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Nomenclatures
α∗
1 Diffusion coefficient in Model RW2

α1, α2 Material coefficient for constitutive theory for Cauchy moment tensor

ᾱ non-classicalphysics material coefficient

α0 Dimensionless non-classicalphysics material coefficient

β̄ Rotational inertial physics non-classicalmaterial coefficient

c̄2 Dimensionless dissipation coefficient fluids

cd Damping coefficient Model TW1

c∗d Damping coefficient Model RW1, RW2

E Modulus of elasticity

E0 Reference modulus of elasticity

e Specific internal energy in Lagrangian description

ē Specific internal energy in Eulerian description

ϵ, ϵϵϵ, ϵijk Permutation tensor

εεε Strain tensor in Lagrangian description

ε̄εε Strain tensor in Eulerian description
.
εεε Strain rate tensor in Lagrangian description
.
ε̄εε Strain rate tensor in Eulerian description

η Viscosity or entropy density in Lagrangian description

η̄ Viscosity or entropy density in Eulerian description

ggg Heat vector in Lagrangian description

ḡgg Heat vector in Eulerian description



h̄ Entropy flux in Eulerian description

ΘI Internal rotational inertia in Lagrangian description

ΘĪ Internal rotational inertia in Eulerian description

JJJ Deformation gradient tensor in Lagrangian description

sJJJ Symmetric part of deformation gradient tensor in Lagrangian description

aJJJ Skew Symmetric part of deformation gradient tensor in Lagrangian description

dJJJ Displacement gradient tensor in Lagrangian description

d
sJJJ Symmetric part of displacement gradient tensor in Lagrangian description

d
aJJJ Skew symmetric part of displacement gradient tensor in Lagrangian description

L, L0 Length, reference length

LLL,
.
JJJ Velocity gradient tensor in Lagrangian description

L̄LL Velocity gradient tensor in Eulerian description

sm11 Symmetric Cauchy moment tensor in Lagrangian description component 11

sm̄11 Symmetric Cauchy moment tensor in Eulerian description component 11

sm̄23 Symmetric Cauchy moment tensor in Eulerian description component 23

am̄23 Skew symmetric Cauchy moment tensor in Eulerian description component 23

iωωω, iωk Internal rotational velocity or rotation rates

iω1 Internal rotation rate in Lagrangian description about the x1 axis

ω0 Reference rotational velocity

iω̄1 Internal rotation rate in Eulerian description about the x1 axis

iω̄3 Internal rotation rate in Eulerian description about the x3 axis

Ω̄xt Space-time domain

Ω̄T
xt Discretization of space-time domain Ω̄xt

Ω̄
(i)
xt ith space-time strip

(Ω̄
(i)
xt )

T Discretization of ith space-time strip

Ω̄e
xt Space-time element e

ρ
0

Reference Density

ρ Density in Lagrangian description
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ρ̄ Density in Eulerian description

p̄ Pressure in Eulerian description

σσσ Cauchy stress tensor in Lagrangian description

sσσσ Symmetric Cauchy stress tensor in Lagrangian description

aσσσ Skew symmetric Cauchy stress tensor in Lagrangian description

e
sσσσ Symmetric equilibrium Cauchy stress tensor in Lagrangian description

d
sσσσ Symmetric deviatoric Cauchy stress tensor in Lagrangian description

d
sσ̄

(0)
21 = d

sσ̄
(0)
12 Symmetric deviatoric contravariant Cauchy stress in Eulerian

description component 12

d
aσ̄

(0)
21 = d

aσ̄
(0)
12 Antisymmetric deviatoric contravariant Cauchy stress in Eulerian

description component 12

s Entropy source in Lagrangian description

s̄ Entropy source in Eulerian description

t Time

t0 Reference time

τ0 Reference stress

iΘΘΘ, iΘj , {iΘ} Internal or classical rotations in Lagrangian description

iΘ̄ΘΘ, iΘ̄j , {iΘ̄} Internal or classical rotations in Eulerian description

r
iΘΘΘ Internal or classical rotation rates in Lagrangian description

r
iΘ̄ΘΘ Internal or classical rotation rates in Eulerian description

iΘ1 Internal rotation about the x1 axis

iΘ3 Internal rotation about the x3 axis

ū, v̄, w̄ Velocity components in x1, x2 and x3 directions

v0 Reference velocity

vvv, vi, {v} Velocity vector in Lagrangian description

v̄vv, v̄i, {v̄} Velocity vector in Eulerian descriptions

xxx, xi, {x} Cartesian Coordinates

x̄xx, x̄i, {x̄} Cartesian Coordinates
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Abbreviations

BAM : Balance of angular momentum

BLM : Balance of linear momentum

BMM : Balance of moment of moments

BVP : Boundary value problem

CBL : Conservation and balance laws

CCM : Classical continuum mechanics

CCT : Classical continuum theory

CM : Conservation of mass

FLT : First law of thermodynamics

IVP : Initial value problem

NCCM : Non-classical continuum mechanics

NCCT : Non-classical continuum theory

ODE : Ordinary differential equation

PDE : Partial differential equation

SLT : Second law of thermodynamics

TV : Thermoviscous

TVES : Thermoviscoelastic solids
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Abstract

In this thesis, we derive the conservation and balance laws (CBL) and the constitutive

theories for micropolar non-classical continuum theories (NCCT) for thermoviscoelas-

tic solids (TVES) without memory in Lagrangian description and thermoviscous (TV)

fluids in Eulerian description based on internal or classical rotations (iΘΘΘ) and internal

or classical rotation rates (riΘ̄ΘΘ) due to skew symmetric part of deformation gradient

tensor (JJJ) and due to skew symmetric part of the velocity gradient tensor (L̄LL). Thus,

these micropolar NCCT for solids and fluids incorporate JJJ and L̄LL in their entirety

in the derivation of the conservation and balance laws. Both NCCT derived here in-

corporate rotational inertial physics due to the presence of microconstituents in the

derivation of CBL. For micropolar TVES, we consider small deformation, small strain

physics. To our knowledge, the inclusion of rotational inertial physics in micropolar

NCCT presented here is the first presentation of such a micropolar NCCT.

The micropolar NCCT presented in this work for TVES considers two dissipation

mechanisms. The first is due to strain rate appearing in the constitutive theory for the

deviatoric Cauchy stress tensor. This mechanism is purely due to classical continuum

mechanics (CCM). The second dissipation mechanisms is due to the rate of symmetric

part of the internal rotation gradient tensor, appearing in the constitutive theory for

the symmetric part of the Cauchy moment tensor. The first dissipation mechanisms

is viscous. The second dissipation mechanisms is due to the micropolar non-classical

physics and it accounts for the drag forces experienced by the microconstituents during

deformation of the volume of matter. In the case of micropolar fluids, the dissipation

mechanism is due to symmetric part of the velocity gradient tensor appearing in the

xiii



constitutive theory for the deviatoric Cauchy stress tensor (CCM) and also due to the

symmetric part of the rotation rate gradient tensor appearing in the constitutive theory

for the symmetric part of the Cauchy moment tensor (NCCM). It is shown that the

mathematical models for micropolar TVES and micropolar TV fluids consisting of the

conservation and balance laws and constitutive theories have closure.

It is established and demonstrated that micropolar NCCT with rotational inertial physics

derived here permits coexistence of translational waves (deviatoric Cauchy stress waves)

and rotational waves (Cauchy moment waves). In the case of micropolar TV fluids

with rotational inertial physics, neither translational nor rotational waves can exist.

This is due to the lack of elasticity in classical as well as non-classical physics, as

a consequence the balance of linear momenta and balance of angular momenta are

time dependent diffusion equations in translational and rotational velocities and are

not wave equations.

Simple model problems describing evolutions (IVPs) in micropolar TVES and microp-

olar TV fluids are considered and their numerical solutions are presented (computed

using space-time coupled finite element method) to specifically illustrate the influence

of rotational inertial physics on the resulting evolutions.

xiv



Chapter 1

Introduction

1.1 Introduction

The displacements uuu and the deformation gradient tensor JJJ are fundamental measures of de-

formation physics in solids. Classical continuum theories (CCT) are primarily based on uuu and the

symmetric part of JJJ (sJJJ) used to describe various strain measures. The antisymmetric part of JJJ

(aJJJ) containing rotations at a material point is not considered in CCT even though it exists in all

deforming solids (as it is due toJJJ ). Thus, in CCT the rotations inJJJ referred to as internal rotations

or classical rotations constitute a free field i.e., they exist in all deforming solids but don’t influence

measures of deformation. Thus, it is possible to develop a NCCT that considers rotations iΘΘΘ in

the conservation and balance laws and constitutive theories. This NCCT would consider uuu and JJJ

in their entirety. Surana et al. [83] have shown this NCCT is ideally suited to study isotropic, ho-

mogeneous solid matter in the presence of microconstituents. When microconstituents are present,

the rotations no longer constitute a free field as they are resisted by the microconstituents. Surana

et al. [83] referred to this NCCT as "Micropolar NCCT based on internal or classical rotations iΘΘΘ

for solid medium”. Prior to publication [83] Surana et. al have presented various aspects of CBL

and constitutive theories for micropolar NCCT based on rotations iΘΘΘ [84,85,87,89,93–96]. These

works show necessary modification of the CBL of CCT, introducing a new balance law "balance

of moment of moments” (also see Yang et. al [104]) and derivation of constitutive theories for

micropolar NCCT based on rotations iΘΘΘ such that the thermodynamic and mathematical consis-

tency [83] of the NCCT is ensured. Rotational inertial physics is not considered in these works.

In case of fluids, velocity v̄vv and velocity gradient tensor L̄LL are the most fundamental measures
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of fluid motion. CCT for fluid medium are primarily based on v̄vv and symmetric part of L̄LL (D̄DD), the

strain rate gradient tensor. In CCT, the antisymmetric part of L̄LL (W̄WW ) is not considered in the CBL

and constitutive theories, even though it exists in all deforming fluids as it is due to (L̄LL). Thus, in

CCT the rotation rates r
iΘ̄ΘΘ (in W̄WW ) also called classical rotation rates constitute a free field i.e., they

exist in all deforming fluid media but do not influence measures used in CCT. Thus, it is possible

to develop a NCCT that considers rotation rates r
iΘ̄ΘΘ in the CBL and constitutive theories. This

NCCT would consider v̄vv and L̄LL in their entirety. Surana et. al [79] have shown that this NCCT is

ideally suited to study isotropic, homogeneous fluid medium in the presence of microconstituents.

When microconstituents are present, the rotation rates r
iΘ̄ΘΘ no longer constitute a free field as they

are resisted by the microconstituents. Surana et. al [79] referred to this NCCT as "Micropolar

NCCT for fluids based on internal or classical rotation rates r
iΘ̄ΘΘ”. Prior to publication [79], Surana

et. al have presented various aspects of CBL and constitutive theories for micropolar NCCT based

on rotation rates r
iΘ̄ΘΘ [82, 86, 88, 90, 94]. These works showed necessary modifications of the CBL

of CCT, introduction of a new balance law "balance of moment of moments” and derivation of

constitutive theories such that the thermodynamic and mathematical consistency [79] of the NCCT

is ensured. In these works also, rotational inertial physics is not considered.

1.2 Literature review

Prior to the works in references [82,84,86–90,95,96,104] a large number of publications have

appeared (primarily related to solid continua) under couple stress theories, microtheories (microp-

olar, microstretch, micromorphic) and their application to beams, plates and shells. Surana et.

al have clearly distinguished these published works from the works presented by them in refer-

ences [80, 82, 84, 86–90, 92, 93, 95, 96, 96]. In the following, we present a brief literature review of

published works on non-classical continuum theories under the titles micropolar theories, non-local

theories, couple stress theories, etc. We discuss relevance and correspondence of these theories to

the present work after the literature review.

2



A comprehensive treatment of micropolar theories can be found in references [7,14–29,32,43,

44,59]. Such theories are designed to accommodate effects at scales smaller than continuum scale.

Balance laws for micromorphic materials are presented in reference [59]. The micropolar theories

consider micro-deformation due to microconstituents in the continuum. In references [63, 65, 68]

by Reddy et. al. and reference [48] by Zang et. al. non-local theories are presented for bending,

buckling and vibration of beams, beams with nanocarbon tubes and bending of plates. The theories

related to the non-local effects are believed to be originated by Eringen [17] in which a definition

of non-local stress tensor is introduced through integral relationship using the product of macro-

scopic stress tensor and a distance kernel representing non-local effects.

The concept of couple stress was first introduced by Voigt in 1881 by assuming existence of a

couple or moment per unit area on the oblique plane of the deformed tetrahedron in addition to the

stress or force per unit area. The concept of couple stresses is more recently studied by Koiter [44].

Since the introduction of this concept many published works have appeared. We cite some recent

works, most of which are related to micropolar couple stress theories. Authors in reference [105]

report experimental study of micropolar and couple stress elasticity of compact bones in bending.

Conservation integrals in couple stress elasticity are reported in reference [49]. A microstructure-

dependent Timoshenko beam model based on modified couple stress theories is reported by Ma et.

al. [50]. Further accounts of couple stress theories in conjunction with beams can be found in ref-

erences [51, 66, 67]. Treatment of rotation gradient dependent strain energy and its specialization

to Von Kármán plates and beams can be found in reference [78]. Other accounts of micropo-

lar elasticity and Cosserat modeling of cellular solids can be found in references [57, 60, 72]. In

references [49–51,57,60,66,67,72,78,105] authors use Lagrangian description to derive the math-

ematical description of deforming solid matter purely using strain energy density functional and

principle of virtual work. This approach works well for elastic solids in which mechanical de-

formation is reversible. Extension of these works to thermoviscoelastic solids with and without

memory is not possible. In such materials, the thermal field and mechanical deformation are cou-

pled due to the fact that the rate of work results in rate of entropy production. In reference [1]

3



Altenbach and Eremeyev present a linear theory for micropolar plates. Each material point is

regarded as a small rigid body with six degrees of freedom. Kinematics of plates is described

using the vector of translations and the vector of rotations as dependent variables. Equations of

equilibrium are established in R3 and R2. Strain energy density function is used to present linear

constitutive theory. The mathematical models of reference [2] are extended by the same authors

to present strain rate tensors and the constitutive equations for inelastic micropolar materials. In

reference [3] authors consider the conditions for the existence of the acceleration waves in ther-

moelastic micropolar media. The work concludes that the presence of the energy equation with

Fourier heat conduction law does not influence the wave physics in thermoelastic micropolar me-

dia. Thus, from the point of view of acceleration waves in thermoelastic polar media, thermal

effects i.e., temperature can be treated as a parameter. In reference [4] authors present a discussion

on a collection of papers related to the mechanics of continua dealing with micro-macro aspects of

deformation physics (largely related to solid matter).

The works related to micropolar theories, non-local theories, couple stress theories of fluent

continua and their applications can be found in references [4, 5, 7, 10, 14–16, 18, 19, 21, 25–29,

31, 32, 43, 54, 106]. The micropolar theories consider micro-deformation of microconstituents in

the continuum and associated homogenization so that the matter at macro scale is isotropic and

homogeneous. The works by Eringen [21, 25–28] establish conservation and balance laws, con-

stitutive theories, micro-mechanics considerations and their use in non-classical theories for fluent

continua. Some stability and boundary considerations for non-classical theories are discussed in

references [32, 43]. In reference [5] a micropolar theory is presented for binary media with ap-

plications to phase transition of fiber suspensions to show flow during the filling state of injection

molding of short fiber reinforced thermoplastics. A similarity solution for boundary problem flow

of a polar fluid is given in reference [10]. In specific, the paper borrows constitutive equations that

are claimed to be valid for flow behavior of a suspension of very fine particles in a viscous fluid.

Kinematics of micropolar continuum is presented in reference [11]. References [12, 13] consider

material symmetry groups for linear Cosserat continuum and nonlinear polar elastic continuum.
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Grekova et. al. [36,37,39] consider various aspects of wave processes in ferromagnetic media and

elastic media with micro-rotations as well as some aspects of linear reduced Cosserat media. In

references [6, 9, 33–35, 38, 40, 41, 46, 47, 52–56, 58, 61, 104, 106] various aspects of the kinematics

of micropolar theories, couple stress theories, etc. are discussed and presented including some

applications to plates and shells. Unfortunately, there are not many published works on micropolar

NCCT that consider rotational inertial physics. References [42, 45] consider flow of micropolar

fluids through porous medium and dynamics of hydro-magnetic flow of micropolar fluids. There

is much more similar published work regarding the polar, couple stress and non-local theories uti-

lizing concepts similar to those already discussed here.

In summary, at present there are three micropolar NCCT being pursued in the published works.

In case of solids: (1) micropolar NCCT based on internal rotations iΘΘΘ, (2) micropolar NCCT

based on rotations iΘΘΘ and Cosserat or external or micro-rotations eΘΘΘ with additional three un-

known degrees of freedom at a material point, (3) micropolar NCCT that only considers external

rotations eΘΘΘ at a material point hence does not consider iΘΘΘ even though it exists in all deforming

solids. In case of fluids, similar micropolar NCCT are being pursued using rotation rates r
iΘ̄ΘΘ, r

eΘ̄ΘΘ.

Surana et. al [87,88] have shown that the micropolar NCCT based on iΘΘΘ for solids and micropolar

NCCT based on r
iΘ̄ΘΘ for fluids are the only two NCCT that are thermodynamically and mathemati-

cally consistent, hence we consider only these two NCCT in extending them for rotational inertial

physics.

1.3 Scope of work

The conservation and balance laws and the constitutive theories of micropolar NCCT of Surana

et. al [79, 82–90, 93–96] derived by incorporating internal rotations or classical rotations iΘΘΘ for

solids and by incorporating internal or classical rotation rates for r
iΘ̄ΘΘ for fluids are extended to

include rotational inertial physics. Derivations of micropolar NCCT for solids and fluids with

rotational inertial physics are presented in chapters 2 and 3. The new physics of rotational inertia
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results in further modification of balance of angular momenta, balance of moment of moments

and first and seconds laws of thermodynamics presented by Surana et. al [79, 82–90, 93–96] for

micropolar NCCT based on internal rotations iΘΘΘ for solids and based on internal rotation rates

r
iΘ̄ΘΘ for fluids. The outcome is that the Cauchy stress tensor is non-symmetric (as is the case for

all NCCT), but here the Cauchy moment tensor is also non-symmetric. Constitutive theories for

Cauchy stress tensor, Cauchy moment tensor and heat vector are derived used conjugate pairs

in entropy inequality and representation theorem. Final mathematical models consisting of CBL

and the constitutive theories are shown to have closure in micropolar NCCT for solids as well as

fluids incorporating rotational inertial physics. Existence of rotational waves is established for

micropolar solid continua in the presence of rotational inertial physics. In case of fluids, rotational

waves are shown not to exist even in the presence of rotational inertial physics due to their lack of

elasticity. Influence of inertial physics is demonstrated in micropolar NCCT for solids as well as

for fluids. Constitutive theories are presented for thermoviscous behavior both for solids as well as

fluids. Model problem studies are presented to illustrate the influence of rotational inertial physics

on their resulting solutions.
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Chapter 2

Conservation and balance laws for micropolar solids

In this chapter we present the conservation and balance laws and constitutive theories for mi-

cropolar NCCT based on internal rotations or classical rotations iΘΘΘ in which rotational inertial

physics is considered. These are derived and presented in Lagrangian description.

2.1 Conservation of mass

The continuity equation resulting from the principle of conservation of mass remains the same

in NCCT considered here as in the case of CCT. In Lagrangian description, continuity equations

[30, 64, 97] can be written in the following differential form

ρ
0
(xxx) = |J |ρ(xxx, t) (2.1)

For infinitesimal deformation |J | ≃ 1 hence ρ
0
(xxx) ≃ ρ(xxx, t), where ρ

0
(xxx) is the density of the

material point at xxx in the reference configuration and ρ(xxx, t) is the Lagrangian description of the

density of a material point at x̄xx in the current configuration.
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2.2 Balance of linear momenta

This balance law in micropolar NCCT remains the same as in CCT. Thus, for small deforma-

tion, small strain we can write [97] the following for balance of linear momenta

ρ
0

Dvvv

Dt
− ρ

0
FFF b −∇∇∇···σσσ = 0 or ρ

0

D{v}
Dt

− ρ
0
{F b} − [σ]T{∇} = 0 (2.2)

In Lagrangian description D
Dt

= ∂
∂t

and vvv = vvv(xxx, t) are velocities at a material point, FFF b are body

forces per unit mass andσσσ is the Cauchy stress tensor. The Cauchy stress tensor is non-symmetric

as its symmetry has not been established yet.

2.3 Balance of angular momenta

The principle of balance of angular momenta for a non-classical continuum incorporating inter-

nal rotations and inertial effects due to their rates can be stated as follows: The time rate of change

of moment of momenta is equal to the sum of the moments of the forces and the moments. Let

ΘĪ be the rotational inertia per unit mass of the deforming solid continua, then ΘĪ ρ̄(iω̄ωω)dV̄ is the

angular momenta for the elemental volume dV̄ , due to ΘĪ and angular velocity iω̄ωω and x̄× ρ̄v̄dV̄ is

the moment of linear momenta for the same elemental volume dV̄ . Then according to this balance

law:

the rate of change of angular momenta = (moments due to P̄ + M̄)

+ moments of the body force ρ̄ F̄FF bacting on dV̄

Then, we have for the deformed volume V̄ bounded by ∂V̄

D

Dt

∫
V̄

(ΘĪ ρ̄ (iω̄ωω) + x̄xx× ρ̄ v̄vv) dV̄ =

∫
∂V̄

(x̄xx× P̄PP + M̄MM ) dĀ+

∫
V̄

(x̄xx× ρ̄ F̄FF
b
) dV̄ (2.3)
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We expand each term in the following

D

Dt

∫
V̄

ΘĪ ρ̄ (iω̄ωω) dV̄ =
D

Dt

∫
V̄

ΘĪ(iω̄ωω)(ρ̄ dV̄ )

=
D

Dt

∫
V

ΘI0(iωωω)ρ0 dV

=

∫
V

D

Dt
(ΘI0(iωωω)ρ0 ) dV

=

∫
V

ΘI0ρ0
D(iωωω)

Dt
dV ; for constant ρ

0
and ΘI0 (2.4)

Now we consider

D

Dt

∫
V̄

x̄xx× ρ̄ v̄vv dV̄ =
D

Dt

∫
V̄

ϵijkx̄iv̄j ρ̄ dV̄

=
D

Dt

∫
V

ϵijkxivjρ0 dV

=

∫
V

ρ
0
ϵijk

D

Dt
(xivj) dV

=

∫
V

ρ
0
ϵijk(vivj + xi

Dvj
Dt

) dV (2.5)

Next we consider ∫
∂V̄

(x̄xx× P̄PP + M̄MM ) dĀ (2.6)

Using Cauchy Principle we have

PPP = σσσT ···nnn , MMM =mmmT ···nnn (2.7)

Using (2.7) in (2.6) we can write

∫
∂V̄

(x̄xx× P̄PP + M̄MM ) dĀ =

∫
∂V̄

x̄xx× σ̄σσT ··· n̄nn dĀ+

∫
∂V̄

m̄mmT ··· n̄nn dĀ (2.8)
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in which for small strain and small deformation we can write (2.8) as

∫
∂V̄

(x̄xx× P̄PP + M̄MM) dĀ =

∫
∂V

(ϵijk xi σmj ··· nm +mmk ··· nm) dA

Using divergence theorem we finally have

∫
∂V̄

(
x̄xx× P̄PP + M̄MM

)
dĀ =

∫
V

(ϵijk(xiσmj),m +mmk,m) dV

=

∫
V

(ϵijk(δimσmj + xiσmj,m) +mmk,m) dV (2.9)

Consider the last term in (2.3)

∫
V̄

(
x̄xx× ρ̄ F̄FF

b
)
dV̄ =

∫
V̄

ϵijkx̄iF̄
b
j ρ̄ dV̄

=

∫
V

ϵijkxiF
b
j ρ0 dV (2.10)

Substituting from (2.4), (2.5), (2.9) and (2.10) in (2.3) we obtain (using δimσmj = σij)

∫
V

ΘI0ρ0
D(iωk)

Dt
+ ρ

0
ϵijk

(
vivj + xi

Dvj
Dt

)
dV =

∫
V

(
ϵijk(σij + xiσmj,m)

+mmk,m

)
dV +

∫
V

ϵijkxiF
b
j ρ0 dV (2.11)

Collecting terms and noting that

ρ
0
ϵijkvivj = 0 (2.12)

we can write (2.11) as

∫
V

ΘI0ρ0
D(iωk)

Dt
dV +

∫
V

ϵijkxi

(
ρ
0

Dvj
Dt

− σmj,m − ρ
0
F b
j

)
dV

−
∫
V

(ϵijk(σij) +mmk,m) dV = 0 (2.13)
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The coefficient of ϵijkxi in the second term of (2.13) is zero due to the balance of linear momenta,

hence (2.13) reduces to

∫
V

(
ΘI0ρ0

D(iωk)

Dt
− ϵijkσij −mmk,m

)
dV = 0 (2.14)

Since the volume V is arbitrary, we have the following from (2.14)

ΘI0ρ0
D(iωk)

Dt
− ϵijkσij −mmk,m = 0 (2.15)

Remarks

1. If we assume the first and last term in (2.15) to be zero then we recover the balance of angular

momenta for classical continuum theory.

2. If we set the first term in (2.15) to zero but retain the second and third term (due to inter-

nal rotations physics [84, 87, 89, 95] only), then we have balance of angular momenta for

non-classical continuum theory that incorporates internal rotations due to dJJJ at the material

points but ignores rotational inertial physics.

3. The appearance of the first term in (2.15) is obviously due to rotation rates and the rotational

inertia ΘI0 per unit mass (rotary inertia), the new physics considered in the current work that

doesn’t appear in classical continuum theories. Likewise ΘĪ is the same variable as ΘI0 in

Eulerian description.

4. Equation (2.15) is the final form of the balance of angular momenta.

2.4 Balance of moment of moments

The need for this new balance law in non-classical continuum theories was originally proposed

and presented by Yang et. al [104] based on static equilibrium considerations. Later, Surana et.

al advocated the need for this balance law in non-classical continuum theories and pointed out
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that a balance law must be derived using rate considerations. In reference [82, 96] they presented

the derivation of the “balance of moment of moments" balance law for non-classical continuum

theories incorporating internal rotations at material points due to displacement gradient tensor and

its extension to fluent continua. In the present work, the physics under consideration is different

than that in references [96], hence a rederivation of this balance law is necessary. According to

this balance law the rate of change of the moment of the angular momenta due to rotation rates for

a deformed volume V̄ must be equal to the sum of the moment of moments due to antisymmetric

components of the Cauchy stress tensor over the same deformed volume V̄ and the moment of M̄MM

acting on the boundary ∂V̄ of V̄ . Thus, we can write

D

Dt

∫
V̄

x̄xx×ΘĪ ρ̄(iω̄ωω) dV̄ =

∫
V̄

x̄xx× (ϵϵϵ ::: σσσ) dV̄ +

∫
∂V̄

x̄xx× M̄MMdĀ (2.16)

and in the following we simplify and/or expand each term in (2.16).

First,

D

Dt

∫
V̄

(x̄xx×ΘĪ(iω̄ωω))ρ̄ dV̄ =
D

Dt

∫
V̄

ΘĪ ρ̄ϵjklx̄j(iωk) dV̄

=
D

Dt

∫
V̄

ΘĪϵjklx̄j(iωk)ρ̄ dV̄

=
D

Dt

∫
V

ΘI0ϵjklxj(iωk)ρ0dV

=

∫
V

ϵjkl
D

Dt

(
ΘI0ρ0xj(iωk)

)
dV (2.17)

Assuming ΘI0 and ρ
0

to be constant

D

Dt

∫
V̄

x̄xx×ΘĪ(iω̄ωω)ρ̄ dV̄ =

∫
V

ϵjkl
ΘI0ρ0

D

Dt
(xj(iωk)) dV

=

∫
V

ΘI0ρ0 ϵjkl

(
vj(iωk) + xj

D(iωk)

Dt

)
dV (2.18)
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Next, we consider the second term on the right side of (2.16)

∫
∂V̄

x̄xx× M̄MM dĀ =

∫
∂V̄

ϵjklx̄jM̄k dĀ (2.19)

Using Cauchy Principle for M̄MM

∫
∂V̄

x̄xx× M̄MM dĀ =

∫
∂V̄

ϵjklx̄jm̄mkn̄m dĀ

Using Divergence Theorem

∫
∂V̄

x̄xx× M̄MM dĀ =

∫
V̄

ϵjkl(x̄jm̄mk),m dV̄

=

∫
V̄

ϵjkl(δjmm̄mk + x̄jm̄mk,m) dV̄

=

∫
V̄

ϵjkl(m̄jk + x̄jm̄mk,m) dV̄

Considering small deformation and small strain (x̄ ≃ x) we can write

∫
∂V̄

x̄xx× M̄MM dĀ =

∫
V

ϵjkl(mjk + xjmmk,m) dV (2.20)

Substituting from (2.18) and (2.20) in (2.16)
(
and changing V̄ to V, x̄xx to xxx and σ̄σσ to σσσ in the first

term on the right side of (2.16)
)

∫
V

ΘI0ρ0 ϵjkl

(
vj(iωk) + xj

D(iωk)

Dt

)
dV =

∫
V

xxx× (ϵϵϵ ::: σσσ) dV

+

∫
V

ϵjkl(mjk + xjmmk,m) dV (2.21)
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We note that

mmk,m =∇∇∇···mmm

ϵjkl(xjmmk,m) = xxx×∇∇∇···mmm

ΘI0ρ0 ϵjklxj
D(iωk)

Dt
= ΘI0ρ0 xxx×D(iωωω)

Dt

(2.22)

Using (2.22) in (2.21)

∫
V

ΘI0ρ0 ϵjklvj(iωk) dV +

∫
V

xxx×
(

ΘI0ρ0
D(iωωω)

Dt
− ϵϵϵ ::: σσσ −∇∇∇···mmm

)
dV =

∫
V

ϵjklmjk dV (2.23)

Using balance of angular momenta (2.15) in (2.23), we obtain

∫
V

ϵjkl
(
ΘI0ρ0vj(iωk)−mjk

)
dV = 0 (2.24)

Since V is arbitrary, we obtain the following from (2.24)

ϵjkl
(
ΘI0ρ0vj(iωk)−mjk

)
= 0 (2.25)

Equation (2.25) is the final form resulting from the balance of moment of moments balance law.

Remarks

1. We note that with the absence of new physics considered in this paper, i.e., when ΘI0 = 0,

(2.25) reduces to

ϵjklmjk = 0 (2.26)

which is the balance of moment of moments balance law in non-classical theory derived by

Surana et. al in references [87, 95].

2. When ΘI0 is not zero as the case is in the present work, (2.25) yields three equations defining

antisymmetric components of the Cauchy moment tensor in terms of velocities and rotation
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rates (angular velocities) and the properties of the medium.

2.5 First law of thermodynamics

The sum of work and heat added to a deforming volume of matter must result in increase of

the energy of the system. This is expressed as a rate equation in Eulerian description as

DĒt

Dt
=
DQ̄

Dt
+
DW̄

Dt
(2.27)

where Ēt, Q̄, and W̄ are total energy, heat added and work done. These can be written as

DĒt

Dt
=

D

Dt

∫
V̄

ρ̄

(
ē+

1

2
v̄vv ··· v̄vv +

1

2
ΘĪ (iω̄ωω ··· iω̄ωω)− F̄FF b ··· ūuu

)
dV̄ (2.28)

DQ̄

Dt
= −

∫
∂V̄

q̄qq ··· n̄nn dĀ (2.29)

DW̄

Dt
=

∫
∂V̄

(P̄PP ··· v̄vv + M̄MM ··· i
.
Θ̄ΘΘ) dĀ (2.30)

Here ē is specific internal energy, F̄FF b is body force vector per unit mass and q̄qq is rate of heat. The

third term in the integrand is due to additional rate of work due to rotation rates. Note that the

additional term M̄MM ··· i
.
Θ̄ΘΘ in DW̄

Dt
contributes additional rate of work due to rates of internal rotations.

Expanding integrals and following reference [97] one can show that

DĒ

Dt
=
D

Dt

∫
V̄

ρ̄

(
ē +

1

2
v̄vv ··· v̄vv +

1

2
ΘĪ (iω̄ωω ··· iω̄ωω)− F̄FF b ··· ūuu

)
dV̄

=

∫
V

(
ρ
0

De

Dt
+ ρ

0
vvv ··· Dv

vv

Dt
+ ρΘ

0
I0(iωωω) ···

D(iωωω)

Dt
− ρ

0
FFF b ··· vvv

)
dV

(2.31)
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Using

q̄qq ··· n̄nn dĀ = qqq ···nnn dA

ρ̄ dV̄ = ρ
0
dV

dV̄ = |J | dV

(2.32)

and applying the divergence theorem, we obtain

−
∫
∂V̄

q̄qq ··· n̄nn dĀ = −
∫
∂V

qqq ···nnn dA = −
∫
V

∇∇∇··· qqq dV (2.33)

Using Cauchy stress tensor σσσ and Cauchy moment tensor mmm, following reference [97], one can

show that

P̄PP ··· v̄vv dĀ = vvv ··· (σσσ)T ···nnn dA =
(
vvv ··· (σσσ)T

)
··· dAAA (2.34)

M̄MM ··· i

.
Θ̄ΘΘ dĀ =

(
i

.
ΘΘΘ ··· (mmm)T

)
···nnn dA =

(
i

.
ΘΘΘ ··· (mmm)T

)
··· dAAA (2.35)

Thus, we can write the following for (2.27)

∫
V

(
ρ
0

De

Dt
+ ρ

0
vvv ···Dv

vv

Dt
+ ρΘ

0
I0(iωωω) ···

D(iωωω)

Dt
− ρ

0
FFF b ··· vvv

)
dV

= −
∫
V

∇∇∇··· qqq dV +

∫
∂V

(
vvv ··· (σσσ)T

)
··· dAAA+

∫
∂V

(
i

.
ΘΘΘ ··· (mmm)T

)
··· dAAA

= −
∫
V

∇∇∇··· qqq dV +

∫
V

∇∇∇···
(
vvv ··· (σσσ)T

)
dV +

∫
V

∇∇∇···
(
i

.
ΘΘΘ ··· (mmm)T

)
dV

(2.36)

Following reference [97], we can also show that

∇∇∇···
(
vvv ··· (σσσ)T

)
= vvv ··· (∇∇∇···σσσ) +σσσ ··· (∇∇∇··· vvv) (2.37)

∇∇∇···
(
i

.
ΘΘΘ ··· (mmm)T

)
= i

.
ΘΘΘ ···

(
∇∇∇···mmm

)
+mmm ···

(
∇∇∇··· i

.
ΘΘΘ
)

(2.38)
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Substituting (2.37) and (2.38) in (2.36)

∫
V

(
ρ
0

De

Dt
+ ρ

0
vvv ··· Dv

vv

Dt
+ ρΘ

0
I0(iωωω) ···

D(iωωω)

Dt
− ρ

0
FFF b ··· vvv

)
dV

= −
∫
V

∇∇∇··· qqq dV +

∫
V

(
vvv ···
(
∇∇∇···σσσ

)
+ σji

∂vi
∂xj

+ i

.
ΘΘΘ ···

(
∇∇∇···mmm

)
+mkj

∂(i
.
Θj)

∂xk

)
dV (2.39)

or

∫
V

vvv ··· (ρ
0

Dvvv

Dt
− ρ

0
FFF b −∇∇∇···σσσ) dV +

∫
V

(
ρ
0

De

Dt
+∇∇∇··· qqq

+ ρΘ
0
I0(iωωω) ···

D(iωωω)

Dt
− σji

∂vi
∂xj

−mkj
∂(i

.
Θj)

∂xk
− i

.
ΘΘΘ ··· (∇∇∇···mmmmmmmmm)

)
dV = 0 (2.40)

Using balance of linear momenta, (2.40) reduces to

∫
V

(
ρ
0

De

Dt
+∇∇∇··· qqq

+ ρΘ
0
I0(iωωω) ···

D(iωωω)

Dt
− σji

∂vi
∂xj

−mkj
∂(i

.
Θj)

∂xk
− i

.
ΘΘΘ ···

(
∇∇∇···mmm)

)
dV = 0 (2.41)

Since volume V is arbitrary, the following holds:

ρ
0

De

Dt
+∇∇∇··· qqq + ρΘ

0
I0(iωωω) ···

D(iωωω)

Dt
− σji

∂vi
∂xj

−mkj
∂(i

.
Θj)

∂xk
− i

.
ΘΘΘ ···

(
∇∇∇···mmm) = 0 (2.42)

The first law of thermodynamics given by (2.42) can be further simplified as shown below.

First we note that

σji
∂vi
∂xj

= tr([σ][L]) = σσσ ::: LLL

mjk
∂(i

.
Θj)

∂xk
= tr([m][iΘ

.
J ]) =mmm ::: iΘ

.
JJJ

(2.43)
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Furthermore

LLL =DDD +WWW =
.
εεε+ a

.
JJJ

iΘ
.
JJJ = iΘ

s

.
JJJ + iΘ

a

.
JJJ

(2.44)

Consider decomposition of Cauchy stress and Cauchy moment tensor into symmetric and antisym-

metric components

σσσ = sσσσ + aσσσ

mmm = smmm+ ammm

(2.45)

Using (2.44) and (2.45) in (2.43)

σσσ ::: LLL = sσσσ :::
.
εεε+ aσσσ ::: a

.
JJJ

mmm ::: iΘ
.
JJJ = smmm ::: iΘ

s

.
JJJ + ammm ::: iΘ

a

.
JJJ

(2.46)

Also from balance of angular momenta (2.15)

ΘI0ρ0
D(iωωω)

Dt
− ϵijkσij = mmk,m =∇∇∇···mmm (2.47)

hence

i

.
ΘΘΘ ··· (∇∇∇···mmm) = ΘI0ρ0

(
i

.
ΘΘΘ ··· D(iωωω)

Dt

)
− i

.
ΘΘΘ ··· (ϵϵϵ ::: σσσ) (2.48)

and since

i

.
ΘΘΘ = iωωω

ϵijk = ϵϵϵ

i

.
ΘΘΘ ··· (ϵϵϵ : σσσ) = aσσσ ::: a

.
JJJ

(2.49)
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Using (2.46), (2.48) and (2.49) we can write (2.42) as

ρ
0

De

Dt
+∇∇∇··· qqq − sσσσ :::

.
εεε− smmm ::: iΘ

s

.
JJJ − ammm ::: iΘ

a

.
JJJ = 0 (2.50)

Remarks

1. Equations (2.50) is the final form of the first law of thermodynamics (energy equation) for

the physics considered in this work.

2. For the non-classical continuum theory in references [87, 95] that only considers internal

rotations and ΘI0 = 0 : (i) the last term in (2.50) obviously becomes zero as ΘI0 = 0 (ii) the

fifth term in (2.50) also becomes zero due to the fact that balance of moment of moments in

this case yields ϵijkmij = 0 implying thatmmmT =mmm, hence ammm = 0.

2.6 Second law of thermodynamics

If η̄ is the entropy density in volume V̄ , h̄ is the entropy flux between V̄ and the volume of

matter surrounding it, and s̄ is the source of entropy in V̄ due to non-contacting bodies, then the

rate of increase of entropy in volume V̄ is at least equal to that supplied to V̄ from all contacting

and non-contacting sources [97]. Thus

D

Dt

∫
V̄

η̄ρ̄ dV̄ ≥
∫
∂V̄

h̄ dĀ+

∫
V̄

s̄ρ̄ dV̄ (2.51)

Using Cauchy’s postulate for h̄

h̄ = −ψ̄ψψ ··· n̄nn (2.52)

Using (2.52) in (2.51)
D

Dt

∫
V̄

η̄ρ̄ dV̄ ≥ −
∫
∂V̄

ψ̄ψψ ··· n̄nn dĀ+

∫
V̄

s̄ρ̄ dV̄ (2.53)
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Inequality (2.53) needs to be transformed to Lagrangian description. This can be done using

dV̄ = |J |dV

ρ
0
= |J |ρ

ψ̄ψψ ··· n̄nn dĀ = ψψψ ···nnn dA

(2.54)

Using (2.54) in (2.53)
D

Dt

∫
V

ηρ
0
dV ≥ −

∫
∂V

ψψψ ···nnn dA+

∫
V

sρ
0
dV (2.55)

Using Gauss’s divergence theorem for the terms over ∂V gives (noting that ψψψ is a tensor of rank

one)
D

Dt

∫
V

ηρ
0
dV ≥ −

∫
V

∇∇∇···ψψψ dV +

∫
V

sρ
0
dV (2.56)

or ∫
V

(
ρ
0

Dη

Dt
+∇∇∇···ψψψ − ρ

0
s

)
dV ≥ 0 (2.57)

and since volume V is arbitrary

ρ
0

Dη

Dt
+∇∇∇···ψψψ − ρ

0
s ≥ 0 (2.58)

Inequality (2.58) is the entropy inequality and is the most fundamental form resulting from the sec-

ond law of thermodynamics (Clausius Duhem inequality). Inequality (2.58) is strictly a statement

that contains entropy terms and hence contains no information regarding reversible deformation

processes such as in case of elastic solids. Thus, it provides no information or mechanisms for

deriving the constitutive theories for such solids. Only when the mechanical rate of work results in

rate of entropy production will inequality (2.58) have some information regarding the associated

conjugate pairs that result in rate of entropy production. One can also note that (2.58) in its present

form does not provide any information regarding constitutive theory for heat vector qqq.
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Another form of the entropy inequality is possible using a relationship betweenψψψ andqqq and the

energy equation. Since the energy equation has all possible mechanisms that result in energy stor-

age and dissipation, the form of entropy inequality derived using the energy equation is expected

to be helpful in the derivations of constitutive theories. Using

ψψψ =
qqq

θ
, s =

r

θ
(2.59)

where θ is absolute temperature, qqq is heat vector and r is a suitable potential, then

∇∇∇···ψψψ = ψi,i =
qi,i
θ

− qiθ,i
θ2

=
qi,i
θ

− qigi
θ2

=
∇∇∇··· qqq
θ

− q
qq ··· ggg
θ2

(2.60)

Substituting from (2.60) into (2.58) and multiplying throughout by θ yields

ρ
0
θ
Dη

Dt
+
(
∇∇∇··· qqq − ρ

0
r
)
− q
qq ··· ggg
θ

≥ 0 (2.61)

From the energy equation (2.50) (after inserting ρ
0
r term)

∇∇∇··· qqq − ρ
0
r = −ρ

0

De

Dt
+ sσσσ :::

.
εεε+ smmm ::: iΘ

s

.
JJJ + ammm ::: iΘ

a

.
JJJ (2.62)

Substituting from (2.62) into (2.61), using Φ = e− ηθ and regrouping terms

ρ
0

(
DΦ

Dt
+ η

Dθ

Dt

)
+
qqq ··· ggg
θ

− sσσσ :::
.
εεε− smmm ::: iΘ

s

.
JJJ − ammm ::: iΘ

a

.
JJJ ≤ 0 (2.63)

Equation (2.63) is the final form of the second law of thermodynamics.

2.7 Mathematical model consisting of CBL of NCCM for solids

The equations resulting from the conservation of mass (CM), balance of linear momenta (BLM),

balance of angular momenta (BAM), balance of moment of moments (BMM), first law of thermo-

dynamics (FLT) and the second law of thermodynamics (SLT) are summarized in the following.

21



Using vi = Dui

Dt
and iωk =

D(iΘk)
Dt

have

Dvi
Dt

=
D2ui
Dt2

;
D(iωk)

Dt
=
D2(iΘk)

Dt2
(2.64)

ρ
0
(xxx) = |J |ρ(xxx, t) (CM) (2.65)

ρ
0

D2uk
Dt2

− ρ
0
Fk

b − ∂σjk
∂xj

= 0 (BLM) (2.66)

ΘI0ρ0
D2(iΘk)

Dt2
− ϵijkσij −

∂mjk

∂xj
= 0 (BAM) (2.67)

ϵjkl
(
ΘI0ρ0vj(iωk)−mjk

)
= 0 (BMM) (2.68)

ρ
0

De

Dt
+
∂qi
∂xi

− tr([sσ][
.
ε])− tr([sm][iΘs

.
J ])− tr([am][iΘa

.
J ]) = 0 (FLT) (2.69)

ρ
0

(
DΦ

Dt
+ η

Dθ

Dt

)
+
qi···gi
θ

− tr([sσ][
.
ε])− tr([sm][iΘs

.
J ])− tr([am][iΘa

.
J ]) ≤ 0 (SLT) (2.70)

Remarks

1. This mathematical model consists of ten equations: BLM(3), BAM(3), BMM(3), FLT(1) in

25 dependent variables uuu(3), σσσ(9),mmm(9), qqq(3), θ(1). Thus we need additional fifteen equa-

tions for this mathematical model to have closure. These additional equations are obtained

from the derivations of the constitutive theories.

2. We shall see that Φ, η and e are not dependent variables in the mathematical model as they

can be expressed as functions of the other dependent variables in item (1).

3. From the entropy inequality we can conclude the following

(a) From the term qqq···ggg
θ

, qigi is a conjugate pair.

(b) The term tr([sσ][
.
ε]) suggests that [sσ] and [

.
ε] are rate of work (mechanical) conjugate

pair. This is obviously due to classical mechanics.

(c) The term tr([sm][iΘs
.
J ]) suggests [sm] and [iΘs

.
J ] are also rate of work conjugate pair. This

is due to the contribution of non-classical mechanics based on internal rotations.
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(d) From the term tr([am][iΘa
.
J ]) it can also be concluded that ammm, iΘ

a

.
JJJ are a rate of work

(mechanical) conjugate. However, based on Surana et. al [96], in the non-classical

mechanics theories the constitutive theory for ammm (when ammm is a possible choice of

constitutive variable) leads to deformation physics that is non-physical. In [96] authors

present derivation of constitutive theory for ammm (in the absence of BMM balance law)

as well as model problem studies to substantiate this issue. Hence, [am], [iΘa
.
J ] is not con-

jugate pair, therefore ammm is not a constitutive variable, thus we do not have constitutive

theory for ammm. Therefore tr([am][iΘa
.
J ]) = 0 must be used as a constraint equation.

4. From remark 3 we can conclude that it is possible to obtain the following additional equa-

tions through constitutive theories

(i) constitutive theories for sσσσ (6)

(ii) constitutive theories for smmm (6)

(iii) constitutive theories for qqq (3)

This provides us with additional fifteen equations needed to provide closure to the mathe-

matical model consisting of (2.65) - (2.70)

5. In the present work, we only consider small strain, small deformation physics. Thus, density

is constant and the conservation of mass is not part of the final mathematical model.

6. We remark that even in finite deformation case when using Lagrangian description, density

can always be determined using ρ
0

and |J | once the deformation is known. Hence, this is a

post processing operation. For this reason, even in this case, ρ is not a dependent variable in

the mathematical model in Lagrangian description. This eliminates (2.65) as part of the final

mathematical model.
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2.8 Constitutive theories

In this section, we present constitutive theories for thermoelastic solids without memory. We

consider small deformation, small strain physics as considered in the conservation and balance

laws. In the derivation of constitutive theories, we begin with entropy inequality. Conjugate pairs

in the entropy inequality (2.70) facilitate the initial choice of constitutive variables. First, we must

perform additive decomposition of sσσσ into e
sσσσ, equilibrium Cauchy stress tensor and d

sσσσ, devia-

toric Cauchy stress tensor. Mutually exclusive volumetric and distortional deformation physics are

addressed by the constitutive theories for e
sσσσ and d

sσσσ.

sσσσ = e
sσσσ + d

sσσσ (2.71)

Substituting (2.71) into (2.70), we obtain

ρ
0

(
DΦ

Dt
+ η

Dθ

Dt

)
+
qqq ··· ggg
θ

− e
sσσσ :::

.
εεε− d

sσσσ :::
.
εεε− smmm ::: iΘ

s

.
JJJ − ammm ::: iΘ

a

.
JJJ ≤ 0 (2.72)

It is well known [97] that constitutive theory for e
sσσσ can not be derived using entropy inequality in

Lagrangian description. Thus, we must consider (2.72) in Eulerian description. Using contravari-

ant Cauchy stress measures σ̄σσ(0) and m̄mm(0) we can write

ρ̄

(
DΦ̄

Dt
+ η̄

Dθ̄

Dt

)
+
q̄qq ··· ḡgg
θ̄

− e
sσ̄σσ

(0) ::: D̄DD − d
sσ̄σσ

(0) ::: D̄DD

− sm̄mm
(0) :::

r
iΘ
s J̄JJ − am̄mm

(0) :::
r
iΘ
a J̄JJ ≤ 0

(2.73)

From (2.73) we can write

e
sσ̄σσ

(0) = e
sσ̄σσ

(0)
(
ρ̄, θ̄
)

(2.74)

d
sσ̄σσ

(0) = d
sσ̄σσ

(0)
(
ρ̄,D̄DD, θ̄

)
(2.75)

sm̄mm
(0) = sm̄mm

(0)
(
ρ̄,

r
iΘ
s J̄JJ , θ̄

)
(2.76)
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q̄qq = q̄qq
(
ρ̄, ḡgg, θ̄

)
(2.77)

Φ̄ = Φ̄
(
ρ̄, ḡgg,D̄DD,

r
iΘ
s J̄JJ , θ̄

)
(2.78)

η̄ = η̄
(
ρ̄, ḡgg,D̄DD,

r
iΘ
s J̄JJ , θ̄

)
(2.79)

using (2.78) we can obtain DΦ̄
Dt

DΦ̄

Dt
=
∂Φ̄

∂ρ̄

.
ρ̄+

∂Φ̄

∂D̄DD
:::

.
D̄DD +

∂Φ̄

∂(
r
iΘ
s J̄JJ)

::: (
r
iΘ
s

.
J̄JJ) +

∂Φ̄

∂ḡgg
···

.
ḡgg +

∂Φ̄

∂θ̄

.
θ̄ (2.80)

using (2.80) in (2.73) and using
.
Φ̄ = ρ̄

∂Φ̄

∂ρ̄

(
−δδδ ::: D̄DD

)
from continuity equation, we have by regrouping terms and setting coefficients of

.
D̄DD,

r
iΘ
s

.
J̄JJ ,

.
ḡgg and

.
θ̄ to zero (implying that (2.80) is satisfied for arbitrary but admissible choices of

.
D̄DD,

r
iΘ
s

.
J̄JJ ,

.
ḡgg and

.
θ̄)

(
−ρ̄2∂Φ̄

∂ρ̄
δδδ − e

sσ̄σσ
(0)

)
::: D̄DD +

q̄qq ··· ḡgg
θ̄

− d
sσ̄σσ

(0) ::: D̄DD − sm̄mm
(0) :::

r
iΘ
s J̄JJ − am̄mm

(0) :::
r
iΘ
a J̄JJ ≤ 0 (2.81)

setting coefficient of D̄DD in the first term to zero gives

e
sσ̄σσ

(0) = −ρ̄2∂Φ̄
∂ρ̄
δδδ = p̄

(
ρ̄, θ̄
)
δδδ; p̄(ρ̄, θ̄) = −ρ̄2∂Φ̄

∂ρ̄
(2.82)

Equation (2.82) is the constitutive theory for e
sσ̄σσ

(0) for compressible matter. Using (2.82), (2.81)

reduces to
q̄qq ··· ḡgg
θ̄

− d
sσ̄σσ

(0) ::: D̄DD − sm̄mm
(0) :::

r
iΘ
s J̄JJ − am̄mm

(0) :::
r
iΘ
a J̄JJ ≤ 0 (2.83)

The constitutive theory for incompressible case is derived by introducing incompressibility condi-

tion

p̄(θ̄)δδδ ::: D̄DD = 0 (2.84)
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in (2.84) we obtain

e
sσ̄σσ

(0) = p̄(θ̄)δδδ (2.85)

and (2.86) reduces to

q̄qq ··· ḡgg
θ̄

− d
sσ̄σσ

(0) ::: D̄DD − sm̄mm
(0) :::

r
iΘ
s J̄JJ − am̄mm

(0) :::
r
iΘ
a J̄JJ ≤ 0 (2.86)

constitutive theories (2.82) and (2.85) in Lagrangian description can be written as

e
sσσσ = p(ρ, θ)δδδ ; p(ρ, θ) is thermodynamic pressure (2.87)

for the compressible case and for the incompressible case we have

e
sσσσ = p(θ)δδδ ; p(θ) is thermodynamic pressure (2.88)

The Lagrangian form of (2.86) can be written as

qqq ··· ggg
θ

− d
sσσσ :::

.
εεε− smmm ::: iΘ

s

.
JJJ − ammm ::: iΘ

a

.
JJJ ≤ 0 (2.89)

Conjugate pairs in the entropy inequality suggest (for thermoviscous elastic physics without mem-

ory)

d
sσσσ = d

sσσσ (εεε, θ) ; in the absence of dissipation (2.90)

d
sσσσ = d

sσσσ
(
εεε,

.
εεε, θ
)

; in the presence of dissipation (2.91)

smmm = smmm
(
iΘ
sJJJ , θ

)
; in the absence of dissipation (2.92)

smmm = smmm
(

iΘ
sJJJ ,

iΘ
s

.
JJJ , θ

)
; in the presence of dissipation (2.93)

qqq = qqq (ggg, θ) (2.94)
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2.8.1 Constitutive theory for d
sσσσ using representation theorem

In this section, we derive constitutive theories for d
sσσσ based on (2.90) using representation the-

orem [8,62,69–71,73–77,99–103,107,108] in the absence of dissipation. Since d
sσσσ is a symmetric

tensor of rank two, integrity based on the combined generators (symmetric tensors of rank two) of

[ε] and θ (symmetric tensor of rank two and tensor of rank zero) consists of tensors [I], [ε] and [ε]2.

Thus, we can represent [dsσ] by a linear combination of the combined generators.

[dsσ] =
σα˜0[I] + σα˜1[ε] + σα˜2[ε]2 (2.95)

in which

σα˜i = σα˜i(Iε, IIε, IIIε, θ); i = 0, 1, 2 (2.96)

We introduce new notations in (2.95) and (2.96) to facilitate the subsequent details of the

derivation. We define [σG˜ 1] = [ε], [σG˜ 2] = [ε]2, i.e., [σG˜ i]; i = 1, 2, · · ·, N(N = 2) as the com-

bined generators due to argument tensors [ε] and θ and σI˜1 = Iε, σI˜2 = IIε, σI˜3 = IIIε i.e., σI˜j;
j = 1, 2, ···,M(M = 3) as the combined invariants of the same argument tensors.

Then, (2.95) and (2.96) can be written as

[dsσ] =
σα˜0[I] +

N∑
i=1

σα˜i[σG˜ i] (2.97)

σα˜i = σα˜i (σI˜j, θ) ; i = 1, 2, ···, N ; j = 1, 2, ···,M (2.98)

The material coefficients in the constitutive theory for [dsσ] are determined by considering Tay-

lor series expansion of σα˜i; i = 0, 1, ···, N in σI˜j; j = 1, 2, ···,M and θ about a known configuration

Ω and retaining only up to linear terms in σI˜j; j = 1, 2, ···,M and θ.
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σα˜i = σα˜i∣∣Ω +
M∑
j=1

∂σα˜i
∂σI˜j

∣∣∣∣
Ω

(
σI˜j − σI˜j∣∣Ω

)
+
∂σα˜i
∂θ

∣∣∣∣
Ω

(
θ − θ|

Ω

)
[I]; i = 0, 1, ···, N (2.99)

Substituting (2.99) in (2.97), collecting coefficients of the terms defined in the current config-

uration and introducing new notations for the coefficients, we can obtain

[dsσ] = σ˜0∣∣Ω [I] +
M∑
j=1

σa˜jσI˜j[I] +
N∑
i=1

σb˜i[σG˜ i] +
N∑
i=1

M∑
j=1

σc˜ijσI˜j[σG˜ i]

−
N∑
i=1

σd˜i
(
θ − θ|

Ω

)
[σG˜ i]− αtm

(
θ − θ|

Ω

)
[I]

(2.100)

Coefficients σa˜j , σb˜j , σc˜ij , σd˜i, αtm; i = 1, 2, · · ·, N ; j = 1, 2, · · ·,M are functions of σI˜j∣∣Ω and

θ|
Ω
j = 1, 2, ···,M . These are the material coefficients.

Remarks

1. This constitutive theory contains (N = 2, M = 3) fourteen material coefficients and con-

tains up to fifth degree terms in the components of [ε], but is linear in temperature θ.

2. A linear constitutive theory in which the products of σI˜j , [σG˜ i] and
(
θ − θ|

Ω

)
are neglected

and only up to linear terms in [ε] are retained is given by

[dsσ] = σ˜0∣∣Ω [I] + σa˜1σI˜1[I] + σb˜1[σG˜ 1]− αtm|Ω
(
θ − θ|

Ω

)
[I] (2.101)

Using the notation σb˜1 = 2 µ|
Ω

, σa˜1 = λ|
Ω

and using σI˜1 = tr[ε], [σG˜ 1] = [ε]. We can write

(2.101) as

[dsσ] = σ˜0∣∣Ω [I] + 2 µ|
Ω
[ε] + λ|

Ω
(tr[ε])[I]− αtm|Ω

(
θ − θ|

Ω

)
[I] (2.102)
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This is Hooke’s Law in which µ and λ are Lame’s constants defined in a known configuration

Ω.

3. In the presence of dissipation dependent on strain rate tensor (
.
εεε), the constitutive theory for

d
sσσσ changes to

[dsσ] = σ˜0∣∣Ω [I] + 2 µ|
Ω
[ε]+ λ|

Ω
(tr[ε])[I] + 2 η|

Ω
[ε̇]

+ κ|
Ω
(tr[ε̇])[I]− αtm|Ω

(
θ − θ|

Ω

)
[I]

(2.103)

2.8.2 Constitutive theory for smmm using representation theorem

We consider constitutive theory for smmm using (2.92) in the absence of dissipation. This deriva-

tion is exactly the same as for d
sσσσ. Based on representation theorem [8, 62, 69–71, 73–77, 99–103,

107, 108], we begin with

[sm] = mα˜0[I] +
N∑
i=1

mα˜i[mG˜ i] (2.104)

mα˜i = mα˜i (mI˜j, θ) ; i = 1, 2, ···, N ; j = 1, 2, ···,M (2.105)

in which

[mG˜ 1] = [iΘsJ ] , [
mG˜ 2] = [iΘsJ ]

2 ; [mG˜ i] ; i = 1, 2, ···, N ; N = 2

mI˜1 = I
(i
Θ
sJ)

, mI˜2 = II
(i
Θ
sJ)

, mI˜3 = III
(i
Θ
sJ)

; [mI˜j] ; j = 1, 2, ···,M ; M = 3

(2.106)

Material coefficients in (2.104) are determined using Taylor series expansion of mα˜i; i = 0, 1, 2

in mI˜j; j = 1, 2, ···,M and θ about a known configuration Ω and retaining only up to linear terms

in mI˜j; j = 1, 2, ···,M and θ (for simplicity).
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mα˜i = mα˜i∣∣Ω +
M∑
j=1

∂mα˜i
∂mI˜j

∣∣∣∣
Ω

(
mI˜j − mI˜j∣∣Ω

)
+
∂mα˜i
∂θ

∣∣∣∣
Ω

(
θ − θ|

Ω

)
[I]; i = 0, 1, 2 (2.107)

Substituting (2.107) in (2.104), collecting coefficients of the terms defined in the current con-

figuration and introducing new notations for the coefficients, we can write

[sm] =m˜ 0[I] +
M∑
j=1

ma˜jmI˜j[I] +
N∑
i=1

mb˜i[mG˜ i] +
N∑
i=1

M∑
j=1

mc˜ijmI˜j[mG˜ i]

−
N∑
i=1

md˜i
(
θ − θ|

Ω

)
[mG˜ i]− mαtm

(
θ − θ|

Ω

)
[I]

(2.108)

Coefficients ma˜j , mb˜i, mc˜ij , md˜i, mαtm are material coefficients that can be functions of mI˜j∣∣Ω
and θ|

Ω
.

Remarks

1. This constitutive theory also contains (N = 2, M = 3) fourteen material coefficients and

contains up to fifth degree terms in the components of [iΘsJ ], but is linear in θ.

2. A linear constitutive theory in which the products of mI˜j , [mG˜ i] and
(
θ − θ|

Ω

)
are neglected

and only up to linear terms in [iΘsJ ] are retained is given by

[sm] = m˜ 0
∣∣
Ω
[I] + ma˜1mI˜1[I] + mb˜1[iΘsJ ]− mαtm|Ω

(
θ − θ|

Ω

)
[I] (2.109)

Using the notation mb˜1 = 2µm and noting that mI˜1 = tr[iΘsJ ] = 0, we can write the following

from (2.109)

[sm] = m˜ 0
∣∣
Ω
[I] + 2µm[i

Θ
sJ ]− mαtm|Ω

(
θ − θ|

Ω

)
[I] (2.110)

A further simplified theory in which the first and the last term in (2.110) are neglected is
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given by

[sm] = 2µm[i
Θ
sJ ] (2.111)

in which the material coefficient 2µm can be dependent on the invariant of [iΘsJ ] and θ in a

known configuration Ω.

µm = µm

(
I
(i
Θ
sJ)

∣∣∣
Ω

, II
(i
Θ
sJ)

∣∣∣
Ω

, III
(i
Θ
sJ)

∣∣∣
Ω

, θ|
Ω

)
(2.112)

3. In the presence of dissipation dependent on the rate of symmetric part of the internal rotation

gradient tensor (iΘs
.
JJJ ), the constitutive theory for smmm changes to

[sm] = 2µm[i
Θ
sJ ] + 2ηm[i

Θ
s

.
J ] (2.113)

2.8.3 Constitutive theory for qqq

We considerqqq = qqq(ggg, θ) and use representation theorem [8,62,69–71,73–77,99–103,107,108].

The only tensor of rank one from the combined generators of the argument tensors ggg and θ is just

ggg and the combined invariant is ggg · ggg (or qI). Thus, we can write based on [97]

{q} = −qα{q} (2.114)

in which qα˜ = qα˜ (qI, θ).
Material coefficients in the constitutive theory for qqq given by (2.114) are obtained by considering

Taylor series expansion of qα˜ in qI and θ about a known configuration Ω and retaining up to linear

terms in qI and θ (for simplicity).

qα˜ = qα˜ ∣∣Ω +
∂(qα)

∂(qI)

∣∣∣∣
Ω

(
qI − qI|

Ω

)
+
∂(qα)

∂θ

∣∣∣∣
Ω

(
θ − θ|

Ω

)
(2.115)
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Substituting (2.115) in (2.114) and collecting coefficients gives

{q} = −k1|Ω {g} −k2|Ω ({g}T{g}){g} −k3|Ω
(
θ − θ|

Ω

)
{g} (2.116)

This constitutive theory is based on integrity, hence uses complete basis. From (2.116) we can

derive a linear constitutive theory for {q}.

{q} = −k1|Ω {g} (2.117)

The material coefficients k1, k2 and k3 are in a known configuration Ω and can be functions of qI ,

i.e., {g}T{g} and temperature θ in Ω.

2.9 Complete mathematical model resulting from NCCM for solids

In the following, we present the complete mathematical model consisting of CBL (2.66)-(2.69)

and the constitutive theories (2.103), (2.113) and (2.117). For small strain, small deformation

physics the CBL and constitutive theories with dissipation due to rate of strain (CCM) and rate of

symmetric part of rotation gradient tensor (micropolar NCCT) are given by

ρ
0

D2uk
Dt2

− ρ
0
Fk

b − ∂σjk
∂xj

= 0 (BLM) (2.118)

ΘI0ρ0
D2(iΘk)

Dt2
− ϵijkσij −

∂mjk

∂xj
= 0 (BAM) (2.119)

ϵjkl
(
ΘI0ρ0vj(iωk)−mjk

)
= 0 (BMM) (2.120)

ρ
0

De

Dt
+
∂qi
∂xi

− tr([sσ][
.
ε])− tr([sm][iΘs

.
J ])− tr([am][iΘa

.
J ]) = 0 (FLT) (2.121)

Additive decomposition ofσσσ : σσσ = sσσσ + aσσσ ; sσσσ = d
sσσσ + e

sσσσ (2.122)
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d
sσσσ = σ0|Ω III + 2µεεε+ λ (tr(εεε))III + 2η

.
εεε+ κtr(

.
εεε)III (2.123)

smmm = 2µm

(
iΘ
sJJJ
)
+ 2ηm

(
iΘ
s

.
JJJ
)

(2.124)

qqq = −kggg (2.125)

In the mathematical model we have a total of 25 equations BLM(3), BAM(3), BMM(3), FLT(1),

constitutive theories for d
sσσσ(6), smmm(6), qqq(3) in a total of 25 dependent variables uuu(3), d

sσσσ(6),

aσσσ(3), smmm(6), ammm(3), qqq(3), θ(1) hence the model has closure. The last term in the entropy

inequality
qqq ··· ggg
θ

− d
sσσσ :::

.
εεε− smmm ::: iΘ

s

.
JJJ − ammm ::: iΘ

a

.
JJJ ≤ 0 (2.126)

must be set to zero to ensure that (2.126) is always satisfied. Then, in addition to (2.118)-(2.125)

we must also satisfy

ammm ::: iΘ
a

.
JJJ = 0 (2.127)

Hence equation (2.127) serves as a constraint on the mathematical model that must be satisfied

to guarantee that the entropy inequality is not violated. The final mathematical model consists of

equations (2.118)-(2.125), (2.127).
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Chapter 3

Conservation and balance laws for micropolar fluids

In this chapter, we present the CBL and constitutive theories for micropolar NCCT based on

internal or classical rotation rates r
i Θ̄ in Eulerian description in which rotational inertial physics is

considered.

3.1 Conservation of mass

The continuity equation resulting from the principle of conservation of mass remains the same

in micropolar NCCT considered here as in case of CCT. The differential form of the continuity

equation in Eulerian description for a compressible fluid is given by [97, 98]

∂ρ̄

∂t
+ ∇̄∇∇ ··· (ρ̄v̄vv) = 0 or

Dρ̄

Dt
+ ρ̄ div(v̄vv) = 0 (3.1)

For incompressible matter ρ
0
= ρ̄; hence (3.1) reduces to

div(v̄vv) = 0 (3.2)

3.2 Balance of linear momenta

Balance of linear momenta in micropolar NCCT also remains the same as in CCT. We have

the following equations for BLM in Eulerian description where (0)σ̄σσ is basis independent Cauchy
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stress tensor [97, 98].

ρ̄
Dv̄vv

Dt
− ρ̄F̄FF

b − ∇̄∇∇ ···
(
(0)σ̄σσ

)
= 0 or ρ̄

∂v̄i
∂t

+ ρ̄v̄j
∂v̄i
∂x̄j

− ρ̄F̄ b
i −

∂
(
(0)σ̄ji

)
∂x̄j

= 0 (3.3)

in which F̄FF b is body force per unit mass.

3.3 Balance of angular momenta

The principle of balance of angular momenta for non-classical continuum mechanics (NCCM)

incorporating internal rotation rates, their spatial and temporal derivatives and inertial effects can

be stated as: The time rate of change of moment of moments is equal to the sum of moments of the

forces and the moments in the current configuration at any time t. Let ΘĪ be the rotational inertia

per unit mass of the deforming fluent continua then ΘĪ ρ̄(iω̄ωω)dV̄ is the angular momenta per unit

mass of the fluent continua for the elemental volume dV̄ due to ΘĪ and angular velocity iω̄ωω. The

moment of linear momenta for the same volume dV̄ is x̄xx× ρ̄v̄dV̄ . Then, according to this balance

law:

rate of change of angular momenta = (moments due to P̄ + M̄)

+ moments of the body forces ρ̄F̄FF bacting on dV̄

Thus, for the deformed volume V̄ bounded by ∂V̄ we can write:

D

Dt

∫
V̄

(
ΘĪ(iω̄ωω)ρ̄+ x̄xx× ρv̄vv

)
dV̄ =

∫
∂V̄

(
x̄xx× P̄PP + M̄MM

)
dĀ

+

∫
V̄

(
x̄xx× ρ̄F̄FF

b
)
dV̄

(3.4)
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We consider each term of (3.4)

D

Dt

∫
V̄

ΘĪ(iω̄ωω)ρ̄ dV̄ =
D

Dt

∫
V

ΘI(iωωω)ρ0 dV

=

∫
V

D

Dt

(
ΘI(iωωω)

)
ρ
0
dV

=

∫
V̄

D

Dt

(
ΘĪ(iω̄ωω)

)
ρ̄ dV̄

(3.5)

if ΘĪ is constant, then (3.5) reduces to

D

Dt

∫
V̄

ΘĪ(iω̄ωω)ρ̄ dV̄ =

∫
V̄

ΘĪ ρ̄
D

Dt
(iω̄ωω)dV̄ (3.6)

and
D

Dt

∫
V̄

x̄xx× ρv̄vvdV̄ =
D

Dt

∫
V̄

ϵijkx̄iv̄j ρ̄dV̄

=
D

Dt

∫
V

ϵijkxivjρ0dV

=

∫
V̄

D

Dt
(ϵijkx̄iv̄j) ρ̄dV̄

=

∫
V̄

ϵijk

(
v̄iv̄j + x̄i

Dv̄j
Dt

)
ρ̄dV̄

(3.7)

since ϵijkv̄iv̄j = 0, (3.7) reduces to

D

Dt

∫
V̄

x̄xx× ρv̄vvdV̄ =

∫
V̄

ϵijkx̄i
Dv̄j
Dt

dV̄ (3.8)

and ∫
∂V̄

(
x̄xx× P̄PP + M̄MM

)
dĀ =

∫
∂V̄

(
x̄xx×(0) σ̄σσT ··· n̄nn+ (0)m̄mm

T ··· n̄nn
)
dĀ

=

∫
∂V̄

(
ϵijkx̄i(

(0)σ̄mj)n̄m + (0)m̄mjn̄m

)
dĀ

(3.9)

using Divergence Theorem

∫
∂V̄

(x̄xx× P̄PP + M̄MM)dĀ =

∫
V̄

(
ϵijk(x̄i(

(0)σ̄mj)),m + ((0)m̄mj),m
)
dV̄ (3.10)
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we note the following

ϵijk
(
x̄i(

(0)σ̄mj)
)
,m

= ϵijk
(
δim

(0)σ̄mj + x̄i
(0)σ̄mj,m

)
(3.11)

using (3.11) in (3.10) we can write

∫
∂V̄

(x̄xx× P̄PP + M̄MM)dĀ =

∫
V̄

(
ϵijk(x̄i(

(0)σ̄mj)),m + ((0)m̄mj),m
)
dV̄ (3.12)

and ∫
V̄

x̄xx× F̄FF b
dV̄ =

∫
V̄

ϵijkx̄iF̄
b
j ρ̄dV̄ (3.13)

substituting from (3.6), (3.8), (3.12) and (3.13) in (3.4) and rearranging terms, we obtain

∫
V̄

ΘĪ ρ̄
D

Dt
(iω̄k)dV̄ +

∫
V̄

ϵijkx̄i

(
ρ̄
Dv̄j
Dt

− (0)σ̄mj,m − ρ̄F̄ b
j

)
dV̄

−
∫
V̄

(
ϵijk

(0)σ̄ij +
(0)m̄mk,m

)
dV̄ = 0

(3.14)

The coefficient of ϵijkx̄i in the second term in (3.14) is zero due to balance of linear momenta,

hence (3.14) reduces to

∫
V̄

(
ΘĪ ρ̄

D

Dt
(iω̄k)− ϵijk

(0)σ̄ij − (0)m̄mk,m

)
dV̄ = 0 (3.15)

For isotropic homogeneous matter V̄ is arbitrary hence we can obtain differential form of (3.15)

ΘĪ ρ̄
D

Dt
(iω̄k)− ϵijk

(0)σ̄ij − (0)m̄mk,m = 0 (3.16)

Remarks

1. If we set the first and the last term in (3.16) to zero, then we recover balance of angular

momenta for classical continuum mechanics in Eulerian description.

2. If we set the first term in (3.16) to zero but retain second and third order terms, then we
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have balance of angular momenta for NCCM incorporating internal rotation rates without

the rotational inertial physics.

3. Appearance of the first term in (3.16) is due to consideration of time varying rotation rates

and rotational inertia ΘĪ . This is new physics considered in the present work that neither

appears in CCM nor NCCM published works.

4. Equation (3.16) is the final form of balance of angular momenta.

3.4 Balance of moment of moments

This is a new balance law originally proposed by Yang et. al [104] for NCCM which was

derived based on static considerations (hence cannot be referred to as a balance law). Later, Surana

et. al explained the rationale for this balance law and pointed out that a balance law must be derived

using rate considerations. In references [82, 93, 96] they presented derivation of the “balance of

moment of moments" balance law for NCCM for fluent and solid continua in the presence of

internal rotation rates and internal rotations. In the work presented in this dissertation, the physics

considered is different than in reference [82], hence a rederivation of this balance law is necessary.

According to this balance law the rate of change of moment of angular momenta due to rotation

rates in a deformed volume V̄ must be equal to the sum of the moment of moments due to the

antisymmetric components of the Cauchy stress tensor over the same deformed volume V̄ and the

moment of M̄MM acting on boundary ∂V̄ of V̄ .

D

Dt

∫
V̄

x̄xx×Θ Ī(iω̄ωω)ρ̄ dV̄ =

∫
V̄

x̄xx× (ϵϵϵ ::: (0)σ̄σσ) dV̄ +

∫
∂V̄

x̄xx× M̄MM dĀ (3.17)
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we expand each term of (3.17) in the following

D

Dt

∫
V̄

x̄xx×Θ Ī(iω̄ωω)ρ̄ dV̄ =
D

Dt

∫
V̄

ΘĪ ϵjklx̄j(iω̄k)ρ̄ dV̄

=
D

Dt

∫
V

ΘI ϵjklxj(iωk) ρ0 dV

=

∫
V̄

D

Dt

(
ΘĪ ϵjklx̄j(iω̄k)ρ̄

)
dV̄ (3.18)

Assuming ΘĪ to be constant

D

Dt

∫
V̄

x̄xx×Θ Ī(iω̄ωω)ρ̄ dV̄ =

∫
V̄

ΘĪϵjkl

(
v̄j(iω̄k) + x̄j

D

Dt
(iω̄k)

)
ρ̄dV̄ (3.19)

Expanding the last term ∫
∂V̄

x̄xx× M̄MMdĀ =

∫
∂V̄

ϵjklx̄jM̄kdĀ (3.20)

using Cauchy principle for M̄MM

∫
∂V̄

x̄xx× M̄MMdĀ =

∫
∂V̄

ϵjklx̄j(
(0)m̄mk)n̄mdĀ (3.21)

using Divergence Theorem

∫
∂V̄

x̄xx× M̄MM dĀ =

∫
V̄

ϵjkl
(
x̄j (

(0)m̄mk)
)
,m dV̄

=

∫
V̄

ϵjkl
(
δjm

(0)m̄mk + x̄j (
(0)m̄mk,m)

)
dV̄

=

∫
V̄

ϵjkl
(
(0)m̄jk + x̄j

(0)m̄mk,m

)
dV̄ (3.22)

substituting from (3.19) and (3.22) in (3.17)

∫
V̄

ΘĪ ρ̄ ϵjkl

(
v̄j(iω̄k) + x̄j

D(iω̄k)

Dt

)
dV̄ =

∫
V̄

x̄xx× ϵϵϵ ::: (0)σ̄σσdV̄

+

∫
V̄

ϵjkl
(
(0)m̄jk + x̄j (

(0)m̄mk,m)
)
dV̄ (3.23)
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we note that
(0)m̄mk,m = ∇̄∇∇ ··· (0)m̄mm

ϵjkl
(
x̄j(

(0)m̄mk,m)
)
= x̄xx× ∇̄∇∇ ··· (0)m̄mm

ΘĪ ρ̄ϵjkl
D(iω̄k)

Dt
= ΘĪ ρ̄ x̄xx× D(iω̄ωω)

Dt

(3.24)

using (3.24) in (3.23) and regrouping terms

∫
V̄

ΘĪ ρ̄ϵjklv̄j (iωk) dV̄ +

∫
V̄

x̄xx×
(

ΘĪ ρ̄
D (iω̄ωω)

Dt
− ϵϵϵ ::: (0)σσσ − ∇̄∇∇ ··· (0)m̄mm

)
dV̄

=

∫
V̄

ϵjkl
(0)m̄jkdV̄

(3.25)

using balance of angular momenta (3.15) in (3.25), we obtain

∫
V̄

ϵjkl
(
ΘĪ ρ̄v̄j (iω̄k)− (0)m̄jk

)
dV̄ = 0 (3.26)

For homogeneous, isotropic continua, V̄ is arbitrary, hence we obtain the following from (3.26)

ϵjkl
(
ΘĪ ρ̄v̄j (iω̄k)− (0)m̄jk

)
= 0 (3.27)

Equation (3.27) is the final form resulting from the balance of moment of moments balance law.

Remarks

1. We note that in the absence of rotational inertia ΘĪ (new physics considered in this work),

i.e., when ΘĪ = 0, (3.27) reduces to

ϵjkl
(0)m̄jk = 0 (3.28)

This is same as the BMM balance law introduced in references [82, 96, 104].

2. When ΘĪ is not zero, (3.27) yields three equations defining the antisymmetric parts of the

Cauchy moment tensor (0)m̄mm in terms of velocities, rotation rates (angular velocities) and the
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properties ρ̄ and ΘĪ of the continua.

3.5 First law of thermodynamics

The sum of work and heat added to a volume of matter must result in an increase of the energy

of the volume. This can be expressed as a rate equation in Eulerian description.

DĒt

Dt
=
DQ̄

dt
+
DW̄

Dt
(3.29)

where Ēt, Q̄ and W̄ are total energy, heat added and work done. Their rates can be written as

DĒt

Dt
=

D

Dt

∫
V̄

ρ̄

(
ē+

1

2
v̄vv ··· v̄vv +

1

2
ΘĪ (iω̄ωω ··· iω̄ωω)− F̄FF

b ··· ūuu
)
dV̄ (3.30)

DQ̄

Dt
= −

∫
∂V̄

q̄qq ··· n̄nn dĀ (3.31)

DW̄

Dt
=

∫
∂V̄

(
P̄PP ··· v̄vv + M̄MM ··· r

iΘ̄ΘΘ
)
dĀ (3.32)

where ē is specific internal energy, F̄FF b are body forces per unit mass and ḡgg is heat vector. The third

term in the integrand is due to additional rate of work due to rotation rates. We expand integrals in

(3.30)-(3.32). Following reference [97] we can show

DĒt

Dt
=

D

Dt

∫
V̄

ρ̄

(
ē+

1

2
v̄vv ··· v̄vv +

1

2
ΘĪ (iω̄ωω ··· iω̄ωω)− F̄FF

b ··· ūuu
)
dV̄

=

∫
V

(
ρ̄
Dē

Dt
+ ρ̄v̄vv

Dv̄vv

Dt
+ ρ̄ΘĪ (iω̄ωω) ···

D(iω̄ωω)

Dt
− ρ̄F̄FF

b ··· v̄vv
)
dV̄

(3.33)

using Divergence Theorem (3.31) can be written as

DQ̄

Dt
= −

∫
∂V̄

q̄qq ··· n̄nndĀ =

∫
V̄

∇̄∇∇ ··· q̄qq dV̄ (3.34)
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using Cauchy principle for P̄PP and M̄MM we can show that

DW̄

Dt
=

∫
∂V̄

(
P̄PP ··· v̄vv + M̄MM ··· r

iΘ̄ΘΘ
)
dĀ

=

∫
∂V̄

(
v̄vv ··· ((0)σ̄σσ)T ··· n̄nn+ r

iΘ̄ΘΘ ··· ((0)m̄mm) ··· n̄nn
)
dĀ

=

∫
∂V̄

(
v̄vv ··· ((0)σ̄σσ)T + r

iΘ̄ΘΘ ··· ((0)m̄mm)
)
dĀAA (3.35)

using Divergence Theorem

DW̄

Dt
=

∫
V̄

(
∇̄∇∇ ···

(
v̄vv ··· ((0)σ̄σσ)T

)
+ ∇̄∇∇ ···

(
r
iΘ̄ΘΘ ··· ((0)m̄mm)T

))
dV̄ (3.36)

following reference [97], we can show

∇̄∇∇ ···
(
v̄vv ··· ((0)σ̄σσ)T

)
= v̄vv ···

(
∇̄∇∇ ··· (0)σ̄σσ

)
+ (0)σ̄σσ ::: L̄LL (3.37)

∇̄∇∇ ···
(
r
iΘ̄ΘΘ ··· ((0)m̄mm)T

)
= r

iΘ̄ΘΘ ···
(
∇̄∇∇ ··· (0)m̄mm

)
+ (0)m̄mm :::

r
iΘJ̄JJ (3.38)

substituting (3.37) and (3.38) in (3.36)

DW̄

Dt
=

∫
V̄

(v̄vv ···
(
∇̄∇∇ ··· (0)σ̄σσ

)
+(0)σ̄σσ ::: L̄LL

+ r
iΘ̄ΘΘ ···

(
∇̄∇∇ ··· (0)m̄mm

)
+ (0)m̄mm :::

r
iΘJ̄JJ)dV̄

(3.39)

Substituting (3.30), (3.34) and (3.39) in (3.29)

∫
V̄

v̄vv ···
(
ρ̄
Dv̄vv

Dt
− ρ̄F̄FF

b − ∇̄∇∇ ··· (0)σ̄σσ

)
dV̄ +

∫
V̄

(
ρ̄
Dē

Dt
+ ∇̄∇∇ ··· q̄qq − (0)σ̄σσ ::: L̄LL

− (0)m̄mm :::
r
iΘJ̄JJ − r

iΘ̄ΘΘ ···
(
∇̄∇∇ ··· (0)m̄mm

)
+ ρ̄

(
ΘĪ
)(

iω̄ωω ··· D(iω̄ωω)

Dt

))
dV̄ = 0

(3.40)
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Using balance of linear momenta (3.3) in (3.40) and grouping last two terms in the integrand we

obtain (noting that r
iΘ̄ΘΘ = iω̄ωω)

∫
V̄

(ρ̄
Dē

Dt
+∇̄∇∇ ··· q̄qq − (0)σ̄σσ ::: L̄LL− (0)m̄mm :::

r
iΘJ̄JJ

+ iω̄ωω ···
(
ρ̄(ΘĪ)

D(iω̄ωω)

Dt
− ∇̄∇∇ ···

(
(0)m̄mm

))
)dV̄ = 0

(3.41)

For isotropic, homogeneous continua, V̄ is arbitrary, hence we can set the integrand in (3.41) to

zero.

ρ̄
Dē

Dt
+ ∇̄∇∇ ··· q̄qq − (0)σ̄σσ ::: L̄LL− (0)m̄mm :::

r
iΘJ̄JJ

+ iω̄ωω ···
(
ρ̄(ΘĪ)

D(iω̄ωω)

Dt
− ∇̄∇∇ ···

(
(0)m̄mm

))
= 0

(3.42)

From balance of angular momenta

ρ̄(ΘĪ)
D(iω̄ωω)

Dt
− ∇̄∇∇ ···

(
(0)m̄mm

)
= ϵϵϵ :::

(
(0)m̄mm

)
(3.43)

Substituting from (3.43) into (3.42)

ρ̄
Dē

Dt
+ ∇̄ ··· q̄qq − (0)σ̄σσ ::: L̄LL− (0)m̄mm :::

r
iΘJ̄JJ + iω̄ωω ··· (ϵϵϵ ::: (0)σ̄σσ) = 0 (3.44)

Let

ϵϵϵ ::: (0)σ̄σσ = (0)τ̄ττ (3.45)

in which (0)τ̄ττ is a vector, containing three components, and noting that

iω̄ωω ··· (0)τ̄ττ = (0)τ̄ττ ··· iω̄ωω (3.46)
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using (3.45) and (3.46) in (3.44) we obtain

ρ̄
Dē

Dt
+ ∇̄ ··· q̄qq − (0)σ̄σσ ::: L̄LL− (0)m̄mm :::

r
iΘJ̄JJ + (0)τ̄ττ ··· iω̄ωω = 0 (3.47)

the energy equation (3.47) resulting from the first law of thermodynamics can be further simplified

(shown below). We note the following,

L̄LL = D̄DD + W̄WW (3.48)

r
iΘJ̄JJ =

r
iΘ
s J̄JJ +

r
iΘ
a J̄JJ (3.49)

We consider decomposition of (0)σ̄σσ and (0)m̄mm into symmetric and antisymmetric parts

(0)σ̄σσ =(0)
s σ̄σσ + (0)

a σ̄σσ

(0)m̄mm =(0)
s m̄mm+ (0)

a m̄mm

(3.50)

for which
(0)σ̄σσ ::: L̄LL =(0)

s σ̄σσ ::: D̄DD + (0)
a σ̄σσ ::: W̄WW

(0)m̄mm :::
r
iΘJ̄JJ =(0)

s m̄mm :::
r
iΘ
s J̄JJ + (0)

a m̄mm :::
r
iΘ
a J̄JJ

(3.51)

Substituting (3.51) in (3.47) we can obtain

ρ̄
Dē

Dt
+ ∇̄∇∇ ··· q̄qq − (0)

s σ̄σσ ::: D̄DD − (0)
a σ̄σσ ::: W̄WW − (0)

s m̄mm :::
r
iΘ
s J̄JJ

− (0)
a m̄mm :::

r
iΘ
a J̄JJ + (0)τ̄ττ ··· iω̄ωω = 0

(3.52)

We can show that

(0)τ̄ττ ··· iω̄ωω = (0)
a σ̄σσ ::: W̄WW (3.53)

using (3.53) in (3.52)

ρ̄
Dē

Dt
+ ∇̄∇∇ ··· q̄qq − (0)

s σ̄σσ ::: D̄DD − (0)
s m̄mm :::

r
iΘ
s J̄JJ − (0)

a m̄mm :::
r
iΘ
a J̄JJ = 0 (3.54)
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This is the final form of the energy equation resulting from the first law of thermodynamics.

3.6 Second law of thermodynamics

If η̄ is the entropy density in the volume V̄ , h̄ is the entropy flux between V̄ and the volume of

matter surrounding it and s̄ is the source of entropy in V̄ due to non contacting sources (bodies),

then the rate of increase of entropy in volume V̄ is at least equal to that applied to V̄ from all

contacting and non-contacting sources [97]. Thus

D

Dt

∫
V̄

η̄ρ̄dV̄ ≥
∫
∂V̄

h̄dĀ+

∫
V̄

s̄ρ̄dV̄ (3.55)

using Cauchy’s postulate for h̄

h̄ = −ψ̄ψψ ··· n̄nn (3.56)

using (3.56) in (3.55)
D

Dt

∫
V̄

η̄ρ̄dV̄ ≥ −
∫
∂V̄

ψ̄ψψ ··· n̄nndĀ+

∫
V̄

s̄ρ̄dV̄ (3.57)

using Gauss’ Divergence Theorem for the terms over ∂V̄ gives (noting that ψ̄ψψ is a tensor of rank

one)
D

Dt

∫
V̄

η̄ρ̄dV̄ ≥ −
∫
V̄

∇̄∇∇ ··· ψ̄ψψdV̄ +

∫
V̄

s̄ρ̄dV̄ (3.58)

we note that
D

Dt

∫
V̄

η̄(ρ̄dV̄ ) =
D

Dt

∫
V

ηρ
0
dV =

∫
V

Dη

Dt
ρ
0
dV =

∫
V̄

Dη̄

Dt
ρ̄dV̄ (3.59)

using (3.59) in (3.58) we obtain

∫
V̄

(
ρ̄
Dη̄

Dt
+ ∇̄∇∇ ··· ψ̄ψψ − s̄ρ̄

)
dV̄ ≥ 0 (3.60)

For homogeneous. isotropic matter volume V̄ is arbitrary hence we can write the following from

(3.60)

ρ̄
Dη̄

Dt
+ ∇̄∇∇ ··· ψ̄ψψ − s̄ρ̄ ≥ 0 (3.61)
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Equation (3.61) is the most fundamental form of the SLT or entropy inequality (Clausius Duhem

inequality). We note that entropy inequality is strictly a statement that contains entropy terms,

hence contains no information regarding reversible deformation physics. In this form (3.61) the

entropy inequality provides no mechanism(s) for deriving constitutive theories. Only when the

mechanical rate of work that results in rate of entropy production is introduced in the entropy

inequality, will the entropy inequality contain information regarding conjugate pairs resulting in

rate of entropy production. We also note entropy inequality (3.61) does not provide any information

regarding constitutive theory for heat vector q̄qq. In the following we derive another form of the

entropy inequality using a relationship between ψ̄ψψ and q̄qq and relationship between Φ̄, ē and η̄. Since

the energy equation has all possible mechanisms that result in energy storage and dissipation, the

form of entropy inequality derived using energy equation is expected to be helpful in the derivation

of the constitutive theories. Using

ψ̄ψψ =
q̄qq

θ̄
, s̄ =

r̄

θ̄
(3.62)

where θ̄ is absolute temperature and r̄ is a suitable potential

∇̄∇∇ ··· ψ̄ψψ = ψ̄i,i =
q̄i,i
θ̄

− q̄iθ̄,i
θ̄2

=
∇̄∇∇ ··· q̄qq
θ̄

− q̄
qq ··· ḡgg
θ̄2

(3.63)

substituting from (3.63) into (3.61) and multiplying through by θ̄

ρ̄θ̄
Dη̄

Dt
+
(
∇̄∇∇ ··· q̄qq − ρ̄r̄

)
− q̄
qq ··· ḡgg
θ̄

≥ 0 (3.64)

From energy equation (3.54) (after including s̄ρ̄) term)

∇̄∇∇ ··· q̄qq − s̄ρ̄ = −ρ̄Dē
Dt

+ (0)
s σ̄σσ ::: D̄DD + (0)

s m̄mm :::
r
iΘ
s J̄JJ + (0)

a m̄mm :::
r
iΘ
a J̄JJ (3.65)
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substituting (3.65) into (3.64), using Φ̄ = ē− η̄θ̄ and regrouping terms

ρ̄

(
DΦ̄

Dt
+ η̄

Dθ̄

Dt

)
+
q̄qq ··· ḡgg
θ̄

−(0)
s σ̄σσ ::: D̄DD

− (0)
s m̄mm :::

r
iΘ
s J̄JJ − (0)

a m̄mm :::
r
iΘ
a J̄JJ ≤ 0

(3.66)

Equation (3.66) is the final form of the entropy inequality resulting from the second law of ther-

modynamics.

3.7 Mathematical model consisting of CBL of NCCM for fluids

The system of partial differential equations and algebraic equations resulting from the conser-

vation and balance laws of NCCM incorporating internal rotation rates, their material derivatives

and rotational inertial effects are given by: conservation of mass (CM), balance of linear momenta

(BLM), balance of angular momenta (BAM), balance of moment of moments (BMM), first law

of thermodynamics (FLT) and the second law of thermodynamics (SLT). These are listed in the

following using:

iω̄ωω = r
iΘ̄ΘΘ ,

D (iω̄ωω)

Dt
= r

i

.
Θ̄ΘΘ (3.67)

Dρ̄

Dt
+ ρ̄ div(v̄vv) = 0 (CM) (3.68)

ρ̄
∂v̄vv

∂t
+ ρ̄

(
v̄vv ··· ∇̄∇∇

)
v̄vv − ρ̄F̄FF

b − ∇̄∇∇ ··· (0)σ̄σσ = 0 (BLM) (3.69)

ΘĪ ρ̄
D

Dt
(iω̄k)− ϵijk

(0)σ̄ij − (0)m̄mk,m = 0 (BAM) (3.70)

ϵjkl
(
ΘĪ ρ̄v̄j (iω̄k)− (0)m̄jk

)
= 0 (BMM) (3.71)

ρ̄
Dē

Dt
+ ∇̄∇∇ ··· q̄qq − (0)

s σ̄σσ ::: D̄DD − (0)
s m̄mm :::

r
iΘ
s J̄JJ − (0)

a m̄mm :::
r
iΘ
a J̄JJ = 0 (FLT) (3.72)

ρ̄

(
DΦ̄

Dt
+ η̄

Dθ̄

Dt

)
+
q̄qq ··· ḡgg
θ̄

− (0)
s σ̄σσ ::: D̄DD − (0)

s m̄mm :::
r
iΘ
s J̄JJ − (0)

a m̄mm :::
r
iΘ
a J̄JJ ≤ 0 (SLT) (3.73)

Remarks
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1. The mathematical model consists of eleven equations: CM (1), BLM (3), BAM (3), BMM(3),

FLT (1) in twenty six dependent variables: ρ̄ (1), v̄vv (3), (0)σ̄σσ (9), (0)m̄mm (9), q̄qq (3), θ̄ (1), thus

we need an additional fifteen equations for the mathematical model to have closure. These

additional equations are obtained from the constitutive theories.

2. We shall see that Φ̄, η̄ and ē are not dependent variables in the mathematical model as they

can be expressed in terms of other dependent variables in remark (1).

3. From entropy inequality we can conclude the following.

(a) From the term q̄qq···ḡgg
θ̄

, we conclude that q̄qq, ḡgg is a conjugate pair.

(b) The term (0)
s σ̄σσ ::: D̄DD, suggests that (0)

s σ̄σσ and D̄DD are rate of work (mechanical) conjugate

pair. This is obviously due to classical continuum mechanics.

(c) The term (0)
s m̄mm :::

r
iΘ
s J̄JJ suggests that (0)

s m̄mm and
r
iΘ
s J̄JJ are also rate of work (mechanical)

conjugate pair. This is the contribution of non-classical continuum mechanics incorpo-

rating internal rotation rates.

(d) From the term (0)
a m̄mm :::

r
iΘ
a J̄JJ it can be concluded that (0)

a m̄mm,
r
iΘ
a J̄JJ are a rate of work

(mechanical) conjugate pair. However, based on Surana et. al [82] in non-classical

continuum mechanics the constitutive theory for (0)
a m̄mm (when (0)

a m̄mm is a possible choice

of constitutive variable) leads to deformation physics that is non-physical. In refer-

ence [82] authors present constitutive theory for (0)
a m̄mm (in the absence of BMM balance

law) as well as for (0)
s m̄mm and model problem studies to substantiate this issue. Based

on reference [82], (0)
a m̄mm and

r
iΘ
a J̄JJ are not a conjugate pair, therefore (0)

a m̄mm is not a con-

stitutive tensor. Thus, (0)
a m̄mm :::

r
iΘ
a J̄JJ = 0 must be used as a constraint equation in the

mathematical model.

4. From remark (3) we can conclude that it is possible to obtain the following additional equa-

tions through constitutive theories

(a) Constitutive theory for (0)
s σ̄σσ (6)
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(b) Constitutive theory for (0)
s m̄mm (6)

(c) Constitutive theory for q̄qq (3)

This provides us with additional fifteen equations needed to provide closure to the mathe-

matical model consisting of equations (3.68)-(3.73).

5. In this work, we consider compressible as well as incompressible thermoviscous fluids.

3.8 Constitutive theories

In this section, we present constitutive theories for thermoviscous compressible and incom-

pressible fluids. As in the case of solids, here also we begin with entropy inequality. The conjugate

pairs in the entropy inequality (3.73) expressed in terms of Helmholtz free energy density are in-

strumental in determining the constitutive variables, their argument tensors as well as derivation

of some constitutive theories. Choice of Φ̄, η̄, (0)
s σ̄σσ, (0)

s m̄mm and q̄qq as constitutive variables based

on axioms of constitutive theories [30, 97], entropy inequality as well as the other balance laws is

straightforward. The choice of some argument tensors of (0)
s σ̄σσ, (0)

s m̄mm and q̄qq can be made based on

conjugate pairs in the SLT. Additionally, temperature θ̄ is also required to be an argument tensor

of all constitutive variables due to non-isothermal physics.

For compressible continua density varies during evolution. Based on conservation of mass in La-

grangian description, changing density is defined by changing [J ], deformation gradient tensor.

|J̄ | =
ρ
0

ρ(xxx, t)

Thus, |J | or ρ
0
/ρ(xxx, t) or 1/ρ(xxx, t) must be argument tensor of the constitutive variables in La-

grangian description. In Eulerian description, choice of 1/ρ(xxx, t) is replaced by 1/ρ̄(x̄xx, t) hence at

the onset we begin with

(0)
s σ̄σσ = (0)

s σ̄σσ(
1

ρ̄
,D̄DD, θ̄) (3.74)

49



(0)
s m̄mm = (0)

s m̄mm(
1

ρ̄
,
r
iΘ
s J̄JJ , θ̄) (3.75)

q̄qq = q̄qq(
1

ρ̄
, ḡgg, θ̄) (3.76)

The argument tensors of Φ̄ and η̄ at this stage can be chosen using principle of equipresence

[30, 97]. We remark that principle of equipresence is not used in (3.74)-(3.76) as the conjugate

pairs in entropy inequality specifically dictate the choice of argument tensors used along with the

additionally required 1/ρ̄ and θ̄.

Φ̄ = Φ̄(
1

ρ̄
,D̄DD,

r
iΘ
s J̄JJ , ḡgg, θ̄) (3.77)

η̄ = η̄(
1

ρ̄
,D̄DD,

r
iΘ
s J̄JJ , ḡgg, θ̄) (3.78)

The argument tensors of (0)
s σ̄σσ can be enhanced to permit more comprehensive physics. Let γγγ(i) ;

i = 1, 2, . . . , n be the convected time derivatives of the Green’s strain tensor ε̄εε(0) (covariant basis)

up to order n and let γγγ(i) ; i = 1, 2, . . . , n be the convected time derivatives of the Almansi strain

tensor ε̄εε[0] (contravariant basis) up to order n ( see reference [97] for details). Then, we find that

γγγ(1) = γγγ
(1) = D̄DD (3.79)

i.e., D̄DD is basis independent, however γγγ(i); i = 2, 3, . . . , n and γγγ(i); i = 2, 3, . . . , n are in covariant

and in contravariant basis. Thus, we note that the first convected time derivative of ε̄εε[0], i.e., D̄DD or

γγγ(1), is an argument tensor of (0)
s σ̄σσ. The first convected time derivative of ε̄εε[0] i.e., γγγ(1) is also equal

to D̄DD. This suggests that perhaps a constitutive theory that considers convected time derivatives

of ε̄εε[0] or ε̄εε[0] up to order n is worthy of consideration. Thus D̄DD can also be replaced by γγγ(i) ;

i = 1, 2, . . . , n or γγγ(i) ; i = 1, 2, . . . , n. The choice of γγγ(i) ; i = 1, 2, . . . , n (covariant basis)

or γγγ(i) ; i = 1, 2, . . . , n (contravariant basis) depends upon whether (0)
s σ̄σσ is chosen to be sσ̄σσ

(0)
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(contravariant measure) or sσ̄σσ(0) (covariant measure). To make the derivation basis independent

we replace D̄DD by (i)γγγ ; i = 1, 2, . . . , n convected time derivative of the desired strain tensor. More

specifically when

(0)
s σ̄σσ = sσ̄σσ

(0) ; (i)γγγ = γγγ(i) ; i = 1, 2, . . . , n (3.80)

and when

(0)
s σ̄σσ = sσ̄σσ(0) ; (i)γγγ = γγγ(i) ; i = 1, 2, . . . , n (3.81)

When we replace D̄DD in (3.74), (3.77) and (3.78) by (i)γγγ; i = 1, 2, . . . , n the resulting constitutive

theory for (0)
s σ̄σσ is referred to as ordered rate constitutive theory of order n. Thus now we have

(0)
s σ̄σσ = (0)

s σ̄σσ(
1

ρ̄
,(i)γγγ, θ̄) ; i = 1, 2, . . . , n (3.82)

(0)
s m̄mm = (0)

s m̄mm(
1

ρ̄
,
r
iΘ
s J̄JJ , θ̄) (3.83)

q̄qq = q̄qq(
1

ρ̄
, ḡgg, θ̄) (3.84)

Φ̄ = Φ̄(
1

ρ̄
,(j)γγγ,

r
iΘ
s J̄JJ , ḡgg, θ̄) ; j = 1, 2, . . . , n (3.85)

η̄ = η̄(
1

ρ̄
,(j)γγγ,

r
iΘ
s J̄JJ , ḡgg, θ̄) ; j = 1, 2, . . . , n (3.86)

In (3.82)-(3.86) we have the final choice of argument tensors of the constitutive variables. We can

now obtain the material derivative of Φ̄ using (3.85)
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DΦ̄

Dt
=

.
Φ̄ =

∂Φ̄

∂(1/ρ̄)

−1

ρ̄2
.
ρ̄+

n∑
j=1

∂Φ̄

∂ ((j)γγγ)
:::
(
(j) .
γγγ
)

+
∂Φ̄

∂
(

r
iΘ
s J̄JJ
) :::

(
r
iΘ
s

.
J̄JJ

)
+
∂Φ̄

∂ḡgg
···

.
ḡgg +

∂Φ̄

∂θ̄

.
θ̄

(3.87)

From continuity equation (3.68)

.
ρ̄ = −ρ̄∇̄∇∇ ··· v̄vv = −ρ̄D̄kk = −ρ̄D̄klδlk = −ρ̄δδδ ::: D̄DD (3.88)

Substituting from (3.88) in (3.87)

DΦ̄

Dt
=

∂Φ̄

∂(1/ρ̄)

1

ρ̄
δδδ ::: D̄DD +

n∑
j=1

∂Φ̄

∂ ((j)γγγ)
:::
(
(j) .
γγγ
)

+
∂Φ̄

∂
(

r
iΘ
s J̄JJ
) :::

(
r
iΘ
s

.
J̄JJ

)
+
∂Φ̄

∂ḡgg
···

.
ḡgg +

∂Φ̄

∂θ̄

.
θ̄

(3.89)

we note that

∂Φ̄
(

1
ρ̄

)
∂
(

1
ρ̄

) =
∂Φ̄(ρ̄)

(∂ρ̄)
(−ρ̄2) (3.90)

we can also make substitution from (3.90) in (3.89). After this substitution, Φ̄ = Φ̄(ρ̄,(j)γγγ,
r
iΘ
s J̄JJ , ḡgg, θ̄),

DΦ̄

Dt
= −ρ̄∂Φ̄

∂ρ̄
δδδ ::: D̄DD+

n∑
j=1

∂Φ̄

∂ ((j)γγγ)
:::
(
(j) .
γγγ
)
+

∂Φ̄

∂
(

r
iΘ
s J̄JJ
) :::

(
r
iΘ
s

.
J̄JJ

)

+
∂Φ̄

∂ḡgg
···

.
ḡgg +

∂Φ̄

∂θ̄

.
θ̄

(3.91)

Substituting (3.91) in the entropy inequality (3.73) and regrouping terms
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(
−ρ̄2∂Φ̄

∂ρ̄
δδδ − (0)

s σ̄σσ

)
::: D̄DD + ρ̄

n∑
j=1

∂Φ̄

∂ ((j)γγγ)
:::
(
(j) .
γγγ
)

+ ρ̄
∂Φ̄

∂
(

r
iΘ
s J̄JJ
) :::

(
r
iΘ
s

.
J̄JJ

)
+ ρ̄

∂Φ̄

∂ḡgg
···

.
ḡgg +

∂Φ̄

∂θ̄

.
θ̄

+ ρ̄

(
∂Φ̄

∂θ̄
+ η̄

) .
θ̄ − (0)

s m̄mm :::
r
iΘ
s J̄JJ +

q̄qq ··· ḡgg
θ̄

≤ 0

(3.92)

For arbitrary but admissible (j) .
γγγ ; j = 1, 2, . . . , n,

r
iΘ
s

.
J̄JJ ,

.
ḡgg and

.
θ̄ the entropy inequality (3.93) is

satisfied if the following hold (i.e., their coefficients are set to zero).

ρ̄
∂Φ̄

∂ ((j)γγγ)
= 0 =⇒ ∂Φ̄

∂ ((j)γγγ)
= 0

=⇒ Φ̄ ̸= Φ̄
(
(j)γγγ
)
; j = 1, 2, . . . , n

(3.93)

ρ̄
∂Φ̄

∂
(

r
iΘ
s J̄JJ
) = 0 =⇒ ∂Φ̄

∂
(

r
iΘ
s J̄JJ
) = 0 =⇒ Φ̄ ̸= Φ̄

(
r
iΘ
s J̄JJ
)

(3.94)

ρ̄
∂Φ̄

∂ḡgg
= 0 =⇒ ∂Φ̄

∂ḡgg
= 0 =⇒ Φ̄ ̸= Φ̄(ḡgg) (3.95)

ρ̄

(
∂Φ̄

∂θ̄
+ η̄

)
= 0 =⇒ ∂Φ̄

∂θ̄
+ η̄ = 0 =⇒ η̄ = −∂Φ̄

∂θ̄
(3.96)

From (3.93)-(3.95) we can conclude that ρ̄ and θ̄ are the only argument tensors of Φ̄. From (3.96)

we conclude that η̄ is not a constitutive variable as it is deterministic using ∂Φ̄/∂θ̄. Using (3.93)-

(3.96) the entropy inequality (3.92) reduces to

(
−ρ̄2∂Φ̄

∂ρ̄
δδδδδδδδδ − (0)

s σ̄σσ

)
::: D̄DD − (0)

s m̄mm :::
r
iΘ
s J̄JJ +

q̄qq ··· ḡgg
θ̄

≤ 0 (3.97)

We remark that by setting the coefficient of D̄DD in (3.97) to zero (for arbitrary but admissible D̄DD)
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we obtain

−ρ̄2∂Φ̄
∂ρ̄
δδδ − (0)

s σ̄σσ = 0 (3.98)

−(0)
s m̄mm :::

r
iΘ
s J̄JJ +

q̄qq ··· ḡgg
θ̄

≤ 0 (3.99)

which are inappropriate due to the fact that (3.98) implies that (0)
s σ̄σσ is not a function of (j)γγγ ;

j = 1, 2, . . . , n, as Φ̄ is only a function of ρ̄ and θ̄, which is invalid based on (3.82). Thus, at this

stage we must maintain entropy inequality in the form stated in (3.97). In order to proceed further,

we consider decomposition of Cauchy stress tensor (0)
s σ̄σσ into equilibrium (0)

esσ̄σσ and deviatoric tensor
(0)
dsσ̄σσ where (0)

esσ̄σσ causes change of volume without distortion and (0)
dsσ̄σσ causes distortion of volume

without change of volume.

(0)
s σ̄σσ = (0)

esσ̄σσ +
(0)
dsσ̄σσ (3.100)

Thus, we consider

(0)
esσ̄σσ = (0)

esσ̄σσ(ρ̄, 0, θ̄)

(0)
dsσ̄σσ =

(0)
dsσ̄σσ(ρ̄,

(j)γγγ, θ̄) ; j = 1, 2, . . . , n

and (0)
dsσ̄σσ =

(0)
dsσ̄σσ(ρ̄, 0, θ̄) = 0

(3.101)

The remaining constitutive variables and their argument tensors remain the same

(0)
s m̄mm = (0)

s m̄mm(ρ̄,
r
iΘ
s J̄JJ , θ̄) (3.102)

q̄qq = q̄qq(ρ̄, ḡgg, θ̄) (3.103)

Φ̄ = Φ̄
(
ρ̄, θ̄
)

(3.104)
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3.8.1 Constitutive theory for (0)
esσ̄σσ: Compressible continua

Substituting (3.101) in entropy inequality (3.97) and regrouping terms

(
−ρ̄2∂Φ̄

∂ρ̄
δδδ − (0)

es σ̄σσ

)
::: D̄DD − (0)

dsσ̄σσ ::: D̄DD − (0)
s m̄mm :::

r
iΘ
s J̄JJ +

q̄qq ··· ḡgg
θ̄

≤ 0 (3.105)

Since Φ̄ is a function of ρ̄ and θ̄ so is (0)
esσ̄σσ. Thus (0)

esσ̄σσ can be determined by setting the coefficient

of D̄kl in the first term of (3.105) to zero

(0)
esσ̄σσ = −ρ̄2∂Φ̄

∂ρ̄
δδδ or [(0)esσ̄] = p̄(ρ̄, θ̄)[I] (3.106)

in which

p̄
(
ρ̄, θ̄
)
= −ρ̄2∂Φ̄

∂ρ̄
(3.107)

where p̄
(
ρ̄, θ̄
)

is thermodynamic pressure for compressible fluent continua and is defined by equa-

tion of state. The entropy inequality (3.105) reduces to

−(0)
dsσ̄σσ ::: D̄DD − (0)

s m̄mm :::
r
iΘ
s J̄JJ +

q̄qq ··· ḡgg
θ̄

≤ 0 (3.108)

Entropy inequality (3.108) is satisfied if

(0)
dsσ̄σσ ::: D̄DD ≥ 0 (3.109)

(0)
s m̄mm :::

r
iΘ
s J̄JJ ≥ 0 (3.110)

and
q̄qq ··· ḡgg
θ̄

≤ 0 (3.111)

Inequalities (3.109) and (3.110) require that rate of work due to (0)
dsσ̄σσ and (0)

s m̄mm be positive and

(3.111) serves as restriction on the constitutive theory for q̄qq.
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3.8.2 Constitutive theory for (0)
esσ̄σσ : Incompressible continua

For incompressible matter ρ̄ = ρ
0
, constant, hence ∂Φ̄

∂ρ̄
= 0. Thus the Constitutive theory for

(0)
esσ̄σσ cannot be derived using (3.105). The incompressibility condition must be enforced in the

derivation of the constitutive theory for (0)
esσ̄σσ by incorporating it in the entropy inequality. The

incompressibility condition is given by continuity equation.

∇̄∇∇ ··· v̄vv = tr(D̄DD) = D̄kk = D̄klδlk = δδδ ::: D̄DD = 0 (3.112)

Thus, we can add the following to the entropy inequality (3.105)

p̄(θ̄)δδδ ::: D̄DD = 0 (3.113)

(
p̄(θ̄)δδδ − (0)

esσ̄σσ
)
::: D̄DD − (0)

dsσ̄σσ ::: D̄DD − (0)
s m̄mm :::

r
iΘ
s J̄JJ +

q̄qq ··· ḡgg
θ̄

≤ 0 (3.114)

Setting the coefficient of D̄DD to zero in the first term of (3.114)

(0)
esσ̄σσ = p̄(θ̄)δδδ or [(0)esσ̄] = p̄(θ̄)[I] (3.115)

where p̄(θ̄) is mechanical pressure. Since p̄(θ̄) is an arbitrary Lagrange multiplier, it is independent

of the deformation field. The entropy inequality (3.114) reduces to (3.108) with conditions (3.109)-

(3.111) that must be satisfied by the constitutive theories for (0)
dsσ̄σσ, (0)

s m̄mm and q̄qq.

3.8.3 Constitutive theory for (0)
dsσ̄σσ

We consider (3.101)
(0)
dsσ̄σσ =

(0)
dsσ̄σσ(ρ̄,

(j)γγγ, θ̄) ; j = 1, 2, . . . , n (3.116)

Pairs in (3.109) from entropy inequality confirm that (0)
dsσ̄σσ and (j)γγγ; j = 1, 2, . . . , n are rate of

work conjugate. We derive constitutive theory for (0)
dsσ̄σσ using representation theorem [8,62,69–71,

73–77, 99–103, 107, 108]. Let σGGG˜ i; i = 1, 2, . . . , Nσ be the combined generators of the argument
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tensors of (0)
dsσ̄σσ that are symmetric tensors of rank two, then (0)

dsσ̄σσ can be expressed using linear

combination of III and (j)γγγ; i = 1, 2, . . . , Nσ in the current configuration.

(0)
dsσ̄σσ = σα0III +

Nσ∑
i=1

σαi
(
σGGG˜ i

)
(3.117)

In the linear combination (3.117), coefficients σαi; i = 0, 1, . . . , Nσ are functions of the combined

invariants σI˜j; j = 1, 2, . . . ,Mσ of the same argument tensors of (0)
ds σ̄σσ in (3.116), ρ̄ and θ̄.

σαi = σαi
(
ρ̄,σ I˜j, θ̄) ; j = 1, 2, . . . ,Mσ ; i = 0, 1, . . . , Nσ (3.118)

The material coefficients in the constitutive theory for (0)
dsσ̄σσ given by (3.117) are determined by

considering Taylor series expansion of σαi; i = 0, 1, . . . , Nσ in σI˜j; j = 1, 2, . . . ,Mσ about

a known configuration Ω and retaining only up to linear terms in σI˜j; j = 1, 2, . . . ,Mσ (for

simplicity). Taylor series expansion in θ̄ is not considered as the influence of thermal field on

stress tensor has already been considered in the constitutive theory for (0)
esσ̄σσ stress tensor.

σαi = σαi
∣∣
Ω
+

Mσ∑
j=1

∂σαi

∂
(
σI˜j)

∣∣∣∣∣
Ω

(
σI˜j − σI˜j∣∣Ω

)
; i = 0, 1, . . . , Nσ (3.119)

Substituting σαi; i = 0, 1, . . . , Nσ into (3.117), collecting coefficients of the terms defined in the

current configuration and introducing new notations for the coefficients.

(0)
dsσ̄σσ = σ˜(0)∣∣Ω III +

Mσ∑
j=1

σα˜j(σI˜j)III +
Nσ∑
i=1

σb˜i(σGGG˜ i)

+
Nσ∑
i=1

Mσ∑
j=1

σc˜ij(σI˜j)σGGG˜ i

(3.120)

Coefficients σa˜j , σbi and σc˜ij ; i = 1, 2, . . . , Nσ, j = 1, 2, . . . ,Mσ and functions of ρ̄|Ω, σI˜j∣∣Ω and

θ̄|Ω; j = 1, 2, . . . ,Mσ. These are material coefficients.

Remarks
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1. This constitutive theory for (0)
dsσ̄σσ given by (3.120) contains (N +M + NM) material coef-

ficients. This is a non-linear ordered rate constitutive theory of order n for (0)
dsσ̄σσ and is based

on integrity.

2. A simple linear constitutive theory in which products of σI˜j , σGGG˜ i and (θ̄− θ̄
∣∣
Ω
) are neglected

is given by

(0)
dsσ̄σσ = σ˜0∣∣Ω III +

n∑
i=1

2µi
(i)γγγ +

n∑
i=1

λi
(i)γγγ ::: III (3.121)

µi and λi are material coefficients for convected time derivative (i)γγγ of the corresponding

strain tensor. The constitutive theory (3.121) is also ordered rate constitutive theory of order

n, but is linear in the components of [iγ]; i = 1, 2, . . . , n.

3. From (3.122) we can obtain the most simplified constitutive theory for (0)
dsσ̄σσ if we choose

n = 1 (rate constitutive theory of order one)

(0)
dsσ̄σσ = σ˜0∣∣Ω III + 2µ1

(1)γγγ + λ1
(1)γγγ ::: III (3.122)

The constitutive theory (3.122) is Newton’s law of viscosity for thermoviscous compressible

fluids. We note that (1)γγγ = D̄DD, symmetric part of the velocity gradient tensor. Initial stress

field, σ˜(0)[I], and the last term is due to thermal expansion or contraction. The first and sec-

ond viscosities are µ1 and λ1. For incompressible fluent continua, (1)γγγ = 0 due to continuity,

hence the third term in (3.122) becomes zero.

3.8.4 Constitutive theory for (0)
s m̄mm

We consider (3.102)

(0)
s m̄mm = (0)

s m̄mm
(
ρ̄,

r
iΘ
s J̄JJ , θ̄

)
(3.123)
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Let mGGG˜ i; i = 1, 2, . . . , Nm be the combined generators of the argument tensors of (0)m̄mm in (3.123)

that are symmetric tensors of rank two. Then, based on representation theorem [8, 62, 69–71, 73–

77,99–103,107,108] we can express (0)
s m̄mm as a linear combination of III and mGGG˜ i; i = 1, 2, . . . , Nm

in the current configuration.

(0)
s m̄mm = (mα0)III +

Nm∑
i=1

(mαi)mGGG˜ i (3.124)

The coefficients in the linear combination (3.124) are functions of ρ̄, θ̄ and mI˜j; j = 1, 2, . . . ,Mm,

the combined invariants of the same argument tensors of (0)
s m̄mm in (3.124).

In this particular case Nm = 2 and Mm = 3

mGGG˜ 1 =
r
iΘ
s J̄JJ ; mGGG˜ 2 =

r
iΘ
s J̄JJ

2 (3.125)

and

mI˜1 = I(r
i
Θ
s J̄

) mI˜2 = II(r
i
Θ
s J̄

) mI˜3 = III(r
i
Θ
s J̄

) (3.126)

The material coefficients in the constitutive theory (3.124) for (0)
s m̄mm are determined by consider-

ing Taylor series expansion of mαi; i = 0, 1, . . . , Nm in mI˜j; j = 1, 2, . . . ,Mm about a known

configuration Ω and retaining only up to linear terms in mI˜j; j = 1, 2, . . . ,Mm.

mαi = mαi
∣∣
Ω
+

Mm∑
j=1

∂ (mαi)

∂
(

r
iΘ
s J̄
)
∣∣∣∣∣∣
Ω

(
r
iΘ
s J̄ −

r
iΘ
s J̄
∣∣∣
Ω

)
; i = 0, 1, . . . , Nm (3.127)

Substituting (3.127) in (3.124) and collecting coefficients of the terms defined in the current con-

figuration and introducing new notation for the coefficients, we can write
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(0)
s m̄mm = m˜ 0

∣∣
Ω
III+

Mm∑
j=1

mα˜j(mI˜j)III +
Nm∑
i=1

mb˜i(mGGG˜ i)

+
Nm∑
i=1

Mm∑
j=1

mc˜ij(mIj)mGGG˜ i

(3.128)

Coefficients mα˜j , mb˜i and mc˜ij are (N +M + NM) material coefficients. These can be function

of ρ̄|Ω, mI˜j and θ̄|Ω; j = 1, 2, . . . ,Mm.

Remarks

1. This constitutive theory (3.128) is obviously a non-linear constitutive theory based on in-

tegrity.

2. Since Nm = 2 and Mm = 3, this constitutive theory requires eleven material coefficients.

3. This constitutive theory contains up to fifth degree terms of the components of
r
iΘ
s J̄JJ .

4. A linear constitutive theory in the components of
r
iΘ
s J̄JJ in which products of mI˜j and mGGG˜ i are

neglected is given by

(0)
s m̄mm = m˜ 0

∣∣
Ω
III + mα˜1 (mI˜1)III + mb˜1 (mG˜ 1

)
(3.129)

Since

mI˜1 = tr
(

r
iΘ
s J̄JJ
)
= 0 (3.130)

the constitutive theory (3.128) reduces to

(0)
s m̄mm = m˜ 0

∣∣
Ω
III + mb˜1

(
r
iΘ
s J̄JJ
)

(3.131)

A further simplified theory in which first term in (3.131) is neglected is given by (defining
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µm = mb˜i)
(0)
s m̄mm = µm

r
iΘ
s J̄JJ (3.132)

in which

µm = µm

(
ρ̄
∣∣
Ω
, I(r

i
Θ
s J̄

)∣∣
Ω
, II(r

i
Θ
s J̄

)∣∣
Ω
, III(r

i
Θ
s J̄

))∣∣
Ω
, θ̄
∣∣
Ω

)
(3.133)

3.8.5 Constitutive theory for q̄qq

We consider q̄qq = q̄qq(ḡgg, θ̄) and use representation theorem [8,62,69–71,73–77,99–103,107,108].

The combined generators of the argument tensors ḡgg and θ̄ that are tensors of rank one is just ḡgg

and the combined invariant is ḡgg ··· ḡgg (or qI). Thus, the constitutive theory for q̄qq in the current

configuration can be written as

q̄qq = −qαḡgg (3.134)

in which

qα = qα (ρ̄, qI, θ) (3.135)

The material coefficients in the constitutive theory for q̄qq given by (3.134) are obtained by consid-

ering Taylor series expansion qα in qI and θ̄ in a known configuration Ω and retaining up to linear

terms in qI and θ̄

qα = qα|
Ω
+

∂qα

∂ (qI)

∣∣∣∣
Ω

(
qI − qI|

Ω

)
+
∂ (qα)

∂θ̄

∣∣∣∣
Ω

(
θ̄ − θ̄

∣∣
Ω

)
(3.136)

Substituting (3.136) in (3.134) and collecting coefficients of the terms defined in current configu-

ration gives the following (after introducing new coefficients)

q̄qq = −k|Ωḡgg − k1|Ω (ḡgg ··· ḡgg) ḡgg − k2|Ω
(
θ̄ − θ̄

∣∣
Ω

)
ḡgg (3.137)

the materials coefficients k, k1 and k2 can be functions of ρ̄|
Ω

, qI|
Ω

and θ̄
∣∣
Ω

This constitutive theory

(3.137) based on integrity is a non-linear constitutive theory in temperature gradient (contains up
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to cubic terms of temperature gradients). A linear constitutive theory for q̄qq is given by

q̄qq = − k|
Ω
ḡgg (3.138)

This is Fourier heat conduction law in which k = k( ρ̄|
Ω
, qI|

Ω
, θ̄
∣∣
Ω
) still holds.

3.9 Complete mathematical model resulting from NCCM for fluids

In the following we present complete mathematical model consisting of CBL (3.68)-(3.72) and

constitutive theories (3.106), (3.122), (3.132) and (3.138). If we consider contravariant Cauchy

stress and Cauchy moment tensors then we can use sσσσ
(0) and smmm

(0) instead of (0)
s σσσ and (0)

s mmm.

The complete mathematical model consisting of the CBL and the constitutive theories is listed

below where iω̄ωω = r
iΘ̄ΘΘ,

D(iω̄ωω)
Dt

= r
i

.
Θ̄ΘΘ. We consider incompressible micropolar thermoviscous fluid

medium.

Dρ̄

Dt
+ ρ̄ div(v̄vv) = 0 (CM) (3.139)

ρ̄
∂v̄vv

∂t
+ ρ̄

(
v̄vv ··· ∇̄∇∇

)
v̄vv − ρ̄F̄FF

b − ∇̄∇∇ ··· σ̄σσ(0) = 0 (BLM) (3.140)

ΘĪ ρ̄
D

Dt
(iω̄k)− ϵijkσ̄

(0)
ij − m̄mk,m

(0) = 0 (BAM) (3.141)

ϵjkl

(
ΘĪ ρ̄v̄j (iω̄k)− m̄

(0)
jk

)
= 0 (BMM) (3.142)

ρ̄
Dē

Dt
+ ∇̄∇∇ ··· q̄qq − sσ̄σσ

(0) ::: D̄DD − sm̄mm
(0) :::

r
iΘ
s J̄JJ − am̄mm

(0) :::
r
iΘ
a J̄JJ = 0 (FLT) (3.143)

Additive decomposition of σ̄σσ(0) : σ̄σσ(0) = sσ̄σσ
(0) + aσ̄σσ

(0) ; sσ̄σσ
(0) = d

sσ̄σσ
(0) + e

sσ̄σσ
(0) (3.144)

d
sσ̄σσ

(0) = σ̄σσ|
Ω
+ 2ηD̄DD + κ(tr(D̄DD))III (3.145)

e
sσ̄σσ = p̄

(
ρ̄, θ̄
)

(3.146)

sm̄mm
(0) = 2ηm

(
r
iΘ
s J̄JJ
)

(3.147)
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q̄qq = −kḡgg (3.148)

In this mathematical model we have CM(1), BLM(3), BAM(3), BMM(3), FLT(1) and the con-

stitutive theories for d
sσ̄σσ

(0)(6), sm̄mm
(0)(6), q̄qq(3), a total of 26 equations in 26 dependent variables

ρ̄(1), v̄vv(3), d
sσ̄σσ

(0)(6), aσ̄σσ
(0)(3), sm̄mm

(0)(6), am̄mm
(0)(3), q̄qq(3), θ̄(1). The last term in the entropy

inequality
q̄qq ··· ḡgg
θ̄

− d
sσ̄σσ

(0) ::: D̄DD − sm̄mm
(0) :::

r
iΘ
s J̄JJ − am̄mm

(0) :::
r
iΘ
a J̄JJ ≤ 0 (3.149)

must be set to zero to ensure that (3.149) is not violated. Then, in addition to (3.139)-(3.148) we

must also satisfy

am̄mm
(0) :::

r
iΘ
a J̄JJ = 0 (3.150)

Hence equation (3.150) serves as a constraint on the mathematical model that must be satisfied

to guarantee that the entropy inequality is not violated. The final mathematical model consists of

equations (3.139)-(3.148), (3.150).
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Chapter 4

Finite element formulations for obtaining solutions of IVPs in

Lagrangian and Eulerian description

4.1 Introduction

The CBL and constitutive theories for solid and fluent continua have been presented in La-

grangian and Eulerian description. The finite element method is ideally suited for obtaining nu-

merical solutions of the IVPs described by these mathematical models. We could consider two

finite element methodologies: (i) space-time coupled methods (ii) space-time decoupled methods.

Both methods have their strengths and short comings. Space-time coupled methods maintain si-

multaneous dependence of all dependent variables on space and time. This is obviously needed

to support true physical evolution in IVPs. When minimally conforming spaces are used in space

and time, this approach permits calculation of solution error in terms of L2-norm of the residual

functional(s). In space-time decoupled methods, simultaneous dependence of dependent variables

on space and time is not maintained. One considers a discretization in space followed by integral

form in space using methods like GM/WF. In the local approximations, the approximation func-

tions are functions of space and the degrees of freedom are functions of time. Substitution of the

local approximation in the integral form for space decouples space and time and results in a system

of linear or nonlinear ODEs in time which are then integrated using direct, explicit or implicit time

integration methods. Decoupling of space and time is obviously contrary to true physics described

by the IVPs, hence results in approximation. For IVPs in R2 and R3, the space-time decoupled

finite element method with time integration is meritorious in avoiding complexities of space-time

coupled methods. In the following, we consider both space-time coupled and space-time decoupled
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finite element methods for the mathematical models in Lagrangian as well as Eulerian description.

4.2 Space-time coupled finite element method

In case of IVPs, the space-time differential operators are either linear or nonlinear but not

symmetric. In Lagrangian description, the CBL and constitutive theories considered yield linear

space-time differential operator. In case of Eulerian description the space-time differential operator

corresponding to the mathematical model is obviously nonlinear (primarily due to mathematical

description in deformed or current material coordinates). Since the space-time operator is not self

adjoint only space-time integral form based on space-time residual function (STRF) is space-time

variationally consistent and would yield unconditionally stable computational processes [91]. We

consider the mathematical models in Lagrangian and Eulerian description in the following, i.e.,

IVPs in Lagrangian and Eulerian description in the following.

4.2.1 IVPs in Lagrangian description

We consider CBL and constitutive theories in Lagrangian description. There are many choices

in casting the CBL and constitutive theories in various different differential forms. The basic

methodology of STRF based on integral forms is not effected by this choice. We consider the

following PDEs describing IVPs in Lagrangian description.

BLM:
ρ
0

∂2(u1)
∂t2

− ρ
0
F b
1 −

(
∂σ11

∂x1
+ ∂σ21

∂x2
+ ∂σ31

∂x3

)
= 0

ρ
0

∂2(u2)
∂t2

− ρ
0
F b
2 −

(
∂σ12

∂x1
+ ∂σ22

∂x2
+ ∂σ32

∂x3

)
= 0

ρ
0

∂2(u3)
∂t2

− ρ
0
F b
3 −

(
∂σ13

∂x1
+ ∂σ23

∂x2
+ ∂σ33

∂x3

)
= 0


(4.1)

BAM:
ΘI0ρ0

∂2(iΘ1)
∂t2

− 2(aσ23)−
(

∂m11

∂x1
+ ∂m21

∂x2
+ ∂m31

∂x3

)
= 0

ΘI0ρ0
∂2(iΘ2)

∂t2
− 2(aσ31)−

(
∂m12

∂x1
+ ∂m22

∂x2
+ ∂m32

∂x3

)
= 0

ΘI0ρ0
∂2(iΘ3)

∂t2
− 2(aσ12)−

(
∂m13

∂x1
+ ∂m23

∂x2
+ ∂m33

∂x3

)
= 0


(4.2)
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BMM:
ΘI0ρ0 (v2 (iω3)− v3 (iω2))− 2(am23) = 0

ΘI0ρ0 (v3 (iω1)− v1 (iω3))− 2(am31) = 0

ΘI0ρ0 (v1 (iω2)− v2 (iω1))− 2(am12) = 0


(4.3)

FLT: using e = cvθ, where cv is constant specific heat

ρ
0
cv
∂θ

∂t
+

(
∂q1
∂x1

+
∂q2
∂x2

+
∂q3
∂x3

)
−
(
e
sσσσ +d

sσσσ
)
:::

.
εεε−smmm :::

(
iΘ
s

.
JJJ
)
−ammm :::

(
iΘ
a

.
JJJ
)
= 0 (4.4)

{dσ} = [D]{ε}+ [C]{ .
ε} : voight’s notation (4.5)

smmm = 2µ
(
iΘ
s JJJ

)
(4.6)

q1

q2

q3

 = −k


∂θ/∂x1

∂θ/∂x2

∂θ/∂x3

 (4.7)

σσσ =sσσσ +aσσσ ; sσσσ =e
sσσσ +d

sσσσ ; e
sσσσ = p(ρ, θ)δδδ : equation of state (4.8)

mmm =smmm+ammm (4.9)

Equations (4.1)-(4.7) are a system of twenty five equations BLM(3), BAM(3), BMM(3), FLT(1),

constitutive theories for dσσσ(6), smmm(6), qqq(3) in twenty five dependent variables uuu(3), smmm(6),

ammm(3), θ(1), d
sσσσ(6), aσσσ(3), qqq(3). Equations (4.1)-(4.7) are valid ∀ (xxx, t) ∈ Ωxt = Ωx × Ωt.

We consider space-time strip [91] Ω̄(n)
xt = Ω̄x × [tn, tn−1]. Let

(
Ω̄

(n)
xt

)T
=
⋃
e

Ω̄e
xt be discretization

of Ω̄(n)
xt in which Ω̄

(e)
xt is p-version hierarchical space-time finite element. Let

{ϕe
h}T = [(u1)

e
h, (u2)

e
h, (u3)

e
h, (smmm)eh, (ammm)eh, (θ)

e
h, (

d
sσσσ)

e
h, (aσσσ)

e
h, (qqq)

e
h] (4.10)
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be local appropriation of uuu, smmm, ammm, θ, d
sσσσ, aσσσ, qqq. If Q(xxx, t) is a dependent variable then its

space-time local approximation over Ω̄(e)
xt is given by

Qe
h(xxx.t) = [N(xxx, t)]{δeQ} (4.11)

in which [N(xxx, t)] are space-time local approximation functions and {δeQ} are degrees of freedom.

Using (4.11), we can write the following local approximation for each dependent variable (equal

order, equal degree).

(u1)
e
h = [N(xxx, t)]{δeu1

}

(u2)
e
h = [N(xxx, t)]{δeu2

}

(u3)
e
h = [N(xxx, t)]{δeu3

}

(smmm)eh = [N(xxx, t)]{δe
smmm}

(ammm)eh = [N(xxx, t)]{δe
ammm}

(θ)eh = [N(xxx, t)]{δeθ}

(dsσσσ)
e
h = [N(xxx, t)]{δed

sσσσ
}

(aσσσ)
e
h = [N(xxx, t)]{δe

aσσσ}

(qqq)eh = [N(xxx, t)]{δeqqq}

(4.12)

We define (in the same order as in (4.10))

{δe}T =
[
{δeu1

}T , {δeu2
}T , {δeu3

}T , {δe
smmm}T , {δe

ammm}T , {δeθ}T , {δedsσσσ}
T , {δe

aσσσ}
T , {δeqqq}T

]
(4.13)

in which {δe} are total degrees of freedom for element ‘e’ with space-time domain Ω̄e
xt. We define

{δ} total degrees of freedom for
(
Ω̄

(n)
xt

)T
by

{δ} =
⋃
e

{δe} (4.14)
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When we substitute local approximation (4.12) in (4.1)-(4.7) we obtain twenty five residual func-

tions Ee
i ; i = 1, 2, . . . , 25. If we define (4.1)-(4.7) as

AAAϕϕϕ− fff = 0 ∀ (x, t) ∈ Ωxt (4.15)

in whichAAA is a 25×25 nonlinear differential operator matrix andϕϕϕ is a 25×1 vector of dependent

variables (as in (4.10)), then

EEE =AAAϕϕϕh − fff (4.16)

in which {ϕh} =
⋃
e

{ϕe
h} andEEE is a 25× 1 vector of residual functions corresponding to

(
Ω̄

(n)
xt

)T
.

The space-time residual functional I(ϕϕϕh) over
(
Ω̄

(n)
xt

)T
can be constructed :

I(ϕϕϕh) =
25∑
i=1

(Ei, Ei)(Ω̄(n)
xt )T

=
∑
e

(
25∑
i=1

(Ee
i , E

e
i )Ω̄e

xt
) (4.17)

when I(ϕϕϕh) is differentiable in ϕϕϕh, then δI(ϕϕϕh) is unique and δI(ϕϕϕh) = 0 is a necessary consid-

eration for an extremum of I(ϕϕϕh).

δI(ϕϕϕh) =
25∑
i=1

2(Ei, δEi)(Ω̄(n)
xt )T

= {g({δ})} =
∑
e

(
25∑
i=1

2 (Ee
i , δE

e
i )Ω̄e

xt
)

=
∑
e

{g({δe})} = 0

(4.18)

Since AAA is a nonlinear space-time differential operator, {g} in (4.18) is a nonlinear function of

{δ}, thus we must find a {δ} that satisfies (4.18) iteratively. We use Newton’s linear method with

line search [91]. Let {δ}0 be an assumed or starting solution in Newton’s linear method, then

{g({δ}0)} ≠ 0 (4.19)
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Let {∆δ} be a change in {δ}0 such that

{g({δ}0 + {∆δ})} = 0 (4.20)

Taylor series expansion of {g(·)} in (4.20) about {δ}0 and retaining only up to linear terms in

{∆δ} allows us to calculate {∆δ}

{∆δ} = −[δ{g}]−1
{δ}0{g({δ}0)} = −[δ2I]−1

{δ}0{g({δ}0)} (4.21)

Based on reference [91]

δ2I ≃
25∑
i=1

2(δEi, δEi)(Ω̄(n)
xt )T

=
∑
e

2(
25∑
i=1

(δEe
i , δE

e
i )Ω̄e

xt
(4.22)

An improved solution {δ} is obtained using line search [91]

{δ} = {δ}0 + α∗{∆δ} ; α∗ such that I({δ}) ≤ I({δ}0) (4.23)

We check for convergence of the Newton’s linear method.

If

|gi({δ})| ≤ ∆ (a preset tolerance for computed zero) (4.24)

then {δ} is the converged solution. If not we set {δ}0 to {δ} and repeat (4.21)-(4.24) until con-

verged.

Remarks

It is rather obvious that these 25 equations can be cast in reduced system by substituting d
sσσσ, smmm,

qqq from the constitutive theories in the balance laws. However the steps in STRF method described

above do not change.
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4.2.2 IVPs in Eulerian description

We consider conservation and balance laws in Eulerian description in velocities as observable

quantities. In this case also, there are many alternative choices for writing the balance laws in

different forms (by substituting constitutive theories), nonetheless the basic steps of STRF based on

integral form are not effected. We consider the following (expanded forms can be easily obtained).

We remove back subscript (0) for more clarity of equations.

CM
∂ρ̄

∂t
+ ∇̄∇∇ ··· (ρ̄v̄vv) = 0 (4.25)

BLM

ρ̄
∂v̄vv

∂t
+ ρ̄

(
v̄vv ··· ∇̄∇∇

)
v̄vv − ρ̄F̄FF

b − ∇̄∇∇ ··· σ̄σσ = 0 (4.26)

BAM

ΘĪ ρ̄

(
∂

∂t
(iω̄k) + v̄vv ··· ∇̄∇∇(iω̄k)

)
− ϵijkσ̄ij − m̄mk,m = 0 (4.27)

BMM

ϵjkl
ΘĪ ρ̄v̄j (iω̄k)− ϵjklm̄jk = 0 (4.28)

FLT (using ē = cvθ̄)

ρ̄

(
∂θ̄

∂t
+ v̄vv ··· ∇̄∇∇(θ̄)

)
+ ∇̄∇∇ ··· q̄qq − sσ̄σσ ::: D̄DD − sm̄mm :::

r
iΘ
s J̄JJ − am̄mm :::

r
iΘ
a J̄JJ = 0 (4.29)

and

d
sσ̄σσ = 2ηD̄DD + κ

(
trD̄DD
)
III

e
sσ̄σσ = p̄(ρ̄, θ̄)III ; p̄(ρ̄, θ̄) : equation of state

σ̄σσ =s σ̄σσ +a σ̄σσ, sσ̄σσ =e
s σ̄σσ +d

sσ̄σσ

(4.30)

sm̄mm = 2ηm

(
r
iΘ
s J̄JJ
)

(4.31)
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q̄qq = −kḡgg (4.32)

The mathematical model consists of 26 equations : CM(1), BLM(3), BAM(3), BMM(3), FLT(1),

constitutive theories for d
sσ̄σσ(6), sm̄mm(6), q̄qq(3) in twenty six variables ρ̄(1), v̄vv(3), sm̄mm(6), am̄mm(3), θ̄(1),

d
sσ̄σσ(6), aσ̄σσ(3), q̄qq(3). Equations (4.25)-(4.32) hold ∀ (x̄xx, t) ∈ Ωx̄t = Ωx̄ × Ωt. We consider a space-

time strip Ω̄
(n)
x̄t = Ω̄x̄ × [tn, tn+1] (see reference [91] for more details). Let Ω̄(n)

x̄t =
⋃
e

Ω̄e
x̄t in which

Ω̄e
x̄t is the space-time domain of a space-time element e. Let

{ϕ̄e
h}T = [(ρ̄eh), (ūuu)

e
h, (sm̄mm)eh, (am̄mm)eh, (θ)

e
h, (

d
sσ̄σσ)

e
h, (aσ̄σσ)

e
h, (q̄qq)

e
h] (4.33)

be local approximation of {ϕ̄}T = [ρ̄, v̄vv, (sm̄mm), (am̄mm), (θ̄), (dsσ̄σσ), (aσ̄σσ), (q̄qq)]. If Q̄(x̄xx, t) is a depen-

dent variable, then its space-time local approximation Q̄e
h(x̄xx, t) over Ω̄e

xt can be written as

Q̄e
h(x̄xx, t) = [N(x̄xx, t)]{δeQ} (4.34)

in which [N(x̄xx, t)] are space-time local approximation functions and {δeQ} are degrees of freedom.

Using (4.34) we can write local approximation for each dependent variable (equal order, equal
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degree)

ρ̄eh =[N(x̄xx, t)]{δeρ̄}

(v̄1)
e
h =[N(x̄xx, t)]{δev̄1}

(v̄2)
e
h =[N(x̄xx, t)]{δev̄2}

(v̄3)
e
h =[N(x̄xx, t)]{δev̄3}

(sm̄mm)eh =[N(x̄xx, t)]{δe
sm̄mm}

(am̄mm)eh =[N(x̄xx, t)]{δe
am̄mm}

(θ̄)eh =[N(x̄xx, t)]{δeθ̄}

(dsσ̄σσ)
e
h =[N(x̄xx, t)]{δed

sσ̄σσ
}

(aσ̄σσ)
e
h =[N(xxx, t)]{δe

aσ̄σσ}

(q̄qq)eh =[N(x̄xx, t)]{δeq̄qq}

(4.35)

We define degrees of freedom {δe} for an element ‘e’ using same order as in (4.33)

{δe}T =
[
{δeρ̄}T , {δev̄1}

T , {δev̄2}
T , {δev̄3}

T , {δe
sm̄mm}T , {δe

am̄mm}T , {δeθ̄}
T , {δed

sσ̄σσ
}T , {δe

aσ̄σσ}
T , {δeq̄qq}T

]
(4.36)

If {δ} are total degrees of freedom for
(
Ω̄

(n)
x̄t

)T
, then

{δ} =
⋃
e

{δe} (4.37)

LetAAAϕ̄ϕϕ − f̄ff = 0 ∀ (x̄xx, t) ∈
(
Ω

(n)
x̄t

)T
in whichAAA is a 26 × 26 nonlinear space-time differential

operator matrix and ϕ̄ϕϕ is a 26× 1 vector of dependent variables ((4.33)). Then

EEE =AAAϕ̄ϕϕh − f̄ff (4.38)
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where {ϕ̄h} =
⋃
e

ϕ̄e
h andEEE is a 26 × 1 vector of residual functions for

(
Ω̄

(n)
x̄t

)T
. The space-time

residual functional I(ϕ̄ϕϕ) over
(
Ω̄

(n)
x̄t

)T
can be constructed

I(ϕ̄ϕϕh) =
26∑
i=1

(Ei, Ei)(Ω̄(n)
x̄t )T

=
∑
e

(
26∑
i=1

(Ee
i , E

e
i )Ω̄e

x̄t
) (4.39)

when I(ϕ̄ϕϕh) is differentiable in ϕ̄ϕϕh, then δI(ϕ̄ϕϕh) is unique and

δI(ϕ̄ϕϕ) = 0 (4.40)

is a necessary condition for an extremum of I(ϕ̄ϕϕh).

δI(ϕ̄ϕϕh) =
26∑
i=1

2(Ei, δEi)(Ω̄(n)
x̄t )T

= {g({δ})} =
∑
e

(
26∑
i=1

2 (Ee
i , δE

e
i )Ω̄e

x̄t
)

=
∑
e

{g({δe})} = 0

(4.41)

sinceAAA is a nonlinear space-time differential operator, {g} in (4.41) is a nonlinear function of {δ},

thus we must find a {δ} that satisfies (4.41) iteratively. We use Newton’s linear method with line

search [91]. Let {δ}0 be an assumed or starting solution in Newton’s linear method, then

{g({δ}0)} ≠ 0 (4.42)

Let {∆δ} be a change in {δ}0 such that

{g({δ}0 + {∆δ}) = 0 (4.43)

Consider Taylor series expansion of {g(·)} in (4.43) about {δ}0 and retain only up to linear terms

in {∆δ}. This allows us to calculate {∆δ}.

{∆δ} = −[δ{g}]−1
{δ}0{g({δ}0)} = −[δ2I]−1

{δ}0{g({δ}0)} (4.44)
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Based on reference [91]

δ2I ≃
26∑
i=1

2(δEi, δEi)(Ω̄(n)
x̄t )T

=
∑
e

2(
26∑
i=1

(δEe
i , δE

e
i )Ω̄e

x̄t
(4.45)

and improved solution {δ} is calculated using line search

{δ} = {δ}0 + α∗{∆δ} ; α∗ such that I({δ}) ≤ I({δ}0) (4.46)

Next, we check for convergence of the Newton’s linear method. If

|gi({δ})| ≤ ∆ (a preset tolerance for computed zero) (4.47)

then {δ} is the converged solution from Newton’s linear method. Otherwise, we set {δ}0 = {δ}

and repeat (4.44)-(4.47) until converged.

Remarks

We note that in this case also, there are alternative ways to cast equations in the mathematical

model in different forms. This does influence global differentiability requirements but the basic

steps in STRF are not effected.

4.3 Space-time decoupled finite element method for IVPs

In this section, we consider space-time decoupled finite element process for the mathematical

models presented in sections 2.9 in Lagrangian and in section 3.9 in Eulerian description. In

space-time decoupled methods, we consider a discretization in space and consider integral form

of the IVPs over this discretization using GM/WF (generally) based on fundamental Lemma of

calculus of variations. Space and time are decoupled in local approximations over the elements

of this discretization using approximations in space and considering nodal degrees of freedom

as functions of time. When the approximations are substituted in the mathematical model, after
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integration in space and assembly of element expressions, we obtain ODEs in time in the degrees

of freedom and their time derivatives. These are integrated using direct, explicit or implicit time

integration methods.

4.3.1 IVPs in Lagrangian description

Consider the mathematical model in section 4.2.1. We consider space time decoupled finite

element formulation of each balance law and then subsequently put these all together as a system

of ODEs in time. We consider uuu, iΘΘΘ, ammm, aσσσ and θ as dependent variables in the mathematical

model consisting of CBL of CCM (in section 4.2.1). Let Ω̄T
x =

⋃
e

Ω̄e
x be the discretization of spatial

domain Ω̄x in which Ω̄e
x is the spatial domain of a p-version hierarchical finite element. If Q is a

dependent variable then local approximation of Q over Ω̄e
x in space-time decoupled finite element

method is given by

Qe
h(xxx, t) = [N(xxx)]{δeQ(t)} (4.48)

using (4.48) we can write equal order, equal degree local approximations uuue
h, iΘΘΘ

e
h, ammm

e
h, aσσσ

e
h and

θeh of uuu, iΘiΘiΘ, ammm, aσσσ
e
h and θ over Ω̄e

x. Let {δeuuu(t)}, {δe
iΘΘΘ
(t)}, {δe

ammm(t)}, {δe
aσσσ(t)}, {δeθ(t)} be the

nodal degrees of freedom associated with the local approximations. We consider each balance law.

BLM: If we substitute σσσ =s σσσ +aσσσ, sσσσ = e
sσσσ +d

sσσσ and the constitutive theory for d
sσσσ ((4.5)) in

BLM and multiply each equation by β1 = δ(u1)
e
h, β2 = δ(u2)

e
h, and β3 = δ(u3)

e
h, integrate over

Ω̄e
x and perform integration by parts once for the terms associated with the constitutive theory for

d
sσσσ, then we can obtain the following for (4.1)

[1M e]{
..
δ eu}+ [1Ce]{

.
δeu}+ [1Ke

u]{δeu}+ [1Ke
aσ]{δ

e
aσ} − {1f e

u} − {1P e
u} (4.49)

BAM: We use mmm =smmm +ammm and substitute constitutive theory for smmm in (4.2), multiply by

β4 = δ(iΘ1), β5 = δ(iΘ2) and β6 = δ(iΘ3), integrate over Ω̄e
x, perform integration by parts once
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for the terms containing second derivative of iΘ with respect to xi to obtain

[2M e]{
..
δ eΘ}+ [2Ke

aσ]{δ
e
aσ}+ [2Ke

Θ]{δeΘ}+ [2Ke
am]{δ

e
am} − {2f e

Θ} − {2P e
Θ} (4.50)

BMM: We multiply (4.3) by β7 = δ(am23)
e
h, β8 = δ(am31)

e
h, β9 = δ(am12)

e
h, integrate over Ω̄e

x to

obtain

[3Ke
Θ]{δeΘ}+ [3Ke

am]{δ
e
am} (4.51)

FLT: We multiply (4.4) by β10 = δΘe
h, substitute constitutive theory for qqq, and integrate over Ω̄e

x.

We transfer one order of differentiation to β10 from the terms containing gradients of Θ using

integration by parts to obtain

[4CΘ]{
.
δeΘ}+ [4He]{δeθ}+ [4Ce

u]{
.
δeu}+ [4Ce

Θ]{
.
δeΘ} − {4f e

θ} − {4P e
θ } (4.52)

The last set of equations are defined in terms of iΘΘΘ =∇∇∇×uuu. Multiply by β11 = δiΘ1, β12 = δiΘ2,

β13 = δiΘ3 and integrate over Ω̄e
x to obtain

[5Ke
Θ]{δeΘ}+ [5Ke

u]{δeu} (4.53)

Assembly of (4.49)-(4.53) for (Ω̄x)
T yields the following ODEs in time.

[1M ]{
..
δ u}+ [1C]{

.
δu}+ [1Ku]{δu}+ [1Kaσ]{δaσ} = {1fu}+ {1Pu} (4.54)

[2M ]{
..
δΘ}+ [2kaσ]{δaσ}+ [2KΘ]{δΘ}+ [2Kam]{δam} = {2fΘ}+ {2PΘ} (4.55)

[3KΘ]{δΘ}+ [3Kam]{δam} = 0 (4.56)

[4CΘ]{
.
δΘ}+ [4H]{δθ}+ [4Cu]{

.
δu}+ [4CΘ]{

.
δΘ} = {4fθ}+ {4Pθ} (4.57)

[5KΘ]{δΘ}+ [5Ku]{δu} = 0 (4.58)
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In which

{δu} =
⋃
e

{δeu} ; {
.
δu} =

⋃
e

{
.
δeu} ; . . . ; etc (4.59)

Equations (4.54)-(4.59) can be arranged as follows



[1M ] [0] [0] [0] [0]

[0] [2M ] [0] [0] [0]

[0] [0] [0] [0] [0]

[0] [0] [0] [0] [0]

[0] [0] [0] [0] [0]





{
..
δ u}

{
..
δΘ}

{
..
δ am}

{
..
δ aσ}

{
..
δ θ}


+



[1C] [0] [0] [0] [0]

[0] [2M ] [0] [0] [0]

[0] [0] [0] [0] [0]

[4Cu] [4CΘ] [0] [0] [4Cθ]

[0] [0] [0] [0] [0]





{
.
δu}

{
.
δΘ}

{
.
δam}

{
.
δaσ}

{
.
δθ}



+



[1Ku] [0] [0] [1Kaσ] [0]

[0] [2KΘ] [2Kam] [2Kaσ] [0]

[0] [3KΘ] [3Kam] [0] [0]

[0] [0] [0] [0] [4H]

[5Ku] [5KΘ] [0] [0] [0]





{δu}

{δΘ}

{δam}

{δaσ}

{δθ}


= {f}+ {P}

(4.60)

This is a system of second order ODEs in degrees of freedom {δ}. Determination of a complete

initial solutions using ICs is critical. We present details in the following.

(a) uuu and
.
uuu are known ICs hence {δu} and {

.
δu} are known

(b) All stresses and moments are zero (system at rest) other than those used to define BCs.

(c) FLT is first order ODE in θ hence θ i.e., {δθ} are known ICs.

(d) From (4.54) we can determine {
..
δ u}

(e) From (4.55) we can determine {
..
δΘ} as {δΘ} and {

.
δΘ} are known (zero due to initial condi-

tions on ΘΘΘ and
.
ΘΘΘ).

Thus, all degrees of freedoms and their time derivatives are known at the commencement of evo-

lution (t0 = 0).
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Remarks

(1) We can write (4.60) as

[M˜]{
..
δ}+ [C˜ ]{ .

δ}+ [K˜ ]{δ} = {P}+ {F} (4.61)

(2) Addition of [M˜], [C˜ ] and [K˜ ] leaves zero on the diagonal, hence in the time integration

methods pivoting is needed when solving linear equations.

(3) An alternative to (2) is to rearrange degrees of freedom in {δ}, hence {
.
δ} and {

..
δ}, such that

diagonals of [M˜] + [C˜ ] + [K˜ ] are not zero, thus avoiding use of pivoting.

(4) Equations (4.61) are a system of second order nonlinear ODEs in time. These can be inte-

grated in time with iterative methods to achieve converged solution for each increment of

time.

(5) Newmark’s linear acceleration method with Newton’s linear method for obtaining converged

solution for each time step can be used for time integration of (4.60).

4.3.2 IVPs in Eulerian description

Consider the mathematical model in section 4.2.2. Following the procedure similar to the one

described in section 4.3.1 we can obtain the following system of first order ODEs in time for

Ω̄T
x̄ =

⋃
e

Ω̄e
x̄.

CM

[1Mρ̄]{
.
δρ̄}+ [1Kv̄]{δv̄} = 0 (4.62)

BLM

[2Mv̄]{
.
δv̄}+ [2Kv̄]{δv̄}+ [2Kaσ̄]{δaσ̄} = {2f}+ {2P} (4.63)

78



BAM

[3Mω̄]{
.
δω̄}+ [3Kω̄]{δω̄}+ [3Kaσ̄]{δaσ̄}+ [3Kam̄]{δam̄} = {3f}+ {3P} (4.64)

BMM

[4Kω̄]{δω̄}+ [4Kam̄]{δam̄} = 0 (4.65)

FLT

[5C]{
.
δθ̄}+ [5H]{δθ̄}+ [5Kv̄]{δv̄}+ [5Kam̄]{δam̄} = 0 (4.66)

and

[6Kω̄]{δω̄}+ [6Kv̄]{δv̄} = 0 (4.67)

using

{δ}T =
[
{δρ̄}T , {δv̄vv}T , {δω̄ωω}T , {δam̄mm}T , {δaσ̄σσ}T , {δθ̄}T

]
(4.68)

using (4.68), (4.62)-(4.67) can be written as

[C˜ ]{ .
δ}+ [K˜ ]{δ} = {f}+ {P}

This is a system of first order nonlinear ODEs in time. Determination of total solution for all de-

grees of freedom and their derivatives using ICs follows a procedure similar to one described for

IVPs in Lagrangian description except that in this case the ODEs are first order (see reference [91]).

These can be integrated using implicit time integration methods. Newmark method based on linear

{
.
δ} for t ∈ [tn, tn+∆t] with newton’s linear method for each linear step is a possible time integra-

tion method.
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Chapter 5

Model problems

In this section, we consider model problems for micropolar solid and fluid media. Model

problems are intentionally kept simple so that significant features of micropolar aspects in the

presence of rotational inertial physics can be demonstrated.

5.1 Translational and rotational waves in micropolar solids

The objective of this study is to demonstrate existence of pure rotational waves in micropo-

lar solids with rotational inertial physics. Just like in classical continuum mechanics (CCM) we

can show existence, propagation, reflection and interaction of translational (stress) waves, in case

of micropolar solids with rotational inertial physics we can additionally show existence, propaga-

tion, reflection and interaction of rotational (moment) waves. That is, in micropolar solids with

rotational inertial physics, translational and rotational waves coexist. In the following study we

consider purely one dimensional case of BLM and BAM. In the studies presented here, we show

that BLM permits translational waves where as BAM with rotational inertial physics permits pure

rotational waves.

Mathematical models

One dimensional form of BLM and BAM with rotational inertial physics (equations (2.118)

and (2.119) from complete mathematical model (2.118)-(2.125),(2.127)) for small strain small

deformation and the associated constitutive theories for thermoviscoelastic (without memory) mi-
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cropolar solid with dissipation mechanism due to rate of strain (CCM) and due to rate of symmetric

part of the rotation gradient tensor are given by (in the absence of body forces, body moments, ini-

tial stress and equilibrium Cauchy stress, thus σ11 = sσ11 =
d
sσ11 and using x for x1)

ρ
0

∂2u1
∂t2

− ∂(dsσ11)

∂x
= 0 (5.1)

ΘI0ρ0
∂2(iΘ1)

∂t2
− ∂(sm11)

∂x
= 0 (5.2)

d
sσ11 = (2µ+ λ)

∂u1
∂x

+ (2η + κ)
∂

∂t

(
∂u1
∂x

)
(5.3)

sm11 = (α1)
∂(iΘ1)

∂x
+ (α2)

∂

∂t

(
∂(iΘ1)

∂x

)
α1 = µm , α2 = ηm (5.4)

Substituting (5.3) in (5.1) and (5.4) in (5.2) we obtain

ρ
0

∂2u1
∂t2

− (2µ+ λ)
∂2u1
∂x2

− (2η + κ)
∂

∂t

(
∂2u1
∂x2

)
= 0 (5.5)

ΘI0ρ0
∂2(iΘ1)

∂t2
− (α1)

∂2(iΘ1)

∂x2
− (α2)

∂

∂t

(
∂2(iΘ1)

∂x2

)
= 0 (5.6)

for 1D case and for incompressible physics 2µ + λ = E, modulus of elasticity, as Poison’s ratio

ν = 0 and κ = 0, hence (5.6) reduces to (but (5.6) remains same).

ρ
0

∂2u1
∂t2

− E
∂2u1
∂x2

− 2η
∂

∂t

(
∂2u1
∂x2

)
= 0 (5.7)

ΘI0ρ0
∂2(iΘ1)

∂t2
− (α1)

∂2(iΘ1)

∂x2
− (α2)

∂

∂t

(
∂2(iΘ1)

∂x2

)
= 0 (5.8)

Remarks

1. Equation (5.7) describes translational or d
sσ11 stress wave in a viscous elastic medium. In

the absence of the last term in (5.7), (5.7) represents translational waves in inviscid elastic

medium. Dissipation (last term in (5.7)) results in amplitude decay and base elongation.
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2. Equation (5.8) is analogous to equation (5.7) and can be obtained b replacing u1, ρ0 , E, and

2η in (5.7) by iΘ1, ΘI0ρ0 , α1 and α2. Thus, (5.8) describes rotational waves i.e., moment

(sm11) wave. The third term in (5.8) is due to micropolar dissipation physics which would

result in amplitude decay and base elongation of sm11 rotational wave.

3. We note the lack of coupling between (5.7) and (5.8) due to zero antisymmetric part of the

deviatoric Cauchy stress. This is not the case in 2D and 3D applications.

4. Presence of (5.7) and (5.8) confirm coexistence of translational and rotational waves in mi-

cropolar elastic solids.

Dimensionless form of the mathematical model

We first nondimensionalize (5.7) and (5.8) before presenting their solutions. We write (5.7) and

(5.8) with hat (∧) on all quantities indicating that all quantities have their usual dimensions (units)

ρ̂
0

∂2û1

∂t̂2
− Ê

∂2û1
∂x̂2

− 2η̂
∂

∂t̂

(
∂2û1
∂x̂2

)
= 0 (5.9)

Θ̂I0 ρ̂0
∂2(iΘ̂1)

∂t̂2
− (α̂1)

∂2(iΘ̂1)

∂x̂2
− (α̂2)

∂

∂t̂

(
∂2(iΘ̂1)

∂x̂2

)
= 0 (5.10)

We note that in general the speed of translational wave is different than the speed of rotational

wave. However, since in this case (5.9) and (5.10) are decoupled, it is possible to nondimen-

sionalize (5.9) and (5.10) such that in the dimensionless domain the speed of prorogation of both

translation and rotational waves is unity. Obviously in 2D and 3D cases it is not possible to do so.

We present details in the following.

BLM: Model TW1

Choosing L0, η0, (ρ0 )ref , t0, v0 = L0/t0 =
√

E0

ρ
0

and E0 = (ρ
0
)refv

2
0 as reference quantities in
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which v0 is the speed of translational wave (speed of sound in CCM).

ρ
0

∂2u1
∂t2

− E
E0

(ρ
0
)refv20

∂2u1
∂x2

− 2η

Re

∂

∂t

(
∂2u1
∂x2

)
= 0 (5.11)

where 1/Re = η0
L0(ρ0 )refv0

, Reynolds number. If we choose (ρ
0
)ref = ρ̂

0
, E0 = Ê = (ρ

0
)refv

2
0 and

Cd =
2η
Re

as damping coefficient, then (5.11) can be reduced to

∂2u1
∂t2

− ∂2u1
∂x2

− cd
∂

∂t

(
∂2u1
∂x2

)
= 0 (5.12)

In (5.12), the dimensionless speed of sound (based on reference quantities) in an inviscid medium

is unity. We use (5.12) in the numerical studies.

BAM: Using speed of rotational waves as reference velocity : Model RW1

In this case, when nondimensionalizing BAM we choose speed of rotational wave as reference

velocity. We also choose some of the same reference quantities as in BLM except we choose

(ΘI0)ref , (α1)0, (α2)0, ω0 =
√

(α1)0/(ΘI0)ref (ρ0 )ref and t0 = L0/ω0, (α1)0 = (ΘI0)ref (ρ0 )refω
2
0 ,

then (5.10) can be written as

ΘI0ρ0
∂2(iΘ1)

∂t2
− (α1)

(α1)0
(ΘI0)ref (ρ0 )refω

2
0

∂2(iΘ1)

∂x2
− (α2)

1

Re∗
∂

∂t

(
∂2(iΘ1)

∂x2

)
= 0 (5.13)

If (ΘI0)ref = Θ̂I0 , (ρ
0
)ref = (ρ̂

0
), then (5.13) can be reduced to

∂2(iΘ1)

∂t2
− ∂2(iΘ1)

∂x2
− (α2)

Re∗
∂

∂t

(
∂2(iΘ1)

∂x2

)
= 0 (5.14)

in which Re∗ =
(ΘI0 )ref (ρ0 )refω0L0

(α2)0
is the Reynolds number associated with dissipation due to mi-

cropolar physics. If we define c∗d = α2

Re∗
as the dissipation coefficient due to micropolar physics,
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then (5.14) can be written as

∂2(iΘ1)

∂t2
− ∂2(iΘ1)

∂x2
− c∗d

∂

∂t

(
∂2(iΘ1)

∂x2

)
= 0 (5.15)

Equation (5.12) and (5.15) are the simplified dimensionless forms of BLM and BAM describing

translational and rotational waves in the presence of dissipation mechanisms. In the numerical

studies we use equations (5.12) and (5.15).

BAM: Using translation wave speed as reference velocity : Model RW2

In this case we choose

v0 =

√
E0

(ρ
0
)ref

t0 =
L0

v0

 (5.16)

using these reference values we can nondimensionalize (5.10) as follows.

ΘI0ρ0
∂2(iΘ1)

∂t2
− (α1)

(α1)0
(ΘI0)ref (ρ0 )refv

2
0

∂2(iΘ1)

∂x2

− (α2)
(α2)0

(ΘI0)ref (ρ0 )refL0v0

∂

∂t

(
∂2(iΘ1)

∂x2

)
= 0 (5.17)

If we choose (ΘI0)ref = Θ̂I0 , (ρ
0
)ref = ρ̂

0
and define

α∗
1 =

(α1)0/2
(ΘI0)ref (ρ0 )refv

2
0

, c∗d =
α2

Re∗
, 1/Re∗ =

(α2)0
ΘI0)ref (ρ0 )refL0v0

then (5.17) can be reduced to

∂2(iΘ1)

∂t2
− α∗

1

∂2(iΘ1)

∂x2
− c∗d

∂

∂t

(
∂2(iΘ1)

∂x2

)
= 0 (5.18)

In this case the speed of dimensionless rotational wave is
√
α∗
1 which may not be unity. We use
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(5.18) in the numerical studies.

Remarks

1. We consider (5.12), (5.15) and (5.18) for presenting numerical studies.

2. Numerical studies are presented using space-time coupled finite element method based on

space-time residual functional for a space-time strip with time marching [91] in which space-

time local approximation for a space-time element are p-version hierarchical with higher

order global differentiability in space and time.

3. We recast (5.12), (5.15) and (5.18) as a system of first order PDEs for convenience of defining

BCs and ICs.

First order system of PDEs

Translational (or stress) waves (Model TW1)

We recast (5.12) as follows

∂v1
∂t

−
∂
(
d
sσ11

)
∂x

= 0

d
sσ11 −

∂u1
∂x

− cd
∂v1
∂x

= 0

v1 −
∂u1
∂t

= 0


(5.19)

Rotational (or moment) waves (Model RW1)

We recast (5.15) as
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∂ (iω1)

∂t
− ∂(sm11)

∂x
= 0

sm11 −
∂(iΘ1)

∂x
− c∗d

∂(iω1)

∂x
= 0

iω1 −
∂(iΘ1)

∂t
= 0


(5.20)

Rotational (or moment) waves (Model RW2)

∂(iω1)

∂t
− ∂(sm11)

∂x

sm11 − α∗
1

∂(iΘ1)

∂x
− c∗d

∂(iω1)

∂x
= 0

iω1 −
∂(iΘ1)

∂t
= 0


(5.21)

Numerical studies

Evolutions are computed for models TW1, RW1 and RW2 using space-time coupled finite ele-

ment method for a space-time strip with time marching [91]. The space-time local approximation

for a space-time element is p-version hierarchical with higher order global differentiability in space

and time. Discretizations, p-levels and the minimally confirming spaces are chosen such that for

each space-time strip the space-time residual functional for the discretization is O(10−8) or lower

ensuring that PDEs are satisfied accurately by the computed solution. In the present studies we

choose a uniform mesh of 30, nine node p-version hierarchical finite elements with p-levels of 9 in

space and time for all elements of the space-time strip. We choose local approximations in space

and time of class C11.

A time increment of ∆t = 0.1 is used in all computations. The solution is computed for the

first space-time strip (0 ≤ t ≤ ∆t) and then time marched to obtain evolution for desired value
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of τ (final value of time). Since all evolutions considered here are smooth, choice of solutions of

class C11 in space and time suffices. For this choice of the order of the approximation space, the

space-time integrals for the discretization of the space-time strip are Riemann. The 30 element

uniform discretization with p-levels of 9 for space and time and k = 2 for both space and time,

yield space-time residual functional values for each space-time strip of the order O(10−8) or lower

during the entire evolution, confirming good accuracy of the computed solution. In the following,

we present computed evolutions for: translation wave using Model TW1 and rotations wave using

Models TR1 and TR2.

Figure 1 shows schematic, space-time domain Ω̄xt, discretization Ω̄T
xt =

⋃
e Ω̄

(e)
xt of the space

time domain into space-time strips, discretization (Ω̄
(1)
xt )

T =
⋃

e Ω̄
(e)
xt of the first space-time strip

Ω̄
(1)
xt and the details of stress d

sσ11 boundary conditions (for TW1) applied to the last space-time

element face at x = 1. In the numerical studies, we choose negative σ0 (compressive) for the

applied pulse at x = 1. The details of applying BC at x = L for mathematical models RW1 and

RW2 are similar.

Translational wave : Model TW1

We consider mathematical model TW1. Evolution is computed for 30 time steps for the un-

damped case, cd = 0 using space-time coupled finite element formulation based on space-time

residual functional. Since in this case, the speed of wave propagation is one, in ten time steps

with ∆t = 0.1, the applied pulse at x = 1 reaches the impermeable boundary at x = 0. Due to

zero damping, we expect the applied pulse shape to be preserved during evolution. Figure 2(a)

shows a plot of d
sσ11 versus x for various values of time. Time steps 2, 6, 10 show the incident

compressive pulse entering the spatial domain at x = L and propagating without amplitude decay

or base elongation confirming the absence of numerical dispersion. At the 10th time step the com-

pressive pulse is precisely at x = 0 as expected. Reflection of the compressive incident pulse at
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the impermeable boundary (at x = 0) results in reflected compressive pulse at the 11th time step

with double the peak value. Upon further evolution the reflected compressive pulse recovers its

peak and base at the 12th time step (not shown). At the 14th time step, we see reflected pulse with

the same amplitude and base as the original incident pulse propagating toward the right end. At

the 20th time step the reflected compressive pulse reaches the free boundary at x = L = 1 and

reflects as a tensile pulse of the same amplitude and base as the original incident pulse propagating

towards the boundary at x = 0 (time steps 23 and 28 in figure 2(a)).

In the next study for TW1, we consider dimensionless damping coefficient cd = 0.002. Figure

2(b) shows evolution of d
sσ11 versus x for time steps 2, 6, 10; 11, 14, 18; 23 and 28 (same as in

figure 2(a) for the undamped case). In the incident pulse, amplitude decays and the base elongates

during propagation (time steps 2, 6, 10). During reflection (time step 11), the magnitude of the

pulse increases but recovers upon further evolution (time step 14). The reflected pulse reaches the

free boundary and reflection from the free boundary results in a tensile pulse that propagates to the

left. We observe the amplitude decay is more pronounced in the propagating incident pulse. The

reflected pulses also shows some amplitude decay, but the base elongation in the reflected pulse is

more pronounced. All evolutions are smooth i.e., free of oscillations. Integrated sum of squares of

the space-time residual functional are of the order of O(10−8) or lower for each space-time strip

ensuring that the computed solution is accurate. Choice of k = 2 (order of the approximation

space in space and time) is minimally conforming for the first order system of PDEs, hence all

space-time integrals for
(
Ω̄

(i)
xt

)T
, discretization of space-time strip Ω̄

(i)
xt are Riemann. The space-

time residual functional of the orderO(10−8) ensures that the PDEs are satisfied in point wise sense

over each space-time strip discretization Ω̄
(i)
xt , hence good time accuracy of the evolution is ensured.

Rotational wave : Model RW1

We consider mathematical model RW1 defined by equations (5.20). In this case, the equations
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are nondimensionalized using the speed of rotational wave, hence the dimensionless speed of the

rotational wave is one. In the first study, we apply moment pulse i.e., sm11 pulse of time duration

2∆t (similar to d
sσ11 shown in figure 1(e)). We choose p-levels of 9 in space and time, ∆t = 0.1

and order k of the approximation space in space and time is chosen to be 2, which is minimally

confirming for a first order system of PDEs. We choose peak values of sm11 = −1. Evolution

is computed using space-time strip with time marching, Integral form in space-time finite element

process is based on space-time residual functional. Figure 3(a) shows the evolution for c∗d = 0

(undamped case). Incident moment pulse propagates towards the impermeable boundary without

amplitude decay and base elongation. Upon reflection at x = 0, the peak amplitude doubles dur-

ing reflection but the pulse recovers to the original shape in the 12th time steps and continues to

propagate toward the free boundary. Reflection from the free boundary results in tensile moment

pulse of the same shape as original incident compressive moment pulse that continues to propagate

toward the impermeable boundary at x = 0.

Figure 3(b) shows the propagation, reflection and propagation upon reflection of the same com-

pressive sm11 pulse as in figure 3(a) but in the presence of dissipation. We choose dimensionless

dissipation coefficient cd∗ = 0.002. From figure 3(b) we observe almost the same behavior of the

moment pulse as that of d
sσ11 pulse in figure 2(b). Presence of dissipation resulting in continued

amplitude decay and base elongation during the propagation. Amplitude decay is more pronounced

for the incident pulse and the base elongation is more significant in the reflected pulse.

Rotational Wave : Model RW2

In this study, we consider mathematical model RW3, equations (5.21). In this mathematical

model rotational wave speed is
√
α∗
1 and the dissipation is controlled by the dimensionless dissi-

pation coefficient c∗d. We apply a moment (sm11) pulse of duration 2∆t at the boundary x = L = 1.
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In the first study, we choose ∆t = 0.1, α∗
1 = 2.25 and c∗d = 0 (undamped case). The wave

speed is
√
2.25 = 1.5, thus the pulse would reach x = 0 boundary in (1/1.5)/0.1 = 6.67 time

steps. Figure 4(a) show propagation and reflection of the moment pulse. Figure 4(b) show prop-

agation and reflection of the moment pulse for α∗
1 = 2.25 i.e., at the wave speed of 1.5 when

c∗d = 0.002. Diminished amplitudes and elongated base of the pulse is clearly observed during

evolution. This is similar to RW1 (c∗d = 0.002). In the next study, we apply the same moment

pulse as in the previous study but choose α∗
1 = 0.49 and c∗d = 0, hence rotational wave speed of

√
0.49 = 0.7, thus the moment pulse will reach the boundary at x = 0 in (1/0.7)/0.1 = 14.285

time steps. Figure 5(a) and 5(b) show propagation and reflection of the moment wave for c∗d = 0

and c∗d = 0.002. The undamped pulse (c∗d = 0) maintains its base and amplitude during the entire

evolution and when c∗d = 0.002 progressive amplitude decay and base elongation of the pulse is

observed for both values of α∗
1. We remark that when the rotational wave speed is one, we are able

to precisely locate the pulse at the impermeable boundary as the time to reach the impermeable

boundary is integer multiple of ∆t. In this case, we see perfect reflection of the sm11 pulse at the

11th time step and the peak value of sm11 doubles, same as in the case of the translational stress

wave. However, when rotational wave speed is not an integer multiple of ∆t, precise arrival of

sm11 pulse at x = 0 cannot be simulated as elapsed time is always an integer multiple of ∆t. For

this reason, we are not able to observe 2 (sm11) in the peak values during the reflection process of

the undamped case (figures 4(a) and 5(a)) when the rotational speed is not one.

Remarks

1. In the model problem studies presented here the translational and rotational waves are de-

coupled. In R2 and R3 this may not be the case. Since the stress tensor is a function of

[dsJ ] and the moment tensor is a function of [daJ ], both stress and moment tensor waves are

dependent on gradients of displacement. Thus, in R2 and R3 we expect interaction between

the two waves. That is, as shown here, rotational waves depend upon α̂1 and ΘĪ which in

turn influences [dJ ], thus [dsJ ], hence influencing translational waves. The model problem
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studies in R2 and R3 are needed to illustrate this physics.

2. The medium with and without microconstituents is always considered isotropic and homoge-

neous. Thus, in this micropolar theory there is absence of wave dispersion in the micropolar

medium as it is considered to be isotropic and homogeneous. This micropolar theory can

only simulate wave propagation physics of translational and rotational waves and their inter-

action (when it exists) in R2 and R3 (future work).
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time strip, Boundary conditions

92



-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

d
s

�

1
1

x

   (2, 6, 10)
       (11, 14, 18)

 (23, 28)

(a) Undamped case (cd = 0)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

d
s

�

1
1

x

   (2, 6, 10)
       (11, 14, 18)

 (23, 28)

(b) Damped case (cd = 0.002)

Figure 2: Evolution of deviatoric stress wave : d
sσ11 versus position x (Model TW1)
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(b) Damped case (c∗d = 0.002)

Figure 3: Evolution of Cauchy Moment wave : sm11 versus position x (Model RW1)

94



-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

s
m

1
1

x

  (2, 5, 7)
      (8, 11, 13)

  (16, 19)

(a) Undamped case (c∗d = 0)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

s
m

1
1

x

  (2, 5, 7)
      (8, 11, 13)

  (16, 19)

(b) Damped case (c∗d = 0.002)

Figure 4: Evolution of Cauchy Moment wave : sm11 versus position x (Model RW2 : α∗ = 2.25)
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(b) Damped case (c∗d = 0.002)

Figure 5: Evolution of Cauchy Moment wave : sm11 versus position x (Model RW2 : α∗ = 0.49)
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5.2 Micropolar viscous fluids : Rotational inertial physics

The objective of the model problem studies presented in this section is to demonstrate the

influence of rotational inertial physics in micropolar fluids in which NCCT is based on internal

rotation rate physics.

5.2.1 Rotational waves in fluids?

It is well known that in classical or micropolar viscous fluids, translational deviatoric stress

waves can not exist due to the absence of elasticity. In this study, we only consider balance of an-

gular momenta in 1D and associated constitutive theories to investigate the influence of rotational

inertial physics.

Mathematical model

The one dimensional form of BAM and the constitutive theory for the Cauchy moment tensor

are given by (using x̄ for x̄1).

ΘĪ ρ̄
∂ (iω̄1)

∂t
− ∂ (sm̄11)

∂x̄
= 0 (5.22)

sm̄11 = ᾱ1

(
1

2

∂ (iω̄1)

∂x̄

)
(5.23)

Substituting (5.23) in (5.22)

ΘĪ ρ̄
∂ (iω̄1)

∂t
− ᾱ1

2

(
∂2 (iω̄1)

∂x̄2

)
= 0 (5.24)

Remarks

1. We clearly see that this equation (5.24) will not permit a moment (sm̄11) wave as it is not a

wave equation due to the absence of ∂2(iω̄1)
∂t2

in place of ∂(iω̄1)
∂t

.

2. However it is interesting to study its solution for varying ΘĪ values.
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Dimensionless form of the mathematical model

Recasting (5.24) with hat (∧) on all quantities indicating that they have their usual dimensions

(or units)

Θˆ̄I ˆ̄ρ
∂
(
i ˆ̄ω1

)
∂t̂

−
ˆ̄α1

2

(
∂2
(
i ˆ̄ω1

)
∂ ˆ̄x2

)
= 0 (5.25)

and using
ΘĪ = Θˆ̄I/ΘI0 , ρ̄ = ˆ̄ρ/ρ

0
, x̄ = ˆ̄x/L0

iω̄1 = i ˆ̄ω1/ω0 , t0 = L0/ω0 ,

and ω0 =
√

(α1)0/ΘI0ρ0 , ᾱ1 = ˆ̄α1/(α1)0


(5.26)

We can write (5.25) as

ΘĪ ρ̄
∂ (iω̄1)

∂t
−
( ᾱ1

2

) (α1)0
L0

ΘI0ρ0

(
∂2 (iω̄1)

∂x̄2

)
= 0 (5.27)

If we choose ΘI0 =
Θˆ̄I , ρ

0
= ˆ̄ρ and (α1)0 = ˆ̄α1 then (5.27) can be reduced to

∂ (iω̄1)

∂t
− c̄2

(
∂2 (iω̄1)

∂x̄2

)
= 0 (5.28)

in which c̄2 =
(
ˆ̄α1

)
/
(
2L0

Θˆ̄I ˆ̄ρ
)

, dimensionless dissipation coefficient. PDE (5.28) can be cast as

a system of two first order PDEs by using moment sm̄11 as auxiliary variable and we have

∂ (iω̄1)

∂t
− ∂ (sm̄11)

∂x̄
= 0

sm̄11 = c̄2
∂(iω̄1)

∂x̄

 (5.29)

PDEs in (5.29) are helpful in defining BCs and ICs, hence are used in the computations.
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Numerical Studies

We consider mathematical model (5.28) or (5.29). It is evident (5.28) is not a wave equation as

a wave equation must have second order spatial and second order time derivatives of the dependent

variable. Thus, (5.28) can not describe a wave, which is not a surprise, because classical as well

as micropolar fluids do not possess elasticity, hence do not have stiffness, thus they cannot support

deviatoric Cauchy stress wave or Cauchy moment wave.

Equation (5.28) is in fact a time dependent diffusion equation in which c̄2 ∝ 1
ΘĪ

is the diffusion

coefficient. Thus low values of ΘĪ correspond to high values of c̄2 and vice versa. Details of the

schematic, space-time strips and discretization of a space-time strip remain the same as shown

in figure 1. We apply a negative sm̄11 moment pulse of duration 2∆t on the boundary at x̄ = 1

such that sm̄11 ∈ [0,−1] ∀ t ∈ [0,∆t] ; sm̄11 ∈ [−1, 0] ∀ t ∈ [∆t, 2∆t] and sm̄11 = 0 for

t ≥ 2∆t (similar to BC shown in figure 1(e)). We choose a discretization of 30 nine node p-version

hierarchical space-time elements with p-levels of nine in space and time. Evolution is computed for

30 time steps using ∆t = 0.1 with local approximation of class C11 in space and time, We choose

two values of c̄2 = 0.0001, 0.001. Evolutions for different values of time for the two choices of c̄2

are shown in figure 6(a) and (b). For both values of c̄2, the applied pulse progressively diffuses as

time elapses. We observe significantly high diffusion of the applied moment pulse for c̄2 = 0.001

compared to c̄2 = 0.0001 as expected. We clearly observe lack of existence and propagation of

rotational or moment waves due to lack of elasticity, demonstrating that rotational waves can not

exist in micropolar fluids with rotational inertial physics.
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Figure 6: Cauchy Moment sm̄11 versus position x̄
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5.2.2 Developing pressure driven flow between parallel plates and developing Couette flow

In this study, we consider developing pressure driven flow between parallel plates and develop-

ing Couette flow in which the mathematical models are based on: CCM, NCCM without rotational

inertial physics and NCCM with rotational inertial physics. Only the micropolar non-classical con-

tinuum theory based on internal rotation rates is considered [81]. Figure 7 shows a schematic of

the dimensionless configuration of parallel plates.

C

A B

ȳ

x̄

ū H = 1

fixed plate

fixed or moving

(a) schematic of spatial domain of parallel plates

Figure 7: Spatial domain for pressure driven and Couette flow

Away from the the ends A and B, the physics of the flow is purely one dimensional (in the ȳ

direction) velocity ū is a dependent variable, velocity v̄ in the ȳ direction is zero regardless of the

type of mathematical model hence, Cauchy shear stress is the only non-zero stress (details are given

in the following). We present details of three mathematical models (as mentioned above): based

on CCM, NCCM without rotational inertial physics and NCCM with rotational inertial physics.

We nondimensionalize these mathematical models using the following reference quantities and di-

mensionless quantities.
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x̄ = ˆ̄x/L0 , ȳ = ˆ̄y/L0 , η̄ = ˆ̄η/η0 , ᾱ = ˆ̄α/α0

m̄
(0)
23 = ˆ̄m

(0)
23 /m0 , d

sσ̄
(0)
21 = d

s
ˆ̄σ
(0)
21 /τ0 , aσ̄

(0)
21 = a ˆ̄σ

(0)
21 /τ0

m0 = τ0L0 , τ0 = ρ
0
v20 = p0 (characteristic kinetic energy)

ū = ˆ̄u/v0 , v̄ = ˆ̄v/v0 , t0 = L0/v0

iω̄3 = i ˆ̄ω3/ω0 , ω0 = t0 , ΘĪ = Θˆ̄I/ΘI0


(5.30)

Mathematical model based on CCM : Model A

Balance of linear momenta in the x̄ direction and the constitutive theory for deviatoric Cauchy

stress dσ̄
(0)
12 = dσ̄

(0)
21 are the only two equations needed in this case and are given in the following

(with usual dimensions for all quantities) for incompressible classical fluid.

ˆ̄ρ
∂ ˆ̄u

∂t̂
+
∂ ˆ̄p

∂ ˆ̄x
−
∂
(
d
s
ˆ̄σ
(0)
21

)
∂ ˆ̄y

= 0

d
s
ˆ̄σ
(0)
21 = ˆ̄η

∂ ˆ̄u

∂ ˆ̄y

 (5.31)

we can nondimensionalize (5.31) using (5.30) and if we choose ρ
0
= ˆ̄ρ, η0 = ˆ̄η, then the dimen-

sionless form of (5.31) can be written as

∂ū

∂t
+
∂p̄

∂x̄
−
∂
(
d
sσ̄

(0)
21

)
∂ȳ

= 0

d
sσ̄

(0)
21 =

1

Re

∂ū

∂ȳ

 (5.32)

In case of pressure driven flow, ∂p̄
∂x̄

is given. For non-pressure driven Couette flow, ∂p̄
∂x̄

= 0. In

(5.32), Re is Reynolds number and is given by (based on reference quantities) Re =
L0ρ0 v0

η0
. Equa-

tion (5.32) is a first order system of two PDEs in two dependent variables ū and d
sσ̄

(0)
21 . In this case,
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flow characteristics depend upon dimensionless parameter Re.

Micropolar NCCT without rotational inertial physics : Model B

In this case, the mathematical model consists of BLM in x̄ direction, balance of angular mo-

menta about the z̄ direction, constitutive theory for symmetric part of deviatoric Cauchy shear

stress d
sσ̄

(0)
12 = d

sσ̄
(0)
21 , constitutive theory for symmetric Cauchy moment sm̄23 and definition of

angular rotation rate iω̄3 i.e., rotation rate about z̄. We can write the following (with their usual

dimensions) using the CBL and the constitutive theories given for R3 by equations (3.139)-(3.150),

in the absence of body forces and body moments.

ˆ̄ρ
∂ ˆ̄u

∂t̂
+
∂ ˆ̄p

∂x̄
−
∂
(
d
s
ˆ̄σ
(0)
21

)
∂ ˆ̄y

−
∂
(
d
a
ˆ̄σ
(0)
21

)
∂ ˆ̄y

= 0

∂
(
s ˆ̄m

(0)
23

)
∂ ˆ̄y

+ 2
(
d
a
ˆ̄σ
(0)
21

)
= 0

d
s
ˆ̄σ
(0)
12 = d

s
ˆ̄σ
(0)
21 = ˆ̄η

∂ ˆ̄u

∂ ˆ̄y

s ˆ̄m
(0)
23 =

ˆ̄α

2

∂
(
i ˆ̄ω3

)
∂ȳ

i ˆ̄ω3 = −1

2

∂ ˆ̄u

∂ ˆ̄y



(5.33)

We can nondimensionalize (5.33) using (5.30), and if we choose ΘI0 = Θ ˆ̄I , ρ0 = ˆ̄ρ, η0 = ˆ̄η, then
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(5.33) can be written as

ρ̄
∂ū

∂t
+
∂p̄

∂x̄
−
∂
(
d
sσ̄

(0)
21

)
∂ȳ

−
∂
(
d
aσ̄

(0)
21

)
∂ȳ

= 0

∂
(
sm̄

(0)
23

)
∂ȳ

+ 2
(
d
aσ̄

(0)
21

)
= 0

d
sσ̄

(0)
12 = d

sσ̄
(0)
21 =

1

Re

∂ū

∂ȳ

sm̄
(0)
23 =

ᾱ

2

∂ (iω̄3)

∂ȳ

iω̄3 = −1

2

∂ū

∂ȳ



(5.34)

in which ᾱ =
(
ˆ̄α/τ0L

2
0t0
)
, dimensionless material coefficient for micropolar non-classical physics.

Equations (5.34) is a system of five first order PDEs in five dependent variables: ū, d
sσ̄

(0)
21 , d

aσ̄
(0)
21 ,

sm̄
(0)
23 and iω̄3. Dimensionless parameters Re and ᾱ control classical physics and micropolar non-

classical physics.

Micropolar NCCT with rotational inertial physics : Model C

The mathematical model consists of BLM in x̄ direction, BAM about z̄ direction, BMM bal-

ance law, constitutive theory for symmetric part of the deviatoric Cauchy shear stress d
sσ̄

(0)
12 = d

sσ̄
(0)
21 ,

constitutive theory for symmetric Cauchy moment sm̄
(0)
23 , definition of angular rotation rate iω̄3 and

the constraint equations resulting from the entropy inequality. Using the mathematical model in

R3 (equations (3.139)-(3.150)) and noting that in this case v̄ = 0, w̄ = 0, we can write the follow-

ing for CBL and constitutive theories (in the absence of body forces and body moments) and the
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constraint equation

ˆ̄ρ
∂ ˆ̄u

∂t̂
+
∂ ˆ̄p

∂x̄
−
∂
(
d
s
ˆ̄σ
(0)
21

)
∂ ˆ̄y

−
∂
(
d
a
ˆ̄σ
(0)
21

)
∂ ˆ̄y

= 0

ˆ̄ρ
(
Θˆ̄I
)(∂ (i ˆ̄ω3

)
∂t̂

)
−
∂
(
s ˆ̄m

(0)
23

)
∂ ˆ̄y

−
∂
(
a ˆ̄m

(0)
23

)
∂ ˆ̄y

+ 2
(
d
a
ˆ̄σ
(0)
21

)
= 0

d
s
ˆ̄σ
(0)
12 = d

s
ˆ̄σ
(0)
21 = ˆ̄η

∂ ˆ̄u

∂ ˆ̄y

s ˆ̄m
(0)
23 =

ˆ̄α

2

∂
(
i ˆ̄ω3

)
∂ȳ

i ˆ̄ω3 = −1

2

∂ ˆ̄u

∂ ˆ̄y



(5.35)

Θˆ̄I ˆ̄v
(
i ˆ̄ω3

)
− s ˆ̄m

(0)
23 − a ˆ̄m

(0)
23 = 0 (BMM when v̄ ̸= 0) (5.36)

s ˆ̄m
(0)
23

(
i ˆ̄ω3

)
= 0 (constraint equation) (5.37)

When v̄ = 0 (which is the case here), BMM (5.36) reduces to

s ˆ̄m23 + a ˆ̄m23 = 0 (5.38)

Equation (5.38) suggests that a ˆ̄m
(0)
23 = −s ˆ̄m

(0)
23 or the nonsymmetric moment tensor ˆ̄m

(0)
23 is zero,

implying no micropolar physics. This of course is erroneous, hence in this case (5.38) cannot

be used as part of the mathematical model. The constraint equation (5.37) implies that either

s ˆ̄m
(0)
23 = 0 or i ˆ̄ω3 = 0 for all x̄, t ∈ Ω̄xt. This also is erroneous, thus (5.36) and (5.37) cannot be

considered as a part of the mathematical model, thus equations (5.35) constitutes the mathematical

model. We can nondimensionalize (5.35) using (5.30), and if we choose ΘI0 =
Θ ˆ̄I , ρ0 = ˆ̄ρ, η0 = ˆ̄η,
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then we can obtain the following from (5.35).

ρ̄
∂ū

∂t
+
∂p̄

∂x̄
−
∂
(
d
sσ̄

(0)
21

)
∂ȳ

−
∂
(
d
aσ̄

(0)
21

)
∂ȳ

= 0

β̄
∂ (iω̄3)

∂t
−
∂
(
sm̄

(0)
23

)
∂ȳ

+ 2
(
d
aσ̄

(0)
21

)
= 0

d
sσ̄

(0)
12 = d

sσ̄
(0)
21 =

1

Re

∂ū

∂ȳ

sm̄
(0)
23 =

ᾱ

2

∂ (iω̄3)

∂ȳ

iω̄3 = −1

2

∂ū

∂ȳ



(5.39)

These are a system of five first order PDEs in five dependent variables: ū, d
sσ̄

(0)
21 , d

aσ̄
(0)
21 , sm̄

(0)
23 and

iω̄3. Re, ᾱ and β̄ control classical physics, non-classical physics without rotational inertial effects

and non-classical physics with rotational inertia effects, respectively. In (5.39), ᾱ and β̄ are defined

as ᾱ =
(
ˆ̄α/τ0L

2
0t0
)

and β̄ = ΘI0/L
2
0.

Numerical studies

We consider two model problems in this section: developing flow between parallel plates and

developing Couette flow. In both model problems, we compute solutions for Model A (CCM);

Model B, NCCM with micropolar physics but absence of rotational inertial physics; and Model

C, micropolar NCCM with rotational inertial physics. In Model A (CCM), the only dimensionless

parameter is Re which controls the flow physics. In case of Model B, Re for CCM and ᾱ for

micropolar physics control the flow physics. In case of Model C, Re, ᾱ1 and β̄1 all three control

the physics. β̄1 is associated with rotational inertial physics. For both model problem studies we

present evolutions for different combinations of ᾱ and β̄ for a fixed Re to illustrate their influence

on flow physics. Computed solutions for Model B and C are always compared with Model A.

We recall that many works published by Surana et. al [86, 88] show that in micropolar NCCT
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presence of micro constituents offer resistance to flow i.e., increasing value of ᾱ results in di-

minishing flow rate. Material coefficient β̄, due to rotational inertial physics, related to rotational

inertial physics due to microconstituents is also expected provide further resistance to flow over

and beyond ᾱ. In other words, we expect increasing ᾱ as well as increasing β̄ to provide increas-

ing resistance to flow. Since the constitutive theories are not calibrated, we do not know actual

values of ᾱ and β̄ for various fluids with varying microconstituents. In the model problem studies

presented here, we choose ᾱ and β̄ such that we can demonstrate their relative influence on flow

physics.

Developing flow between parallel plates

Figure 8 shows schematic, space-time strips and a uniform discretization of first space-time

strip using 10 p-version hierarchical space-time finite elements. We consider solution of class C00

in space and time with p-level of nine in space and time,Re = 100 with ∆t = 1.0. Flow is pressure

driven with ∂p̄
∂x̄

= −0.1.

Case I

In the first study we choose

Model A (CCM), Re = 100

Model B (NCCM), Re = 100; ᾱ = 0.0001, 0.001.

Figures 9(a)-(d) show plots of the evolution of velocity ū for t = 5∆t, 10∆t, 20∆t and 40∆t for

Models A and B. In case of Model A (CCM) the flow has no resistance due to microconstituents.

In model B, with progressively increasing ᾱ the flow resistance increases resulting in diminishing

flow rate. This holds true for each value of time t. At t = 40∆t, we almost have stationary state of

the developing flow. Significant reduction in flow rate with increasing ᾱ is also obvious from the

stationary state in figure 9(d). In CCM, rotation rates are a free field, hence they do not influence
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CCT. Figure 10(a) shows evolution of iω̄3 versus ȳ for Model A (CCM). At t = 40∆t, we almost

have stationary sate at which ∂(iω̄3)
∂ȳ

= constant. Since iω̄3 is a free field, sm̄23 = 0, shown in

figure 10(b). Figures 10(c) and (d) show evolution of iω̄3 versus ȳ and sm̄23 versus ȳ for Model B

for ᾱ = 0.001. Comparison of these evolutions with those in figures 10(a) and(b) clearly shows

the influence of microconstituents on iω̄3 and sm̄23 as in this case iω̄3 is not a free field, hence sm̄23

is no longer zero.

Case II

In this study we consider the influence of both ᾱ and β̄ for fixed Reynolds number. We consider

the following

Model A (CCM), Re = 100 (same as in Case I)

Model C (NCCM with rotational inertial physics),

Re = 100 (same as in Case I)

ᾱ = 0.0001

ᾱ = 0.001

 β̄ = 0.05, 0.9

Discretization, p-levels and other details remain the same as in case I. Figures 11(a)-(d) and figures

12(a)-(d) show plots of velocity ū versus ȳ for ᾱ = 0.0001, 0.001, β̄ = 0.05; and ᾱ = 0.0001,

0.001, β̄ = 0.9. As we mentioned earlier both ᾱ and β̄ result in resistance to the flow but we expect

that the degree of resistance is not the same for ᾱ and β̄ with similar change in their value. When

comparing figures 11(a)-(d) with figures 9(a)-(d) we note that for same values of ᾱ as in figures

9(a)-(d) but with β̄ = 0, we observe further reduction in the flow rate when β̄ = 0.05. For β̄ = 0.9

(figures 12(a)-(d)) flow rate is further reduced compared to β̄ = 0.05.

Case III
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In this study we consider fixed Re = 100, choose a fixed value of α = 0.01 and vary β̄ to study

evolution of velocity ū. We choose ∆t = 1.0 and β̄ = 0.05, 0.2 and 0.5. Remaining details are

same as in case I. Figures 13(a)-(d) show plots of ū versus ȳ for t = 5∆t, 10∆t, 20∆t and 40∆t.

At t = 40∆t we almost have stationary state of the flow. As expected, larger values of β̄ offer

more resistance to flow and requires more time to reach stationary state and vice versa. We note

that stationary state is same for all β̄ values. Figures 14(a) and (b) show evolution of iω̄3 versus ȳ

and sm̄23 versus ȳ (case II) for Re = 100, ᾱ = 0.001 and β̄ = 0.9. Comparing this with figures

10(c) and (d) (ᾱ = 0.001, β̄ = 0.0), we clearly note reduced values of iω̄3 during the evolution

for β̄ = 0.9 in figure 14(a), Cauchy moment sm̄23 adjusts accordingly. This of course is due to

increased resistance to flow due to β̄.

Developing Couette flow

The configuration of parallel plates and other details remain the same as in figure 8. We choose

Re = 5 in all studies. A 10 element uniform mesh with p-levels of nine in space and time and

a solution of class C00 with ∆t = 0.01 is considered. At the top plate (ȳ = 1.0) a velocity of

1.0 is applied over ∆t in a continuous and differentiable manner i.e., ū ∈ [0, 1] ∀ t ∈ [0,∆t] and

u = 1.0 ∀ t ≥ ∆t.

Case A

Model A (CCM) : Re = 5

Model B (NCCM) : Re = 5 ; ᾱ = 0.0001, 0.001

Figure 15(a)-(c) show evolution of ū versus ȳ at t = 2∆t, 5∆t and 10∆t. For each value of

time the velocity ū for both ᾱ values is lower than from Model A (CCM) as expected. Furthermore,

higher values of ᾱ yield lower values of velocity ū compared to lower values of ᾱ during the entire

evolution, demonstrating increasing resistance to flow with increasing value of ᾱ during the entire
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evolution.

Case B

In case B we present two studies. In the first study, we choose

Model A (CCM) : Re = 5

Model C (NCCM) : Re = 5; ᾱ = 0.01, 0.1; β̄ = 0.05, 0.2

Computations are performed using the same mesh and other details as in case A. Figure 16 (a),

(b) and (c), (d) show plots of evolution of ū versus ȳ at t = 5∆t and t = 20∆t for β̄ = 0.05 and

β̄ = 0.2 for both values of ᾱ in each case. Once again, combination of higher values of ᾱ and β̄

result in more reduction in the velocity due to higher resistance to flow. Velocities for β̄ = 0.2 are

lower than those for β̄ = 0.05 for both values of ᾱ.

In the second study, we choose a fixed ᾱ = 0.1 and vary β̄ = 0.1, 0.2, 0.3. Figure 17 (a) and

(b) shows evolution of ū versus ȳ at t = ∆t and t = 5∆t. Progressively increasing values of β̄

results in progressively reduced values of velocity ū. Figure 18(a)-(c) show evolution of iω̄3 versus

ȳ for: Model A, CCM (Re = 5); Model B, NCCM (Re = 5, ᾱ = 0.001) and Model C, NCCM

(Re = 5, ᾱ = 0.001 and β̄ = 0.05). Corresponding sm̄23 versus ȳ graphs are shown in figures

19(a)-(c). In figures 18(a) and (b) we clearly observe the change in iω̄3 free field due to micropolar

physics. In figure 18(c), we observe further reduction and change in iω̄3 due to β̄ = 0.05. Evo-

lution of sm̄23 versus ȳ follows a trend opposite to iω̄3 i.e., ᾱ ̸= 0 introduces nonzero sm̄23 and

introduction of β̄ further changes evolution of existing nonzero sm̄23 due to only ᾱ.

Remarks

1. In this work, ᾱ and β̄ are two parameters related to the micropolar physics. We have seen in

the model problem studies that both offer increasing resistance to flow with their increasing

values.
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2. Model problem studies show that resistance to flow due to β̄ (ΘĪ and ρ̄ combined) is more

pronounced compared to ᾱ.

3. Parameters ᾱ and ΘĪ are properties of the micropolar medium controlled by the microcon-

stituents, but the manner in which they exert their influence on flow physics is different. The

parameter ᾱ is a measure of the collective resistance offered to the flow by each microcon-

stituents. Whereas ΘĪ appears as ΘĪ ρ̄, suggesting that it is a volumetric or mass effect through

angular acceleration. Thus ΘĪ ρ̄ is the collective influence of a group of microconstituents in

a unit volume and perhaps provides a better explanation of why β̄ is more influential than ᾱ.
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ū

plate

x̄

plate

H = 1

(a) Schematic of parallel plates

t

0

t = tn

t = tn−1

t = 0

nth space-time strip

First space-time strip

Last space-time strip

t = t1 = ∆t

ȳ
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ȳ

Fi
gu

re
11

:D
ev

el
op

in
g

flo
w

be
tw

ee
n

pa
ra

lle
lp

la
te

s
:v

el
oc

ity
ū

ve
rs

us
po

si
tio

n
ȳ
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ȳ

Fi
gu

re
12

:D
ev

el
op

in
g

flo
w

be
tw

ee
n

pa
ra

lle
lp

la
te

s
:v

el
oc

ity
ū
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 0

 0.2

 0.4

 0.6

 0.8

 1

-0.01 -0.008 -0.006 -0.004 -0.002  0  0.002  0.004

NCCM

α
_

=0.001
β
_

=0.9

y_

sm
_

23

t=∆t
t=5∆t

t=20∆t
t=40∆t

(b) sm̄23 versus ȳ

Figure 14: Developing flow between parallel plates : iω̄3 and sm̄23 versus ȳ : ᾱ = 0.001, β̄ = 0.9
: Model B (Case II)

118



 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

-0
.2

 0
 0

.2
 0

.4
 0

.6
 0

.8
 1

y
_

u_

t=
2

∆
t

C
C

M

α_
=

0
.0

0
0

1
α_

=
0

.0
0

1

(a
)
ū
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(b) ū versus ȳ

Figure 17: Developing Couette flow : velocity ū versus position ȳ : (Case B, second study)
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ȳ

 0

 0
.2

 0
.4

 0
.6

 0
.8 1

-1
4

-1
2

-1
0

-8
-6

-4
-2

 0

N
C

C
M

α_
=

0
.0

0
0

1

y
_

iω_
3

t=
∆

t
t=

5
∆

t
t=

1
0

∆
t

t=
2

0
∆

t
t=

1
0

0
∆

t

(b
)

iω̄
3

ve
rs

us
ȳ
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ȳ

:M
od

el
s

A
,B

an
d

C

122



 0

 0
.2

 0
.4

 0
.6

 0
.8 1

-0
.5

 0
 0

.5
 1

 1
.5

 2
 2

.5
 3

C
C

M
t=

[∆
t,

1
0

0
∆

t]

y
_

sm_
2

3

(a
)

s
m̄

2
3
ve

rs
us

ȳ
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Chapter 6

Summary and conclusions

This work considers micropolar non-classical continuum theories in the presence of rotational

inertial physics for solid as well as fluid media. Derivation of CBL and the constitutive theories

based on entropy inequality and representation theorem are given. Model problem studies are also

presented for micropolar solid and fluid media using the present micropolar NCCT with rotational

inertial physics.

In the first part of this work, the conservation and balance laws of non-classical continuum

mechanics [87, 95] incorporating internal rotations due to displacement gradient tensor dJJJ at a

material point are considered for solid continua. In the evolution of a volume of matter the time

dependent rotations (referred to as internal rotations arising due to dJJJ ) and their rates naturally vary

between the material points, thus creating their gradients, angular velocities and angular accelera-

tions at material points. Resistance offered by the microconstituents to these results in moments,

angular momentum and rotational inertial effects. In this work, the conservation and balance laws

of references [87,95] are rederived in Lagrangian description to account for the new physics due to

angular velocities and angular accelerations. This work considers homogeneous, isotropic matter

and small strain, small deformation physics in the presence of microconstituents.

In the second part of this work, conservation and balance laws of non-classical continuum

mechanics with internal rotation rate physics [86, 88] and the constitutive theories for thermovis-

cous fluent continua are rederived by incorporating rotational inertia effects. In the evolution of

deforming fluent continua, when the time varying rotation rates (angular velocities) and angular

accelerations are resisted by the microconstituents, moments, angular momentum and angular in-

ertial effects are realized. The work presents complete derivation of CBL and the constitutive
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theories in the presence of internal rotation rates due to L̄LL and rotational inertial effects. This work

considers homogeneous and isotropic thermoviscous fluent continua. We summarize the work and

draw some conclusions in the following.

1. As in most non-classical continuum theories, in this work also, the Cauchy stress tensor is

not symmetric.

2. In the non-classical continuum theories for solid continua [87, 95] as well as fluent continua

incorporating internal rotation rates [86, 88], the Cauchy moment tensor is symmetric as a

consequence of the balance of moment of moments balance law [82, 96]. In the present

work, in the presence of rotational inertial physics, BMM balance law does not establish

symmetry of the Cauchy moment tensor for solid as well as fluent continua, instead it yields

three additional equations containing ammm, necessary to satisfy the entropy inequality.

3. In the CBL presented here for NCCM with internal rotation rates and rotational inertial

effects, BAM balance law is not just a relationship between the gradients of the Cauchy mo-

ment tensor and the skew symmetric Cauchy stress tensor, but contains additional rotational

inertial effects.

4. Constitutive variables are established using SLT (in conjunction with other balance laws) and

their argument tensors are determined using the conjugate pairs in the entropy inequality as

well as the principle of equipresence.

5. It is shown that for micropolar solids, constitutive theories are needed only for sσσσ, smmm and

qqq and based on Surana et. al [97] and there can not be a constitutive theory for ammm. Thus,

tr([am][iΘa
.
J ]) = 0 must serve as a constraint equation to unconditionally satisfy the entropy

inequality. This is an additional equation in the mathematical model.

6. It is shown that for micropolar fluids, constitutive theories are needed only for (0)
e σ̄σσ,

(0)
d σ̄σσ,

(0)
s m̄mm

and q̄qq. Based on Surana et. al [82] there cannot be a constitutive theory for (0)
a m̄mm, thus,

(0)
a m̄mm :::

r
iΘ
a

.
J̄JJ = 0 must serve as a constraint equation in the mathematical model consisting of
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CBL and constitutive theories to satisfy the entropy inequality for all arbitrary but admissible
r
iΘ
a J̄JJ .

7. Constitutive theories for sσσσ and smmm can be derived using representation theorem if we as-

sume isothermal physics and equilibrium stress to be zero. These constitutive theories will

be the same as those derived using representation theorem (in the absence of dissipation).

The generators in the two approaches remain same, but the material coefficients do not have

dependence on the same invariants. When the constitutive theories for sσσσ and smmm are de-

rived using Φ, the material coefficients can be functions of the invariants of εεε and iΘ
sJJJ as well

as θ in a known configuration. When using representation theorem, the material coefficients

for sσσσ are only a function of the invariants of εεε and θ in a known configuration, likewise

the material coefficients for smmm are only a function of the invariants of iΘ
sJJJ and θ in a known

configuration.

8. Constitutive theory for (0)
e σ̄σσ, the equilibrium Cauchy stress tensor is derived using Helmholtz

free energy density Φ̄ for compressible thermoviscous fluent continua. The constitutive the-

ories for (0)
d σ̄σσ and (0)

s m̄mm are derived using representation theorem.

9. Constitutive theory for qqq or q̄qq is derived using representation theorem. It is shown that the

constitutive theory for qqq or q̄qq based on integrity is cubic in the temperature gradients.

10. BAM when compared with BLM containing the physics of translational waves clearly shows

the existence of rotational waves. While translational waves are Cauchy stress waves, the

rotational waves are Cauchy moment waves.

11. Since the internal rotations are due to d
aJJJ in dJJJ = d

sJJJ + d
aJJJ . The stress waves are due

to physics in d
sJJJ and the rotational waves are due to physics in d

aJJJ , thus these two waves

coexist. But, the rotational waves can not exist without the translational waves as d
sJJJ has to

be present for d
aJJJ to exist.

12. The mathematical model presented in this work based on the conservation and balance laws
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of NCCM incorporating internal rotations due to d
aJJJ , their rates and rotational inertial physics

of continua has closure.

13. We observe that since dJJJ exists in all deforming solid continua, d
sJJJ and d

aJJJ also exist in all

deforming solid continua. Thus, existence of rotational waves is natural if deforming solid

continua offer rotational inertial resistance.

14. Unlike micropolar solid continua, micropolar NCCT for fluids shows that in this case neither

translational nor rotational waves can exist due to absence of elasticity or stiffness due to ab-

sence of strain physics in both CCT as well as NCCT. Thus, in fluent continua only pressure

waves can be realized.

15. It is shown that NCCM with internal rotation rate physics also results in rate of entropy

production due to (0)
s m̄mm :::

r
iΘ
s

.
J̄JJ that differs in the absence and presence of rotational iner-

tial effects. We also have rate of entropy production due to (0)
dsσ̄σσ ::: D̄DD. Both mechanisms

of entropy production exist in compressible as well as incompressible fluent continua. In

high pressure, high temperature compressible flow physics (with or without shocks) accu-

rate determination of rate of entropy production is important as it controls shock formation,

shock structure and shock relations (in general, isolated high gradient physics of dependent

variables).

16. The NCCM work proposed here with internal rotation rates and rotational inertial physics

may be a more realistic approach to describing the flow physics at high pressures and high

temperatures that may result in severe change in state of matter that is critically influenced

by the rate of entropy production.

17. We have considered the mathematical models of chapters 2 and 3 with rotational inertial

physics to construct model problems (IVPs) and present their solutions using space-time

coupled finite element method. The model problems are intentionally kept simple so that

significant aspects of the micropolar physics due to microconstituents and in particular in-
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fluence of rotational inertial physics can be demonstrated clearly.

18. The solutions of the model problems (IVPs) are obtained by using space-time coupled finite

element method based on space-time residual functional for a space-time strip with time

marching. The space-time local approximation are p-version hierarchical in space and time

with higher order global differentiability in space and time. In this approach, with the choice

of minimally confirming spaces, when the space-time residual functional for a space-time

strip is O(10−8) or lower, PDEs in the IVPs are satisfied accurately, hence the computed

evolutions are almost time accurate.

19. In the present work, we consider micropolar NCCT with dissipation mechanisms due to :

strain rate (CCM) and due to rate of symmetric part of internal rotational gradient tensor

(micropolar non-classical dissipation). While the strain rate dissipation (CCT) is viscous,

the nonviscous dissipation mechanisms in micropolar NCCT is due to microconstituents and

the fluid medium.

20. From the one dimensional numerical studies presented for translational and rotational waves

in micropolar solid medium using Models TW1, RW1 and RW2 we observe:

(a) Existence and propagation of translational wave (CCM) in the absence and in the pres-

ence of strain rate dissipation. The translational wave propagates, reflects, the reflected

wave propagates and reflects from the free boundary without amplitude decay and base

elongation when the medium is inviscid. The same phenomenon exists in the presence

of damping but with continued amplitude decay and base elongation during evolution.

Amplitude decay is most pronounced for the incident wave where as base elongation is

more prominent in the reflected waves.

(b) In the case of Model RW1, in which the rotational wave speed is one, the evolution of

rotational wave physics is exactly same as in Model TW1.

(c) Model RW2 permits the choice of wave speed. Studies for wave speed faster than one
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and slower than one with and without dissipation are presented. In 2D and 3D appli-

cations choice of t0 using v0/L0 or iω0/L0 permits translational wave speed of one or

rotational wave speed of one, but both wave speeds cannot be one. In this study, we

show that wave speed different than one only influences when the propagating wave

reaches the boundaries. The studies conclusively demonstrate that rotational inertial

physics in micropolar solids is essential for the existence of rotational waves in mi-

cropolar solids.

(d) In the studies presented here, rotational and translational waves are decoupled but coex-

ist. In R2 and R3 this is not the case. Since translational waves depend upon gradients

of displacements in [dsJ ] and the rotational waves depend upon the gradients of dis-

placements in [daJ ], both [dsJ ] and [daJ ] being due to [J ], we expect coupling in the two

in R2 and R3.

(e) Both micropolar and non-micropolar media are assumed isotropic and homogeneous,

thus this micropolar theory can not simulate wave dispersion in micropolar media due

to microconstituents. This theory can only simulate the influence of micropolar physics

on wave propagation physics without dispersion.

21. In the case of micropolar fluid, neither translational nor rotational waves exist. The 1D form

of BAM in this case is a time dependent diffusion equation. Two numerical studies are

presented for two values of diffusion coefficient. From the studies, we clearly see higher

values of the diffusion coefficient result in faster diffusion of the applied pulse.

22. Numerical studies presented for pressure driven developing flow between parallel plates

show:

(a) Micropolar physics with increasing ᾱ (β̄ = 0) results in progressively increasing re-

sistance to flow and progressively decreasing flow rate. This holds during the entire

evolution for each value of time.
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(b) We have shown that β̄, which controls rotational inertial physics, also offers resistance

to flow. Increasing values of β̄ results in decreasing flow rate.

(c) Thus, in micropolar fluids with both ᾱ and β̄, the resulting flow rate is decreased.

Since the constitutive model is not calibrated their relative influence on the flow rate

is difficult to ascertain. Based on the values of ᾱ and β̄ used, β̄ influences flow rate

more than ᾱ. Both ᾱ and β̄ offer resistance to flow but the physics of the resistance

mechanisms is different in the two cases.

(d) The significance of these studies is that we can conclusively see that rotational in-

ertial physics in micropolar non-classical continuum theories for fluids offers further

resistance to the motion of the fluids over and beyond rotation rates or rotation rate

gradients, thus reducing velocities and flow rates.

23. Numerical studies presented for Couette flow confirms the findings reported in item (9).

24. Presence of rotational inertial physics in fluids only offers added resistance to fluid motion. It

can not possibly result in rotational waves as micropolar fluids have no elasticity associated

with micropolar physics. In the case of micropolar fluids, BAM is not a wave equation in

rotation rate.

25. Evolution of iω̄3 versus ȳ and sm̄23 versus ȳ (figures 10(a) and (b)) for Model A (CCM) and

their comparison with similar evolution when ᾱ = 0.001 (β̄ = 0.0) i.e., model B shown in

figures 10(c) and (d) and those for ᾱ = 0.001 and β̄ = 0.9 in figures 14(a) and (b) clearly

demonstrate how the free field iω̄3 and zero sm̄23 in figures 10(a) and (b) are effected by

the presence of microconstituents without and with rotational inertial physics. These studies

show that increasing ᾱ (β̄ = 0.0) reduces iω̄3 field due to resistance offered by the micro-

constituents. When both ᾱ and β̄ are nonzero, resistance offered by the microconstituents

increases resulting in further reduction in iω̄3 field. The consequences of reducing iω̄3 field

is increase in sm̄23 as shown in the graphs.
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Appendix A

Notation and Measures in Lagrangian and Eulerian Description

Notations

In the following we present notations used in this dissertation, some of which are different from

what is commonly used in continuum mechanics, and provide details on the measures of rotations,

rotation rates and their gradients for solid continua in Lagrangian description and Eulerian descrip-

tion for fluids. We only consider internal rotations, their rates and gradients at a material point, i.e.,

Cosserat rotations are not considered.

Following reference [97] quantities with an over-bar are quantities in the current (deformed)

configuration, i.e., all quantities with over-bar are functions of coordinates x̄i and time t (Eulerian

description). Quantities without an over-bar are quantities referring to the reference configuration,

i.e., these are functions of undeformed coordinates xi and time t (Lagrangian description). Thus,

xi and x̄i are coordinates of the same material point in the reference and current configurations,

respectively, both measured in a fixed Cartesian x-frame. The configuration at time t = t0 = 0,

commencement of evolution, is considered as the reference configuration. Thus, xi and x̄i are co-

ordinates of the same material point in the reference and current configurations, respectively, both

measured in a fixed Cartesian x-frame. Further xxx, AAA, V, ∂AAA, ∂V refer to material point coordi-

nates (in a fixed Cartesian frame), area, volume, boundary ofAAA and the surface bounding V, all in

the reference or undeformed configuration, whereas x̄xx, ĀAA, V̄ , ∂ĀAA, ∂V̄ are their counterparts in the

current configuration. QQQ =QQQ(xxx, t) and Q̄QQ = Q̄QQ(x̄xx, t) are Lagrangian and Eulerian descriptions of

a quantityQQQ at a material point xxx in the reference configuration with its corresponding location x̄xx

in the current configuration.
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Deformation Gradient, Internal Rotation and Rotation gradient Tensors

Consider the deformation gradient tensor or the Jacobian of deformation defined by JJJ =

eeei ⊗ eeej ∂x̄j

∂xi
. The rows are the covariant base vectors, whereas in Murnaghan’s notation [J ] =[

∂{x̄}
∂{x}

]
=
[
x̄1,x̄2,x̄3

x1,x2,x3

]
, the columns are the covariant base vectors, i.e., in this definition [J ] is the

transpose of JJJ in the first definition. Both definitions are obviously covariant measures in the La-

grangian description. Likewise, J̄JJ = eeei⊗eeej ∂xj

∂x̄i
and [J̄ ] =

[
∂{x}
∂{x̄}

]
=
[
x1,x2,x3

x̄1,x̄2,x̄3

]
are also deformation

gradient tensors or Jacobians of deformation but they are a contravariant measure in the Eulerian

description. Columns of J̄JJ are the contravariant base vectors whereas in case of [J̄ ] its rows are

the contravariant base vectors, i.e., J̄JJ is transpose of [J̄ ]. In this paper we only use referential

description, hence we only need to consider JJJ or [J ]. In the remaining paper, we consider [J ] and

[J̄ ] notation due to Murnaghan. Since the work presented in this paper only considers small strain

and small deformation, the distinction between covariant and contravariant measures disappears as

x̄i ≃ xi, i.e., the deformed configuration is not substantially different from the undeformed config-

uration. For both deformation measures, det[J ] = det[J̄ ] ∼= 1.

The displacement gradient tensor is defined as

[dJ ] =
∂{u}
∂{x}

=

[
u1, u2, u3
x1, x2, x3

]
=



∂u1
∂x1

∂u1
∂x2

∂u1
∂x3

∂u2
∂x1

∂u2
∂x2

∂u2
∂x3

∂u3
∂x1

∂u3
∂x2

∂u3
∂x3


(6.1)

The Cauchy stress tensor is used as a measure of stress because the deformed and undeformed

tetrahedron can be treated the same for small deformation. Since x̄i ≃ xi, the conservation and

balance laws only need to consider [dJ ] instead of [J ]. Consideration of [dJ ] in its entirety implies

that [dsJ ] and [daJ ] both are to be considered in the conservation and balance laws. The displacement
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gradient [dJ ] can be written in component form as

dJij =
1

2
(ui,j + uj,i) +

1

2
(ui,j − uj,i) =

d
sJij +

d
aJij (6.2)

in which

[daJ ] =
1

2


0 −iΘx3 iΘx2

iΘx3 0 −iΘx1

−iΘx2 iΘx1 0

 (6.3)

Rotations iΘx1, iΘx2, iΘx3 are referred to as internal rotations at a material point and are defined

by

∇∇∇×uuu = eeei × eeej
∂uj
∂xi

= ϵijk eeek
∂uj
∂xi

(6.4)

∇∇∇×uuu = eee1

(
∂u3
∂x2

− ∂u2
∂x3

)
+ eee2

(
∂u1
∂x3

− ∂u3
∂x1

)
+ eee3

(
∂u2
∂x1

− ∂u1
∂x2

)
(6.5)

∇∇∇×uuu = eee1 (iΘx1) + eee2 (iΘx2) + eee3 (iΘx3) (6.6)

The rotations iΘx1, iΘx2, iΘx3 in (6.6) are in counterclockwise sense and are assumed positive.

On the other hand using polar decomposition ([dJ ] = [dR][dSr] = [dSl][
dR]) we can obtain the

right and the left stretch tensors [dSr] and [dSl] that are symmetric and positive-definite and [dR] that

is an orthogonal rotation tensor corresponding to the rotation angles defined in (6.5). Both [daJ ] and

[dR] contain the same physics as both are derived from [dJ ] but in different forms. The terms of

[daJ ] are rotation angles while the rotation tensor [dR] is the corresponding rotation matrix or tensor.

Both can be used in derivations as needed in their given form. The same holds true for [dR] and

[daJ ] derived from [J ]. However, in general, deriving [dR] from [daJ ] or [daJ ] from [dR] in R3 may not

be possible or unique. Fortunately, there is no need for this here. Incorporating [dJ ] in its entirety

in the derivation of conservation and balance laws implies incorporating both [dsJ ] and [daJ ], i.e.,

rotations iΘx1, iΘx2, and iΘx3 about the axes of a triad located at each material point. Rotations in
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[daJ ] are referred to as internal rotations as they naturally arise within deforming solid continua due

to [daJ ] and are completely defined by the skew-symmetric part of [dJ ] or ∇∇∇×uuu in (6.5) and (6.6).

First and second material derivatives of the rotations {iΘ} are given by

D

Dt
{iΘ} = {iΘ̇} = {iω} ;

D2

Dt2
{iΘ} = {iΘ̈} = {ia} (6.7)

in which {iω} and {ia} are angular velocities and angular accelerations about the axes of a triad at

each material point associated with internal rotations (hence the back subscript i). These are new

quantities and variables introduced in this work that are not used in classical continuum theories.

The axes of the triad at each material point are parallel to the fixed x-frame. If we let

{iΘ}T = [iΘx1, iΘx2, iΘx3] (6.8)

then, the gradients of {iΘ} can be defined by

[iΘJ ] = [
∂{iΘ}
∂{x}

] or iΘJjk =
∂(iΘj)

∂xk
(6.9)

The rotation gradient tensor [iΘJ ] can be decomposed into symmetric and skew symmetric tensors

[iΘsJ ] and [iΘaJ ].

[iΘJ ] = [iΘsJ ] + [iΘaJ ]

[iΘsJ ] =
1

2
([iΘJ ] + [iΘJ ]T )

[iΘaJ ] =
1

2
([iΘJ ]− [iΘJ ]T )

(6.10)

It is well known that the rotation gradient tensor is a tensor of rank three, but a vector representation

of rotations in (6.9) is helpful as it results in [iΘJ ] of rank two. When the displacement gradient

tensor varies between neighboring material points, so do internal rotations [ daJ ] and their rates [ da
.
J ]

and [ da
..
J ]. When [ daJ ], [

d
a

.
J ] and [ da

..
J ] are resisted by deforming solid continua, then moments, angular

momenta and angular inertial effects result as a consequence. Thus, on the oblique plane of the
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tetrahedron (defining a part of the bounding surface of the volume) or in general on the boundary

of the deforming volume a resultant moment tensor can exist.

Internal rotation rates and their gradients

The velocities v̄vv and the velocity gradients (L̄ij =
∂v̄i
∂x̄j

) are fundamental measures of deforma-

tion physics in fluent continua in Eulerian description, hence these in their entirety must form a

basis for a complete thermodynamic framework. Decomposition of L̄LL into symmetric tensor D̄DD and

skew-symmetric tensor W̄WW . The physics of D̄DD and W̄WW exists in all deforming fluent continua. The

currently used thermodynamic framework (classical continuum mechanics, CCM) only considers

D̄DD. Hence, W̄WW containing internal rotation rates is not considered at all. Incorporating entirety of

L̄LL in the conservation and balance laws implies that we incorporate the additional physics due to

internal rotation rates in the existing thermodynamic framework for fluent continua as the physics

due to D̄DD is already present in CCM. The internal rotation rates can be visualized as the rotation

rates about the axes of a triad located at a material point (a location) whose axes are parallel to the

axes of the fixed Cartesian x-frame. The velocity gradient tensor [L̄] can be decomposed into pure

rotation rate tensor [tR̄] and the right and left stretch rates [tS̄r] and [tS̄l]. Then, [tR̄] is orthogonal

and [tS̄r] and [tS̄l] are symmetric and positive-definite.

[L̄] = [tR̄][tS̄r] = [tS̄l][
tR̄] (6.11)

Let (tλi, {ϕ}i); i = 1, 2, 3 be the eigenpairs of [L̄]T [L̄] in which {ϕ}Ti {ϕ}j = δij , then

[L̄]T [L̄] = [Φ̄][tλ̄][Φ̄]T = [tS̄r]
2 (6.12)

The columns of [Φ̄] are eigenvectors of {ϕ}i and [tλ̄] is a diagonal matrix of the eigenvalues tλi;

i = 1, 2, 3. If we choose

[tS̄r] = [Φ̄]
[√

tλ̄
]
[Φ̄]T (6.13)
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then (6.12) holds, hence definition of [tS̄r] in (6.13) is valid. [tR̄] can now be defined using (6.11).

[tR̄] = [L̄][tS̄r]
−1 (6.14)

Furthermore, using

[L̄][L̄]T = [tS̄l]
2 (6.15)

and following a similar procedure we can establish

[tS̄l] = [Φ̄]
[√

tλ̄
]
[Φ̄]T (6.16)

[tR̄] = [tS̄l]
−1[L̄] (6.17)

where [tR̄] defined by (6.14) and (6.17) is unique. We note that in this approach [tR̄] is a rotation

rate transformation matrix, hence does not contain rotation angle rates. Alternatively, we can

consider decomposition of [L̄] into symmetric ([D̄]) and skew-symmetric ([W̄ ]) tensors.

[L̄] =

[
∂{v̄}
∂{x̄}

]
= [D̄] + [W̄ ] (6.18)

[D̄] =
1

2
([L̄] + [L̄]T ); [W̄ ] =

1

2
([L̄]− [L̄]T (6.19)

or

D̄ij =
1

2
(v̄i,j + v̄j,i); W̄ij =

1

2
(v̄i,j − v̄j,i) (6.20)

We define positive rotation rates r
i Θ̄ using

∇̄∇∇× v̄vv = eieiei × ejejej
∂v̄j
∂x̄i

= ϵijkekekek
∂v̄j
∂x̄i

(6.21)

or

∇̄∇∇× v̄vv = e1e1e1

(
∂v̄3
∂x̄2

− ∂v̄2
∂x̄3

)
+ e2e2e2

(
∂v̄1
∂x̄3

− ∂v̄3
∂x̄1

)
+ e3e3e3

(
∂v̄2
∂x̄1

− ∂v̄1
∂x̄2

)
(6.22)
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or

∇̄∇∇× v̄vv = e1e1e1
(
r
i Θ̄x1

)
+ e2e2e2

(
r
i Θ̄x2

)
+ e3e3e3

(
r
i Θ̄x3

)
(6.23)

We note that {
r
i Θ̄
}
= {iω̄} and

D

Dt
(iω̄) = i

.
ω̄ = r

i

.
Θ̄ = {iā}

in which iω̄ are angular velocities and iā are angular accelerations using the rotation rates in (6.23).

We can write the expanded form of [W̄ ]

[W̄ ] =


0 −1

2
(riΘx3)

1
2
(riΘx2)

1
2
(riΘx3) 0 −1

2
(riΘx1)

−1
2
(riΘx2)

1
2
(riΘx1) 0

 (6.24)

where r
iΘx1 , r

iΘx2 , r
iΘx3 are rotation rates related to total 90 degree angle and are positive counter-

clockwise and [W̄ ] contains half of the total rotation rate, i.e., related to half of the rate of change

of 90 degree angle. Its obvious that W̄WW is a tensor of rank two, whereas the rotation rates defined

in (6.23) are clearly a tensor of rank one. In other words, rotation rates in (6.23) constitute a tensor

of rank one, but the components of this tensor arranged in the form in which they appear in [W̄ ]

constitute a tensor of rank two. We determine gradients of the rotation rate tensor (6.23). Let

{ri Θ̄}T = [riΘx1 ,
r
iΘx2 ,

r
iΘx3 ] (6.25)

be a vector representation of (6.23), then the gradient of r
iΘ can be defined by

[r
iΘJ̄
]
=

[
∂{riΘ}
∂{x̄}

]
or

r
iΘJjk =

∂ (riΘj)

∂x̄k
(6.26)

The gradient tensor
[r
iΘJ̄
]

of the internal rotation rates defined by (6.26) can be decomposed into

symmetric and antisymmetric tensors
[
r
iΘ
s J̄
]

and
[
r
iΘ
a J̄
]
.

[r
iΘJ̄
]
=
[
r
iΘ
s J̄
]
+
[
r
iΘ
a J̄
]

(6.27)
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[
r
iΘ
s J̄
]
=
1

2

([r
iΘJ̄
]
+
[r
iΘJ̄
]T)

[
r
iΘ
a J̄
]
=
1

2

([r
iΘJ̄
]
−
[r
iΘJ̄
]T) (6.28)

when the velocity gradient tensor varies between the neighboring material points so do the internal

rotation rates r
iΘΘΘ (or [W̄ ]), their rates as well as their gradients and their rates. Varying r

iΘΘΘ and r
iΘJ̄JJ ,

when resisted by deforming fluent continua, results in moments, angular momenta and angular

inertial effects as a consequence. Thus, on the oblique plane of the tetrahedron defining part of

∂V̄ (t) or defining a part of the bounding surface due to cut principle of Cauchy, resultant moment

can exist.

Stress and moment tensors and choice of basis

Consider a tetrahedron in the undeformed configuration (volume V) with its oblique plane

constituting a part of surface ∂V bounding V that deforms and rotates in the current configuration.

Equilibrium considerations associated with conservation and balance laws require measures of

stress, strain rates, etc. associated with the deformed tetrahedron. The volume V is isolated from

V˜ by a hypothetical surface ∂V as in the cut principle of Cauchy. Consider a tetrahedron T1 such

that its oblique plane is part of ∂V and its other three planes are orthogonal to each other parallel

to the planes of the x-frame. Upon deformation, V˜ and ∂V˜ occupy V̄˜ and ∂V̄˜ and likewise V

and ∂V deform into V̄ and ∂V̄ . The tetrahedron T1 deforms into T̄1 whose edges (under finite

deformation) are non-orthogonal covariant base vectors g̃i. The planes of the tetrahedron formed

by the covariant base vectors are flat but obviously non-orthogonal to each other. We assume the

tetrahedron to be the small neighborhood of material point ō so that the assumption of the oblique

plane ĀB̄C̄ being flat but still part of ∂V̄ is valid. When the deformed tetrahedron is isolated

from volume V̄ it must be in equilibrium under the action of disturbance on surface ĀB̄C̄ from the

volume surrounding V̄ and the internal fields that act on the flat faces which equilibrium with the

mating faces in volume V̄ when the tetrahedron T̄1 is placed back in the volume V̄ .

Consider the deformed tetrahedron T̄1. Let P̄PP be the average stress per unit area on plane
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ĀB̄C̄, M̄MM be the average moment per unit area on plane ĀB̄C̄ (henceforth referred to as moment

for short), and n̄nn be the unit exterior normal to the face ĀB̄C̄. P̄PP , M̄MM , and n̄nn all have different

directions when the deformation is finite. The edges of the deformation tetrahedron are covariant

base vectors g̃ggi that are tangent to the deformed curvilinear material lines.

g̃ggi = eeek
∂x̄k
∂xi

; Jij =
∂x̄i
∂xj

(6.29)

Columns of JJJ are covariant base vectors g̃ggi that form non-orthogonal covariant basis. Contravari-

ant base vectors of g̃ggj are normal to the faces of the tetrahedron formed by the covariant base

vectors

g̃ggj = eeel
∂xj
∂x̄l

; J̄ij =
∂xi
∂x̄j

(6.30)

The rows of J̄JJ are contravariant base vectors g̃ggj . These form a non-orthogonal contravariant basis.

Covariant and contravariant bases are reciprocal to each other [97]. If σ̄σσ˜ (0) or σσσ˜ (0) is the con-

travariant stress tensor with components σ̄˜(0)ij or σ˜(0)ij with dyads g̃ggi ⊗ g̃ggj , then using dyads g̃ggi ⊗ g̃ggj

or contravariant laws of transformation we can define contravariant Cauchy stress tensors σσσ(0) in

Lagrangian description

σσσ(0) = g̃ggi ⊗ g̃ggj σ˜(0)ij (6.31)

using (6.29)-(6.31), we can write

σσσ(0) = eeei ⊗ eeej σ(0)
ij ; σ

(0)
ij = Jik(σ˜(0)kl )Jjl (6.32)

or [
σ(0)
]
= [J ]

[
σ˜(0)] [J ]T (6.33)

where σ̄σσ(0) is Eulerian description of σσσ(0) which is obtained from (6.33) by replacing [J ] with[
J̄
]−1 and σσσ(0) with σ̄σσ(0). Since dyads of σ̄σσ(0) and σσσ(0) are eeei ⊗ eeej , Cauchy principle holds
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between P̄PP and σ̄σσ(0).

P̄PP =
(
σ̄σσ(0)

)T ··· n̄nn (6.34)

Similarly we can define covariant Cauchy stress tensorsσσσ(0) or σ̄σσ(0) and Cauchy principle between

σ̄σσ(0) and P̄PP .

σ̄σσ(0) = g̃gg
i ⊗ g̃ggj

(
σ˜(0))ij = eeei ⊗ eeej (σ̄(0))ij ;

(
σ̄(0)
)
ij
= J̄ki

(
σ˜(0))kl J̄lj (6.35)

or [
σ̄(0)
]
=
[
J̄
]T [

σ˜(0)] [J̄] (6.36)

and

P̄PP =
(
σ̄σσ(0)

)T··· n̄nnnnnnnn (6.37)

We define the contravariant and covariant Cauchy moment tensor in similar fashion and the corre-

sponding Cauchy principle

mmm(0) = g̃ggi ⊗ g̃ggj m˜ (0)
ij = eeei ⊗ eeej m(0)

ij ; m
(0)
ij = Jik(m˜ (0)

kl )Jjl (6.38)

or [
m(0)

]
= [J ]

[
m˜ (0)

]
[J ]T ;

[
m̄(0)

]
=
[
J̄
]−1 [

m˜ (0)
] [[

J̄
]−1
]T

(6.39)

M̄MM =
(
m̄mm(0)

)T··· n̄nn (6.40)

and

m̄mm(0) = g̃ggi ⊗ g̃ggj
(
m˜ (0)

)
ij
= eeei ⊗ eeej

(
m̄(0)

)
ij
;
(
m(0)

)
ij
= J̄ki

(
m˜ (0)

)
kl
J̄lj (6.41)

or [
m̄(0)

]
=
[
J̄
]T [

m˜ (0)

] [
J̄
]

;
[
m(0)

]
=
[
[J ]−1]T [m˜ (0)

]
[J ]−1 (6.42)

and

M̄MM =
(
m̄mm(0)

)T··· n̄nn (6.43)
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At this state σ̄σσ(0),σσσ(0), σ̄σσ(0),σσσ(0),mmm(0), m̄mm(0), m̄mm(0), andmmm(0) are all nonsymmetric tensors of rank

two. Thus, we note that the Cauchy stress tensors and the Cauchy moment tensors are basis depen-

dent. It has been shown that [97] for finite strain rates the contravariant measures are meritorious.

However, in deriving conservation and balance laws and the constitutive theories either measure

yields a covariant mathematical model. We introduce stress measure (0)σ̄σσ that could represent σ̄σσ(0)

or σ̄σσ(0) and the moment tensor (0)m̄mm that could represent m̄mm(0) or m̄mm(0) depending upon our choice.

We present derivation of the balance laws and constitutive theories using (0)σ̄σσ and (0)m̄mm, thus mak-

ing the derivations basis independent. Basis dependent mathematical model is recoverable from

the derivation by specific choice of (0)σ̄σσ and (0)m̄mm.
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