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Abstract 

Implementing low-thrust propulsion on spacecraft can be quite advantageous, resulting in 

lower fuel consumptions, greater payload fractions, lower launch costs, and more. Due to these 

advantages, low-thrust propulsion has been used as the primary and secondary means of propulsion 

in almost every space application, though a majority of spacecraft launched with low-thrust 

propulsion have been geosynchronous equatorial orbit (GEO) satellites. As the use of spacecraft 

launched with low-thrust propulsion can be expected to continue increasing significantly, so can 

the need for quick, accurate, and robust low-thrust trajectory optimization as well as autonomous 

low-thrust control. However, due to lower thrust magnitudes and longer transfer times, low-thrust 

trajectory optimization via traditional optimization techniques can be complex as well as 

computationally-expensive and time-consuming. Artificial neural networks, on the other hand, can 

provide an alternative to such techniques. However, though the use of artificial neural networks 

trained by supervised learning models for applications related to low-thrust trajectory design and 

optimization is extensive, previous research has largely focused on shallow or deep feedforward 

architectures with little emphasis placed on recurrent ones, even though recurrent architectures are 

inherently more suited to time histories. Thus, the objective of this research was to investigate the 

potential of recurrent artificial neural networks, specifically long short-term memory artificial 

neural networks, for low-thrust trajectory design and optimization with respect to their feedforward 

equivalents. As a majority of spacecraft launched with low-thrust propulsion have primarily been 

GEO satellites, the focus of this research was, primarily, on the low-thrust, orbit-raising problem 

for both time-optimal and fuel-optimal transfers. Overall, this dissertation will present the results 

and conclusions from this research as well as the scientific contributions.  
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1 Introduction 

In this chapter, the objective and motivation of this research, which was on the use of 

recurrent artificial neural networks for low-thrust trajectory design and optimization, as well as an 

outline of this dissertation will be provided. 

1.1 Objective 

The overall objective of this research was to investigate the potential of recurrent artificial 

neural networks for low-thrust trajectory design and optimization. To complete this objective, long 

short-term memory (LSTM) artificial neural networks were applied to the low-thrust, orbit-raising 

problem for both time-optimal and fuel-optimal transfers. A total of four problems were 

considered: the time-optimal open-loop case, the time-optimal closed-loop case, the fuel-optimal 

open-loop case, and the fuel-optimal closed-loop case. The following scientific contributions 

resulted from this investigation and will be presented, in full, in this dissertation. 

1. Recurrent artificial neural networks, specifically LSTM artificial neural networks, were 

applied to the low-thrust, orbit-raising problem for both time-optimal and fuel-optimal 

transfers. 

2. An explicit model for a trade study between feedforward and recurrent artificial neural 

networks, specifically LSTM artificial neural networks, was developed and performed 

with a focus on the low-thrust, orbit-raising problem for both time-optimal and fuel-

optimal transfers. 

3. The applicability of recurrent artificial neural networks, specifically LSTM artificial 

neural networks, as a closed-loop solution to the low-thrust, orbit-raising problem for 

both time-optimal and fuel-optimal transfers was investigated. 
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4. The effect of time bias in data on the performance of recurrent artificial neural 

networks, specifically LSTM artificial neural networks, and feedforward artificial 

neural networks was investigated. 

1.2 Motivation 

Electric, or low-thrust, propulsion has specific impulses typically an order of magnitude or 

higher than traditional chemical propulsion [1]. Since the specific impulse of an engine is a 

measure of how efficiently that engine produces thrust, implementing low-thrust propulsion on 

spacecraft can result in the following advantages [2-4]. 

1. Decreased Fuel Consumptions 

2. Decreased Launch Costs 

3. Increased Payload Fractions 

4. Increased Returns on Investment (in Terms of Mission Lifetime and/or Payload 

Objectives) 

5. Increased Spacecraft Maneuverability 

6. Increased Launch Opportunities 

Due to these advantages, low-thrust propulsion has been used as the primary and secondary 

means of propulsion in almost every space application, from small satellites to heavier low Earth 

orbit (LEO) and geosynchronous equatorial orbit (GEO) satellites to interplanetary spacecraft. 

However, as a result of the increasing demand for telecommunication services (both commercial 

and military), a majority of spacecraft launched with low-thrust propulsion have been GEO 

satellites. In fact, the percentage of GEO satellites launched with low-thrust propulsion has 

increased from 10 percent in 1981 to almost 50 percent as of 2018 and, since 1998, more than 30 

percent of operational GEO satellites use some form of low-thrust propulsion [3, 4]. Thus, this 
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research was, primarily, focused on the low-thrust, orbit-raising problem.  Until recent years, the 

lack of commercial incentives for developing and launching LEO satellites combined with the 

rather limited benefits of implementing low-thrust propulsion on LEO satellites (compared to GEO 

satellites) has stalled the growth of LEO satellites launched with low-thrust propulsion, with the 

exception of the Iridium satellite constellation launched during 1997 and 1998 [5].  However, the 

desire for high-speed, low-latency, broadband internet across the world, even in rural and remote 

areas, has increased the demand for commercial LEO satellites with low-thrust propulsion. In fact, 

companies such as SpaceX with Starlink [6] and OneWeb [7] are currently developing and 

launching such satellites. Low-thrust propulsion has even been implemented on small satellites 

(defined here as satellites less than 50 kilograms) and interplanetary spacecraft, though to a much 

lesser extent than GEO and LEO satellites. However, as the potential of low-thrust propulsion for 

small satellites and interplanetary spacecraft is recently being recognized and proven, the use of 

such satellites launched with low-thrust propulsion can be expected to increase significantly [3, 4]. 

As the use of spacecraft launched with low-thrust propulsion can be expected to continue 

increasing significantly, so can the need for quick, accurate, and robust low-thrust trajectory 

optimization as well as autonomous low-thrust control. Due to lower thrust magnitudes and longer 

transfer times, low-thrust trajectory optimization via traditional optimization techniques (i.e., 

direct and indirect methods) can be complex as well as computationally-expensive and time-

consuming…this is where artificial neural networks come into play. Artificial neural networks can 

provide an alternative to such techniques. In fact, artificial neural networks, as well as other 

machine learning techniques, have been used in a wide range of aerospace-related applications, 

including low-thrust trajectory design and optimization, with high levels of success. However, 

though the use of artificial neural networks trained by supervised learning models for applications 
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related to low-thrust trajectory design and optimization is extensive, previous research has largely 

focused on shallow or deep feedforward architectures with little emphasis placed on recurrent 

ones, even though recurrent architectures are inherently more suited to time histories due to the 

presence of internal memory. In fact, to the best of the author’s knowledge, recurrent artificial 

neural networks have rarely been applied and only to attitude control and landing problems (i.e., 

modeling image-control relationships) or within reinforcement learning models. Thus, as 

previously mentioned, the overall objective of this research was to investigate the potential of 

recurrent artificial neural networks, specifically LSTM artificial neural networks, for low-thrust 

trajectory design and optimization with respect to their feedforward equivalents. As a majority of 

spacecraft launched with low-thrust propulsion have been GEO satellites, the focus of this research 

was, primarily, on the low-thrust, orbit-raising problem for both time-optimal and fuel-optimal 

transfers. As previously mentioned, a total of four problems were considered: the time-optimal 

open-loop case, the time-optimal closed-loop case, the fuel-optimal open-loop case, and the fuel-

optimal closed-loop case. 

1.3 Outline 

In this dissertation, Chapter 2 provides some general information on low-thrust propulsion 

and trajectory optimization while Chapter 3 provides some general information on artificial neural 

networks with an emphasis on LSTM artificial neural networks. Chapter 3 also contains previous 

research on the use of artificial neural networks for low-thrust trajectory design and optimization. 

Chapter 4 describes the data used to tune, train, validate, and test the LSTM artificial neural 

networks as well as the implementation and design of those LSTM artificial neural networks and 

their feedforward equivalents. Chapter 5 discusses the results for the LSTM artificial neural 
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networks and their feedforward equivalents while Chapter 6 presents the conclusions from these 

results with respect to the scientific contributions.  
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2 Low-Thrust Propulsion and Trajectory Optimization 

In this chapter, some general information on low-thrust propulsion, specifically the types 

and history of low-thrust propulsion in space, and low-thrust trajectory optimization as well as 

direct and indirect methods for low-thrust trajectory optimization will be provided. 

2.1 Low-Thrust Propulsion 

Low-thrust propulsion has specific impulses typically an order of magnitude or higher than 

traditional chemical propulsion [1]. Higher specific impulses result in lower fuel consumptions, 

which correspond to greater payload fractions and lower launch costs as well as other advantages 

[2-4]. Due to these advantages, low-thrust propulsion has been used as the primary and secondary 

means of propulsion in almost every space application, from small satellites to heavier low Earth 

orbit (LEO) and geosynchronous equatorial orbit (GEO) satellites to interplanetary spacecraft. The 

types of low-thrust propulsion as well as the history of low-thrust propulsion in space will be 

discussed here. 

2.1.1 Types of Low-Thrust Propulsion in Space 

In general, there are five types of low-thrust propulsion: ion thrusters, pulsed plasma 

thrusters, resistojets, Hall thrusters, and arcjet thrusters [3, 4]. Each of these types of low-thrust 

propulsion will be defined below. Further information can be found in Reference 8 and Reference 

9. 

1. Ion Thrusters. Ion thrusters produce thrust by accelerating ions with an electrostatic 

field. 

2. Pulsed Plasma Thrusters. Pulsed plasma thrusters produce thrust by accelerating 

plasma with an electromagnetic field. 
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3. Resistojets. Resistojets produce thrust by electrothermally heating the propellant using 

resistance heaters and accelerating through a nozzle. 

4. Hall Thrusters. Hall thrusters, a type of ion thrusters, produce thrust by accelerating 

ions with a combination of electrostatic and electromagnetic fields. 

5. Arcjet Thrusters. Arcjet thrusters produce thrust by electrothermally heating the 

propellant using an electrical discharge and accelerating through a nozzle. 

As shown in Figure 2.1, spacecraft with low-thrust propulsion have primarily been GEO 

satellites, followed by LEO satellites, small satellites (defined here as satellites less than 50 

kilograms), and interplanetary spacecraft [3, 4]. The most used type of low-thrust propulsion for 

GEO satellites is Hall thrusters (38 percent), followed by resistojets (25 percent), ion thrusters (19 

percent), and arcjet thrusters (18 percent) [3, 4]. Resistojets are the most used type of low-thrust 

propulsion for LEO satellites, though the use of Hall thrusters for LEO satellites has recently been 

increasing [3, 4]. Small satellites have commonly used variants of pulsed plasma thrusters and ion 

thrusters as well as resistojets while interplanetary spacecraft have commonly used ion thrusters 

[3, 4]. 

  

 

Figure 2.1: Mission Types of Satellites with Low-Thrust Propulsion (as of 2018) [4] 
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2.1.2 History of Low-Thrust Propulsion in Space 

Overall, until the 1980s, only government spacecraft implemented low-thrust propulsion. 

The first technological demonstration of low-thrust propulsion in space was SERT 1, a suborbital 

satellite launched in 1964 [3, 4, 10]. Later that same year, the Soviet Union interplanetary 

spacecraft, Zond 2, became the first spacecraft to operationally use low-thrust propulsion by means 

of six pulsed plasma thrusters for attitude control [3, 4, 8, 11]. The United States, however, did not 

use pulsed plasma thrusters on spacecraft until 1968, during which the Lincoln Experimental 

Satellites were developed and launched with the objective of improving satellite communications 

[3, 4, 8, 12]. The Lincoln Experimental Satellites used four pulsed plasma thrusters for east-west 

station-keeping [8, 12]. Resistojets, on the other hand, were first used in 1965 aboard the United 

States Air Force Vela satellites, which were developed and launched to detect nuclear explosions 

as well as to study different forms of radiation and charged particles [3, 4, 8, 13]. The first satellite 

to use Hall thrusters was one of the Soviet Union’s Meteor meteorological satellites, launched in 

1971 [3, 4, 14]. 

The first commercial use of low-thrust propulsion was COMSAT’s Intelsat 5 satellites, a 

series of communications satellites launched starting in the early 1980s which used resistojets for 

north-south station-keeping [3, 4, 8, 15]. AT&T’s communications satellite, Telstar 401, was 

launched in 1993 and became the first satellite to use arcjet thrusters for north-south station-

keeping [3, 4, 8, 16]. Telstar 401 was also among the first spacecraft to provide a clear 

demonstration of the advantages of implementing low-thrust propulsion, specifically the resulting 

propellent mass and launch cost reductions [8, 16]. 

 Low-thrust propulsion was not implemented as the primary means of propulsion (i.e., for 

maneuvers more intensive than attitude control and station-keeping) until the late 1990s. The first 
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spacecraft to do so was NASA’s Deep Space 1, an interplanetary spacecraft launched in 1998 

which used ion thrusters to visit the asteroid Braille and the comet Borrelly [3, 4, 8, 17]. In 2001, 

ESA’s communications satellite Artemis, due to a problem with the final stage of its launch 

vehicle, became the first satellite to use low-thrust propulsion, specifically ion thrusters, for a 

significant portion of a geosynchronous transfer orbit (GTO) to GEO transfer [3, 4, 18]. Later, in 

2003, ESA’s SMART-1 became the first spacecraft to complete a full GTO to GEO transfer using 

low-thrust propulsion, specifically Hall thrusters, on its way to orbit the moon [3, 4, 19]. Finally, 

the first all-electric satellite was Boeing’s communications satellite ABS-3A, launched in 2015 

with ion thrusters [3, 4, 20]. 

2.2 General Low-Thrust Trajectory Optimization 

The continuous-time trajectory optimization problem will be discussed here, following the 

format in Reference 21 and Reference 22. In the continuous-time trajectory optimization problem, 

the decision variables are determined such that the objective function ( 𝐽𝐽 ), or performance index, 

is minimized. The objective function consists of a boundary objective (𝜑𝜑), or the cost due to the 

initial and final states, as well as a path integral (𝐿𝐿), or the cost due to the trajectory between the 

initial and final states. 

 𝐽𝐽 = 𝜑𝜑 �𝑡𝑡0,𝒙𝒙(𝑡𝑡0), 𝑡𝑡𝑓𝑓 ,𝒙𝒙�𝑡𝑡𝑓𝑓��+ ∫ 𝐿𝐿�𝑡𝑡,𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)�d𝑡𝑡𝑡𝑡𝑓𝑓
𝑡𝑡0

 Equation 2.1 [21, 22] 

The objective function is subject to the equations of motion (�̇�𝒙), or system dynamics, which are 

dependent on the decision variables. Typically, the decision variables consist of the time (𝑡𝑡), the 

state variables (𝒙𝒙), and the control variables (𝒖𝒖). 

 �̇�𝒙(𝑡𝑡) = 𝒇𝒇�𝑡𝑡,𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� Equation 2.2 [21, 22] 
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The objective function is also subject to the path constraints (𝒉𝒉) and the boundary constraints (𝒈𝒈). 

Path constraints constrain the trajectory between the initial and final states while boundary 

constraints constrain the initial and/or final states themselves. 

 𝒉𝒉�𝑡𝑡,𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� ≤ 𝟎𝟎 Equation 2.3 [21, 22]  

 𝒈𝒈�𝑡𝑡0, 𝑡𝑡𝑓𝑓 ,𝒙𝒙(𝑡𝑡0),𝒙𝒙�𝑡𝑡𝑓𝑓�� ≤ 𝟎𝟎 Equation 2.4 [21, 22]  

Finally, there can be bounds on the decision variables as well as bounds on the initial and/or final 

states. 

 𝒙𝒙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤  𝒙𝒙(𝑡𝑡) ≤ 𝒙𝒙𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 Equation 2.5 [21, 22] 

 𝒖𝒖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤  𝒖𝒖(𝑡𝑡) ≤ 𝒖𝒖𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 Equation 2.6 [21, 22] 

 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑡𝑡0 < 𝑡𝑡𝑓𝑓 ≤ 𝑡𝑡𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 Equation 2.7 [21, 22] 

 𝒙𝒙0𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤  𝒙𝒙(𝑡𝑡0) ≤ 𝒙𝒙0𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 Equation 2.8 [21, 22] 

 𝒙𝒙𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤  𝒙𝒙�𝑡𝑡𝑓𝑓� ≤ 𝒙𝒙𝑓𝑓𝑢𝑢𝑢𝑢𝑢𝑢𝑙𝑙𝑙𝑙 Equation 2.9 [21, 22] 

2.2.1 Analytic Solutions 

Analytic solutions to the continuous-time trajectory optimization problem do not exist for 

low-thrust propulsion, aside from special cases of the low-thrust, orbit-raising problem [1]. In the 

early 1960s, Edelbaum derived the first analytic solution to the low-thrust, orbit-raising problem 

for a fixed-time, fuel-optimal transfer between non-coplanar, circular orbits [23]. In his derivation, 

Edelbaum assumed continuous constant acceleration and a constant yaw profile [23]. Wiesel and 

Alfano extended Edelbaum’s derivation, allowing both the acceleration and the yaw angle to 

change [24]. In the late 1990s, Kechichian reformulated Edelbaum’s derivation as a time-optimal 

transfer between, again, non-coplanar circular orbits [25]. Kechichian [26] as well as Colasurdo 

and Casalino [27] derived analytic solutions to the low-thrust, orbit-raising problem for a transfer 

between coplanar, circular orbits in the presences of satellite eclipses by constraining the thrust 
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profile to maintain a zero eccentricity throughout the transfer. Even orbit perturbations (due to the 

oblateness of Earth) and altitude constraints have been considered [28, 29]. However, due to the 

assumptions and/or constraints present in Edelbaum’s derivation as well as subsequent extensions, 

analytic solutions to the low-thrust, orbit-raising problem remain suboptimal. 

2.3 Direct Low-Thrust Trajectory Optimization 

In the continuous-time trajectory optimization problem, direct methods transcribe the 

system dynamics from a set of differential equations to a set of equality constraints, converting the 

continuous optimal control problem into a nonlinear programming problem. With direct methods, 

the time (𝑡𝑡) is discretized into 𝑁𝑁 points, or nodes, with a step size of ℎ𝑘𝑘. 

 𝑡𝑡𝐼𝐼 = 𝑡𝑡1 <. . . < 𝑡𝑡𝑘𝑘 <. . . < 𝑡𝑡𝑁𝑁 = 𝑡𝑡𝑓𝑓 Equation 2.10 [1, 21] 

 ℎ𝑘𝑘 ≡ 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘 Equation 2.11 [1, 21] 

If the time is discretized uniformly, the step size can be defined as follows. 

 ℎ𝑘𝑘 ≡
𝑡𝑡𝑁𝑁−𝑡𝑡1
𝑁𝑁−1

 Equation 2.12 [1] 

The remaining decision variables, typically the state variables (𝒙𝒙) and the control variables (𝒖𝒖), 

are discretized using the discretization scheme used for the time. 

 
𝒙𝒙𝑘𝑘 = 𝒙𝒙(𝑡𝑡𝑘𝑘)

∴ 𝒙𝒙𝐼𝐼 = 𝒙𝒙1 <. . . < 𝒙𝒙𝑘𝑘 <. . . < 𝒙𝒙𝑁𝑁 = 𝒙𝒙𝑓𝑓
 Equation 2.13 [1, 21] 

 
𝒖𝒖𝑘𝑘 = 𝒖𝒖(𝑡𝑡𝑘𝑘)

∴ 𝒖𝒖𝐼𝐼 = 𝒖𝒖1 <. . . < 𝒖𝒖𝑘𝑘 <. . . < 𝒖𝒖𝑁𝑁 = 𝒖𝒖𝑓𝑓
 Equation 2.14 [1, 21] 

The changes in the discretized state variables are set equal to the integrated system dynamics (�̇�𝒙), 

resulting in a set of equality constraints. The integrated system dynamics are approximated using 

some numerical integration scheme. The order of accuracy of the numerical integration scheme 

determines the order of accuracy of the direct method solution. 
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 𝒙𝒙𝑘𝑘+1 − 𝒙𝒙𝑘𝑘 = ∫ �̇�𝒙d𝑡𝑡𝑡𝑡𝑘𝑘+1
𝑡𝑡𝑘𝑘

 Equation 2.15 [1, 21] 

The objective function can be discretized as well. Any boundary conditions can be applied as 

equality constraints on the first and/or last nodes while any path conditions can be applied as 

inequality constraints on the appropriate, if not all, nodes. 

Two direct methods commonly used for low-thrust trajectory optimization are direct 

collocation methods and direct shooting methods. Direct collocation methods are implicit 

approaches which approximate the state and control variables as polynomial splines. Direct 

shooting methods are explicit approaches which follow an “aim and shoot” approach. Direct 

collocation methods are typically more robust than direct shooting methods, especially for 

applications with path constraints or applications in which the structure of the control law is not 

known a priori. Direct shooting methods, however, are typically more accurate than direct 

collocation methods, especially for applications with simple control laws or applications in which 

the control law (i.e., a good initial guess) is known to some extent. [1, 21, 22] 

Direct collocations methods are some of the “best known” and “most implemented” direct 

methods and, as such, have been applied to the low-thrust, orbit-raising problem as well as lunar 

and interplanetary transfers [1, 2, 53]. Due to this success, direct collocation methods were chosen 

as the method of trajectory optimization in the generation of the training, validation, and test data. 

For more information on the generation of the training, validation, and test data, refer to Chapter 

4. Two direct collocation methods (trapezoidal collocation and Hermite-Simpson collocation) will 

be discussed in more detail here. Higher-order methods, such as orthogonal and/or pseudospectral 

collocation, do exist [1, 21]. However, such methods will not be discussed here.  
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2.3.1 Trapezoidal Collocation 

With trapezoidal collocation, the system dynamics are converted into a set of collocation 

constraints using trapezoidal quadrature. Trapezoidal quadrature, or the trapezoidal rule, 

approximates a definite integral as a trapezoid. 

 ∫ 𝑓𝑓(𝑥𝑥)d𝑥𝑥𝑥𝑥1
𝑥𝑥0

≈ (𝑥𝑥1 − 𝑥𝑥0) ∗ 1
2

[𝑓𝑓(𝑥𝑥0) + 𝑓𝑓(𝑥𝑥1)] Equation 2.16 [30] 

As follows, with trapezoidal collocation, the system dynamics (𝒇𝒇) as well as the control variables 

(𝒖𝒖) are approximated as linear splines. Since the system dynamics are approximated as linear 

splines, the state variables (𝒙𝒙) are represented by quadratic splines. 

 �̇�𝒙 = 𝒇𝒇 Equation 2.17 [21] 

 ∫ �̇�𝒙d𝑡𝑡𝑡𝑡𝑘𝑘+1
𝑡𝑡𝑘𝑘

= ∫ 𝒇𝒇d𝑡𝑡𝑡𝑡𝑘𝑘+1
𝑡𝑡𝑘𝑘

 Equation 2.18 [21] 

 𝒙𝒙𝑘𝑘+1 − 𝒙𝒙𝑘𝑘 = (𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘) ∗ 1
2

(𝒇𝒇𝑘𝑘 + 𝒇𝒇𝑘𝑘+1) Equation 2.19 [21] 

 ℎ𝑘𝑘 ≡ 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘 Equation 2.20 [21] 

 𝒙𝒙𝑘𝑘+1 − 𝒙𝒙𝑘𝑘 = 1
2

(ℎ𝑘𝑘)(𝒇𝒇𝑘𝑘 + 𝒇𝒇𝑘𝑘+1) Equation 2.21 [21] 

If appropriate, the objective function can be approximated using trapezoidal quadrature as well 

and/or converted to a summation. 

2.3.2 Hermite-Simpson Collocation 

Hermite-Simpson collocation is an order of accuracy higher than trapezoidal collocation. 

With Hermite-Simpson collocation, the system dynamics are converted into a set of collocation 

constraints using Simpson quadrature. Simpson quadrature, or the Simpson rule, approximates a 

definite integral as a parabolic arc. 

 ∫ 𝑓𝑓(𝑥𝑥)d𝑥𝑥𝑥𝑥1
𝑥𝑥0

≈ (𝑥𝑥1 − 𝑥𝑥0) ∗ 1
6
�𝑓𝑓(𝑥𝑥0) + 4𝑓𝑓 �𝑥𝑥0+𝑥𝑥1

2
� + 𝑓𝑓(𝑥𝑥1)� Equation 2.22 [31] 
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As follows, with Hermite-Simpson collocation, the system dynamics (𝒇𝒇) as well as the control 

variables (𝒖𝒖) are approximated as quadratic splines. Since the system dynamics are approximated 

as quadratic splines, the state variables (𝒙𝒙) are represented by cubic Hermite splines. 

 �̇�𝒙 = 𝒇𝒇 Equation 2.23 [1, 21] 

 ∫ �̇�𝒙d𝑡𝑡𝑡𝑡𝑘𝑘+1
𝑡𝑡𝑘𝑘

= ∫ 𝒇𝒇d𝑡𝑡𝑡𝑡𝑘𝑘+1
𝑡𝑡𝑘𝑘

 Equation 2.24 [1, 21] 

 𝒙𝒙𝑘𝑘+1 − 𝒙𝒙𝑘𝑘 = (𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘) ∗ 1
6
�𝒇𝒇𝑘𝑘 + 4𝒇𝒇𝑘𝑘+12

+ 𝒇𝒇𝑘𝑘+1� Equation 2.25 [1, 21] 

 ℎ𝑘𝑘 ≡ 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘 Equation 2.26 [1, 21] 

 𝒙𝒙𝑘𝑘+1 − 𝒙𝒙𝑘𝑘 = 1
6

(ℎ𝑘𝑘) �𝒇𝒇𝑘𝑘 + 4𝒇𝒇𝑘𝑘+12
+ 𝒇𝒇𝑘𝑘+1� Equation 2.27 [1, 21] 

For Hermite-Simpson collocation, a second collocation constraint is necessary to enforce the 

system dynamics at the midpoint of the time interval. The derivation of the second collocation 

constraint is as follows. Since the system dynamics are approximated as quadratic splines and the 

state variables are represented by cubic Hermite splines, the state variables and their derivatives 

can be represented by general polynomials. 

 
𝒙𝒙(𝑡𝑡) = 𝑎𝑎𝑘𝑘0 + 𝑎𝑎𝑘𝑘1𝑡𝑡 + 𝑎𝑎𝑘𝑘2𝑡𝑡

2 + 𝑎𝑎𝑘𝑘3𝑡𝑡
3

�̇�𝒙(𝑡𝑡) = 𝑎𝑎𝑘𝑘1 + 2𝑎𝑎𝑘𝑘2𝑡𝑡 + 3𝑎𝑎𝑘𝑘3𝑡𝑡
2  Equation 2.28 [1] 

The time interval can be shifted from [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1] to [0, ℎ𝑘𝑘] where ℎ𝑘𝑘 ≡ 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘, and the 

polynomial representations of the state variables and their derivatives can be written in matrix 

form. 

 �

𝒙𝒙(0)
�̇�𝒙(0)
𝒙𝒙(ℎ𝑘𝑘)
�̇�𝒙(ℎ𝑘𝑘)

� = �

𝒙𝒙𝑘𝑘
�̇�𝒙𝑘𝑘
𝒙𝒙𝑘𝑘+1
�̇�𝒙𝑘𝑘+1

� = �

𝒙𝒙𝑘𝑘
𝒇𝒇𝑘𝑘
𝒙𝒙𝑘𝑘+1
𝒇𝒇𝑘𝑘+1

� =

⎣
⎢
⎢
⎡
1 0 0     0
0 1 0     0
1
0

ℎ𝑘𝑘
1

ℎ𝑘𝑘
2  ℎ𝑘𝑘

3

  2ℎ𝑘𝑘 3ℎ𝑘𝑘
2⎦
⎥
⎥
⎤
�

𝑎𝑎𝑘𝑘0
𝑎𝑎𝑘𝑘1
𝑎𝑎𝑘𝑘2
𝑎𝑎𝑘𝑘3

� Equation 2.29 [1] 

The coefficients of the polynomial representations of the state variables and their derivatives can 

be determined by calculating the inverse of the matrix of coefficients. 
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 �

𝑎𝑎𝑘𝑘0
𝑎𝑎𝑘𝑘1
𝑎𝑎𝑘𝑘2
𝑎𝑎𝑘𝑘3

� =

⎣
⎢
⎢
⎢
⎡

1 0 0    0
0 1 0    0
−3
ℎ𝑘𝑘2

2
ℎ𝑘𝑘3

−2
ℎ𝑘𝑘

 1
ℎ𝑘𝑘2

3
ℎ𝑘𝑘2

  −1
ℎ𝑘𝑘

 −2
ℎ𝑘𝑘3

 1
ℎ𝑘𝑘2⎦
⎥
⎥
⎥
⎤

�

𝒙𝒙𝑘𝑘
𝒇𝒇𝑘𝑘
𝒙𝒙𝑘𝑘+1
𝒇𝒇𝑘𝑘+1

� Equation 2.30 [1] 

By knowing the coefficients of the polynomial representations of the state variables and their 

derivatives, the state variables and their derivatives at the midpoint of the time interval, 𝑡𝑡 = 1
2

(𝑡𝑡𝑘𝑘 +

𝑡𝑡𝑘𝑘+1) = 1
2
ℎ𝑘𝑘, can be determined. 

 
𝒙𝒙𝑘𝑘+12

= 1
2

(𝒙𝒙𝑘𝑘 + 𝒙𝒙𝑘𝑘+1) + 1
8
ℎ𝑘𝑘(𝒇𝒇𝑘𝑘 − 𝒇𝒇𝑘𝑘+1)

�̇�𝒙𝑘𝑘+12
= − 3

2ℎ𝑘𝑘
(𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘+1) − 1

4
(𝒇𝒇𝑘𝑘 + 𝒇𝒇𝑘𝑘+1)

 Equation 2.31 [1, 21] 

The control variables at the midpoint of the time interval, however, can be determined using linear 

interpolation. 

 𝒖𝒖𝑘𝑘+12
= 1

2
(𝒖𝒖𝑘𝑘 + 𝒖𝒖𝑘𝑘+1) Equation 2.32 [1, 21] 

If appropriate, the objective function can be approximated using Hermite-Simpson quadrature as 

well and/or converted to a summation. 

2.4 Indirect Low-Thrust Trajectory Optimization 

In the continuous-time trajectory optimization problem, indirect methods use Pontryagin’s 

maximum principle from the calculus of variations to analytically construct the necessary 

conditions for optimality, converting the continuous optimal control problem into a two-point 

boundary-value problem. Assume the following objective function, which is a simplified version 

of the one presented in Equation 2.1. 

 𝐽𝐽 = 𝜑𝜑�𝒙𝒙�𝑡𝑡𝑓𝑓�, 𝑡𝑡𝑓𝑓� + ∫ 𝐿𝐿(𝒙𝒙,𝒖𝒖, 𝑡𝑡)d𝑡𝑡𝑡𝑡𝑓𝑓
𝑡𝑡0

 Equation 2.33 [1, 2] 

The Hamiltonian (𝐻𝐻) can be defined as follows. In this equation, 𝝀𝝀 is the adjoint, or costate, 

multipliers. 
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 𝐻𝐻 = 𝐿𝐿 + 𝝀𝝀𝑇𝑇𝒇𝒇 Equation 2.34 [1, 2] 

The Euler-Lagrange equations, or the necessary conditions for optimality, can be constructed as 

follows. In this system of equations, the first equation is equivalent to Equation 2.2. The second 

equation describes the costate dynamics while the third equation is a direct application of 

Pontryagin’s maximum principle, which states the control variables must optimize the 

Hamiltonian. [1, 2] 

 

⎩
⎪
⎨

⎪
⎧ �̇�𝒙 = �𝜕𝜕𝜕𝜕

𝜕𝜕𝝀𝝀
�
𝑇𝑇

�̇�𝝀 = −�𝜕𝜕𝜕𝜕
𝜕𝜕𝒙𝒙
�
𝑇𝑇

�𝜕𝜕𝜕𝜕
𝜕𝜕𝒖𝒖
� = 0

 Equation 2.35 [1, 2] 

Finally, the boundary constraints (𝝍𝝍) can be defined as follows. In this equation, similar to 𝝀𝝀, 𝒗𝒗 is 

the final boundary constraints multipliers. 

 𝝀𝝀�𝑡𝑡𝑓𝑓� = ��𝜕𝜕𝝋𝝋
𝜕𝜕𝒙𝒙
�+ 𝝂𝝂𝑇𝑇 �𝜕𝜕𝝍𝝍

𝜕𝜕𝒙𝒙
��
𝑡𝑡=𝑡𝑡𝑓𝑓

 Equation 2.36 [1, 2] 

2.5 Comparison of Direct and Indirect Methods 

In general, direct methods are easier to construct and solve as well as more robust (i.e., able 

to converge, even with poor initial guesses) than indirect methods. Indirect methods, however, are 

more accurate than direct methods so long as the initial guesses are “good” enough to achieve 

convergence. Also, as indirect methods analytically construct the necessary conditions for 

optimality, the solutions of indirect methods are guaranteed to be local extrema. However, the 

addition of costate variables doubles the size of the continuous-time trajectory optimization 

problem as the costate variables need to be solved as well as initialized. This only complicates the 

initialization of indirect methods further, especially as costate variables lack the physical 

significance of state variables. [1, 2, 21, 22]  
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3 Artificial Neural Networks 

Information on artificial neural networks, or neural networks, can be found in Reference 

32 and Reference 33. Inspired by the human brain, neural networks are data-driven, computational 

models capable of nonlinear, input-output mapping. Neural networks are able to learn as well as 

generalize without a priori knowledge and have a multitude of useful properties, such as flexibility, 

adaptivity, uniformity, and fault tolerance. As a result, neural networks have been used for a variety 

of applications (both inside and outside the area of astrodynamics), which include pattern 

association, pattern recognition, and function approximation. More formally, the following 

definition of a neural network can be found in Chapter I.1 of Haykin [32]. 

A neural network is a massively parallel distributed processor made up of simple 

processing units that has a natural propensity for storing experiential knowledge and 

making it available for use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network from its environment through a learning 

process. 

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge. 

The first neural network was algorithmically described in 1958 [34]. Rosenblatt’s 

perceptron, which implemented the McCulloch-Pitts model for a nonlinear neuron [35], consisted 

of a single neuron and was trained by supervised learning to perform binary classification [34]. 

Multilayer perceptrons, which consist of one or more hidden layers, did not become popular until 

after the development of the back-propagation algorithm in the late 1980s [36].  
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3.1 Model of Neuron 

A neuron, which is the information-processing unit of a neural network, consists of three 

elements: a set of synapses, an adder, and an activation function. The set of synapses consists of a 

set of input signals and the respective weights for those input signals. The adder sums the weighted 

input signals, and the activation function, following some logic, limits the overall output signal of 

the neuron to be some finite value. Figure 3.1 shows the model of a neuron. [32, 33] 

 

Mathematically, the model of a neuron, denoted as neuron 𝑘𝑘, with 𝑚𝑚-number of input 

signals can be written as follows. 

 𝑦𝑦𝑘𝑘 = 𝜑𝜑�∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑥𝑥𝑘𝑘𝑚𝑚
𝑘𝑘=1 + 𝑏𝑏𝑘𝑘� Equation 3.1 [32] 

In this equation, 𝑥𝑥𝑘𝑘 are the input signals, 𝑤𝑤𝑘𝑘𝑘𝑘 are the respective weights for those input signals, and 

𝑦𝑦𝑘𝑘 is the overall output signal of the neuron. 𝑏𝑏𝑘𝑘 is the bias which, if present, applies an affine 

transformation to the input for the activation function [32, 33]. The bias can also be modeled as a 

 

Figure 3.1: Model of Neuron [32] 
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synapse where the input signal is equal to unity and the respective weight is equal to the desired 

bias [32, 33]. 𝜑𝜑 is the activation function. Many types of activation functions exist; some of the 

more popular ones will be discussed in more detail here. 

3.1.1 Types of Activation Functions 

The threshold, or Heaviside, function will set the overall output signal of the neuron equal 

to either one or zero, following the binary logic shown in following equation. Note, in this 

equation, as well as in subsequent equations, 𝑣𝑣 is simply the input for the activation function. 

 𝜑𝜑(𝑣𝑣) = �1   if 𝑣𝑣 ≥ 0
0   if 𝑣𝑣 < 0 Equation 3.2 [32] 

The signum function, which is a variant of the Heaviside function, will set the overall 

output signal of the neuron equal to positive one, zero, or negative one, following the logic shown 

in the following equation. 

 𝜑𝜑(𝑣𝑣) = �
+1   if 𝑣𝑣 > 0
+0   if 𝑣𝑣 = 0
−1   if 𝑣𝑣 < 0

 Equation 3.3 [32] 

The sigmoid function, shown in the following equation, is a continuous version of the 

Heaviside function. In fact, as the input for the sigmoid function approaches infinity, the sigmoid 

function will approach the Heaviside function. 

 𝜑𝜑(𝑣𝑣) = 1
1+exp(−𝑣𝑣)

 Equation 3.4 [32] 

The hyperbolic tangent function, shown in the following equation, is a continuous version 

of the signum function. Similar to the sigmoid function, as the input for the hyperbolic tangent 

function approaches infinity, the hyperbolic tangent function will approach the signum function. 

 𝜑𝜑(𝑣𝑣) = tanh(𝑣𝑣) Equation 3.5 [32] 
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The rectified linear unit function, which is another variant of the Heaviside function, will 

set the overall output signal of the neuron equal to a positive value or zero, following the binary 

logic shown in the following equation. 

 𝜑𝜑(𝑣𝑣) = �𝑣𝑣   if 𝑣𝑣 ≥ 0
0   if 𝑣𝑣 < 0 Equation 3.6 [37] 

3.2 Neural Network Architectures and Learning Processes 

Neural networks have, at a minimum, one input layer and one output layer. The input layer 

contains source neurons whereas the output layer contains computation neurons. In other words, 

no calculations are performed by the input layer. Hidden layers can be added between the input 

and the output layer.  Hidden layers, which contain computation neurons, help neural networks to 

model nonlinear behavior and higher-order statistics. A shallow neural network is defined here as 

having two or less hidden layers while a deep neural network is defined as have three or more 

hidden layers. [32, 33] 

In general, there are two classes of neural network architectures: feedforward neural 

networks and recurrent neural networks. The difference between a feedforward neural network 

and a recurrent neural network is that a feedforward neural network does not have a feedback loop 

whereas a recurrent neural network has, at a minimum, one feedback loop. Feedback loops, which 

help neural networks to model nonlinear behavior (as well as time dependencies), can have a 

significant impact on overall performance. Figure 3.2 shows an example of a neural network with 

a feedforward architecture while Figure 3.3 shows an example of a neural network with a recurrent 

architecture. [32, 33] 
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Figure 3.2: Example of Feedforward Neural Network with Two Hidden Layers [32] 

 

Figure 3.3: Example of Recurrent Neural Network with Two Hidden Layers [32]  
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There are three classes of learning processes: supervised learning, reinforcement learning, 

and unsupervised learning. In supervised learning (shown in Figure 3.4), the learning machine 

learns how to behave with an unknown environment through the help of a “teacher”, or a set of 

input-output pairs, which provides the current state of the environment and the desired response 

for that state. Using the error, or the difference between the desired response for the current state 

and the actual response from the learning machine for that state, the parameters of the learning 

machine are updated, resulting in the learning machine, ideally, learning how to behave such that 

the error is minimized. [32, 33] 

 

In reinforcement learning (shown in Figure 3.5), the learning machine learns how to behave 

by interacting with the unknown environment. The learning machine, based on the current state of 

the environment, selects an action following some policy. Then, the learning machine receives 

feedback from the environment usually in the form of a reward and the future state of the 

environment. This process continues, resulting in the learning machine, ideally, learning how to 

behave such that the cumulative reward is maximized. [32, 33] 

 

Figure 3.4: Supervised Learning Diagram [32] 
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Unsupervised learning (shown in Figure 3.6) has neither a teacher nor a feedback loop to 

help guide the learning process. Rather, a task-independent measure is used to optimize the 

parameters of the learning machine. [32, 33] 

 

3.3 LSTM Neural Networks 

In 1997, Hochreiter and Schmidhuber [38] developed long short-term memory (LSTM) 

neural networks, a subclass of recurrent neural networks, to solve the vanishing-gradient problem, 

which decays the sensitivity of a recurrent neural network to inputs over training. Due to the 

 

Figure 3.5: Reinforcement Learning Diagram [32] 

 

Figure 3.6: Unsupervised Learning Diagram [32] 
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vanishing-gradient problem, a recurrent neural network will “forget” information, resulting in the 

loss of long-term dependencies. Hochreiter and Schmidhuber solved the vanishing-gradient 

problem by enforcing a constant error back-propagation by using “memory” units with 

multiplicative gates, which opened and closed to access that constant error flow [38]. 

Information on LSTM neural networks can be found in Reference 39 and Reference 40. As 

previously mentioned, LSTM neural networks use “memory” units, which subsequently consist of 

memory cells as well as multiplicative (input, output, and forget) gates. The activation function 

for a gate is typically the sigmoid function. In other words, the state of the gate is limited from 0 

(i.e., closed) to 1 (i.e., open). Overall, if the input gate is closed and the forget gate is open, the 

memory cell will “remember” information from previous inputs rather than information from 

current inputs, which makes that information available for future use if the output gate is open. 

However, if the forget gate is closed, the memory cell will reset and “forget” information from 

previous inputs. Mathematically, the model of a memory unit for an LSTM neural network can be 

written as follows. [39, 40] 

 𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑥𝑥ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑥𝑥𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑥𝑥) Equation 3.7 [40] 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑥𝑥𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑓𝑓ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑓𝑓𝑐𝑐𝑡𝑡−1 + 𝑏𝑏𝑓𝑓� Equation 3.8 [40] 

 𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 𝑡𝑡𝑎𝑎𝑡𝑡ℎ(𝑊𝑊𝑥𝑥𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑐𝑐ℎ𝑡𝑡−1 + 𝑏𝑏𝑐𝑐) Equation 3.9 [40] 

 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑥𝑥𝑙𝑙𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎ𝑙𝑙ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑙𝑙𝑐𝑐𝑡𝑡 + 𝑏𝑏𝑙𝑙) Equation 3.10 [40] 

 ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 𝑡𝑡𝑎𝑎𝑡𝑡ℎ(𝑐𝑐𝑡𝑡) Equation 3.11 [40] 

In these equations, 𝑖𝑖 is the state of the input gate, 𝑜𝑜 is the state of output gate, 𝑓𝑓 is the state 

of the forget gate, and 𝑐𝑐 is the state of the memory cell. 𝜎𝜎 is the activation function for the gates. 

𝑥𝑥 are the input signals and ℎ is the output signal from the memory cell while 𝑊𝑊 are the weight 

matrices and 𝑏𝑏 are the biases. 
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3.3.1 Back-Propagation and Back-Propagation Through Time 

In general, neural networks use gradient-based optimization to minimize the loss function. 

A gradient-based optimization algorithm updates the weights of a neural network such that the 

value of the loss function moves in some direction, usually the direction of steepest descent (i.e., 

the negative of the gradient). Gradient-based optimization is implemented in neural networks 

through the use of the back-propagation algorithm. Information on the back-propagation algorithm 

can be found in Reference 32 and Reference 33. Overall, the back-propagation algorithm calculates 

the partial derivatives of the loss function with respect to the weights of the neural network through 

a repeated application of the chain rule, starting from the output layer and working backwards. 

During this backwards pass through the neural network, the weights of the neural network are 

updated. LSTM neural networks, as a subclass of recurrent neural networks, use an extension of 

the back-propagation algorithm…the back-propagation through time algorithm. The back-

propagation through time algorithm propagates the partial derivatives of the loss function with a 

backwards and forwards pass through the neural network. [32, 33] 

3.4 Previous Research 

Schuster [41] as well as Izzo et al. [42] and Izzo et al. [43] provide historical overviews on 

the extent of artificial intelligence in astrodynamics. Overall, neural networks, as well as other 

machine learning techniques, have been used in a wide range of aerospace-related applications, 

from spacecraft trajectory design and optimization [44, 45] to spacecraft guidance, navigation, and 

control [46, 47] to space situational awareness [48-51] to mission operations [52-55]. Neural 

networks have also been used in a variety of entry, descent, and landing problems. However, such 

research has largely focused on spacecraft with traditional, impulsive, yet throttleable, propulsion 

[56-61]. Neural networks have even been used in reinforcement learning models as well as in 
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combination with evolutionary optimization, such as evolutionary neurocontrol and other 

evolutionary neural control schemes. However, such research will not be discussed here as this 

research was focused on neural networks trained by supervised learning models for, specifically, 

applications related to low-thrust trajectory design and optimization. 

In 2015, Sreesawet et al. proposed a neural-network based adaptive controller, which 

performed better than a traditional controller, for the attitude control of a low-thrust spacecraft 

during an orbit-raising transfer [62]. Ramos et al. used shallow feedforward neural networks to 

generate pork-chop plots for low-thrust interplanetary transfers from Earth to Mars [63]. Mereta 

et al. trained and compared various machine learning regressors, including shallow feedforward 

neural networks, to estimate the final spacecraft mass after a low-thrust transfer with multiple 

revolutions between two near-Earth asteroids [64]. In terms of the mean absolute error and the 

root-mean-square error, Mereta et al. found all the machine learning regressors outperformed the 

Lambert estimate by at least an order of magnitude [64]. However, the neural networks were not 

best regressor overall [64]. Sánchez-Sánchez and Izzo trained deep feedforward neural networks 

to learn the control policy for four cases of pinpoint landing: a quadcopter model, a mass-varying 

spacecraft with bounded thrust, a mass-varying spacecraft using reaction wheels for attitude 

control, and a mass-varying rocket with thrust vector control [65]. Sánchez-Sánchez and Izzo 

found the control policies predicted by the neural networks accurately represented the optimal 

control policies with high success rates and good generalization behaviors [65]. Parrish, in their 

dissertation, applied deep feedforward neural networks to cislunar and translunar trajectories [66]. 

As the neural networks were trained to map the difference in the current states from the nominal 

initial conditions to the difference in the current states to the nominal final conditions, the neural 

networks were able, in the presence of errors, to accurately correct the trajectories with respect to 
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the nominal trajectory, reducing the overall error in the final states [66]. Izzo et al. used deep 

feedforward neural networks to satisfactorily (i.e., with small errors) model the guidance profile 

of a quadratic-optimal and mass-optimal interplanetary transfer from Earth to Mars [42]. 

In 2019, Izzo et al. used deep feedforward neural networks to predict, with high accuracies, 

the thrust profile and the fuel consumption (with and without enforced constraints) for a mass-

optimal, interplanetary transfer from Earth to Venus [67]. Chen, in their thesis, trained and 

compared machine learning techniques, including deep feedforward neural networks, to estimate 

the fuel consumptions and transfer times for rendezvous-related problems [68]. Similar to Chen, 

Casey trained and compared machine learning regressors, including gradient boosting and 

feedforward neural networks, to identify transfer feasibility and predict the final spacecraft mass 

for use in a sequence evaluation and optimization scheme [69]. Song and Gong applied deep 

feedforward neural networks to the multi-target rendezvous problem by implementing the neural 

networks, which predicted the transfer times between near-Earth asteroids for solar sails with a 

mean relative error of less than 1 percent, in a Monte Carlo Tree Search [70]. Li et al. showed deep 

feedforward neural networks were capable of autonomous, time-optimal, many-revolution (long-

duration) orbit-raising [71]. Cheng et al. applied multiscale deep feedforward neural networks in 

a real-time optimal control approach for a minimum-time interplanetary transfer from Earth to 

Mars via a solar sail and reported remarkable performance in terms of accuracy, efficiency, and 

robustness [72]. Li et al. trained deep feedforward neural networks to predict the time, initial 

costates, and control policy for time-optimal interplanetary transfers [73]. Li et al. found the neural 

networks were able to accurately predict the time and initial costates with errors less than a tenth 

of a percent and 2 percent, respectively [73]. When used as the initial solution to an indirection 

shooting method, the result was a 100 percent success rate and improved convergence efficiency 



28 

[73]. Li et al. also found the control policy predicted by the neural networks coincided well with 

the optimal control policy [73]. Zhu and Luo used multilayer perceptrons (deep feedforward neural 

networks) to evaluate transfer feasibility and estimate fuel consumption for short interplanetary 

transfers between virtual bodies [74]. Zhu and Luo showed the multilayer perceptrons, when 

compared to other machine learning techniques, were the best evaluators of transfer feasibility 

with an accuracy of more than 98 percent as well as the best approximators of fuel consumption 

with a relative estimation error of less than half of a percent [74]. 

In 2020, Sprague et al. presented an approach for an optimal controller with neural 

networks (capable of adapting online to dynamic objectives) and applied their approach to an 

inverted pendulum swing-up problem as well as a spacecraft orbit transfer problem [75]. With 

their approach, Sprague et al. were able to produce trajectories that were near-optimal [75]. Li et 

al. trained deep feedforward neural networks to estimate the transfer costs for three optimal control 

problems: the transfer times for time-optimal multitarget transfers, the fuel consumptions for fuel-

optimal multitarget transfers, and the required velocity changes for multi-impulse multitarget 

transfers [76]. Li et al. showed the neural networks estimated the transfer times and fuel 

consumptions with a mean relative error of less than half of a percent and the required velocity 

changes with a mean relative error of less than 4 percent [76]. Rubinsztejn et al. applied deep 

feedforward neural networks to the missed thrust problem for three optimal control problems: two-

body orbit-to-orbit transfers, two-body interplanetary transfers from Mars to Earth, and circular 

restricted three-body transfer from Earth to a Lyapunov orbit [77]. Rubinsztejn et al. showed the 

neural networks, which had a baseline success rate (without missed thrust events) of 97 percent 

and an average optimality error of 3 percent, were able to autonomously correct for a majority of 

missed thrust events [77]. Yin et al. used deep feedforward neural networks to supply the initial 
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solution for an indirect shooting method, improving the computation efficiency and convergence 

of the method (compared to a random-guess approach) [78]. Yin et al. considered both fuel-optimal 

and energy-optimal transfers from Earth to three types of nearby orbits: a coplanar circular orbit, 

a coplanar elliptical orbit, and an inclined circular orbit [78]. 

In 2021, Izzo and Öztürk trained deep feedforward neural networks to predict the control 

policy (thrust magnitude and direction) as well as the propellant mass for a mass-optimal 

interplanetary transfer from Earth to Venus [79]. Izzo and Öztürk showed deep feedforward neural 

networks are capable of optimal guidance, approximating the thrust magnitude to within an error 

of 5 percent and the thrust direction to within an error of 1 degree [79]. The propellent mass was 

approximated with only a 1 percent error [79]. Xie et al, used deep feedforward neural networks 

to identify feasible transfers between near-Earth asteroids, improving the convergence rate of the 

direct transcription method used to over 98 percent, and predict the transfer costs, resulting in a 

mean relative error of less than 1 percent [80]. 

In 2022, Viavattene and Ceriotti used deep feedforward neural networks to predict the 

transfer costs (required changes in velocity) and durations of low-thrust rendezvous trajectories 

between near-Earth asteroids, showing reduced computational times (up to two orders of 

magnitudes) with correlation coefficients as high as 0.97 and average errors as low as 10 percent 

for the transfer costs and 8 percent for the transfer durations [81, 82]. Schiassi et al., following the 

extreme theory of functional connections method, trained physics-informed neural networks to 

learn the control policies for three optimal control problems: the planar maximum-radius low-

thrust orbit transfer, the planar minimum-time low-thrust orbit transfer, and the planar minimum-

time orbit transfer for a solar sail [83]. Schiassi et al. showed the neural networks were able to 
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learn the control policies with satisfactory accuracies (in comparison to an optimal control 

software) and improved convergence [83]. 

Though the use of neural networks trained by supervised learning models for applications 

related to low-thrust trajectory design and optimization is extensive, previous research has largely 

focused on shallow or deep feedforward architectures with little emphasis placed on recurrent 

ones, even though recurrent architectures are inherently more suited to time histories due to the 

presence of internal memory. In fact, to the best of the author’s knowledge, recurrent neural 

networks have rarely been applied and only to attitude control and landing problems (i.e., modeling 

image-control relationships) or within reinforcement learning models. These applications of 

recurrent neural networks are as follows. Note, this research is the culmination of the work 

presented in Reference 84 and Reference 85. 

Furfaro et al. implemented an LSTM layer within a deep recurrent neural network 

architecture in their proposal for a fuel-optimal guidance system for pinpoint planetary landing 

[86]. Furfaro et al. merged convolutional and recurrent (via an LSTM layer) architectures to predict 

the fuel-optimal control policy for two types of autonomous lunar landings: a one-dimensional 

landing and a planar two-dimensional landing [87]. For the first scenario, Furfaro et al. were able 

to predict the thrust levels with an over 99 percent accuracy [87]. For the second scenario, Furfaro 

et al. were able to predict the thrust levels with an over 98 percent accuracy and the thrust directions 

with a root-mean-square error of less than 1 degree [87]. Silvestrini and Lavagna implemented 

shallow LSTM neural networks in a reinforcement learning algorithm for near-optimal, collision-

free reconfiguration and maintenance in distributed formation flying spacecraft, showing 

comparable or superior performance with respect to the baseline algorithm [88]. Scorsoglio et al. 

applied deep recurrent (via a GRU layer) convolutional neural networks in a reinforcement 
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learning architecture to the lunar landing problem [89, 90]. Biggs and Fournier proposed recurrent-

neural-predictive control for the attitude tracking, slew maneuvers, and detumbling of small 

satellites [91]. In their investigation on the feasibility of deploying small satellites from low Earth 

orbit to near-Earth asteroids, Jaworski and Kindracki used deep recurrent neural networks with 

LSTM layers to predict the future states of the International Space Station [92].  
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4 Methodology 

In this chapter, the data used to tune, train, validate, and test the LSTM neural networks as 

well as the implementation and design of those LSTM neural networks and their feedforward 

equivalents will be provided. Note, in this dissertation, a theoretical approach to the low-thrust, 

orbit-raising problem is presented. In other words, the physical or practical limitations of real 

hardware were not considered. 

4.1 Model for Low-Thrust, Orbit-Raising Problem 

Figure 4.1 shows a planar, two-body, low-thrust, orbit-raising transfer in polar coordinates. 

Polar coordinates, along with equinoctial elements, are a common choice for Keplerian or near-

Keplerian problems, such as the planar, two-body, low-thrust, orbit-raising transfer [2]. These 

elements have state variables that change slower than, for example, Cartesian coordinates [1, 2]. 

As a result, fewer discretization points are needed to model the problem, making the overall 

optimization process more efficient and robust [1, 2]. 

 

 

Figure 4.1: Planar, Two-Body, Low-Thrust, Orbit-Raising Transfer [1] 
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Mathematically, the system dynamics for the planar, two-body, low-thrust, orbit-raising 

transfer in polar coordinates can be written in canonical units as follows. In these equations, the 

state variables (𝑟𝑟, 𝜃𝜃, 𝑣𝑣𝑙𝑙, and 𝑣𝑣𝑡𝑡) are the spacecraft radius, phase angle, radial velocity, and 

tangential velocity, respectively. The control variables (𝑢𝑢 and 𝜑𝜑) are the thrust acceleration and 

angle, respectively. Note, all state and control variables are scalar values. 𝜇𝜇, equal to one, is the 

gravitational parameter of the central body (Earth). 

 �̇�𝑟 = 𝑣𝑣𝑙𝑙 Equation 4.1 [1] 

 �̇�𝜃 = 𝑣𝑣𝑡𝑡
𝑙𝑙

 Equation 4.2 [1] 

 �̇�𝑣𝑙𝑙 = 𝑣𝑣𝑡𝑡2

𝑙𝑙
− 𝜇𝜇

𝑙𝑙2
+ 𝑢𝑢 sin𝜑𝜑 Equation 4.3 [1] 

 �̇�𝑣𝑡𝑡 = −𝑣𝑣𝑙𝑙𝑣𝑣𝑡𝑡
𝑙𝑙

+ 𝑢𝑢 cos𝜑𝜑 Equation 4.4 [1] 

Canonical units, which normalize the problem variables such that the gravitational 

parameter of the central body is unity, make the overall optimization process more robust by 

scaling the state variables to be of similar magnitudes [2]. The canonical units for an Earth-orbiting 

satellite are presented in Table I. 

 

4.2 Method of Trajectory Optimization 

Both direct and indirect methods for trajectory optimization have been applied to a wide 

range of applications related to low-thrust propulsion. However, as previously mentioned, direct 

collocations methods are some of the “best known” and “most implemented” methods and, as 

such, have been applied to the low-thrust, orbit-raising problem as well as lunar and interplanetary 

Table I: Canonical Units for Earth-Orbiting Satellite 

Variable Canonical Units Metric Units 
Distance 1 DU 6,378 km 
Velocity 1 DU/TU 7.91 km/sec 

Time 1 TU 806.80 sec 
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transfers [1, 2, 53]. Due to this success, a direct collocation method, specifically the Hermite-

Simpson direct collocation method (implemented in MATLAB), was chosen as the method of 

trajectory optimization in the generation of the training, validation, and test data as well as the 

method of comparison for neural networks. The following equations are the objective functions 

for time-optimal and fuel-optimal transfers, respectively. 

 𝐽𝐽 = 𝑡𝑡𝑓𝑓 − 𝑡𝑡0 Equation 4.5 [1] 

 𝐽𝐽 = ∫ 𝑢𝑢𝑡𝑡𝑓𝑓
𝑡𝑡0

d𝑡𝑡 Equation 4.6 [1] 

The objective functions shown in Equations 4.5 and 4.6 were minimized using the fmincon 

function in MATLAB, subject to the system dynamic constraints shown in Equations 4.1 through 

4.4 as well as the initial and final boundary constraints presented in Table II. Table II also presents 

the lower and upper bounds on the decision variables. For more information on the datasets, refer 

to Chapter 4.2.1. For the fmincon function in MATLAB, the “interior-point” algorithm and “sqp” 

algorithm were selected for time-optimal and fuel-optimal transfers, respectively. A constraint 

violation tolerance of 1e-5 was selected. Other than increasing the maximum number of function 

evaluations and iterations as well as activating parallel computing, all other options for the fmincon 

function in MATLAB were left as their default values. 

 

Table II: Decision Variables, Boundary Constraints, and Bounds 

Decision 
Variable 

Boundary Constraint 
(Initial) 

Boundary Constraint 
(Final) 

Bound 
(Lower) 

Bound 
(Upper) 

r (DU) 1.0470 Varies 0 10 
θ (rad) 0 None 0 200 

vr (DU/TU) 0 0 -5 5 
vt (DU/TU) 0.9773 Varies -5 5 

t (TU) 0 None / Varies 0 500 
u (DU/TU2) None None 0 0.01 

φ (rad) None None -π π 
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The optimization software for this research was developed and validated (with respect to 

the time histories of the control variables) following the results of the practical example for a 

planar, two-body, low-thrust, orbit-raising transfer (both time-optimal and fuel-optimal) in 

Topputo and Zhang’s Survey of Direct Transcription for Low-Thrust Space Trajectory 

Optimization with Applications [1]. During data generation, the exit messages for the fmincon 

function were checked to verify both the first-order optimality measure and the maximum 

constraint violation was sufficiently close to zero, satisfying the Karush-Kuhn-Tucker necessary 

conditions. 

4.2.1 Data Generation 

The datasets consisted of the optimized trajectories from one low Earth orbit with a radius 

of 6,678 kilometers to over twenty near-geosynchronous equatorial orbits with radii ranging from 

35,000 kilometers to 45,000 kilometers. 15 percent of the training data was used for validation. 

The test cases for the training datasets consisted of the optimized trajectories from one low Earth 

orbit with a radius of 6,678 kilometers to one geosynchronous equatorial orbit with a radius of 

42,164 kilometers. Table III presents the initial and final orbits for the training datasets and test 

cases.  
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Table III: Training Datasets and Test Cases 

Training Datasets 
Initial Orbit Final Orbit 

6,678 km 
1.0470 DU, 0.9773 DU/TU 

35,000 km 
5.4876 DU, 0.4269 DU/TU 

35,500 km 
5.5660 DU, 0.4239 DU/TU 

36,000 km 
5.6444 DU, 0.4209 DU/TU 

36,500 km 
5.7228 DU, 0.4180 DU/TU 

37,000 km 
5.8012 DU, 0.4152 DU/TU 

37,500 km 
5.8796 DU, 0.4124 DU/TU 

38,000 km 
5.9580 DU, 0.4097 DU/TU 

38,500 km 
6.0364 DU, 0.4070 DU/TU 

39,000 km 
6.1148 DU, 0.4044 DU/TU 

39,500 km 
6.1932 DU, 0.4018 DU/TU 

40,000 km 
6.2716 DU, 0.3993 DU/TU 

40,500 km 
6.3500 DU, 0.3968 DU/TU 

41,000 km 
6.4238 DU, 0.3944 DU/TU 

41,500 km 
6.5067 DU, 0.3920 DU/TU 

42,000 km 
6.5851 DU, 0.3897 DU/TU 

42,500 km 
6.6635 DU, 0.3874 DU/TU 

43,000 km 
6.7419 DU, 0.3851 DU/TU 

43,500 km 
6.8203 DU, 0.3829 DU/TU 

44,000 km 
6.8987 DU, 0.3807 DU/TU 

44,500 km 
6.9771 DU, 0.3786 DU/TU 

45,000 km 
7.0555 DU, 0.3765 DU/TU 

Test Cases 
Initial Orbit Final Orbit 

6,678 km 
1.0470 DU, 0.9773 DU/TU 

42,164 km 
6.6108 DU, 0.3889 TU/DU 
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4.3 Grid Convergence 

To determine the appropriate number of collocation points for the Hermite-Simpson direct 

collocation method, grid convergence studies were conducted on the test cases (1.0470 DU to 

6.6108 DU). The results from the grid convergence studies will be discussed here. 

4.3.1 Time-Optimal Grid Convergence Study 

Overall, six simulations were run with the number of points being increased from 100 

points to 600 points. For the simulation with 100 points, the initial guess assumed continuous 

maximum tangential thrust. For a time-optimal transfer, continuous maximum thrust is expected 

as the spacecraft would continuously thrust throughout the entire transfer, regardless of the 

spacecraft’s location [1]. Also, tangential trust is a common assumption for initial guesses. For all 

other simulations, the initial guess was the optimized trajectory from the simulation with 100 

points expanded to the desired number of points using linear interpolation, which help improve 

the convergence time of the overall optimization process. Table IV presents the final values for 

the objective function (i.e., the transfer times) and the convergence times as well as the constraint 

violations for each simulation. Figure 4.2 shows the optimized thrust accelerations and angles 

while Figure 4.3 shows the optimized trajectories for each simulation. 

  

Table IV: Final Objective Function Values (Transfer Times) and Convergence Times 

Number 
of Points 

Transfer Time 
(TU) 

Convergence Time 
(hr) 

Constraint 
Violation 

100 71.7710 0.03 2.3653e-6 
200 71.3835 0.15 4.6349e-14 
300 71.3790 0.48 2.1316e-14 
400 71.3898 1.14 1.3554e-13 
500 71.3931 9.05 8.0635e-11 
600 71.3819 2.73 6.8889e-13 
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Figure 4.2: Optimized Thrust Accelerations and Angles (Time-Optimal) 
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Figure 4.3: Optimized Trajectories (Time-Optimal) 

 =
 0

90

18
0

27
00

2

4r =
 6

10
0 

Po
in

ts

 =
 0

90

18
0

27
00

2

4r =
 6

20
0 

Po
in

ts

 =
 0

90

18
0

27
00

2

4r =
 6

30
0 

Po
in

ts

 =
 0

90

18
0

27
00

2

4r =
 6

40
0 

Po
in

ts

 =
 0

90

18
0

27
00

2

4r =
 6

50
0 

Po
in

ts

 =
 0

90

18
0

27
00

2

4r =
 6

60
0 

Po
in

ts



40 

Overall, two unexpected trends were observed from the results of the time-optimal grid 

convergence study, both of which appeared to be features of the optimization software. First, as 

seen in Table IV, the transfer time did not consistently decrease as the number of points increased. 

In fact, almost oscillatory behavior can be seen. This oscillatory behavior appeared to correspond 

to the relative maximum constraint violations and, thus, was attributed to the chosen step tolerance 

as well as the chosen constraint violation tolerance. Lower step and constraint violation tolerances 

were tested. However, as the step size consistently approached the step tolerance much faster than 

the relative maximum constraint violations approached the constraint violation tolerance, the result 

was miniscule or no improvement in the transfer time at the cost of longer convergence times or, 

in some cases, convergence to infeasible points. 

Second, as previously mentioned, for a time-optimal transfer, continuous maximum thrust 

is expected. As seen in the upper plot of Figure 4.2, this trend was observed. However, divot-like 

structures of various magnitudes were present. Again, this behavior appeared to correspond to the 

relative maximum constraint violations and, thus, was attributed to the chosen step tolerance and 

the chosen constraint violation tolerance. 

By and large, 300 points was determined to be an appropriate number of collocation points 

for the Hermite-Simpson direct collocation method on time-optimal transfers. For the test case, 

300 points provided suitable local refinement, resulting in more smoother plots than the one 

generated using 100 and 200 points at more acceptable convergence times than when using 400, 

500, and 600 points. In addition, the transfer time for 300 points was the overall minimum transfer 

time.  
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4.3.2 Fuel-Optimal Grid Convergence Study 

Similar to the time-optimal grid convergence study, six simulations were run with the 

number of points being increased from 100 points to 600 points. However, in the fuel-optimal grid 

convergence study, the initial guess for the simulation with 100 points assumed continuous half-

maximum tangential thrust to account for the expected discontinuous “bang-bang” control 

structure as the spacecraft would thrust at locations near perigee and apogee [1]. Again, for all 

other simulations, the initial guess was the optimized trajectory from the simulation with 100 

points expanded to the desired number of points using linear interpolation. Finally, for fuel-optimal 

transfers, the transfer time was constrained to be twice the optimized transfer time from the time-

optimal grid convergence study when using 300 points (71.3790 TU), equal to 142.7580 TU. Table 

V presents the final values for the objective function (i.e. the thrust accelerations) and the 

convergence times as well as the constraint violations for each simulation while Figure 4.4 and 

Figure 4.5 show the optimized thrust accelerations, angles, and trajectories for each simulation. 

 

  

Table V: Final Objective Function Values (Thrust Acceleration) and Convergence 
Times 

Number 
of Points 

Thrust Acceleration 
(DU/TU2) 

Convergence Time 
(hr) 

Constraint 
Violation 

100 0.5475 0.05 5.9392e-15 
200 0.5451 0.26 7.1100e-11 
300 0.5447 0.79 1.4211e-14 
400 0.5450 0.16 9.4942e-6 
500 0.5447 0.56 2.8810e-6 
600 0.5445 0.58 1.0000e-5 
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Figure 4.4: Optimized Thrust Accelerations and Angles (Fuel-Optimal) 
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Figure 4.5: Optimized Trajectories (Fuel-Optimal) 
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First, as seen in Table V, the thrust accelerations did, for the most part, decrease as the 

number of points increased. Second, as previously mentioned, for a fuel-optimal transfer, a 

discontinuous “bang-bang” control structure is expected. As seen in the upper plots of Figure 4.4, 

this trend was observed with definition increasing with the number of points. Again, 300 points 

was determined to be an appropriate number of collocation points for the Hermite-Simpson direct 

collocation method on fuel-optimal transfers with constrained transfer times. 300 points provided 

suitable local refinement at acceptable convergence times. In addition, though the thrust 

accelerations for 300 points were not the overall minimum thrust accelerations, the thrust 

accelerations for 300 points differed from the overall minimum by an insignificant amount (i.e., < 

1 percent). Note, unnecessary thrust angles were removed from the fuel-optimal datasets before 

neural network implementation. If the value of the optimized thrust acceleration at any point was 

less than one percent of the upper bound (0.01 DU/TU2), the value of the optimized thrust angle 

was set to zero. Figure 4.6 shows an example of the corrected thrust angles for the test case. 

 

 

Figure 4.6: Thrust Accelerations and Corrected Angles (Fuel-Optimal) 
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4.4 Time Bias 

To investigate the effect of the time bias in the datasets on the neural networks, datasets 

with consistent timesteps between collocation points, shown in Table VI, were generated as well. 

For the time-optimal dataset, the number of points to be used for each trajectory was determined 

from the optimized transfer time for that trajectory such that the timestep between points was 

approximately 0.25 TU. For the fuel-optimal datasets with constrained transfer times, the timestep 

between points was approximately 0.50 TU. 

 

4.5 Neural Network Implementation 

The LSTM neural networks were implemented in Python 3.8 [93] using Keras [94] and 

TensorFlow [95]. Figure 4.7 shows a diagram of the general architecture for the LSTM neural 

Table VI: Training Datasets and Test Cases with Consistent Timesteps 

Training Datasets Time-Optimal Fuel-Optimal 
(Constrained Transfer Time) 

Initial Orbit Final Orbit Points (0.25 TU) Points (0.50 TU) 

6,678 km 

35,000 km 259 259 
35,500 km 261 261 
36,000 km 263 263 
36,500 km 265 265 
37,000 km 267 267 
37,500 km 269 269 
38,000 km 270 270 
38,500 km 272 272 
39,000 km 274 274 
39,500 km 276 276 
40,000 km 278 278 
40,500 km 280 280 
41,000 km 281 281 
41,500 km 283 283 
42,000 km 290 290 
42,500 km 287 287 
43,000 km 288 288 
43,500 km 290 290 
44,000 km 292 292 
44,500 km 294 294 
45,000 km 295 295 

Test Cases Time-Optimal Fuel-Optimal 
(Constrained Transfer Time) 

Initial Orbit Final Orbit Points (0.25 TU) Points (0.50 TU) 
6,678 km 42,164 km 286 286 
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networks. The LSTM neural networks were tuned and trained over a maximum of 60 epochs with 

a batch size of one using the MeanSquaredError regression loss and the Adam optimizer. The 

Adam optimizer is a first-order, gradient-based, optimization algorithm able to handle noisy and/or 

sparse gradients as well as non-stationary objectives [96]. For the “LSTM” layers, the activation 

functions and recurrent activation functions were kept as their default values (the hyperbolic 

tangent function and the sigmoid function, respectively). 

 

The following parameters and hyperparameters of the LSTM neural networks were 

determined using the Hyperband Tuner in Keras, which is a variant of the RandomSearch Tuner 

that uses early stopping to speed-up the overall tuning process. The Hyperband Tuner monitored 

the validation loss with a patience of 15 epochs. Best weights were restored. 

1. Number of Memory Units in Input “LSTM” Layer (from 32 to 512) 

2. Number of Hidden “LSTM” Layers (from 1 to 3) 

3. Number of Memory Units in Hidden “LSTM” Layers (from 32 to 512) 

4. Number of Memory Units in Output “LSTM” Layer (from 32 to 512) 

5. Activation Function for “Dense” Layer with Two Neurons (“relu”, “sigmoid”, or 

“tanh”) 

6. Learning Rate for Adam Optimizer (0.01, 0.001, or 0.0001) 

The feedforward equivalents of the LSTM neural networks were implemented in a similar 

fashion with a similar general architecture using “Dense” layers instead of “LSTM” layers.  Like 

the LSTM neural networks, the feedforward neural networks were tuned and trained over a 

 

Figure 4.7: Diagram of LSTM Neural Network Architecture 
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maximum of 60 epochs with a batch size of one using the MeanSquaredError regression loss and 

the Adam optimizer. The following parameters and hyperparameters of the feedforward neural 

networks were determined using, as with the LSTM neural networks, the Hyperband Tuner in 

Keras. Again, the Hyperband Tuner monitored the validation loss with a patience of 15 epochs 

and best weights were restored. 

1. Number of Memory Units in Input “Dense” Layer (from 32 to 512) 

2. Activation Function for Input “Dense” Layer (“relu”, “sigmoid”, or “tanh”) 

3. Number of Hidden “Dense” Layers (from 1 to 3) 

4. Number of Memory Units in Hidden “Dense” Layers (from 32 to 512) 

5. Activation Functions for Hidden “Dense” Layers (“relu”, “sigmoid”, or “tanh”) 

6. Number of Memory Units in Output “Dense” Layer (from 32 to 512) 

7. Activation Function for Output “Dense” Layer (“relu”, “sigmoid”, or “tanh”) 

8. Activation Function for “Dense” Layer with Two Neurons (“relu”, “sigmoid”, or 

“tanh”) 

9. Learning Rate for Adam Optimizer (0.01, 0.001, or 0.0001) 

All data was preprocessed with feature-wise normalization (using the MinMaxScalar class 

in the scikit-learn library) and the sliding window method (using the shift function in the pandas 

library). Feature-wise normalization normalizes the data to have a mean of zero and a standard 

deviation of one while the sliding window method converts a time series into a set of input-output 

pairs [37, 97].  
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5 Results 

In this chapter, the results for the LSTM neural networks, including a comparison to their 

feedforward equivalents, will be presented. A total of four problems were considered: the time-

optimal open-loop case, the time-optimal closed-loop case, the fuel-optimal open-loop case, and 

the fuel-optimal closed-loop case. Using the Hyperband Tuner in Keras, the LSTM neural 

networks were tuned and trained on the time-optimal and fuel-optimal datasets. Two cases (open-

loop and closed-loop) were considered for each of the time-optimal and fuel-optimal datasets. 

When considering the open-loop case, the neural networks were tuned and trained on the state 

variables at the current timesteps to predict the control (thrust acceleration and angle) at those 

timesteps. When considering the closed-loop case, the neural networks were tuned and trained on 

the state variables at the previous timesteps to predict the control at the next, or current, timesteps. 

During the inference process for the closed-loop case, the predicted control for the state variables 

at the previous timesteps were fed into a fourth-order Runge-Kutta method (initialized with 

maximum tangential thrust) to calculate the state variables at the next timesteps. Those calculated 

state variables were then fed back into the neural networks, repeating the process. 

5.1 Time-Optimal 

The results for the LSTM neural networks, including a comparison to their feedforward 

equivalents, when tuned and trained on the time-optimal datasets will be discussed here. Two 

datasets (inconsistent and consistent timesteps) as well as two sets of inputs (states and states with 

the desired changes for those states) were considered for both the open-loop case and the closed-

loop case. In accordance with the tuning process, the neural networks were trained over a 

maximum of 60 epochs with a batch size of one using the MeanSquaredError regression loss and 

the Adam optimizer. Early stopping was used to speed-up the overall training process by 
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monitoring the validation loss with patience of 15 epochs. Best weights were restored. Finally, 

each neural network was re-trained 20 times. The results presented here are representative of the 

averages for those 20 trials. 

5.1.1 Time-Optimal Open-Loop 

Table VII through Table X present the tuned parameters and hyperparameters of the LSTM 

neural networks for the time-optimal open-loop case. The LSTM neural networks presented in 

Table VII and Table VIII were tuned and trained on the time-optimal dataset with inconsistent 

timesteps using the current states and the current states with the desired changes for those states 

as inputs, respectively. The LSTM neural networks presented in Table IX and Table X were tuned 

and trained on the time-optimal dataset with consistent timesteps using, again, the current states 

and current states with the desired changes for those states as inputs, respectively. Overall, tuning 

on the time-optimal dataset with consistent timesteps resulted in LSTM neural networks with fewer 

layers compared to tuning on the time-optimal dataset with inconsistent timesteps. 

 

 

Table VII: Time-Optimal Open-Loop LSTM Tuning Results 
(Current State – Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 192 

Default LSTM Layer (Hidden 1) 352 
LSTM Layer (Hidden 2) 288 
LSTM Layer (Output) 96 

Dense Layer 2 “tanh” 
Learning Rate = 0.001 

 

Table VIII: Time-Optimal Open-Loop LSTM Tuning Results 
(Current State and Changes – Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 512 

Default 
LSTM Layer (Hidden 1) 352 
LSTM Layer (Hidden 2) 320 
LSTM Layer (Hidden 3) 192 
LSTM Layer (Output) 256 

Dense Layer 2 “tanh” 
Learning Rate = 0.001 
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Figure 5.1 and Figure 5.2 compare the current control predictions (thrust accelerations and 

angles, respectively) from the tuned LSTM neural networks to the optimized values from the 

Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. Table XI presents an overall summary of the tuning and training results. When 

considering the thrust acceleration predictions, the LSTM neural networks performed well with 

the more severe deviations from the optimized values occurring near the divot-like structures 

discussed previously. As the magnitude of those divot-like structures differed significantly 

between trajectories in the training datasets, this behavior was attributed to generalization error. 

Better performance in terms of average RMSE was observed from the LSTM neural networks 

tuned and trained on the time-optimal dataset with consistent timesteps. When considering the 

thrust angle predictions, the LSTM neural networks performed excellent. Better performance in 

terms of average RMSE was observed from the LSTM neural networks tuned and trained with the 

current states and the desired changes for those states as inputs.  

Table IX: Time-Optimal Open-Loop LSTM Tuning Results 
(Current State – Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 320 

Default LSTM Layer (Hidden 1) 320 
LSTM Layer (Output) 448 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.0001 

 

Table X: Time-Optimal Open-Loop LSTM Tuning Results 
(Current State and Changes – Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 64 

Default LSTM Layer (Hidden 1) 96 
LSTM Layer (Output) 160 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.001 
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Figure 5.1: Time-Optimal Open-Loop LSTM Test Case Results (Thrust Accelerations) 
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Figure 5.2: Time-Optimal Open-Loop LSTM Test Case Results (Thrust Angles) 

0 50 100 150 200 250 300

Collocation Point

-1

0

1

Th
ru

st
 A

ng
le

, r
ad

Current State –  Control Pairs with Inconsistent Timesteps

 fmincon  Function

LSTM Neural Network

0 50 100 150 200 250 300

Collocation Point

-1

0

1

Th
ru

st
 A

ng
le

, r
ad

Current State and Changes –  Control Pairs with Inconsistent Timesteps

 fmincon  Function

LSTM Neural Network

0 50 100 150 200 250 300

Collocation Point

-1

0

1

Th
ru

st
 A

ng
le

, r
ad

Current State –  Control Pairs with Consistent Timesteps

 fmincon  Function

LSTM Neural Network

0 50 100 150 200 250 300

Collocation Point

-1

0

1

Th
ru

st
 A

ng
le

, r
ad

Current State and Changes –  Control Pairs with Consistent Timesteps

 fmincon  Function

LSTM Neural Network



53 

 
5.1.2 Time-Optimal Closed-Loop 

Table XII through Table XV present the tuned parameters and hyperparameters of the 

LSTM neural networks for the time-optimal closed-loop case. The LSTM neural networks 

presented in Table XII and Table XIII were tuned and trained on the time-optimal dataset with 

inconsistent timesteps using the previous states and the previous states with the desired changes 

for those states as inputs, respectively. The LSTM neural networks presented in Table XIV and 

Table XV were tuned and trained on the time-optimal dataset with consistent timesteps using, 

again, the previous states and previous states with the desired changes for those states as inputs, 

respectively. As in the time-optimal open-loop case, tuning on the time-optimal dataset with 

consistent timesteps resulted in LSTM neural networks with fewer layers compared to tuning on 

the time-optimal dataset with inconsistent timesteps. However, compared to the time-optimal 

open-loop case, the relative size of the tuned architectures for the time-optimal closed-loop case 

increased. 

 

Table XI: Summary of Time-Optimal Open-Loop LSTM Tuning and Training Results 

LSTM 
Neural Network 

Tuning 
Time 

Test Case 
RMSE 

Training 
Time 

Current State – Control Pairs 
with Inconsistent Timesteps 14.04 hr 

4.4322e-5 DU/TU2 
0.0329 rad 0.29 hr 

Current State and Changes – Control Pairs 
with Inconsistent Timesteps 15.54 hr 

3.2387e-5 DU/TU2 
0.0228 rad 0.59 hr 

Current State – Control Pairs 
with Consistent Timesteps 15.38 hr 

1.8116e-5 DU/TU2 
0.0353 rad 0.33 hr 

Current State and Changes – Control Pairs 
with Consistent Timesteps 12.13 hr 

1.8251e-5 DU/TU2 
0.0240 rad 0.07 hr 

 

Table XII: Time-Optimal Closed-Loop LSTM Tuning Results 
(Previous State – Current Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 384 

Default 
LSTM Layer (Hidden 1) 384 
LSTM Layer (Hidden 2) 480 
LSTM Layer (Hidden 3) 192 
LSTM Layer (Output) 512 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.0001 
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Figure 5.3 and Figure 5.4 compare the current control predictions (thrust accelerations and 

angles, respectively) from the tuned LSTM neural networks to the optimized values from the 

Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. Table XVI presents a summary of the tuning and training results. Overall, the LSTM 

neural networks for the time-optimal closed-loop case performed worse in terms of average RMSE 

than the LSTM neural networks for the time-optimal open-loop case. As in the time-optimal open-

loop case, when considering the thrust acceleration predictions, the more severe deviations from 

the optimized values typically occurred near the divot-like structures. Again, this behavior was 

attributed to generalization error. Also, like the time-optimal open-loop case, better performance 

Table XIII: Time-Optimal Closed-Loop LSTM Tuning Results 
(Previous State and Changes – Current Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 32 

Default 
LSTM Layer (Hidden 1) 352 
LSTM Layer (Hidden 2) 416 
LSTM Layer (Hidden 3) 192 
LSTM Layer (Output) 288 

Dense Layer 2 “tanh” 
Learning Rate = 0.001 

 

Table XIV: Time-Optimal Closed-Loop LSTM Tuning Results 
(Previous State – Current Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 192 

Default LSTM Layer (Hidden 1) 224 
LSTM Layer (Hidden 2) 416 
LSTM Layer (Output) 96 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.001 

 

Table XV: Time-Optimal Closed-Loop LSTM Tuning Results 
(Previous State and Changes – Current Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 416 

Default LSTM Layer (Hidden 1) 416 
LSTM Layer (Hidden 2) 64 
LSTM Layer (Output) 512 

Dense Layer 2 “relu” 
Learning Rate = 0.0001 
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in terms of average RMSE was observed from the LSTM neural networks tuned and trained on the 

time-optimal dataset with consistent timesteps as well as with the previous states and the desired 

changes for those states as inputs.  Like the time-optimal open-loop case, when considering the 

thrust angle predictions, better performance in terms of average RMSE was observed from the 

LSTM neural networks tuned and trained on the time-optimal dataset with consistent timesteps as 

well as with the previous states and the desired changes for those states as inputs. 

  

 

Figure 5.3: Time-Optimal Closed-Loop LSTM Test Case Results (Thrust Accelerations) 
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Figure 5.4: Time-Optimal Closed-Loop LSTM Test Case Results (Thrust Angles) 

0 50 100 150 200 250 300

Collocation Point

-1

0

1

Th
ru

st
 A

ng
le

, r
ad

Previous State –  Current Control Pairs with Inconsistent Timesteps

 fmincon  Function

LSTM Neural Network

0 50 100 150 200 250 300

Collocation Point

-1

0

1

Th
ru

st
 A

ng
le

, r
ad

Previous State and Changes –  Current Control Pairs with Inconsistent Timesteps

 fmincon  Function

LSTM Neural Network

0 50 100 150 200 250 300

Collocation Point

-1

0

1

Th
ru

st
 A

ng
le

, r
ad

Previous State –  Current Control Pairs with Consistent Timesteps

 fmincon  Function

LSTM Neural Network

0 50 100 150 200 250 300

Collocation Point

-1

0

1

Th
ru

st
 A

ng
le

, r
ad

Previous State and Changes –  Current Control Pairs with Consistent Timesteps

 fmincon  Function

LSTM Neural Network



57 

 
5.1.3 Initial Comparison to Feedforward Architectures 

Table XVII through Table XX present the tuned parameters and hyperparameters of the 

feedforward neural networks for the time-optimal open-loop case. The feedforward neural 

networks presented in Table XVII and Table XVIII were tuned and trained on the time-optimal 

dataset with inconsistent timesteps using the current states and the current states with the desired 

changes for those states as inputs, respectively. The feedforward neural networks presented in 

Table XIX and Table XX were tuned and trained on the time-optimal dataset with consistent 

timesteps using, again, the current states and current states with the desired changes for those states 

as inputs, respectively. Like the LSTM neural networks, tuning on the time-optimal dataset with 

consistent timesteps resulted in feedforward neural networks with slightly fewer layers and 

neurons compared to tuning on the time-optimal dataset with inconsistent timesteps. 

 
 

Table XVI: Summary of Time-Optimal Closed-Loop LSTM Tuning and Training 
Results 

LSTM 
Neural Network 

Tuning 
Time 

Test Case 
RMSE 

Training 
Time 

Previous State – Current Control Pairs 
with Inconsistent Timesteps 14.54 hr 

6.5119e-5 DU/TU2 
0.1602 rad 0.71 hr 

Previous State and Changes – Current Control Pairs 
with Inconsistent Timesteps 16.08 hr 

4.7014e-5 DU/TU2 
0.1093 rad 0.47 hr 

Previous State – Current Control Pairs 
with Consistent Timesteps 13.57 hr 

2.7477e-5 DU/TU2 
0.1352 rad 0.34 hr 

Previous State and Changes – Current Control Pairs 
with Consistent Timesteps 15.41 hr 

1.9001e-5 DU/TU2 
0.0663 rad 0.43 hr 

 

Table XVII: Time-Optimal Open-Loop Feedforward Tuning Results 
(Current State – Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 288 “relu” 

Dense Layer (Hidden 1) 320 “relu” 
Dense Layer (Hidden 2) 416 “relu” 
Dense Layer (Output) 384 “tanh” 

Dense Layer 2 “tanh” 
Learning Rate = 0.0001 

 



58 

 

 

 
Figure 5.5 and Figure 5.6 compare the current control predictions (thrust accelerations and 

angles, respectively) from the tuned feedforward neural networks to the optimized values from the 

Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. Table XXI presents a summary of the tuning and training results. When considering 

the thrust acceleration predictions, the feedforward neural networks, like the LSTM neural 

networks, performed well with the more severe deviations from the optimized values occurring 

near the divot-like structures. Again, this behavior was attributed to generalization error. Also, like 

the LSTM neural networks, better performance in terms of average RMSE was observed from the 

feedforward neural networks tuned and trained on the time-optimal dataset with consistent 

Table XVIII: Time-Optimal Open-Loop Feedforward Tuning Results 
(Current State and Changes – Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 128 “tanh” 

Dense Layer (Hidden 1) 512 “tanh” 
Dense Layer (Hidden 2) 384 “relu” 
Dense Layer (Output) 352 “sigmoid” 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.0001 

 

Table XIX: Time-Optimal Open-Loop Feedforward Tuning Results 
(Current State – Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 320 “relu” 

Dense Layer (Hidden 1) 352 “tanh” 
Dense Layer (Output) 384 “relu” 

Dense Layer 2 “tanh” 
Learning Rate = 0.0001 

 

Table XX: Time-Optimal Open-Loop Feedforward Tuning Results 
(Current State and Changes – Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 224 “relu” 

Dense Layer (Hidden 1) 128 “sigmoid” 
Dense Layer (Hidden 2) 320 “relu” 
Dense Layer (Output) 96 “tanh” 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.0001 
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timesteps. When considering the thrust angle predictions, the feedforward neural networks, like 

the LSTM neural networks, performed excellent. Also, like the LSTM neural networks, better 

performance in terms of average RMSE was observed from the feedforward neural networks tuned 

and trained with the current states and the desired changes for those states as inputs. 

  

 
Figure 5.5: Time-Optimal Open-Loop Feedforward Test Case Results 

(Thrust Accelerations) 
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Figure 5.6: Time-Optimal Open-Loop Feedforward Test Case Results (Thrust Angles) 
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Table XXII through Table XXV present the tuned parameters and hyperparameters of the 

feedforward neural networks for the time-optimal closed-loop case. The feedforward neural 

networks presented in Table XXII and Table XXIII were tuned and trained on the time-optimal 

dataset with inconsistent timesteps using the previous states and the previous states with the 

desired changes for those states as inputs, respectively. The feedforward neural networks presented 

in Table XXIV and Table XXV were tuned and trained on the time-optimal dataset with consistent 

timesteps using, again, the previous states and previous states with the desired changes for those 

states as inputs, respectively. No significant trends were observed from the tuned architectures. 

 

 

Table XXI: Summary of Time-Optimal Open-Loop Feedforward Tuning and Training 
Results 

Feedforward 
Neural Network 

Tuning 
Time 

Test Case 
RMSE 

Training 
Time 

Current State – Control Pairs 
with Inconsistent Timesteps 1.68 hr 

4.3869e-5 DU/TU2 
0.0295 rad 0.06 hr 

Current State and Changes – Control Pairs 
with Inconsistent Timesteps 1.68 hr 

2.4688e-5 DU/TU2 
0.0158 rad 0.06 hr 

Current State – Control Pairs 
with Consistent Timesteps 1.54 hr 

1.8545e-5 DU/TU2 
0.0313 rad 0.05 hr 

Current State and Changes – Control Pairs 
with Consistent Timesteps 1.45 hr 

2.9324-5 DU/TU2 
0.0300 rad 0.04 hr 

 

Table XXII: Time-Optimal Closed-Loop Feedforward Tuning Results 
(Previous State – Current Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 96 “relu” 

Dense Layer (Hidden 1) 448 “sigmoid” 
Dense Layer (Output) 96 “relu” 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.001 

 

Table XXIII: Time-Optimal Closed-Loop Feedforward Tuning Results 
(Previous State and Changes – Current Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 352 “relu” 

Dense Layer (Hidden 1) 128 “tanh” 
Dense Layer (Hidden 2) 480 “sigmoid” 
Dense Layer (Output) 320 “tanh” 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.0001 
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Figure 5.7 and Figure 5.8 compare the current control predictions (thrust accelerations and 

angles, respectively) from the tuned feedforward neural networks to the optimized values from the 

Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. Table XXVI presents a summary of the tuning and training results. Overall, like the 

LSTM neural networks, the feedforward neural networks for the time-optimal closed-loop case 

performed worse in terms of average RMSE than the feedforward neural networks for the time-

optimal open-loop case. As in the time-optimal open-loop case, when considering the thrust 

acceleration predictions, the more severe deviations from the optimized values typically occurred 

near the divot-like structures. Again, this behavior was attributed to generalization error. Also, like 

the LSTM neural networks, better performance in terms of average RMSE was observed from the 

feedforward neural networks tuned and trained on the time-optimal dataset with consistent 

timesteps as well as with the previous states and the desired changes for those states as inputs. As 

in the time-optimal open-loop case, when considering the thrust angle predictions, better 

Table XXIV: Time-Optimal Closed-Loop Feedforward Tuning Results 
(Previous State – Current Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 480 “tanh” 

Dense Layer (Hidden 1) 320 “relu” 
Dense Layer (Hidden 2) 320 “relu” 
Dense Layer (Output) 192 “sigmoid” 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.0001 

 

Table XXV: Time-Optimal Closed-Loop Feedforward Tuning Results 
(Previous State and Changes – Current Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 352 “relu” 

Dense Layer (Hidden 1) 32 “sigmoid” 
Dense Layer (Output) 96 “tanh” 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.001 
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performance in terms of average RMSE was observed from the feedforward neural networks tuned 

and trained with the previous states and the desired changes for those states as inputs. 

 
  

 

Figure 5.7: Time-Optimal Closed-Loop Feedforward Test Case Results 
(Thrust Accelerations) 

0 50 100 150 200 250 300

Collocation Point

9

9.2

9.4

9.6

9.8

10

Th
ru

st
 A

cc
el

er
at

io
n,

 D
U

 / 
TU

2 10 -3 Previous State –  Current Control Pairs with Inconsistent Timesteps

 fmincon  Function

FF Neural Network

0 50 100 150 200 250 300

Collocation Point

9

9.2

9.4

9.6

9.8

10

Th
ru

st
 A

cc
el

er
at

io
n,

 D
U

 / 
TU

2 10 -3 Previous State and Changes –  Current Control Pairs with Inconsistent Timesteps

 fmincon  Function

FF Neural Network

0 50 100 150 200 250 300

Collocation Point

9

9.2

9.4

9.6

9.8

10

Th
ru

st
 A

cc
el

er
at

io
n,

 D
U

 / 
TU

2 10 -3 Previous State –  Current Control Pairs with Consistent Timesteps

 fmincon  Function

FF Neural Network

0 50 100 150 200 250 300

Collocation Point

9

9.2

9.4

9.6

9.8

10

Th
ru

st
 A

cc
el

er
at

io
n,

 D
U

 / 
TU

2 10 -3 Previous State and Changes –  Current Control Pairs with Consistent Timesteps

 fmincon  Function

FF Neural Network



64 

 

 

 

  

 

Figure 5.8: Time-Optimal Closed-Loop Feedforward Test Case Results (Thrust Angles) 
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 When considering the thrust acceleration predictions for the time-optimal open-loop case, 

the LSTM neural networks with a minimum RMSE of 1.8116e-5 DU/TU2 (using consistent 

timesteps with the current states as inputs) performed on par (i.e., with less than 10 percent 

difference) with the feedforward neural networks with a minimum RMSE of 1.8545e-5 DU/TU2 

(again, using consistent timesteps with the current states as inputs).  However, when considering 

the thrust angle predictions for the time-optimal open-loop case, the LSTM neural networks with 

a minimum RMSE of 0.0228 radians (using inconsistent timesteps with the current states and the 

desired changes for those states as inputs) performed worse than the feedforward neural networks 

with a minimum RMSE of 0.0158 radians (again, using inconsistent timesteps with the current 

states and the desired changes for those states as inputs). Also, for the time-optimal open-loop 

case, the LSTM neural networks had significantly longer average training times than the 

feedforward neural networks. 

When considering the control predictions for the time-optimal closed-loop case, the LSTM 

neural networks with minimum RMSEs of 1.9001e-5 DU/TU2 and 0.0663 radians (using 

consistent timesteps with the previous states and the desired changes for those states as inputs) 

performed better than the feedforward neural networks with minimum RMSEs of 2.3940e-5 

DU/TU2 and 0.0743 radians (again, using consistent timesteps with the previous states and the 

Table XXVI: Summary of Time-Optimal Closed-Loop Feedforward 
Tuning and Training Results 

Feedforward 
Neural Network 

Tuning 
Time 

Test Case 
RMSE 

Training 
Time 

Previous State – Current Control Pairs 
with Inconsistent Timesteps 1.63 hr 

4.0379e-5 DU/TU2 
0.1336 rad 0.04 hr 

Previous State and Changes – Current Control Pairs 
with Inconsistent Timesteps 1.84 hr 

2.4870e-5 DU/TU2 
0.0762 rad 0.05 hr 

Previous State – Current Control Pairs 
with Consistent Timesteps 1.62 hr 

3.0371e-5 DU/TU2 
0.1783 rad 0.05 hr 

Previous State and Changes – Current Control Pairs 
with Consistent Timesteps 1.58 hr 

2.3940e-5 DU/TU2 
0.0743 rad 0.04 hr 
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desired changes for those states as inputs).  However, as in the time-optimal open-loop case, the 

LSTM neural networks had significantly longer average training times than the feedforward neural 

networks. 

 Overall, though the LSTM neural networks typically performed on par with or better than 

their feedforward equivalents, particularly in the time-optimal closed-loop case, the significantly 

shorter average training times of the feedforward neural networks was a considerable advantage. 

Attempting to narrow the gap between the average training times for the LSTM neural networks 

and their feedforward equivalents, a batch size investigation was conducted to determine the effect 

of increasing batch size on average RMSE and training time for both the LSTM neural networks 

and the feedforward neural networks. 

5.1.4 Batch Size Investigation 

Before the results from the batch size investigation for the LSTM neural networks are 

discussed, it is necessary to mention a significant trend observed from their feedforward 

equivalents. Overall, increasing the batch size for the feedforward neural networks significantly 

and negatively impacted the ability of the feedforward neural networks to learn. Figure 5.9 shows 

an example representative of the relationships between batch size and the average predicted 

control. The upper plot of Figure 5.9 shows the thrust acceleration predictions by the feedforward 

neural network with the best time-optimal open-loop performance for thrust acceleration (using 

consistent timesteps with the current states as inputs). The lower plot of Figure 5.9 shows the thrust 

angle predictions by the feedforward neural network with the best time-optimal open-loop 

performance for thrust angle (using inconsistent timesteps with the current states and the desired 

changes for those states as inputs). As seen in Figure 5.9, even when the batch sizes for the 

feedforward neural networks were only increased to five, the ability of the feedforward neural 
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networks to learn the control features was significantly diminished. This trend was present, and 

typically more severe, for all feedforward neural networks tuned and trained on all time-optimal 

datasets (both open-loop and closed-loop), regardless of the set of inputs. 

 

 

Figure 5.9: Example Representative of Time-Optimal Feedforward Batch Size 
Investigation 
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The results from the batch size investigation for the LSTM neural networks for the time-

optimal open-loop case are shown in Figure 5.10 through Figure 5.13. Figure 5.10 shows the 

relationships between batch size and the average predicted control RMSEs as well as the average 

training times. Figure 5.11, Figure 5.12, and  Figure 5.13 compare those relationships (thrust 

acceleration, thrust angle, and training time, respectively) to the results from their feedforward 

equivalents with a batch size of one. 

  

 

Figure 5.10: Time-Optimal Open-Loop LSTM Batch Size Investigation 
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Figure 5.11: Time-Optimal Open-Loop LSTM Batch Size Investigation 
(Thrust Accelerations) 
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Figure 5.12: Time-Optimal Open-Loop LSTM Batch Size Investigation (Thrust Angles) 
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Figure 5.13: Time-Optimal Open-Loop LSTM Batch Size Investigation 
(Training Times) 
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As seen in these figures, increasing the batch size for the LSTM neural networks 

significantly improved the average training time with minimal impact on the average predicted 

control RMSE. In fact, with some models, slightly improved performance was observed.  

Diminishing returns for the average training time were observed near a batch size of 20 and, after 

a batch size of 15, the average training times of the LSTM neural networks were consistently 

shorter than the feedforward neural networks. Specifically, with a batch size of 20, the LSTM 

neural networks (when using consistent timesteps) had a lower RMSE for thrust acceleration 

prediction than the feedforward neural networks. When considering thrust angle prediction with, 

again, a batch size of 20, the LSTM neural networks (when using the current states and the desired 

changes for those states as inputs) had a lower RMSE than the feedforward neural networks. 

The results from the batch size investigation of the LSTM neural networks for the time-

optimal closed-loop case are shown in Figure 5.14 through Figure 5.17. Figure 5.14 shows the 

relationships between batch size and the average predicted control RMSEs as well as the average 

training times. Figure 5.15, Figure 5.16, and Figure 5.17 compare those relationships (thrust 

acceleration, thrust angle, and training time, respectively) to the results from their feedforward 

equivalents with a batch size of one. As in the time-optimal open-loop case, increasing the batch 

size for the LSTM neural networks significantly improved the average training time with typically 

minimal impact on the average predicted control RMSE. In fact, for thrust acceleration prediction, 

slightly improved performance was observed. Again, as in the time-optimal open-loop case, 

diminishing returns for the average training time were observed near a batch size of 20 and, with 

a batch size of 20, the average training times of the LSTM neural networks were typically shorter 

than the feedforward neural networks. With a batch size of 20, the LSTM neural networks typically 

had lower RMSEs for thrust acceleration prediction than the feedforward neural networks. 



73 

However, when considering thrust angle prediction with, again, a batch size of 20, the LSTM 

neural networks typically had higher RMSEs than the feedforward neural networks. 

 

  

 

Figure 5.14: Time-Optimal Closed-Loop LSTM Batch Size Investigation 
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Figure 5.15: Time-Optimal Closed-Loop LSTM Batch Size Investigation 
(Thrust Accelerations) 
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Figure 5.16: Time-Optimal Closed-Loop LSTM Batch Size Investigation 
(Thrust Angles) 
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Figure 5.17: Time-Optimal Closed-Loop LSTM Batch Size Investigation 
(Training Times) 
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5.1.5 Final Comparison to Feedforward Architectures 

When considering the thrust acceleration predictions for the time-optimal open-loop case, 

the LSTM neural networks with a minimum RMSE of 1.0632e-5 DU/TU2 (using a batch size of 

20 and consistent timesteps with the current states as inputs) performed better than the feedforward 

neural networks with a minimum RMSE of 1.8545e-5 DU/TU2 (using a batch size of one and, 

again, consistent timesteps with the current states as inputs).  When considering the thrust angle 

predictions for the time-optimal open-loop case, the LSTM neural networks with a minimum 

RMSE of 0.0154 radians (using a batch size of 20 and inconsistent timesteps with the current states 

and the desired changes for those states as inputs) performed on par (i.e., with less than 10 percent 

difference) with the feedforward neural networks with a minimum RMSE of 0.0158 radians (using 

a batch size of one and, again, inconsistent timesteps with the current states and the desired changes 

for those states as inputs). Also, for the time-optimal open-loop case, the LSTM neural networks 

(89 to 125 seconds, respectively) had shorter average training times (by about 41 to 46 percent) 

than the feedforward neural networks (166 to 213 seconds, respectively). 

When considering the thrust acceleration predictions for the time-optimal closed-loop case, 

the LSTM neural networks with a minimum RMSE of 2.0808e-5 DU/TU2 (using a batch size of 

20 and consistent timesteps with the previous states and the desired changes for those states as 

inputs) performed better than the feedforward neural networks with a minimum RMSE of 2.3940e-

5 DU/TU2 (using a batch size of one and, again, consistent timesteps with the previous states and 

the desired changes for those states as inputs).  When considering the thrust angle predictions for 

the time-optimal closed-loop case, the LSTM neural networks with a minimum RMSE of 0.0696 

radians (using a batch size of 20 and inconsistent timesteps with the previous states and the desired 

changes for those states as inputs) performed on par with the feedforward neural networks with a 
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minimum RMSE of 0.0743 radians (using a batch size of one and consistent timesteps with the 

previous states and the desired changes for those states as inputs). Also, for the time-optimal 

closed-loop case, the LSTM neural networks (131 to 120 seconds, respectively) had shorter 

average training times (by about 8 to 16 percent) than the feedforward neural networks (143 

seconds). 

 Overall, in consideration of the results for the time-optimal case (both open-loop and 

closed-loop), the following conclusions were reached. 

1. For the time-optimal open-loop case, the LSTM neural networks performed on par with 

or better than their feedforward equivalents in terms of average RMSE. 

2. For the time-optimal closed-loop case, the LSTM neural networks performed on par 

with or better than their feedforward equivalents in terms of average RMSE. 

3. For both the time-optimal open-loop case and the time-optimal closed-loop case, the 

LSTM neural networks with an appropriate batch size performed (i.e., trained) faster 

than their feedforward equivalents. 

4. For the time-optimal open-loop case, using the current states as inputs improved thrust 

acceleration prediction while using the current states and the desired changes for those 

states as inputs improved thrust angle prediction. These trends were observed for both 

the LSTM neural networks and their feedforward equivalents. 

5. For the time-optimal closed-loop case, using the previous states and the desired changes 

for those states as inputs improved both thrust acceleration prediction and thrust angle 

prediction for both the LSTM neural networks and their feedforward equivalents. 
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6. For both the time-optimal open-loop case and the time-optimal closed-loop case, 

consistent timesteps improved thrust acceleration prediction while inconsistent 

timesteps typically improved thrust angle prediction. 

5.2 Constrained Fuel-Optimal 

The results for the LSTM neural networks, including a comparison to their feedforward 

equivalents, when tuned and trained on the fuel-optimal datasets with constrained transfer times 

will be discussed here. Two datasets (inconsistent and consistent timesteps) as well as two sets of 

inputs (states and states with the desired changes for those states) were considered for both the 

open-loop case and the closed-loop case. In accordance with the tuning process, the neural 

networks were trained over a maximum of 60 epochs with a batch size of one using the 

MeanSquaredError regression loss and the Adam optimizer. Early stopping was used to speed-up 

the overall training process by monitoring the validation loss with patience of 15 epochs. Best 

weights were restored. Finally, each neural network was re-trained 20 times. The results presented 

here are representative of the averages for those 20 trials. 

5.2.1 Constrained Fuel-Optimal Open-Loop 

Table XXVII through Table XXX present the tuned parameters and hyperparameters of 

the LSTM neural networks for the constrained fuel-optimal open-loop case. The LSTM neural 

networks presented in Table XXVII and Table XXVIII were tuned and trained on the constrained 

fuel-optimal dataset with inconsistent timesteps using the current states and the current states with 

the desired changes for those states as inputs, respectively. The LSTM neural networks presented 

in Table XXIX and Table XXX were tuned and trained on the constrained fuel-optimal dataset 

with consistent timesteps using, again, the current states and the current states with the desired 

changes for those states as inputs, respectively. Overall, tuning on the constrained fuel-optimal 
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dataset with consistent timesteps resulted in LSTM neural networks with slightly fewer layers and 

neurons compared to tuning on the constrained fuel-optimal dataset with inconsistent timesteps. 

 

 

 

 

Table XXVII: Fuel-Optimal (Constrained) Open-Loop LSTM Tuning Results 
(Current States – Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 160 

Default LSTM Layer (Hidden 1) 64 
LSTM Layer (Hidden 2) 480 
LSTM Layer (Output) 512 

Dense Layer 2 “relu” 
Learning Rate = 0.001 

 

Table XXVIII: Fuel-Optimal (Constrained) Open-Loop LSTM Tuning Results 
(Current States and Changes – Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 416 

Default LSTM Layer (Hidden 1) 128 
LSTM Layer (Hidden 2) 352 
LSTM Layer (Output) 448 

Dense Layer 2 “tanh” 
Learning Rate = 0.001 

 

Table XXIX: Fuel-Optimal (Constrained) Open-Loop LSTM Tuning Results 
(Current States – Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 384 

Default LSTM Layer (Hidden 1) 64 
LSTM Layer (Output) 416 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.001 

 

Table XXX: Fuel-Optimal (Constrained) Open-Loop LSTM Tuning Results 
(Current States and Changes – Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 64 

Default LSTM Layer (Hidden 1) 128 
LSTM Layer (Hidden 2) 480 
LSTM Layer (Output) 352 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.001 
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Figure 5.18 and Figure 5.19 compare the current control predictions (thrust accelerations 

and angles, respectively) from the tuned LSTM neural networks to the optimized values from the 

Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. Table XXXI presents an overall summary of the tuning and training results. When 

considering the control predictions, better performance in terms of average RMSE was observed 

from the LSTM neural networks tuned and trained on the constrained fuel-optimal dataset with 

consistent timesteps. 

  

 

Figure 5.18: Constrained Fuel-Optimal Open-Loop LSTM Test Case Results 
(Thrust Accelerations) 
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Figure 5.19: Constrained Fuel-Optimal Open-Loop LSTM Test Case Results 
(Thrust Angles) 
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5.2.2 Constrained Fuel-Optimal Closed-Loop 

Note, the results for the constrained fuel-optimal closed-loop case were, overall, 

unfavorable and were only included for the sake of completeness. Table XXXII through Table 

XXXV present the tuned parameters and hyperparameters of the LSTM neural networks for the 

constrained fuel-optimal closed-loop case. The LSTM neural networks presented in Table XXXII 

and Table XXXIII were tuned and trained on the constrained fuel-optimal dataset with inconsistent 

timesteps using the previous states and the previous states with the desired changes for those states 

as inputs, respectively. The LSTM neural networks presented in Table XXXIV and Table XXXV 

were tuned and trained on the constrained fuel-optimal dataset with consistent timesteps using, 

again, the previous states and the previous states with the desired changes for those states as inputs, 

respectively. No significant trends were observed from the tuned architectures other than, 

compared to the constrained fuel-optimal open-loop case, the relative size of the tuned 

architectures for the constrained fuel-optimal closed-loop case decreased. 

 

Table XXXI: Summary of Constrained Fuel-Optimal Open-Loop LSTM 
Tuning and Training Results 

LSTM 
Neural Network 

Tuning 
Time 

Test Case 
RMSE 

Training 
Time 

Current State – Control Pairs 
with Inconsistent Timesteps 16.17 hr 

1.2591e-3 DU/TU2 
0.0264 rad 0.48 hr 

Current State and Changes – Control Pairs 
with Inconsistent Timesteps 15.55 hr 

1.1380e-3 DU/TU2 
0.0252 rad 0.42 hr 

Current State – Control Pairs 
with Consistent Timesteps 13.17 hr 

8.3816e-4 DU/TU2 
0.0224 rad 0.27 hr 

Current State and Changes – Control Pairs 
with Consistent Timesteps 12.80 hr 

8.5982e-4 DU/TU2 
0.0239 rad 0.36 hr 

 

Table XXXII: Fuel-Optimal (Constrained) Closed-Loop LSTM Tuning Results 
(Previous States – Current Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 448 

Default LSTM Layer (Hidden 1) 96 
LSTM Layer (Output) 352 

Dense Layer 2 “relu” 
Learning Rate = 0.001 
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Figure 5.20 and Figure 5.21 compare the current control predictions (thrust accelerations 

and angles, respectively) from the tuned LSTM neural networks to the optimized values from the 

Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. Table XXXVI presents an overall summary of the tuning and training results. Overall, 

closing the loop for the constrained fuel-optimal case introduced instability into the training and 

inference process, resulting in the LSTM neural networks for the constrained fuel-optimal closed-

loop case performing much worse in terms of average RMSE than the LSTM neural networks for 

the constrained fuel-optimal open-loop case. Due to this instability, not only did the LSTM neural 

Table XXXIII: Fuel-Optimal (Constrained) Closed-Loop LSTM Tuning Results 
(Previous States and Changes – Current Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 352 

Default LSTM Layer (Hidden 1) 480 
LSTM Layer (Output) 256 

Dense Layer 2 “relu” 
Learning Rate = 0.001 

 

Table XXXIV: Fuel-Optimal (Constrained) Closed-Loop LSTM Tuning Results 
(Previous States – Current Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 384 

Default LSTM Layer (Hidden 1) 192 
LSTM Layer (Output) 448 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.001 

 

Table XXXV: Fuel-Optimal (Constrained) Closed-Loop LSTM Tuning Results 
(Previous States and Changes – Current Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
LSTM Layer (Input) 384 

Default LSTM Layer (Hidden 1) 448 
LSTM Layer (Hidden 2) 96 
LSTM Layer (Output) 160 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.001 
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networks struggle to infer the limits, particularly the upper limit, of the thrust acceleration, but the 

LSTM neural networks also struggled to predict the correct locations for propulsive maneuvers in 

the trajectory, particularly for propulsive maneuvers located near the end of the trajectory. 

However, better performance in terms of average RMSE was observed from the LSTM neural 

networks tuned and trained on the constrained fuel-optimal dataset with consistent timesteps. 

When tuned and trained on the constrained fuel-optimal dataset with consistent timesteps, the 

LSTM neural networks were able to infer, consistently, the upper limit of the thrust acceleration 

as well as better predict, but not consistently, the correct locations for propulsive maneuvers. Note, 

attempting to address this instability, the effects of modifying the following parameters and 

hyperparameters were investigated. 

1. Inputs. The effects of including the time, the time remaining, and the control at the 

previous timesteps as well as including information from multiple previous timesteps 

and information from current timesteps as inputs were tested and compared. 

2. Initialization. Different weight and bias initializers were tested and compared. 

3. Training. Different optimizers as well as the effects of modifying the parameters within 

those optimizers, particularly any constants related to learning and numerical stability, 

were tested and compared. A weight study was also conducted, showing significant 

differences from trial to trial for the weights and biases of the input and output gates as 

well as the memory cells for the LSTM neural networks. The effect of removing all 

biases was tested. 

4. Underfitting / Overfitting. The effects of decreasing / increasing the number of epochs, 

the batch size, and the validation split as well as the patience for early stopping were 

tested and compared. 
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Overall, modifying the preceding parameters and hyperparameters did not have any significantly 

positive effects on the observed instability. As such, this behavior was eventually attributed to a 

combination of generalization and integration error, magnified by the discontinuous nature of the 

constrained fuel-optimal problem. 

  

 

Figure 5.20: Constrained Fuel-Optimal Closed-Loop LSTM Test Case Results 
(Thrust Accelerations) 
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Figure 5.21: Constrained Fuel-Optimal Closed-Loop LSTM Test Case Results 
(Thrust Angles) 
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5.2.3 Initial Comparison to Feedforward Architectures 

Table XXXVII through Table XL present the tuned parameters and hyperparameters of the 

feedforward neural networks for the constrained fuel-optimal open-loop case. The feedforward 

neural networks presented in Table XXXVII and Table XXXVIII were tuned and trained on the 

constrained fuel-optimal dataset with inconsistent timesteps using the current states and the current 

states with the desired changes for those states as inputs, respectively. The feedforward neural 

networks presented in Table XXXIX and Table XL were tuned and trained on the constrained fuel-

optimal dataset with consistent timesteps using, again, the current states and current states with the 

desired changes for those states as inputs, respectively. Unlike the LSTM neural networks, tuning 

on the constrained fuel-optimal dataset with consistent timesteps resulted in LSTM neural 

networks with slightly more layers and neurons compared to tuning on the constrained fuel-optimal 

dataset with inconsistent timesteps. 

 

Table XXXVI: Summary of Constrained Fuel-Optimal Closed-Loop LSTM 
Tuning and Training Results 

LSTM 
Neural Network 

Tuning 
Time 

Test Case 
RMSE 

Training 
Time 

Previous State – Current Control Pairs 
with Inconsistent Timesteps 12.98 hr 

4.6160e-3 DU/TU2 
0.1018 rad 0.28 hr 

Previous State and Changes – Current Control Pairs 
with Inconsistent Timesteps 16.87 hr 

4.1382e-3 DU/TU2 
0.1044 rad 0.47 hr 

Previous State – Current Control Pairs 
with Consistent Timesteps 14.05 hr 

3.7150e-3 DU/TU2 
0.0819 rad 0.30 hr 

Previous State and Changes – Current Control Pairs 
with Consistent Timesteps 14.92 hr 

2.7703e-3 DU/TU2 
0.0733 rad 0.38 hr 

 

Table XXXVII: Fuel-Optimal (Constrained) Open-Loop Feedforward Tuning Results 
(Current States – Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 64 “tanh” 

Dense Layer (Hidden 1) 128 “relu” 
Dense Layer (Hidden 2) 288 “tanh” 
Dense Layer (Output) 352 “tanh” 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.0001 
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Figure 5.22 and Figure 5.23 compare the current control predictions (thrust accelerations 

and angles, respectively) from the tuned feedforward neural networks to the optimized values from 

the Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. Table XLI presents an overall summary of the tuning and training results. When 

considering the control predictions, better performance in terms of average RMSE, like the LSTM 

neural networks, was observed from the feedforward neural networks tuned and trained on the 

Table XXXVIII: Fuel-Optimal (Constrained) Open-Loop Feedforward Tuning Results 
(Current States and Changes – Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 128 “relu” 

Dense Layer (Hidden 1) 384 “relu” 
Dense Layer (Hidden 2) 224 “relu” 
Dense Layer (Output) 224 “tanh” 

Dense Layer 2 “tanh” 
Learning Rate = 0.0001 

 

Table XXXIX: Fuel-Optimal (Constrained) Open-Loop Feedforward Tuning Results 
(Current States – Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 352 “tanh” 

Dense Layer (Hidden 1) 192 “relu” 
Dense Layer (Hidden 2) 448 “tanh” 
Dense Layer (Hidden 3) 416 “relu” 
Dense Layer (Output) 416 “sigmoid” 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.0001 

 

Table XL: Fuel-Optimal (Constrained) Open-Loop Feedforward Tuning Results 
(Current States and Changes – Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 448 “tanh” 

Dense Layer (Hidden 1) 416 “relu” 
Dense Layer (Hidden 2) 160 “sigmoid” 
Dense Layer (Output) 192 “relu” 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.0001 
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constrained fuel-optimal dataset with consistent timesteps as well as with the current states and the 

desired changes for those states as inputs. 

 

  

 

Figure 5.22: Constrained Fuel-Optimal Open-Loop Feedforward Test Case Results 
(Thrust Accelerations) 
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Figure 5.23: Constrained Fuel-Optimal Open-Loop Feedforward Test Case Results 
(Thrust Angles) 
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Table XLII through Table XLV present the tuned parameters and hyperparameters of the 

feedforward neural networks for the constrained fuel-optimal closed-loop case. The feedforward 

neural networks presented in Table XLII and Table XLIII were tuned and trained on the 

constrained fuel-optimal dataset with inconsistent timesteps using the previous states and the 

previous states with the desired changes for those states as inputs, respectively. The feedforward 

neural networks presented in Table XLIV and Table XLII were tuned and trained on the 

constrained fuel-optimal dataset with consistent timesteps using, again, the previous states and 

previous states with the desired changes for those states as inputs, respectively. As in the 

constrained fuel-optimal open-loop case, tuning on the constrained fuel-optimal dataset with 

consistent timesteps resulted in feedforward neural networks with slightly more layers and neurons 

compared to tuning on the constrained fuel-optimal dataset with inconsistent timesteps. 

 

Table XLI: Summary of Constrained Fuel-Optimal Open-Loop Feedforward 
Tuning and Training Results 

Feedforward 
Neural Network 

Tuning 
Time 

Test Case 
RMSE 

Training 
Time 

Current State – Control Pairs 
with Inconsistent Timesteps 1.97 hr 

1.1997e-3 DU/TU2 
0.0275 rad 0.05 hr 

Current State and Changes – Control Pairs 
with Inconsistent Timesteps 2.07 hr 

1.0302e-3 DU/TU2 
0.0237 rad 0.06 hr 

Current State – Control Pairs 
with Consistent Timesteps 1.59 hr 

8.5885e-4 DU/TU2 
0.0236 rad 0.09 hr 

Current State and Changes – Control Pairs 
with Consistent Timesteps 1.87 hr 

8.1203e-4 DU/TU2 
0.0219 rad 0.06 hr 

 

Table XLII: Fuel-Optimal (Constrained) Closed-Loop Feedforward Tuning Results 
(Previous States – Current Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 96 “tanh” 

Dense Layer (Hidden 1) 480 “relu” 
Dense Layer (Hidden 2) 192 “relu” 
Dense Layer (Output) 32 “tanh” 

Dense Layer 2 “relu” 
Learning Rate = 0.0001 
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Figure 5.24 and Figure 5.25 compare the current control predictions (thrust accelerations 

and angles, respectively) from the tuned feedforward neural networks to the optimized values from 

the Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. Table XLVI presents an overall summary of the tuning and training results. Overall, 

like the LSTM neural networks, the results from the feedforward neural networks for the 

constrained fuel-optimal closed-loop case were unfavorable and were only included for the sake 

of completeness. Again, like the LSTM neural networks, closing the loop for the constrained fuel-

Table XLIII: Fuel-Optimal (Constrained) Closed-Loop Feedforward Tuning Results 
(Previous States and Changes – Current Control Pairs with Inconsistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 480 “relu” 

Dense Layer (Hidden 1) 320 “tanh” 
Dense Layer (Hidden 2) 224 “sigmoid” 
Dense Layer (Output) 128 “relu” 

Dense Layer 2 “tanh” 
Learning Rate = 0.0001 

 

Table XLIV: Fuel-Optimal (Constrained) Closed-Loop Feedforward Tuning Results 
(Previous States – Current Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 384 “relu” 

Dense Layer (Hidden 1) 64 “relu” 
Dense Layer (Hidden 2) 224 “relu” 
Dense Layer (Hidden 3) 256 “relu” 
Dense Layer (Output) 352 “relu” 

Dense Layer 2 “tanh” 
Learning Rate = 0.0001 

 

Table XLV: Fuel-Optimal (Constrained) Closed-Loop Feedforward Tuning Results 
(Previous States and Changes – Current Control Pairs with Consistent Timesteps) 

Layer Number of Neurons Activation Function(s) 
Dense Layer (Input) 384 “tanh” 

Dense Layer (Hidden 1) 416 “relu” 
Dense Layer (Hidden 2) 480 “relu” 
Dense Layer (Output) 320 “tanh” 

Dense Layer 2 “sigmoid” 
Learning Rate = 0.0001 
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optimal case introduced a similar instability into the training and inference process. However, like 

the LSTM neural networks, better performance in terms of average RMSE was observed from the 

feedforward neural networks tuned and trained on the constrained fuel-optimal dataset with 

consistent timesteps. Again, the observed instability was eventually attributed to a combination of 

generalization and integration error. 

  

 

Figure 5.24: Constrained Fuel-Optimal Closed-Loop Feedforward Test Case Results 
(Thrust Accelerations) 
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Figure 5.25: Constrained Fuel-Optimal Closed-Loop Feedforward Test Case Results 
(Thrust Angles) 
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When considering the control predictions for the constrained fuel-optimal open-loop case, 

the LSTM neural networks with minimum RMSEs of 8.3816e-4 DU/TU2 and 0.0224  radians 

(using consistent timesteps with the current states as inputs) performed on par (i.e., with less than 

10 percent difference) with the feedforward neural networks with minimum RMSEs of 8.1203e-4 

DU/TU2  and 0.0219  radians (again, using consistent timesteps, but with the current states and the 

desired changes for those states as inputs). However, for the constrained fuel-optimal open-loop 

case, the LSTM neural networks had significantly longer average training times than the 

feedforward neural networks. 

When considering the control predictions for the constrained fuel-optimal closed-loop 

case, the LSTM neural networks with minimum RMSEs of 2.7703e-3 DU/TU2 and 0.0733 radians 

(using consistent timesteps with the previous states and the desired changes for those states as 

inputs) performed better than the feedforward neural networks with minimum RMSEs of 3.2679e-

3 DU/TU2 and 0.0777 radians (again, using consistent timesteps with the previous states and the 

desired changes for those states as inputs).  However, as in the constrained fuel-optimal open-loop 

case, the LSTM neural networks had significantly longer average training times than the 

feedforward neural networks. 

Table XLVI: Summary of Constrained Fuel-Optimal Closed-Loop Feedforward 
Tuning and Training Results 

Feedforward 
Neural Network 

Tuning 
Time 

Test Case 
RMSE 

Training 
Time 

Previous State – Current Control Pairs 
with Inconsistent Timesteps 2.54 hr 

3.9761e-3 DU/TU2 
0.0982 rad 0.05 hr 

Previous State and Changes – Current Control Pairs 
with Inconsistent Timesteps 1.58 hr 

4.3707e-3 DU/TU2 
0.1121 rad 0.06 hr 

Previous State – Current Control Pairs 
with Consistent Timesteps 2.04 hr 

3.9794e-3 DU/TU2 
0.0846 rad 0.05 hr 

Previous State and Changes – Current Control Pairs 
with Consistent Timesteps 1.70 hr 

3.2679e-3 DU/TU2 
0.0777 rad 0.07 hr 
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 Overall, though the LSTM neural networks typically performed on par with or better than 

their feedforward equivalents, the significantly shorter average training times of the feedforward 

neural networks was a considerable advantage. Attempting to narrow the gap between the average 

training times for the LSTM neural networks and their feedforward equivalents, a batch size 

investigation was conducted to determine the effect of increasing batch size on average RMSE and 

training time for both the LSTM neural networks and the feedforward neural networks. 

5.2.4 Batch Size Investigation 

Overall, as in the time-optimal case, increasing the batch size for the feedforward neural 

networks significantly and negatively impacted the ability of the feedforward neural networks to 

learn. Figure 5.26 shows an example representative of the relationships between batch size and the 

average predicted control. The upper and lower plots of Figure 5.26 show the thrust acceleration 

and thrust angle predictions, respectively, by the feedforward neural network with the best 

constrained fuel-optimal open-loop performance (using consistent timesteps with the current states 

and the desired changes for those states as inputs). As seen in Figure 5.26, even when the batch 

sizes for the feedforward neural networks were only increased to five, the ability of the feedforward 

neural networks to learn the control features was significantly diminished. This trend was present 

for all feedforward neural networks tuned and trained on all constrained fuel-optimal datasets (both 

open-loop and closed-loop), regardless of the set of inputs. 
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The results from the batch size investigation for the LSTM neural networks for the 

constrained fuel-optimal open-loop case are shown in Figure 5.27 through Figure 5.30. Figure 5.27 

shows the relationships between batch size and the average predicted control RMSEs as well as 

the average training times. Figure 5.28, Figure 5.29, and Figure 5.30 compare those relationships 

 

Figure 5.26: Example Representative of Constrained Fuel-Optimal Feedforward 
Batch Size Investigation 
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(thrust acceleration, thrust angle, and training time, respectively) to the results from their 

feedforward equivalents with a batch size of one. 

  

 

Figure 5.27: Constrained Fuel-Optimal Open-Loop LSTM Batch Size Investigation 
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Figure 5.28: Constrained Fuel-Optimal Open-Loop LSTM Batch Size Investigation 
(Thrust Accelerations) 
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Figure 5.29: Constrained Fuel-Optimal Open-Loop LSTM Batch Size Investigation 
(Thrust Angles) 
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Figure 5.30: Constrained Fuel-Optimal Open-Loop LSTM Batch Size Investigation 
(Training Times) 
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As seen in these figures, increasing the batch size for the LSTM neural networks 

significantly improved the average training time with minimal impact on the average predicted 

control RMSE. Diminishing returns for the average training time were observed near a batch size 

of 20 and, after a batch size of 10, the average training times of the LSTM neural networks were 

consistently shorter than the feedforward neural networks. Regardless of batch size, the LSTM 

neural networks typically performed on par (i.e., with less than 10 percent difference) with the 

feedforward neural networks. 

The results from the batch size investigation of the LSTM neural networks for the 

constrained fuel-optimal closed-loop case are shown in Figure 5.31 through Figure 5.34. Figure 

5.31 shows the relationships between batch size and the average predicted control RMSEs as well 

as the average training times. Figure 5.32, Figure 5.33, and Figure 5.34 compare those 

relationships (thrust acceleration, thrust angle, and training time, respectively) to the results from 

their feedforward equivalents with a batch size of one. As in the constrained fuel-optimal open-

loop case, increasing the batch size for the LSTM neural networks significantly improved the 

average training time with typically minimal impact on the average predicted control RMSE. 

Again, as in the constrained fuel-optimal open-loop case, diminishing returns for the average 

training time were observed near a batch size of 20 and, after a batch size of 10, the average training 

times of the LSTM neural networks were consistently shorter than the feedforward neural 

networks.  Regardless of batch size, the LSTM neural networks typically performed on par with 

the feedforward neural networks. 

  



104 

 

 

 

  

 

Figure 5.31: Constrained Fuel-Optimal Closed-Loop LSTM Batch Size Investigation 
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Figure 5.32: Constrained Fuel-Optimal Closed-Loop LSTM Batch Size Investigation 
(Thrust Accelerations) 
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Figure 5.33: Constrained Fuel-Optimal Closed-Loop LSTM Batch Size Investigation 
(Thrust Angles) 
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Figure 5.34: Constrained Fuel-Optimal Closed-Loop LSTM Batch Size Investigation 
(Training Times) 
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5.2.5 Final Comparison to Feedforward Architectures 

When considering the thrust acceleration predictions for the constrained fuel-optimal open-

loop case, the LSTM neural networks with a minimum RMSE of 8.4675e-4 DU/TU2 (using a batch 

size of 20 and consistent timesteps with the current states as inputs) performed on par (i.e., with 

less than 10 percent difference) with the feedforward neural networks with a minimum RMSE of 

8.1203e-4 DU/TU2 (using a batch size of one and, again, consistent timesteps, but with the current 

states and the desired changes for those states as inputs).  When considering the thrust angle 

predictions for the constrained fuel-optimal open-loop case, the LSTM neural networks with a 

minimum RMSE of 0.0234 radians (again, using a batch size of 20 and consistent timesteps with 

the current states as inputs) performed on par with the feedforward neural networks with a 

minimum RMSE of 0.0219 radians (again, using a batch size of one and consistent timesteps with 

the current states and the desired changes for those states as inputs). However, for the time-optimal 

open-loop case, the LSTM neural networks (53 seconds) had shorter average training times (by 

about 77 percent) than the feedforward neural networks (232 seconds). 

When considering the thrust acceleration predictions for the constrained fuel-optimal 

closed-loop case, the LSTM neural networks with a minimum RMSE of 3.6441e-3 DU/TU2 (using 

a batch size of 20 and consistent timesteps with the previous states as inputs) performed worse 

than the feedforward neural networks with a minimum RMSE of 3.2679e-3 DU/TU2 (using a batch 

size of one and, again, consistent timesteps, but with the previous states and the desired changes 

for those states as inputs).  When considering the thrust angle predictions for the constrained fuel-

optimal closed-loop case, the LSTM neural networks with a minimum RMSE of 0.0787 radians 

(using a batch size of 20 and consistent timesteps with the previous states and the desired changes 

for those states as inputs as inputs) performed on par with the feedforward neural networks with a 



109 

minimum RMSE of 0.0777 radians (again, using a batch size of one and consistent timesteps with 

the previous states and the desired changes for those states as inputs). However, for the constrained 

fuel-optimal closed-loop case, the LSTM neural networks (86 to 92 seconds) had shorter average 

training times (by about 66 to 68 percent) than the feedforward neural networks (267 seconds). 

Overall, in consideration of the results for the constrained fuel-optimal case (both open-

loop and closed-loop), the following conclusions were reached. 

1. For the constrained fuel-optimal open-loop case, the LSTM neural networks performed 

on par with their feedforward equivalents in terms of average RMSE. 

2. For the constrained fuel-optimal closed-loop case, the LSTM neural networks 

performed on par or worse than their feedforward equivalents in terms of average 

RMSE. 

3. For both the constrained fuel-optimal open-loop case and the constrained fuel-optimal 

closed-loop case, the LSTM neural networks with an appropriate batch size performed 

(i.e., trained) faster than their feedforward equivalents. 

4. For the constrained fuel-optimal open-loop case, using the current states as inputs 

improved the control predictions for the LSTM neural networks while using the current 

states and the desired changes for those states as inputs improved the control 

predictions for their feedforward equivalents. 

5. For the constrained fuel-optimal closed-loop case, using the previous states and the 

desired changes for those states as inputs improved the control predictions for both the 

LSTM neural networks and their feedforward equivalents. 
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6. For both the constrained fuel-optimal open-loop case and the constrained fuel-optimal 

closed-loop case, consistent timesteps improved the control predictions for both the 

LSTM neural networks and their feedforward equivalents. 

5.3 Additional Results 

Further comparisons between the LSTM neural networks and their feedforward equivalents 

will be presented and discussed here. 

5.3.1 Time-Optimal 

Figure 5.35 and Figure 5.36 compare the integrated trajectories from the neural networks 

tuned and trained on the time-optimal datasets with inconsistent and consistent timesteps, 

respectively, for the open-loop case while Figure 5.37 and Table XLVII compare the integrated 

trajectories from the “best” LSTM neural network and the “best” feedforward neural network (i.e., 

thrust acceleration RMSE and thrust angle RMSE were considered in tandem, rather than 

separately). For the time-optimal open-loop case, when using inconsistent timesteps, the LSTM 

neural networks performed on par with feedforward neural networks. Both the LSTM neural 

networks and the feedforward neural networks had final radial velocities close to zero as well as 

final radii and final tangential velocities within 1 percent of the final values for the integrated 

trajectory from the Hermite-Simpson direct collocation method implemented using the fmincon 

function in MATLAB. When using consistent timesteps, the LSTM neural networks, again, 

performed on par with the feedforward neural networks. Both the LSTM neural networks and the 

feedforward neural networks had final radial velocities close to zero as well as final radii and final 

tangential velocities within 2 percent of the final values for the integrated trajectory from the 

Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. Overall, for the time-optimal open-loop case, the “best” LSTM neural network (using 
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a batch size of 20 and inconsistent timesteps with the current states and the desired changes for 

those states as inputs) performed on par with the “best” feedforward neural network (using a batch 

size of 1 and, again, inconsistent timesteps with the current states and the desired changes for those 

states as inputs). Both the “best” LSTM neural network and the “best” feedforward neural network 

had a final radial velocity close to zero as well as a final radius and a final tangential velocity 

within 1 percent of the final values for the integrated trajectory from the Hermite-Simpson direct 

collocation method implemented using the fmincon function in MATLAB. 

Figure 5.38 and Figure 5.39 compare the integrated trajectories from the neural networks 

tuned and trained on the time-optimal datasets with inconsistent and consistent timesteps, 

respectively, for the closed-loop case while Figure 5.40 and Table XLVIII compare the integrated 

trajectories from the “best” LSTM neural network and the “best” feedforward neural network. For 

the time-optimal closed-loop case, when using inconsistent timesteps, the LSTM neural networks 

generally performed worse than the feedforward neural networks. Both the LSTM neural networks 

and the feedforward neural networks had final radial velocities close to zero. However, the LSTM 

neural networks had final radii and final tangential velocities within 5 percent of the final values 

for the integrated trajectory from the Hermite-Simpson direct collocation method implemented 

using the fmincon function in MATLAB while the final values for the feedforward neural networks 

were within 2 percent. When using consistent timesteps, the LSTM neural networks, again, 

generally performed worse than the feedforward neural networks. Both the LSTM neural networks 

and the feedforward neural networks had final radial velocities close to zero. However, the LSTM 

neural networks had final radii and final tangential velocities within 8 percent of the final values 

for the integrated trajectory from the Hermite-Simpson direct collocation method implemented 

using the fmincon function in MATLAB while the final values for the feedforward neural networks 
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were within 3 percent. However, overall, for the time-optimal closed-loop case, the “best” LSTM 

neural network (using a batch size of 20 and inconsistent timesteps with the previous states and 

the desired changes for those states as inputs) performed on par with the “best” feedforward neural 

network (using a batch size of 1 and consistent timesteps with, again, the previous states and the 

desired changes for those states as inputs). Both the LSTM neural network and the feedforward 

neural network had a final radial velocity close to zero as well as a final radius and a final tangential 

velocity within 3 percent of the final values for the integrated trajectory from the Hermite-Simpson 

direct collocation method implemented using the fmincon function in MATLAB. 

Table XLIX and Table L present the predicted fuel usage (in terms of the predicted thrust 

acceleration integrated using Simpson quadrature) for the time-optimal open-loop case and the 

time-optimal closed-loop case, respectively. Overall, for both the time-optimal open-loop case and 

the time-optimal closed-loop case, the predicted fuel usage for both the LSTM neural networks 

and the feedforward neural networks was within 1 percent of the optimized fuel usage from the 

Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. In fact, the percent difference of the predicted fuel usage for the LSTM neural networks 

was typically within hundredths of a percent of the predicted fuel usage for their feedforward 

equivalents. Also, consistent timesteps improved the predicted fuel usage for both the LSTM 

neural networks and the feedforward neural networks, which was expected as, discussed in Chapter 

5.1, consistent timesteps improved the thrust acceleration prediction for both the time-optimal 

open-loop case and the time-optimal closed-loop case. 

Table LI presents the transfer and convergence times as well as the constraint violations 

when the results from the “best” LSTM neural network (using a batch size of 20 and inconsistent 

timesteps with the current states and the desired changes for those states as inputs) and the “best” 
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feedforward neural network (using a batch size of 1 and, again, inconsistent timesteps with the 

current states and the desired changes for those states as inputs) were used as initial guesses for 

the Hermite-Simpson direct collocation method implemented using the fmincon function in 

MATLAB. Overall, when using the results from the LSTM neural network, the fmincon function 

converged to a minimum transfer time within less than a half of a percent of the minimum transfer 

time from the time-optimal grid convergence study 63 percent faster. When using the results from 

the feedforward neural network, the fmincon function converged to a minimum transfer time 

within much less than a tenth of a percent of the minimum transfer time from the time-optimal grid 

convergence study 13 percent faster. These results demonstrate the potential both LSTM and 

feedforward neural networks have as initializers for traditional optimization techniques. 



114 

 

 

Figure 5.35: Comparison of Time-Optimal Open-Loop Trajectories using Inconsistent 
Timesteps 

 = 0

90

180

270

0

2

4

r = 6

LSTM Neural Network

Current State –  Control Pairs with Inconsistent Timesteps

LSTM Neural Network

Current State and Changes –  Control Pairs with Inconsistent Timesteps

Feedforward Neural Network

Current State –  Control Pairs with Inconsistent Timesteps

Feedforward Neural Network

Current State and Changes –  Control Pairs with Inconsistent Timesteps

Optimized Solution



115 

 

 

Figure 5.36: Comparison of Time-Optimal Open-Loop Trajectories using Consistent 
Timesteps 
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Figure 5.37: Comparison of “Best” Time-Optimal Open-Loop Trajectories 
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Table XLVII: Comparison of “Best” Time-Optimal Open-Loop Trajectories 

Neural 
Network 

Test Case 
RMSE 

Training 
Time 

Final Conditions 
[r , θ , vr , vt ] 

LSTM - Current State & Changes 
with Inconsistent Timesteps 

3.1079e-5 DU/TU2 
0.0154 rad 0.03 hr [6.6595 DU, 23.62 rad, 0.0030 DU/TU, 0.3862 DU/TU] 

[0.01%, N/A, N/A, 0.15%] 
FF - Current State and Changes 

with Inconsistent Timesteps 
2.4688e-5 DU/TU2 

0.0158 rad 0.06 hr [6.6495 DU, 23.63 rad, 0.0016 DU/TU, 0.3855 DU/TU] 
[0.15%, N/A, N/A, 0.02%] 
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Figure 5.38: Comparison of Time-Optimal Closed-Loop Trajectories using Inconsistent 
Timesteps 
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Figure 5.39: Comparison of Time-Optimal Closed-Loop Trajectories using Consistent 
Timesteps 
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Figure 5.40: Comparison of “Best” Time-Optimal Closed-Loop Trajectories 
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Table XLVIII: Comparison of “Best” Time-Optimal Closed-Loop Trajectories 

Neural 
Network 

Test Case 
RMSE 

Training 
Time 

Final Conditions 
[r , θ , vr , vt ] 

LSTM - Previous State & Changes 
with Inconsistent Timesteps 

3.0157e-5 DU/TU2 
0.0696 rad 0.03 hr [6.4964 DU, 23.65 rad, 0.0064 DU/TU, 0.3934 DU/TU] 

[2.44%, N/A, N/A, 2.02%] 
FF - Previous State and Changes 

with Consistent Timesteps 
2.3940e-5 DU/TU2 

0.0743 rad 0.04 hr [6.5338 DU, 23.65 rad, 0.0029 DU/TU, 0.3933 DU/TU] 
[1.88%, N/A, N/A, 2.00%] 
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5.3.2 Constrained Fuel-Optimal 

Figure 5.41 and Figure 5.42 compare the integrated trajectories from the neural networks 

tuned and trained on the constrained fuel-optimal datasets with inconsistent and consistent 

timesteps, respectively, for the open-loop case while Figure 5.43 and Table LII compare the 

integrated trajectories from the “best” LSTM neural network and the “best” feedforward neural 

network (i.e., thrust acceleration RMSE and thrust angle RMSE were considered in tandem, rather 

than separately). For the constrained fuel-optimal open-loop case, when using inconsistent 

timesteps, the LSTM neural networks generally performed worse than the feedforward neural 

Table XLIX: Comparison of Time-Optimal Open-Loop Fuel Usage 

Neural 
Network 

Optimized 
Fuel Usage (DU/TU2) 

Predicted 
Fuel Usage (DU/TU2) 

Percent 
Difference 

LSTM Current State 
with Inconsistent Timesteps 0.7138 

0.7122 0.22% 
Feedforward 0.7123 0.21% 

LSTM Current State and Changes 
with Inconsistent Timesteps 

0.7124 0.20% 
Feedforward 0.7124 0.20% 

LSTM Current State 
with Consistent Timesteps 0.7136 

0.7139 0.06% 
Feedforward 0.7132 0.06% 

LSTM Current State and Changes 
with Consistent Timesteps 

0.7130 0.08% 
Feedforward 0.7127 0.13% 

 

Table L: Comparison of Time-Optimal Closed-Loop Fuel Usage 

Neural 
Network 

Optimized 
Fuel Usage (DU/TU2) 

Predicted 
Fuel Usage (DU/TU2) 

Percent 
Difference 

LSTM Previous State 
with Inconsistent Timesteps 0.7138 

0.7131 0.10% 
Feedforward 0.7124 0.20% 

LSTM Previous State and Changes 
with Inconsistent Timesteps 

0.7125 0.18% 
Feedforward 0.7126 0.17% 

LSTM Previous State 
with Consistent Timesteps 0.7136 

0.7131 0.07% 
Feedforward 0.7130 0.08% 

LSTM Previous State and Changes 
with Consistent Timesteps 

0.7126 0.14% 
Feedforward 0.7130 0.08% 

 

Table LI: Comparison as Initial Guesses (Time-Optimal) 

Initial Guess Transfer Time 
(TU) 

Convergence Time 
(hr) 

Constraint 
Violation 

LSTM Neural Network 71.6726 0.18 5.3041e-9 
Feedforward Neural Network 71.3795 0.41 2.1260e-12 
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networks. Both the LSTM neural networks and the feedforward neural networks had final radial 

velocities close to zero. However, the LSTM neural networks had final radii and final tangential 

velocities within 14 percent of the final values for the integrated trajectory from the Hermite-

Simpson direct collocation method implemented using the fmincon function in MATLAB while 

the final values for the feedforward neural networks were within 7 percent. When using consistent 

timesteps, the LSTM neural networks performed on par with the feedforward neural networks. 

Both the LSTM neural networks and the feedforward neural networks had final radial velocities 

close to zero as well as final radii and final tangential velocities within 8 percent of the final values 

for the integrated trajectory from the Hermite-Simpson direct collocation method implemented 

using the fmincon function in MATLAB. Overall, for the constrained fuel-optimal open-loop case, 

the “best” LSTM neural network (using a batch size of 20 and consistent timesteps with the current 

states as inputs) performed on par with the “best” feedforward neural network (using a batch size 

of 1 and, again, consistent timesteps, but with the current states and the desired changes for those 

states as inputs). Both the “best” LSTM neural network and the “best” feedforward neural network 

had a final radial velocity close to zero as well as a final radius and a final tangential velocity 

within 8 percent of the final values for the integrated trajectory from the Hermite-Simpson direct 

collocation method implemented using the fmincon function in MATLAB. 

Figure 5.44 and Figure 5.45 compare the integrated trajectories from the neural networks 

tuned and trained on the constrained fuel-optimal datasets with inconsistent and consistent 

timesteps, respectively, for the closed-loop case while Figure 5.46 and Table LIII compare the 

integrated trajectories from the “best” LSTM neural network and the “best” feedforward neural 

network. For the constrained fuel-optimal closed-loop case, when using inconsistent timesteps, 

both the LSTM neural networks and the feedforward neural networks performed poorly with, 
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typically, non-zero final radial velocities and final radii and final tangential velocities significantly 

different from the final values for the integrated trajectory from the Hermite-Simpson direct 

collocation method implemented using the fmincon function in MATLAB. This was expected as, 

discussed in Chapter 5.2, closing the loop for the constrained fuel-optimal case introduced 

instability and, subsequently, error into the training and inference process. However, slightly better 

performance in terms of appearance and average RMSE was observed from both the LSTM neural 

networks and the feedforward neural networks tuned and trained on the constrained fuel-optimal 

dataset with consistent timesteps. However, even when using consistent timesteps, both the LSTM 

neural networks and the feedforward neural networks performed poorly with, again, typically non-

zero final radial velocities and final radii and final tangential velocities significantly different from 

the final values for the integrated trajectory from the Hermite-Simpson direct collocation method 

implemented using the fmincon function in MATLAB. Overall, for the constrained fuel-optimal 

closed-loop case, the “best” LSTM neural network (using a batch size of 20 and consistent 

timesteps with the previous states and the desired changes for those states as inputs) performed 

worse than the “best” feedforward neural network (using a batch size of 1 and, again, consistent 

timesteps with the previous states and the desired changes for those states as inputs). 

Table LIV and Table LV present the predicted fuel usage (in terms of the predicted thrust 

acceleration integrated using Simpson quadrature) for the constrained fuel-optimal open-loop case 

and the constrained fuel-optimal closed-loop case, respectively. Overall, for the constrained fuel-

optimal open-loop case, the predicted fuel usage for both the LSTM neural networks and their 

feedforward equivalents was within 2 percent of the optimized fuel usage from the fmincon 

function. As was somewhat expected, the predicted fuel usage for both the LSTM neural networks 

and their feedforward equivalents in the constrained fuel-optimal closed-loop case was worse (i.e., 
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greater than 2 percent of the optimized fuel usage from the fmincon function) than in the 

constrained fuel-optimal open-loop case. 

Table LVI presents the thrust accelerations and convergence times as well as the constraint 

violations when the results from the “best” LSTM neural network (using a batch size of 20 and 

consistent timesteps with the current states as inputs) and the “best” feedforward neural network 

(using a batch size of 1 and, again, consistent timesteps, but with the current states and the desired 

changes for those states as inputs) were used as initial guesses for the fmincon function. Overall, 

when using the results from the LSTM neural network, the fmincon function converged to a 

minimum thrust acceleration within less than a tenth of a percent of the minimum thrust 

acceleration from the constrained fuel-optimal grid convergence study 9 percent faster. When 

using the results from the feedforward neural network, the fmincon function converged to a 

minimum thrust acceleration within much less than a tenth of a percent of the minimum thrust 

acceleration from the constrained fuel-optimal grid convergence study 70 percent faster. Again, 

these results demonstrate the potential both LSTM and feedforward neural networks have as 

initializers for traditional optimization techniques. 
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Figure 5.41: Comparison of Constrained Fuel-Optimal Open-Loop Trajectories using 
Inconsistent Timesteps 
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Figure 5.42: Comparison of Constrained Fuel-Optimal Open-Loop Trajectories using 
Consistent Timesteps 
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Figure 5.43: Comparison of “Best” Constrained Fuel-Optimal Open-Loop Trajectories 
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Table LII: Comparison of “Best” Constrained Fuel-Optimal Open-Loop Trajectories 

Neural 
Network 

Test Case 
RMSE 

Training 
Time 

Final Conditions 
[r , θ , vr , vt ] 

LSTM - Current State 
with Consistent Timesteps 

8.4675e-4 DU/TU2 
0.0234 rad 0.01 hr [7.4672 DU, 44.11 rad, 0.0342 DU/TU, 0.3417 DU/TU] 

[7.99%, N/A, N/A, 4.70%] 
FF - Current State and Changes 

with Consistent Timesteps 
8.1203e-4 DU/TU2 

0.0219 rad 0.06 hr [7.4447 DU, 44.10 rad, 0.0262 DU/TU, 0.3364 DU/TU] 
[7.66%, N/A, N/A, 6.20%] 
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Figure 5.44: Comparison of Constrained Fuel-Optimal Closed-Loop Trajectories using 
Inconsistent Timesteps 
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Figure 5.45: Comparison of Constrained Fuel-Optimal Closed-Loop Trajectories using 
Consistent Timesteps 
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Figure 5.46: Comparison of “Best” Constrained Fuel-Optimal Closed-Loop 
Trajectories 
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Table LIII: Comparison of “Best” Constrained Fuel-Optimal Closed-Loop Trajectories 

Neural 
Network 

Test Case 
RMSE 

Training 
Time 

Final Conditions 
[r , θ , vr , vt ] 

LSTM - Previous State & Changes 
with Consistent Timesteps 

3.8212e-3 DU/TU2 
0.0787 rad 0.03 hr [4.7928 DU, 45.34 rad, 0.1264 DU/TU, 0.4585 DU/TU] 

[30.69%, N/A, N/A, 27.87%] 
FF - Previous State and Changes 

with Consistent Timesteps 
3.2679e-3 DU/TU2 

0.0777 rad 0.07 hr [5.9699 DU, 45.15 rad, 0.0448 DU/TU, 0.4250 DU/TU] 
[13.67%, N/A, N/A, 18.52%] 
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5.4 Final Discussion 

For the time-optimal problem (both open-loop and closed-loop), though the LSTM neural 

networks had the overall minimum RMSE for both thrust acceleration and thrust angle (when the 

control RMSEs were considered separately), the “best” LSTM neural network performed 

relatively on par with the “best” feedforward neural network (when the control RMSEs were 

considered in tandem, rather than separately) with respect to the control RMSEs, the training times, 

the final boundary conditions for the integrated trajectories, and the predicted fuel usage. Note, the 

LSTM neural networks, with an appropriate batch size, had training times consistently faster than 

Table LIV: Comparison of Constrained Fuel-Optimal Open-Loop Fuel Usage 

Neural 
Network 

Optimized 
Fuel Usage (DU/TU2) 

Predicted 
Fuel Usage (DU/TU2) 

Percent 
Difference 

LSTM Current State 
with Inconsistent Timesteps 0.5429 

0.5427 0.04% 
Feedforward 0.5512 1.53% 

LSTM Current State and Changes 
with Inconsistent Timesteps 

0.5468 0.72% 
Feedforward 0.5492 1.16% 

LSTM Current State 
with Consistent Timesteps 0.5433 

0.5366 1.23% 
Feedforward 0.5372 1.12% 

LSTM Current State and Changes 
with Consistent Timesteps 

0.5337 1.77% 
Feedforward 0.5378 1.01% 

 

Table LV: Comparison of Constrained Fuel-Optimal Closed-Loop Fuel Usage 

Neural 
Network 

Optimized 
Fuel Usage (DU/TU2) 

Predicted 
Fuel Usage (DU/TU2) 

Percent 
Difference 

LSTM Previous State 
with Inconsistent Timesteps 0.5429 

0.4948 8.86% 
Feedforward 0.5011 7.70% 

LSTM Previous State and Changes 
with Inconsistent Timesteps 

0.5233 3.61% 
Feedforward 0.5308 2.23% 

LSTM Previous State 
with Consistent Timesteps 0.5433 

0.4917 9.50% 
Feedforward 0.5032 7.38% 

LSTM Previous State and Changes 
with Consistent Timesteps 

0.4685 13.77% 
Feedforward 0.5308 2.30% 

 

Table LVI: Comparison as Initial Guesses (Constrained Fuel-Optimal) 

Initial Guess Thrust Acceleration 
(DU/TU2) 

Convergence Time 
(hr) 

Constraint 
Violation 

LSTM Neural Network 0.5451 0.72 3.1829e-7 
Feedforward Neural Network 0.5446 0.24 3.2193e-6 
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their feedforward equivalents. With regards to the effect of the time bias in the datasets on the 

neural networks, consistent timesteps typically improved the thrust acceleration predictions for 

both the LSTM neural networks and their feedforward equivalents whereas the thrust angle 

predictions were typically improved by using the desired changes in the states alongside the states 

as inputs. 

For the constrained-fuel optimal open-loop case, though the LSTM neural networks did 

not have the overall minimum RMSE for either thrust acceleration or thrust angle (when the control 

RMSEs were considered separately), the “best” LSTM neural network performed relatively on par 

with the “best” feedforward neural network (when the control RMSEs were considered in tandem, 

rather than separately) with respect to the control RMSEs, the training times, the final boundary 

conditions for the integrated trajectories, and the predicted fuel usage. Note, the LSTM neural 

networks, with an appropriate batch size, had training times consistently faster than their 

feedforward equivalents. With regards to the effect of the time bias in the datasets on the neural 

networks, consistent timesteps improved the control predictions for both the LSTM neural 

networks and their feedforward equivalents. Using the desired changes in the states alongside the 

states as inputs also appeared to improve the control predictions as well. For the constrained fuel-

optimal closed-loop case, both the LSTM neural networks and their feedforward equivalents 

performed poorly with slightly better performance observed from both the LSTM neural networks 

and their feedforward equivalents when tuned and trained on consistent timesteps.  
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6 Conclusions 

As the use of spacecraft launched with low-thrust propulsion can be expected to continue 

increasing significantly, so can the need for quick, accurate, and robust low-thrust trajectory 

optimization. However, low-thrust trajectory optimization via traditional optimization techniques 

can be complex as well as computationally-expensive and time-consuming. Artificial neural 

networks, on the other hand, can provide an alternative to such techniques. However, though the 

use of artificial neural networks trained by supervised learning models for applications related to 

low-thrust trajectory design and optimization is extensive, previous research has largely focused 

on shallow or deep feedforward architectures with little emphasis placed on recurrent ones, even 

though recurrent architectures are inherently more suited to time histories. Thus, the overall 

objective of this research was to investigate the potential of recurrent artificial neural networks, 

specifically LSTM artificial neural networks, for low-thrust trajectory design and optimization 

with respect to their feedforward equivalents. As a majority of spacecraft launched with low-thrust 

propulsion have been GEO satellites, the focus of this research was, primarily, on the low-thrust, 

orbit-raising problem for both time-optimal and fuel-optimal transfers. A total of four problems 

were considered: the time-optimal open-loop case, the time-optimal closed-loop case, the fuel-

optimal open-loop case, and the fuel-optimal closed-loop case. Overall, this dissertation presented 

and discussed the results of the LSTM neural networks and their feedforward equivalents. In 

consideration of these results (specific to the methodology outlined in this dissertation), the 

following conclusions (organized according to scientific contribution) were reached. 

Contribution #1: Recurrent artificial neural networks, specifically LSTM artificial neural 

networks, were applied to the low-thrust, orbit-raising problem for both time-optimal and fuel-

optimal transfers. 
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1. For time-optimal transfers (open-loop solution), LSTM neural networks (using a 

batch size of 20 with the current states and the desired changes for those states as 

inputs) performed excellent, capable of an average predicted thrust acceleration 

RMSE of 3.1079e-5 DU/TU2 and an average predicted thrust angle RMSE of 

0.0154 radians with an average training time of roughly 1.8 minutes. Also, the 

integrated trajectory from the LSTM neural networks had final radial velocities 

close to zero as well as final radii and final tangential velocities within 1 percent of 

the final values for the integrated trajectory from the Hermite-Simpson direct 

collocation method implemented using the fmincon function in MATLAB. Finally, 

the predicted fuel usage for the LSTM neural networks was within 1 percent of the 

optimized fuel usage from the Hermite-Simpson direct collocation method 

implemented using the fmincon function in MATLAB. 

2. For fuel-optimal transfers (open-loop solution), LSTM neural networks (using a 

batch size of 20 with the current states as inputs) performed well, capable of an 

average predicted thrust acceleration RMSE of 8.4675e-4 DU/TU2 and an average 

predicted thrust angle RMSE of 0.0234 radians with an average training time of 

roughly 0.6 minutes. Also, the integrated trajectory from the LSTM neural 

networks had final radial velocities close to zero as well as final radii and final 

tangential velocities within 8 percent of the final values for the integrated trajectory 

from the Hermite-Simpson direct collocation method implemented using the 

fmincon function in MATLAB. Finally, the predicted fuel usage for the LSTM 

neural networks was within 2 percent of the optimized fuel usage from the Hermite-
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Simpson direct collocation method implemented using the fmincon function in 

MATLAB. 

Contribution #2: An explicit model for a trade study between feedforward and recurrent artificial 

neural networks, specifically LSTM artificial neural networks, was developed and conducted with 

a focus on the low-thrust, orbit-raising problem for both time-optimal and fuel-optimal transfers. 

1. For time-optimal transfers (open-loop solution), LSTM neural networks performed 

relatively on par with feedforward neural networks with respect to the following 

metrics: control RMSEs, the final boundary conditions for the integrated trajectories, 

and the predicted fuel usage. However, LSTM neural networks, with an appropriate 

batch size, trained faster than their feedforward equivalents. 

2. For fuel-optimal transfers (open-loop solution), LSTM neural networks performed 

relatively on par with feedforward neural networks with respect to the following 

metrics: control RMSEs, the final boundary conditions for the integrated trajectories, 

and the predicted fuel usage. However, LSTM neural networks, with an appropriate 

batch size, trained faster than their feedforward equivalents. 

Contribution #3: The applicability of recurrent artificial neural networks, specifically LSTM 

artificial neural networks, as a closed-loop solution to the low-thrust, orbit-raising problem for 

both time-optimal and fuel-optimal transfers was investigated. 

1. For time-optimal transfers (closed-loop solution), both LSTM neural networks and 

their feedforward equivalents performed excellent with the LSTM neural networks 

performing relatively on par with the feedforward neural networks with respect to the 

following metrics: control RMSEs, the final boundary conditions for the integrated 
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trajectories, and the predicted fuel usage. Again, LSTM neural networks, with an 

appropriate batch size, trained faster than their feedforward equivalents. 

2. For fuel-optimal transfers (closed-loop solution), both LSTM neural networks and their 

feedforward equivalents performed poorly. The results for the constrained fuel-optimal 

closed-loop case were unfavorable, but were included in this dissertation for the sake 

of completeness. 

Contribution #4: The effect of time bias in data on the performance of recurrent artificial neural 

networks, specifically LSTM artificial neural networks, and feedforward artificial neural networks 

was investigated. 

1. For time-optimal transfers (both open-loop and closed-loop solutions), consistent 

timesteps typically improved the thrust acceleration predictions for both LSTM neural 

networks and their feedforward equivalents whereas the thrust angle predictions were 

typically improved by using the desired changes in the states alongside the states as 

inputs. 

2. For fuel-optimal transfers (both open-loop and closed-loop solutions), consistent 

timesteps improved the control predictions for both LSTM neural networks and their 

feedforward equivalents. Using the desired changes in the states alongside the states as 

inputs also appeared to improve the control predictions as well. 

6.1 Possibilities for Future Research 

The ability of recurrent artificial neural networks to perform relatively on par with, but 

faster than, feedforward artificial neural networks for the planar, two-body, low-thrust, orbit-

raising problem for both time-optimal and fuel-optimal transfers supports their potential for low-

thrust trajectory design and optimization, particularly when considering more complex problems 
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in which the increasing nonlinearity might allow for the full exploitation of the benefits associated 

with recurrent artificial neural networks. Thus, two possibilities for future research are to expand 

the investigation on the potential of recurrent artificial neural networks for low-thrust trajectory 

design and optimization to a three-dimensional, low-thrust, orbit-raising transfer as well as other 

low-thrust problems, such as rendezvous and interplanetary trajectories (both planar and three-

dimensional). 

A third, and final, possibility for research is to improve the applicability of recurrent 

artificial neural networks as a closed-loop solution to the low-thrust, orbit-raising problem for fuel-

optimal transfers. Smaller timesteps between points in the datasets could improve performance as 

well as a different optimization or integration scheme. Also, the methodology outlined in this 

dissertation may not be the best way to approach the constrained fuel-optimal closed-loop problem 

with respect to artificial neural networks.  Crucial information, such as mass dependencies, could 

be getting lost in the translation of the problem.  
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