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Abstract: The convolution operation plays a vital role in a wide range of critical algorithms across
various domains, such as digital image processing, convolutional neural networks, and quantum
machine learning. In existing implementations, particularly in quantum neural networks, convolution
operations are usually approximated by the application of filters with data strides that are equal to the
filter window sizes. One challenge with these implementations is preserving the spatial and temporal
localities of the input features, specifically for data with higher dimensions. In addition, the deep
circuits required to perform quantum convolution with a unity stride, especially for multidimensional
data, increase the risk of violating decoherence constraints. In this work, we propose depth-optimized
circuits for performing generalized multidimensional quantum convolution operations with unity
stride targeting applications that process data with high dimensions, such as hyperspectral imagery
and remote sensing. We experimentally evaluate and demonstrate the applicability of the proposed
techniques by using real-world, high-resolution, multidimensional image data on a state-of-the-art
quantum simulator from IBM Quantum.

Keywords: convolution; quantum algorithms; quantum image processing; quantum computing

1. Introduction

Convolution is a common operation that is leveraged in a wide variety of practical
applications, such as signal processing [1], image processing [2], and most recently, convo-
lutional neural networks [3]. However, leveraging the widespread utility of convolution
operations in quantum algorithms is limited by the lack of a systematic, generalized im-
plementation of quantum convolution. Specifically, contemporary quantum circuits for
performing quantum convolution with a given filter are designed on a case-by-case ba-
sis [4–8]. In other words, implementing a novel convolution filter on a quantum computer
is arduous and time consuming, requiring substantial human effort. Such a workflow
is impractical for applications, such as quantum convolutional neural networks, which
require a generalized, parameterized quantum circuit to iteratively test thousands of unique
filters per training cycle.

In this work, we propose a generalizable algorithm for quantum convolution compat-
ible with amplitude-encoded multidimensional data that is able to implement arbitrary
multidimensional filters. Furthermore, our proposed technique implements unity stride,
which is essential for capturing the totality of local features in input data. We experimen-
tally verify our technique by applying multiple filters on high-resolution, multidimensional
images and report the fidelity of the quantum results against the classically computed
expectations. The quantum circuits are implemented on a state-of-the-art quantum simu-
lator from IBM Quantum [9] in both noise-free (as a statevector) and noisy environments.
Compared to classical CPU- and GPU-based implementations of convolution, we achieve
an exponential improvement in time complexity with respect to data size. Additionally,
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when compared to existing quantum implementations, we achieve improved circuit depth
complexity when factoring in the data encoding.

The work is structured as follows. In Section 2, we cover important background
information and review the related work. In Section 3, we introduce the proposed quantum
convolution circuits and provide analyses of the corresponding circuit depth. In Section 4,
we present the experimental setup and results, while in Section 5, we provide discussions
of the results and comparisons to related work. Finally, in Section 6, we present our
conclusions and potential avenues for future explorations and extensions.

2. Background

In this section, we discuss related work pertinent to quantum convolution. Quantum
operations that are relevant to convolution, such as quantum data encoding, and quantum
shift operation, are also presented.

2.1. Related Work

Classically, the convolution operation is implemented either directly or by leveraging
fast Fourier transform (FFT). On CPUs, the direct implementation has a time complexity
of O(N2) [10], where N is the data size, while FFT-based implementation has a time
complexity of O(N log N) [10]. On GPUs, the FFT-based implementation has a similar
O(N log N) complexity [11]. It is also common to take advantage of the parallelism offered
by GPUs to implement convolution using general matrix multiplications (GEMMs) with
O(NF N) FLOPS [12,13], where NF is the filter size.

Techniques for performing quantum convolution have previously been reported [4–8].
However, these techniques only use fixed sizes of filter windows for specific filters,
e.g., edge detection [4–8]. We will denote such methods as fixed-filter quantum convo-
lution. Reportedly, these methods possess a quadratic circuit depth complexity of O(n2)
in terms of the number of qubits n = dlog2 Ne, where N is the size of the input data [4–8].
Because the shortest execution time of classical convolution is in the order of O(N) or
O(2n) [12,13] with respect to data size N, authors of the quantum counterparts often claim
a quantum advantage [4]. However, the reported depth complexity of fixed-filter quantum
convolution does not include the unavoidable overhead of data encoding. Furthermore,
there does not exist, to the best of our knowledge, a method for performing generalized,
multidimensional quantum convolution.

In reported related work [4–8], data encoding is performed with either the flexible repre-
sentation of quantum images (FRQI) [14] or novel enhanced quantum representation (NEQR) [15]
methods. In these encoding techniques, positional information is stored in the basis quan-
tum states of n qubits, while color information is stored via angle encoding and basis
encoding for FRQI and NEQR, respectively. FRQI and NEQR require a total of n + 1
and n + q qubits, respectively, where q is the number of qubits used to represent color
values, e.g., q = 8 for standard grayscale pixel representation. The reported circuit depth
complexities of FRQI and NEQR are O(4n) and O(qn2n), respectively. When factoring in
the depth complexities of either data-encoding technique, it is evident that the referenced
fixed-filter quantum convolution techniques should be expected to perform worse than
classical implementations.

In [16], the authors propose a method of edge detection based on amplitude encoding
and the quantum wavelet transform (QWT), which they denote as quantum Hadamard
edge detection (QHED). Although the work utilizes grayscale two-dimensional images,
the QHED technique is highly customized for those data and does not easily scale or
generalize to data of higher dimensions, such as colored and/or multispectral images.
For example, the quantum discriminator operation in their technique is applied over all
qubits in the circuit, without distinguishing between qubits representing each dimension,
i.e., image rows or columns. Such a procedure not only forgoes parallelism and increases
circuit depth but inhibits the algorithm’s ability to be generalized beyond capturing one-
dimensional features.
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In our proposed work, we achieve an exponential improvement in time complexity
compared to classical implementations of convolution with respect to data size. Addi-
tionally, when compared to existing quantum convolution implementations, we achieve
improved circuit depth complexity when factoring in the data encoding. The contribution
of our work is analyzed, experimentally verified, and discussed in detail in Section 5.

2.2. Classical to Quantum (C2Q)

Our method of quantum convolution leverages amplitude encoding, which encodes N
data values directly in the complex probability amplitudes ci ∈ C of the positional basis
state |i〉 for an n-qubit state |ψ〉, where n = dlog2 Ne and 0 ≤ i < n, see (1):

|ψ〉 =
2n−1

∑
i=0

ci|i〉 : ci ∈ C. (1)

We use the classical-to-quantum (C2Q) [17] data-encoding technique to encode the
amplitude encoded state |ψ0〉 from the ground state |0〉⊗n, see Figure 1 and (2). The C2Q
operation UC2Q has a circuit depth complexity of O(2n), a quadratic and linear improve-
ment over FRQI and NEQR, respectively:

UC2Q|0〉⊗n = |ψ0〉
UC2Q =

[
|ψ0〉 |×〉 · · · |×〉

]
, where

|×〉 = “don’t care”

(2)

Figure 1. Quantum circuit for classical-to-quantum (C2Q) arbitrary state synthesis [17].

2.3. Quantum Shift Operation

A fundamental operation for quantum convolution is the quantum shift operation,
denoted in this work as Uk

shift, which shifts the basis states of the state vector by k positions
when applied to an m-qubit state |ψ〉, see (3). The quantum shift operation is critical for
performing the cyclic rotations needed to prepare strided windows when performing
convolution. It is also common for the operation to be described as a quantum incrementer
when k > 0, see Figure 2a, and a quantum decrementer when k < 0 [16,18], see Figure 2b:

Uk
shift|ψ〉 =

2m−1

∑
i=0

ci|j〉, where j = (i− k) mod 2m (3)
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(a) Quantum incrementer by k (b) Quantum decrementer by k
Figure 2. Quantum shift operation using quantum incrementers/decrementers.

3. Materials and Methods

In general, a convolution operation can be performed using a sequence of shift and
multiply-and-accumulate operations. In our proposed methods, we implement the general-
ized convolution operations as follows:

1. Shift: Auxiliary filter qubits and controlled quantum decrementers are used to create
shifted (unity-strided) replicas of input data.

2. Multiply-and-accumulate: Arbitrary state synthesis and classical-to-quantum (C2Q)
encoding are applied to create generic multidimensional filters.

3. Data rearrangement: Quantum permutation operations are applied to restructure the
fragmented data into one contiguous output datum.

In Section 3.1, we present our quantum convolution technique in detail for one-
dimensional data. In the following sections, we illustrate optimizations to improve circuit
depth and generalize our method for multidimensional data. For evaluating our proposed
methods, we used real-world, high-resolution, black-and-white (B/W) and RGB images,
ranging in a resolution from (8× 8) pixels to (512× 512) pixels and (8× 8× 3) pixels to
(512× 512× 3) pixels, respectively. We also performed experiments on 1-D real-world
audio data and 3-D real-world hyperspectral data to demonstrate our method’s applicability
to data and filters of any dimensionality. Further details about our experimental setup and
dataset can be found in Section 4.

3.1. Quantum Convolution for One-Dimensional Data

The proposed structure of quantum convolution for one-dimensional (1-D) data is
shown in Figure 3. The following sections show the details of the five steps of the convolu-
tion operation procedure to transform the initial encoded data |ψ0〉 to the final state |ψ5〉,
see Figure 3.

Figure 3. The 1-D quantum convolution circuit.
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3.1.1. Shift Operation

To perform convolution with unity stride with a filter of size N f terms, N f replicas
of the input data must be made, strided for 0 ≤ k < N f . To store these replicas, we add
n f = dlog2 N f e auxiliary qubits, which we denote as “filter qubits”, to the most significant
positions of the initial quantum state |ψ0〉, see (4) and Figure 3:

|ψ1〉 = |0〉⊗n f ⊗ |ψ0〉 =


|ψ0〉

0
...
0


l2nxy2n+n f (4)

Placing the filter qubits in superposition using Hadamard (H) gates creates 2n f identi-
cal replicas of the initial data |ψ0〉, as shown in (5):

|ψ2〉 =
(

H⊗n f ⊗ I⊗n)|ψ1〉 =
1√
2n f

|ψ0〉
...
|ψ0〉

l2
n

...
l2n

xy2n+n f (5)

Finally, multiplexed quantum shift operations can be used to generate the strided
replicas, see (6):

|ψ3〉 = Umux|ψ2〉 =
1√
2n f


U0

shift|ψ0〉
...

U−(2
n f −1)

shift |ψ0〉


xy2n

...xy2n

xy2n+n f , where

Umux =


U0

shift
. . .

U−(2
n f −1)

shift


(6)

3.1.2. Multiply-and-Accumulate Operation

For the traditional convolution operation, applying a filter F ∈ RN f to an array of
data W ∈ RN f produces a scalar output x ∈ R, which can be expressed as x = FTW.
In the quantum domain, we can represent an array of data as the partial state |φ〉 and the
normalized filter as |F〉. Accordingly, the output state can be expressed as shown in (7):

|ψout〉 =
2n−1

∑
i=0
〈F|φi〉 · |i〉, where

|φi〉 =
2

n f −1

∑
j=0

〈
k′
∣∣ψ3
〉
·
∣∣k′〉, and k′ = (2n f · i) + j

(7)

To calculate |ψ4〉 from |ψ3〉, it is necessary to embed 〈F| into a unitary operation UF
as shown in (8). Since 〈F| is a normalized row vector, we can define UF as a matrix such
that its first row is 〈F| and the remaining rows are arbitrarily determined to preserve the
unitariness of UF such that U†

FUF = UFU†
F = I⊗n f . From (2), we can realize UF using an

inverse C2Q operation, see (8):
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|ψ4〉 =
(

I⊗n ⊗UF
)
|ψ3〉 =

 UF|φ0〉
...

UF|φ2n−1〉

l2
n f

...
l2n f

xy2n+n f , where

UF =


〈F|
〈×|

...
〈×|


xy2n f = U†

C2Q

(8)

3.1.3. Data Rearrangement

As of |ψ4〉, the desired values of |ψout〉 are fragmented among undesired/extraneous
values, which we denote using the symbol “×”. We apply SWAP permutations to rearrange
and coalesce our desired values to be contiguous in the final statevector |ψ5〉, see (9) and
Figure 3:

|ψ5〉 = U1−D
SWAP|ψ4〉

=



〈F|φ0〉
...

〈F|φ2n−1〉
×
...
×



xy2n

xy
2n+n f

=


|ψout〉
×
...
×


l2nxy2n+n f , where

U1−D
SWAP =

0

∏
j=n f−1

(
I⊗(n f−1−j) ⊗ SWAP(j, j + n)⊗ I⊗j

)

(9)

3.1.4. Circuit Depth Analysis of 1-D Quantum Convolution

When considering the circuit depth complexity of the proposed 1-D quantum convo-
lution technique, it is evident from Figure 3 that the operations described by (5) and (9) are
performed using parallel Hadamard and SWAP operations, respectively, and thus are of
constant depth complexity, i.e., O(1). In contrast, the Umux and UF operations incur the
largest circuit depth, as they are both serial operations that scale with the data size and/or
filter size, see Figure 3.

For the implementation of Umux in Figure 3, there are a total of 2n f controlled quantum

shift operations, where the i-th shift operation is a quantum decrementer U−i
shift =

(
U−1

shift

)i
.

Since all the U−1
shift operations are performed in series, the circuit depth of Umux depends on

the total number of unity quantum decrementers, NU−1
shift

, see (10):

NU−1
shift

(n f ) =
2

n f −1

∑
i=0

i =
2n f (2n f − 1)

2
=

4n f

2
− 2n f−1 (10)

As shown in Figure 2b, each quantum decrementer U−1
shift acting on m qubits can

be realized using m multi-controlled CNOT (MCX) gates, where the i-th MCX gate is
controlled by i qubits and 0 ≤ i < m. Accordingly, for each quantum decrementer U−1

shift
that is controlled by c qubits, its i-th MCX gate is controlled by a total of i + c qubits.
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Therefore, the depth of the quantum decrementer circuits can be expressed in terms of the
MCX gate count as shown in (11):

DU−1
shift

(m, c) =
m+c−1

∑
i=c
DMCX(i)

(11)

The depth of an MCX gate with a total of m qubits can be expressed with a linear function
in terms of fundamental single-qubit rotation gates and CNOT gates [19] as shown in (12),
where α represents the first-order coefficient and β represents the constant bias term. Thus,
the depth complexity of U−1

shift can be expressed as shown in (13):

DMCX(m) = αm + β : α, β ∈ R (12)

DU−1
shift

(m, c) =
m−1

∑
i=0

α(i + c) + β

=
α

2
m2 +

(
α

(
c− 1

2

)
+ β

)
m

= O
(

m2
)

(13)

To derive the circuit depth complexity of Umux, we leverage the definitions of NU−1
shift

(n f )

and DU−1
shift

(m, c) as shown in (14), where m = n and c = n f :

DUmux(n, n f ) = NU−1
shift

(n f ) · DU−1
shift

(n, n f )

=

(
4n f

2
− 2n f−1

)
·
(

α

2
n2 +

(
α

(
n f −

1
2

)
+ β

)
n
)

=
(

4n f−1 − 2n f−2
)
·
(

αn2 + 2αn f n− (α− 2β)n
)

= O
(

4n f n2 + 4n f n f n
)

(14)

As discussed in Section 3.1.2, we implement the filter operation UF by leveraging the
C2Q arbitrary synthesis operation [17]. Although C2Q incurs a circuit depth of exponential
complexity in terms of fundamental quantum gates, as shown in (15), UF is only applied
to n f qubits, a small subset of the total number of qubits, which somewhat mitigates the
circuit depth. Furthermore, in most practical scenarios, the dimensions of the filter are
typically much smaller than the dimensions of the input data, i.e., n f � n. As a result, UF
should not incur overly large circuit depth relative to other circuit components, e.g., Umux.
Altogether, the overall circuit depth complexity of the 1-D quantum convolution operation
can be expressed according to (16):

DUF (n f ) = O(2n f ) (15)

D1-D conv(n, n f ) = O
(

4n f n2 + 4n f n f n + 2n f
)

, where n� n f (16)

3.2. Depth-Optimized 1-D Quantum Convolution

In Figure 4, we present an optimized implementation of Umux that greatly reduces the
circuit depth.

In Section 3.1, we implemented Umux with 2n f controlled quantum decrementers U−k
shift,

where 0 ≤ k < 2n f . We can represent each k in binary notation, as shown in (17), to express
U−k

shift as a sequence of controlled shift operations by powers of 2. As shown in (18), we can
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denote such operations with the notation U
−bj2j

shift (n), where 0 ≤ j < n f , and (n) reflects that
the shift operation is applied to an n-qubit state.

k =
(

bn f−1bn f−2 · · · bj · · · b1b0

)
2
=

n f−1

∑
j=0

bj2j : bj ∈ {0, 1} (17)

U−k
shift(n) = U

−∑
n f −1

j=0 bj2j

shift (n) =
n f−1

∏
j=0

U
−bj2j

shift (n) (18)

Figure 4. Depth-optimized 1-D quantum convolution circuit.

The binary decomposition of the uniformly controlled U−k
shift operations is conducive

to several circuit depth optimizations. As shown in (19), the value of bj is dependent only

on the state of the j-th filter qubit qn+j. In other words, each U−2j

shift(n) can only be controlled
by one qubit qn+j, independently from the other control qubits. Accordingly, it is possible

to coalesce the multiplexed U−2j

shift(n) operations across the k control indices. The resultant

implementation of Umux, therefore, becomes a sequence of 2n f single-controlled U−2j

shift(n)
operations, where 0 ≤ j < n f , which comparatively has a smaller circuit depth by a factor of

2n f . Furthermore, each U−2j

shift(n) operation can be implemented using a single U−1
shift(n− j)

operation in lieu of sequential U−1
shift(n) operations, see (20) and Figure 4, further reducing

the depth by a factor of 2j per operation:

bj =

{
1,

∣∣qn+j
〉
= |1〉

0, otherwise
, ∀k ∈ [0, 2n f ] (19)

U−2j

shift(n) ≡∏
2j

U−1
shift(n) = U−1

shift(n− j)⊗ I⊗j (20)

Circuit Depth Analysis of Optimized 1-D Quantum Convolution

With the aforementioned optimizations, the depth of the updated Umux operation can
be expressed in terms of DU−1

shift
(m, c) as described by (21), where m = n− j and c = 1 for

all 0 ≤ j < n f . In comparison with the depth complexity of the unoptimized Umux, see (14),
the dominant term remains quadratic, i.e., n2, in terms of the data qubits n. However,
its coefficient is improved exponentially, from 4n f to n f , see (14) and (21). Note that a
cubic term n3

f in terms of the number of filter qubits is introduced in the optimized Umux

implementation, see (21). However, when considering the total depth for the optimized
1-D quantum convolution circuit Dopt

1-D conv, the n3
f term becomes negligible because of UF,
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whose complexityO(2n f ) is exponential in terms of the number of filter qubits, see (15), (21),
and (22):

Dopt
Umux

(n, n f ) =

n f−1

∑
j=0
DU−1

shift
(n− j, 1) =

n f−1

∑
j=0

[α

2
(n− j)2 +

(α

2
+ β

)
(n− j)

]
=

α

2
n f n2 − α

2
n2

f n + (α + β)n f n +
α

6
n3

f −
α + β

2
n2

f +
2α + 3β

6
n f

= O
(

n f n2 − n2
f n + n3

f

)
, where n� n f

(21)

Dopt
1-D conv(n, n f ) = O

(
n f n2 − n2

f n + n3
f + 2n f

)
= O

(
n f n2 − n2

f n + 2n f
)

, where n� n f

(22)

3.3. Generalized Quantum Convolution for Multidimensional Data and Filters

In this section, we present the quantum circuit of our proposed quantum convolution
technique generalized for multidimensional data and filters. Although quantum statevec-
tors are one-dimensional, it is possible to map multidimensional data to a 1-D vector in
either row- or column-major order. In this work, we represent multidimensional input
data and convolutional filters in a quantum circuit in column-major order. In other words,
for d-dimensional data of size (N0 × · · · × Ni · · · × Nd−1) data values, the positional in-
formation of the i-th dimension is encoded in the ∑i−1

j=0 nj to (∑i
j=0 nj)− 1 qubits, where

ni = dlog2 Nie. Using this representation, the optimized 1-D quantum convolution circuit
shown in Figure 4 can be generalized for d dimensions by “stacking” d 1-D circuits as shown
in Figure 5.

Figure 5. Multidimensional quantum convolution circuit with distributed/stacked 1-D filters.

The “stacked” quantum circuit in Figure 5 is based on the assumption that the overall
(lumped) d-dimensional filter operator UF is separable and decomposable into d one-
dimensional filters UFi for 0 ≤ i < d. However, it would be more practically useful to
generalize our multidimensional quantum convolution technique independently from the
separability/decomposability of UF. For this purpose, the identity in (23), which could be
easily derived from either Figure 3 or Figure 4 for 1-D convolution, can be leveraged and



Entropy 2023, 25, 1503 10 of 21

generalized for multidimensional convolution circuits, see (24). The identity in (24) allows
us to reverse the order of multiply-and-accumulate and data rearrangement steps and,
therefore, generate one generic lumped UF that acts on the contiguous n f = ∑d−1

i=0 (n fi
) filter

qubits, where n fi
is the number of qubits representing the filter dimension i for 0 ≤ i < d,

see Figure 6. UF can be derived based on the given arbitrary multidimensional filter F
using the method discussed in Section 3.1.2 when F is represented as a normalized 1-D
vector |F〉 in a column major ordering:

U1−D
SWAP ·

(
I⊗n ⊗UF

)
=
(
UF ⊗ I⊗n) ·U1−D

SWAP (23)

Ud−D
SWAP ·

(
I⊗n f ⊗

(
0⊗

i=d−1

[
I⊗(ni−n fi

) ⊗UFi

]))
=

((
0⊗

i=d−1

[
UFi

])
⊗ I⊗n

)
·Ud−D

SWAP

=
(
UF ⊗ I⊗n) ·Ud−D

SWAP, where

UF =
0⊗

i=d−1

[
UFi

]
≡ UFd−1 ⊗UFd−2 ⊗ · · · ⊗UF1 ⊗UF0 ,

Ud−D
SWAP =

0

∏
i=d−1

0

∏
j=n fi

−1

(
I⊗
(

n f−1−j−q fi

)
⊗ SWAP

(
j + qi, j + n + q fi

)
⊗ I⊗(j+qi)

)
,

q fi
=

i−1

∑
k=0

n fk
, qi =

i−1

∑
k=0

nk, n f =
d−1

∑
k=0

n fk
, and n =

d−1

∑
k=0

nk

(24)

Figure 6. Generalized multidimensional quantum convolution circuit.

Circuit Depth Analysis of Generalized Multidimensional Quantum Convolution

As a result of the “stacked" structure, the data of all d dimensions could be concur-
rently processed in parallel. Consequently, the circuit depth of the multidimensional
quantum circuit becomes dependent on the largest data dimension Nmax = 2nmax , where
nmax = maxd−1

i=0 (ni), in lieu of the total data size N. The circuit component of the opti-
mized 1-D circuit with the greatest depth contribution Umux is performed in parallel on
each dimension in the generic d-D circuit. Specifically, Umux scales with the number of
qubits used to represent the largest data dimension nmax = dlog2 Nmaxe. Note that the
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parallelization across dimensions applies to the Hadamard and SWAP operations from
(5) and (9), see Figure 6, and therefore these operations are of constant depth complexity,
i.e., O(1). The depth complexity of the multidimensional UF operation is determined by
the total number of elements in the filter NF, and therefore the C2Q-based implementation
of UF does not benefit from multidimensional stacking. Accordingly, the circuit depth of
the generalized multidimensional quantum convolution operation could be derived from
(22) and expressed in (25), where n fmax = maxd−1

i=0 (n fi
) is the number of qubits representing

the maximum filter dimension N fmax = 2n fmax . It is worth mentioning that the generic
multidimensional formula in (25) reduces to the 1-D formula in (22) when n = nmax and
n f = n fmax :

Dopt
d-D conv(n, n f ) = O

(
n fmax n2

max − n2
fmax

nmax + 2n f
)

, where

nmax =
d−1

max
i=0

(ni), n fmax =
d−1

max
i=0

(n fi
), and nmax � n fmax

(25)

4. Experimental Setup and Results

We experimentally demonstrate our proposed technique for generalized, multidi-
mensional quantum convolution with unity stride on real-world, high-resolution, multi-
dimensional image data, see Figure 7. By leveraging the Qiskit SDK (v0.39.4) from IBM
Quantum [9], we simulate our quantum circuits in the following formats: (1) classically
(to present the ideal/theoretical expectation), (2) noise-free (using statevector simulation),
and (3) noisy (using 1,000,000 “shots” or circuit samples). Moreover, we present a quantita-
tive comparison of the obtained results using fidelity [20] as a similarity metric between
compared results ρ and σ, see (26). Experiments were performed on a 16-core AMD EPYC
7302P CPU with frequencies up to 3.3 GHz, 128 MB of L3 cache, and access to 256 GB of
DDR4 RAM. In our analysis, we evaluated the correctness of the proposed techniques by
comparing classical results with noise-free results. We also evaluated the scalability of the
proposed techniques for higher-resolution images by comparing the classical results with
both the noise-free and noisy results. Finally, we plotted the circuit depth of our techniques
with respect to the data size and filter size as shown in Figure 8.

(a) Black-and-white (B/W) image. (b) Color (RGB) Image

Figure 7. Real-world, high-resolution, multidimensional images used in experimental trials.
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(a) Depth with respect to data size. (b) Depth with respect to filter size.

Figure 8. Circuit depth of quantum convolution with respect to data and filter qubits.

Fidelity(ρ, σ) = tr
√√

ρ · σ · √ρ (26)

In our experiments, we evaluated our techniques using well-known (3× 3) and (5× 5)
filters, i.e., Averaging Favg, Sobel edge-detection FSx/FSy, Gaussian blur Fblur, and Laplacian
of Gaussian blur (Laplacian) FL, see (27)–(30). We applied zero padding to maintain the
size of the filter dimensions at a power of two for quantum implementation. In addition,
we used wrapping to resolve the boundary conditions, and we restricted the magnitude of
the output between [0, 255] to mitigate quantization errors in the classical domain:

F3×3
avg =

1
9

1 1 1
1 1 1
1 1 1

, F5×5
avg =

1
25


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 (27)

F3×3
blur =

1
16

1 2 1
2 4 2
1 2 1

, F5×5
blur =

1
273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 (28)

FSx =
1
4

1 0 −1
2 0 −2
1 0 −1

, FSy =
1
4

 1 2 1
0 0 0
−1 −2 −1

 (29)

F3×3
L =

1
6

1 1 1
1 −8 1
1 1 1

, F5×5
L =

1
20


1 1 1 1 1
1 1 1 1 1
1 1 −24 1 1
1 1 1 1 1
1 1 1 1 1

 (30)
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We applied 2-D convolution filters to black-and-white (B/W) and RGB images, see
Figure 7, ranging in resolution from (8× 8) pixels to (512× 512) pixels and (8× 8× 3)
pixels to (512× 512× 3) pixels, respectively. The number of filter qubits can be obtained by
the size of filter dimensions, i.e., n f = dlog2 3e+ dlog2 3e = 4 qubits for (3× 3) filters and
n f = dlog2 5e+ dlog2 5e = 6 qubits for (5× 5) filters. Therefore, our simulated quantum
circuits ranged in size (n + n f ) from 10 qubits to 26 qubits. Figures 9 and 10 present
the reconstructed output images for classical, noise-free, and noisy experiments using
(128× 128) and (128× 128× 3)-pixel input images, respectively.

To demonstrate our method’s applicability to data and filters of any dimensionality,
we also performed experiments applying the 1-D and 3-D averaging filter to 1-D real-
world audio data and 3-D real-world hyperspectral data, respectively. The audio files
were sourced from the publicly available sound quality assessment material published
by the European Broadcasting Union and modified to be single channel with data sizes
ranging from 28 values to 220 values when sampled at 44.1 kHz [21]. Figures 11 and 12
present the reconstructed output images and fidelity, respectively, from applying (3) and
(5) averaging filters. The hyperspectral images were sourced from the Kennedy Space
Center (KSC) dataset [22] and resized to range from (8× 8× 8) pixels to (128× 128× 128)
pixels. Figures 13 and 14 present the reconstructed output images and fidelity, respectively,
from applying (3× 3× 3) and (5× 5× 5) averaging filters.

Comparison of the noise-free quantum results against the ideal classical results demon-
strates a 100% fidelity across all trials. Thus, in a noise-free (statevector) environment, our
proposed quantum convolution technique correctly performs an identical operation to
classical convolution given the same input parameters and boundary conditions.

When considering the behavior of noisy (sampled) environments, Figures 12, 14 and 15
plot the fidelity of the noisy quantum results against the ideal classical results. We observe
a monotonic decrease in fidelity as the data size (image resolution) increases, consistent
with previously reported behavior [23]. Such behavior derives from how the number of
shots required to properly characterize a quantum state increases with the corresponding
number of qubits in order to reduce the effects of statistical noise. Notably, the fidelity varies
dramatically depending on the filter category and size, where the largest discrepancy occurs
between the (5× 5) Averaging and (5× 5) Laplacian filters for a data size of 65, 536 values.
Specifically, for a B/W image of (256 × 256) pixels, the Averaging filter had a fidelity
of 94.84%, while the Laplacian filter had a fidelity of 8.82%—a difference of 86.02%, see
Figure 15a. In general, we observed that the average and blur filters perform better than
the edge detection methods (Sobel/Laplacian). Since the output data are reconstructed
from only a portion of the final state |ψ5〉, it is likely that sparse filters, represented in
Figures 9 and 10 as being mostly black, are significantly less likely to be recorded during
sampled measurement, resulting in reduced fidelity. For practical applications, dimension
reduction techniques, such as pooling, can be used to mitigate information loss [23].
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Filter
(3× 3) filter
Classical/
Noise-Free

(3× 3) filter
Noisy

(106 shots)

(5× 5) filter
Classical/
Noise-Free

(5× 5) filter
Noisy

(106 shots)

Average

Gaussian

Sobel-X

Sobel-Y

Laplacian

Figure 9. The 2-D convolution filters applied to a (128× 128) B/W image.
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Filter
(3× 3) filter
Classical/
Noise-Free

(3× 3) filter
Noisy

(106 shots)

(5× 5) filter
Classical/
Noise-Free

(5× 5) filter
Noisy

(106 shots)

Average

Gaussian

Sobel-X

Sobel-Y

Laplacian

Figure 10. The 2-D convolution filters applied to a (128× 128× 3) RGB image.
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Data Size
(No. of Sample

Points)

(3) Averaging
Classical/
Noise-Free

(3) Averaging
Noisy

(106 shots)

(5) Averaging
Classical/
Noise-Free

(5) Averaging
Noisy

(106 shots)

256

4096

65,536

1,048,576

Figure 11. The 1-D convolution (averaging) filters applied to 1-D audio samples.

Figure 12. Fidelity of 1-D convolution (averaging) filters with unity stride on 1-D audio data (sampled
with 1,000,000 shots).
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Data Size
(Nrows × Ncols ×

Nbands)

(3× 3× 3)
Averaging
Classical/
Noise-Free

(3× 3× 3)
Averaging

Noisy
(106 shots)

(5× 5× 5)
Averaging
Classical/
Noise-Free

(5× 5× 5)
Averaging

Noisy
(106 shots)

(8× 8× 8)

(16× 16× 16)

(32× 32× 32)

(64× 64× 64)

(128× 128× 128)

Figure 13. The 3-D convolution (averaging) filters applied to 3-D hyperspectral images (bands 0, 1, and 2).

Figure 14. Fidelity of 3-D convolution (averaging) filters with unity stride on 3-D hyperspectral data
(sampled with 1,000,000 shots).
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(a) Black-and-white (B/W) images (b) Color (RGB) images

Figure 15. Fidelity of 2-D convolution with unity stride (sampled with 1,000,000 shots).

5. Discussion

In the following section, we compare our proposed method of quantum convolution to
the related work discussed in Section 2.1 in terms of filter generalization and circuit depth.

5.1. Arbitrary Multidimensional Filtering

Our generalizable and parameterized technique of quantum convolution with unity
stride offers distinct workflow advantages over existing fixed-filter quantum convolution
techniques in variational applications, such as quantum machine learning. Our technique
does not require extensive development for each new filter design. For instance, current
quantum convolutional filters are primarily two dimensional, only focusing on image
processing. However, the development of even similar filters targeting audio and video
processing, for example, would require extensive development and redesign. Our method
offers a systematic and straightforward approach for generating practical quantum circuits
given fundamental input variables.

5.2. Circuit Depth

Figure 8a,b show the circuit depth for our proposed technique of generalized quantum
convolution with respect to the total number of data qubits n = ∑d−1

i=0 (ni) and the total
number of filter qubits n f = ∑d−1

i=0 (n fi
), respectively. The results were gathered using the

QuantumCircuit.depth() method built into Qiskit for a QuantumCircuit transpiled to
fundamental single-qubit and CNOT quantum gates. Figure 8a illustrates quadratic circuit
depth complexity with respect to the data qubits n for a fixed filter size NF = 2n f , aligning
with our theoretical expectation in (25). Note that n = ∑d−1

i=0 ni and nmax = maxd−1
i=0 (ni) for

d-dimensional data. Similarly, Figure 8b (plotted on a log-scale) illustrates exponential
circuit depth complexity with respect to n f for a fixed data size N = 2n, which also aligns
with our theoretical expectation in (25).

The time complexity comparison of our proposed quantum convolution technique
against related work is shown in Table 1. Compared to classical direct implementations
on CPUs, our proposed technique for generalized quantum convolution demonstrates an
exponential improvement with respect to data size N = 2n, i.e., O(n2) vs. O(N2), see (25)
and Table 1c. As discussed in Section 2.1, the fastest classical GEMM implementation of
convolution on GPUs (excluding data I/O overhead) [12,13] has a complexity of O(NF N),
see Table 1c. Even when including quantum data encoding, which is equivalent to data
I/O overhead, our method remains to demonstrate a linear improvement with respect to
data size N by a factor of the filter size NF, see (31), over classical GEMM GPUs:
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Dproposed(n) = DC2Q(n) +D
opt
d-D conv(n)

= O
(

2n + n2
max

)
= O(2n) = O(N), for fixed n f

(31)

Compared to fixed-filter quantum convolution techniques [4–8], our proposed arbitrary
filter quantum convolution technique (for unity stride) demonstrates improved circuit
depth complexity with respect to data size when factoring in the circuit depth contribution
from data encoding. For a fixed filter, i.e., n f is constant, the depth of the proposed method
scales quadratically with the largest data dimension nmax, see (25) and (31). As described
in Section 2.1, fixed-filter quantum convolution techniques similarly show quadratic depth
scaling with respect to the number of qubits n, see Table 1b. For data encoding, the fixed-
filter techniques use either the FRQI [14] or NEQR [15] algorithms, which have circuit depth
complexities of O(4n) or O(qn2n), respectively. In contrast, our proposed technique uses
C2Q data encoding [17], which has a depth complexity of O(2n)—a quadratic and linear
improvement over FRQI and NEQR, respectively, see Table 1a.

Table 1. Comparison of depth/time complexity of proposed generalized quantum convolution
technique against related work.

a Depth complexity of quantum data encoding (I/O) techniques

FRQI [14] NEQR [15] C2Q [17]

OI/O(4n) OI/O(qn2n) OI/O(2n)

b Depth complexity of quantum convolution algorithms for a fixed filter

Proposed Related Work [4–8]

Oalg(n2
max) Oalg(n2)

c Complexity of proposed technique compared to classical convolution

Proposed Direct (CPU) [10] FFT (CPU/GPU) [10,11] GEMM (GPU) [12,13]

Oalg

(
n fmax n2

max − n2
fmax

nmax

+2n f

)

Oalg + I/O

(
n fmax n2

max − n2
fmax

nmax

+2n + 2n f

) Oalg
(

N2) ≡
Oalg(4n)

Oalg(N log N) ≡
Oalg(n2n)

Oalg(NF N) ≡
Oalg

(
2(n+n f )

)

6. Conclusions

In this work, we proposed and evaluated a method for generalizing the convolution
operation with arbitrary filtering and unity stride for multidimensional data in the quan-
tum domain. We presented the corresponding circuits and their performance analyses
along with experimental results that were collected using the IBM Qiskit development
environment. In our experimental work, we validated the correctness of our method by
comparing classical results to noise-free quantum results. We also demonstrated the practi-
cality of our method for various convolution filters by evaluating the noisy quantum results.
Furthermore, we presented experimentally verified analyses that highlight our technique’s
advantages in terms of time complexity and/or circuit depth complexity compared to exist-
ing classical and quantum methods, respectively. Future work will focus on adapting our
proposed technique for arbitrary strides. In addition, we will investigate multidimensional
quantum machine learning as a potential application of our proposed technique.
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