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Abstract

Background

There is considerable geographic heterogeneity in obesity prevalence across counties in

the United States. Machine learning algorithms accurately predict geographic variation in

obesity prevalence, but the models are often uninterpretable and viewed as a black-box.

Objective

The goal of this study is to extract knowledge from machine learning models for county-level

variation in obesity prevalence.

Methods

This study shows the application of explainable artificial intelligence methods to machine

learning models of cross-sectional obesity prevalence data collected from 3,142 counties in

the United States. County-level features from 7 broad categories: health outcomes, health

behaviors, clinical care, social and economic factors, physical environment, demographics,

and severe housing conditions. Explainable methods applied to random forest prediction

models include feature importance, accumulated local effects, global surrogate decision

tree, and local interpretable model-agnostic explanations.

Results

The results show that machine learning models explained 79% of the variance in obesity

prevalence, with physical inactivity, diabetes, and smoking prevalence being the most

important factors in predicting obesity prevalence.

Conclusions

Interpretable machine learning models of health behaviors and outcomes provide substan-

tial insight into obesity prevalence variation across counties in the United States.
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1. Introduction

Identifying the principal factors that impact health is an important theme in obesity research

[1–3]. Multiple health behaviors and environmental conditions contribute to the obesity crisis

[4]. There is also substantial geographic heterogeneity in the prevalence of obesity across the

United States [5–7]. Machine learning may be the most powerful approach to modeling varia-

tion in obesity prevalence across the United States, but machine learning models are often

opaque and difficult to interpret [8]. To open the black box of machine learning models, the

field of explainable artificial intelligence has emerged with the goal of extracting domain

knowledge about the outcomes being predicted [4, 9–12]. This paper shows an application of

explainable artificial intelligence methods to machine learning models of geographic variation

in obesity prevalence.

Understanding what machine learning models discover about obesity has the potential to

inform public health strategies that address the obesity crisis. Here, an explainable artificial

intelligence approach applied to the County Health Rankings data from 2022 helps to better

understand the most important factors contributing to the heterogeneity in county-level obe-

sity prevalence [13]. This paper employs four explainable artificial intelligence approaches: 1)

random forest estimates of feature importance. 2) Accumulated effects plots that visualize the

direction and nature of the discovered associations. 3) A surrogate decision tree trained to

mimic the predictions from the random forest model that offers a visual aid in interpreting

what the random forest model has learned. 4) Local interpretable model-agnostic explanations

offer explanations of obesity prevalence predictions for individual counties. These four

explainable artificial intelligence approaches have the potential to leverage the power of

machine learning models while extracting information about the important factors contribut-

ing to the obesity crisis.

2. Methods

2.1 Data sources

This paper follows the reporting guidelines for cross-sectional studies outlined by the Strength-

ening the Reporting of Observational Studies in Epidemiology [14, S2 File]. The analyses in

this paper are based on data from the 2022 County Health Rankings [13, 15]. The County

Health Rankings dataset is an aggregation of statistics relevant to health for 3,142 counties

across the United States. Analysis of publicly available and unidentifiable data does not require

approval from the institutional review board. S1 Table contains the sources of all analyzed var-

iables. County-level obesity prevalence based on a body mass index of� 30 is the predicted

outcome in all analyses. The County Health Rankings dataset calculates obesity prevalence

using self-reported height and weight from the Behavioral Risk Factor Surveillance System

[16]. The predictors used from the county health rankings data include 64 variables from 7

broad categories: health outcomes, health behaviors, clinical care, social and economic factors,

physical environment, demographics, and severe housing conditions.

2.2 Data pre-processing

R version 4.2.1 (2022-06-23) facilitated all analyses. S1 File contains the Rscript used for all

analyses. The analyses omit variables with over 10% missing data. For variable pairs with a

Spearman correlation > ±0.90 (e.g., premature death rate vs. age-adjusted premature death

rate), the analysis keeps one variable and omits the other. The analysis also omits values in the

County Health Rankings dataset marked as unreliable. The remaining data comprised 65 vari-

ables from 3,142 counties.
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Data analysis follows a stratified 2-fold cross-validation partitioning scheme for model

training and evaluation. The groupdata2 R package (version 2.0.2) divided the full dataset into

two partitions (1st partition: 1,570 counties, 2nd partition: 1,572 counties). The partitioning

scheme equally balances the two partitions according to the primary outcome (county-level

obesity prevalence) and the number of counties from each state.

To estimate missing values for each data partition separately, the multivariate imputation

by chained equations R package (M.I.C.E. version 3.14.7) performs 10 imputations with 100

iterations [17]. The final analysis uses the median imputed values. Trace lines of means and

standard deviations across iterations showed convergence for each variable. Prevalence of

adults with obesity, the primary outcome, was not used to impute any variable.

2.3 Statistical analysis

The iterative random forest R package (version 3.0.0) was used to build a random forest pre-

diction model of county-level obesity prevalence using a 2-fold cross-validation scheme [9].

The iterative random forest was used instead of the original random forest algorithm because

the iterative approach arrives at more stable estimates of feature importance and provides a

more accurate random forest model [9].

First, the modeling algorithm generates a forest of 1,000 decision trees separately for each

data partition. The algorithm generates each decision using a subset of 8 features (
p

64 fea-

tures, the default setting), selected at random from the entire set of 64 features. The algorithm

estimates the importance of each feature based on the variance explained in the outcome, aver-

aged across all the decision trees. The algorithm then generates a second prediction model

using the same process with one exception: each iteration weights the probability of selecting

each feature for a decision tree based on the importance of that feature in the first prediction

model. The algorithm iterates 100 times, using the importance from the previously run model,

and keeps the model with the best performance based on out-of-bag error. Model performance

is quantified using variance explained in the evaluation data (i.e., fold not used in training), as

well as the mean absolute difference between the predicted and actual prevalence.

2.4 Accumulated local effects

The random forest algorithm estimates the importance of features in predicting obesity preva-

lence but does not describe the nature of the direction of the relationship. Accumulated local

effects plots increase the transparency of what the machine learning model learned about the

relationship between individual features and obesity prevalence by showing how the predicted

obesity prevalence differs as the value of a feature increases [18]. Subsets of data within specific

ranges of feature values are the basis of estimating the accumulated effects. The R package iml
(version 0.11.1) generated the accumulated local effects plots.

2.5 Global surrogate decision tree for random forest model

A global surrogate is an interpretable model trained to simulate the predictions of a machine

learning model. The goal is to produce a simple model that provides a general description of

how a machine learning model makes predictions. Here, a decision tree is trained on the pre-

dictions of a random forest model using the R package rpart (version 4.1.16). The tree was

grown unrestricted (i.e., complexity = 0) and 10-fold cross-validation was performed to esti-

mate the error for different complexity parameters. To avoid overfitting, the tree was originally

pruned using the highest complexity parameter (i.e., 0.001) within 1 standard error of the com-

plexity parameter with the smallest error during cross-validation [19]. However, this resulted

in a tree with a depth of nine that was difficult to interpret. Thus, the final surrogate decision
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tree was pruned using a more conservative complexity parameter (0.01) to help produce an

easily interpreted model.

2.6 Local interpretable model-agnostic explanations offer explanations

Whereas the decision tree described above serves as a global surrogate model, the local inter-

pretable model-agnostic explanations approach serves as a local surrogate for individual pre-

dictions. The R package lime (version 0.5.3) implemented the local interpretable model-

agnostic explanations algorithm. The training for each local model uses the prediction model

that was not trained on the observation. Interrogation of the local model using the plot_fea-

tures() function identifies the model features that increase or decrease the predicted prevalence

for that county. The main results show the local models for two exemplar counties at lower

and higher ends of the obesity prevalence distribution, respectfully.

3. Results

Of the 3,142 counties in the analyses, the mean prevalence of adults with obesity was 35.7%

(standard deviation = 4.3%; min = 16.4%; max = 51.0%; see Fig 1a). Data partitions served as

input for two prediction models for county level obesity prevalence. Each model included 64

features that characterized counties in terms of health outcomes, health behaviors, clinical

care, social and economic factors, physical environment, demographics, and severe housing

conditions. Implementing a 2-fold cross-validation scheme, the data partition not used in

model training is used to evaluate performance. Both models showed similar predictive perfor-

mance, accounting for a median 79.75% of the variance in the evaluation data (Model1 =

79.77%, Model2 = 79.75%; see Fig 1b). The mean absolute difference between the average pre-

dicted prevalence across the two machine learning models and the actual prevalence was 1.4%,

with a narrow 95% confidence interval (-0.97%, 3.97%; see Fig 1c and 1d).

3.1 Feature importance

Fig 2 shows the 10 most important features, averaged across both prediction models. Feature

importance is based on the decrease in residual sum of squares when the decision trees

included each of the most important features. The most important feature in the models was

physical inactivity, followed by diabetes and adult smoking.

3.2 Accumulated local effects

Fig 3A shows a positive linear relationship between physical inactivity and obesity prevalence.

Fig 3B shows a similar positive linear relationship between diabetes and obesity prevalence,

but with a weaker relationship at lower levels of diabetes prevalence (0.05–0.075). Adult smok-

ing showed a weak positive relationship, with a sharp increase in obesity prevalence at 0.15

(see Fig 3C). There is a negative non-linear relationship between obesity prevalence and the

prevalence of uninsured adults, but only the lower end of uninsured adults being associated

with higher obesity prevalence (see Fig 3D). The remaining accumulated local effects were rel-

atively flat (see Fig 3E–3J).

3.3 Surrogate decision tree model

A surrogate model is an interpretable model that mimics a black-box model’s predictions.

Here, the interpretable model is a single decision tree trained on the random forest predictions

(see Fig 4). The decision tree predictions shared 75.7% of the variance in the random forest

predictions and had a mean absolute error of 1.5%. The decision tree predictions shared 65.1%
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of the variance with the actual obesity prevalence values and had a mean absolute error of

1.9%.

The decision tree used 4 of the available 64 features to place each county into one of 9 leaf

nodes. Each leaf node corresponded to a specific decision rule (see a complete list of the 9 deci-

sion rules in S2 Table). Three of the features included in the decision tree played a prominent

role: physical inactivity, diabetes, and smoking prevalence. The prevalence of physical

Fig 1. Maps of actual and predicted obesity prevalence across counties in the United States. A. Map of actual

obesity prevalence; B. Map of obesity prevalence predicted by the random forest models; C. Map of the difference

between obesity prevalence and predicted obesity prevalence; D. Scatter plot of predicted and actual obesity prevalence

fitted with a generalized additive model function.

https://doi.org/10.1371/journal.pone.0292341.g001
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inactivity dominated the surrogate decision tree, serving as both the root node and nodes on

lower branches. Diabetes prevalence has a prominent node on the top of the far right side of

the tree that decides the highest levels of obesity prevalence. Conversely, adult smoking preva-

lence has a prominent node on the top of the far left side of the tree that decides the lowest lev-

els of obesity prevalence. For example, the decision rule for the highest predicted obesity

prevalence is: physical inactivity prevalence > = 0.34 & diabetes prevalence > = 0.16. The deci-

sion rule for the lowest predicted obesity prevalence is: physical inactivity prevalence < 0.18 &

smoking prevalence < 0.15.

3.4 Local interpretable model-agnostic explanations

Local interpretable model-agnostic explanations offer a way to explain the predicted obesity

prevalence for an individual county. To illustrate local models at both high and low ends of the

obesity distribution, Fig 5 shows feature plots of the top ten features in the model’s prediction

for two locations: Dawson County, TX and Benton County, OR. S1 Fig includes plots for all

3,142 counties showing the features that increase or decrease the predicted obesity prevalence.

Dawson County, TX has an obesity prevalence of 0.42, which is at the 96th percentile for

obesity prevalence among counties in the United States. The local model predicted the obesity

prevalence in Dawson County to be 0.41, with high prevalence of physical inactivity and diabe-

tes being the most important features in predicting the high obesity prevalence. Conversely,

Benton County, OR has an obesity prevalence of 0.28, which is at the 5th percentile for obesity

prevalence among counties in the United States. The local model predicted the obesity preva-

lence in Benton County to be 0.27, with low prevalence of physical inactivity and diabetes

being the most important features in predicting the low obesity prevalence.

Fig 2. Ten most important features in predicting county-level obesity prevalence. Dots show the average decrease in the residual sum of

squares decreased when the decision trees included each of the most important features. Lines running through dots extend 2 standard

errors. Importance values are averages of the two prediction models.

https://doi.org/10.1371/journal.pone.0292341.g002
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4. Discussion

This paper shows an explainable artificial intelligence approach to creating an interpretable

machine learning model of county-level obesity prevalence. Using a cross-validation approach,

two random forest models learned to predict obesity prevalence, and both explained 79% of

the heterogeneity in county-level obesity prevalence. Physical inactivity explains most of the

heterogeneity in county-level obesity, but the model also highlights the importance of diabetes

and smoking.

Fig 3. Accumulated local effects (ALE) of 10 most important features in predicting county-level obesity

prevalence. These plots display the average effect across both prediction models. The y-axis shows how much the

model predictions change for subsets of observed values within small ranges of the feature.

https://doi.org/10.1371/journal.pone.0292341.g003
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Physical inactivity dominated the random forest models, as well as the global and local sur-

rogate models. The accumulated local effects plot and the example local feature plots suggest a

strong linear relationship, with higher levels of physical inactivity linked to higher levels of

obesity. While the data analyzed in this paper did not include metrics of energy consumption,

higher physical inactivity linked to obesity is consistent with the energy balance model [20,

21]. The analyzed data includes information on the food environment (i.e., food environment

index), yet none of these features predicted obesity prevalence. Overall, the data suggest

county-level efforts to increase the number of people engaging in monthly physical activities

or exercises may be essential to reducing obesity prevalence.

Diabetes played a prominent role in differentiating medium vs. high levels of obesity preva-

lence in the surrogate decision tree. The accumulated local effects plot showed a linear rela-

tionship, with a higher prevalence of diabetes linked to a higher prevalence of obesity. Each

diabetes node in the surrogate decision tree showed higher obesity estimates with higher dia-

betes prevalence. These findings are consistent with extensive research showing obesity causes

insulin resistance and can lead to diabetes [22, 23].

Adult smoking played a prominent role in differentiating low vs. medium levels of obesity

prevalence in the surrogate decision tree. The accumulated local effects plot showed a weak lin-

ear relationship, yet still showing higher prevalence of adult smoking linked to higher preva-

lence of obesity. The association between higher smoking prevalence and obesity is consistent

with evidence that heavy cigarette smoking is associated with higher visceral adiposity and a

greater risk of obesity compared to light smokers [24, 25].

The important features in this study differ from previous findings from regression and

machine learning models of obesity prevalence using an earlier release of the county health

rankings [8]. Aside from using data from a prior year, the authors of this previous study

excluded physical inactivity, diabetes, and smoking from their analyses, citing issues of endo-

geneity in their regression models. In doing so, the authors excluded the most important

Fig 4. Global surrogate decision tree. Decision tree trained on random forest predictions for obesity prevalence. The values in circles at the bottom

of the tree are the final predicted obesity prevalence for that branch.

https://doi.org/10.1371/journal.pone.0292341.g004
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predictors of obesity identified in our analyses, allowing socioeconomic and demographic fea-

tures to appear more important than they appear in this study.

Thus, the present findings extend earlier machine learning research on county-level obesity

prevalence by offering an interpretable machine learning model, not a black box [8]. To the

Fig 5. Feature plots from two local interpretable model-agnostic explanations. The top of each feature plot shows

the actual and local model estimated obesity prevalence. Explanation fit shows the fraction of variance in the local

region of the county feature values explained by the local model. The left side of the plot shows the 10 most important

features and whether the county was< or< = a threshold value for that feature. Red bars denote features that decrease

the predicted obesity prevalence, blue bars denote features that increase the predicted obesity prevalence.

https://doi.org/10.1371/journal.pone.0292341.g005
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best of the author’s knowledge, this paper is the first using explainable artificial intelligence to

build an interpretable machine learning model of county-level obesity prevalence. The iterative

random forest approach used in this paper explained 79% of the variance in obesity. The gradi-

ent boosting algorithm reported by Sheinker explained only 66%. Though, the lower model

accuracy by Sheinker is likely because of the important features omitted in their paper. Here,

the results show the power of machine learning models can produce interpretable results

through methods from explainable artificial intelligence.

4.1 Limitations

Many of the county-level estimates analyzed here are interpolations of self-reported data, sam-

pled from each county. For example, self-reported height and weight are used to estimate obe-

sity prevalence, which introduces error in the primary outcome of the analysis reported here.

Moreover, body mass index is an imperfect metric for obesity, compared to waist circumfer-

ence or skinfold measurements [26]. Yet, the World Health Organization and Centers for Dis-

ease Control consider body mass index a reasonable obesity proxy [27, 28].

The cross-sectional data reported here restricts causal claims between features of the model

and county-level obesity. This issue is most obvious for diabetes, as obesity is a known risk fac-

tor for diabetes, while diabetes is not a risk factor for obesity. Similarly, physical inactivity is a

known risk of obesity, yet obesity may reduce the probability of living an active lifestyle. Future

studies may show that decreasing physical inactivity prevalence also decreases the prevalence

of obesity and diabetes.

Finally, this study does not distinguish between type-1 and type-2 diabetes. Here, diabetes

prevalence is based on whether a person self-reports having been told by a doctor they have

diabetes. However, type-2 diabetes accounts for 90% to 95% of the diabetes diagnoses in adults,

making the findings reported here biased towards resembling a pure measure of type-2 diabe-

tes prevalence [29].

5. Conclusion

Explainable artificial intelligence approaches offer the means to increase transparency and

interpretability of black-box models, thereby enhancing trustworthiness and ethical oversight of

machine learning models in the fields of obesity and biomedicine. By uncovering what these

models learn from data, explainable artificial intelligence helps identify crucial factors contribut-

ing to obesity, such as physical inactivity, thereby deepening our understanding of the disease.

Furthermore, the transparency provided by explainable artificial intelligence facilitates the cus-

tomization of treatment plans through local interpretable model-agnostic explanations, enabling

the identification of specific characteristics and needs of individual counties or patients. Ulti-

mately, explainable artificial intelligence empowers researchers and clinicians to tackle the com-

plexities of obesity, resulting in more effective prevention and treatment strategies.
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