles and < 3.1 miles. This study found 

that the 3.1 miles cut-off value was associated with the highest odds ratio than any other value 

(e.g., 0.62 miles (1 km), 1.3 miles (2 km), 3.7 miles (6-km), 4.3 miles (7 km)). Therefore, the 3.1 

miles cut-off value was used to categorize crashes into two categories: crashes located ≥3.1 miles 

from the nearest trauma center and crashes located < 3.1 miles from the nearest trauma center. 

The logistic regression result indicated that crashes located ≥3.1 miles from the nearest trauma 

center were nearly two times more likely (odds ratio: 1.98) to sustain fatal injuries than crashes 

located <3.1 miles from the nearest trauma center.  
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While the above studies mentioned above were focused on the distance between trauma centers 

and incident locations, US-based research (Concepcion et al., 2022) investigated the impact of 

distance between trauma centers and the nearest highway exit (TC-HW distance) at the county 

level. A total of 2019 trauma centers were included in the analysis few of these were verified by 

the American College of Surgeons (ACS). Prehospital traffic fatalities from 2014-2019 were 

collected from Fatality Analysis Reporting System (FARS). The statistical analysis found no 

strong and significant correlation between prehospital fatalities and TC-HW distance at the 

county level. A moderate positive and significant correlation was observed between fatalities and 

trauma centers with TC-HW distance ≤ 5 miles.  However, the study found that counties with 

TC-HW length ≤ 5 miles reported 17.7 prehospital fatalities, while this number was 101.2 for 

counties with TC-HW distance > 5 miles. In contrast to this result, counties with TC-HW lengths 

in between 10 to15 miles and 15 to 20 miles reported 48.3 and 12.8 prehospital fatalities, 

respectively. The study concluded that shorter distances between trauma centers and the nearest 

highway positively correlated with fewer prehospital fatalities for counties with trauma centers ≤ 

5 miles from the nearest highway exit. 

 

Conception et al. (2022) also showed that travel time to the trauma centers from the crash 

location increased with the increased TC-HW distance. Statistical analysis showed a positive 

correlation between travel time and prehospital fatalities for counties with TC-HW distances ≤ 

five miles. In contrast, an inverse correlation was observed between travel time and prehospital 

fatalities for counties with TC-HW distances from five to ten miles. In addition, K-nearest 

neighbor (KNN) analysis found that dispersed trauma centers were associated with increased 

prehospital fatalities. Using KNN, the nearest neighbor ratio (NNR) was estimated. NNR showed 



10 

 

a positive correlation with prehospital fatalities. NNR was the distance between any single TC 

and its nearest TC neighbors.  

 

A study (Sánchez-Mangas et al., 2010) in Spain analyzed 1463 traffic crashes. It was found that 

the mean response time was 25.4 minutes for motorways and 26.7 minutes for conventional 

roads. The response time was defined as the time interval between the traffic crash and the 

arrival of an emergency vehicle at the crash scene. The study established a probit model to 

estimate the influence of medical response time on crash fatality. According to the probit model 

results, longer medical response time was associated with a higher probability of death. The 

study estimated that death probability could decrease by one-third by a 10-minute reduction in 

medical response time.  

 

A relationship between traffic fatality and ambulance response time was also established in the 

US. A study (O.J. Adeyemi et al., 2022) using FARS data from 2010-2019 applied a negative 

binomial regression model to estimate the relationship between response time and traffic fatality. 

Response time was used as the predictor variable, and fatality rate as an outcome variable. The 

result showed that with a one-minute increase in EMS notification time to scene arrival time, the 

fatality rate increased by 1% in rural areas. This percentage was 2% and 5% for micropolitan-

urban and metropolitan-urban counties, respectively.  

 

This section discussed studies investigating the effect of travel distance and time on prehospital 

mortality. A few takeaways from this section are summarized below:  
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• In the US, the correlation between transport time interval and prehospital traffic 

fatalities was not statistically significant (Hu et al., 2020). 

• In the US, prehospital fatalities and TC-HW distance were not significantly correlated 

(Concepcion et al., 2022). For TC-HW distances ≤ five miles, distances affected traffic 

mortality significantly.  

• Reduction of ambulance response time was associated with decreased probability of 

traffic fatality in the US and other countries (O.J. Adeyemi et al., 2022; Sánchez-

Mangas et al., 2010). 

 

2.2 Influence of Traffic Volume  

 

Although emergency vehicles are given priority to drive, increased traffic volume can 

lead to traffic congestion and delays in vehicle movement. Typically, it takes work to get the 

traffic volume data while emergency vehicles are present. Hence, studies sometimes used 

surrogate measures to estimate increased traffic volume's impact on emergency vehicle response. 

Usually, traffic crashes on roadways can lead to traffic congestion in the nearby area, especially 

in urban areas, resulting in reduced speed. Following studies discussed the impact of traffic 

volume on emergency vehicles.  

 

A study conducted in the Netherlands showed an effort to quantify the impact of traffic volume 

(Dijkink et al., 2020). Rush hours and low traffic hours were used as surrogate traffic volume 

measures. The time between 6:00 a.m.-9:00 a.m. and 4:00 p.m.-7:00 p.m. during weekdays were 

considered rush hours, and low traffic hours were between 12:00 a.m.– 6:00 a.m., 9:00 a.m. – 
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4:00 p.m., and 7:00 p.m. – 12:00 a.m. on weekdays and weekends. Using ArcGIS, the study 

estimated expected travel time, and from the actual data, the study found observed time. The 

result showed that during low traffic hours, the median observed and expected travel times 11.4 

min and 11.1 min, respectively, while during rush hours, these times were 12.1 min and 12.0 

min, respectively. This showed that travel time from the accident (not the traffic crash) location 

to the trauma center increased when traffic volume increased.  Noticeably, the study assumed zip 

codes as accident locations, which was not the same as the traffic crash location.  The same study 

also analyzed seven hypothetical scenarios considering the different distribution of trauma 

centers across the study area. The result showed that roughly 57% of the population could reach 

a trauma center within 15 minutes of accidents in a scenario of three trauma centers. In another 

scenario, populations served within 15 minutes were 53% and 51%. This indicates the same 

service range from two and three trauma centers. This analysis showed the potentiality of 

ArcGIS-based analysis in trauma center distribution and future planning.  

 

To estimate the impact of traffic congestion on emergency medical services (EMS), a survey-

based study was conducted in Alabama (Griffin and McGwin, 2013). the study took a survey 

from personnel of fire departments and ambulances. A total of 500 EMS providers (from the 

Alabama Department of Public Health) were selected, from which 112 responded to the survey. 

About 67.6%  of responders were firefighters. Two-thirds of the responders served the urban 

areas. The survey result showed that the mean travel time due to traffic congestion increased by 

2.5 minutes from the emergency center to the incident scene and 6.4 minutes from the incident 

scene to the final destination. Continuous median barriers on roads were reported by 75% of 

respondents to increase the EMS response at the scene. High occupancy lanes were reported by 
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70% of survey responders to have a beneficial impact on emergency response times. Among the 

in-vehicle technology, survey results showed that low-frequency sirens, GPS devices, and 

preemptive green lights could improve emergency response times. Responders (95.3%) also 

agreed that public education about how to react to an approaching emergency vehicle would 

reduce the response time.  

 

A California-based study (Brent and Beland, 2020) used the actual traffic volume to estimate the 

impact of traffic congestion. The study analyzed the effect of traffic congestion and 

transportation policies on the response times of emergency vehicles. Response time was the 

interval between the incident notification and the emergency vehicle’s arrival. Emergency 

response data were collected for California from 2008 to 2015, which contains fires, emergency 

medical services, and other hazards. A five-minute traffic data window was used just before the 

emergency alarm to estimate the traffic deciles and delays from free flows. Both the traffic 

deciles and delays were then merged with emergency response data. The study excluded traffic 

crashes from the analysis. The study found that traffic delays were lower in non-urban areas than 

in urban areas, but the response times were higher. The average response time was 6.2 minutes. 

For further analysis, regression analysis was conducted where response time was the outcome 

variable, and the independent variables were decile of traffic delays, year effect, and hour of the 

day. Regression results showed that traffic delays for emergency calls in the 9th and 10th deciles 

increased the response times by about 0.13 minutes (2.2% of response times) and 0.19 minutes 

(3.1 minutes of response times), respectively. However, this impact was heterogeneous across 

the different hours of the day. At peak hour, the response time increased by 9th and 10th deciles 

were 0.17 and 0.19 minutes. At an off-peak hour, the response times improved by 9th and 10th 
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deciles were 0.11 and 0.21 minutes.  Unexpected traffic conditions (deciles of traffic delays) 

were also found to increase the response times weekly and monthly. All the results were 

statistically significant. The study also estimated that the zip codes with high occupancy vehicles 

and toll lanes had lower response times. In a zip code area with no HOV lanes, toll roads, rail, 

and metro stations, the response time was increased by 0.16 minutes, whereas a zip code area 

with any of these policies had lower response times. However, the number of fire stations was 

not a determining factor for response times. The authors explained that fire stations in Los 

Angeles were well-distributed, hence the distance between the fire station and the incident was 

not a predictor for response times.  

 

The studies reviewed in the section (Brent and Beland, 2020; Dijkink et al., 2020; Griffin and 

McGwin, 2013) did not include traffic crash data. A study by Brent and Beland (2020) 

mentioned that traffic crashes could increase traffic congestion, which can be a factor in a traffic 

crash. Therefore, traffic congestion and the occurrence of a traffic crash might be correlated with 

each other.  

 

From the discussion of this section, the following points can be summarized: 

• Delays in emergency vehicle travel were higher in urban than non-urban areas (Brent 

and Beland, 2020).  

• In Alabama,  traffic congestion increased the emergency response time to the scene by 

2.5 minutes (Griffin and McGwin, 2013).  

• Travel time of emergency vehicles during rush hours was higher than at other times 

(Dijkink et al., 2020).  



15 

 

2.3 Influence of Emergency Centers Location  

 

The location of emergency service centers and trauma centers can be another critical 

factor to affect trauma center accessibility because depending on the site of emergency centers, 

travel distance and travel time to the incident scene changes. A previous literature review found a 

lower probability of prehospital death with decreased travel time (Sánchez-Mangas et al., 2010). 

Conversely, the chance of prehospital deaths increases with the increase in response time (O. J. 

Adeyemi et al., 2022) and transport time from the incident scene to the trauma center.  

 

A US-based (Brown et al., 2016) study conducted a nationwide analysis of trauma center (Level 

I & II) distribution. Each state's injury fatality rates per 100,000 population were collected to do 

this. Using Moran’s I statistics, auto-correlation among injury rates was estimated. Results 

showed that injury fatality rates were spatially autocorrelated, meaning that neighboring states 

had similar fatality rates. In addition, the nearest neighbor ratio (NNR) was estimated for each 

state using GIS-based analysis. NNR measures how clustered or dispersed the existing trauma 

centers are. An NNR<1 indicates that the trauma center is clustered, and NNR>1 indicates 

dispersed trauma centers. Finally, the Spearman correlation, ordinary least square regression, and 

Spatial-lag regression were estimated to measure the correlation between NNR and injury fatality 

rates. Results found that the NNR and fatality rates were positively correlated. They indicated 

that increasing the NNR increased the fatality rates. Increasing the NNR means increasing the 

dispersion of trauma centers. However, the study hypothesized that more dispersion of trauma 

centers would yield better outcomes by decreasing the fatality rate. This could be due to the 

ununiform distribution across land areas, and clustered trauma center best serves the clustered 

population center. These results also held for motor vehicle collisions.  



16 

 

 

Another study in the US (Horst et al., 2017) proposed new approaches to finding suitable 

locations for new trauma centers of Level I or Level II. Trauma-related data were collected from 

the Pennsylvania Trauma Systems Foundation. Assuming that trauma incidents occur in border 

areas, patients can be taken to trauma centers in surrounding states; the study collected road 

network data with speed limits from Pennsylvania and the surrounding states of Pennsylvania. 

The Network Analyst Location-Allocation function in ArcGIS Desktop was used to run the 

analysis. The parameters included in the Network Analyst function were 60 minutes of travel 

time from the centroid of zip codes to TC, facilities of hospitals, and distance from existing TC.  

Thirteen years of trauma-related data (2003-2015) were collected from the study location. The 

results showed that adding six new TCs increased the trauma cases within 60 minutes of the 

nearest TCs from 91.6% to 96.2%.    

 

A Singapore-based study (Lam, Zhang, et al., 2015) investigated a new way of reducing response 

time by dynamic reallocation of ambulances. This study investigated system status management 

(SSM) using GIS and mathematical programming (MP) -based models. SSM is the process of 

dynamically reallocating ambulances across time and space. Six months of emergency calls data 

(total observations of 995) were collected. Using GIS and MP-based analysis, the study found a 

dynamic reallocation strategy, which reduced the median response time by 13 seconds and 44 

seconds, respectively. Among the two strategies, the MP-based strategy covered a higher 

percentage of emergency calls than the GIS-based strategy. Both models showed improvement in 

coverage than the static allocation of ambulances.  An example of ambulance relocation using 

GIS-based analysis was that optimal performance was achieved if there was one ambulance 

between 23:00 to 03:00 hours in postal district 78 (an area in Singapore). If the ambulance 
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number was two, the best locations were postal districts 55 and 67. The study found that the 

centroids of hotspots were not static and tended to expand in the southwestern direction during 

working hours.    

 

From this section, the following are the key takeaways: 

• Dispersed trauma centers were associated with increased prehospital mortality 

(Brown et al., 2016). This could be due to the result of people living clustered in 

cities. Because traumatic injury occurs where people live and travel centered in 

areas where people live.  

• Addition of new trauma centers can increase people’s access to trauma centers 

(Horst et al., 2017). GIS-based analysis can help find the locations of new trauma 

centers.  

• Dynamically relocating ambulances can reduce the ambulance response time 

(Lam, Zhang, et al., 2015).  

2.4 Influence of Rural and Urban Areas 

 

The traveling speed of emergency vehicles may change in urban and rural areas due to 

traffic volume and roadway geometric design. Therefore, driving speed in rural and urban areas 

may differ so that the response times can vary. Many studies investigated this factor. The studies 

(O.J. Adeyemi et al., 2022) reviewed in previous sections that reported the difference in response 

time and prehospital mortality between rural and urban areas would not be repeated in this 

section. 
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For example, a study in Sweden (Petzäll et al., 2011) compared the difference in ambulance 

speed between emergency and non-emergency driving. Emergency ambulance transportation 

data were collected from thirty emergency centers from May 2008 to February 2009. 

Experimental driving was conducted from September 2008 to February 2009, which served as 

non-emergency services. The experimental driving was a repetition of emergency driving and 

was conducted to match the emergency driving as possible (e.g., driving on the same day of the 

week, same time).  Both datasets contain data from urban and rural areas. Urban areas were 

larger towns with inhabitants of nearly 100,000, and rural areas were the areas with 10,700 to 

24,000 population. The result showed that emergency driving saved 3 minutes in urban areas, 

and in rural areas, this was nearly 9 minutes. The study reported that all the emergency driving 

was faster than the experimental non-emergency driving. The patient’s need for emergency care 

or clinical status showed no variation in the emergency vehicle speed. Therefore, the study 

recommended developing procedures to identify the patient’s condition for high-speed 

ambulance transportation, as high-speed transit can lead to a traffic crash.  

 

In the US, a study (Byrne et al., 2019) analyzed 2,214,480 ambulance responses which contain 

information from 2268 counties. The study found that counties with longer response times in 

rural areas had more on-scene and transport time. Counties with response times of 12 minutes 

had a mortality rate of 11.9 per 100,000 populations per year.  This mortality rate was 4.9 for 

counties with 7 minutes response times. The study reported that median response times in rural 

or wilderness areas was 10 minutes, while this number was 7 minutes for urban areas. 

 

To report the prehospital time interval for urban and rural emergency medical services, a study 

(Alruwaili and Alanazy, 2022) reviewed 37 articles published between 1991 to 2022, among 
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which 17 studies were conducted in the United States.  The result showed that a difference in 

response time between rural and urban areas was reported in 29 studies. Response time for 

crashes in rural areas was higher than in urban areas in 27 studies. In conclusion, all of these 

studies reported that pre-hospital time was shorter for crashes occurring in urban areas than in 

rural areas. In addition to these findings, the study reported that mean response time for urban 

and rural regions differed for each study.  

 

This section identified that: 

• In Sweden, emergency driving was 9 minutes faster in rural areas and 3 minutes 

faster in urban areas than non-emergency driving (Petzäll et al., 2011).  

• In the US, rural areas had an increased traffic crash mortality rate (Byrne et al., 

2019).  

• Emergency vehicle response time for crashes occurring in rural areas was longer in 

the US and other countries (Alruwaili and Alanazy, 2022).  

 

2.5 Others  

The term “others” includes all other factors except travel time, travel distance, location of 

emergency centers, traffic volume, and rural and urban areas. During the literature review, 

factors like weather, age groups, emergency call numbers, transportation policies, and lighting 

conditions also affected trauma center accessibility. Studies (Brent and Beland, 2020; Griffin and 

McGwin, 2013) already reviewed in previous sections reported a few of these and were 

mentioned during the review of those studies. Therefore, those studies will not be repeated here 

again.  



20 

 

A study (Vanga et al., 2022) in the US investigated the influence of factors that affect emergency 

vehicles' response time (ERT) (ERT was the time interval between the time of crash occurrence 

and the time of the emergency service’s arrival at the crash scene). For this, one county in 

Alabama was selected as a study location. This county had only a single EMS center. Motor 

vehicle collision data from 2016-2019 (214 automobile crashes) were collected. Traffic Crash 

data contained severity, ERT, actual travel time, day of the week, time of the day, weather, and 

lighting conditions. The fastest travel time was estimated using Google Maps. The descriptive 

analysis showed that ERT was longer for crashes occurring on dark roads not lighted, from 6:00 

p.m. to 6:59 p.m., with suspected serious injury, during mist or foggy weather conditions, and on 

weekends. Among the different crash severities, ERT was longer for suspected minor and 

suspected severe injuries. In addition, as the travel time increased, ERT also increased. The study 

estimated travel time using Google Maps from the location of the crash to the location of 

emergency medical services. Results showed that to travel the same distance, ERT was longer 

than the travel time. This was because of delays during the travel of emergency vehicles. 

However, in general, delays in ERT decreased as the travel time increased.  

 

 in Saudi Arabia investigated the impact of weather and other factors on emergency vehicle 

response time and rescue time. A total of 57,928 emergency call data from the Kingdom of Saudi 

Arabia were used in this study. These data were the road traffic crash data that occurred in 2019. 

These data contained information regarding ambulance dispatch time, EMS arrival time, hospital 

admission time, and other information. A linear regression model showed that geographical 

region, time of the crash, number of injured people, type of injury, and weather conditions 

affected the response and rescue time. These results were statistically significant (p-values< 
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0.05). Factors such as crash day, academic calendar, and visibility range were found to be 

nonsignificant. However, the R-square value (less than 2.76%) was found to be low, indicating 

that although the factors were significant, these factors cannot explain variability in response 

time. The addition of two factors (traffic level and traveled distance) improved the R-square 

value (more than 70%) for the region Al-Riyadh. The study found that rescue and response times 

increased as the number of injured people increased and during rainy weather conditions.  

 

Another study (Cabral et al., 2018) reviewed scientific articles using the terms “Response Time” 

and “Emergency Medical Services” from different countries between 2007 and 2017. This study 

defined response time as the time interval between the notification of the incident and ambulance 

arrival at the scene.  The study found that response time in Europe and North America was 

nearly 8 minutes, whereas, in Asia and Africa, this time was higher than eight minutes. However, 

no correlation between GDP and response time was found. Traffic volume, demographic density, 

localities, and public health policies were reported to influence the response time. The study  

recommended investigating the factors affecting response time to understand the measures for 

reducing response time.  

 

A Singapore-based study (Lam, Nguyen, et al., 2015) investigated the factors affecting 

ambulance response times (ART). ART was defined as the interval between ambulance dispatch 

and arrival at the incident scene. “Dispatch time” was when an ambulance left the EMS station. 

The study investigated risk factors such as age, gender, ethnicity, weather, location of the 

incident, and traffic.  Ideal travel time (ITT) was also included in the analysis of risk factors. ITT 

was the time based on travel distance and road speed limit. The study was conducted using a 
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multinomial logit model (MLM). For analysis purposes, ART was categorized into three 

categories: short (less than 4 min), intermediate (4-8 min), and long (more than 8 min). For MNL 

analysis, short ART was considered as the baseline factor. MNL analysis identified that traffic 

conditions, weather, place of incident, gender, and ideal travel time affected the ambulance 

response times. For long ART, traffic was found to show the highest odds ratio (OR). Heavy and 

moderate traffic increased the Long ART more than the light traffic. For intermediate ART, the 

highest OR was shown by place of incident. Both for the long and middle ART, MNL analysis 

showed that any location of an incident was associated with increased ART than an incident 

location on the road. This indicated that traffic crashes had a higher chance of lower ART than 

incidents occurring at home and in buildings. The gender type “Female” increased the odds of 

Long and Intermediate ART. Ideal Travel Time (ITT) increased the odds of the Long and 

Intermediate ART. Weather (Heavy and Light Rain) was associated with increased OR for Long 

and Intermediate ART. Spoken language was also found to be a significant factor. If the callers 

spoke in a language other than Malay, Chinese, or Tamil, there was a higher chance of Long and 

Intermediate ART.  This could be due to miscommunication resulting from inexperience in other 

languages.  

 

In another study in Singapore (Do et al., 2013), ambulance response time was influenced by the 

volume of emergency calls in the last hour. Studies (Brent and Beland, 2020) also reported that 

the presence of HOV lanes and toll lanes decreased response times. Survey-based research 

(Griffin and McGwin, 2013) in the US reported that roadway geometry, like the median barriers, 

could increase the rescue time at the incident scene.  

From the discussion in this section, the following points are identified:  
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• In the US, ambulance response times varied depending on weather, lighting 

conditions, and day of the week (Vanga et al., 2022). 

• In the US, the presence of HOV lanes, toll lanes, and metro stations decreased the 

response time (Brent and Beland, 2020).   

• Studies also mentioned demographic densities and public health policies (Cabral et al., 

2018), age groups of 17-42 years (Byrne et al., 2019), volumes of emergency calls (Do 

et al., 2013), roadway geometry (Griffin and McGwin, 2013), gender, and spoken 

language (Lam, Nguyen, et al., 2015) as influential factors.   

2.6 Conclusion 

Over the years, studies have identified the influence of different factors on emergency 

vehicle response time and transport time. Those studies aimed to quantify the impact of factors 

on different prehospital time intervals and understand how factors were correlated with 

prehospital time intervals. Commonly studied factors were traveling distance, traffic congestion, 

location of emergency centers, and rural and urban areas. While a traffic crash can lead to traffic 

congestion and affect the ambulance response time, studies were not found to investigate the 

influence of traffic congestion (resulting from a traffic crash) on ambulance response time. The 

availability of traffic volume data after the traffic crash can be a factor in estimating the 

influence of traffic volume on ambulance response time. Although it is less likely that weather 

and lighting conditions will affect emergency vehicles traveling speed, some studies identified 

these factors as involving emergency vehicles’ response time. Other factors were also 

investigated, such as the number of emergency calls, spoken language, demographic densities, 

and roadway median barrier. Among these, median barriers are an essential factor, as the 

location of traffic crashes can have a median barrier.  
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Some studies also focused on dynamically relocating ambulances to improve emergency services 

and found positive results. Based on GIS analysis, some studies tried to find the best locations 

for new trauma centers. It seems that most studies investigating factors affecting trauma center 

accessibility involved GIS-based analysis in estimating the closest facility and travel time. 

However, one drawback of this type of analysis is that GIS-based travel time was calculated 

using the road speed limit, and emergency vehicles are not bound to follow the road speed limit. 

A study (Petzäll et al., 2011) showed that emergency vehicles were always faster than non-

emergency driving. However, the study did not mention if the driving speed exceeds the road 

speed limit. Studies also applied logistic regression, count data models (e.g., negative binomial 

regression), and correlation analysis (e.g., spearman correlation) to understand how the factors 

are related to emergency response time and prehospital mortality. However, only some studies 

involved traffic crash data and were done on other emergency service calls. 
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Chapter 3: Methodology 

 

This chapter discusses the data, data collection, and methodology used in the research. 

Creating additional factors from the data during the analysis was also discussed. Finally, this 

chapter discusses the assumptions of the research.  

3.1 Data Collection and Description of Data  

This research used traffic crash data, trauma centers data, local hospital data, Kansas’s 

road network data, and the Kansas Department of Transportation’s (KDOT’s) administrative 

districts data.  

3.1.1 Traffic Crash Data: Collection, Cleaning, and Preparation for the Analysis  

Traffic crash data were collected from the Kansas Accident Reporting System (KARS) 

database. KARS database stores traffic crash data occurring in the State of Kansas. Traffic crash 

data were collected for four years, from 2018 to 2021. Each traffic crash has information 

regarding crash time, crash type, causes of the crash, vehicle involved, weather, and 

demographic information. This information is called a factor. For this research, factors were 

selected based on previous studies and the purpose of the research. Each traffic crash was 

extracted along with the factors such as crash key, on-road speed limit, county name, weather, 

lighting conditions, latitude and longitude, year of the crash, date of the crash, time of the crash, 

day of the crash, police notification time, police arrival time, EMS notification time, EMS arrival 

at the crash scene, and EMS arrival at the hospital.   

3.1.2 Trauma Center and Hospital Data 

As this research aimed to identify the factors affecting access to trauma centers for fatal 

and severely injured patients, the location of trauma centers and hospitals was required. State-
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designated trauma center data were collected from a publicly available ArcGIS online database 

maintained by the Kansas Department of Health and Environment (KDHE). The database link 

was received through email from a staff working at the Kansas Geological Survey at the 

University of Kansas.  The data were in a shapefile format, hence importable to the ArcGIS 

Desktop. The data contained information regarding the name of the trauma center, the state-

designated level of the trauma center, email and phone number of the director of the trauma 

center. A trauma center can be designated as Level I, Level II, Level III, or Level IV trauma 

center, depending on the facilities of a trauma center. In total, there were 44 trauma centers listed 

in the shapefile.  

 

Local hospital data were collected from the website of the Kansas Hospital Association 

(https://www.kha-net.org/KansasHospitals/HospitalListings/: Accessed on April 20, 2023).  This 

website enlisted all hospitals, including trauma centers located in Kansas, U.S. A total of 124 

hospitals were listed. However, the website only listed the names of the hospitals. The researcher 

was also interested to know if the hospital had emergency facilities, an intensive care unit (ICU), 

and a designation of trauma level.  

 

Therefore, the researcher browsed the internet to find out the hospitals’ websites and then 

interviewed the hospital staff (e.g., the emergency department director) to collect more 

information. For the hospitals that did not respond to the questions, the author browsed the 

website of these hospitals to see if those hospitals have emergency facilities. 

 

https://www.kha-net.org/KansasHospitals/HospitalListings/
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Hospitals that were not state-designated trauma centers may have had emergency facilities. So, 

these hospitals can stabilize patients, and depending on the condition, they can transfer the 

patient to a state-designated trauma center if needed. One hospital (Greenwood County Hospital) 

was reported to have lost its trauma designation. Sometimes, the trauma level changes (e.g., 

Providence Medical Center). During the phone-call interview, hospital staff representatives 

reported that trauma designation is renewed every two years, and hospitals must apply for that 

designation. If any hospital can meet specific criteria designed by the state, then the hospital 

gains its trauma-level designation.      

 

Finally, hospital data contained state-designated trauma centers and hospitals that were not state-

designated trauma centers but had facilities such as emergency and ICU. The researcher only 

called some of the hospitals, because trauma levels for some hospitals were reported in the 

shapefile received from KUGIS. As mentioned before, 44 trauma centers were reported in that 

shapefile. So, the researcher talked to a representative of other hospitals to learn more about their 

facilities. After collecting all the information, the data showed that there are 53 trauma centers in 

Kansas. That indicates that nine trauma centers were not reported in the KDHE shapefile. This 

could be because, after the preparation of the KDHE shapefile, other hospitals got their 

designation as trauma centers.  

 

The hospital data were collected in Microsoft Excel ‘CSV’ file. A ‘CSV’ file can be imported 

into ArcGIS Desktop from the ‘Add Data’ window. Once the ‘CSV’ file is added, these data can 

be plotted on the map by specifying latitude and longitude from ‘Display X-Y Data.’  This 
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imported data does not contain an ‘object id’ and is not recommended for analysis. Hence, these 

data were exported as a shapefile and added to the layer.  

3.1.3 Road Network and Administrative District Data 

Road network data and KDOT’s administrative districts were collected from KDOT. The 

road network data were in shapefile format and importable to the ArcGIS Desktop. The road 

network data contained each road segment's speed limit and length. The unit of speed limit was 

miles per hour (mph), and the length unit was feet which was converted to miles.   

 

KDOT divided the State of Kansas into six administrative districts: District 1, District 2, District 

3, District 4, District 5, and District 6. Upon request, KDOT provided the shapefile of the district 

map and list of all counties within each district.   

3.2 Geospatial Analysis 

This study applied location-based analysis, which was conducted in ArcGIS Desktop 

10.8.1. ArcGIS Desktop can be used for mapping and analysis of spatial data. Spatial data are the 

data with location information (latitude and longitude). Among the different types of spatial 

analysis tools available in ArcGIS Desktop, this research used the Network Analyst’s Closest 

facility, cliff, and buffer tools.   

3.2.1 Network Analyst’s Closest Facility Tool  

If there is any life-threatening injury, it is important to take the patients to the nearest 

trauma center as quickly as possible. Therefore, this research was also interested in identifying 

the closest trauma center to the location of a traffic crash and estimating the distance between 

these two (trauma center and traffic crash). This can be estimated by the ‘Closest Facility Tool’ 

in ArcGIS Desktop (ESRI, 2021b).   
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The ‘Network Analyst’ toolbar is not a default toolbar, and it can be enabled from ArcGIS 

Desktop extensions.  

 

The ‘Closest Facility Tool’ uses Dijkstra’s algorithm to find out the closest facility (trauma 

center) from an incident (crash location) (ESRI, 2021a).  Dijkstra’s algorithm is the most used in 

finding the shortest path problem. For example, ‘Google Maps’ also used this algorithm in 

destination route selection. A discussion on this algorithm is out of the scope of this research.   

 

To enable the ‘Closest Facility Tool’ or any other tool available in the ‘Network Analyst’ 

toolbar, a network dataset must be created. A network dataset (ESRI, 2021d) models the road 

network, which takes the data such as the direction of movement (one or two-way), turn 

restrictions (right, left, or U-turn), overpass or underpass and connectivity (e.g., end-to-end 

connectivity). Multimodal transportation can also be specified in a network dataset. Creating a 

network dataset will be discussed in the following section.  

 

Following steps discuss the analysis using the ‘Closest Facility’ tool:  

➢ Step 1: Once the network dataset is created, it will be enabled in the ‘Network Analyst’ 

tool indicating that the ‘Closest Facility’ tool is ready for analysis.  

 

➢ Step 2: A new window is opened when the ‘Closest Facility' is clicked. This has the 

option to ‘load locations’ for facilities, incidents, routes, point barriers, line barriers, and 

polygon barriers. This study used trauma centers and hospitals as facilities and traffic 

crash locations as incidents. No barriers were used because the information about turn 
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restrictions and barriers was not available. ‘Routes’ info is not given because it stores the 

result (all incidents that find a trauma center) after completing the analysis.  

 

➢ Step 3: There is additional information required to be provided before the analysis. This 

information is ‘Layer Properties.’ The most important properties are ‘Analysis Settings’ 

and ‘Accumulation.’  In the ‘Analysis Settings,’ there are two types of ‘Impedance’: ‘ 

Length’ and ‘Time.’ The ‘Length’ impedance allows a user to estimate the shortest path, 

and the ‘Time’ impedance will enable a user to estimate the quickest path. These 

‘Length’ and ‘Time’ impedance come from the network dataset, and the network dataset 

is created from the road network shapefile.  This research used road network data from 

KDOT, which had each road segment's length and on-road speed limit. Time (to pass 

through a road segment) was estimated from length and speed. However, this research 

used ‘Length’ as ‘Impedance.’ Because ‘Time’ impedance will calculate the quickest 

path and estimating the quickest path requires considering traffic volume on the road, 

‘Time’ impedance was not used. In addition, time was estimated using the road speed 

limit; practically, emergency vehicles can travel more than the posted speed limit.  

 

One traffic crash requires one facility; therefore, ‘Facilities to Find’ was 1 (one). The 

vehicle travels from the location of the traffic crash to a trauma center; hence, ‘Travel 

From’ was ‘Incident to Facility.’ If the location of emergency vehicles were known, then 

this could be ‘Facility to Incident’ to estimate the shortest distance between the location 

of the traffic crash location and the location of emergency vehicles. 

 

➢ Step 4: The last step was ‘Accumulation’ in ‘Layer Properties.’ This research was 

interested in extracting the shortest path length from a traffic crash location to a trauma 
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center or hospital and the time to travel that distance. Therefore, ‘Length’ and ‘Time’ was 

selected in ‘Accumulation.’  

3.2.2 Creating Network Dataset 

Network dataset allows for analyzing a road network. In a road network, vehicles travel 

in a specific direction, turn in a specific way, stop at a ‘STOP’ sign or traffic signal, and slow 

down if there is congestion, emergency vehicle, or any incidents. The network dataset can 

specify all these things that affect vehicle movement (ESRI, 2021c). These were not used 

because the location of turn restrictions and traffic signals were unknown.  

 

The following steps describe the process of creating a network dataset:  

➢ Step 1: A ‘New Network Dataset’ dialogue box pops up when the road network shapefile 

in Arc Catalog is right-clicked.  

 

➢ Step 2: After clicking on ‘New Network Dataset,’ a dialogue box pops up where all road 

network elements can be specified. First, it asks for a name which will be the name of the 

network dataset after adding in the layer. Then, it asks to specify the ‘Turns.’ Because 

‘Turns’ features were unknown (these data were not collected), ‘No’ was selected.  

 

➢ Step 3: Next, ‘Any Vertex’ was selected as a connectivity policy. This allows users to 

connect intersecting streets. An ‘End Point’ connectivity is chosen for an underpass or 

overpass, and intersecting streets are considered overpass or underpass. Overpasses or 

underpasses are created by setting elevation data along with latitude and longitude. 
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➢ Step 4: No elevation data was collected; hence ‘None’ was selected when network features 

required elevation data. 

 

➢ Step 5: The attribute specified here will be available for accumulation in the ‘Closest 

Facility Analysis’ mentioned in ‘Step 4.’ The network dataset automatically identified the 

‘Length’ attribute from the road network shapefile. However, the ‘Time’ attribute was not 

identified, and this can be added from the ‘Add’ tab at the top of the right side. ‘Units’ of 

these two attributes should be selected. This research used ‘miles’ for length and 

‘minutes’ for time. 

 

➢ Step 6: No input was provided when network features required to specify ‘Travel Mode’. 

This travel mode allows to specify multimodal transportation; however, multimodal 

transportation was not required for this research. This research only estimated the shortest 

distance between a crash location and a trauma center and the time to travel. Keeping 

travel mode and the following elements blank did not affect the result.  

 

➢ Step 7: The default driving direction is both-way driving. Hence, no driving direction was 

given. Because traffic crashes considered here were fatal and incapacitating injuries, 

emergency vehicles were assumed to travel in both directions.  

➢ Step 8: Then click on the ‘Finish’ tab to create the network dataset.  

 

3.2.3 Cliff and Buffer tool 

Cliff and buffer tools are geoprocessing tools available in the ArcGIS Desktop. A buffer 

tool is used to create a polygon (called ‘buffer zone’) around an input feature to a specified 
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distance. This input feature could be point data, a line, or a polygon. For this research, a few 

buffer zones were created around hospital and trauma center data which were point data. 

The cliff tool is used to extract input features that overlay cliff features.  The cliff feature can be 

point, line, or polygon data depending on the input features. This research was interested in 

estimating the number of traffic crashes and the road network length within a certain distance 

from a hospital or trauma center. Therefore, a buffer zone was created around the hospital or 

trauma center, and this buffer zone was a cliff feature. Traffic crash data were input features.  

 

The cliff tool only extracts the input features within a cliff feature. For example, cliff features 

can extract the road network data within a polygon, which is another road network data. 

However, this research required to estimate the length of the newly extracted road network data. 

This can be done from the attribute table. To do that, the attribute table of any layer (e.g., road 

network) was opened, and right-clicking in any field (e.g., length) opened a window showing 

‘statistics’ and other functions. 

3.3 Outlier Detection 

Among many statistical tests, Grubb’s outlier test (Grubbs, 1969) and Walsh’s outlier test 

(Walsh, 1950) are two tests for detecting outliers. Grubb’s test is a parametric test and requires 

that the data should be normally distributed. Walsh’s test is non-parametric and does not require 

the data to be normally distributed.  

 

Because the data were not normally distributed, this research used Walsh’s test for outlier 

detection. The ‘Test of Normality’ section will discuss the methodology for checking normality. 

Below are the steps for conducting Walsh’s test (Lipi et al., 2022): 
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➢ Step 1: Assume the number of outliers, r ≥ 1  

➢ Step 2: Compute the following: c= ceil√(2𝑛) ),   k= r+ c,    𝑏2 =
1

𝛼
   and   𝑎 =

1+𝑏√𝑐−𝑏2

𝑐−1

𝑐−𝑏2−1
    

 

Here, n is the sample size, and ceil( ) indicates rounding up the value to the nearest integer (e.g., 

2.1 becomes 3.0). If n>220, 𝛼 = 0.05. If 60 <n≤ 220, 𝛼 = 0.1. If n<60; the test is not 

recommended to apply.  

➢ Step 3: The r smallest point is an outlier if;  

𝑥𝑟 − (1 + 𝑎)𝑥𝑟+1 + 𝑎𝑥𝑘 < 0  ………………..(i) 

 

➢ Step 4: The r largest point is an outlier if;  

𝑥𝑛+1−𝑟 − (1 + 𝑎)𝑥𝑛−𝑟 + 𝑎𝑥𝑛+1−𝑘 > 0 …………..(ii)  

 

3.4 Test of Normality 

Histogram and Q-Q plot (quantile-quantile plot) are the two graphical methods that can 

be used to test the normal distribution of the dataset. If a dataset is normally distributed, the 

histogram looks like a normal distribution curve (Bland, 2015). A histogram is the plot of the 

frequency of the observations against observations.  

 

Q-Q plot (quantile-quantile plot) plots quantiles of the theoretical distribution against quantiles 

of the observed frequency distribution.  If the dataset is normally distributed, the Q-Q plot shows 

a straight line; otherwise, it becomes some sort of curve (Bland, 2015). Below are the steps for 

drawing the Q-Q plot ((Bland, 2015)):  

➢ Step 1: Order the data from smallest to largest. 

➢ Step 2: Find the expected value of each ordered data using the following equation:  
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For 𝑖𝑡ℎ observation,  Φ(𝑧) =
𝑖

𝑛+1
, 𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒.  There are other methods to 

estimate Φ(𝑧). r each Φ(𝑧) estimate the corresponding z-score from the normal distribution table 

(see appendix). However, practically to estimate the z-score, NORM.S.INV( ) (a Microsoft Excel 

function) was used.  

➢ Step 3:    Now plot the observed data against the expected value of each ordered data.  

3.5 Binary Logistic Regression 

Logistic regression was proved to be an effective method to estimate the impact of 

dependent variables on the dichotomous categorical independent variable (Al-Ghamdi, 2002). 

Hence, logistic regression was used in this research to measure the influence of various variables 

on the transport time and estimate what factors are responsible for a crash to be within the 

Golden Hour or outside the Golden Hour. When the total transport time (discussed in section 

4.1.1) of a crash exceeded 60 minutes it was defined as ‘outside Golden Hour’ crash, otherwise it 

was a ‘within Golden Hour’ crash.  

 

If a categorical independent variable is coded as ‘1’ or ‘0’, then the conditional probability of 

that independent variable is written as follows (Hosmer and Lemeshow, 2000):  

P(Y=1|x) = 𝜋(𝑥) =  
𝑒𝛽0+𝛽1𝑥

1+𝑒𝛽0+𝛽1𝑥 
…………………(iii) 

This represents the conditional mean of the dependent variable Y. By logit transformation of the 

equation (iii),  

 𝑔(𝑥) = ln [
𝜋(𝑥)

1−𝜋(𝑥)
] = 𝛽0 + 𝛽1𝑥……………..(iv)  

Equation (iv) has properties like linear regression. Thus, g(x) can be written as g(x)=Y, whereas 

Y is the outcome value for dependent variable.   
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If there are more than one independent variable, 

Y=  𝑔(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ … … … . +𝛽𝑛𝑥𝑛  ……………(v) 

 

This equation gives a value of Y ranging from −∞ to +∞. Usually, a cut-off value is used to 

classify the category of Y. For example, for binary categorical dependent variable dependent 

variable is coded as ‘0’ or ‘1.’ A cutoff value of 0.5 indicates that if Y>0.5, the outcome is ‘1.’  

 

There are several ways to measure how well the fitted model explains the variance and fit the 

data. These measures are called goodness-of-fit statistics. Model Chi-square, classification table, 

and Pseudo R-squares are used in this research.  

 

Model Chi-square in logistic regression is analogous to the F-test in linear regression (Menard, 

2002). If the model chi-square is statistically significant (𝑝 ≤ 0.05), then it is concluded that the 

model with the independent variables predicts better than the model without the independent 

variables (Menard, 2002).  The model chi-square is written as follows (Hosmer and Lemeshow, 

2000):  

 

Model chi-square= G = D(for the model without the variable) – D (for the model with the 

variable) 

                                  = −2 ln[ 
(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) 

(𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)
 ] 

‘D’ in the above equation is called deviance and (Hosmer and Lemeshow, 2000) provided a 

detailed description of the ‘D’ and how to estimate the model chi-square. The mathematical 

expression is not described here because the necessary estimation of logistic regression and 
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goodness-of-fit statistics were calculated using software package IBM SPSS Statistics 28.0.  

(Menard, 2002) discussed the logistic regression estimation (section 1.4, page 14) using SPSS.  

 

The classification table summarizes the values predicted by the fitted model and compares this 

against the observed values (Hosmer and Lemeshow, 2000). This table shows how many values 

(dependent variables) are correctly or incorrectly predicted. Hence, it offers the model accuracy. 

From this table sensitivity and specificity of the model can also be estimated. For binary logistic 

regression, sensitivity indicates how well the model predicts the Y=1, and specificity show how 

well the model predicts the Y=0. Mathematically, sensitivity is the total number of correctly 

predicted Y=1 divided by the total number of actual Y=1. Specificity is the total number of 

correctly predicted Y=0 divided by the total number of actual Y=0. Here, Y is the categorical 

dependent variable coded as ‘1’ or ‘0’ in binary logistic regression.  

 

R-square indicates how much variance is explained (Menard, 2002). Analogous to the linear 

regression, several measures of R-square (𝑅2)have been proposed (Hosmer and Lemeshow, 

2000; Menard, 2002). These R-squares are called Pseudo R-squares. However, there is no 

unanimous agreement on which R-square measures are perfect. This research estimated logistic 

regression in SPSS, producing two R-square measures such as Nagelkerke R-Square and Cox & 

Snell R-Square (Menard, 2002).  

 

Cox and Snell (Cox and Snell, 1989) proposed R-square is expressed as follows:  

𝑅2
𝐶 & 𝑆 = 1 −  ( 

𝐿𝑀

𝐿0
)2/𝑛  
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Here is the sample size. 𝐿𝑀 is the likelihood of the fitted model and 𝐿0 is the likelihood of the 

null model. The upper bound is always less than 1.0 (the maximum could be 0.75) and expressed 

as 1 −  𝐿0
2/𝑛.  

Nagelkerke R-square is a correction to the Cox & Snell R-square, resulting in the upper bound of 

the R-square equal to 1.0 (Nagelkerke, 1991). Its values range from 0 to 1.  

Nagelkerke R-square= 𝑅2
𝑁 =

[1− ( 𝐿0/𝐿𝑀)2/𝑁 ]

[ 1−( 𝐿0)2/𝑁]
  

𝐿𝑀 and 𝐿0 are the same as defined in the Cox and Snell R-square.  

 

To test the significance of independent variables, Wald Statistic is used, which follows the chi-

square distribution (Hosmer and Lemeshow, 2000; Menard, 2002). It is expressed as follows 

(Hosmer and Lemeshow, 2000):  

Wald Statistic= 
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑙𝑜𝑝𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
 

The logistic regression was estimated in IBM SPSS Statistics 28.0. The model was estimated 

using a backward and stepwise process. 

3.6 Test of Proportion 

A two-tailed hypothesis test was conducted to compare between the two groups of 

crashes. This online article (Penn State University, 2023) is found to be useful to conduct the 

test. The test estimates z-score and p-value for each z-score. Interested readers are referred to go 

through the article for more details. 
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3.7 Assumptions 

Because of the limitations of the data, this research made the following assumptions:  

➢ The designation of the trauma center level of each hospital was unchanged during the 

study period (2018-2021).  

➢ No new trauma center, hospital, and road were constructed during the study period.  

➢ Speed limit, geometry, and traffic volume of existing roads were unchanged.  

➢ The location of trauma centers and emergency vehicles were the same. 

➢ Emergency vehicles can travel in both directions.  
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Chapter 4: Analysis and Results 

 

This chapter describes the data preparation and cleaning for the analysis, analysis of the 

data, and results. Data preparation and cleaning were carried out in Microsoft Excel. Part of the 

analysis was conducted in Microsoft Excel, and part of the analysis was carried out in ArcGIS 

Desktop 10.8.1. Therefore, analysis can be categorized into two broad categories: preliminary 

analysis (conducted in Microsoft Excel) and spatial analysis (conducted in ArcGIS).  

First, all the data were collected, and then the traffic crash data were cleaned. Before preliminary 

analysis, the closest facility analysis was conducted to estimate the nearest trauma center and 

hospitals from the location of a traffic crash.   

4.1 Data Cleaning and Preparation  

In total, 5545 fatal and injury crashes were collected from the KARS database. Injury 

crashes were crashes with possible injury, suspected minor injury, or suspected serious injury. 

For more details about the injury severity, readers are referred to Kansas Motor Vehicle Accident 

Report Coding Manual (KDOT, 2014), which describes the injury severity. Fatal crashes result 

in at least one death within 30 days of a crash.  

 

Among 5545 crashes, 2148 were duplicates and removed from the analysis. Duplicate crashes 

were those crashes that had the same ‘Accident Key,’ which would indicate multiple vehicles 

were involved in the same crash. After removing duplicates, 3397 crashes were included for 

analysis.  

 

Each crash data had information (called ‘factor’) on latitude and longitude, time of crash 

occurrence, time of emergency management service (EMS) notification, time of emergency 
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vehicle arrival, time of hospital arrival, weather, day of the week, lighting conditions, county, 

year of the crash, injury severity, on-road speed limit.  

4.1.1 Estimating Time Intervals  

Crash data recorded the time of the crash, time of EMS notification, time of EMS arrival 

at the crash scene, and EMS arrival at the hospital. However, this research required estimating 

the time in three time intervals, namely notification time interval (NTI), arrival time interval 

(ATI), and transport time interval (TTI). The NTI was the time between the time of the crash and 

the time of the EMS notification. The ATI was the time between the time of the EMS 

notification and the EMS arrival at the crash scene. The TTI was the time between the EMS 

arrival at the crash scene and the EMS arrival at the hospital.  Finally, total transport time (TTT) 

was calculated by adding these three time intervals. The unit of these time intervals was minutes.   

 

After deleting duplicates, 3397 crashes remained for analysis. Among these, 2072 crashes had no 

information regarding EMS notification time.  In addition, the crashes with no info regarding 

EMS scene arrival time and EMS arrival at the hospital were 2122 and 2208, respectively. That 

means the ATI and TTI for these crashes were impossible to estimate, which does not have time 

information. Two crashes had no information on the time of crash occurrence; therefore, 

calculating NTI for these two crashes was impossible. Eventually, the crashes that had 

information regarding all the time intervals were 1166 (30 crashes had no information on latitude 

and longitude). That means 2231 (3397-1166=2231) crashes were not available for analysis. This 

necessitates the importance of estimating time intervals using ArcGIS. To do this in ArcGIS, 

crash data requires latitudes and longitudes. The crash data showed that 75 crashes needed 
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information about latitude and longitude. Among these 75 crashes, 30 crashes had information 

for all three time intervals.  

 

After estimating three time intervals, a time interval below zero was found for 51 crashes. These 

negative time intervals could be NTI, ATI, or TTI. Negative time intervals (below zero) were not 

acceptable, and time intervals could not be lower than zero. Therefore, the researcher requested 

the KDOT for the crash reports showing negative time to further analyze and extract the correct 

time intervals. In total, 39 crash reports were reviewed. However, no discrepancy in the time 

record was found between the crash reports and the KARS database.  

 

A negative time interval was estimated because of the incorrect time of EMS arrival at the scene 

or EMS arrival at the hospital. For example, a crash (Accident Key is 20180003112) occurred in 

2018 in Harvey County recorded that EMS arrival at the scene was 2345 and EMS arrival at the 

hospital was 2334 (time was in U.S. military time format). Table 1 shows the list of crashes with 

incorrect time intervals. 

 

Three more crashes were found to have incorrect time intervals. These were listed and discussed 

in Appendix A. Therefore, 51 crashes with negative and three with incorrect time intervals were 

excluded from the analysis. After excluding these crashes, 1112 (1156-51-3=1112) were 

considered for a preliminary analysis. Table 2 shows the descriptive statistics of these 1112 

crashes. Table 2 showed that zero was the minimum value of NTI, ATI, and TTI. Further 

analysis showed zero-time intervals existed for 127 NTI, six ATI, and one TTI.  
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Table 1. A Sample of Crashes with incorrect time intervals 
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20180003112 2/19/2018 2239 2/19/2018 2239 2/19/2018 2340 2345 2334 

20180011545 7/10/2018 0908 7/10/2018 0913 7/10/2018 0913 0937 0915 

20180117320 7/21/2018 2231 7/21/2018 2234 7/21/2018 2231 2324 2254 

20190011101 6/17/2019 0144 6/17/2019 0147 6/17/2019 0159 0203 0040 

20190095133 7/24/2019 1434 7/24/2019 1440 7/24/2019 1437 1459 1452 

20210103184 2/8/2021 1618 2/8/2021 1620 2/8/2021 1620 1640 1457 

20180106656 3/26/2018 0225 3/26/2018 0231 3/26/2018 0239 0232 0258 

20190115698 7/1/2019 1343 7/1/2019 1348 7/1/2019 1358 1345 1433 

20200016289 9/6/2020 0405 9/6/2020 0410 9/6/2020 0410 0326 0437 

20210095122 7/24/2021 0320 7/24/2021 0330 7/24/2021 0330 0329 0352 

 

Table 2. Descriptive Statistics of the Time Intervals 
 

Notification Time 

Interval (minutes) 

Arrival Time Interval 

(minutes) 

Transport Time 

Interval (minutes) 

Total Transport 

Time (minutes) 

Mean 9.76 10.86 33.93 54.56 

Median 4 9 29.5 47 

Mode 0 5 30 34 

Standard 

Deviation 
39.99 7.99 22.73 

47.44 

Minimum 0 0 0 6 

Maximum 1021 129 430 1061 

Sample Size 1112 1112 1112 1112 

 

4.1.2 Outlier Detection  

Table 2 showed that a larger difference between the minimum and maximum value of 

each time interval existed. Therefore, the time intervals were checked for the possible presence 
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of outliers. The outlier was only tested for TTT, and the outlier for all three other time intervals 

was not tested. Because TTT was the primary concern, and the goal of the EMS service was to 

minimize the TTT.  

 

Walsh’s test was selected to detect outliers because the TTT was not normally distributed. The 

methodology for testing normality and Walsh’s test were described in Chapter 3, section ‘Test of 

Normality’ and ‘Outlier Detection,’ respectively. Figure 1 shows that the Q-Q plot did not fit a 

straight line. Hence the TTT was not normally distributed.  

 

 

Figure 1. Q-Q Plot of Total Transport Time 

 

Therefore, Walsh’s test was applied. The following calculations showed a sample of selecting 

one outlier. The process was repeated four times to detect nine outliers.  
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First trial:  r=10   

For the first trial, it was assumed that r=10.  

k= r+ c= 10+ 48=58 

From the equation (i); 

𝑥𝑟 − (1 + 𝑎)𝑥𝑟+1 + 𝑎𝑥𝑘 = 𝑥10 − (1 + 𝑎)𝑥11 + 𝑎𝑥58  

                                         = 16 − ((1 + 0.169362279)*16) + (0.169362279 * 24)   

                                         = 1.354, which is not smaller than 0.  

Therefore, the 10th smallest point is not an outlier.   

 

Here, the total transport time was first rearranged from smallest to largest value, and then 𝑥10,  

𝑥11, 𝑎𝑛𝑑 𝑥58 were determined.  𝑥10, 𝑥11 𝑎𝑛𝑑 𝑥58 𝑤𝑒𝑟𝑒 the 10th, 11th and 58th point of the 

rearranged dataset.   

From equation (ii); 

𝑥𝑛+1−𝑟 − (1 + 𝑎)𝑥𝑛−𝑟 + 𝑎𝑥𝑛+1−𝑘= 𝑥1103 − (1 + 𝑎)𝑥1102 + 𝑎𝑥1055  

                                   =208 − (1 +  0.169362279) ∗ 195   +  0.169362279 ∗ 97          

                                   = -3.597, which is not larger than 0.  

Therefore, the 10th largest point was not an outlier.   

Table 3 shows the result of two equations for different values of ‘r.’  
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Table 3. Result of Outlier Detection from Walsh's Test 

 Equation (i) Equation (ii) 

 
Result Below ‘0’ Result Above ‘0’ 

r=1 1.709 No 
 

 

r=8 1.524 No 2.119 Yes 

r=9 0.354 No 13.370 Yes 

r=10 1.354 No -3.597 No 

 

The above table shows that the 9th and 8th largest points were outliers, while the 10th largest point 

was not an outlier. Therefore, any value from the 9th to the 1st largest point was an outlier.  

The test detected no outlier for any minimum value (minimum TTT was 6, see Table 2 ). If r=1, 

the equation (i) resulted in a number greater than 0 which did not satisfy the condition. Because 

r=1 represented the smallest point of the dataset, there was no minimum point for outliers.  Thus, 

the minimum value of TTT remained unchanged after removing outliers, while the maximum 

value changed, as shown in Table 4.  

Table 4. Descriptive Statistics of the Time Intervals without Outliers 
 

Notification Time 

Interval (minutes) 

Arrival Time 

Interval (minutes) 

Transport Time 

Interval (minutes) 

Total Transport 

Time (minutes) 

Average 7.23 10.87 33.27 51.38 

Median 4 9 29 47 

Mode 0 5 30 34 

Standard Deviation 11.81 8.01 18.20 23.65 

Minimum 0 0 0 6 

Maximum 144 129 156 208 

Sample Size 1103 1103 1103 1103 
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4.1.3 Creating New Factors: KDOT Districts 

The original crash data extracted from the KARS database did not contain information on 

KDOT administrative districts. KDOT divides the State of Kansas into six districts (Districts 1 

through 6) based on county boundaries. For analysis purposes, the district’s name was necessary 

to see if there were any differences in time intervals among the districts. Therefore, the district’s 

names and a GIS shapefile of the KDOT administrative districts were requested. KDOT provided 

the researcher with an ArcGIS shapefile containing the boundary of each district. The district 

name was assigned to each crash using this shapefile and traffic crash data. The ‘Spatial Join’ 

tool is available in ArcMap was used. The newly joined file contained the attributes of crash data 

(including Crash Key) and the district shapefile, which was copy-pasted to a Microsoft Excel file 

for further analysis.  

 

The crash data file used had 3397 crashes where latitude and longitude were missing for 75 

crashes. Because spatial join required latitude and longitude to plot on a map, district names for 

these 75 crashes were not extracted. Two more crashes did not find the district name. In total, 77 

crashes missed the district name. However, KDOT also provided each district’s county names, 

which were used to find the missing districts. Noticeably, the original crash data included the 

county name for each crash location. Because county names were not available for many crashes, 

county names alone could not assign district names for all crashes. A combination of both the 

ArcGIS spatially joined file and county names data were used. Finally, only 13 crashes (out of 

3397) were not assigned to any county name due to a lack of data.  
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4.1.4 Closest Facility Analysis  

Distances to the nearest trauma centers and hospitals from the location of crashes were 

used in this research to compare the distance and time intervals. Because a smaller distance 

would take less time to arrive at a trauma center, comparing the distance and time intervals is 

practical.  

 

The closest facility tool in ArcGIS estimated distances to the closest facility (trauma center and 

local hospitals). A network dataset is required to enable and apply the ‘new closest facility’ tool 

in the Network Analyst in ArcGIS. The creation of a network dataset and the application of the 

closest facility tool was discussed in Chapter 3.  

 

The reason for not finding the closest facility could be the availability of the route. For example, 

a crash might be located in a place, and the road shapefile provided by KDOT recorded no route 

connecting the place with another route. Further analysis to investigate the reasoning for not 

finding any facility was out of the scope of the research. In addition, only six crashes did not find 

any facility among 3322 (3397-75=3322) crashes. Table 5 shows the details of six crashes that 

did not find a facility. 

 

4.2 Factor-by-Factor Analysis  

This section shows the average of all time intervals during a specific factor. Selected factors 

were weather conditions, day of the crash, lighting conditions, year of the crash, injury 
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Table 5. Crashes Did Not Find a Facility, Although Located on the Map 
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20180008792* 70 LYON No 

adverse 

weather 

Dark: 

streetlights 

on 

38.4115972 -96.1361496 2018 Injury 

20190095106

* 

55 FRANKLIN No 

adverse 

weather 

Daylight 38.4966928 -95.1218743 2019 Fatal 

20200120525 65 SEWARD Rain Dark: no 

streetlights 

37.0171566 -

100.955779

5 

2020 Injury 

20200008197 55  No 

adverse 

weather 

Daylight 37.1342942 -96.1097682 2020 Injury 

20200121116* 65 SEWARD Rain Dark: no 

streetlights 

37.0171566 -

100.955779

5 

2020 Injury 

20210004486 45  Rain Daylight 39.3194123 -95.9609016 2021 Injury 

*Crashes had all the three-time intervals   

 

severity, on-road speed limit, time of the crash, and KDOT districts. These factors were selected 

based on previous studies and the study’s objective. The study’s objective was to identify and 

analyze the factors affecting trauma center accessibility for patients involved in motor vehicle 

crashes. Therefore, factors found in previous studies affecting time intervals were selected.  

4.2.1 Weather Conditions 

The traffic crash data contained information on weather conditions. For the analysis, the 

weather condition was categorized into four distinct categories. Weather conditions recorded as 

sleet, sleet and fog, snow, snow, and wind were categorized as ‘Snow.’ Weather conditions 

recorded as fog, freezing rain, rain and wind, and rain/mist/drizzle were categorized as ‘Rain.’ 
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‘No adverse weather’ and ‘Strong wind’ involved the weather conditions reported as ‘No adverse 

weather’ and ‘Strong winds.’  

 

Table 6 shows that during snow and strong winds, TTT was higher than the other weather 

conditions. The highest NTI during snow implied less traffic on the roads to notice a crash and 

notify the EMS. However, the lowest TTT was experienced during rainy weather conditions.  

Therefore, according to Table 6, snow and strong winds increased the TTT.   

Table 6. Average of the Time Intervals for Different Weather Conditions 

Weather Condition Sample 

Size 

Notification Time 

Interval (minutes) 

Arrival Time 

Interval 

(minutes) 

Transport Time 

Interval 

(minutes) 

Total 

Transport 

Time 

(minutes) 

No adverse weather 851 7.09 10.72 33.95 51.76 

Snow 69 8.40 13.44 33.21 55.07 

Rain 167 7.64 9.99 29.87 47.51 

Strong wind 16 5.75 17.18 32.81 55.75 

 

Table 7 shows the 95% confidence interval of the time intervals estimated in Table 6. According 

to the Table 7, NTI during different weather conditions might be same as there are overlapping 

points between the upper and lower bounds. Snow and rainy weather conditions showed a 

difference in time intervals such as ATI cannot be the same during snow and rainy weather 

conditions.  
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Table 7. Confidence Interval (95%) of Mean of the Time Intervals for Different Weather 

Conditions 

Weather 

Condition 

NTI (minutes) ATI (minutes) TTI (minutes) TTT (minutes) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

No adverse 

weather 

6.37 7.82 10.17 11.27 32.71 35.20 50.19 53.35 

Snow 4.00 12.82 11.42 15.47 28.02 38.41 47.87 62.27 

Rain 5.52 9.77 9.13 10.86 27.60 32.15 44.22 50.81 

Strong wind 3.63 7.87 10.37 24.01 25.06 40.56 44.63 66.87 

 

4.2.2 Day of Crash  

The day of the week of the crash occurrence was recorded in the crash data. For analysis, 

the day of the week was categorized as weekday and weekend. Table 8 showed that time 

intervals did not vary between weekdays and weekends. Table 9 also shows that time intervals 

during weekday and weekend can be the same because there are overlapping points between 

upper and lower bound.  In contrast, a study in Alabama (Vanga et al., 2022) estimated that ERT 

(ERT=NTI + ATI) was nearly 17% longer on weekends than weekdays.  

Table 8. Average of the Time Intervals during Different Days of the Week 

Day of 

Week 

Sample 

Size 

Notification Time 

Interval (minutes) 

Arrival Time 

Interval (minutes) 

Transport Time 

Interval (minutes) 

Total 

Transport 

Time 

(minutes) 

Weekday 780 7.05 10.89 33.13 51.08 

Weekend 323 7.68 10.82 33.61 52.12 

 

Table 9. Confidence Interval (95%) of Mean of the Time Intervals during Different Days of 

the Week 

Day of Week NTI (minutes) ATI (minutes) TTI (minutes) TTT (minutes) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Weekday 6.25 7.86 10.31 11.48 31.84 34.42 49.43 52.74 

Weekend 6.29 9.07 10.04 11.61 31.65 35.58 49.50 54.74 
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4.2.3 Lighting Conditions 

The lighting conditions were recorded in four categories, as shown in Table 10. 

According to Table 10,  TTT was the highest during light conditions that were dark with no 

streetlights. NTI was also the highest at dark with no streetlights. Among the four lighting 

conditions, TTT for crashes that occurred during dark with no streetlights was longer than the 

Golden Hour. The result suggested that during the night and dark light conditions, NTI and TTT 

were higher. Table 10 and Table 11 also show that NTI and TTT of daylight does not intersect 

with NTI and TTT of dark condition with no streetlights.  A study from Alabama, U.S. (Vanga et 

al., 2022) also found that crashes occurring in the dark with no streetlight had the highest ERT 

(ERT= NTI + ATI) than other lighting conditions.  

Table 10. Average of the Time Intervals at Different Lighting Conditions 

Lighting 

Condition 

Sample 

Size 

Notification Time 

Interval (minutes) 

Arrival Time 

Interval (minutes) 

Transport  

Time Interval 

(minutes) 

Total Transport 

Time (minutes) 

Dark: no 

streetlights 

246 9.78 13.19 38.41 61.39 

Daylight 643 6.18 10.27 32.51 48.98 

Dark: streetlights 

on 

154 7.24 8.94 27.82 44.01 

Dawn 35 7.82 14.91 33.71 56.45 

Dusk 25 8.48 9.68 35.08 53.24 

 

Table 11. Confidence Interval (95%) of Mean of the Time Intervals at Different Lighting 

Conditions 
 

NTI (minutes) ATI (minutes) TTI (minutes) TTT (minutes)  
Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Dark: no 

streetlights 

7.77 11.79 11.81 14.59 35.85 40.97 57.90 64.88 

Daylight 5.54 6.83 9.76 10.79 31.19 33.85 47.40 50.56 
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Dark: 

streetlights on 

5.59 8.90 8.07 9.83 25.13 30.52 40.80 47.22 

Dawn 2.19 13.47 11.13 18.70 27.62 39.80 46.35 66.57 

Dusk -3.22 20.18 7.69 11.67 26.94 43.22 38.38 68.10 

 

4.2.4 Year of Crash 

As mentioned earlier, crash data were collected for four years, from 2018 to 2021. As per 

Table 12 and Table 13, TTT was almost the same across the study period.  The sample size 

ranged from 259 to 290 each year. Therefore, the result suggested that TTT did not vary yearly. 

This could be due to the same number of trauma centers which remained unchanged during the 

study. This validated one of the assumptions (mentioned in Chapter 3) that trauma centers and 

hospitals remained unchanged over the study period.  

Table 12. Average of the Time Intervals during Different Years of the Crash 

Year of 

the 

Crash 

Sample 

Size 

Notification Time 

Interval (minutes) 

Arrival Time 

Interval (minutes) 

Transport Time 

Interval (minutes) 

Total Transport 

Time (minutes) 

2018 272 7.86 10.51 32.51 50.88 

2019 282 7.06 11.78 32.79 51.64 

2020 290 7.27 10.76 33.71 51.75 

2021 259 6.73 10.39 34.09 51.22 

 

Table 13. Confidence Interval (95%) of Mean of the Time Intervals during Different Years 

of the Crash 

Year of the 

Crash 

NTI (minutes) ATI (minutes) TTI (minutes) TTT (minutes) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

2018 6.38 9.34 9.67 11.35 30.42 34.61 48.07 53.71 

2019 5.64 8.49 10.54 13.03 30.75 34.84 48.84 54.44 

2020 6.03 8.52 9.98 11.54 31.48 35.95 49.01 54.50 

2021 5.27 8.20 9.55 11.24 31.84 36.35 48.36 54.10 
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4.2.5 Injury Severity 

Fatal and injury crashes were analyzed for this research. Table 14 and Table 15 show the 

average and confidence intervals of time intervals for different injury severity. Although the 

average value of time intervals were not the same, the confidence intervals show that the time 

intervals can be same.  Table 14 shows that TTT was nearly 1.8 minutes higher for fatal crashes 

than injury crashes, which contradicts the findings from Alabama (Vanga et al., 2022), where 

suspected serious injuries had the highest ERT than fatal crashes. This could happen because 

possible injury crashes could be taken to the local hospitals, while fatal crashes were more likely 

to be taken to the trauma center. Section 3.1.2 discussed that the total number of trauma centers 

was 53 and the total number of hospitals, including trauma centers, was 124. This indicated that 

trauma centers were not as abundant as local hospitals. Therefore, taking a patient to the trauma 

center might take a longer time than taking a patient to the local hospital. The later analysis 

(Section 4.2.8) found that among the 50 crashes in District 6, only one was taken to the state-

designated trauma center (Level IV).  

Table 14. Average of the Time Intervals of Different Injury Severity 

Crash 

Severity 

Sample 

Size 

Notification Time 

Interval (minutes) 

Arrival Time 

Interval (minutes) 

Transport Time 

Interval (minutes) 

Total Transport 

Time (minutes) 

Injury 1032 7.15 10.95 33.16 51.27 

Fatal 71 8.42 9.71 34.91 53.05 

 

Table 15. Confidence Interval (95%) of Mean of the Time Intervals during Different Injury 

Severity 

Crash 

Severity 

NTI (minutes) ATI (minutes) TTI (minutes) TTT (minutes) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Injury 6.45 7.86 10.46 11.45 32.06 34.26 49.85 52.70 

Fatal 4.76 12.09 8.19 11.25 30.15 39.68 46.29 59.82 
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4.2.6 On-Road Speed Limit 

The posted speed limit at the location of crash occurrence was recorded as a numeric 

value and categorized into three categories in this research, as shown in Table 16.  The table 

shows that TTT was the lowest (lower by more than 7 minutes) for the crashes that occurred on 

the roads with posted speed limits lower than or equal to 45 miles per hour (mph). The NTI was 

also lower on low-speed roads. This could be because high or higher-speed roads are usually 

interstates or highways. A higher traffic volume could decrease the travel speed of emergency 

vehicles. Previous studies showed that increased traffic volume increased emergency vehicles’ 

response time (Griffin and McGwin, 2013). In addition, low-speed roads are likely to be in urban 

areas, and a study showed that emergency vehicles experienced higher delays in urban areas than 

in non-urban areas (Brent and Beland, 2020). Although travel time delays in urban areas are 

more likely due to the volume of traffic, emergency vehicle response times were found to be 

lower in urban areas than in rural areas (Alruwaili and Alanazy, 2022; Byrne et al., 2019). In this 

research, an analysis of time intervals based on urban and rural areas was not conducted. 

Therefore, future research can investigate the time intervals based on the posted speed limit and 

the presence of that road (in other words, the location of crash occurrence) in terms of urban or 

non-urban areas.  

 

Table 17 emphasized the findings from the Table 16 by showing that the TTT confidence 

interval on low-speed roads did not intersect with the TTT confidence intervals for the higher 

speeds road categories.  
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Table 16. Average of the Time Intervals at Different Speed Limits 

Posted Speed Limit Sample 

Size 

Notification 

Time Interval 

(minutes) 

Arrival Time 

Interval (minutes) 

Transport Time 

Interval (minutes) 

Total 

Transport 

Time 

(minutes) 

Higher Speed (≥65 

mph) 

258 7.57 10.53 31.94 50.06 

High Speed (>45 mph, 

<65 mph)  

751 7.18 11.29 34.32 52.81 

Low Speed (≤45 mph) 94 6.72 8.44 28.50 43.67 

 

Table 17. Confidence Interval (95%) of Mean of the Time Intervals during Different Speed 

Limits 

Posted Speed Limit NTI (minutes) ATI (minutes) TTI (minutes) TTT (minutes) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Higher Speed (≥65 

mph) 

6.01 9.15 9.63 11.44 29.79 34.10 47.12 53.01 

High Speed (>45 

mph, <65 mph)  

6.37 8.00 10.70 11.89 32.98 35.67 51.10 54.52 

Low Speed (≤45 

mph) 

4.10 9.35 7.00 9.89 25.64 31.36 39.77 47.57 

 

4.2.7 Time of Crash  

The time of the crash was categorized into 24 categories, each representing a one-hour 

interval of the day. Each crash record had information on the time of the crash, and from this 

information, a crash was taken into one category among the 24 categories. For example, if a 

crash occurred on 2312, the time of the crash was categorized as ‘2300-2359.’ Figure 2 and 

Figure 3 show the 24 categories of the time of the crash and the average TTT and NTI during 

these categories of time. The average values of all time intervals during the 24 categories at the 

time of the crash was shown in Appendix B.  
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From Figure 2 and Figure 3, it was noticed that during midnight to 0700  (7 a.m.), notification time 

was higher by approximately 7 minutes. During the same time period, total transport time was also 

greater than 50 minutes. The notification time interval from 0700 (7 a.m.) to 1900(7 p.m.) was 

lower than approximately 7 minutes. From 0700 to 1900, most of the TTT was lower than 50 

minutes.  

 

Figure 2. Average of the Total Transport Time at Different Times of the Crash 

 

Notification and transport times did not decrease or increase linearly through the 24-hour 

intervals. However, noticeably higher TTT and NTI were observed from 1100 to 0700. To 

further verify these, time intervals were categorized into 1100-0659, 0700-1759, and 1800-2259. 

Table 18 shows the average of the time intervals at these three-time categories. Table 19 shows 

the confidence intervals of the time intervals at different times of the day. 
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Figure 3. Average of the Notification Time Intervals at Different Times of the Crash 

 

Table 18. Average of the Time Intervals at Different Times of the Crash 

Time of Crash 

(U.S. military time) 

Sample 

Size 

Notification 

Time Interval 

(minutes) 

Arrival Time 

Interval 

(minutes) 

Transport Time 

Interval 

(minutes) 

Total 

Transport 

Time 

(minutes) 

2300-0659 279 10.05 12.17 34.22 56.45 

0700-1759 617 6.02 10.32 32.65 49.0 

1800-2259 207 7.07 10.74 33.82 51.64 

 

Table 19. Confidence Interval (95%) of Mean of the Time Intervals during Different Times 

of the Crash 

Time of Crash (U.S. 

military time) 

NTI (minutes) ATI (minutes) TTI (minutes) TTT (minutes) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

2300-0659 8.21 11.89 10.96 13.40 31.79 36.66 53.20 59.72 

0700-1759 5.37 6.67 9.81 10.85 31.32 34.00 47.40 50.62 

1800-2259 5.13 9.03 9.63 11.86 31.30 36.34 48.10 55.19 
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Table 18 shows that during the time interval 1100-0659, NTI and TTT were the maximum, 

followed by the time period 1800-2259. The same time period (6:00 p.m. – 6:59 a.m. ) in 

Alabama was also found to have the highest ERT (Vanga et al., 2022).  This time period is 

nighttime, and Table 10 also showed that the highest NTI and TTT were recorded during dark 

conditions with no streetlights. From Table 7 and Table 11, it can be concluded that crashes 

occurring at nighttime, especially during the time period 1100-0659 at roads with no street lights, 

can experience a higher TTT (possibly more than the Golden Hour) than other times of the day.  

 

To see if time intervals vary by other time periods of the day, the time of the crash was 

categorized into six categories, and the result is shown in Table 20.  According to the table, the 

highest NTI and TTT were recorded during the time period 2201-0200 and 0201-0600. This two-

time period was represented in the time period 2300-0659.  

Table 20. Average of the Time Intervals at Six Time Categories 

Time of  crash Sample 

Size 

 Notification Time 

Interval (minutes) 

Arrival Time 

Interval (minutes) 

Transport Time 

Interval (minutes) 

Total Transport 

Time (minutes) 

0201-0600 130 11.07 11.73 33.44 56.26 

0601-1000 211 6.30 11.86 32.88 51.04 

1001-1400 213 6.79 10.36 33.31 50.46 

1801-2200 164 7.03 10.59 34.01 51.65 

1401-1800 256 5.88 9.78 32.12 47.79 

2201-0200 129 8.57 11.76 35.01 55.34 

 

4.2.8 KDOT Districts 

The creation of a factor for KDOT Districts was discussed in section 4.1.3. Table 21 

shows District 4 had the highest TTT, although the NTI was lower than the four other districts. 

This indicated that NTI was not the only factor to increase or decrease the total transport time.  
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Table 21. Average of the Time Intervals at Six KDOT Districts 

KDOT Districts Sample 

Size 

(1099)* 

Notification Time 

Interval (minutes) 

Arrival Time 

Interval (minutes) 

Transport Time 

Interval (minutes) 

Total 

Transport 

Time 

(minutes) 

District 1 380 7.14 10.43 31.36 48.94 

District 2 149 8.10 12.24 34.36 54.71 

District 3 84 9.09 12.61 29.41 51.13 

District 4 157 6.38 11.22 39.88 57.49 

District 5 279 7.14 9.90 33.90 50.94 

District 6 50 5.78 11.66 27.32 44.76 

*Four crashes needed county name, latitude, and longitude information. Therefore, the district 

name for these four crashes was missing, resulting in a sample size of 1099 (1103-4=1099). 

 

Table 22 shows that NTI of different districts can have intersecting values, however, TTT of 

District 4 cannot intersect with TT of District 1.  

Table 22. Confidence Interval (95%) of Mean of the Time Intervals at Six KDOT Districts 

KDOT 

Districts 

NTI (minutes) ATI (minutes) TTI (minutes) TTT (minutes) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

District 1 6.17 8.12 9.49 11.38 29.63 33.10 46.72 51.17 

District 2 5.94 10.28 11.07 13.43 31.43 37.29 51.03 58.40 

District 3 5.10 13.09 11.38 13.86 27.03 31.80 46.29 55.97 

District 4 4.74 8.03 10.14 12.31 36.10 43.67 52.99 61.99 

District 5 5.65 8.63 9.00 10.80 31.84 35.96 48.12 53.77 

District 6 4.05 7.51 9.60 13.72 23.69 30.95 39.84 49.68 

 

District 6 had the lowest NTI and TTT. To further investigate, crashes that occurred at District 6 

were extracted. After a thorough investigation of each crash, it was found that out of 50 crashes, 
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only one crash (at least one patient involved in that crash) was taken to a trauma center which 

was a level IV trauma center. Other crashes were taken to a local hospital. Because local 

hospitals were higher in number than the trauma centers, it was more likely that hospitals were 

closer to the location of the crash than the trauma centers. Figure 4 and Figure 5 showed the 

spread of the crash location, trauma centers, and hospitals in the KDOT districts. More analysis 

of the KDOT District was discussed in Appendix C. However, future research can investigate 

where (trauma center/hospital) patients were taken in reality and, if they were taken to the 

nearest hospital (or trauma center), what could be the TTT using the closest facility.  
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Figure 4. Crash and Trauma Centers in KDOT Districts 
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Figure 5. Crash and Hospitals in KDOT Districts 

 

4.2.9 Influence Diagram 

An influence diagram helps to visualize the impact of factors on the output. From the 

analysis of the eight factors, the following influence diagram is presented Figure 6. The 
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Figure 6. Influence Diagram of Eight Factors affecting Time Intervals 

 

rectangular boxes indicate the factors, the hexagonal boxes indicate the output and the arrow 

signs indicate which factor is affecting which output.  
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4.3 ‘Within Golden Hour’ and ‘Outside Golden Hour’ crashes 

To further investigate the factors that can increase the TTT above the Golden Hour the 

crash dataset was divided into groups: ‘within Golden Hour’ and ‘outside Golden Hour.’ Crashes 

with more than 60 minutes of TTT were grouped into ‘outside golden hour’ crashes, and other 

crashes (TTT≤ 60 minutes) were categorized as ‘within golden hour’ crashes.  

 

Table 23 shows the average time intervals of these two crash categories. According to Table 23, 

the TTT of ‘outside golden hour’ crashes was two times more than the TTT of ‘within golden 

hour’ crashes. Among the three-time intervals, TTI was about 28.088 minutes higher in ‘outside 

golden hour’ crashes.  In contradiction, the closest facility analysis shows (Table 15) that the 

average transport time from the crash location to the nearest trauma center was nearly six 

minutes longer for ‘outside golden hour’ crashes than the ‘within golden hour’ crashes.’  

However, analysis of the crashes occurring at District 6 (section 4.2.8) showed that most were 

taken to the local hospital instead of a trauma center, resulting in lower TTI than the TTI 

estimated using the closest facility. Therefore, future research should investigate which hospitals 

the patients were taken to because analysis showed that if patients were taken to the trauma 

center, this resulted in a lower TTI.    

Table 23. Average of the Time Intervals of Crashes Within or Outside the 'Golden Hour' 

Golden Hour Indicator Sample 

Size 

(1103) 

Notification 

Time Interval 

(minutes) 

Arrival Time 

Interval 

(minutes)  

Transport Time 

Interval (minutes) 

Total 

Transport 

Time 

(minutes) 

Within Golden Hour 820 5.34 9.26 26.06 40.67 

Outside Golden Hour 283 12.73 15.54 54.15 82.43 
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Table 24. Average of the Distances to the Closest Trauma Centers from the Crash Location 
 

Within the 'golden 

hour.' 

Outside 'golden hour.' 

Average distances to the closest trauma center from the crash 

location (miles)* 

15.70 22.50 

Average time to arrive at the closest trauma centers from the crash 

location (minutes)*  

16.78 22.97 

*Estimated using ArcGIS closest facility analysis.  

 

According to Table 25, the percentage of each variable under a factor was almost equal in both 

groups (‘within golden hour’ and ‘outside golden hour’) except for the lighting condition dark 

with no streetlights. For ‘within golden hour’ crashes, 17.93% of total ‘within golden hour’ 

crashes occurred during dark lighting conditions with no streetlights. Conversely, this percentage 

was 34.98% for ‘outside golden hour’ crashes, meaning one-third of the ‘outside golden hour’ 

crashes occurred during dark with no streetlights. 

 

Table 26 shows the results of statistical test for comparison proportion of crashes between 

‘within Golden Hour’ and ‘outside Golden Hour’ crashes. The null hypothesis was that the 

percentage of crashes for each variable under a factor between the two groups is equal. The null 

hypothesis is rejected when the p-value is less than 0.05. According to the Table 26, percentage 

of crashes between two groups were different during dark condition with no streetlights, roads 

with higher speed limit (>65 mph), and two time period 2300-0659 and 1800-2259. This 

difference was statistically significant at 0.05 level. Therefore, lighting conditions, posted speed 

limit and time of the crashes were the significant factors.   
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Table 10 showed that NTI and TTT were significantly higher during dark with no streetlights 

than in other lighting conditions. Table 18 showed that NTI and TTT were higher during the time 

period 1100-0659 than at any other time. Therefore, a particular focus was given to see the 

average time intervals of both groups during different times of the day. Hence, Table 27 and 

Table 28 are presented.   

 

Table 27 and Table 28 showed that 23.41% of ‘within Golden Hour’ crashes occurred during the 

time period 2300-0659, while this percentage was 30.74 for ‘outside Golden Hour’ crashes. 

Table 29 shows the differences in time intervals from ‘outside Golden Hour’ to ‘within Golden 

Hour.’ According to Table 29, the highest differences in time intervals were observed during the 

time period 2300-0659. During 2300-0659, the NTI of ‘outside Golden Hour’ crashes was 10.81 

minutes higher than the NTI of ‘within Golden Hour’ crashes. During the time period 0700-

1759, the difference in NTI was the lowest. Noticeably, the difference between ATI and TTI did 

not vary more than 2 minutes among the three periods. Differences in ATI were nearly six 

minutes during all time periods, and TTI was about 28 minutes during all the time periods. The 

only difference in NTI during dark hours (1800-0659) was nearly 10 minutes, while during 

0700-1759, the difference was 4.04 minutes. The percentage difference also showed that 7.32% 

higher ‘outside golden hour’ crashes occurred during the time period1100-0659 than ‘within 

Golden Hour’ crashes, while 8.22% higher ‘within Golden Hour’ crashes occurred during time 

period 0700-1759. In other words, a higher percentage of ‘within Golden Hour’ crashes occurred 

during time period 0700-1759, and a lower percentage of ‘within Golden Hour’ crashes occurred 

during time period 1800-0659. This indicates that the time period 1800-0659, mainly 2300-0659, 
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Table 25. Descriptive Statistics of the 'Within golden hour' and 'Outside golden hour' 

Crashes 
  

‘Within Golden Hour.’ ‘Outside Golden Hour' 

Factor Variable Frequency Percentage Frequency Percentage 

Weather 

condition 

No adverse weather 629 76.71% 222 78.45% 

Rain 134 16.34% 33 11.66% 

Snow 46 5.61% 23 8.13% 

Strong wind 11 1.34% 5 1.77% 

Total 820 100.00% 283 100.00% 

Lighting 

condition 

Dark: no streetlights 147 17.93% 99 34.98% 

Dark: streetlights on 133 16.22% 21 7.42% 

Dawn 24 2.93% 11 3.89% 

Daylight 498 60.73% 145 51.24% 

Dusk 18 2.20% 7 2.47% 

Total 820 100.00% 283 100.00% 

Year of 

crash 

2018 204 24.88% 68 24.03% 

2019 206 25.12% 76 26.86% 

2020 215 26.22% 75 26.50% 

2021 195 23.78% 64 22.61% 

Total 820 100.00% 283 100.00% 

Day of week 

Weekday 586 71.46% 194 68.55% 

Weekend 234 28.54% 89 31.45% 

Total 820 100.00% 283 100.00% 

Posted 

Speed Limit 

Higher Speed (≥65 mph) 542 66.10% 209 73.85% 

High Speed (>45 mph, ≤ 60 

mph) 
196 23.90% 62 21.91% 

Low Speed ≤45 mph 82 10.00% 12 4.24% 

Total 820 100.00% 283 100.00% 

Crash 

severity 

Fatal 50 6.10% 21 7.42% 

Injury 770 93.90% 262 92.58% 

Total 820 100.00% 283 100.00% 

Time of the 

crash 

1001-1400 159 19.39% 54 19.08% 

1401-1800 203 24.76% 53 18.73% 

1801-2200 118 14.39% 46 16.25% 

201-600 89 10.85% 41 14.49% 

2201-200 93 11.34% 36 12.72% 

601-1000 158 19.27% 53 18.73% 

Total 820 100.00% 283 100.00% 
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Table 26. Test of Proportion of Crashes between 'Within Golden Hour' and 'Outside 

Golden Hour' Crashes 

Factor Variable Z-Score P-value 

Weather condition 

No adverse weather 0.53 0.60 

Rain -0.67 1.50 

Snow 0.41 0.68 

Strong wind 0.07 0.95 

Lighting condition 

Dark: no streetlights 3.15 <0.001* 

Dark: streetlights on -1.08 1.72 

Dawn 0.15 0.88 

Daylight -2.04 1.96 

Dusk 0.04 0.97 

Year of crash 

2018 -0.14 1.11 

2019 0.30 0.77 

2020 0.05 0.96 

2021 -0.19 1.15 

Day of week 
Weekday -0.77 1.56 

Weekend 0.51 0.61 

Posted Speed Limit 

Higher Speed (≥65 mph) 2.04 0.04 

High Speed (>45 mph, ≤ 60 mph) -0.32 1.25 

Low Speed ≤45 mph -0.67 1.50 

Crash severity 
Fatal 0.21 0.84 

Injury -0.75 1.55 

Time of the crash 

1001-1400 -0.05 1.04 

1401-1800 -0.93 1.65 

1801-2200 0.30 0.76 

201-600 0.60 0.55 

2201-200 0.22 0.83 

601-1000 -0.09 1.07 

Time of the crash 

2300-0659 130.47 <0.001* 

0700-1759 -172.69 2.00 

1800-2259 14.65 <0.001* 

*Indicates statistically significant at α = 0.05 level of significance. 
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Table 27. Average of the Time Intervals of 'Within Golden Hour' Crashes at Different Times 

of the Day 

Golden Hour Indicator 
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Within Golden Hour 2300-0659 192 23.41 6.67 10.09 25.35 42.13 

Within Golden Hour 0700-1759 476 58.04 5.09 8.92 26.18 40.20 

Within Golden Hour 1800-2259 152 18.53 4.42 9.27 26.59 40.30 

 

Table 28. Average of the Time Intervals of 'Outside Golden Hour' Crashes at Different Times 

of the Day 

Golden Hour Indicator 
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Outside Golden Hour 2300-0659 87 30.74 17.49 16.77 53.81 88.08 

Outside Golden Hour 0700-1759 141 49.82 9.14 15.07 54.51 78.72 

Outside Golden Hour 1800-2259 55 19.43 14.40 14.81 53.78 83.0 

 

played the most crucial role in determining a crash to be ‘outside Golden Hour’.  Sections 4.2.3 

and 4.2.7 discussed crashes occurring during lighting conditions dark with no streetlights, and 

during the time period, 2300-0659 experienced the highest NTI and TTT. Therefore, among the 

eight factors analyzed in this research, the time of the crash and lighting conditions were found 

to be the most important in affecting the NTI and TTT, which resulted in a crash being ‘within 

Golden Hour’ or ‘outside Golden Hour.’  
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Table 29 shows that differences in NTI between the two groups of crashes were the highest 

during 2300-0659. The lowest differences in NTI were found in 0700-1759 (daytime). Table 31 

shows that the average distances to the closest trauma centers from the ‘outside Golden Hour’ 

crashes were 20.99 miles during 2300-0659, while this distance was 23.16 miles during 0700-

1759. That indicates that although ‘outside Golden Hour’ crashes occurred at a closer location 

during nighttime (2300-0659), the NTI was higher than daytime (0700-1759). This result further 

strengthens the research finding that time period 2300-0659 could be the most important 

determining factor for a crash to be in ‘within Golden Hour’ or ‘outside Golden Hour.’ 

Table 29. Differences in Time Intervals between the 'Within Golden Hour' and 'Outside 

Golden Hour' Crashes during Different Times of the Day 

Times of the 

Day 

Percentage (%) Notification Time 

Interval (minutes) 

Arrival Time 

Interval 

(minutes) 

Transport 

Time Interval 

(minutes) 

Total Transport 

Time (minutes) 

2300-0659 7.327 10.81 6.67 28.46 45.95 

0700-1759 -8.225a 4.04 6.14 28.32 38.51 

1800-2259 0.898 9.97 5.54 27.18 42.69 

a= A negative sign indicates that ‘within golden hour’ had a higher percentage than ‘outside 

Golden Hour.’   

Table 30. Distances to the Closest Trauma Center for 'Within Golden Hour' Crashes 

Occurring at Different Times of the Day 

Time of Crash Sample Size (1074)* Distance between trauma centers and crash location (miles) 

2300-0659 189 15.352 

0700-1759 461 15.785 

1800-2259 146 15.852 

*Out of 1103 crashes, 29 did not find the closest facility because of lack of latitude, longitude, 

and incorrect latitude and longitude.  

Table 31. Distances to the Closest Trauma Center for 'Outside Golden Hour' Crashes 

Occurring at Different Times of the Day 

Time of Crash Sample Size (1074) Distance between trauma centers and crash location (miles) 

2300-0659 84 20.993 

0700-1759 140 23.167 

1800-2259 54 23.129 
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The average NTI during time period 1800-0659 was at least five minutes higher than the NTI 

during other times of the day. This could be due to less frequent following traffic to notice a 

traffic crash and notify the EMS. On the other hand, a higher amount of traffic (Griffin and 

McGwin, 2013), especially rush hour traffic (Dijkink et al., 2020), was found to increase the ATI 

and TTI. Therefore, future research should investigate the effect of traffic volume on NTI and 

other time intervals. The research should focus on identifying an optimum amount of traffic 

(considering roadway geometry) that can be associated with a lower NTI and will not delay 

travel time. 

 

According to Table 28, ‘outside golden hour’ crashes experienced the highest TTT during the 

time period 2300-0659 than other times of the day. Table 31 shows that ‘outside Golden Hour’ 

crashes occurring at the time period 2300-0659 had the lowest distances from the crash locations 

to the closest trauma center. This implies that crashes with higher TTT might not necessarily 

happen at a greater distance from the trauma center. The following section (section 4.4) further 

sheds light on this.    

4.4 Percentage of Crashes within a Buffer Zone     

This section estimated the percentage of traffic crashes within a specified distance from 

the trauma center. The goal was to learn about the percentage of crashes that occur within 5, 10, 

15, 20 and 30 miles of trauma centers. This would help to learn about the impact of distance 

between the crash location and trauma center on the patient’s access to trauma center within the 

Golden Hour.  
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The traffic crash data is point data. The buffer zone of the traffic crash data was a circular area 

around the location of a traffic crash. A buffer zone of 30 miles is estimated to be a circular area 

of 30 miles radius around a site of a traffic crash. Section 2.2.3 discussed using ArcGIS tools to 

create buffer zones and estimating the number of crashes within a buffer zone.  

 

Figure 7 through Figure 11 show the location of traffic crashes and buffer zones of different radii 

around the area of traffic crashes. The total sample size was 1077 because 26 crashes had no 

latitude and longitude. When multiple buffer zones intersected, they were dissolved into one 

buffer zone so that only one boundary was shown for the intersecting buffers.    

➢ Case 01: Percentage of crashes within 30 miles of a trauma center  

The total number of crashes=1077. 

The total number of ‘within golden hour’ crashes=798 

The total number of ‘outside golden hour’ crashes= 279 

Number of ‘outside Golden Hour’ crashes within 30 miles of a buffer from all trauma centers= 

253  

Percentage of ‘outside Golden Hour’ crashes within 30 miles of a buffer from all trauma 

centers= 
253

279
∗ 100 = 90.68% 

Number of ‘within Golden Hour’ crashes within 30 miles of a buffer from all trauma centers= 741 

Percentage of ‘within Golden Hour’ crashes within 30 miles of a buffer from all trauma centers= 

741

798
∗ 100 = 92.85% 
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Figure 7. Percentage of Crashes within 30 miles of Trauma Center 
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Figure 8. Percentage of Crashes within 20 miles of Trauma Center 
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Figure 9. Percentage of Crashes within 15 miles of Trauma Center 
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Figure 10. Percentage of Crashes within 10 miles of Trauma Center 
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Figure 11. Percentage of Crashes within 05 miles of Trauma Center 

 

➢ Case 02: Percentage of crashes within 20 miles of a trauma center. 

Number of ‘outside Golden Hour’ crashes within 20 miles of a buffer from all trauma centers= 

191 

Percentage of ‘outside Golden Hour’ crashes within 20 miles of a buffer from all trauma 

centers= 
191

279
∗ 100 = 68.45% 

Number of ‘within Golden Hour’ crashes within 20 miles of a buffer from all trauma centers= 

643 
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Percentage of ‘within Golden Hour’ crashes within 20 miles of a buffer from all trauma centers= 

643

798
∗ 100 = 80.57% 

➢ Case 03: Percentage of crashes within 15 miles of a trauma center 

Number of ‘outside Golden Hour’ crashes within 15 miles of a buffer from all trauma centers= 

146 

Percentage of ‘outside Golden Hour’ crashes within 15 miles of a buffer from all trauma 

centers= 
146

279
∗ 100 = 52.32% 

Number of ‘within Golden Hour’ crashes within 15 miles of a buffer from all trauma centers= 

595 

Percentage of ‘within Golden Hour’ crashes within 15 miles of a buffer from all trauma centers= 

595

798
∗ 100 = 74.56% 

➢ Case 04: Percentage of crashes within 10 miles of a trauma center. 

Number of ‘outside Golden Hour’ crashes within 10 miles of a buffer from all trauma centers= 

85 

Percentage of ‘outside Golden Hour’ crashes within 10 miles of a buffer from all trauma 

centers= 
85

279
∗ 100 = 30.46% 

Number of ‘within Golden Hour’ crashes within 10 miles of a buffer from all trauma centers= 

495 

Percentage of ‘within Golden Hour’ crashes within 10 miles of a buffer from all trauma centers= 

495

798
∗ 100 = 62.03%  
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➢ Case 05: Percentage of crashes within 5 miles of a trauma center. 

Number of ‘outside Golden Hour’ crashes within 5 miles of a buffer from all trauma centers= 33 

Percentage of ‘outside Golden Hour’ crashes within 5 miles of a buffer from all trauma centers= 

33

279
∗ 100 = 11.82% 

Number of ‘within Golden Hour’ crashes within 5 miles of a buffer from all trauma centers= 339 

Percentage of ‘within Golden Hour’ crashes within 5 miles of a buffer from all trauma centers= 

339

798
∗ 100 = 42.48% 

 

The above figures (from Figure 7 to Figure 11) showed that a significant percentage of ‘outside 

Golden Hour’ crashes occurred within the 30, 20, 15, 10, and 5 miles of a buffer from all trauma 

centers. Compared to the ‘outside Golden Hour’ crashes, a higher percentage of ‘within Golden 

Hour’ crashes occurred within the 30, 20, 15, 10, and 5 miles of a buffer from all trauma centers. 

In addition, with the decrease in buffer distance, the percentage of ‘outside Golden Hour’ crashes 

within the buffer zone decreased faster than the ‘within Golden Hour’ crashes. For example, 

90.68% of ‘outside Golden Hour’ crashes occurred within 30 miles buffer distance, while this 

percentage was 92.68% for ‘within Golden Hour’ crashes within the same buffer zone. But for a 

buffer distance of 5 miles, this percentage decreased to 11.82% for ‘outside Golden Hour’ 

crashes and 42.48% for ‘within Golden Hour’ crashes. Table 32 shows the results of test of 

proportion (z-score and p-value). For buffer distance 5 miles, p-value less than 0.05 indicates 

that the proportion of crashes between two groups were significantly different.  These indicate 

that a higher percentage of ‘within golden hour’ crashes occurred at a closer distance (buffer 
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distance) from the trauma centers, and a lower percentage of ‘outside Golden Hour’ crashes 

occurred within a closer distance. This implies that distance was a significant factor affecting the 

TTI and TTT, but it was not necessarily the only determining factor. Because analysis showed 

that 11.82% (case 5) and 30.46% (case 4) of ‘outside Golden Hour’ crashes occurred within the 5 

and 10 miles of buffer distances, respectively. Therefore, the distance between the hospitals 

(local hospitals and trauma centers) and the crash location was not the only determining factor 

for a crash to be within or outside the Golden Hour. Other factors, such as increased notification 

time and distance between the crash location and ambulance centers, could be significant factors. 

Because the location of emergency vehicle centers (such as ambulance location away from 

hospital) was unknown, the study could not estimate the influence of this distance (distance 

between an emergency vehicle center and crash location).   

Table 32. Test of Proportion of Crashes Occurring within a Buffer Distance 

 ‘Within Golden Hour’ ‘Outside Golden Hour' 

Z-score P-value Buffer Distance Frequency Percentage Frequency Percentage 

30 miles  741 0.93 253 0.91 -1.03 1.70 

20 miles 643 0.81 191 0.68 -3.52 2.00 

15 miles 595 0.75 146 0.52 -5.80 2.00 

10 miles 495 0.62 85 0.30 -3.37 2.00 

5 miles 339 0.42 33 0.12 2.76 0.01* 

*Indicates statistically significant at α = 0.05 level of significance. 

These figures also showed that many ‘within Golden Hour’ and ‘outside Golden Hour’ crashes 

occurred in the same or closer location. This indicates that crashes occurring at the same location 

might not be in the same group (e.g., ‘within Golden Hour’). Practically, crashes occurring at the 

same location could experience the same ATI and TTI unless other factors were involved. Other 

factors could be nighttime (2300-0659), adverse weather conditions, higher traffic volume, and 

road geometry. For example, crashes occurring at nighttime (2300-0659) might have longer NTI, 
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and crashes occurring at peak hours might experience delay in travel time (TTI or ATI) due to 

higher traffic volume.  The effect of roadway geometry was not analyzed in the research.  

4.5 Crash and Road Coverage by Trauma Centers and Hospitals 

 

Analysis was conducted on the crashes for which time intervals were available, and these 

decreased the sample size to 1112 (without outliers, the sample size was 1103), and the total 

number of fatal and severe crashes between 2018-2021 was 3397. Because time intervals were 

not available for all the 3397 crashes, it was not possible to investigate what factors affected the 

time intervals of these crashes.  

 

Section 4.4 discussed the percentage of crashes within a certain distance from the trauma centers. 

Practically, if a higher percentage of crashes occurred within a lower distance (e.g., 25 miles) 

from the trauma centers, this would result in a lower TTI, and eventually, a lower TTT because a 

shorter distance would take less time to travel. Hence, an estimate of all crashes (sample size 

3397) occurring at certain distances can provide a visual idea of whether the crashes are more 

likely to be within the Golden Hour. In addition, similar estimation of road networks could help 

future planning of trauma center recognition. The following scenarios describe this.   

➢ Case 01: Coverage-area by 30-mile buffer from all hospitals 

The total length of the road network was 19307.38 miles.  

A total number of crashes=3319 (Because among 3397 crashes, 75 crashes had no information 

on latitude and longitude. Therefore, 75 crashes were not possible to include in the ArcGIS 

analysis). 

The road network that falls within the 30-mile radius of all trauma centers= 19290.43 miles.  
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Percentage of road network coverage= 
19290.433

19307.381
∗ 100% =  99.91%  

Crashes that fall within a 30 miles radius of all trauma centers= 3309  

Percentage of crash coverage= 
3309

3319
∗ 100% =  99.69%  

 

 

Figure 12. Coverage Area by 30 miles Buffer from All Hospitals 

 

➢ Case 02: Coverage-area by 30-mile buffer from all trauma centers 
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The road network that falls within the 30 miles of a buffer from all trauma centers= 17310.31 

miles  

Percentage of road network coverage= 
17310.311

19307.381
∗ 100% =  89.65%  

Crashes that fall within the 30 miles of a buffer from all trauma centers= 3176  

Percentage of crash coverage= 
3176

3319
∗ 100% =  95.69%   

From section 4.4, the number of ‘outside Golden Hour’ and ‘within Golden Hour’ crashes within 

30 miles of a buffer from all trauma centers were 253 and 741, respectively. 

Therefore, the percentage of crashes within the 30 miles of a buffer from all trauma enters=  

253+741

total number of crashes
=

253+741

1077
= 92.29% 
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Figure 13. Coverage Area by 30 miles Buffer from All Trauma Centers 

 

➢ Case 03: Coverage area by 25 miles buffer from all trauma centers 

The road network that falls within the 25 miles of a buffer from all trauma centers= 16304.67 

miles  
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Percentage of road network coverage= 
16304.673

19307.381
∗ 100% =  84.44%  

Crashes that fall within the 25 miles of a buffer from all trauma centers= 3058  

Percentage of crash coverage= 
3294

3319
∗ 100% =  92.13%  

 

Figure 14. Coverage Area by 25 miles Buffer from All Trauma Centers 

 

Section 4.2.8 discussed that patients were often taken to the local hospital instead of a state-

designated trauma center, which indicates that local hospitals were helpful in supporting those 

patients involved in fatal and severe crashes. Therefore, Figure 12 estimated the crash and road 

network coverage by 30 miles buffer all hospitals, including trauma centers (sample size=124). 
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According to Figure 12, 99.91% of the total road network in Kansas and 99.69% of total crashes 

were within the 30 miles buffer from all local hospitals.  

 

Figure 13 shows that 89.65% of road networks fall within 30 miles of a trauma center. In 

addition, among 3319 crashes, 95.69% of crashes occurred within 30 miles of all trauma centers 

(Figure 13). Estimation (section 4.5, case 2) also shows that among 1077 crashes, 92.29% of 

crashes occurred within the 30 miles buffer from all trauma centers.  

 

Figure 13 and Figure 14 show that most of the road networks not within the buffer zone are 

located in District 6 and District 1 (For the district map, see Figure 4). Many crashes in District 6 

are located outside the buffer zone. Therefore, District 6 could be a potential location to increase 

the number of hospitals or trauma centers. Section 4.2.8 and Appendix C also support that 

District 6 would be the best location for the new trauma center development. However, because 

District 6 had the lowest TTT (Table 21), District 1 could also be another location for a new 

trauma center.  

 

Although Section 4.5 does not provide defining conclusions about the factors affecting the time 

intervals, this section is worthy of discussion. Findings from Section 4.5, combined with 

previous sections, can be used in selecting a location of new trauma centers (and/or upgrade 

existing hospitals) from the perspective of traffic crashes. More figures showing crashes and road 

networks within a buffer zone are shown in Appendix D, which can help identify possible new 

locations for trauma centers.   
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In addition, Section 4.5 paves the way for future research to investigate the crashes occurring in 

different districts. Although most of the road networks not within the 30- or 25-mile buffer from 

all trauma centers occurred in District 6, District 6 had the lowest TTT compared to other 

districts. This scope of future research was also discussed in Section 4.2.8.   

4.6 Results of Binary Logistic Regression  

This research applied logistic regression to see what factors influence a crash to be within 

the ‘Golden Hour’ or outside the Golden Hour. The Golden Hour indicator was the dependent 

variable, whereas ‘outside Golden Hour’ crashes were coded as 1 and ‘within Golden Hour’ 

crashes were coded as 0. The dependent variables were weather conditions, on-road speed limit, 

time of the crash, day of the week, KDOT districts, and crash severity. Lighting condition was 

not selected because lighting conditions are represented by the time of the day, and the two 

factors are correlated.  

The estimation of the logistic regression in SPSS showed that Nagelkerke R-square and Cox & 

Snell R-square were too small (<0.05) to consider the model as a good-fitted model. Therefore, 

the results from the logistic regression model are not worth discussing here, but can be found in  

Appendix E.  

4.7 Summary  

The findings of the analysis are discussed in Section 4.2 through 4.5 can be summarized 

as follows: 

➢ Adverse weather conditions (snow and strong winds) increased the TTT.  

➢ NTI and TTT did not vary between weekends and weekdays.   

➢ TTT exceeded the Golden Hour during dark lighting conditions with no streetlights. TTT 

was not higher than the Golden Hour in other factors analyzed in this research.  
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➢ The yearly average of the TTT remained the same during the study period (2018-2021).  

➢ Both for the injury and fatal crashes, the average TTT was lower than the Golden Hour 

by approximately seven to nine minutes.    

➢ Crashes occurring on roads with a speed limit of more than 45 mph experienced nearly 

seven to nine minutes higher TTT than crashes occurring on roads with a speed limit 

lower than 45 mph.  

➢ Among the different times of the crash, crashes occurring between 2300 to 0659 had the 

highest NTI and TTT. The average NTI was nearly three minutes higher than the other 

times of the day.  

➢ Among the six districts, NTI and TTT were the lowest in District 6, despite one trauma 

center in District 6. Further analysis showed that among 50 crashes in District 6, 49 were 

taken to the local hospitals (not a trauma center). Appendix C discusses that developing a 

new trauma center may result in the highest decrease in TTI in District 6 and District 2.  

➢ Outside Golden Hour’ crashes had two times more NTI and TTT than the NTI and TTT 

of ‘within Golden Hour’ crashes. Among many factors, the time of the day of crash 

occurrence might play the most crucial role in determining a crash to be within or outside 

the Golden Hour. 

➢ The distance between the location of a crash and the trauma center was not necessarily 

the most critical factor. Although TTI increases with the increase of distance, the analysis 

showed that a significant percentage of ‘outside Golden Hour’ crashes occurred within 10 

miles of trauma centers. Despite occurring at the same location, some crashes had TTT 

lower than the Golden Hour while others had TTT higher than the Golden Hour. This 

indicates that distance was not the most critical factor.  
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➢ Although most road network and crashes in District 6 were not within 30 or 20 miles of 

the trauma centers and hospitals, District 6 had the lowest TTT. Future research should 

investigate this and compare the crashes from other districts with District 6.  

➢ Selecting a new trauma center or hospital location should estimate the percentage of the 

road network (and traffic volume) within a certain threshold (e.g., 15 miles) from the 

trauma center or local hospital. Analysis showed that District 2 or District 1 would be the 

good potential location to develop a new trauma center.  
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Chapter 5: Conclusions and Recommendations 

 

This chapter discusses the key findings and possible implications of these findings. In 

addition, based on the findings, recommendations for future research are discussed.  

5.1 Key Findings and Recommendations 

Previous studies in the U.S. (Hu et al., 2018; Hu et al., 2020; Plevin et al., 2017) were 

primarily conducted based on fatal crashes to evaluate the effect of distance, time intervals, and 

other factors on prehospital mortality and emergency response times. However, this research 

investigated the impact of different factors on the time intervals (such as NTI, and TTT). This 

study also considered injury crashes. Therefore, this study fills the gap by analyzing the factors 

that affect the response time intervals. An understanding of the factors that affect the time 

intervals would help take action to improve the response time of emergency centers and 

ambulances.  

 

In total, this research analyzed eight factors. Among these, the time of the crash occurrence and 

lighting conditions were the most critical factors affecting the NTI and TTT. For example, 

crashes occurring in the dark with no streetlights and at 2300-0659 (11 p.m. – 6:59 AM) 

experienced the longest NTI.  

 

An increased NTI will increase the TTT and the risk of prehospital mortality (Plevin et al., 

2017). Therefore, steps should be taken to reduce the NTI. Automatic crash notification features 

of vehicles that can send an automatic notification to EMS providers can help reduce NTI.  After 

analyzing fatal crash data, a US-based study (Plevin et al., 2017) identified that vehicles 
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equipped with advanced automatic collision notification (AACN) would be beneficial in 

scenarios with higher NTI.  

 

Crashes on roads with low-speed limits experienced the lowest TTT. However, this research 

needed to be more certain about the reasons for this lowest TTT. This could be because crashes 

occurred in urban areas, and roads with low-speed limits are more likely located in the urban 

areas. Future research should investigate if the crashes occurring on low-speed roads occurred in 

urban areas and what was the distance between the hospital and the crash location.  

 

Among the different weather conditions, crashes occurring during snow and strong winds had the 

longest TTT compared to the no adverse weather conditions. Other factors, such as the day of the 

week and injury severity, were not found to affect the time intervals.  

 

Distance from the crash location to the trauma and EMS centers can be considered the most 

critical factor. Because the longer the distances are, the longer the TTT is. However, this 

research found that distance was not necessarily the determining factor for TTT longer than the 

Golden Hour. Analysis showed that many ‘outside Golden Hour’ crashes occurred within the 5 

miles and 10 miles distance from the trauma centers. In addition, it was discussed that many 

‘within Golden Hour’ and ‘outside Golden Hour’ crashes occurred nearly in the exact location 

(road segments). This indicates that distance was not the only factor. Crashes within 5 or 10 

miles could experience TTT longer than the Golden Hour when NTI was more extended and/or a 

travel delay. Travel delays could be because of traffic congestion, adverse weather conditions, or 

other factors not usually discussed in the literature.  
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During estimating time intervals from the traffic crash data, this research investigated 39 crash 

reports. After reviewing the crash reports, the time of the EMS arrival at the scene and EMS 

arrival at the hospital were also found to have incorrect information. It was also found that 

sometimes the latitude and longitude of the crash location needed to be correctly reported. An 

accurate reporting of crash data is required for research.  

 

The crash database records the hospital and trauma center names where the patients are taken. 

Crash data should also record that hospital's location (latitude and longitude) so that these 

hospitals can be used for spatial analysis. This would help to compare where the patients were 

taken and where the patients could be taken based on the nearest distance.  

 

This research has two limitations. To estimate the distance to the closest facility from the 

location of the crash, it was assumed that the designation and total number of trauma centers and 

hospitals were unchanged during the study period. However, during the phone interviews with 

hospital staff for collecting local hospital data, it was found that one hospital lost its trauma 

designation. In addition, to be designated as a trauma center and to maintain the trauma 

designation, hospitals must apply every two years showing the facilities such availability of 

intensive care unit (ICU). Therefore, during the study period, it was not impossible that there was 

a change in the number of trauma centers. During the estimation of the network dataset and 

closest facility tool, it was also assumed that emergency vehicles could travel in any direction 

and no restrictions (e.g., left turn, right turn) were given. Practically, emergency vehicles cannot 

travel in any direction. For example, if a one-way road allows travel only eastbound, then 

traveling westbound on that road can be the reason for fatal traffic crashes.  
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5.2 Future Research 

Analysis of additional factors and further research is recommended to best utilize these 

research findings. For example, this study has found that nighttime was the crucial time for an 

increased NTI and a crash resulting in TTT more than the A higher NTI indicates that there 

might not have been enough traffic who could notice the crash and notify the EMS. To be certain 

about this assumption, future research should investigate the traffic volume on the road where 

the crash occurred at the time of the crash. The KARS database does not record the traffic 

volume, and therefore, traffic volume needs to be collected from other sources and merged with 

traffic crash data.  

 

A study in California (Brent and Beland, 2020) analyzed emergency response data after merging 

emergency response data with traffic volume data.  The emergency response data for California 

were collected from the National Fire Incident Reporting System, which contained 2.7 million 

incidents. The traffic volume data were collected from the California Department of 

Transportation, which gathers traffic volume in 5-minute intervals. From 25,000 stations, nearly 

21 billion observations were obtained. These 21 billion observations of traffic volume were 

merged with 2.7 million incidents by zip code. Hence, a combination of traffic volume and crash 

data can be combined with spatial location information. Spatial analysis toll such as ArcGIS and 

Python (e.g., GeoPandas) can help in this process. This type of combined database could help 

analyze impact of traffic volume data at the time of the crash and after the crash.  

 

This research recommends analyzing the location of the crash in terms of urban or rural areas 

and investigating the time intervals based on this factor. This research found that crashes 
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occurring at low-speed roads (less than or equal to 45 mph) had lower TTT. This could be 

because of the presence of low-speed roads in urban areas. In urban areas, NTI could be lower, 

and hospitals could be located in nearby areas resulting in shorter ATI and TTI. Analysis of the 

time intervals in terms of urban or rural areas will show if there was a difference. Besides, 

analyzing urban or rural areas is also important because a previous study (Plevin et al., 2017) 

reported that the percentage of fatal crashes was higher in rural areas than in urban areas when 

NTI was more than nine minutes.  

 

Nighttime was found to be crucial because of increased NTI during the nighttime. Vehicles 

equipped with AACN could help solve this. However, not all cars will be equipped with AACN 

because everyone might not have a vehicle with the latest model. future research should 

investigate the influence of traffic volume on the NTI and identify a threshold of traffic volume 

below which NTI would be higher. Then the research should identify the specific time when 

some routes have traffic volume below the threshold.  

 

Investigating the effect of factors such as the roadway geometry, presence of median barriers, 

and TC-HW distances could also reveal valuable insights that can be used in reducing the time to 

rescue a patient and travel time. A survey of EMS providers (Griffin and McGwin, 2013) 

reported that continuous median barriers increase the EMS response time. Therefore, analysis of 

the effect of geometric features will help to design the roadway geometry better to rescue a 

patient.  
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In addition, a questionnaire survey of the drivers of the emergency vehicles and EMS providers 

could help analyze the effect of traffic volume, roadway geometry, and other factors for which 

data are not available. The application of dynamically reallocating ambulances in Kansas and 

other states can also be researched, which could be a low-cost solution. Dynamically reallocating 

ambulances means what should be the best location of an ambulance at a specific time of the day 

and what should be the location of the same ambulance at other times of the day. A study in 

Singapore (Lam, Zhang, et al., 2015) tested two techniques of dynamically reallocating 

ambulances and showed the percentage of emergency calls coverage by the ambulance. These 

two techniques (Mathematical Programming-based models and GIS-based strategy) can be used 

to reallocate the ambulances and percentages of emergency call coverage by the two techniques. 

Comparing the results from both techniques, ambulances can be dynamically reallocated, 

considering other factors such as reallocation cost.    
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Appendix A 

 

For Crash Key 20180024615, EMS was notified at 12:37 AM, but EMS arrived at 2326 

(11:26 p.m.). The crash was a severe crash, and ArcGIS’s closest facility analysis (see 

methodology) showed that the crash was located 14.71 miles away from the closest trauma 

center. It was more unlikely that EMS would take this long time to arrive at the scene for a 

severe crash. In addition, Police arrived at the crash scene at 2319 (11:19 p.m.). Therefore, it 

could be more reliable, the crash time is unreliable for the analysis.  

For Crash Key 20190101304, the crash occurred at 0212; EMS was notified at 2113, while 

police were notified at 0212, and Police arrived at the scene at 0217. Therefore, Police could 

notify the EMS once they arrive at the scene because the crash was a severe crash. But EMS was 

notified at 2113 (9:13 PM).  This EMS notification time is not reliable.  Due to the same reason, 

EMS notification for crash key 20200124478 was unreliable.  

As mentioned earlier, no discrepancy was found (see Chapter 4, section Estimating Time 

Intervals) between crash reports and the KARS database for time recording. Probably, the error 

was made during the crash report. For example, for crash key 20200124478, the crash occurred 

at 0014, and the Police were notified at 0014. But the time of EMS notification was 1219. What 

took a long time to notify EMS while the Police were notified instantly about a severe crash 

(incapacitating or non-incapacitating crash)? If the Police were notified, the EMS could be 

notified instantly because of a severe crash.  Probably, the person who recorded the time made 

the mistakes. However, as the researcher was not certain where the error was, these three crashes 

with unreliable time records were excluded from the preliminary analysis.  
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Table 33. Three crashes with an unreliable record of the time interval 
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20180024615 2305 0037 2326 0003 Severe 

Injury 

2307 2319 14.711 

20190101304 0212 2113 2117 0306 Severe 

Injury 

0212 0217 5.918 

20200124478 0014 1219 1228 1300 Severe 

Injury 

0014 0031 32.039 
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Appendix B 

 

Table 34. Average of time intervals during 24 Categories of the Time of the Crash 

Time of Crash (One 

Hour Interval) 

Sample 

Size 

Notification 

Time Interval 

(minutes) 

Arrival Time 

Interval 

(minutes) 

Transport Time 

Interval 

(minutes) 

Total 

Transport 

Time 

(minutes) 

0000-0001 35 9.229 15.543 34.971 59.743 

0100-0159 27 15.444 9.593 33.667 58.704 

0200-0259 30 13.733 11.600 35.133 60.467 

0300-0359 25 7.960 11.400 35.400 54.760 

0400-0459 32 8.969 11.688 35.156 55.813 

0500-0559 42 11.643 12.190 30.500 54.333 

0600-0659 61 8.000 13.344 32.459 53.803 

0700-0759 66 6.030 10.848 34.136 51.015 

0800-0859 45 6.911 11.311 29.556 47.778 

0900-0959 38 4.289 12.132 33.132 49.553 

1000-1059 46 6.783 9.109 30.522 46.413 

1100-1159 57 6.439 10.596 34.070 51.105 

1200-1259 59 6.305 10.492 31.915 48.712 

1300-1359 53 7.491 10.642 36.887 55.019 

1400-1459 54 5.648 8.815 33.222 47.685 

1500-1559 74 5.676 9.378 29.649 44.703 

1600-1659 61 5.098 10.344 31.492 46.934 

1700-1759 64 5.609 10.625 34.609 50.844 

1800-1859 51 7.843 10.922 34.608 53.373 

1900-1959 41 5.268 10.512 31.024 46.805 

2000-2059 36 10.444 9.000 31.722 51.167 

2100-2159 40 6.650 11.950 39.100 57.700 

2200-2259 39 5.308 11.154 32.256 48.718 

2300-2359 27 7.000 9.704 40.444 57.148 
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Appendix C 

 

Table 35 shows the average distances and time for crashes occurring at the six KDOT 

districts from the crash location to the nearest trauma center and hospitals. The table only shows 

the transport distance and time required to travel that distance which is TTI. Therefore, the time 

estimated in the table does not include the NTI and ATI. As a result, the result in this table does 

not match the TTT shown in Table 20 in section 4.2.8.  

Table 35. Estimated Distances and Time from the Location of the Crash to the Closest 

Facility 

KDOT Districts Sample 

Size 

(1074) * 

Time and distance from the crash 

location to the closest facility 

(Total 53 Trauma Centers)  

Time and distance from crash locations to 

the closest facility (Total 124 Hospitals) 

Distance (miles) Time 

(minutes) 

Distances (miles) Time (minutes) 

DISTRICT 1 371 10.59 12.56 7.71 9.58 

DISTRICT 2 146 22.53 22.45 9.58 10.42 

DISTRICT 3 82 24.98 22.70 11.47 10.89 

DISTRICT 4 153 22.57 22.53 16.53 16.88 

DISTRICT 5 275 13.01 14.83 7.66 9.02 

DISTRICT 6 47 52.00 50.37 10.99 11.35 

*The total number of crashes was 1074 because 29 crashes did not find the closest facility. 

Because 26 crashes had no information on latitude and longitude, and another three crashes were 

not located within the KDOT boundary when imported into the crash data. Those three crashes 

had latitudes and longitudes far away from the KDOT boundary.  

 

Table 35 shows that transport time (TTI) for District 6 decreased significantly if patients were 

taken to hospitals instead of trauma centers. This indicates that increasing the number of trauma 

centers in District 6 will reduce the TTT and improve patients’ access to trauma centers within 

the Golden Hour.  District 2 will be another potential area to increase the number of trauma 

centers.  
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Appendix D 

 

➢ Case 04: Coverage area of 30 miles radius from Level I and Level II trauma centers         

The total length of the road network= 19307.38 miles.  

The total number of crashes= 3319.  

The road network that falls within the 30 miles buffer from all trauma centers= 7596.75 miles                       

Percentage of road network coverage= 
7596.75

19307.38
∗ 100% =  39.35%  

Crashes that fall within the 30 miles buffer from all trauma centers=  2169 

Percentage of crash coverage= 
2169

3319
∗ 100% =  65.35%  

 

 

Figure 15. Coverage Area by 30 miles Buffer from Level I and II Trauma Centers 
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➢ Case 05: Coverage area of 50 miles radius from Level I and Level II trauma centers 

 

The road network that falls within the 50 miles buffer from all trauma centers= 10507.01 miles.  

Percentage of road network coverage= 
10507.01

19307.38
∗ 100% =  54.41%  

Crashes that fall within the 50 miles buffer from all trauma centers= 2601  

Percentage of crash coverage= 
3294

3319
∗ 100% =  78.36%  

 

Figure 16. Coverage Area by 50 miles Buffer from Level I and II Trauma Centers 
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➢ Case 06: Coverage area of 60 miles radius from Level I and Level II trauma centers 

 

The road network within the 60 miles buffer from all trauma centers= 11754.09 miles.  

Percentage of road network coverage= 
11754.09

19307.38
∗ 100% =  60.87%  

Crashes that fall within the 60 miles buffer from all trauma centers= 2719  

Percentage of crash coverage= 
2719

3319
∗ 100% =  81.92%  

 

Figure 17. Coverage Area by 60 miles Buffer from Level I and II Trauma Centers 
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Appendix E 

 

Table 36. Results of Binary Logistic Regression 

Sample Size= 1103 Cos & Snell R Square= 0.022 

Dependent Variable: Yes (coded as 1) =820 Nagelkerke R Square= 0.032 

Dependent Variable: No (coded as 0) =283 The cutoff value for classification= 0.5 

Model Chi-square=24.243 & P-Value=0.001  
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On-road 

speed limit 

Low Speed 
  

9.318 2 0.009 
   

High Speed  0.784 0.343 5.213 1 0.022 2.19 1.117 4.293 

Higher Speed 0.958 0.321 8.885 1 0.003 2.606 1.388 4.892 

Weather 

Condition 

Strong Wind 
  

6.134 3 0.105 
   

No adverse 

weather 

-0.341 0.552 0.383 1 0.536 0.711 0.241 2.096 

Rain  -0.743 0.58 1.64 1 0.2 0.476 0.153 1.483 

Snow -0.01 0.603 0 1 0.986 0.99 0.304 3.224 

Time of the 

crash 

2300-0659 
  

6.944 2 0.031 
   

0700-1759 -0.424 0.163 6.77 1 0.009 0.654 0.476 0.901 

1800-2259 -0.198 0.206 0.926 1 0.336 0.82 0.548 1.228 

Constant 
 

-1.281 0.644 3.96 1 0.047 0.278 
  

Variable(s) entered on step 1: On-road speed limit, Weather condition, Time of the Crash, Day of the week, Crash 

severity, KDOT Districts. 

 


