
Robust and Efficient Structure-Based Radar Receive Processing

By

Christian Curtis Jones

Submitted to the graduate degree program in Electrical Engineering and Computer Science and
the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Committee members

Dr. Shannon Blunt, Chairperson

Dr. Patrick McCormick, Co-chair

Dr. Christopher Allen

Dr. James Stiles

Dr. Suzanne Shontz

Dr. Zsolt Talata

Date defended: December 08, 2023

DISTRIBUTION STATEMENT A: Approved for public release, distribution is unlimited.



The Dissertation Committee for Christian Curtis Jones certifies
that this is the approved version of the following dissertation :

Robust and Efficient Structure-Based Radar Receive Processing

Dr. Shannon Blunt, Chairperson

Dr. Patrick McCormick, Co-chair

Date approved: December 08, 2023

ii



Abstract

Legacy radar systems largely rely on repeated emission of a linear frequency

modulated (LFM) or chirp waveform to ascertain scattering information from an en-

vironment. The prevalence of these chirp waveforms largely stems from their sim-

plicity to generate/process and robustness to physical hardware distortion. However,

this traditional design philosophy may lack the flexibility and dimensionality needed

to address the dynamic “complexification” of the modern radio frequency (RF) envi-

ronment or achieve current operational requirements where unprecedented degrees of

sensitivity, maneuverability, and adaptability are necessary.

Over the last couple of decades analog-to-digital and digital-to-analog technolo-

gies have advanced exponentially, resulting in tremendous design degrees of freedom

and arbitrary waveform generation (AWG) capabilities that enable sophisticated de-

sign of emissions to better suit operational requirements. However, radar transmitters

(TX) typically require high-power amplification (HPA) to contend with two-way prop-

agation loss. Thus, transmitter-amenable waveforms are effectively constrained to be

both spectrally contained and constant amplitude, resulting in a non-convex NP-hard

design problem. While isolating the global optimal can be intractable for even modest

time-bandwidth products (TB), locally optimal TX-amenable solutions that are “good

enough” are often readily available. However, traditional matched filter (MF) based

estimation may no longer satisfy operational requirements with sub-optimal emissions.

Using knowledge of the radar TX-to-receiver (TX-RX) chain, a discrete lin-

ear model can be formed to express the relationship between observed measurements

and the complex scattering of the environment. This structured representation enables
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more sophisticated least-square (LS) and adaptive estimation techniques that can de-

signed to better satisfy operational requirements, improve estimate fidelity, and extend

dynamic range. However, receive dimensionality can be enormous as the aggregate

degrees of freedom (DoF) for a coherent processing interval (CPI) is multiplicative

with respect to bandwidth, pulse duration, and number of pulses. Brute force imple-

mentation of model-based estimation techniques that leverage these DoFs may have

unwieldy computational burden on even the most cutting-edge signal processing hard-

ware. Additionally, a discrete linear representation is fundamentally an approximation

of a dynamic and continuous physical reality where model errors may induce bias, cre-

ate false detections, or restrict effective dynamic range. As such, these structure-based

approaches must be both computationally efficient and robust to reality.

Here discrete receive models and algorithms for pulsed-radar range-Doppler

estimation are introduced. Modifications and alternative solutions are then proposed

to improve estimate fidelity, reduce computational complexity, and enhance practical

robustness.
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Chapter 1

Introduction

Traditional radar operation is well established. Most legacy systems actively illuminate a scene

with a repeated electromagnetic waveform, usually a linear frequency modulated (LFM) chirp,

and collect information by measuring the scattered echoes [2–4]. For a pulsed radar using a

repeated waveform, receive measurements are often separated into two different dimensions, a

“fast-time” dimension corresponding to measurements within a pulse repetition interval (PRI) and

a “slow-time” dimension corresponding to the change from pulse-to-pulse. These fast-time and

slow-time components are aggregated into a coherent processing interval (CPI) and, depending on

application, subsequent processing is performed to estimate scatterer parameters such as range,

velocity, polarimetric reflectivity [5], refractivity [6], changes since last collect [7], etc. See Figure

1.1 for a conceptual view of this work’s primary point of emphasis, a moving target indication

(MTI) scenario in which the radar seeks to differentiate moving objects from stationary clutter.

The prevalence of the repeated chirp framework primary stems from the LFM’s simplicity to gen-

erate (sweeping the frequency of a tone) and process (convolution with a repeated filter), though

it has additional benefits such as Doppler robustness and exceptional spectral containment. How-

ever, this transmission scheme may lack the flexibility needed to operate within the dynamic and

increasingly congested modern RF environment [8–10].

Extensions beyond use of the LFM can be placed under the broad category of waveform di-

versity [11–14], which has recently been enabled by advancements in processing power and so-

phisticated analog-to-digital/digital-to-analog hardware that has rapidly transformed cellular com-

munication over the last few decades. Modern hardware facilitates arbitrary waveform generation

(AWG) with tremendous design degrees of freedom. Coupled with advanced digital receive pro-

1



Figure 1.1: Conceptual view of a MTI radar scenario

cessing, system designs can be tailored to better suit operational requirements, e.g. joint radar-

communications [15–22], spectral cohabitation [23–35], dual polarization [36], low range side-

lobes [37–42], image formation [43], etc., [1, 44]. That said, transitioning these new capabilities

to operational systems remains an ongoing effort as theoretically optimal solutions often are not

robust, lack real time plausibility, or ignore physical effects of real hardware.

AWGs offers a high degree of flexibility in design, which for MTI applications often seeks to

reduce range sidelobes after pulse compression. However, fully unconstrained design faces chal-

lenges when implemented on physical hardware. Radar systems often require fast reaction times

and inherently contend with a two-way propagation loss from transmission and scattering of spher-

ically spreading electromagnetic waves [2, 5]. Thus, operation with these shorter time scales and

additional loss (relative to communication systems) necessitates the use of high-power amplifiers

(HPAs) that operate at or near saturation to maintain power efficiency [2]. This requirement effec-

tively restricts the waveform design to a constant modulus (also referred to amplitude or envelope)

solution space.

On paper, segmenting a constant envelope waveform into discrete chips and designing the

phase, denoted phase coding [45], fits this criterion. These phase values can then be arbitrarily

selected via an optimization procedure to reduce pulse compression ambiguities [46], mitigate in-

terference [47], maximize information [48, 49], etc. Unfortunately, most “optimal” phase coding
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Figure 1.2: Conceptual view of a phase code transition

neglects the transition period between chips, which is not instantaneous in practice [50]. Thus, an

unrestricted transition period will induce spectral spreading or amplitude modulation as the shortest

path is not restricted to the unit circle (see Figure 1.2). This generally degrades performance of op-

timal phase coding in practice as they lack robustness towards hardware distortion, Doppler shifts,

and range straddling. To improve robustness, it is often necessary to enforce “smooth” transition

regions by restricting how far adjacent chips can deviate. From the principle of stationary phase

[51], this is (approximately) equivalent to enforcing “spectral containment” outside the waveform’s

3-dB bandwidth. However, these constrained solutions often deviate from the theoretically optimal

phase coded radar waveforms.

The combination of the constant modulus and spectral containment requirements has led to ex-

ploration of higher-order design where the waveform’s instantaneous frequency [50, 52] is tuned to

produce arbitrary frequency modulated (FM) waveforms. These FM waveforms have been applied

to a variety of applications [1] and their robustness towards hardware distortion has been experi-

mentally verified. Figure 1.3 includes a conceptual illustration of the instantaneous frequency for

the classical LFM compared with a phase coded and a FM waveform with random instantaneous

frequency. The inherent restriction of spectral containment and constant modulus results in an

extremely non-convex optimization surface with a plethora of local minima that do not necessary
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Figure 1.3: Conceptual view of the instantaneous frequency of random FM waveform compared
to an LFM and phase code; Figure modified from [1]

perform exceptionally on a per-pulse basis. Exhaustive searches for the globally optimal solu-

tion are exceedingly costly, often non-deterministic polynomial-time (NP) hard [53], and rapidly

becomes implausible for even a modest number of design variables.

While not immediately apparent, having many local minima can be advantageous. The sheer

number of different locally optimal solutions effectively produces entire classes of physically re-

alizable Pseudo–Random FM (RFM) waveforms that can be tuned to address a specific design.

Additionally, transmitting multiple unique locally optimal waveforms on a pulse-to-pulse basis

provides new information about the scene that can be aggregated by performing subsequent slow-

time processing through a coherent integration/combination effect. In some circumstances, this

aggregate response may even outperform the repeated transmission of the single globally optimal

solution. However, this pulse-to-pulse variation produces a new problem. The variable emission

results in a coupling between fast-time (range) and slow-time (Doppler) and induces a phenom-

ena known as range-sidelobe modulation (RSM) [1, 17]. This RSM induces a joint dimensional

"sidelobe smearing" in range-Doppler that is unaffected by classic sidelobe mitigation techniques

(e.g., Doppler tapering or windowing). With standard matched-filter processing, RSM levels are

typically on the order of per-pulse autocorrelation sidelobes divided by the number of unique wave-

forms. From the central limit theorem, it can be deduced that the per-pulse sidelobe level of RFM

waveforms in expectation are roughly proportional to 1
T B where TB is the time-bandwidth prod-

uct. Optimization can theoretically lower this further [37, 46], but most local minima only reduce

sidelobe variance and solutions are still bounded by TB.
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Alternatively, sophisticated receive processing architectures that leverage the expected struc-

ture of the TX-to-RX channel can be employed to reduce pulse-to-pulse sidelobes and thus lower

RSM. In particular, structure-based least squares (LS) mismatched filters (MMF) [54–56] can be

designed to yield lower sidelobes and employed in lieu of the matched-filter while adaptive tech-

niques such as adaptive pulse compression (APC) [57, 58] construct unique filters for every range

bin to that place nulls in the directions of strong scatters. These frameworks can even extend

to a joint fast-time slow-time representation where the multiplicative degrees of freedom further

enhance RSM suppression capabilities [59–61].

However, all these approaches fundamentally rely on a discretized approximation of a contin-

uous reality and model errors can induce bias, create false detections, or restrict effective dynamic

range. As such, these structure-based approaches must be compensated to account for the limi-

tations of physical reality. Additionally, matched-filter based processing only requires knowledge

of the transmitted waveforms and can be implemented efficiently using the fast-Fourier transform

(FFT) in inverse-FFT (IFFT) with ∼O(N log(N)) complexity, while LS and adaptive approaches

require solving systems of linear equations to effectively utilize the available DoF which has a

brute force complexity of O(N3)1. As such, physically meaningful transition of these structure-

based approaches must account for both the increased computational burden and discretization

based model errors.

1Here N is an arbitrary value corresponding to the specific dimensionality of the problem. As such, these complex-
ity orders are provided to illustrate the approximate computational cost as the dimensionality increases.
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Chapter 2

Background

The following sections introduce basic radar range estimation theory and its discretized linear

representation. Using this framework, more sophisticated range estimation techniques are then

examined and their pros/cons discussed. Following the sections on range estimation, the receive

models are extended to incorporate Doppler shifts from moving scatterers and range-Doppler esti-

mation techniques are introduced. The chapter is then wrapped up by examining particular matrix

structures and linear system solvers to lay the groundwork for subsequent efficient implementa-

tions.

2.1 Radar Range Processing Overview

Real radar systems either measure and/or emit real continuous electromagnetic waves in order to

ascertain information about an environment. While some legacy systems do operate entirely in the

analog domain, the advent of digital signal processing has enabled a plethora of advanced TX/RX

architectures and algorithms which offer enhanced capabilities not possible with analog systems.

However, approximating the continuous reality as a discrete model inherently produces error and

aliasing as fundamentally no time-limited signal can be truly band-limited and no band-limited

system can be truly time-limited [62]. Additionally, the TX/RX architectures of a radar system are

not linear as RF amplification will induce nonlinear harmonics [63, 64], while analog-to-digital

(or digital-to-analog) conversion rely on imperfectly-synchronized reference clocks and requires

quantization (potentially with single precision or less), all of which produce non-linear error and

bias. That being said, careful design and calibration coupled with high-fidelity hardware can help
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mitigate higher order effects, and by performing multiple "looks" a coherent signal gain can be

achieved while suppressing non-coherent errors. Thus, approximate discrete linear receive models

can be posed if the mapping from continuous-to-discrete is represented with enough fidelity that

inherent uncertainties and errors do not significantly degrade dynamic range.

The remainder of this section begins by outlining the mapping of continuous transmission to

discrete receive measurements for a pulsed monostatic radar. Leveraging the discretized fast-time

receive model, subsequent LS and adaptive range estimation techniques are then introduced to

reduce range sidelobes. The subsequent section will then introduce the pulse-to-pulse slow-time

model and discuss how fast-time range estimates can be used to perform velocity estimation.

2.1.1 Pulse Echo Model

Conceptually, an active monostatic radar system illuminates a scene with electromagnetic wave-

form and gathers range information by measuring the time delays of the echoes. For a constant

modulus transmit pulse

s(t) =


Ae j2π fct 0≤ t < Tp

0 else
(2.1)

where fc is the center frequency, A is the waveform amplitude, and Tp is the pulse duration, the

receive measurements can be modeled as the convolution of s(t) with the delay dependent complex

scattering of the TX-to-RX propagation path x(t) as

y(t) = (s(t)(∗C)x(t))+n(t) (2.2)

where (∗C) denotes the continuous convolution operation and n(t) is additive system noise. The

measured time delay can then be turned into an approximate baseline range to the scatterer as

R =
ct
2
=

RT X +RRX

2
(2.3)
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Figure 2.1: Conceptual Transmission and Receive Measurements for a single scatterer

where RT X and RRX are the ranges from TX-to-scatter and scatter-to-RX respectively. See Figure

2.1 for a conceptual visualization for monostatic (co-located TX and RX) radar ranging.

As the propagation path is “two-way” (i.e. TX-to-scatterer-to-RX) the effective range resolu-

tion is

∆R≈
cTp

2
(2.4)

where c≈ 299,792,458m/s is the speed of propagation (for RF) and determines when two closely

spaced responses can be separated. The expected received power (PRX ) for a scatterer can be

approximated using the objects “radar cross section” σ as

PRX =
PT X GT X GRX σλ 2

c

(4π)3LRX R2
T X R2

RX
(2.5)

where PT X = |A|2 is the instantaneous transmit power, GT X and GRX are the TX and RX antenna

gains, λc =
c
fc

is the RF wavelength, and LRX is the receiver loss [2], though in reality σ is not con-

stant and PRX will fluctuate as a function of aspect angle, frequency, velocity, etc. For a monostatic

configuration RT X = RRX = R simplifying (2.5) to

PRX =
PT X Gσλ 2

c
(4π)3LRX R4 (2.6)

where clearly the received power rapidly decreases with range due to the inverse relationship with

the R4 term. On receive, detection with a small chance of a false alarm requires a PRX much greater

8



10-10 10-8 10-6 10-4 10-2 100

Probability of False Alarm

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty
 o

f 
D

e
te

c
ti
o

n
0 db SNR

10 db SNR

13 db SNR

15 db SNR

Figure 2.2: Theoretical Receiver Operating Characteristics for Scatterer in White Gaussian Noise

than the receive noise power, which for white-Gaussian system noise is defined as

PN = kT0BNFN (2.7)

where k = 1.38×10−23 W
HzK is Boltzmann’s constant, T0 = 290 K is the reference temperature of

the system noise figure FN , and BN is the effective noise bandwidth. Probability of detection can

then be characterized by the signal-to-noise ratio (SNR)

PRX

PN
=

PT X Gσλ 2
c

(4π)3kT0BNFNLRX R4 (2.8)

where a simple SNR threshold can be used as a detector where the probability of detection vs false-

alarm for a particular threshold can be computed using the noise and scatterers’ probability density

functions (pdf) [65, 66]. Figure 2.2 provides a illustration of these receive operation characteristics

for an idealized example with a constant scatterer in white Gaussian noise (WGN) for different

threshold values. Thus without signal modulation, achieving sufficient SNR to detect and separate

close scatters at long range requires both a high instantaneous transmit power and an extremely

short pulse.
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2.1.2 Pulse Compression

As designing a system that can achieve sufficient energy on target with enough range resolution to

resolve close scatterers can be extremely expensive and runs into practical system fidelity limits,

modern radars typically take an alternative approach. Rather than a short high power pulse, the

transmit signal is instead modulated as

s(t) =


Ae j2π fct+ jΘ(t) 0≤ t < Tp

0 else
(2.9)

where Θ(t) is an instantaneous phase-modulation corresponding to the baseband waveform

sBB(t) =


Ae jΘ(t) 0≤ t < Tp

0 else
(2.10)

which has a 3dB bandwidth of B. This bandwidth enables receive filtering operations that "com-

presses" the waveform response, aptly denoted pulse-compression. Traditionally, pulse-compression

is performed by correlating the receive measurements with the complex conjugate of the transmit

waveform via the filtering operation

x̂(t) =
(

sβ ∗C (t)(∗C)y(t)
)

(2.11)

where β ∗C denotes time-reversal and complex-conjugation. This specific filter (time-reversed complex-

conjugate replica) is denoted the matched filter (MF) as it provides the maximum SNR estimate

for white-Gaussian noise. MFing is one of the most common radar receive processing techniques

as it is inexpensive to implement, provides an SNR gain proportional to Tp (for constant modulus

waveforms), has a range resolution (or mainlobe width) inversely proportional to the bandwidth as

∆R≈ c
2B

, (2.12)
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Figure 2.3: Open-Air Measurement pre and post pulse-compression

and is fairly robust to model and system mismatch. See Figure 2.3 for an example of open-air

experimental measurements pre and post pulse-compression for a 4.5µs LFM pulse with a band-

width of 33.3MHz (range resolution of 4.5 meters). An analogous technique which performs range

compression in the frequency domain (as opposed to compression in the time domain) can be per-

formed via stretch processing [67] but has traditionally restricted the emissions to LFM chirps,

though there have been recent extensions beyond this framework [68, 69]. For brevity, here the

scope will be restricted to pulsed-monostatic operation.

Pulse-compression is not without flaw as the filtering process produces a sidelobe structure

in range proportional to the waveform’s autocorrelation (inverse Fourier transform of the power-

spectral-density). These range-sidelobes can in turn mask small scatterers in the vicinity of large

scatterers, effectively limiting dynamic range locally and biasing detentions via adjacent scatterer

correlation/interference. There are a plethora of techniques aimed at mitigating range-sidelobes,

largely focused on using alternative pulse compression filters such as a tapered (sometimes called

windowed) version of the transmit waveform or a mismatched filter. However, deviation from the

matched filter will always produce some degree of mismatch loss (MML), i.e. less SNR, and may

degrade the effective range-resolution through a broadening of the filter response mainlobe. See

Figure 2.4 for an example of the filter response for a LFM waveform when using the matched filter
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Figure 2.4: Matched Filter and Windowed Matched Filter responses

vs a tapered filter as well as Figure 2.5 for corresponding open-air measurements.

2.1.3 Discretized Receive Model

To offer a greater degree of design flexibility and enable advanced processing, the TX waveform

and RX measurements are often represented as discrete variables. From the Nyquist-Shannon

sampling theorem a bandlimited signal can be perfectly reconstructed without aliasing when the

complex sample rate (both in-phase and quadrature sampling) is equal to the bandwidth [62]. How-

ever, the time-frequency Fourier relationships tell us that any “time-limited" signal will inherently

have an infinite bandwidth while ”band-limited" signals have infinite duration. In practice, the

sample rate is often selected relative to the 3dB bandwidth of the radar waveform and a combi-

nation of oversampling and anti-alias filtering are used to mitigate this model mismatch, though

some aliasing will always be present.

For complex baseband waveform s(t) with pulse duration Tp and 3dB bandwidth B, a D×1

collection of contiguous discrete receive measurements can be oriented in a “snapshot” notation
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Figure 2.5: Open-Air Experimental Measurement for the Matched Filter and Windowed Matched
Filter

and expressed as

y(ℓ) =
[

y
(

1
fs
(ℓ−1− D−N

2 )
)

y
(

1
fs
(ℓ− D−N

2 )
)
· · · y

(
1
fs
(ℓ+D− D−N

2 −2)
)]T

=

[
yℓ−1−D−N

2
yℓ−D−N

2
· · · yℓ+D−D−N

2 −2

]T

=
w 0.5

−0.5
S(γ)x(ℓ,γ)dγ +n(ℓ)

(2.13)

where ℓ is a discrete index corresponding to time delay ℓ−1
fs

with fs being the RX sample rate. Here

x(ℓ,γ) is the (D+N−1)×1 vector of complex scattering coefficients

x(ℓ,γ) =
[

x
(

1
fs
(ℓ− D

2 + γ)
)
· · · x

(
1
fs
(ℓ+ D

2 +N−3+ γ)
)]T

=

[
xℓ−D

2
(γ) · · · xℓ+D

2 +N−3(γ)

]T (2.14)
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for sample delay ℓ and sub-sample delay γ ∈ (−0.5,0.5] corresponding to a time delay of γ

fs
,

S(γ) =



sN (γ) · · · s1 (γ) 0 · · · 0

0 sN (γ) s1 (γ)
. . . ...

... . . . . . . . . . 0

0 · · · 0 sN (γ) · · · s1 (γ)


(2.15)

is a D× (D+N−1) Toeplitz convolution matrix corresponding to discrete samples of the contin-

uous waveform

s(γ) =
[

s(0+γ

fs
) s(1+γ

fs
) · · · s(N−1+γ

fs
)

]T

=

[
s1 (γ) s2 (γ) · · · sN (γ)

]T

(2.16)

where N = Tp fs is the waveform length in samples.

To avoid redundancy and complications with snapshot centering, the number of samples in a

snapshot is typically selected to satisfy

D≥ N,

and D should have the same parity as N (i.e., both odd or even) with D = N corresponding to

the “standard” choice when performing MF processing. Note, (2.13) can be composed of delays

that correspond to negative time or times greater than the pulse-repetition interval which after

discretizing corresponds to

L =
TPRI

fs

discrete samples. When receive contributions from pulse-eclipsing (e.g., part of the receive mea-

surement is cut-off due to RX saturation or a front-end TX-RX switch) or multiple-time-around-

returns (e.g., scattering from previous transmit intervals arriving in current receive interval) are

negligible, the delay indices used for range processing are bounded by

1≤ ℓ≤ L
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and measurement indices outside the range can be treated as or padded with zeros, i.e.,

yℓ = 0

for ℓ≤ 0, ℓ≥ L+1 and

xℓ(γ) = 0

ℓ+ γ ≤ 0, ℓ+ γ−N−2≥ L+1. For certain TX-RX configurations, such as low TX PRF/duty cy-

cle or a well isolated bistatic orientation, these contributions can be below the system noise floor.

For the general case, pulse-eclipsing and multiple-time-around-returns are often non-negligible,

however, compensation to RX model is relatively straightforward and can be incorporated via an

element-wise switch-loss weighting or additional summations for the extended interval respec-

tively. For brevity, such generalizations have been excluded from this work.

The sub-sample shift term γ in (2.13) retains a continuous structure and a range-straddling

mismatch will arise if the receive model is truly discrete (i.e., discrete variables with no depen-

dencies on γ). However, by incorporating a frequency oversampling factor κ > 1 relative to the

3dB bandwidth (i.e. fs = κB) and an anti-aliasing filter, the relative change in waveform structure

across these sub-sample shifts can be largely mitigated. For instances, Figure 2.6 illustrate the

loss (left) and phase shift (right) respectively for a straddled LFM waveform with different spec-

tral oversampling factors κ . That being said, increasing κ directly corresponds to an increased

computational overhead. It is worth noting that the LFM has near idealized spectral containment

characteristics and incorporation of an anti-aliasing filter will induce little distortion, while more

general FM waveforms may necessitate a higher degree of oversampling.

As the straddle loss

Γ(γ) =

√∣∣∣∣s(0)Hs(γ)
s(0)Hs(0)

∣∣∣∣2
and phase shift

φ (γ)∠s(0)Hs(γ)
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Figure 2.6: Straddle Loss (left) and Phase (right) for LFM Chirp

as a function of γ are relatively small for modest oversampling factors, the approximation

s(γ)≈ Γ(γ)e jφ(γ)s(0) = Γ(γ)e jφ(γ)s (2.17)

is typically incorporated so that (2.13) can be expressed as

y(ℓ) = Sx(ℓ)+n(ℓ) (2.18)

where

S =



sN · · · s1 0 · · · 0

0 sN s1
. . . ...

... . . . . . . . . . 0

0 · · · 0 sN · · · s1


(2.19)

is the D× (D+N−1) convolution matrix for the unstraddled discrete waveform s and

x(ℓ) =
w 0.5

−0.5
Γ(γ)e jφ(γ)x(ℓ,γ)dγ (2.20)

is the integrated response of the continuous scattering coefficients across a range-bin. This approx-

imation falls into a broad class of grid-based estimation approaches [70] and is often sufficient for

spectrally-contained FM waveforms or selected coded waveforms with spectral oversampling, but
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may require additional compensation to retain a high dynamic range for near critically sampled

(κ ≈ 1) receive architectures.

Rather than the D× 1 snapshot representation in (2.13), it can be convenient to organize the

receive measurements into a “full” representation in which all L non-negligible receive samples

within a PRI (TPRI =
L
fs

) are concatenated into the L×1 receive vector

u =

[
y1 · · · yL

]T

= Vx+n
(2.21)

where

V =



s1 0 · · · 0
... . . . . . . ...

sN
. . . 0

0 . . . s1

... . . . . . . ...

0 · · · 0 sN


(2.22)

is now a L× (L−N +1) convolution matrix corresponding to a (L−N +1)× 1 vector of non-

eclipsed complex scatterers x. Note, here multiple-time-around-returns and pulse-eclipsing effects

are again absent from the RX representation and the components previously set to zero in (2.18)

are now excised entirely, yielding a slightly different convolution matrix form compared to (2.19).

Maximum SNR estimation for the discretized scattering coefficients can then be acquired using

the discrete matched filter

w =
v

sHs
(2.23)

where v is the ceil{D+N−1
2 }th column of (2.19) and is formed via symmetric zero-padded the

discretized waveform to yield the D×1 vector

v =

[
0T sT 0T

]T

(2.24)
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where the 0 components are D−N
2 ×1 vectors of zero and a D = N corresponds to v = s. The MF

(or any arbitrary D×1filter) can then be applied as

x̂(ℓ) = wHy(ℓ) (2.25)

to estimate the complex scattering at each delay index. Matched filter estimation can likewise be

performed for full PRI representation of (2.21) as

x̂ =
1

sHs
VHu. (2.26)

For a single filter applied to estimate all range, this process is equivalent to the discrete convolution

between the receive measurements and the time-reversed complex-conjugate of the filter, i.e.,

x̂ = u(∗D)wβ ∗d (2.27)

where here (∗D) and β ∗d act as the discrete convolution and flip-complex-conjugate operators re-

spectively.

2.2 Least Squares Mismatched Filtering Overview

While MF range processing provides theoretically maximal SNR (assuming the model is ideal and

the noise is white), correlation with adjacent bins will produce range-sidelobes proportional to the

waveform’s autocorrelation. These sidelobes may then obfuscate weak signatures near high pow-

ered scatterers, or appear as false detections. Furthermore, the MF assumes all noise is white and

may amplify additive interference present in the environment (such as a neighboring communica-

tion system), further degrading detection. Alternatively, arbitrary mismatched filters (MMF) can be

designed to produce a particular response that better suits to the desired application [54, 55, 71, 72].

These MMFs will always come with a degree of SNR loss and an increased computational burden

relative to the MF, but the benefits can greatly outweigh the cost if properly designed.
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Within the context of the discrete snapshot model of (2.18) and filter application of (2.25), any

D×1 filter w will have a (D+N−1)×1 response r in range corresponding to

rT = wHS. (2.28)

Thus, as the choice of w is arbitrary, it can be directly designed to yield a filter response with

desirable properties. However, the filter length (D) is strictly less than the extent of the response

vector (D+N−1), resulting in an overdetermined problem. Since the filter length can be increased

arbitrarily, filter-design may asymptotically approach a critically determined case, though longer

filters will inherently lead to a extended range response and typically have more computational

overhead (larger system of equations and more storage requirements).

MMF design typically falls into two broad categories, template-based approaches which seek

to match r to a particular structure, and sidelobe-minimization approaches which simply attempt

to minimize components of r outside of the near-zero delay mainlobe elements. Both philosophies

have functional merit and the choice of approach is often application dependent (e.g., a template

approach may provide improved performance when the transmit waveforms are agile while a re-

peated waveform may benefit more from a sidelobe-minimization approach). In the remainder of

this section, select methods to perform MMF design are introduced, and theoretical efficacy with

respect to the receive model are discussed.

2.2.1 Template-Based Least Squares MMFs

The original LS MMF approach was posed for phase-coded radar waveforms in [54] and defined

an objective function for a D×1 filter w that minimizes range sidelobes as

∥r∗− e∥2
2 =

∥∥SHw− e
∥∥2

2 (2.29)
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where S is defined in (2.19) as the a (D+N− 1)×D Toeplitz convolution matrix for the N× 1

transmit waveform and e =

[
0 · · · 0 1 0 · · · 0

]T

is a (D+N − 1)× 1 elementary vector

with a 1 at the ℓth element which acts as the desired filter response (an impulse).

The filter that minimizes (2.29) can be equivalently solved via a standard quadratic program

(QP)

min
w∗

wHTw−2Re
{

wHb
}

(2.30)

where T = SSH is positive-semi-definite (PSD) Toeplitz matrix and

b = Se =
[
0T , sT , 0T ]T = v.

The optimal solution to (2.30) has the well known form

w = T−1b =
(
SSH)−1 Se (2.31)

when T is positive-definite (PD), alternatively the pseudo-inverse

w =
(
SH)† e (2.32)

can be performed when it is PSD.

This formulation was originally designed for critically sampled phase codes, which often face

practical limitations as real hardware necessitates some degree of oversampling relative to the

waveform’s 3dB bandwidth B to minimize distortion induced by anti-alias filtering and avoid am-

plifier nonlinearities from abrupt phase jumps. This general case with complex sample rate fs = κB

(where κ > 1) does not explicitly change the formulation of (2.29), however, the desired impulse-

response e inherently requires full bandwidth utilization. As such, (2.31) naturally trends the MMF

to an inverted spectral shape of s which can induce significant MML since it is the diametric oppo-

site of the MF. Additionally, the resulting waveform-filter response is extremely sensitive to range

straddling as it effectively amplifies the high frequency components that vary the most as a function
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of sub-sample shift γ (a time-shift corresponds to a multiplication with a sinusoid in the frequency

domain).

To illustrate this effect, a LFM waveform with a pulse duration of 2µs and bandwidth of

33.3MHz was generated at a sample rate of 10GHz. A FIR anti-aliasing filter was then applied

followed by decimation to a yield simulated loopback configuration with spectral oversampling

factors of κ = 1.5 and κ = 6. The matched filter was then generated with the γ = 0 loopback

waveform and applied to generate the filter responses shown in Figure 2.7 with κ = 1.5 and κ = 6

corresponding to the left and right plots respectively. Here the black ‘x’s correspond to the “on-

grid” response (γ = 0) while the blue trace includes the continuum of off-grid shifts to better

illustrate the filter performance in practice (range-straddling is unavoidable and will always be

present). The respective MF power spectral density (PS) is likewise provided in 2.8 where the

enforced spectral containment of the bandpass filter is visible (high frequency components go to

zero). Next, Akroyd’s LS MMF was generated using the unstraddled waveforms (γ = 0) with a

filter length of D = 4N. The resulting solution was then normalization as

wnorm =
1√

wHw
√

sHs
w (2.33)

such that the resulting filter response will have a peak corresponding to the filter MML. Note, this

filter normalization will always be used for the LS MMF approaches unless otherwise stated. The

filter responses and filter PS for Akroyd’s LS MMFs are then shown in Figures 2.9 and 2.10 re-

spectively where the inverted spectral shape causes upwards of 45dB MML. Additionally, while

the on grid-response of Akroyd’s approach provided relatively low sidelobes for the on-grid sam-

ples, the off-grid continuum induces a sinc-like ringing and high sidelobes due to the significant

contribution of the high-frequency components of the filter PS.

To mitigate this significant MML and ensure invertibility of T, it is common practice to incor-

porate some form of filter regularization such as

σ
2∥w∥2

2 = wH (
σ

2I
)

w
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Figure 2.7: Simulated Loopback MF Response for LFM waveform with κ = 1.5 (left) and κ = 6
(right)
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Figure 2.8: Simulated Loopback MF PS for LFM waveform with κ = 1.5 (left) and κ = 6 (right)
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Figure 2.9: Simulated Loopback Akroyd’s LS MMF Response for LFM waveform with κ = 1.5
(left) and κ = 6 (right)
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Figure 2.10: Simulated Loopback Akroyd’s LS MMF PS for LFM waveform with κ = 1.5 (left)
and κ = 6 (right)

(see [56] for alternative regularizers) to (2.30) yielding

min
w∗

wH (T+σ
2I
)

w−2Re
{

wHb
}

(2.34)

where
(
T+σ2I

)
=
(
SSH +σ2I

)
is guaranteed to be PD and thus invertible when σ2 > 0 (though

it is not necessarily well conditioned or numerically stable). This form of regularization weighting

directly controls the filter noise gain as σ2 → ∞ will asymptotically trend the MMF towards a

scaled MF since for a large σ2

T+σ
2I≈ σ

2I;

thus, (
T+σ

2I
)−1 Se≈ 1

σ2 Se =
1

σ2 v

where v is the zero-padded waveform from (2.24).

While regularization does help with numeric stability, heuristic tuning of σ2 to yield a desired

MML can be a computational cumbersome. Additionally, setting the desired response to an im-

pulse often results in either poor sidelobe suppression or large MML when κ > 1 as degrees of

freedom are expended in an attempt to produce a super-resolved response relative to the nominal

resolution. To avoid super-resolution induced MML, [73] proposed replacing the elementary vec-
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tor in (2.29) with an alternative desired response p that has lower (nonzero) range-sidelobes than

the MF but retains the nominal resolution (same mainlobe width or 3dB bandwidth). Therefore,

the objective function from (2.29) can be modified as

∥∥SHw−p
∥∥2

2. (2.35)

The corresponding MMF for an arbitrary (D+N−1)× 1 desired response vector p can be

determined using the same QP form as (2.34) where now b = Sp. While regularization may still

be necessary to ensure invertibility, the resulting MMF can often achieve lower sidelobes for less

MML when p is appropriately selected. However, as the desired response is no longer an impulse,

increasing σ2 → ∞ will not trend the MMF to the MF as b ̸= v and the best case MML ̸= 0 in

general.

Using the same simulated setup as before, template-based LS MMFs were generated for the

unstraddled LFM waveform using D = 4N, σ = 10−3

D Tr{SSH} (where Tr{·} denotes the trace of

the matrix), and p corresponding to a response with a super-Gaussian shape of order 6 in the

frequency domain which has the same 3dB bandwidth as the LFM waveform but lower sidelobes.

The corresponding filter responses and PSs are then provided in Figures 2.11 and 2.12 respectively.

Here the LS MMFs are fairly successful at lowering range sidelobes for a much improved ∼1dB

MML. Additionally, the choice of template provides spectral containment to LS MMF PS and as

such the off-grid response is fairly consistent with the on-grid samples.

2.2.2 Integrated Sidelobe Level LS MMFs

Another common MMF approach designs QPs with various weightings of the sidelobe power and

the mainlobe power [55, 56, 74, 75] via an integrated sidelobe level (ISL) metric that is funda-

mentally analogous to Akroyd’s philosophy when κ = 1. A regularized ISL QP can be posed
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Figure 2.11: Simulated Loopback Template-based LS MMF Response for LFM waveform with
κ = 1.5 (left) and κ = 6 (right)
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Figure 2.12: Simulated Loopback Template-based LS MMF PS for LFM waveform with κ = 1.5
(left) and κ = 6 (right)
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as
min
w∗

wH (T+σ
2I
)

w

s.t. wHv = 1
(2.36)

where the linear constraint wHv = wHSHe enforces that the zero-delay filter response is unity and

prevents the trivial w = 0 solution.

In this base form, the QP is functionally equivalent to (2.34) and the resulting MMF will again

suffer from the super-resolution drawbacks. To alleviate MML and provide filter nominal res-

olution flexibility, [55] suggests a mainlobe "beamspoiling" approach where rows were excised

from the convolution matrix S corresponding to the desired mainlobe width (though there are other

approaches to mitigate super resolution such as the mainlobe broadening factor in [75]).

For fixed desired resolution of k samples, beamspoiling is incorporated into (2.36) via a rank-k

downdate of the Toeplitz matrix as

T̃ = T− S̃S̃H (2.37)

where T̃ retains a PSD Hermitian structure as S̃ contains the k columns of S that correspond to

the desired mainlobe location and width. Note, k does not necessarily need to retain the nominal

resolution of the MF and, much like tapering of an LFM MF, a broadened filter responds can greatly

improve sidelobe reduction at the cost of a degraded range resolution [45, p. 61]. Additionally, the

beamspoiling indices can include the zero delay index, though doing so should not significantly

alter the optimal filter as the constraint vector will effectively negate the matrix contribution from

that direction regardless. Thus, the beamspoiled ISL QP becomes

min
w∗

wH (T̃+σ
2I
)

w

s.t. wHv = 1
(2.38)

where the Lagrangian

L {w,µ}= wH (T̃+σ
2I
)

w+2Re
{

µ
[
wHv−1

]}
(2.39)
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can be equivalently expressed as

L {z}= zHDz−2Re
{

zH b̃
}

(2.40)

where

z =

 w

µ

 ,

D =

 T̃+σ2I v

vH 0

 ,
and

b̃ =

 0

1

 ,
are formed by concatenating the MMF w and Lagrange multiplier µ into a single vector.

The optimal w and µ correspond to the stationary point of the Lagrangian, which, for the form

of (2.40), can be solved directly by taking the gradient w.r.t. z∗ and solving the linear system of

equations

Dz⋆ = b̃ (2.41)

where z⋆ satisfies the Karush–Kuhn–Tucker (KKT) conditions [76, p. 454]. Note, D is strictly

not PD, and will in fact has a single negative eigenvalue. Regardless, a solution will exists as the

system is not singular when T̃+σ2I is PD and can be solved using the identity in Appendix A.2

and is expressed as

w⋆ =
1

vH
(
T̃+σ2I

)−1 v

(
T̃+σ

2I
)−1 v. (2.42)

Again using the simulated loopback setup, ISL LS MMFs were generated for the unstraddled

LFM waveform using D = 4N, σ2 = 10−3

D Tr{SSH} (where Tr{·} denotes the trace of the matrix),

and k = 2ceil{κ} corresponds to the off-zero delays corresponding to the MF nominal resolution

broadened by a sample. The respective filter responses and PSs are then provided in Figures
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Figure 2.13: Simulated Loopback ISL LS MMF Response for LFM waveform with κ = 1.5 (left)
and κ = 6 (right)
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Figure 2.14: Simulated Loopback ISL LS MMF PS for LFM waveform with κ = 1.5 (left) and
κ = 6 (right)

2.13 and 2.14. Here the both the LS MMFs successful successfully suppress sidelobes and have

significantly less MML than Akroyd’s approach. However, the κ = 1.5 case has effectively placed

the on-grid response on the nulls of the continuous, meaning any straddling will yield significant

degradation to sidelobes suppression for close in ranges. On the other hand, the κ = 6 case is more

robust to straddling but has significantly more mismatch loss for the same relative contribution of

the regularization (both scaled by the matrix trace and filter length). Examining the filter PSs we

see that this form of beamspoiling induces a rippling effect to the spectrum, likely in relation to the

Fourier pair between the quasi-rectangular beamspoiling operation and a sinc-function.
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This straddling sensitivity was examined in [77] and the author showed consistent results with

those illustrated here where template-based MMFs (with an appropriate desired response) are gen-

erally more robust to straddling than the ISL MMFs. In [55], the authors propose some heuristic

approaches to enhance robustness towards straddling. In particular, they suggest an averaging

approach using multiple copies of the sub-sample shifted waveform. However, doing so would

require collection of multiple loopback waveform replicas and solving additional linear systems.

This may be a reasonable approach for a repeated waveform CPI, but the increased computational

burden of collecting the multiple loopback collects and solving many additional linear systems

approaches infeasiblilty when the CPI is non-repeating and agile. Additionally, this averaging ap-

proach is no longer optimal with respect to the recieve model/ISL QP. In Section 3.1, an alternative

range straddling compensation approach is proposed and assessed for the ISL LS MMF which does

not require multiple loopback collects and retains optimality with respect to the recieve model and

ISL QP.

2.2.3 Controlling Mismatch Loss via Quadratic Constraints

While regularization may be incorporated to both the Template and ISL optimization to adjust

MML and ensure the QP is convex, tuning of σ2 is often heuristic, computationally expensive,

and the resulting MMF may lack explicit optimality with respect to the original objective function

when using the template-based form. Alternatively, [72, 74, 75, 78] examined incorporating a

quadratic inequality constraint (QC) of the form

wHCw+a≤ 0 (2.43)

to control MML, while [79] proposed a similar approach to constrain MMF ISL or peak-sidelobe

level. In general, a single QC in a QP can yield a tractable optimization problem with a global

optimal solution, as long as there exists some w that satisfies the constraints (even if T and C

are not PD [80]). Thus, a QCQP framework provides MMF design flexibility while ensuring
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that the resulting filter is globally optimal. However, brute force solutions to the QCQP can be

computationally intensive for even modest D. Both previous works proposed techniques to combat

computational burden. [74] elected to perform a costly initial calculation to reduce the cost of

subsequent operations. [75] examined a Circulant MMF formulation which greatly reduced the

computational cost, but required an infinite impulse response (IIR) approximation to an FIR filter

and is not applicable all modes of operation [81].

In Section 7, the work of [74, 75] is generalized for the template-based objective function and

further extensions are developed to the QC such that arbitrary signal-to-interference-plus-noise

(SINR) loss constraints can be incorporated to both MMF forms. Furthermore, the structure of T

and C is then leveraged to develop an efficient solver for both the traditional Hermitian Toeplitz

QP [74] and the approximate form of [75]. Hardware-in-the-loop and open-air experimental eval-

uations are then provided.

2.3 Adaptive Range Processing Overview

While LS MMFs can help mitigate range-sidelobes for a modest MML if designed appropriately,

using a single filter for all delays effectively weights contributions from all scatterers uniformly

and therefore wastes DoF over-suppressing sidelobes from directions where there is low-power

scattering. Alternatively, adaptive signal processing techniques attempt to dynamically allocate

DoFs to optimally estimate the scene. This results in a unique filter for each delay which improves

sidelobe-suppression for the less MML, but comes with an increased computational burden. This

process can be performed by solving for the optimal filters that satisfy a minimum mean square

error (MMSE) objective function [82, p. 96], though direct "filterless" adaptive estimators can

likewise be posed [83, p. 259].

However, classic adaptive approaches require characterization of the receive statistics, which

is not generally known a priori. In regimes where the receive model is approximately linear time

invariant (LTI) and wide sense stationary (WSS), measured snapshots can be used to form a sample

covariance matrix (SCM) that approximates the receive statistics and can be utilized for MMSE
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processing [82, p. 359]. Unfortunately, forming a SCM for the range domain proves challenging as

scattering statistics will not generally be LTI or WSS with respect to fast-time delay, while movers

and waveform agility degrade SCM estimation across slow-time. Though, it is possible to form

fast-time sample covariance matrices in some circumstances [84].

Alternatively, the structure of receive model can be leveraged to approximated the idealized

SCM with a structured covariance matrix. This approximate form significantly reduces the required

number of snapshots (typically only a single snapshot is required). However, as with the LS MMF

leveraging a structured form fundamentally relies on the accuracy of a discrete representation of

a continuous reality. As such, robustness measures must be incorporated to reduce sensitivity

towards practical fidelity limitations.

2.4 Adaptive Pulse Compression

Standard adaptive processing is seeks to determine an optimal filter that minimizes the mean square

value of some statistical error metric e as

J = E
{
∥e∥2

2

}
(2.44)

where E {·} denotes the expectation operator. The adaptive pulse compression (APC) [57, 58]

algorithm leverages this framework to pose an MMSE objective function to solved for a D×1filter

w(ℓ) at each delay ℓ in the linear model of (2.18) as

J = E
{∥∥x(ℓ)−wH (ℓ)y(ℓ)

∥∥2
2

}
= ρ (ℓ)−2Re

(
wH (ℓ)ryx (ℓ)

)
+wH (ℓ)Ryy (ℓ)w(ℓ)

(2.45)

with

ryx (ℓ) = E {y(ℓ)x∗ (ℓ)} (2.46)
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corresponding to the D×1 measurement-scatterer cross-correlation vector,

ρ (ℓ) = E {x(ℓ)x∗ (ℓ)} (2.47)

the scatterer-scatterer correlation, and

Ryy (ℓ) = E
{

y(ℓ)yH (ℓ)
}

(2.48)

the D×D measurement-measurement correlation matrix respectively1.

Similar to (2.30), the filter that minimizes (2.45) can be solved with a QP as

min
w∗

wHRyyw−2Re
{

wHryx
}

(2.49)

where the dependency on ℓ has been dropped with vectors and matrices for notional convenience

throughout the remainder of this chapter unless explicitly stated. When Ryy is PD, (2.49) has the

optimal solution of

w = R−1
yy ryx, (2.50)

however, unlike with the LS MMFs, Ryy and ryx are not deterministic or known a priori.

Where classical adaptive techniques would attempt to estimate Ryy and ryx through the ac-

cumulation of measurement snapshots, APC leverages the structure of the linear receive model

(2.18)

y = Sx+n

to form the structured-covariance matrix

Ryy = SE
{

xxH}SH +E
{

nnH}
1Note, the original derivation of the algorithm strictly used D = N. Here for generality, an arbitrary filter length is

used where D > N increases the available DoF.
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and cross-correlation vector

ryx = SE {xx∗ (ℓ)}

where the noise and scatterers are treated as zero-mean random variables independent from one

another. As the noise statistics can often be estimated a priori using the system noise figure or

measured with “quiet” data (i.e. no active TX), the noise covariance matrix is assumed to be

known as

E
{

nnH}= Rn (2.51)

which for zero-mean white Gaussian system noise with a variance of σ2
n is delay invariant and

defined as

Rn = σ
2
nI.

Next, APC imposes a structure treats the scattering coefficients as independent variables to

yield a (D+N−1)× (D+N−1) diagonal source correlation matrix

E
{

xxH}= (xxH)⊙ I = P (2.52)

where

Pi,i = |x(ℓ−D+ i) |2 = ρ (ℓ−D+ i) , (2.53)

and

E {xx∗ (ℓ)}= ρ (ℓ)e, (2.54)

thus, the structured covariance is expressed as

Ryy = Rs +Rn

= SPSH +σ
2
nI

(2.55)
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and structured cross-correlation vector

ryx = SE {xx∗ (ℓ)}= ρ (ℓ)Se = ρ (ℓ)v (2.56)

where e is the D+N−1×1 elementary vector of all zeros except for unity in the center element2.

These derivations provide a framework for the structured covariance, but as P corresponds to

the scattering coefficient powers APC is trying to estimate, it is inherently unknown. To draw a

quick parallel, the LS MMF approaches can be derived from this perspective by approximating the

scattering coefficients as constant and delay invariant, i.e.

P = σ
2
x I

such that

Ryy = SPSH +σ
2
nI = σ

2
x SSH +σ

2
nI

where the relative scaling of σ2
x and σ2

n corresponds to the degree of regularization. The MMF

approaches then attempt control the contribution from adjacent scattering via design of the filter

response using (2.28) ( rT = wHS). This allows a single filter to be applied for all range, but per-

formance will be strictly worse than a true MMSE estimate (unless the scattering statistics are truly

range invariant). Rather than a delay invariance assumption, APC leverages a reiterative minimum

mean square error (RMMSE) framework [57, 88] in which estimates for the scattering coefficients

and structured covariance matrix are iteratively refined. From an algorithmic perspective, RMMSE

effectively takes an adaptive nulling approach where the current source estimates are used to place

nulls in the presumed direction high powered scattering.

2Note, for the previously established APC formulation D =N and thus e is a 2N−1×1 vector. Likewise, v = Se =
s is the form presented in [57, 58, 85, 86]. As such, forming the APC filters near the delay boundaries will necessitate
truncation of v and Ryy in a manner similar to [87]. Here the mathematically equivalent notation from (2.24) is used
for consistency to retain the generalized snapshot length representation of (2.13).
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For the initial iteration, APC solves a QP

min
w∗

wH
(

SP(0)SH +σ
2
nI
)

w−2Re
{

ρ
(0) (ℓ)wHv

}
(2.57)

for every delay index ℓ where

ρ
(0) (ℓ) =

∣∣∣x̂(0) (ℓ)∣∣∣2
is formed via the MF (2.23) estimate in (2.25) and is likewise used to form P(0) via (2.53). As P(0)

is strictly positive and σ2
n > 0, the hessian of (2.57) is strictly PD and thus

w = ρ
(0) (ℓ)

(
SP(0)SH +σ

2
nI
)−1

v. (2.58)

Solving and applying (2.58) for every delay index is then used to update the estimate scattering

coefficients3

x̂(1) (ℓ) = w(ℓ)H y(ℓ) ,

scattering powers

ρ
(1) (ℓ) =

∣∣∣x̂(1) (ℓ)∣∣∣2 ,
and source correlation matrix P(1). This process is then repeated for I RMMSE iterations or until

convergence where the ith RMMSE QP is posed as

min
w∗

wH
(

SP(i)SH +σ
2
nI
)

w−2Re
{

ρ
(i) (ℓ)wHv

}
(2.59)

which is minimized by

w = ρ
(i) (ℓ)

(
SP(i)SH +σ

2
nI
)−1

v. (2.60)

The original RMMSE framework performed well on idealized (simulated) measurements, how-

ever, the explicit fitting to a presumed structure often lacks practical robustness as it ignores the

3Note, here the snapshot notation for the filter has temporarily returned to emphasize that
a unique RMMSE filter must be solved for every delay index.

35



0 50 100 150 200 250 300 350 400 450 500

Range (m)

-30

-20

-10

0

10

20

30

40

50

60

P
o
w

e
r 

(d
B

)
Matched Filter

APC

Truth

0 50 100 150 200 250 300 350

Range (m)

-40

-30

-20

-10

0

10

20

30

40

50

60

P
o
w

e
r 

(d
B

)

Matched Filter

APC

Truth

Figure 2.15: Simulated APC estimate for idealized measurements with κ = 1.5 (left) and κ = 6
(right)

continuous reality where hardware and model errors (e.g. phase noise, amplifier nonlinearities,

range straddling, etc.) can lead to over suppression or false peaks. Like to Akroyd’s LS MMF, the

original form of APC also attempts to provide a super-resolved estimate which induces significant

MML and is extremely sensitive to straddling effects. To illustrate these drawbacks, the simulated

loopback setup from Section 2.2 was used to generate synthetic receive measurements with known

truth values. Five scatterers were placed in the receive measurements and 3 iterations of APC was

used to estimate the scene. For the first case, all the scatterers were placed on-grid (meaning no

straddling is present) to yield an idealized receive model. The respective APC estimates for κ = 1.5

and κ = 6 waveforms are then shown on the left and right side of Figure 2.15 respectively, where

the orange trace is the APC estimate, the blue trace is the MF estimate and the black trace is the

ground truth. Both approaches were able to isolate all five sources, however, the κ = 6 case created

a significantly higher background floor. Figure 2.16 then illustrates the expected noise power for

each range bin (since APC constructs a unique filter for every delay), where clearly the κ = 1.5

case yields noise power fairly close to that of the MF, while the κ = 6 case yields noise powers

∼15dB higher than the MF due to the super-resolution.

Next, the same scenario is performed, but this time each of the five sources was given a sub-

sample shift and the dominant scatter in the middle was selected to be maximally straddled. The
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Figure 2.16: Simulated APC noise power for idealized measurements with κ = 1.5 (left) and κ = 6
(right)
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Figure 2.17: Simulated APC estimate with κ = 1.5 (left) and κ = 6 (right)

APC estimates for this case are shown in Figure 2.17 where for both cases APC performs errati-

cally and is not able to converge to a physically meaningful estimate. Looking at corresponding

respective noise powers in Figure 2.18, the noise amplification is significant and the respective

estimates likely just correspond to amplified noise.

A myriad of compensation techniques/extensions for RMMSE have been proposed to enhance

performance or enable estimation for different domains/applications [55, 89–97], where a robust

range estimate typically necessitates incorporation of a gain constraint to avoid oversuppression, a

form of beamspoiling to retain the filter nominal resolution, and statistical model uncertainties to
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Figure 2.18: Simulated APC noise power with κ = 1.5 (left) and κ = 6 (right)

avoid amplification of model errors. The remainder of this section will outline these modifications

and discuss theoretical efficacy using this simulated receive measurements. Further developments

and a computationally efficient approximate implementation will later be presented in Section 6 as

well as an open-air experimental demonstration.

2.4.1 APC Generic Model Uncertainty

The idealized model of (2.18) neglects the physical reality where nonlinearities, phase noise, range

straddling, fast-time Doppler, etc. are always present. Many of these effects can be reduced with

more sophisticated (and expensive) hardware and or careful waveform design, but they will always

act as a limiting factor for adaptive processing. Fortunately, the arbitrary nature of the RMMSE

objective function allows for the incorporation of model errors to enhance robustness towards these

effects [89, 91, 92], though, doing so requires both a statistical model for the error source and an

estimate mean/variance.

While individually modeling and incorporating all possible error sources would be ideal, the

aggregate model error imposed on the waveform from independent sources (e.g. straddling, am-

plifier distortion, phase noise) can be coarsely approximated as Gaussian via the central limit

theorem [98, p. 241]. Additionally, this sum of model errors can be conveniently measured using

hardware-in-the-loop collects, though, distortion due to the antenna and open-air channel would
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not be incorporated. This approach suggested in [90] (an extension of [99]), where the linear model

of (2.18) can be approximately compensated as

y = [1+ z]⊙ [Sx]n (2.61)

where z is an additional zero mean complex i.i.d. random variable with variance σ2
z that subsumes

the aggregate model error that was measured in loopback. This modified linear model assumes that

each receive sample has a multiplicative error term dependent on the measurement strength and

effectively places a delay variant floor on the effective dynamic range. The structured covariance

is found as
Ryy = Rs +Rz +Rn

= SPSH +
(
σ

2
z I
)
⊙
[
SPSH]+σ

2
nI

(2.62)

where Rz =
(
σ2

z I
)
⊙
[
SPSH] is the model uncertainty covariance matrix. The RMMSE QP for

each iteration will still have the form

min
w∗

wHRyyw−2Re
{

ρ (ℓ)wHv
}

(2.63)

where the iteration index has been excluded for brevity. As Rs is PSD and has an all positive

diagonal, hessian of this QP is still PD and each filter can be solved via

w = ρ (ℓ)R−1
yy v

= ρ (ℓ)
(
SPSH +

(
σ

2
z I
)
⊙
[
SPSH]+σ

2
nI
)−1 v

(2.64)

where the same RMMSE initialization and refinement procedure is applied as before.

For the simulated setup, σ2
z was set to the variance across waveforms as a function of the

sub-sample receive shifts 0.5 ≤ γ ≤ 0.5. While in practice, measuring the loopback response for

different sub-samples shifts can be somewhat impractical, here we do so to provide an illustration

of performance when σ2
z is configured perfectly. APC with model uncertainty was then applied to
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Figure 2.19: Simulated APC estimate with model uncertainty for κ = 1.5 (left) and κ = 6 (right)
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Figure 2.20: Simulated APC noise power with model uncertainty for κ = 1.5 (left) and κ = 6
(right)

the simulated measurements with range straddling and the corresponding estimates are shown in

Figure 2.19, while Figure 2.20 shows the respective range varying noise power. Here APC was able

to resolve three of the four signatures for both cases, however, a range smearing effect is visible

with the center source due to straddling, which obfuscates the low powered adjacent sources. The

noise power for both cases is lower than when model uncertainty was excluded, but the noise gain

is still high relative to the MF and a distinct peaking behavior is visible near the scatterer true

locations.
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2.4.2 APC Covariance Beamspoiling

While incorporating generic model uncertainty enhanced algorithm stability and robustness to-

wards false peaks, it does not directly address super-resolution induced noise gain or error from

straddling. The super-resolved estimates in turn induce significant variation of the noise power

across range, and limits the local dynamic range as a straddled scatterer will deviate from the ex-

pected model. To combat super-resolution, [55] proposed a covariance “beamspoiling” method in

an attempt to preserve the nominal resolution of the MF. This was achieved in a similar manner

as the LS MMF ISL beamspoiling (2.37) by zeroing out Z elements of the source covariance P

corresponding to the matched filter mainlobe. Note, unlike (2.37) to retain stability the center most

element corresponding the ℓth direction and can not be excised4, e.g. Pz,z = 0 for

z ∈
(

D−N
2
−Z,

D−N
2

+Z
)
, z ̸= N

where Z = ceil{κ}−1. This can be implemented as a rank-2Z downdate if the structured covari-

ance as

Rs = SPSH− S̃P̃S̃H (2.65)

where S̃ and P̃ corresponds to the respective mainlobe contributions of S and P respectively. Out-

side the zeroed elements in P, the RMMSE framework remains unchanged and thus beamspoiling

does not prevent incorporation of generic model uncertainty from (2.63).

Beamspoiling and model uncertainty were incorporated into APC simulation and applied to

yield the estimates in Figure 2.19 and noise power in Figure 2.20. Here APC was again able to

resolve three of the five signatures for the κ = 1.5 case, but the center most source sill sees a range

smearing from straddling. The κ = 6 case now able to clearly resolve all 5 sources and does not see

the same spiking behavior as Figure 2.19. Additionally, the κ = 6 case see a modest improvement

in overall the noise power.

4To be more precise, the center most element cannot be removed unless some form of unity constraint is enforced
similar to that of the ISL MMF. Such constraints will be discussed in the subsequent section.
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Figure 2.21: Simulated APC estimate with model uncertainty and beamspoiling for κ = 1.5 (left)
and κ = 6 (right)
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Figure 2.22: Simulated APC noise power with model uncertainty and beamspoiling for κ = 1.5
(left) and κ = 6 (right)
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2.4.3 APC Unity Gain Linear Constraint

While incorporating beamspoiling and model uncertainty enhances robustness towards super-resolution

and model errors, RMMSE in general has a tendency to over-suppress low-power scattering and

produces erratic peaks below the MF noise floor. For range only detection, this may actually be

beneficial as low SNR detections are often thrown out to avoid false alarms. However, subsequent

velocity estimation processing will provide a coherent gain and low-SNR signatures may rise above

the detection threshold. As such, it is typically desirable to prevent this oversuppression.

To do so, [86] proposed incorporating a unity gain constraint into the RMMSE QP formulation

as
min
w∗

wHRyyw−2Re
{

ρ (ℓ)wHv
}

s.t. wHv = 1
(2.66)

where Ryy can incorporate beamspoiling or model uncertainty if desired. As the only feasible

solutions to the QP must satisfy the linear constraint (i.e., wHv = 1), (2.66) can be simplified to a

CAPON esc form [100] as

min
w∗

wHRyyw

s.t. wHv = 1
(2.67)

which can again be solved using the KKT identity from Appendix A.2 and yields the optimal

solution

w =
1

vHR−1
yy v

R−1
yy v. (2.68)

As this linear constraint is enforced every iteration, gain constrained APC preserves a higher but

less erratic estimate floor and will not over-suppress signatures near the noise floor. There exists

hybrid constrained RMMSE formulation that leverages a geometric averaging of the unity con-

strained filter and unconstrained filters and has been empirically shown to enhanced estimation

of low SNR signatures in a frequency domain RMMSE context [101]. However, this hybrid or

partially constrained approach still may produce erratic behavior below the noise floor which may

affect subsequent Doppler estimation.
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Figure 2.23: Simulated APC estimate with model uncertainty, beamspoiling, and a unity constraint
for κ = 1.5 (left) and κ = 6 (right)

As a final simulated example, the unity gain constraint was incorporated into APC where the

beamspoiling and model uncertainty parameters were configured as before. This formulation then

was applied to the simulated measurements and produced the estimates in Figure 2.23 with noise

powers shown in Figure 2.24. This form of APC performed on par with the beamspoiling and

no unity constraint approach, but has a less erratic estimate floor that is proportional to the range

varying noise power.

While APC with these incorporated robustness considerations performs well for larger κ , range

straddling leads to poor estimation for near critically sampled architectures. In [102], the author

explored range-straddling robustness measures for an LFM waveforms via covariance matrix taper-

ing. However, this approach required explicit knowledge of the continuous waveform phase func-

tion which is not always possible for arbitrary waveforms, and does not account for RX anti-alias

filter induced distortion. In Section 6 general straddling robustness measures for arbitrary wave-

forms will be developed leveraging hardware-in-the-loop measurements and a structured straddle

interpolated signal model.
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Figure 2.24: Simulated APC noise powers with model uncertainty, beamspoiling, and a unity
constraint for κ = 1.5 (left) and κ = 6 (right)

2.5 Doppler Processing Overview

For MTI applications, it is necessary to separate moving objects from stationary scatterers, denoted

clutter. Radial movement relative to the TX/RX baseline will induce a Doppler shift, thus, knowl-

edge of the TX/RX position and speed can be combined with Doppler measurements to estimate

velocity via

ω = 2π
2(vo)

c
fc (2.69)

where ω is the radial Doppler frequency, vo is a scatterer’s radial-velocity relative to the radar

platform baseline, fc is the waveform center frequency, and c is the speed of propagation for

the plane wave (i.e. the speed of light). Here (2.69) assumes vo is small relative to the speed of

propagation and that the waveform is "narrowband" so that relativistic and pulse dilation effects can

be ignored, which is often (but not always) the case for MTI applications. Using this knowledge,

Doppler processing seek to estimate the frequency shifts present in the receive measurements so

that the velocity of each scatterer can be determined.
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2.5.1 Single-Pulse Doppler Processing

To perform velocity estimation, the receive model must be generalized to incorporate Doppler. As

such, the idealized single-pulse continuous receive model for range and Doppler shifted scatters

can be expressed as

y(t) =
w

s(t,ω)∗ x(t,ω)dω +n(t) (2.70)

where

s(t,ω) = s(t)e jωt (2.71)

is the Doppler shifted return from complex scattering coefficient x(t,ω). Similar to (2.13), the

receive measurements can be discretized in snapshot form as

y(ℓ) =
w

S(ω)x(ℓ,ω)dω +n(ℓ) (2.72)

where

S(ω) =



sN (ω) · · · s1 (ω) 0 · · · 0

0 sN (ω) s1 (ω)
. . . ...

... . . . . . . . . . 0

0 · · · 0 sN (ω) · · · s1 (ω)


(2.73)

is the convolution matrix for the Doppler shifted waveform

s(ω) =

[
s1e jω 0

fs s2e jω 1
fs · · · sNe jω N−1

fs

]T

. (2.74)

As ω contains a continuum of possible Doppler shifts which can be computationally impractical

to analyze in practice, once again the model is approximated with a discrete grid of K points as

Ω =

[
ω1 ω2 · · · ωK

]
(2.75)
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which assumes there are not scatterers moving faster than the highest/lowest Doppler frequency in

Ω and there is not significant amplitude and phase variation between grid points. This approxima-

tion again induces "off-grid" or straddling mismatch. However, unlike range straddling where the

3dB oversampling factor κ dictates the fidelity, the sampling of Ω is arbitrary and in turn can be

resampled as needed to refine the estimate. Thus, the single-pulse discrete linear receive model is

expressed as

y(ℓ) = ∑
ω∈Ω

S(ω)x(ℓ,ω)+n(ℓ) . (2.76)

Matched filtering can be performed in a similar manner as (2.23) and (2.25), where now each

of the K waveforms will be used to form a unique filter for each respective Doppler shift, i.e.

x̂(ℓ,ω) =
1

sH (ω)s(ω)
sH (ω)y(ℓ) . (2.77)

Here resolution or Doppler mainlobe width (in radians) can be determined by the pulse duration

Tp as

∆ω =
2π

Tp
. (2.78)

Similar to range sidelobes induced by the autocorrelation, this bank of matched filters will have a

degree of correlation across Doppler, i.e.

sB∗ (ωi)∗ s
(
ω j
)
̸= 0 i, j ∈ K

which now induces sidelobe ambiguities in both range and Doppler. This sidelobe structure is

typically characterized by waveform’s ambiguity function defined as

AF (ℓ,ω) =
[
sB∗ (ω)(∗D)s(0)

]
ℓ

(2.79)

where [·]ℓ extracts the ℓth element of the cross correlation [45]. Note, the ambiguity function is

centered with respect to the zero-Doppler signal (s(0)) as other Doppler shifts will follow the same

47



Figure 2.25: Ambiguity Function for a LFM Chirp (left) and RFM Waveform (right)

sidelobe structure via linearity, albeit with a corresponding shift in Doppler and potential effects

from the anti-aliasing filter.

Generally waveforms are placed into one of two classes based upon their ambiguity charac-

teristics [45, 103]. The class of Doppler-tolerant waveforms (such as the LFM) typically have

a relatively flat ridge extending in range and Doppler (see left side of Figure 2.25), meaning a

Doppler shift corresponds to an apparent shifting in range when processing with the zero-Doppler

matched filter. Doppler "intolerant" or Doppler-selective waveforms on the other hand, typically

have a thumbtack like ambiguity function were the range and Doppler of a single source can be

easily resolved, but the sidelobe floor is higher and is spread in range and Doppler (see right side of

Figure 2.25). Regardless, both classes of waveform have functional merit depending on application

[93].

2.5.2 Multi Pulse Doppler Processing

From (2.78) and (2.69) we can derive an equality that determines when a platform can nominally

separate a moving object with radial velocity (vo) from stationary clutter as

1 < Tp
2vr

c
fc (2.80)
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for pulse duration Tp and center frequency fc. For acoustical/sonar applications, the relatively slow

speed of propagation enables Doppler separability for modest Tp and fc. For radio frequencies

however, the high speed of propagation necessitates higher frequencies and long pulses, which

historically has been both monetarily expensive to construct and computationally prohibitive to

process.

To enhance Doppler resolution, pulsed radar systems instead aggregate the response of multiple

pulses across a longer coherent processing interval (CPI). For a PRI duration Tpri corresponding to

L samples, M transmit pulses are concatenated to yield the LM×1 discrete transmission

¯̄s =
[

sT
1 0T

(L−N)×1 sT
2 · · · sT

M 0T
(L−N)×1

]T

(2.81)

for the CPI. The range-Doppler receive snapshot model can then be derived in the same manner

as (2.18) by treating (2.81) as the waveform and the ambiguity function (2.79) can be used to

characterize the range-Doppler sidelobe structure. Here the Doppler resolution is now proportional

to Tcpi = MTpri rather than Tp, however the computational complexity of matched filtering now

scales with LM rather than N where in general LM≫ N.

To reduce computational burden, the intra-pulse Doppler is typically approximated as negligi-

ble relative to pulse-to-pulse Doppler shift, i.e. for the mth transmit waveform sm = [s1,m s2,m · · · sN,m]
T

the Doppler shift for ω is incorporated as



s1,m

s2,m

...

sN,m


⊙



e jω L(m−1)+0
fs

e jω L(m−1)+1
fs

...

e jω L(m−1)+N−1
fs


≈ e jω L(m−1)

fs sm = e
jω m−1

fpr f sm (2.82)

where fpr f =
1

Tpri
is the pulse repetition frequency (PRF) of the CPI. Thus, a discretized D× 1
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collection of receive samples for the mth pulse is denoted

ym (ℓ) = ∑
ω∈Ω

e
jω m−1

fpr f Smx(ℓ,ω)+nm (ℓ) (2.83)

where

Sm =



sN,m · · · s1,m 0 · · · 0

0 sN,m s1,m
. . . ...

... . . . . . . . . . 0

0 · · · 0 sN,m · · · s1,m


(2.84)

is the D× (D+N−1) convolution matrix for sm and ℓ is the sample delay relative to the start of

the mth PRI. This organization of receive measurements effectively splits the time domain into

two dimensions, sample delay from the start of the PRI (denoted fast-time) corresponding to range

via index ℓ, and relative time from pulse-to-pulse (denoted slow-time) corresponding to Doppler

via the pulse index m. This fast/slow-time notation is a convenient approximation that allows for

efficient separate/sequential processing of each respective domain when the fast-time Doppler shift

is negligible.

The response in (2.83) for each pulse is then collected into the matrix

Y(ℓ) =

[
y1 (ℓ) y2 (ℓ) · · · yM (ℓ)

]
(2.85)

which is organized in terms of fast-time along each column and slow-time along each row. A

repeated transmit waveform sm = s results in a decoupling of range and Doppler via linearity and

superposition. In this repeated framework matched filtering in range and Doppler can be performed

independently along the respective fast-time and slow-time axis as

x̂(ℓ,ω) =
1

sHs
sHY(ℓ)a∗ (ω)

1
aH (ω)a(ω)

(2.86)
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where

a(ω) =

[
e

jω 0
fpr f e

jω 1
fpr f · · · e

jω M−1
fpr f

]T

(2.87)

is a M×1 frequency steering vector for Doppler frequency ω that acts as a matched filter. As with

pulse-compression, windowing can likewise be applied to the Doppler matched filter to reduce

sidelobes.

For a generalized arbitrary/non-repeating set of pulses, range and Doppler are coupled and

require a specific order of operations to ensure a scattering response coheres across range and

Doppler. This can be achieved by first performing range estimation for each column of (2.85) as

x̂m (ℓ) = wH
mym (ℓ) (2.88)

where wm can be the MF, LS MMF, or the APC5 filters discussed previously. These estimates are

then accumulated into the M×1 range-compressed slow-time snapshot

ŷ(ℓ) =
[

x̂1 (ℓ) x̂2 (ℓ) · · · x̂M (ℓ)

]T

(2.89)

where subsequent Doppler processing is performed as

x̂(ℓ,ω) =
1

aH (ω)a(ω)
aH (ω) ŷ(ℓ) (2.90)

Equivalently, joint range-Doppler estimation [59] can be performed by expressing (2.85) as a vec-

tor through a concatenation (or vectorization) of the columns in the snapshot matrix as

ȳ(ℓ) =
[

yT
1 (ℓ) yT

2 (ℓ) · · · yT
M (ℓ)

]T

(2.91)

5Note, for the APC filters wm would also be a function of ℓ, i.e. wm (ℓ)
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where the joint range-Doppler estimation is expressed as

x̂(ℓ,ω) = w̄H (ω) ȳ(ℓ) (2.92)

where

w̄(ω) =

[
e

jω 0
fpr f wT

1 e
jω 1

fpr f wT
2 · · · e

jω M−1
fpr f wT

M

]T

(2.93)

is the Doppler-shifted waveform sequence, and normalization in (2.92) is included for consistent

scaling. The linear receive model for (2.91) can likewise be expressed in a form akin to (2.83) as

the DM×1 snapshot

ȳ(ℓ) = ∑
ω∈Ω

S̄(ω)x(ℓ,ω)+ n̄(ℓ) (2.94)

where the concatenated set of convolution matrices are

S̄(ω) =

[
e

jω 0
fpr f ST

1 e
jω 1

fpr f ST
2 · · · e

jω M−1
fpr f ST

M

]T

(2.95)

and the DM noise samples are subsumed in

n̄(ℓ) =
[

n1 (ℓ)
T n2 (ℓ)

T · · · nM (ℓ)T
]T

. (2.96)

Note, the approximation procedure in (2.82) effectively reduces the sample rate for the Doppler

dimension from the system (or fast-time) sample rate of fs to the PRF (or slow-time sample rate)

fpr f . As idealized Doppler shifts correspond to complex sinusoids, this reduced sample rate will

produce aliasing when

fpr f <

∣∣∣∣2vr

c
fc

∣∣∣∣ . (2.97)

Thus, the maximum unambiguous velocity vunamb is bounded by fpr f as

|vunamb|<
c fpr f

4 fc
(2.98)

52



where the additional factor of 2 comes from the ability to differentiate forward and backward

radial velocities. Additionally, for a fast-time Doppler selective CPI, movers with significant radial

velocity may require additional compensation [89, 92, 93, 104, 105].

The range-Doppler sidelobe structure for a pulsed emission can then be characterized in terms

of a point-spread function (PSF) which approximates the CPI’s ambiguity function within the

unambiguous velocity bounds. The PSF is defined as

PSF (ℓ,ω) =
s̄H (ω) ỹ(ℓ)
s̄H (ω) s̄(ω)

(2.99)

where ỹ(ℓ) is the idealized response for a point scatter at zero-delay and zero-Doppler.

Similar to the classes of Doppler tolerant and intolerant waveforms mentioned in Section 2.5.1

the choice of transmit waveforms across a CPI can be broadly grouped in two categories, repeated

and agile. Most legacy systems use a repeated framework in which the transmit waveform is kept

consistent across the CPI so that the range-sidelobes are homogeneous in slow-time. As shown in

(2.86), homogenization effectively decouples fast-time from Doppler and slow-time from range,

resulting in a sinc-sidelobe spreading in the Doppler domain. Alternatively, an agile emission

changes the transmit waveform within the CPI, resulting in a heterogeneous range-sidelobe struc-

ture across slow-time.

This heterogeneity effectively couples range and Doppler estimation as every range-delay pro-

duces a unique sidelobe modulation across slow-time i.e. RSM. This RSM creates a delay depen-

dent smearing in the Doppler domain as the slow-time response is no longer uniform and sinu-

soidal. An example PSF for 100 repeated LFM waveforms (left) and 100 unique RFM waveforms

(right) is shown in Figure 2.26 where the sinc-sidelobes and RSM are clearly visible for the re-

peated and agile cases respectively. Unlike the repeated waveform, the psuedo-random nature of

the RFM sidelobes creates a decoherence outside the range-Doppler mainlobe and RSM is co-

herently suppress like noise. This results in lower peak range-Doppler sidelobes (relative to the

repeated case) but a spreading across all Doppler. The coherent suppression effect is demonstrated
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Figure 2.26: PSF for a 100 repeated LFM Chirps (left) and 100 Unique RFM Waveforms (right)

Figure 2.27: PSF for a 100 Unique RFM Waveforms (left) and 1000 Unique RFM Waveforms

in the PSFs of Figure 2.27 where CPIs of 100 and 1000 unique RFM waveforms shown that in-

creasing the number of unique waveforms by a factor of 10 corresponds to ∼10dB of additional

RSM suppression.

Supplemental (these results will be examined with further detail in Chapters 3-6) open-air ex-

perimental measurements for 1000 repeated LFM and 1000 unique RFM waveforms were collected

and pulsed range-Doppler processing was performed with a Taylor window applied in Doppler to

reduce sidelobes (in Doppler only). Here the particular RFM waveforms were designed with an

alternating projection routine such that the frequency content has a Gaussian shape and are denoted

as PROFM waveforms [73]. Figures 2.28 and 2.29 show the LFM and RFM results respectively

with a focused look at the intersection on the right. The vehicles are clearly visible for both the

LFM and RFM case, however RSM from the proportionally high-power clutter creates added back-
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Figure 2.28: Open-Air Experimental Measurement for 1000 repeated LFM Chirps (left) and
zoomed in look at intersection (right)
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Figure 2.29: Open-Air Experimental Measurement for 1000 unique RFM waveforms (left) and
zoomed in look at intersection (right)

ground speckle for the RFM case. As the RSM is uncorrelated, this speckle effectively acts as an

increased noise power and will degrade detection performance.

2.5.3 Clutter Cancellation

Range-Doppler processing enables separation of moving targets from stationary clutter, but clutter

generally has a much higher power than moving objects [67, 84] and post pulse-compression scat-

terer peaks will have a sinc-sidelobe structure in Doppler. Slow-time windowing can be applied to

reduce these sidelobes, but will broaden the Doppler mainlobe (degrading Doppler resolution) and
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will create a mismatch loss. Rather than attempting to minimize Doppler sidelobes from clutter,

performance can often be improved by applying clutter cancellation.

While there are a wide variety of clutter cancellation techniques [4, 106], all typically involve

some form of filtering or a projection operation across the slow-time domain. Consider the M×1

slow-time response for a idealized range compressed scatter at the ℓth delay

ŷ(ℓ) = ∑
ω∈Ω

a(ω)x(ℓ,ω)+n(ℓ) = AxΩ(ℓ)+n(ℓ) (2.100)

where

A =

[
a(ω1) a(ω2) · · · a(ωK)

]
(2.101)

is the bank of steering vectors and

xΩ (ℓ) =

[
x(ℓ,ω1) x(ℓ,ω2) · · · x(ℓ,ωK)

]
(2.102)

are the complex scattering coefficients for the Doppler shifts in Ω at delay ℓ respectively. To

suppress clutter while retaining our desired signals, the measurement vector is separated into a

clutter and target components as

ŷ(ℓ) = ŷc (ℓ)+ ŷt (ℓ)+n(ℓ) (2.103)

where

ŷc (ℓ) = ∑
ω∈Ω

a(ω)xc(ℓ,ω) (2.104)

are the measurements due to the complex scattering from clutter xc(ℓ,ω) and

ŷt (ℓ) = ∑
ω∈Ω

a(ω)xt(ℓ,ω) (2.105)

is a measurement vector due to the remaining complex scatterers xt(ℓ,ω) (what we wish to esti-

mate). Statistical clutter cancellation can be performed by treating ŷc (ℓ) and n(ℓ) as independent
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random variables to form a correlation matrix

Rcc = Rc +Rn = E{yc (ℓ)yH
c (ℓ)}+E{n(ℓ)nH (ℓ)} (2.106)

which can be used to from a Karhunen–Loève transform (KLT) [66] that will whiten the data of

the clutter contribution as

ŷcc (ℓ) = (Rcc)
− 1

2 ŷ(ℓ) . (2.107)

Instead of KLT, in radar it is more common to perform maximum signal-to-clutter-plus-noise ratio

SCNR filtering which can be derived similar to the max SINR filter by treating clutter as interfer-

ence [84] and transforming the measurements as

ŷcc (ℓ) = (Rcc)
−1 ŷ(ℓ) (2.108)

followed by standard matched filtering in Doppler. However, the matrix inversion will induce some

distortion, scaling, and noise gain with effects most prominent on sources close to the clutter ridge.

This procedure can be equivalently performed using a Doppler filter

wcc (ω) =
1

aH (ω)a(ω)
(Rcc)

−1 a(ω) (2.109)

and performing max SCNR estimation via

x̂t (ℓ,ω) = wH
cc (ω) ŷ(ℓ) . (2.110)

With the filter formulation, normalization can also be incorporated as

wcc (ω) =
1

aH (ω)(Rcc)
−1 a(ω)

(Rcc)
−1 a(ω) (2.111)

to remove the scale factor due to the matrix inversion, but not the distortion or noise gain.
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This filtering is optimal in terms of a SCNR [84] but in practice clairvoyant knowledge of the

clutter covariance matrix will not be known. There are a multitude of techniques for estimating the

clutter covariance matrix, but for simplicity here a stationary platform and uniform clutter power

is used to construct a structured clutter covariance. When stationary, clutter will largely be focused

about zero-Doppler (though there may be some spread due to motion from wind or ocean waves)

and a subset of Kc Doppler frequencies

Ω̃ =

[
ω̃1 ω̃2 · · · ω̃Kc

]
(2.112)

corresponding to Doppler steering vectors

Ã =

[
a(ω̃1) a(ω̃2) · · · a(ω̃Kc)

]
(2.113)

can be used to approximately characterize the clutter response and extent. Assuming a uniform

spread of clutter with power σ2
c and white Gaussian noise (WGN) with variance σ2

n , the optimal

clutter-plus-noise correlation matrix is

Rcc = σ
2
c ÃÃH +σ

2
n IM (2.114)

which can be used to cancel the clutter as before.

Alternatively, if the clutter power is not known but the Doppler extent is, the measurement

vector can be projected onto the nullspace of the clutter by minimizing

∥ŷ(ℓ)− Ãγ∥2 (2.115)

with respect to the Kc×1 vector γ , which has the closed form solution:

γ =
(
ÃHÃ

)−1 ÃH ŷ(ℓ) . (2.116)
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Thus, the projection matrix

Γcc = I− Ã
(
ÃHÃ

)−1 ÃH (2.117)

can be used in lieu of (Rcc)
−1.

These clutter cancellation techniques can be very effective at suppressing signatures that are

sinusoidal across slow-time. For the repeated waveform case, both the range-mainlobe and range-

sidelobes of clutter have this sinusoidal response due to the decoupling of fast-time and slow-time.

For an agile CPI, the range-mainlobe will fit this structure but the RSM is a joint range-Doppler

effect and can not be suppressed via slow-time processing alone.

2.6 NIMPC

Rather than just utilizing the dimensionality provided by the slow-time dimension (i.e. number

of pulses), the Non-Identical Multiple Pulse Compression (NIMPC) framework was proposed to

perform clutter cancellation and pulse compression using the joint slow-time-fast-time dimension-

ality of an agile CPI. This joint representation can then perform simultaneous cancellation of both

the sinusoidal mainlobe Doppler sidelobes and non-sinusoidal RSM clutter contributions. NIMPC

utilizes the form of (2.94) with D = N (though without loss of generality any D≥ N can be used)

where a receive snapshot with fast-time delay ℓ for CPI with M pulses is expressed as

ȳ(ℓ) = ∑
ω∈Ω

S̄(ω)x(ℓ,ω)+ n̄(ℓ) (2.118)

where Ω is a collection of K radial Doppler frequencies and

S̄(ω) =

[
e

jω 0
fpr f ST

1 e
jω 1

fpr f ST
2 · · · e

jω M−1
fpr f ST

M

]T

(2.119)
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is formed by concatenating the Doppler shifted convolution matrices for each waveform. Using a

similar clutter cancellation methodology as (2.5.3), a subset of Kc Doppler frequencies

Ω̃ =

[
ω̃1 ω̃2 · · · ω̃Kc

]
(2.120)

corresponding to the clutter can be used to form the joint Range-Doppler response matrix

˜̄S =

[
S̄(ω̃1) S̄(ω̃2) · · · S̄(ω̃Kc)

]
(2.121)

which is used to form an MD×MD estimate clutter correlation matrix as

R̄cc = σ
2
c

˜̄S ˜̄SH + R̄n (2.122)

where R̄n = σ2
n I is the noise correlation matrix for WGN with noise power σ2

n and σ2
c is the

expected clutter power. This joint range-Doppler correlation matrix can then be used to perform

maximum SINR processing by transforming the receive snapshot as

ȳcc (ℓ) =
(
R̄cc
)−1 ȳ(ℓ) (2.123)

or by equivalently forming a normalized clutter-canceling filter as

w̄cc (ω) =
1

s̄H (ω)
(
R̄cc
)−1 s̄(ω)

(
R̄cc
)−1 s̄(ω) (2.124)

which is then applied to the measurements to yield the clutter-canceled range-Doppler estimate as

x̂cc (ℓ,ω) = w̄H
cc (ω) ȳ(ℓ) . (2.125)
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Alternatively, the filter with scaling of

w̄cc (ω) =
1√

s̄H (ω)
(
R̄cc
)−2 s̄(ω)

(
R̄cc
)−1 s̄(ω)

will retain a uniform noise floor which can be useful when performing detection.

The complexity of NIMPC clutter cancellation scales with entire slow time dimension and

storage/inversion of the MD×MD correlation matrix rapidly becomes infeasible for even a mod-

est M and D. For the supplemental measurements in Figure 2.29, this would correspond to a

300,000× 300,000 complex matrix which would require ∼1.5 terabytes of memory just to store

(for complex double precision). [107] exploited redundancies and structure of the NIMPC frame-

work to decrease computational burden and storage by a factor of M, but complexity and storage

were still a practical limitation. In Chapter 5 alternative representations and solutions will be de-

veloped to drastically improve this computational burden.

2.7 Select Structured Matrices

The QPs for the LS MMFs and APC all require construction and solution to a D×D linear sys-

tem, which through brute force have a complexity O(D3) for the solve alone. This computational

burden can significantly degrade the practical viability of these approaches as D increases. As

such, it is necessary to develop approaches and solvers that can realistically be implemented on

modern hardware. The following subsection outlines properties of select structured matrices and

techniques that enable efficient operations. This matrix structure will later be used to reduce com-

putational complexity and push these algorithms closer to real-time viability.

2.7.1 Sparse and Banded Hermitian Matrices

Sparse hermitian matrices correspond to a class of matrices in which the majority of elements are

zero. For a generic D×D sparse matrix H with a full main diagonal and h non-zero off-diagonal

61



entries, matrix-vector multiplication with an arbitrary vector, i.e.,

a = Hb,

can ignore operations corresponding to the zero-entries to yield a complexity of O(hD+D). Ad-

ditionally, when H is positive definite, the Cholesky factorization

H = LLH (2.126)

can be computed with a complexity of ∼O(h2D) and the D×D lower-triangular matrix preserves

the same sparsity structure as H. However, this cost is inexact as it is a function of the sparsity

structure and can potentially reduced further depending on where the non-zero elements are. Us-

ing the sparse Cholesky factorization, linear systems involving H can be solved via forward and

backward substitution with L with ∼O(hD) complexity. Thus the aggregate complexity to solve a

QP with a sparse matrix will be ∼O(h2D+hD) [108, p. 670].

Banded hermitian matrices are of the same vein in which the matrix has a dense "band" of

non-zero diagonals. A D×D banded hermitian matrix B with a matrix-bandwidth of h when the

−(h−1)th to (h−1)th diagonals are the only components that have non-zero entries, i.e.,

B =



b1,1 · · · b1,h 0 · · · 0
... . . . ... . . . . . . ...

bh,1 · · · bh,h
. . . 0

0 . . . . . . bD,D−h+1

... . . . . . . . . . ...

0 · · · 0 bD,D−h+1 · · · bD,D


. (2.127)

Matrix vector multiplication with B can be computed with O(hD) and the banded cholesky de-

composition

B = LLH (2.128)
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can be computed with O(h2D) which preserves the banded structure and

L =



L1,1 0 · · · 0 · · · 0
... . . . . . . ...

...

Lh,1 · · · Lh,h 0 · · · 0

0 . . . . . . . . . ...
... . . . . . . . . . 0

0 · · · 0 Lh,1 · · · LD,h


(2.129)

can be leveraged to solve QPs with B as the hessian with O(h2D+hD) complexity [108, p. 670].

2.7.2 Circulant Matrices

Circulant matrices [109, p. 61] are a special class of square matrices in which the columns of the

matrix are expressed as shifted and wrapped replicas of the D×1 vector c =
[

c0 · · · cD−1

]T

with the form

C =



c0 cD−1 · · · c1

c1 c0
...

... . . . cD−1

cD−1 · · · c1 c0


(2.130)

for a D×D Circulant matrix. This shifting behavior enforces the property that C is has eigenvectors

corresponding to the discrete Fourier transform (DFT), thus it can be diagonalized as

C = F−1C f F (2.131)

where F is defined as a D×D discrete Fourier transform (DFT) matrix with elements

fi,k = exp{− j2π(i−1)(k−1)},
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and

C f = diag{Fc}

where diag{·} is a diagonalization operation that places the input vector onto the main diagonal

of the output matrix.

Thus, matrix-vector multiplication with C and an arbitrary D× 1 vector b can be performed

efficiently by utilizing the FFT and IFFT to perform element-wise frequency domain multiplication

via
a = Cb = F−1C f Fb

= F−1 [(Fc)⊙ (Fb)]

= IFFT{FFT{c}⊙FFT{b}}

(2.132)

where ⊙ is the Hadamard product and a equivalent to the circular convolution of b and c [110].

2.7.3 Toeplitz Matrices

Circulant matrices are a special case of a more general class of matrices that frequently show up in

linear systems involving convolution. The parent class where the main diagonal and off-diagonals

are constant are denoted Toeplitz matrices. The general form of a non-square D×K Toeplitz matrix

can be expressed as

T =



t0 t−1 · · · t−K+1

t1 t0
...

... . . . t−1

tD−1 · · · t1 t0


. (2.133)

Toeplitz matrix-vector multiplication can again be performed efficiently in the frequency domain

by first embedding the Toeplitz matrix into a larger Circulant matrix [110]. For instance, consider
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the (D+K−1)× (D+K−1) Circulant embedding constructed as

C{T}=

 T UT

U T

 (2.134)

where

U =



t−K+1 tD−1 tD−2 · · · t1

t−K+2
. . . . . . . . . ...

... . . . . . . . . . tD−2

t−1 · · · t−K+2 t−K+1 tD−1


.

Note, this particular embedded matrix requires the least amount of additional dimensionality, but

it is often preferable to pad additional zeros to U so that the corresponding FFT/IFFT pairs are a

power of two. Additionally, when T is a banded matrix, then the embedding dimensionality can be

further reduced. Using (2.134) Toeplitz matrix-vector multiplication with an arbitrary K×1 vector

b is performed as

Tb =

[
ID 0D×(K−1)

]
C{T}

 b

0(D−1)×1


=
[
IFFT

{
FFT

{
t̂
}
⊙FFT

{
b̂
}}]

1:D

(2.135)

where

t̂ =
[

t0 t1 · · · tD−1 t−K+1 t−K+2 · · · t−1

]T

and b̂ is a zero padded replica of b shown in (2.135).

Another special case that shows up frequently in least squares problems (LS) is the Hermitian

Toeplitz matrix expressed as

H =



t0 t∗1 · · · t∗D−1

t1 t0
...

... . . . t∗1

tD−1 · · · t1 t0


. (2.136)
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Hermitian Toeplitz matrices have some nice properties, such as positive semi-definiteness (when t0

is positive), a purely real frequency domain diagonal when embedding in an appropriate Circulant

matrix, and an inverse structure that can be fully determined by its first column [109, p. 62].

2.7.4 Structure of a Toeplitz Matrix Inverse

Square non-singular Toeplitz matrices have some convenient properties that simplify computation

of their inverse. Here we will focus on the structure of the Circulant inverse and the Hermitian

Toeplitz inverse for simplicity, though there are analogous forms for the more general case.

From (2.131) we see that the Circulant matrix form can be decomposed into three matrices

with an inverse
C−1 =

(
F−1C−1

f F
)−1

= F−1C−1
f F

(2.137)

with

C−1
f = diag{1⊘ (Fc)}

where ⊘ represents element-wise division. Thus, the structure of the inverse of a Circulant matrix

is also Circulant and inversion can be done element-wise in the frequency domain.

Diagonalizing the Hermitian Toeplitz case is not as straightforward, but can be determined by

solving for the first column of the inverse matrix which can be solved directly using levinson-

recursion in with O
(
D2) complexity [109, p. 85] or though for larger and well conditioned

matrices this can be lowered even further [111, 112]. In general, the first column of the inverse a

can be found by solving

Ta = e1 (2.138)

where e1 is an D×1 elementary matrix will all zeros except a 1 in the first element. With the first

column, T−1 can be reconstructed as

T−1 =
1
a1

(
T f T f

H−TbTb
H) (2.139)
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where

T f =



a1 0 · · · 0

a2
. . . . . . ...

... . . . . . . 0

aD · · · a2 a1


and

Tb =



0 0 · · · 0

a∗D
. . . . . . ...

... . . . . . . 0

a∗2 · · · a∗D 0


are both Toeplitz matrices with structure than can be used to perform efficient matrix vector mul-

tiplication. Both the Circulant and Hermitian Toeplitz matrix inverse model structure will later be

used to efficiently compute our optimal mismatch filters.

2.7.5 Toeplitz-Block and Block-Toeplitz Matrices

Another special class of matrix is denoted block-Toeplitz [109, p. 344] in which the DQ×DQ

matrix T̄ is composed of 2D− 1 matrices Rd of size Q×Q. The block-Toepltiz matrix then has

consistent block diagonals as

T̄ =



R0 R−1 · · · R−D+1

R1 R0
...

... . . . R−1

RD−1 · · · R1 R0


. (2.140)
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Similarly Toeplitz-block matrices are defined as a DQ×DQ matrix ¯̄T that is composed of Q2

Toeplitz matrices Tq1,q2 oriented in a Q×Q block matrix form as

¯̄T =



T1,1 T1,2 · · · T1,Q

T2,1 T2,2
...

... . . . TQ−1,Q

TQ,1 · · · TQ,Q−1 TQ,Q


. (2.141)

Any Toeplitz-block matrix can be transformed into a block-Toeplitz matrix by applying permuta-

tions as

T̄ = J̄ ¯̄TJ̄T (2.142)

with the permutation matrix

J̄ =

[
e1 eD+1 e2D+1 · · · e(Q−1)D+1 e2 eD+2 · · · e(Q−1)D+Q

]
(2.143)

where ei is an elementary vector with all zeros except for unity at the ith element. The reverse is

likewise true as

¯̄T = J̄T T̄J̄ (2.144)

since permutations are unitary, i.e.,

I = J̄T J̄.

Using the Toeplitz structure of each block of (2.141), (2.134) can again be leveraged to perform

matrix-vector multiplication in the frequency domain with a cost of O(2Q2D log(2D)) if each

Tq1,q2 is fully filled.

Additionally, if a block-Toeplitz matrix is PD, its inverse will inherit an structure similar to
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(2.139) and can be characterized by

T̄



A1

A2

...

AD


=



I

0
...

0


(2.145)

and

T̄



B1

B2

...

BD


=



0
...

0

I


(2.146)

where Ai, Bi, and I are D×D matrices [109, p. 348] and can be solved efficiently via multi-

channel Levinson recursion with O(Q3D2) [109, p. 345] complexity. Note, when the blocks of

T̄ are also Toeplitz and the main diagonal block is hermitian, then Bi = AH
i . This yields the block

inverse structure

T̄−1 = T̄ f Ē−1
f T̄H

f − T̄bĒ−1
b T̄H

b (2.147)

where

T f =



A1 0 · · · 0

A2
. . . . . . ...

... . . . . . . 0

AD · · · A2 A1


and

Tb =



0 0 · · · 0

BD
. . . . . . ...

... . . . . . . 0

B2 · · · BD 0
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are both block-Toeplitz matrices, while

Ē f =



A1 0 · · · 0

0 A1
. . . ...

... . . . . . . 0

0 · · · 0 A1


and

Ē f =



B1 0 · · · 0

0 B1
. . . ...

... . . . . . . 0

0 · · · 0 B1


are block diagonal matrices and matrix-vector multiplication with (2.147) can be performed with

O(Q2D log(2D)).

2.8 Iterative Linear System Solvers

The solution to a D×D linear system of equations

Ax = b (2.148)

can be equivalently posed as a convex QP when A is Hermitian PD as

min
x∗

xHAx−2Re
{

xHb
}

(2.149)

as taking the derivative w.r.t. x∗ and setting equal to zero reveals that the optimal solution

x⋆ = A−1b
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satisfies (2.148). Thus, rather than performing generally expensive matrix decomposition/inverse

to directly solve A−1b, (2.149) can instead be minimized via convex optimization techniques. Ad-

ditionally, stopping the optimization prior to convergence may provide a "good enough" solution

that while not optimal, can be achieved at a much lower cost than a direct solver.

Steepest descent would be simple to implement, yet it only has linear convergence. Newton/quasi-

Newton methods are faster, but have complexity/memory requirements that can be comparable to

direct inversion. Alternatively, the linear conjugate gradient (CG) algorithm can provide superlin-

ear convergence to the optimum [76, p. 101-132], with each iteration moving the optimal step in a

direction conjugate to all previous directions. Unlike direct solutions, the per iteration complexity

of PCG is dictated by matrix-vector multiplication with A. Thus, if A has structure that enables fast

matrix-vector multiplication (such as a Toeplitz structure), PCG can offer a significant reduction

in computational cost. However, PCG may not be suitable to every linear system and can be unsta-

ble when numerical errors yield steps that lack conjugacy. Alternatively, the generalized minimal

residual method (GMRES) [113] can offer improved stability for a higher per iteration cost as each

step performs an additional decomposition to ensure conjugacy but requires a complexity increase

of ∼O
{

i2
}

where i is the iteration index.

Convergence for both approaches would otherwise be dictated by the condition number and

eigenvalue clustering of A, thus, a hermitian positive definite preconditioner matrix can M is typi-

cally introduced such that

M−1A

has an improved condition number and the eigenvalues are clustered about unity. However, each

iteration preconditioned CG (PCG) or preconditioned GMRES (PGMRES) then requires linear

system solves involving M, thus, M must be carefully selected to both improve convergence while

not significantly degrading the overall computational cost.
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Chapter 3

Efficient Straddle-Robust Least Squares Mismatched Filtering

While the LS MMFs from Section 2.2 offered improved sidelobe suppression for a minor MML

when properly designed, their efficacy tends to degrade for lower oversampling factors (κ). Addi-

tionally, solving each LS MMF required a matrix inverse with a brute force complexity of O(D3)

which can hinder real time viability. Here we seek to incorporate further robustness measures to

support near critically sampled architectures (κ ≈ 1) so that RX processing can support (near) full

bandwidth utilization. Computationally efficient solutions and alternatives are then proposed and

assessed using closed-loop and open-air experimental measurements.

3.1 Statistical Straddling Compensation for LS MMFs

While incorporating beamspoiling into the ISL MMF helps retain the filter nominal resolution, the

lack of an explicit constraint on high frequency components results in a sensitivity to range strad-

dling more so than the template-based LS MMFs. As mentioned in Section 2.2.2, [55] proposed

averaging of multiple MMFs for different straddled replicas of the waveform, however, doing so

lacks optimality in terms of the original MMF QPs and necessitates multiple loopback collects.

[114] examined straddle compensation for the particular case of an LFM waveform via statisti-

cal phase uncertainties which has a convenient closed form solution. For an arbitrary waveform,

this same framework is not necessary extensible unless the waveform can be characterized by a

specific phase-basis, i.e., [50, 115–118]. Additionally, this phase-based approach does not incor-

porate distortion induced by the RX anti-alias filter, which may be significant for waveforms less

spectrally contained than chirps. Alternatively, using hardware-in-the-loop measurements that in-
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corporate the RX anti-aliasing filter or waveform modeling the incorporates TX DAC modeling

[119], a structure-based interpolation can be posed to express the waveforms as a function of the

sub-sample delay γ to account for the continuous reality. This generic framework can then be used

to evaluate the straddling uncertainty, which is then directly incorporated into a compensated QP.

To incorporate straddling uncertainty in the LS MMF framework, the hessian of the QPs prior

to beamspoiling (T = SSH) is expanded using the continuous representation of the convolution

matrix from (2.15) and rearranged using the distributive property of the expectation operator as

T = E {S(γ)SH (γ)}

= E

{
D−1

∑
i=−N+1

Jis(γ)sH (γ)JH
i

}

=
D

∑
i=−N+1

JiE {s(γ)sH (γ)}JT
i

=
D

∑
i=−N+1

Ji

(w 0.5

−0.5
s(γ)sH (γ)dγ

)
JT

i

=
D

∑
i=−N+1

JiRγJT
i

(3.1)

where is Ji a reversing and shifting matrix such that matrix-vector multiplication with an arbitrary

N×1 vector b yields a D×1 vector

x = Jib

as

xd =


bi−d 1≤ i−d ≤ N

0 else
(3.2)

for d = 1,2, · · · ,D which has most N non-zero elements.

With this representation, incorporating range straddling uncertainty necessitates solving for the

straddled-signal correlation matrix

E {s(γ)sH (γ)}=
w 0.5

−0.5
s(γ)sH (γ)dγ = Rγ (3.3)
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to construct the compensated T. Likewise, it may be desirable (but not necessary) to compensate

the zero-delay filter v by constructing it with the expected value of the straddled waveform

sγ = E {s(γ)}. (3.4)

as

v =

[
0T sT

γ 0T

]T

(3.5)

in the same manner as (2.24). Note, Rγ should be a Hermitian matrix resulting in a T that retains

a Banded-Hermitian Toeplitz structure where the kth diagonal is found as

tk =


∑

N−k
i=1

[
Rγ

]
i,i+k 0≤ k ≤ N−1

∑
N+k
i=1

[
Rγ

]
i−k,i −N +1≤ k ≤−1

0 else

(3.6)

which corresponds to the sum of the diagonals of Rγ . The beamspoiling downdate in the ISL

objective will now correspond to the sum of k shifted Rγ , which is not necessarily rank-k as in

(2.37).

Estimating the waveform expected value and covariance matrix can be performed in a variety

of different manners. As modern AWGs generally support sample rates much larger than the

RX bandwidth, sub-sample shifts can be incorporated into the TX emission and their response

can be measured in a hardware-in-the-loop configuration to accumulate straddled snapshots and

form a sample correlation matrix. Doing so would simultaneously characterize other sources of

distortions like amplifier nonlinearities and may further enhance filter robustness. However, this

process requires collection of many loopback measurements (on the order of N to ensure a full

rank estimate) for every single TX waveform which may not always be practical.

Rather than a measurement based approach, straddling can be approximated via interpolation

models so that a structure based estimate of Rγ can be formed without needing multiple loopback
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measurements, though the expectation fidelity will be bound by the interpolation accuracy. Using

a loopback collection of s or a sufficient model of the TX upsampling and RX anti-aliasing filter, a

sub-sample shift will correspond to multiplication by a sinusoid in the frequency domain. Thus, a

truncated sinc-interpolation approach can be used to approximate straddling via

s(γ) =
1
Z

[
IN 0N×(Z−N)

]
FH

d(γ)⊙F

 s

0(Z−N)×1




=
1
Z

IN×ZFH (d(γ)⊙ s f
) (3.7)

where F is a Z×Z DFT matrix where Z corresponds to the nearest power of two,

d(γ) = exp(− j2πγ z̃) (3.8)

is a complex exponential vector corresponding to a sub-sample temporal shift γ where

z̃ =
[

0 1 · · · Z
2 −1 −Z

2 −Z
2 +1 · · · −1

]T

is a Z×1 vector corresponding to the normalized frequency index, s f is the discrete Fourier trans-

form of the padded waveform, IN×Z is a selection matrix composed of the first N rows of a Z×Z

identity matrix. This form of interpolation assumes that the waveform is truly band-limited and

aliased energy will propagate error. Thus, it is important that the s used for estimation sufficiently

models the upsampling and downsampling from TX-to-RX or is measured via a hardware-in-the-

loop collect.

As d(γ) is a complex exponential, the integral in (3.3) results a sinc-structure since

exp(a)exp(b) = exp(a+b) (3.9)

75



and

w 0.5

−0.5
exp{ j2πbx}dx =

w 0.5

−0.5
exp{− j2πbx}dx

=
w 0.5

−0.5
cos(2πbx)dx+

w 0.5

−0.5
sin(2πbx)dx

=
sin(2πbx)

2πb

∣∣∣0.5
−0.5

+0

=
sin(πb)

πb

= sinc(b)

(3.10)

can be computed from the symmetric bounds of the integral and Euler’s identity where

sinc(x) =
sin(πx)

πx

is the "so called" sinc-function.

Thus, (3.3) can be directly evaluated as

Rγ =
1

Z2 IN×ZFH (Tγ ⊙ s f sH
f
)

FIT
N×Z (3.11)

where Tγ is a symmetric sinc-function covariance matrix taper (CMT) corresponding to

Tγ = sinc
(

1
Z

z̃1T − 1
Z

1z̃T
)

(3.12)

and Rγ is again a hermitian matrix. Likewise, the expected waveform can be computed as

sγ =E {s(γ)}

=
w 0.5

−0.5

1
Z

IN×ZFH (d(γ)⊙ s f
)

dγ

=
1
Z

IN×ZFH (d̃⊙ s f
) (3.13)

76



-800 -600 -400 -200 0 200 400 600 800

Range (m)

-120

-100

-80

-60

-40

-20

0

F
ilt

e
r 

R
e

s
p

o
n

s
e

 (
d

B
)

Off Grid Response

On Grid Samples

-10 0 10
-80

-60

-40

-20

0

-800 -600 -400 -200 0 200 400 600 800

Range (m)

-120

-100

-80

-60

-40

-20

0

F
ilt

e
r 

R
e

s
p

o
n

s
e

 (
d

B
)

Off Grid Response

On Grid Samples

-10 0 10
-80

-60

-40

-20

0

Figure 3.1: Simulated Loopback ISL LS MMF Response for LFM waveform and κ = 1.5 Uncom-
pensated (left) and Range-Straddle Compensated (right)

where

d̃ = sinc
(

1
Z

z̃
)

acts as a frequency domain sinc taper.

Using the straddle compensated model, the κ = 1.5 ISL LS MMF from Figures 2.13-2.14 was

regenerated using the same beamspoiling, filter length, and regularization factors as before. Figure

3.1 illustrates this LS MMF response on the left and compares it to the baseline uncompensated

case on the right. Here we see that the straddle compensated formulation has slightly broadened

the filter-response mainlobe, but now the on-grid samples are much more commensurate with the

off-grid continuum (recall the uncompensated case effectively places the on-grid sample points on

the nulls of the continuum). Looking at the respective filter PSs in Figure 3.2, we see that the

compensated model has a more gradual spectral roll-off from ∼10− 23MHz and the edge of the

band now drops straight down as opposed to the rippling behavior present at ∼24.5MHz with the

uncompensated approach.
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Figure 3.2: Simulated Loopback ISL LS MMF Response for LFM waveform and κ = 1.5 Uncom-
pensated (left) and Range-Straddle Compensated (right)

3.1.1 Low-Rank Approximate Straddling Compensation for Efficient ISL

Beamspoiling

While beamspoiling can be incorporated by subtracting the mainlobe indices from (3.1) as

T̃ =
D

∑
i=−N+1

JiRγJT
i −∑

k
JkRγJT

k

= T−TML

, (3.14)

it can no longer be expressed as a rank-k downdate of T, which will prevent use of the efficient

Toeplitz solvers discussed in the next section. However, examining the eigenvalues of Rγ reveals a

steep drop-off (see Figure 3.3 for an example) and while it is no longer rank-1 (e.g., ssH is rank-1

by definition) it can be well approximated by a low-rank matrix. Thus, in practice a truncated Rγ

is expressed as

Rγ =
A

∑
a=1

uaλauH
a (3.15)
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Figure 3.3: Eigenvalues of Rγ for LFM waveform with κ = 1.5

using the dominant A eigenvalues (λa) and eigenvectors ua such that beamspoiling can be expressed

as a rank-(Ak) downdate via

T̃ =
D

∑
i=−N+1

JiRγJT
i −∑

k
JkRγJT

k

= T−∑
a

∑
k

JkuaλauH
a JT

k

. (3.16)

For the rest of this work, this rank-(Ak) downdate scaling is treated as implicit when straddling

compensation is used and just referenced as a rank-k operation.

3.2 Efficient Solvers for LS MMF QPs

As the LS MMFs problem require a the solution to a system of linear equations proportional to

the filter length D, it can be a computationally expensive procedure for longer filters or larger TB.

However, as both the template-based and ISL MMFs are driven by the banded hermitian Toeplitz
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matrix T (plus a rank-k downdate for the ISL case), the matrix structure can be leveraged to solve

the filter efficiently. Here these efficient direct solutions are split into two cases depending on the

relative size of D and N. While there are other potentially faster solvers than the methods shown

here (such as a banded levinson approach [120] or general superfast Toeplitz solvers [111, 112],

these approaches can be numerically unstable or only provide benefits for very longer filters. Thus,

the solvers in this section are focused on empirically stable techniques that provide complexity

reduction for filter lengths D∼100−10,000.

The first approach leverages the hermitian banded structure of T to perform a banded Cholesky

decomposition of the regularized Hessian (to ensure positive definiteness) as

T+σ
2I = LLH (3.17)

where the D×D lower-triangular matrix

L =



L1,1 0 · · · 0 · · · 0
... . . . . . . ...

...

LN,1 · · · LN,N 0 · · · 0

0 . . . . . . . . . ...
... . . . . . . . . . 0

0 · · · 0 LD,1 · · · LD,N


(3.18)

retains a lower-matrix bandwidth of N and can be computed with O(N2D) by ignoring the zero

entries in T. For the ISL case, beamspoiling can then be incorporated via a Cholesky downdate

[121], which again by ignoring the zero entries can be performed with O(kND) complexity and

retains the banded structure. The LS MMF can the be solved via forward backward substitution

using L which has O(ND) complexity. Alternatively, when N2 > D levinson-durbin recursion

[109, p. 85] can be used to solve for the first column of the inverse hessian a via (2.138) (again in-

cluding regularization) with O(D2) complexity. The Toeplitz structure of (2.139) can then be used
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to perform frequency domain matrix matrix-vector multiplication with O(D log(2D)) complexity.

The beamspoiling downdates for the ISL case can then be performed via Woodbury’s inverse iden-

tity in Appendix A.1 with O(k3 + kD log(2D)) complexity or the iterative update through PCG or

GMRES with O(k2 + k2D log(2D)) can be applied if the inverse update is not numerically stable.

3.2.1 Iterative Approximate LS MMFs

While direct solutions to the LS MMF problem provide a solution within numerical precision,

the imperfect nature of the RX model means the optimal filter will always be "over-fit" and

may have a theoretical response beyond the achievable fidelity. Alternatively, an iterative ap-

proximate filter can be solved rapidly and with appropriate stopping conditions, yields little-

to-no degradation in practice. As the regularized Hessian is a banded hermitian Toeplitz ma-

trix, the matrix-vector operations in CG or GMRES can be computed in the frequency domain

with O((D+N − 1) log(D+N−1)) complexity (or more accurately the next power of 2 from

D+N − 1). Additionally, Circulant preconditioners can significantly improve convergence and

only require an additional O((D) log(D)) operation each iteration.

The first Circulant preconditioner (denoted C1) has a frequency domain diagonal formed using

the PS of the waveform zero-padded to D samples plus regularization as

c1 = |Fv|2 +σ
21 (3.19)

where the inverse preconditioner matrix-vector multiplication is applied as

C−1
1 x = i f f t{ f f t{x} ⊘ c1 }. (3.20)

The second Circulant preconditioner is similar, but leverages a form that minimizes the Frobenius

norm between the preconditioner and hessian [122] via

c2 = Ft̃+σ
21 (3.21)
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where

t̃ =
[

t0 D−1
D t1 · · · D−N+1

D tN−1 0 · · · 0 D−N+1
D t−N+1 · · · D−1

D t−1

]T

(3.22)

can be applied when D > 2N.

For the template objective, PCG or PGMRES can be used directly on (2.34) as the QP is already

in a form that is amenable to iterative solvers. However, the linear constraint in the ISL objective

complicates things as the Lagrangian will have a negative eigenvalue. To yield a tractable iterative

implementation one may define confine the optimization to the a null-space of the constraint in

a manner similar to [76, p. 461-462], however, forming orthogonal steps has a tendency to be

unstable and may require “reset” operations internal that slow convergence. Alternatively, the first

column of
(
T+σ2I

)−1 can be approximated via the iterative method and (2.139) is then used to

apply the beamspoiling and constraint in the same manner as in Section 3.2.

3.3 Closed-Loop Experimental Assessment

To evaluate the efficiency of the iterative approximate LS MMFs and evaluate the efficacy of the

range straddling compensation, two coherent processing intervals (CPIs) of FM waveforms were

generated on a Tektronix arbitrary waveform generator (AWG). Both CPIs consisted of 1000 pulses

with a center frequency of 3.5 GHz, 4.5 micro-second pulse duration, a 3dB bandwidth of 33 MHz

(time-bandwidth product of 330), and a 5 kHz PRF (2.25% duty cycle). The first CPI followed a

standard repeated LFM chirp waveform framework, while the second used a waveform agile set

of non-repeating optimized random FM (RFM) waveforms with a Gaussian power spectral density

[73]. The AWG was connected to a bandpass filter and class A amplifier to model TX amplification,

followed by an attenuator, bandpass filter, low-noise amplifier (LNA), and then a Rhode & Schwarz

spectrum analyzer with a sample rate of 200 MHz (κ=6) so that closed-loop measurements of the

waveforms on real hardware could be collected. Additionally, a kaiser window based FIR bandpass

filter was applied to these loopback measurements followed by decimation by a factor of 4 to
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Measurement Parameters
Parameter Variable Value

Sample Rate fs 50MHz
3dB Bandwidth B 33.3MHz
Pulse Duration T 4.5µseconds

Samples in Waveform N 276
Fast-Time Filter Samples D 4N

Table 3.1: Table of Open-Air Experimental Parameters for PROFM CPI of 1000 waveforms

yield a sample rate of 50 MHz (κ = 1.5) corresponding to measurements more representative of

a system with near full bandwidth utilization. A tabularized list of variables and parameters used

in this experimental assessment is provided in Table 3.1. Note, the number of waveform samples

corresponds to a slightly longer duration than the pulse to account for effects from the anti-aliasing

filter.

Using these loopback measurements, PCG was applied to solve for the Hermitian-Toeplitz

inverse representation from (2.138) for a filter length D = 4N, a regularization σ = 10−5

D Tr{SSH},

and the range straddling compensation from Section 3.1 to give a sense of convergence for PCG.

Figures 3.4-3.5 illustrate the residual error of PCG for κ = 1.5 and κ = 6 respectively when using

no preconditioner, (3.19) (denoted Precond 1), and (3.21) (denoted Precond 2) for the LFM and

1000 PROFM waveforms respectively. Both preconditioners offer improved convergence over

CG where (3.19) typically converges faster for the κ = 1.5 case while (3.21) offers a modest

improvement for the κ = 6 case.

Next, to asses the efficacy the approximate LS MMF solutions, PCG with (3.19) as a precondi-

tioner and a fixed number of iterations was used to generate LS MMFs for the κ = 1.5 case. First,

PCG was used to directly solve the template-based LS MMF QP with no statistical straddle com-

pensation. The selected templates were a super-gaussian of order 6 for the LFM and a gaussian for

the PROFM waveforms. Both templates were selected to have the same 3dB bandwidth of 33MHz

and an additional tapering was placed on the high frequency components of the template to retain

spectral containment and provide a response robust to range-straddling. PCG was then ran for 10,

20, and 100 iterations to solve the respective QPs. The left side of Figures 3.6-3.7 illustrates the
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Figure 3.4: Residual Error vs Iteration of PCG using Circulant Preconditioners for single LFM
(left) and 1000 PROFM (right) Waveforms with κ = 1.5
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Figure 3.5: Residual Error vs Iteration of PCG using Circulant Preconditioners for single LFM
(left) and 1000 PROFM (right) Waveforms with κ = 6
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Figure 3.6: Loopback Template-based LS MMF Response for LFM waveform and κ = 1.5
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Figure 3.7: Loopback Template-based LS MMF Response for PROFM waveforms and κ = 1.5

coherently combined aggregate filter response for the LFM waveform and PROFM waveforms re-

spectively. Additionally, the corresponding waveform-filter frequency response are shown on the

left of Figures 3.6-3.7. For this first test case, solving the QP directly yields rapid convergence

for both waveform sets and even after only 10 iterations, the filter response has largely converged

outsize of some minor ripples near delays ∼100 meters. The frequency response likewise shows

little to no errors.

A similar procedure was then applied to the uncompensated ISL LS MMF. Here, PCG was

used to approximate the Toeplitz inverse structure via (2.138). The resulting approximate inverse
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Figure 3.8: Loopback ISL LS MMF Response for LFM waveform and κ = 1.5

was then used to efficiently form (
T− S̃S̃H)−1 v

via the beamspoiled downdate via fast inverse Teopltiz matrix-vector multiplication and Wood-

bury’s identity from (A.2) for k = 3. The resulting vector was then used to form the approximate

ISL LS MMF via (2.42). Figures 3.8-3.9 illustrates the resulting filter responses and frequency re-

sponse for the LFM and PROFM waveforms respectively with the same orientation as the template

case. Here for the LFM case, we see that 10 iterations was once again enough to converge suffi-

ciently yield virtually no difference between the resulting filters. As expected, the lack of range

straddling compensation does produces a ripple near the edge of the band (±25MHz) which will

result in raised sidelobes when a scatterer is straddled in range. For the PROFM case, we see that

10 iterations was not sufficient to achieve convergences and subsequent application of Woodbury’s

identity results in an unstable update (for at least one of the MMFs) leading to significant MML and

an inaccurate filter. After 20 iterations, the respective filters have once again converged resulting

in a shape commensurate with what is expected for the LS MMFs without straddle compensation.

Lastly, the straddle compensated formulation LS MMFs were formed and Rγ was approximated

using A = 3 dominant eigenvalues for each waveform. Here, PCG was again used to approximate

the Toeplitz inverse structure via (2.138), Woodbury’s (A.1) for k = 9 (update size has increased
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Figure 3.9: Loopback ISL LS MMF Response for PROFM waveforms and κ = 1.5

by a size of A relative to the uncompensated case), and (2.42) were then used to solve the straddle

compensated ISL LS MMFs. Figures 3.10-3.11 illustrates the resulting filter responses and fre-

quency response for the LFM and PROFM waveforms respectively with the same orientation as

the template case. Again for the LFM case, we see that 10 iterations was enough converge suffi-

ciently and there is only minor difference between the filters. Range straddling compensation has

removed the high frequency ripple effect and the resulting filter has a smooth frequency roll-off

and sharp null at the edge of the band. For the PROFM case, surprising 10 iterations was enough to

effectively converge for all cases, which is unexpected since the increase in downdate dimension-

ality suggests a higher likelihood for instability with Woodbury’s matrix identity. It is possible that

incorporation of straddle compensation yields a Toeplitz structure that is better suited for PCG, but

the exact reasoning of this phenomena is unclear. As with the LFM case, the frequency response

of the PROFM waveforms is has a smooth roll-off and does not have much high frequency contri-

bution. That being said, the notch on the edge of the band is raised relative to the LFM case likely

due to the variable nature of the frequency response pulse-to-pulse, e.g. some PROFM LS MMFs

will perform better than others since each waveform is only locally-optimal and unique.

Table 3.2 provides the order of complexity for each of the respective solvers where PCG with a

Circulant preconditioner offers and order of magnitude improvement in cost relative to a Levinson

approach for 10 iterations. It should be noted, that the operations involved in PCG are well opti-
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Figure 3.10: Loopback Straddle Compensated ISL LS MMF Response for LFM waveform and
κ = 1.5
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Figure 3.11: Loopback Straddle Compensated ISL LS MMF Response for PROFM waveforms
and κ = 1.5
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Toeplitz Solve Order of Complexity
Direct 1.35E+09

Levinson 1.22E+06
Banded 8.44E+07

PCG (10 iter) 2.55E+05
PCG (20 iter) 5.11E+05

PCG (100 iter) 2.55E+06

Table 3.2: Complexity for solving the Toeplitz System of Equations

mized and amenable to hardware acceleration (e.g., the FFTs) and the actual runtime will likely

see improvements much greater than a single order of magnitude [123].

3.4 Open-Air Experimental Assessment

Next the attenuator from the closed-loop setup was removed and the respective transmitter and

receiver chains were connected to parabolic antennas. This test setup was taken to the roof of

Nichols hall at the University of Kansas and placed in a pseudo monostatic configuration where TX

and RX happens simultaneously (see Fig. 3.12). The antennas were pointed at an intersection with

moving vehicles∼1000 meters away and the two CPIs from the previous section were sequentially

transmitted to collect open-air experimental measurements of a scene with moving vehicles and

stationary clutter. Note, these the selected pulse duration and test setup resulted in direct path

sidelobes that extend ∼700 meters.

The receive measurements were then orientated into fast-time slow-time measurement matri-

ces, and the MF each of the respective LS MMFs from the previous sections were applied to

estimate the scattering profile of the scene. Figure 3.13 illustrates the RMS average across pulses

for the range profile for the LFM (left) and PROFM (right) CPIs. For the LFM CPI, we see that

each of the LS MMF approaches were successful at suppressing the direct path sidelobes. Ex-

amining the subfigure in the top right, we can clearly see that while the template-based yields a

lower but non-negligible sidelobe roll-off while the beamspoiled approaches have a sharper side-

lobe roll-off. While somewhat minor for this case, the direct path is straddled enough in range such
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Figure 3.12: Open-Air Experimental Test Setup

that the uncompensated LS MMF (yellow) a roll-off ∼5 dB higher than the straddle compensated

LS MMF.

For the PROFM CPI, we see that the LS MMFs are able to suppress the direct path sidelobes

by ∼25dB further than the matched filter, though we see that the longer filter length has extended

these sidelobes in range and the sidelobe level at the intersection (∼1000 meters) is actually higher

with the LS MMFs than the MF. Looking at the subfigure, the effect from range straddling is clearly

visible for the uncompensated ISL case, where the near in roll-off is up to ∼20dB higher than the

compensated ISL MMF. However, the template-based and straddle compensated ISL MMFs see

∼3dB and ∼1.5dB higher sidelobes at the intersection that the uncompensated ISL MMF. For the

template MMF, this result follows intuition as the LS MMFs expend DoF attempting to match the

template, rather than explicitly minimizing sidelobes. For the compensated ISL case, the slightly

higher sidelobes naturally arise as the QP and Rγ now must consider a continuum of delay samples

as opposed to the D+N−1 on-grid delays.

Next, Doppler processing was performed across each range profile and a Taylor window was

applied along slow-time to reduce Doppler sidelobes (but not RSM). Corresponding range-Doppler

estimates are then shown in Figures 3.14-3.19 where each response was normalized so that the

color-axis corresponds to SNR. The left side of each figure contains a "zoomed out" look such
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Figure 3.13: LS MMF RMS Open-Air Range Profile Estimates κ = 1.5

that the direct-path response is visible, while the right side corresponds to a focused look of the

intersection with moving vehicles.

First examining the LFM CPI using the MF for range estimation in Figure 3.14, we see that use

of a stationary platform and repeated waveform has localized the clutter response to zero-Doppler.

While the direct path (0 meters) Doppler sidelobes have been largely suppressed due to the Taylor

window, there remains residual energy smearing 20dB above the noise floor and to the model

uncertainty floor as even using loop-back measurements to form the MF can not perfectly replicate

reality as phase-noise an nonlinearities will still be present. This residual is on average ∼85dB

down from the direct path and effectively set a local floor on the dynamic range. Looking at the

intersection, the moving vehicles are clearly visible and distinctly separate from the 0-velocity

clutter ridge. The SNR of the cars is strong enough such that their range sidelobes are clearly

visible and they may be potentially obfuscating some of the scene characteristics. The ∼1040

meter Doppler slice has a distinct periodic return spaced every ∼2.5m/s, likely corresponding to

the Doppler signature of a spinning fan-blade from an air-conditioning unit on one of the buildings.

There is also a notable non-zero Doppler extent of the clutter spanning 1050− 1250 which may

correspond to either slow moving vehicles or gradual sway of the light poles at the intersection.

This MF LFM case will act as a baseline for the other approaches as it is representative of a

traditional radar architecture.
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Figure 3.14: Range-Doppler Estimate for LFM CPI using the MF
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Figure 3.15: Range-Doppler Estimate for LFM CPI using the Straddle Compensated ISL LS MMF

Next, we observe the Straddle Compensated LS MMF for the LFM CPI shown in Figure 3.15.

Here the zoomed-out look appears largely the same, though the direct-path range sidelobes are

now further down. The residual from model uncertainty remains unchanged and still acts as a

fundamental bound. Looking at the intersection, the benefit of applying the LS MMF is now clearly

visible and the cars’ range sidelobes have effectively been mitigated and the Doppler signature are

more apparent, though the range mainlobe has been very slightly broadened. Overall, these filter

provide an enhanced view of the intersection, for a modest MML of 0.9dB.

As the other LS MMFs for the LFM CPI perform fairly similar response, we now elect to move

on and examine the PROFM CPI. First, the MF estimate is provided in Figure 3.16 where we
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Figure 3.16: Range-Doppler Estimate for PROFM CPI using the MF

see that the pulse-to-pulse variation of the direct path range-sidelobes has produced RSM 40dB

above the noise floor. This RSM in turn will effectively act as range varying noise floor which will

naturally degrade detection. The model uncertainty floor is still likewise present, though now the

RSM makes it less apparent that the LFM CPI. Examining the intersection, we see that while the

SNR of the vehicles is largely the same, the nearby clutter has produced RSM and the "effective"

SNR has been degraded by ∼10dB compared the the LFM baseline. However, unlike the LFM

MF, the car’s do not have any apparent range sidelobes as they are now lower (∼60dB down from

the mainlobe return) but spread in both range and Doppler.

Next, the range-Doppler response for the template-based LS MMFs and PROFM CPI is shown

in Figure 3.17. Here the MMF has lowered the pulse-to-pulse range sidelobes by ∼20dB, which

proportionally reduced the direct path RSM. However, as the filter length has increase by a factor

of 4, the direct path response is now extended in range to the point where the intersection RSM is

now higher that the MF case.

Examining the ISL LS MMF (without compensation) response in Figure 3.18, we see a similar

result where the MMF has reduced the direct path RSM and by directly minimizing sidelobes (as

opposed to matching a desired response) offers a slight improvement to RSM levels. However,

for this case a distinct Doppler-streaking behavior is now present corresponding to large scatters

which is due to the nature of how the beamspoiling was incorporated into the ISL objective. As
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Figure 3.17: Range-Doppler Estimate for PROFM CPI using the Template-based LS MMF

the ISL objective only constrains the zero-delay response to unity and "does not care" about the

beamspoiled delay indices, the resulting filter may induce a mainlobe response that varies pulse-

to-pulse. From the Fourier relationships, this equivalently corresponds to variation in the spectral

shape of the filter. This subsequently induces a mainlobe-modulation effect similar to that of RSM

and can not be compensated for using traditional Doppler-tapering or clutter cancellation. As the

template-based LS MMFs explicitly desires a specific response, this effect is implicitly avoided.

Additionally, since the mainlobe is higher energy than the sidelobes, mainlobe modulation results

in fairly significant (but localized) Doppler smearing. An extreme case of this phenomena was

observed in [124] where the transmit waveform spectral shape varied pulse-to-pulse to enable

spectral cohabitation, and this mainlobe modulation was present for both the LS MMF and the MF.

Post-processing techniques can be applied to help mitigate this effect [125, 126] but are outside

the scope of this work. Examining the intersection, we see that again the RSM has been further

suppressed relative to the template-based MMF, but the strong scatterers induce visible mainlobe

modulation.

The final range-Doppler map in Figure 3.19 uses the Straddle compensated ISL LS MMF

where, as expected from 3.13, this approach sees a slightly higher direct path RSM (∼1.5dB)

compared to the uncompensated ISL LS MMFs. However, incorporating straddle compensation

significantly reduces the mainlobe modulation, even though the degree of beamspoiling is identical
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Figure 3.18: Range-Doppler Estimate for PROFM CPI using the ISL LS MMF
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Figure 3.19: Range-Doppler Estimate for LFM CPI using the Straddle Compensated ISL LS MMF

that of the uncompensated case. As the straddle compensation effectively prevents high frequency

components in the filter-response, the possible MMF solution space has been slightly restricted

and thus, the resulting MMFs are more likely to share a consistent spectral shape. Thus, straddle

compensation implicitly reduces mainlobe modulation effects.
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Chapter 4

Mismatched Complementary on Receive Filtering

While the LS MMF approaches can provide an improvement in sidelobe level relative to the MF,

the objective functions are inherently overdetermined as discrete non-circular convolution results

in a response strictly longer than the filter length, which limits how well as single filter can perform.

As the filter dimensionality D increases sidelobe levels can be decreased further, however, longer

filters spread energy in range as seen in Figures 3.17-3.19. Additionally, longer filters inherently

increase computational burden and may face additional challenges when model deviations like

pulse-eclipsing or multiple time around clutter are present [81].

From a waveform design perspective, Golay [127] first proposed a method to address this lack

of dimensionality in which complementary sets of codes were designed so coherent combination of

their matched filter responses would (theoretically) achieve complete sidelobe removal. However,

these codes relied on instantaneous phase transition and were sensitive to hardware distortion and

straddling effects. In [128] it was experimentally demonstrated that complementary subsets of FM

waveform can instead be designed to prove robustness towards these limitations, but could not

achieve "perfect" sidelobe removal.

[129] extended the LS MMF work of Akroyd for binary phase codes to design sets of com-

plementary LS MMFs to minimize sidelobes for phase coded waveforms. Here this same phi-

losophy is taken on receive in which the degrees of freedom provided by agile CPI of random

FM waveforms are used to jointly design subsets of LS MMFs for FM waveforms that achieve

a complementary sidelobe cancellation and are robust to hardware and model mismatch effects.

Additionally, the incorporation of the range straddling uncertainty from Section 3.1, the resulting

filters yield robust performance for near critically sampled architectures (κ ≈ 1) and help prevent
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mainlobe modulation. However, there is no free lunch, as the complementary sidelobe cancella-

tion necessitates a reduction in unambiguous velocity and becomes less efficacious for scatterers

when there are Doppler shifts present within a complementary subset. This approach is denoted

mismatched complementary-on receive filtering, or MiCRFt (pronounced like “Mycroft” Holmes,

fictional elder brother of Sherlock Holmes) [130, 131].

4.1 MiCRFt Model

Consider the design of Q mismatched filters for a corresponding set of Q unique waveforms such

that, when the respective filter responses are combined, a complementary condition is achieved.

Here, the template-based LS MMF model of (2.34) is extended as

J =

∥∥∥∥∥p−
Q

∑
q=1

SH
q wq

∥∥∥∥∥
2

2

(4.1)

where Sq and wq are the convolution matrix and complementary filter for the qth waveform respec-

tively. Note, MiCRFt inherently relies on the use of unique waveforms within a complementary

subset as the repeated case will effectively simplify to a single LS MMF via linearity, i.e.,

¯̄rT =
Q

∑
q=1

rT
q

=
Q

∑
q=1

wH
q Sq

=
Q

∑
q=1

wH
q S

=

(
Q

∑
q=1

wH
q

)
S

= QwHS.

The summations can be posed as a single matrix multiplication by concatenating the convolution

matrices and filters as ¯̄SH =

[
SH

1 SH
2 · · · SH

Q

]
and ¯̄w =

[
wT

1 wT
2 · · · wT

Q

]T
which, after incorpo-
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ration of regularization, can be solved via the equivalent QP

min
¯̄w∗

¯̄wH (T̄+σ
2I
)

¯̄w−2Re
{

¯̄wH b̄
}

(4.2)

where

T̄ = ¯̄S ¯̄SH =



S1SH
1 S1SH

2 · · · S1SH
Q

S2SH
1

. . . ...
... . . . ...

SQSH
2 · · · · · · SQSH

Q


(4.3)

is now a DQ×DQ Toeplitz-block matrix and

b̄ = ¯̄Sp =



S1p

S2p
...

SQp


(4.4)

with

¯̄w =
(
T̄+σ

2I
)−1 ¯̄Sp (4.5)

corresponding to the optimal solution. Likewise, the ISL MiCRFt QP will be of the form

min
¯̄w∗

¯̄wH
(

T̄− ˜̄T+σ
2I
)

¯̄w

s.t. ¯̄wH ¯̄v = Q
(4.6)

where

˜̄T =



S̃1S̃H
1 S̃1S̃H

2 · · · S̃1S̃H
Q

S̃2S̃H
1

. . . ...
... . . . ...

S̃QS̃H
2 · · · · · · S̃QS̃H

Q


(4.7)
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is the rank-k beamspoiling downdate and ¯̄v=
[
vT

1 vT
2 · · · vT

Q

]T
is the DQ×1 vector of concatenated

zero-padded waveforms. (4.6) can again be solved using the KKT identity (Appendix A.2) and has

the solution

¯̄w =
Q

¯̄vH
(

T̄− ˜̄T+σ2I
)−1

¯̄v

(
T̄− ˜̄T+σ

2I
)−1

¯̄v. (4.8)

Prior to incorporating regularization or a QC, the objective function attempts to minimize the

error in D+N−1 equations using QD degrees of freedom, resulting in an underdetermined system

with infinite optimal solutions. With regularization, the solution space collapses to a single set of

filters that can suppress sidelobes (after coherent combination) to a much greater degree than a set

of individual LS MMFs (even without diagonal loading) due to the complementary property of the

filter response.

To illustrate the benefit of complementary design, two PROFM waveforms with a pulse du-

ration of 2µs and bandwidth of 33.3MHz was generated at a sample rate of 10GHz. A FIR anti-

aliasing filter was then applied followed by decimation to a yield simulated loopback configuration

with spectral oversampling factors of κ = 1.5 and κ = 6. The MFs were then generated with the

γ = 0 loopback waveform and applied to generate the aggregate filter response (coherent combina-

tion of both responses) shown in Figure 4.1 with κ = 1.5 and κ = 6 corresponding to the left and

right plots respectively. The black xs correspond to the “on-grid” response (γ = 0) while the blue

trace includes the continuum of off-grid shifts to better illustrate the filter performance in practice.

The respective MF PS is likewise provided in 4.2 where the enforced spectral containment of the

bandpass filter is again visible (high frequency components go to zero). Next, ISL LS MMF were

generated for each waveform with k = 2ceil{κ}, σ = 10−3

D Tr{SSH} and a length of D = 4N. The

resulting solutions oriented into a subset and then normalization in terms of their aggregate MML

as

¯̄wnorm =
Q√

¯̄wH ¯̄w
√

¯̄vH ¯̄v
¯̄w (4.9)

such that the response will have a peak corresponding to the subsets MML. The aggregate filter

response and filter PSs shown in Figures 4.3 and 4.3 respectively, where the LS MMF yields range
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Figure 4.1: Simulated Loopback MF Combined Response for Q=2 PROFM waveforms with κ =
1.5 (left) and κ = 6 (right)

sidelobes are ∼20dB lower than the MF. Next, a complementary subset of ISL objective MiCRFt

filters were designed using the same parameters and applied in the same manner to generate the

aggregate filter response and filter PSs in Figures 4.5 and 4.6 respectively. Here the complemen-

tary combination offers a significant reduction in sidelobe levels (40dB down from the MF) for

no additional MML. However, the lack of straddling compensation results a fairly significant rip-

pling/raising of near-in sidelobes for the κ = 1.5 case, though the off-grid response still generally

on par or better than the non-complementary ISL LS MMFs. Leveraging a template-based MiCRFt

formulation can provide robustness to straddling as illustrated in Figures 4.7 and 4.7, but it is once

again desirable to incorporate straddling robustness into the MiCRFt ISL formulation.

4.2 Incorporating Range Straddling Robustness

Range straddling robustness for MiCRFt can be incorporated in a similar manner to the LS MMF,

but now within a block matrix context. For the straddling model, the main-diagonal blocks (4.7) of

retain the same form of (3.1), but the off diagonal blocks now have a cross-correlation component

across pulses, (i.e. Ta,b = SaSH
b for i ̸= j. Fortunately, Ti,k still retains a banded-Toeplitz structure

(though it is not longer Hermitian) and the procedure of estimating the straddling cross-correlation
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Figure 4.2: Simulated Loopback MF PSs for Q=2 PROFM waveforms with κ = 1.5 (left) and
κ = 6 (right)
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Figure 4.3: Simulated Loopback ISL LS MMF Combined Response for Q=2 PROFM waveforms
with κ = 1.5 (left) and κ = 6 (right)
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Figure 4.4: Simulated Loopback ISL LS MMF PSs for Q=2 PROFM waveforms with κ = 1.5
(left) and κ = 6 (right)
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Figure 4.5: Simulated Loopback ISL MiCRFt Combined Response for Q=2 PROFM waveforms
with κ = 1.5 (left) and κ = 6 (right)
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Figure 4.6: Simulated Loopback ISL MiCRFt PSs for Q=2 PROFM waveforms with κ = 1.5 (left)
and κ = 6 (right)
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Figure 4.7: Simulated Loopback Template-base MiCRFt Combined Response for Q=2 PROFM
waveforms with κ = 1.5 (left) and κ = 6 (right)
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Figure 4.8: Simulated Loopback Template-base MiCRFt PSs for Q=2 PROFM waveforms with
κ = 1.5 (left) and κ = 6 (right)

matrix via
Ta,b = E {Sa (γ)SH

b (γ)}

= E

{
D−1

∑
i=0

Jisa (γ)sH
b (γ)JH

i

}

=
D

∑
i=−N+1

JiE {sa (γ)sH
b (γ)}JT

i

=
D

∑
i=−N+1

Ji

(w 0.5

−0.5
sa (γ)sH

b (γ)dγ

)
JT

i

(4.10)

can again be computed via a structured-straddling models of (3.11) as this approach independent

of the respective waveforms (e.g. γ is the only random variable) and the

Rγ,a,b =
1

Z2 IN×ZFH
(

Tγ ⊙ s f ,asH
f ,b

)
FIT

N×Z (4.11)

where Tγ is the same symmetric sinc-function covariance matrix taper (CMT) from (3.12). Addi-

tionally, all Ta,b sill correspond to D×D banded Toeplitz matrices with a matrix bandwidth of N
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that have the form

Ta,b =



t0,a,b · · · t−N+1,a,b 0 · · · 0
... . . . . . . . . . ...

tN−1,a,b
. . . . . . 0

0 . . . . . . t−N+1,a,b

... . . . . . . . . . ...

0 · · · 0 tN−1,a,b · · · t0,a,b


(4.12)

that can be constructed efficiently via a generalization of (3.6) as

tk,a,b =


∑

N−k
i=1

[
Rγ,a,b

]
i,i+k 0≤ k ≤ N−1

∑
N+k
i=1

[
Rγ,a,b

]
i−k,i −N +1≤ k ≤−1

0 else

. (4.13)

This straddle compensated representation can likewise be formed via truncated low-rank approxi-

mations of Rγ,a,b in the similar manner as Section 3.1.1, though here the singular value decompo-

sition is necessary as opposed to eigen decomposition. This low rank representation can then be

leveraged to enable efficient beamspoiling via low-rank Woodbury updates.

Straddle compensated ISL MiCRFt filters were then generated using the same parameters as

previous and used to generate the aggregate filter response and PSs in Figures 4.9 and 4.10 respec-

tively. Here we see that straddle compensated MiCRFt is not able to suppress the on-grid sidelobes

as far as, but the the on-grid samples have are now more commensurate with the continuum of

straddles. Interestingly, the PSs do not yield the same degree of high frequency nulling behavior

present with the individually designed filters on a per filter basis.
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Figure 4.9: Simulated Loopback Straddle Compensated ISL MiCRFt Combined Response for Q=2
PROFM waveforms with κ = 1.5 (left) and κ = 6 (right)
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Figure 4.10: Simulated Loopback Straddle Compensated ISL MiCRFt PSs for Q=2 PROFM wave-
forms with κ = 1.5 (left) and κ = 6 (right)
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Figure 4.11: MiCRFt Hessian before permutation (left), after permutation (middle), and zoomed
in to the permuted matrix (right)

4.3 Efficient Direct Solvers for MiCRFt

For the MiCRFt QP models, the hessian corresponds to a Toeplitz-block matrix. As outlined

in Section 2.7.5, a permutation matrix can be applied to yield a hermitian block-Toeplitz struc-

ture where the resulting matrix is likewise banded with a matrix bandwidth of QN as illustrated

in Figure 4.11. Similar to the direct LS MMF solvers in Section 3.2, the MiCRFt filters can

be solved efficiently through a banded Cholesky solver with O(Q2N2D) for the decomposition,

O(kQND) for the beamspoiling updates and O(QND) for the forward/backward substitution .

Alternatively, multi-channel levinson recursion can be used to solve for the structured inverse ma-

trix with O(Q3D2) complexity, and matrix-vector multiplication can be applied efficiently in the

frequency domain for a cost of O(Q2D log(2D)).

Unfortunately, MiCRFt does not yield an immediate structure that is as amenable to an iterative

solvers like PCG. For certain Toeplitz-block matrices, a Circulant-block approximation to T̄ can

be constructed by forming Circulant approximations for each block

Ci, j ≈ SiSH
j (4.14)

107



200 400 600 800 1000 1200 1400 1600 1800 2000 2200

Eigen value index (descending)

-60

-40

-20

0

20

40

60

1
0

 l
o

g
1

0
 (

)

Hessian

Circulant Approximation

Preconditioned Hessian

Figure 4.12: Preconditioning of MiCRFt QP

followed by concatenation into the block matrix

T̄≈ C̄ =



C1,1 C1,2 · · · C1,Q

C2,1 C2,2
. . . ...

... . . . . . . CQ−1,Q

CQ,1 · · · CQ,Q−1 CQ,Q


+σ

2I. (4.15)

which can be implemented efficiently using block-Fourier transforms and sparse Cholesky decom-

position [132]. However, the MiCRFt off-diagonal blocks (i.e., SiSH
j for i ̸= j) induce a transition

between the regularization and signal eigen subspace that is poorly approximated by Circulant ma-

trices. Consider the Q = 2 case from Figure 4.11 where a complementary subset was defined for

PROFM waveforms with κ = 1.5, D = 4N, and σ2 = 10−3

D Tr{ ¯̄S ¯̄SH}. Figure 4.12 illustrates the

eigen value distribution of QP Hessian, it’s Circulant-block approximation, and the resulting Hes-

sian after preconditioning. While the Circulant-block system matches the dominant eigenvalues of

the Hessian well, the transition to the regularization floor is poorly fit. Preconditioning approxi-

mately yields a division between these distributions, resulting in a large unclustered group and a

poor condition number.

However, an alternative representation of the MiCRFt solution via Woodbury’s identity can
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yield a reduced complexity implementation. However, doing so is restricted to the template-based

MiCRFt objective for κ ≈ 1 as incorporation of straddling uncertainty would increase the compu-

tational complexity (low-rank approximate or otherwise). This implementation applies an identity

to (4.5) as
¯̄w =

(
¯̄S ¯̄SH +σ

2I
)−1 ¯̄Sp

=
1

σ2
¯̄S
(

1
σ2

¯̄SH ¯̄S+ I
)−1

p

=
1

σ2
¯̄S

(
1

σ2

Q

∑
q=1

(
SH

q Sq
)
+ I

)−1

p

(4.16)

which alters the linear system to the (D+N−1)× (D+N−1) matrix

1
σ2

Q

∑
q=1

(
SH

q Sq
)
+ I (4.17)

which is no longer a Toeplitz matrix, but the Toeplitz and banded properties of SH
q and Sq can still

be leveraged for efficient construction. (4.17) retains a matrix-bandwidth of N, thus (4.16) can

be solved via banded-Cholesky decomposition and efficient Toeplitz matrix-vector multiplication

for an aggregate complexity of O(Q(D+N − 1) log(D+N−1)+N2(D+N − 1)+N(D+N −

1)) which will generally be faster than multi-channel Levinson. However, as (4.16) leverages

Woodbury’s identity, numerical precision errors may arise when using single precision and small

values of σ2.

The eigenvalue distribution of (4.17) does not have the same sharp transition and is more

amenable to PCG approaches. As the linear system is no longer Toeplitz but rather Toeplitz-like,

the Circulant preconditioners from Section 3.2.1 still improve convergence, but not to the same

degree as the LS MMFs as shown. Alternatively, a Truncated Circulant plus Block Preconditioner

can be formed via a Circulant approximation for the center-most D×D elements of (4.17) while

the first and last N
2 −1× N

2 −1 are left unchanged as illustrated in Figures 4.13. This precondi-

tioner can be generated with a O(
(N

2 −1
)3
) complexity, applied with O(

(N
2 −1

)2
+D log(D)),

and clusters the Hessian eigenvalues well, outside of a small number of low rank components as
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Figure 4.13: Example Toeplitz-like Matrix from (4.17) (left), it’s Circulant-approximation precon-
ditioner (middle), and a Truncated Circulant plus Block Preconditioner (right)
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Figure 4.14: Eigenvalue Distribution for Circulant Preconditioner (left) and Truncated Circulant
plus Block Preconditioner (right)

illustrated in Figure 4.14. PCG with this approach (denoted Precond 2) converges slower at first

relative to the Circulant preconditioner (denoted Precond 1), but after a certain point accelerates

and converges rapidly to the optimal solution as illustrated in Figures 4.15-4.16. That being said,

alternative preconditioners likely have the potential to further improve convergence with less com-

putational overhead.

4.4 MiCRFt Doppler Sensitivity and Aliasing

Complementary design across a subset effectively ignores the per-pulse sidelobe levels and instead

minimizes the aggregate response by inducing a coherent cancellation effect when summing across

the set. Thus, to achieve cancellation the slow-time phase progression must match the expected

110



0 10 20 30 40 50 60 70 80 90 100

Iteration

-100

-80

-60

-40

-20

0

20

R
M

S
 R

e
s
id

u
a
l 
E

rr
o
r

CG

Precond 1

Precond 2

0 10 20 30 40 50 60 70 80 90 100

Iteration

-100

-80

-60

-40

-20

0

20

R
M

S
 R

e
s
id

u
a
l 
E

rr
o
r

CG

Precond 1

Precond 2

Figure 4.15: MiCRFt Residual Error vs Iteration of PCG using Circulant Preconditioners for sub-
sets of Q = 2 PROFM Waveforms with κ = 1.5 (left) and κ = 6 (right)
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Figure 4.16: MiCRFt Residual Error vs Iteration of PCG using Circulant Preconditioners for sub-
sets of Q = 4 PROFM Waveforms with κ = 1.5 (left) and κ = 6 (right)
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Figure 4.17: Illustrative Q = 2 MiCRFt RSM for 1000 PROFM waveforms for stationary (left) and
moving (right) point scatterer

complementary design. However, when Doppler processing is performed (e.g, (2.90)), pulses

within a set will be phase shifted by the corresponding Doppler steering vector, resulting in a

deviation from the model in (4.1). Figure 4.17 illustrates this effect where complementary subsets

of Q = 2 MiCRFt filters are generated for 1000 PROFM waveforms and applied to a simulated

point scatter that is both stationary (zero-Doppler) on the left subfigure and moving at 10m/s on

the right. Here the RSM near zero Doppler has been suppressed as the slow-time phase progression

closely matches the complementary design, larger Doppler shifts correspond to RSM levels closer

to that of the MF.

This effect is not exclusive to MiCRFt and is a general artifact of complementary design. Tradi-

tional complementary processing contends with this effect by approximating the expected Doppler

shift within a subset as small (i.e. the unambiguous velocity is much larger than the fastest moving

scatterer). When this is the case, presumming can be applied across the subsets (in slow-time) prior

to Doppler processing. Note, this operation does not mitigate the complementary "decoherence"

and sidelobe levels will increase when a nonzero Doppler shift is present within a subset as shown

in Figure 4.17. Rather, presumming effectively induces a fixed range-sidelobe level unique to each

respective Doppler shift. As such, subsequent Doppler processing produces a unique PSF for ev-

ery respective Doppler slice, where the RSM levels are proportional to the range-sidelobes of each

Doppler shifted complementary subset. Since clutter typically contains the dominant scatterers,
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Figure 4.18: Illustrative Q = 2 MiCRFt RSM after presumming for 1000 PROFM waveforms for
stationary (left) and moving (right) point scatterer

Figure 4.19: Peak sidelobe level for MiCRFt subsets as a function of slow-time phase shift

the presumming operation can be tuned such that the complementary effect is maximized at the

expected clutter Doppler, resulting in suppression of RSM from clutter but a potential to increase

RSM from other moving scatterers (relative to the LS MMF). Additionally, presumming reduces

the effective PRF by a factor of Q, while likewise proportionally reduces the maximum unam-

biguous velocity. See Figure 4.18 for the same illustrative example, but now with presumming by

a factor of Q applied as well as Figure 4.19 for an example of MiCRFt peak-sidelobe-level as a

function of the-pulse-to-pulse phase change within a subset.
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4.5 MiCRFt Closed-Loop Experimental Assessment

To assess the efficacy of MiCRFt, the closed-loop experimental measurements from Section 3.3

were used to generate 500 Q = 2 complementary subsets of MiCRFt filters for the PROFM CPI of

1000 waveforms with the same filter length, regularization, and beamspoiling/template as before.

MiCRFt filters were generated using the template-based, the uncompensated ISL, and the straddle

compensated ISL objectives and applied to the loopback measurements to yield the aggregate filter

response and frequency spectrum illustrated in the left and right sides respectively of Figure (4.20).

The template-based MiCRFt yields a high fidelity spectral match with the desired response, and in

range yields a near perfect match down to -110dB. However, as this desired response accounts for

the anti-aliasing filter it has non-zero sidelobes that are higher than the other approaches. For the

ISL case without straddling compensation the range response has no sidelobes down to -100dB and

the aggregate spectrum has a smooth roll-off. However, as with the parallel LS MMF formulation,

the lack of straddling compensation may yield a broadening of this response and it will be suscep-

tible to mainlobe-modulation from variations in spectral shape. Lastly, the straddle compensated

ISL MiCRFt formulation yields a a broadened mainlobe relative the other approaches as well as

0.5dB more MML. However, it has lower near in sidelobes than the Template-based formulation

should be more robust than the uncompensated formulation.

Table 4.1 provides a list of the parameters using in this closed-loop assessment while Table 4.2

provides the corresponding order of complete for solving these filters. Note, for the Q = 2 case

multichannel levinson offers a rather efficient solution, though again levinson based approaches

are not as amenable to parallelization or hardware acceleration like PCG. Additionally, if the com-

plementary subset was increased to Q = 5 (shown in Table 4.3), levinson sees a large increase in

cost while the reformulated banded approach and PCG largely stay the same.
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Figure 4.20: Loopback MiCRFt Response for PROFM CPI and κ = 1.5

Measurement Parameters
Parameter Variable Value

Sample Rate fs 50MHz
3dB Bandwidth B 33.3MHz
Pulse Duration T 4.5µseconds

Samples in Waveform N 276
Fast-Time Filter Samples D 4N

Size of Complementary Subset Q 2

Table 4.1: Table of Experimental Parameters for PROFM CPI of 1000 waveforms

MiCRFt Order of Complexity
Direct 1.08E+10

Multi-channel Levinson 9.75E+06
Reformulated Banded 1.05E+08

Reformulated CG (10 iter) 1.73E+05
Reformulated CG (20 iter) 3.16E+05

Reformulated CG (100 iter) 1.47E+06

Table 4.2: Complexity for constructing MiCRFt Filters Q = 2

MiCRFt Order of Complexity
Direct 1.68E+11

Multi-channel Levinson 1.52E+08
Reformulated Banded 1.05E+08

Reformulated CG (10 iter) 2.16E+05
Reformulated CG (20 iter) 3.60E+05

Reformulated CG (100 iter) 1.51E+06

Table 4.3: Complexity for constructing MiCRFt Filters Q = 5
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Figure 4.21: MiCRFt RMS Open-Air Range Profile Estimates κ = 1.5

4.6 MiCRFt Open-Air Experimental Assessment

These respective MiCRFt approaches were then applied to the open-air experimental measure-

ments from (3.4) and presumming was performed to achieve the complementary effect, which

likewise halved maximum unambiguous velocity Q = 2. The RMS range response for respective

approach illustrated in Figure 4.21 where each of the MiCRFt approaches yields sidelobes 15-

20dB lower than their respective LS MMF counterpart. Additionally, even with the extended filter

length (D = 4N) the direct path sidelobes are not visible in the intersection the sidelobe floor is

now than the PROFM MF and has a level commensurate with the LS MMFs applied to the LFM

CPI. In the subfigure, we see that the template-based MiCRFt has the same high near-in sidelobes

as the LS MMF case, ISL MiCRFt has a broadened response relative to the expected loop-back

filter response due to straddling, while the straddle compensated ISL MiCRFt does not suffer from

this broadening but does not roll-off as fast as uncompensated case.

Next, Doppler processing was performed on the respective range profiles were again a Taylor
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Figure 4.22: Range-Doppler Estimate for PROFM CPI using the Template-based MiCRFt with
Q = 2 and κ = 1.5

window was applied to suppress Doppler sidelobes. Figure (4.22) first illustrates the template-

based MiCRFt approach where the reduction in unambiguous velocity is clear in the zoomed out

look on the left. Here the direct path RSM has been significantly reduced (∼40dB lower than the

MF) and the residual speckle corresponds to the model uncertainty floor as the expected sidelobe

level (based on the loopback measurements in Figure 4.20) would yield RSM 20dB below the

noise floor. The zoomed in look of the intersection reveals that MiCRFt provides an estimate of

the cars and their respective Doppler signatures as good as the non-agile LFM LS MMF case,

though there is a slight increase (2dB) in background speckle corresponding to either model errors

or raise sidelobes from MiCRFt’s Doppler sensitivity.

Next the ISL MiCRFt Range-Doppler estimate is illustrated in Figure 4.23. Here the direct path

RSM levels are identical to the template based approach since both cases are effectively model-

error limited. However, there is enough subset-to-subset spectral variation that the ISL case induces

notable mainlobe modulation. Relative to the ISL LS MMF, this Doppler spreading is∼6dB lower

and is roughly commensurate with the straddle compensate ISL LS MMF. This drawback makes

use of ISL MiCRFt nonviable for fully agile radar in practice, even if it can provide theoretically

lower pulse-to-pulse sidelobes than the template-based approach.

Finally, the straddle compensated ISL MiCRFt range-profiles were Doppler processed and the

corresponding figures are shown in Figure 4.24. The direct path RSM suppression is on par with
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Figure 4.23: Range-Doppler Estimate for PROFM CPI using the ISL MiCRFt with Q = 2 and
κ = 1.5

the other two approaches and the background speckle corresponds to the model fidelity limita-

tion. As with the LS MMFs, incorporation of straddle uncertainty effectively restricts the spectral

solution space, and the resulting range-Doppler map also does not see any mainlobe modulation,

though it incurs and additional 0.5dB of MML. Additionally, this MiCRFt does not see high-power

near in sidelobes like the template case, though the mainlobe roll-off has slightly broadened. Un-

fortunately, this dataset being model fidelity limited does not allow for full characterization of the

Doppler sensitivity of these respective approaches as RSM from the vehicles are likely below the

noise floor. As future work, it would be interesting to explore MiCRFt analysis on higher fidelity

measurements with a larger dynamic range.
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Figure 4.24: Range-Doppler Estimate for PROFM CPI using the Straddle Compensated ISL Mi-
CRFt with Q = 2 and κ = 1.5
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Chapter 5

Alternate Joint Range-Doppler Clutter Cancellation

Representations and Efficient Implementations

The joint representation of NIMPC can be extremely effective at suppressing clutter RSM, how-

ever, as the filters requires storage and inversion of a DM×DM matrix, computational complex-

ity acts as a bottleneck in practice. To enable solutions with practical merit, here we examine

computationally efficient implementations of NIMPC as well as alternative join-Dimension clutter

cancellation frameworks that offer significant complexity reductions.

5.1 Efficient Direct Solvers for NIMPC

The NIMPC filter model likewise follows a Toeplitz-Block form which allows for incorporation of

the multi-channel Levinson approach or a banded Cholesky approach when D > N. Additionally,

the Fourier relationship with respect to Doppler allows for some additional computational benefits

that enable efficient calculation of

x̂cc (ℓ,ω) = w̄H
cc (ω) ȳ(ℓ)

=
1

s̄H (ω)
(
R̄cc
)−1 s̄(ω)

s̄H (ω)(Rcc)
−1 ȳ(ℓ)

(5.1)

without explicitly performing (
R̄cc
)−1 s̄(ω)

for every Doppler bin.

First, by permuting to a Block-Toeplitz form and solving for inverse form via multi-channel
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levinson we have
R̄−1

cc =
(
J̄T J̄R̄ccJ̄T J̄

)−1

= J̄T (J̄R̄ccJ̄T)−1 J̄T

= J̄
(

T̄ f Ē−1
f T̄H

f − T̄bĒ−1
b T̄H

b

)
J̄T

(5.2)

which will have O(M3D2) complexity. Next [107], noted that s̄(ω) could be decomposed as

s̄(ω) = Da(ω) (5.3)

where a(ω) is the M×1 Doppler steering vector from (2.87) and

D =



v1 0 · · · 0

0 v2
. . . ...

... . . . . . . 0

0 · · · 0 vM


(5.4)

is a DM×M matrix composed of the zero-padded waveform for every direction. Thus, only M

systems of equations need to be solved as

D̃ =
(
R̄cc
)−1 D (5.5)

to construct the NIMPC filter for every Doppler. Using the block-Toeplitz inverse form, D̃ can

be solved with O(M3(D+N− 1) log(D+N−1)) (though parallel processing for each of the M

vectors in D̃ can yield a O(M2(D+N−1) log(D+N−1)) cost). In total, solving for the NIMPC

filters via the multi-channel levinson approach will have a cost of

O(M3D2 +M3(D+N−1) log(D+N−1))

where the dependency on M3 can still be a practical hindrance.

As an alternative, when the number of "cancellation" directions Kc ≪ M it is beneficial to
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repose (5.5) in a similar manner to (4.16) by expanding

(Rcc)
−1 D =

(
σ

2
c

˜̄S ˜̄SH +σ
2
n I
)−1

D

=
1

σ2
n

D− 1
σ4

n

˜̄S
(

1
σ2

n

˜̄SH ˜̄S+
1

σ2
c

I
)−1

˜̄SHD
(5.6)

using woodbury’s identity where the Kc(D+N−1)×Kc(D+N−1) matrix

˜̄SH ˜̄S =
M

∑
m=1



SH
mSm e

j(ω2−ω1)
m−1
fpr f SH

mSm · · · e
j(ωKc−ω1)

m−1
fpr f SH

mSm

e
j(ω1−ω2)

m−1
fpr f SH

mSm SH
mSm

...
... . . . ...

e
j(ω1−ωKc)

m−1
fpr f SH

mSm · · · · · · SH
mSm


(5.7)

is a Block-Toeplitz matrix with K2
c blocks of Toeplitz-like matrices

M

∑
m=1

e
j(ωa−ωb)

m−1
fpr f SH

mSm

that have a matrix-bandwidth of N. (5.6) is then broken into four significant operations as

(Rcc)
−1 D =

1
σ2

n
D− 1

σ4
n

˜̄S
(

1
σ2

n

˜̄SH ˜̄S+
1

σ2
c

I
)−1

˜̄SHD

=
1

σ2
n

D− 1
σ4

n

˜̄S
(

1
σ2

n

˜̄SH ˜̄S+
1

σ2
c

I
)−1

U1

=
1

σ2
n

D− 1
σ4

n

˜̄SU2

=
1

σ2
n

D−U3

= U4

(5.8)

where U1 and U3 are implemented via efficient Toeplitz-block matrix-vector multiplication for

O(KcM2(D+N−1) log(D+N−1)) and O(K2
c M(D+N−1) log(D+N−1)) respectively, while

solving U4 requires only negligible elementwise operations. The matrix inversion can be solved
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via a banded-block Cholesky decomposition or multichannel levinson recursion on

1
σ2

n

˜̄SH ˜̄S+
1

σ2
c

I

where Cholesky decomposition will cost O(Kc2N2(D+N−1)) and forward/backward substitu-

tion for all M vectors of U1 =
˜̄SHD will have complexity of O(KcNM(D+N−1)), while multi-

channel levinson will cost O(K3
c (D+N− 1)2) to yield the inverse matrix and O(MK2

c (D+N−

1) log(D+N−1)) will be the cost the subsequent matrix-vector multiplication. Thus, the total

complexity for this formulation with be on the order of

O(Kc2N2(D+N−1)+KcNM(D+N−1)

+KcM2(D+N−1) log(D+N−1)+K2
c M(D+N−1) log(D+N−1))

for a Cholesky approach and

O(K3
c (D+N−1)2 +MK2

c (D+N−1) log(D+N−1)+KcM2(D+N−1) log(D+N−1))

for the multichannel Levinson approach.

[107] also noted that D̃H ȳ(ℓ) follows a convolution relationship with range, and thus

aH (ω) D̃H ȳ(ℓ)

could be applied for all range and Doppler via frequency domain convolution and FFT-based

Doppler processing. However, [107] did not examine speedups for computing the unity scaling

1

s̄H (ω)
(
R̄cc
)−1 s̄(ω)

or the noise scaling
1∥∥∥(R̄cc
)−1 s̄(ω)

∥∥∥ =
1√

nc(ω)
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which is typically necessary in practice to avoid significant distortion across Doppler. Without

speedups, forming these denominators requires computing the filter for each of the K Doppler

slices (where K ≥M) that are to be estimated, yielding a cost of O(KMD+MDK log(K)) using

(5.3) and (5.5), which at best K = M yielding a cost of O(M2D+M2D log(M)) but in practice

K > M to minimize the loss from straddling in Doppler.

To compute the scale factors efficiently, evaluating

gc(ω) = s̄H (ω)
(
R̄cc
)−1 s̄(ω)

= aH (ω)DHD̃a(ω)

= aH (ω)Ga(ω)

(5.9)

yields a M×M hermitian matrix G that can be used to perform our efficient implementation. Note,

to incorporating Doppler windowing one can simply weight the respective columns of G by the

respective window at this stage. Next, as a(ω) corresponds to complex exponential, (5.9) can be

rearranged and expressed as the frequency transform [109, 133] as

gc(ω) =
M+1

∑
m=−M+1

e
− jω m

fpr f gm (5.10)

where

gm =


∑

M−m
i=1 [G]i,i+m 0≤ k ≤M−1

∑
M+m
i=1 [G]i−m,i −M+1≤ k ≤−1

(5.11)

is the sum of mth the diagonal of G. As (5.10) is simply the two-sided Fourier transform of

the gm coefficients, the scaling for each Doppler bin can be computed efficiently via FFTs with

O(K log(K)) cost after computing DHD̃ which, using the sparsity of D, has a O(M2D) complexity.

Thus, the total complexity is O(M2D+K log(K)) which laregly removes scaling with K as the

K log(K) operation will typically be negligible.
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The filter scaling of
1∥∥∥(R̄cc
)−1 s̄(ω)

∥∥∥ =
1√

nc(ω)

which retains a uniform noise floor is a more challenging case. It can likewise be expressed as

nc(ω) = s̄H (ω)
(
R̄cc
)−2 s̄(ω)

= aH (ω) D̃HD̃a(ω)

= aH (ω)Ga(ω)

(5.12)

which requires evaluating the matrix-multiplication D̃HD̃ that does not have a sparse structure,

yielding a cost of O(M3D). The aggregate cost is then O(M3D+K log(K)) which has an increase

in order by M, relative to the unity scaling, and may not always be faster than direct evaluation

using (5.3) and (5.5) ( O(KMD+MDK log(K)) ). Ignoring the standalone K log(K) term in the

efficient implementation, removing the common scaling with D, and expressing K = aM as a

multiplicative size increase by the scalar a≥ 1, we can define the relationship

M3 < aM2 +aM2 (log(M)+ log(a))

to determine if this implementation will have be more computationally efficient for a particular

value of a and M. This trend is illustrated in Figure 5.1 where the dashed lines correspond to the

complexity scaling with the proposed approach (M3) and full lines correspond to a direct approach

(aM2 +aM2 (log(M))a). Here, for small M this alternative implementation but the scaling with M

reveals that generally the other approach is more efficacious. However, as
(
R̄cc
)−1 is hermitian

and has already been decomposed to yield D̃, a second application of

˜̃D =
(
R̄cc
)−1 D̃ (5.13)

can be applied without a second decomposition of R̄cc, such that the sparsity of D can be leveraged
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Figure 5.1: Scale of complexity to preserve uniform noise floor as a function of Doppler oversam-
pling

to compute

G = DH (R̄cc
)−2 D

= DH (R̄cc
)−1 D̃ = DH ˜̃D

(5.14)

with O(M2D) complexity and thus the noise-scale factor will have a cost of O(M2D+K log(K)).

Though again, the reduction in complexity for this approach will be dependent on what initial

solver was used for R̄cc as forming (5.13) will require an additional forward-backward substitution

or inverse Block-Toeplitz multiply. As such, there remains further room for complexity reduction.

Similar to MiCRFt, the Toepltiz-block structure may be leveraged to iteratively approximate

the NIMPC filters using PCG with block-Circulant preconditioners via (4.15), but again these

approaches tend to leave an unclustered group of eigenvalues that slow convergence. That being

said, PCG does not require explicit storage of R̄cc, which provides some practical benefits. Even

without a preconditioner, CG should converge in at most Kc(D + N) iterations (corresponding

to how many unclustered eigenvalues there are) and has a per iteration cost of O(KcM(D+N−
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1) log(D+N−1)). Meaning for complete convergence for all M vectors in D, the complexity

would be O(K2
c M2(D+N)2 log(D+N−1)), though stopping early can often yield filters just as

efficacious. I did explore said implementation further in [134], but I have since concluded that for

this NIMPC framework the direct approaches proposed in the previous section typically offer more

efficacious solutions and a manageable computational burden. That being said, a reposing of the

NIMPC clutter cancellation approach yields a model that is extremely amenable to PCG and can

provide a reduction in complexity by several orders of magnitude.

5.2 NIMPC as a Projection

Alternatively, a nullspace projection away from Kc Doppler frequencies similar to (2.115) can

likewise be formulated for the NIMPC model. Unlike (2.115), this NIMPC nullspace projection

(Proj-NIMPC) requires incorporation of the fast-time dimension to retain the joint range-Doppler

structure. As such, the projection objective must utilize the "full" receive model (akin to 2.21) to

subsume all fast-time snapshots. This approach is inspired by the extensive cancellation algorithm

[135, 136] used in passive bistatic radar [137]. From a high level, ECA leverages the fast-time

Doppler model of (2.76) to form a projection onto the nullspace of clutter. Here, this philosophy is

generalized for a pulsed-agile-radars, where by the "full" range model of (2.21) and the respective

slow-time approximations from (2.83) are combined to yield a projection that can be implemented

extremely efficiently.

Again, the absence of multiple-time-around-clutter and pulse eclipsing is assumed for brevity,

though, they can be incorporated into Proj-NIMPC without loss of generality. Thus, the "full"

LM×1 fast-time slow-time receive vector is expressed as

u̇ = ∑
ω∈Ω

V̇(ω) ẋ(ω)+ ṅ (5.15)

where

u̇ =

[
uT

1 uT
2 · · · uT

M

]T

(5.16)
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is the concatenated L×1 measurement vectors for each pulse,

V̇(ω) =

[
e

jω 0
fpr f VT

1 e
jω 1

fpr f VT
2 · · · e

jω M−1
fpr f VT

M

]T

(5.17)

is the ML× (L−N +1) collection of concatenated L× (L−N +1) convolution matrices

Vm =



s1,m 0 · · · 0
... . . . . . . ...

sN,m
. . . 0

0 . . . s1,m

... . . . . . . ...

0 · · · 0 sN,m


, (5.18)

ẋ(ω) is a (L−N +1)×1 vector of fast-time complex scattering coefficients for Doppler frequency

ω and ṅ is the ML×1 collection of noise samples.

A projection onto the nullspace of all range samples spanning the Ω̃ Doppler swath is then

formed by minimizing

J = ∥u̇− ˜̇Vγ∥2 (5.19)

where

˜̇V =

[
V̇(ω̃1) V̇(ω̃2) · · · V̇(ω̃Kc)

]
(5.20)

which yields the LM×LM projection matrix

Γ̇cc = I− ˜̇V
(

˜̇VH ˜̇V
)−1 ˜̇VH . (5.21)

Unlike the original form of NIMPC, Proj-NIMPC’s storage and complexity are dominated by the
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Kc (L−N +1)×Kc (L−N +1) Hermitian Toeplitz-Block-Toeplitz matrix

˜̇VH ˜̇V =
M

∑
m=1



VH
mVm e

j(ω2−ω1)
m−1
fpr f VH

mVm · · · e
j(ωKc−ω1)

m−1
fpr f VH

mVm

e
j(ω1−ω2)

m−1
fpr f VH

mVm VH
mVm

...
... . . . ...

e
j(ω1−ωKc)

m−1
fpr f VH

mVm · · · · · · VH
mVm


(5.22)

that does not scale with the slow-time dimension (M) and can be much cheaper than NIMPC when

Kc ≪ M. The clutter-canceled range-Doppler estimate is then formed by applying (5.21) to the

measurements as

u̇cc = Γ̇ccu̇ (5.23)

followed by standard range-Doppler matched filtering, though LS MMFs, MiCRFt, or APC can

likewise be applied.

5.2.1 Efficient Solvers for Proj-NIMPC

To develop efficient solvers for Proj-NIMPC, the projection is separated as

u̇cc = Γ̇ccu̇

= u̇− ˜̇V
(

˜̇VH ˜̇V
)−1 ˜̇VH u̇

= u̇− ˜̇V
(

˜̇VH ˜̇V
)−1

u̇1

= u̇− ˜̇Vu̇2

= u̇− u̇3

(5.24)

which has four major operations. First, there is a Toeplitz-block matrix-vector multiplication

u̇1 =
˜̇VH u̇ (5.25)
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followed by a Toeplitz-Block-Toeplitz linear system solve

(
˜̇VH ˜̇V

)
u̇2 = u̇1 (5.26)

another Toeplitz-block matrix-vector multiplication

u̇3 =
˜̇Vu̇2 (5.27)

and a final vector-vector subtraction

u̇cc = u̇− u̇3. (5.28)

Operations (5.25) and (5.27) can be computed efficiently with frequency domain multiplication

with a complexity of O(KcML log(L)) and is extremely parallelizable (O(L log(L))), while (5.28)

has a negligible cost as it corresponds to trivial elementwise subtraction (O(MD)). As such, the

computational complexity is largely dominated by the KcL×KcL Toeplitz-block-Toeplitz linear

system solve in (5.26), which can be permuted to yield a multi-channel levinson complexity of ei-

ther O(K3
c L2) or O(L3K2

c ), though Kc≪ L so the former is more desirable. Banded-Cholesky will

typically offer even lower complexity as the decomposition will cost O(K2
c N2L) and forward back-

ward substitution will be O(KcNL). The aggregate order of complexity (without parallelization)

for a direct solution for Proj-NIMPC would then be

O(KcML log(L)+K3
c L2)

using a multi-channel levinson approach and

O(KcML log(L)+K2
c N2L+KcNL)

for a Cholesky approach.

Proj-NIMPC is also very amenable to a PCG implementations. As the Hessian is now Toeplitz-
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block-Toeplitz, an additional computational speedup is possible where and the per iteration matrix-

vector multiplication can be performed with O(LKc log(2Kc) log(L)) by leveraging the Toeplitz

properties in both domains.

While one would expect Circulant-block preconditioners (4.15) (or even Circulant-Block-Circulant)

to offer adequate performance as each block is Toeplitz, empirically diagonal-block Circulant of

the form

C̄ =



C 0 · · · 0

0 C . . . ...
... . . . . . . 0

0 · · · 0 C


+σ

2I (5.29)

where C is the Circulant approximation to ∑
M
m=1 VH

mVm provides exceptional convergence and

multiplication with it’s inverse can be applied in O(KcL log(L)) per iteration (or parallelized to

O(L log(L))). The more sophisticated Circulant-block preconditioner generally converges slightly

slower and has a cost of O(K2
c L+KcL log(L)) for inverse construction (via Cholesky decomposi-

tion) and a per iteration cost of O(KcL+KcL log(L)) (though, again the FFTs can be parallelized

for an alternative per iteration complexity of O(KcL+ L log(L))). Figure provides an example

PCG performance for a somewhat extreme case where M = 1000 PROFM waveforms with κ = 6

and N = 950 were used to define a projection applied to a receive interval of L = 10,000 samples

and Kc = 20 Doppler steering vectors spanning ±20m/s defined the projection span. Even though

the diagonal-block Circulant preconditioner does not account for the off-diagonal contributions of

the hessian, it out-paces CG and the Circulant-block preconditioner and has practically converged

after only 10 iterations.

5.3 Open-Air Experimental Assessment

We now seek to apply these efficient NIMPC implementation to the open-air experimental PROFM

CPIs used in Sections 3.4 and 4.6. To give a sense of complexity improvement, the corresponding

parameters and dimensionality are tabularized in Table 5.1. Note, that while the 4.5µsecond pulse
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Figure 5.2: Illustrative PCG performance of Proj-NIMPC

duration would normally correspond to N = 225 samples, here the value of N = 276 is used as the

corresponding MFs and linear models are constructed using hardware-in-the-loop measurements

of sm where the respective anti-aliasing filter has led to an extended response. As the clutter ride is

relatively narrow for our case, the clutter cancellation dimensionality was set to Kc = 3 where the

corresponding clutter Doppler shifts were set to -5, 0, and 5Hz.

For these parameters were used to evaluate the order of complexity for solving D̃ with NIMPC

or applying Proj-NIMPC for various implementations as provided in Table 5.2. Likewise, Table 5.3

provides a tabularized look at order of complexity when using the respective approaches perform

range-Doppler estimation. Here the text in parenthesis corresponds to the respective solver used

with chol corresponding to Cholesky decomposition, lev corresponding to multi-channel Levinson

recursion, and PCG for a fixed number of iterations. The Reformulated NIMPC values correspond

to the Woodbury form from (5.6) and leverage the efficient unity gain formulation from (5.10) when

performing range-Doppler processing. Note, these values are not true flop counts as complexity

notation drops constants and redundant scalars, rather, these numbers are here to just provide a
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Measurement Parameters
Parameter Variable Value

Sample Rate fs 50MHz
3dB Bandwidth B 33.3MHz
Pulse Duration T 4.5µseconds

Samples in Waveform N 276
Number of Pulses M 1000

Fast-time Samples processed L 2500
Fast-Time Filter Samples D N
Number of Doppler Bins K 3000
Number of Clutter Bins Kc 3

NIMPC CNR σ2
c /σ2

n 105

Table 5.1: Table of Open-Air Experimental Parameters for PROFM CPI of 1000 waveforms

sense of scalability and performance.

The reformulated NIMPC approach solvers see a ∼3 orders of magnitude improvement in

complexity order over that of the approach from [107] as Kc is fairly small. As Kc approaches M,

these orders of complexity will start to converge, however, the efficient calculation of the unity

scale factor will always provide a reduction in complexity. For this particular CPI, the multi-

channel levinson approaches were the most efficient direct solvers which likely relates to the fact

that D=N and may not always be true in general. The direct implementations of Proj-NIMPC sees

another complexity reduction of ∼ 1−2 orders of magnitude over their NIMPC counterparts. The

iterative approximation of Proj-NIMPC yields further complexity reduction over their respective

direct solvers and also provide additional parallelization storage benefits not illustrated by the order

of complexity. However, unlike the NIMPC filter approaches, Proj-NIMPC cannot provide a unity

gain response and some distortion will be present in the Doppler-bins near the respective clutter

cancellation swath.

Next the direct NIMPC filters were solved using the reformulated framework and applied to

the open-air measurements. First, we examine the a baseline in Figure 5.3 where the NIMPC filters

leveraged the unity scale factor. Again the left range-Doppler image corresponds to a zoomed out

look that includes the direct path contribution while the right image focuses on the intersection with

cars. Here NIMPC is able to suppress the direct path RSM to the same floor the MiCRFt achieved
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Order of complexity to form filters/apply projection
NIMPC (Brute Force) 2.10E+19
Efficient NIMPC [107] 7.62E+13

Reformulated NIMPC (Lev) 1.51E+10
Reformulated NIMPC (Chol) 1.59E+10

Proj-NIMPC (Lev) 2.53E+08
Proj-NIMPC (Chol) 1.80E+09

Proj-NIMPC (PCG 5 iter) 8.62E+07
Proj-NIMPC (CG 5 iter) 8.56E+07

Table 5.2: Complexity for solving D̃ with NIMPC or applying Proj-NIMPC

Aggregate order of complexity for range-Doppler processing
NIMPC (Brute Force) 2.10E+19
Efficient NIMPC [107] 7.62E+13

Reformulated NIMPC (Lev) 4.72E+10
Reformulated NIMPC (Chol) 4.80E+10

Proj-NIMPC (Lev) 3.72E+08
Proj-NIMPC (Chol) 1.92E+09

Proj-NIMPC (PCG 5 iter) 2.05E+08
Proj-NIMPC (CG 5 iter) 2.04E+08

Table 5.3: Complexity for Range-Doppler Processing with NIMPC and Proj-NIMPC
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Figure 5.3: Range-Doppler Estimate for PROFM CPI using the NIMPC with unity gain scaling

but without the reduction in unambiguous velocity. The Doppler profiles of the intersection is

likewise fairly clean and no clear sidelobes are visible since the transmit waveforms are unique

pulse-to-pulse. As with MiCRFt, there is still residual background speckle/noise slightly higher

than that of the LFM case, possibly due to RSM from the non-zero Doppler cars or from signal

model-error. Additionally, the clutter ridge itself appear super-resolved in range and Doppler.

This effect stems from the relationship between the LS MMF and NIMPC, as the trivial M = 1

case would yield a NIMPC filter equivalent to the ISL LS MMF without any beamspoiling. As

this super-resolution effect will likely induce significant noise gain (especially since D = N), the

clutter ridge estimates are prone to errors and would likely be excised from any detector outputs.

To illustrate this noise sensitivity, next these same NIMPC filters were used to generate the uni-

form noise scaling denominator, and this respective range-Doppler provided in Figure 5.4. Here

the clutter ridge and some of the adjacent scattering has now been suppressed and the remain-

ing signatures all correspond to presumed moving non-zero Doppler scattering. The consistent

noise power across Doppler acts as a convenient surface for subsequent detection, however, it will

increase the computational burden relative to the unity scale factor.

Next, Proj-NIMPC was applied to the measurements and subsequent range-Doppler estimation

was performed using the MF as illustrated in Figure 5.5. As NIMPC is a projection, there is now

a distinct null near zero-Doppler and adjacent bins are either slightly suppressed or distorted. The
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Figure 5.4: Range-Doppler Estimate for PROFM CPI using the NIMPC with consistent noise
power scaling

noise scaling parameter for Proj-NIMPC can likewise be computed, however doing so is compu-

tationally intensive. Thus, there will generally be some small but unknown noise distortion with

Proj-NIMPC. That being said, the RSM suppression is on par with that of NIMPC for a much

lower computational cost and the intersection estimate is fairly consistent with all previous results.

Using the same parameters, 5 iterations of CG were performed in order to approximate Proj-

NIMPC. The resulting range Doppler map is shown in Figure 5.6 where the direct path and inter-

section RSM has been suppressed by ∼20dB relative to the matched filter. That being said, this

approximation with only 5 iterations and no preconditioner could not achieve the same estimate

fidelity as the direct approaches. Next PCG is used to approximate Proj-NIMPC with the diagonal-

block Circulant preconditioner as shown in Figure 5.7 where after only 5 iterations, PCG is able to

yield effectively same the RSM suppression as the direct solver.
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Figure 5.5: Range-Doppler Estimate for PROFM CPI using direct solution of Proj-NIMPC
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Figure 5.6: Range-Doppler Estimate for PROFM CPI using 5 iterations of CG to approximate
Proj-NIMPC
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Figure 5.7: Range-Doppler Estimate for PROFM CPI using 5 iterations of PCG to approximate
Proj-NIMPC
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Chapter 6

Robust Adaptive Pulse Compression

While the LS approaches can offer improvements over the MF, they often necessitate some form of

tradespace, (e.g., the complementary subset combination of MiCRFt, or canceling certain Doppler

slices with NIMPC) to yield enough DoF to sufficiently suppress RSM (to the model error/noise

floor). The APC approaches on the other hand, offer improved sidelobe suppression, but are more

computationally intensive and are not robust to straddling unless the 3dB spectral oversampling

is large. Here we seek to extend the straddling compensation framework to the APC and provide

alternative techniques and representations to offer a more manageable computational load.

6.1 Incorporating Range-Straddling Model Uncertainty

Similar to the approach in Section 3.1, range straddling in APC can be addressed by incorpo-

rating model based uncertainty. In [102], the effects of sub-sample straddling with LFM chirp

waveforms were compensated via a CMT weighting on the structured covariance. For an arbitrary

waveform, this same framework is not necessary extensible, though, if the passband-waveform is

characterized by a specific phase-basis, i.e., [50, 115–118], a similar CMT methodology can be

derived. [138, 139] attempted to directly estimate the straddling offset in a manner akin to [92],

but again required a phase-based waveform model and necessitated additional refinement stage

that increased computational burden or required a dimensionality reduction (less adaptive DoF).

However, these phase-based models do not typically incorporate distortion induced by the RX anti-

alias filter, which may be significant for waveforms less spectrally contained than chirps. Thus, we

again leverage loopback captures of the waveform to formulate our recieve model and incorporate
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straddling uncertainty via the interpolation-based approach from Section 3.1.

Under the assumption that range-straddling is independent from the scatterer-variance, the

straddle-uncertain structured covariance will have the form

Rs(ℓ) = E {S(γ)P(ℓ)SH (γ)}

= E

{
D−1

∑
i=−N+1

pi+N(ℓ)Jis(γ)sH (γ)JH
i

}

=
D

∑
i=−N+1

pi+N(ℓ)JiE {s(γ)sH (γ)}JT
i

=
D

∑
i=−N+1

pi+N(ℓ)Ji

(w 0.5

−0.5
s(γ)sH (γ)dγ

)
JT

i

(6.1)

where

pi(ℓ) = Pi,i(ℓ)

corresponds to the diagonal elements of the D+N−1×D+N−1 estimate source covariance P(ℓ)

and Ji is a reversing and shifting matrix such that matrix-vector multiplication with an arbitrary

N×1 vector b yields a D×1 vector

x = Jib

with at most N nonzero elements

xd =


bi−d 1≤ i−d ≤ N

0 else
(6.2)

for d = 1,2, · · · ,D.

As with the LS MMFs, the only unknown in (6.1) is the straddled-signal correlation matrix

E {s(γ)sH (γ)}=
w 0.5

−0.5
s(γ)sH (γ)dγ = Rγ (6.3)
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which can be approximated via a sample correlation matrix or the sinc interpolation model

Rγ =
1

Z2 IN×ZFH (Tγ ⊙ s f sH
f
)

FIT
N×Z (6.4)

from Section 3.1 where Tγ is the respective sinc-CMT. (6.1) reveals that Rs(ℓ) retains a matrix-

bandwidth of N and hermitian structure (since Rγ is a hermitian matrix). Note, Rγ can again be

approximated as low-rank to enable efficient beamspoiling downdates.

As general model uncertainty covariance is corresponds to the diagonal of (6.1),

Rz(ℓ) = σ
2
z I⊙Rs(ℓ)

too can be written in terms of the straddled-signal correlation matrix and can the be constructed

via
Rsz (ℓ) = Rs (ℓ)+Rz (ℓ)

=
D

∑
i=−N+1

pi+N(ℓ)JiRγJT
i +σ

2
z I⊙

(
pi+N(ℓ)JiRγJT

i
)

=
D

∑
i=−N+1

pi+N(ℓ)JiRγ,zJT
i

(6.5)

where

Rγ,z = Rγ +σ
2
z I⊙Rγ (6.6)

is the straddled-signal plus model uncertainty correlation matrix.

Next, straddling uncertainty is incorporated into the cross correlation component as

ryx(ℓ) = E {S(γ)}E {x(ℓ)x∗ (ℓ)}

= ρ (ℓ)E {S(γ)}e

= ρ (ℓ)E {v(γ)}

= ρ (ℓ)vγ

(6.7)
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which again follows the derivation in (3.5) and (3.13) as

vγ =

[
0T sT

γ 0T

]T

(6.8)

where
sγ =E {s(γ)}

=
w 0.5

−0.5

1
Z

IN×ZFH (d(γ)⊙ s f
)

dγ

=
1
Z

IN×ZFH (d̃⊙ s f
) (6.9)

and

d̃ = sinc
(

1
Z

z̃
)

acts as a frequency domain sinc taper.

For illustration purposes, this straddle-uncertainty was incorporated into the simulated APC

configuration from Section 2.3. The left side of Figure 6.1 again shows the APC estimates for

the κ = 1.5 when using beamspoiling, model uncertainty (to approximate the errors due to range

straddling), and a unity constraint. Here, the dominant scatterer in the middle does not cohere to

a single point and induces a roll-off due to straddling, masking the neighboring signatures. On

the right side of the same figure, the same APC configuration was used, however, rather than

approximating the straddling error with the generic model uncertainty parameter, the straddling

compensation from (6.4) was used. Here all five sources are easily distinguished, and the roll-

off from the dominant source is no longer present. Looking at the range-varying noise-power in

Figure 6.2, we see that incorporation of straddling likewise offers a significant improvement in

SNR as the structured covariance is more representative of the true measurements. For the κ = 6

estimates and noise powers in Figures 6.3 and 6.4 respectively, a similar trend is observed where

the incorporation of straddle uncertainty improves the source separability and less overall noise

gain.
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Figure 6.1: Simulated APC estimate for κ = 1.5 recieve measurements using beamspoiling, model
uncertainty, and a unity constraint (left) vs beamspoiling, straddle uncertainty, and a unity con-
straint (right)
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Figure 6.2: Simulated APC noise power for κ = 1.5 recieve measurements using beamspoiling,
model uncertainty, and a unity constraint (left) vs beamspoiling, straddle uncertainty, and a unity
constraint (right)
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Figure 6.3: Simulated APC estimate for κ = 6 recieve measurements using beamspoiling, model
uncertainty, and a unity constraint (left) vs beamspoiling, straddle uncertainty, and a unity con-
straint (right)
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Figure 6.4: Simulated APC noise power for κ = 6 recieve measurements using beamspoiling,
model uncertainty, and a unity constraint (left) vs beamspoiling, straddle uncertainty, and a unity
constraint (right)
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6.1.1 Filter Beamspoiling

Rather than the covariance downdate/beamspoiling from Section 2.4.2, a “filter beamspoiling” ap-

proach akin to the template-based LS MMF framework can likewise be posed to help mitigate

straddling degradation and MML. In [93] a localized "beamspoiling matrix" approach was exam-

ined using the structured covariance model of

R̃s = S̃P̃S̃H (6.10)

where

S̃ =
[
S D−N

2 −Z · · · S D−N
2
· · · S D−N

2 +Z

]
(6.11)

are the center 2Z+1 columns of S corresponding to the matched filter mainlobe (i.e., Z = ceil{κ}−

1) and P̃ is a diagonal matrix with

diag{P̃}=
[
p D−N

2 −Z · · · p D−N
2
· · · p D−N

2 +Z

]
(6.12)

are the respective 2Z +1 source components where Pi,i = pi which excludes the delay index ℓ for

notational convenience. Note, this localized correlation matrix is similar to the downdate form in

(2.65), however, this localized covariance additionally includes the center (D−N
2 ) elements. This

beamspoiling matrix was then incorporated into the RMMSE filters as

w =
1

vHv
R−1

yy R̃sv (6.13)

where the beamspoiling matrix is effectively undoing the superresolution (i.e. decorrelating) effect

imposed by the matrix inversion so that the estimated response does not collapse to nonphysical
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point scatterers. Observe that when Z is set to zero (6.13) simplifies to (2.64) via

w =
1

vHv
R−1

yy
(
vρ (ℓ)vH)v

= ρ (ℓ)R−1
yy v

.

This approach can be generalized by relating (6.13) back to the original RMMSE objective

function via

J = E
{∥∥gH x̃−wHy

∥∥2
2

}
= wHE

{
yyH}w−gHE

{
x̃yH}w−wHE

{
yx̃H}g+gHE

{
x̃x̃H}g

(6.14)

where x̃ are the respective scatters corresponding to (6.12) and g = 1
vHv S̃Hv corresponds to the

MF mainlobe and acts as the desired correlation between the scatters in x̃. Effectively, (6.14) is

a template-based RMMSE objective function where g is the desired filter response or scatterer

correlation akin to p for the LS MMFs. Thus, g can replaced with any arbitrary desired response

as opposed to simply the MF mainlobe as proposed in [93]. (6.14) then has the optimal filter

w = R−1
yy S̃P̃g (6.15)

where the equivalence with (6.13) can be easily shown by evaluating g = 1
vHv S̃Hv.

While this template-based approach can be combined with covariance beamspoiling and a

unity constraint, selecting an appropriate desired response and using the straddle compensated

structured-covariance should provide some natural robustness towards the super-resolution and

range straddling effects that typically hinder APC efficacy. Additionally, excluding these legacy

robustness measures enables a significant reduction to computational complexity which will be

examined further in Section 6.3. That being said, when a unity constraint is not incorporated, the

template based-formulation can oversuppress small signatures, though, the degree of oversuppres-

sion can somewhat be controlled via an appropriate template selection.

The template-based APC formulation was then applied to the simulated APC measurements
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Figure 6.5: Simulated APC estimate for κ = 1.5 recieve measurements using beamspoiling, model
uncertainty, and a unity constraint (left) vs template-based objective and straddling uncertainty
(right)

from Section 2.3. Here straddle uncertainty was incorporated in the same manner as Section 6.1

and the desired response corresponded to a Gaussian power-spectrum with the same 3dB band-

width as the LFM waveform. Figures 6.5-6.6 illustrates the respective estimate and noise powers

for the κ = 1.5 configuration while 6.7-6.8 correspond to the κ = 6 case. Again, the left side

of each figure illustrates the previous "standard" of robust APC processing where beamspoiling,

model uncertainty, and a unity constraint all all incorporated, while the right side of each figure

corresponds to this new template-based approach with straddle uncertainty. For the κ = 1.5 esti-

mate, the template-based approach sees improved source isolation as the dominant scatterer does

not have the same extended roll-off, though, it is not able to clearly resolve the small scatterers.

As there is no unity constraint, the estimate floor is unbounded and occasionally goes much lower

than the noise floor. For the respective noise powers, the template-based approach yields lower av-

erage noise powers, but tends to have a notable noise gain centered about scatter locations. When

subsequent Doppler processing is performed, this increase in expected noise power has the poten-

tial to induce a streaking effect across Doppler (since noise is not coherent) that may subsequently

mask small scatterers. With the κ = 6 case, similar trends are observed, though, the increased

oversampling has led to a tighter, smoother, and lower grouping of this noise gain.
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Figure 6.6: Simulated APC noise power for κ = 1.5 recieve measurements using beamspoiling,
model uncertainty, and a unity constraint (left) vs template-based objective and straddling uncer-
tainty (right)
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Figure 6.7: Simulated APC estimate for κ = 6 recieve measurements using beamspoiling, model
uncertainty, and a unity constraint (left) vs template-based objective and straddling uncertainty
(right)
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Figure 6.8: Simulated APC noise powers for κ = 6 recieve measurements using beamspoiling,
model uncertainty, and a unity constraint (left) vs template-based objective and straddling uncer-
tainty (right)

6.2 Full APC representation and relationship to snapshot-form

While the original APC formulation utilized a D = N filter representation, the general snapshot

notation (arbitrary D) used in this work can be used to extend the APC model to longer filters.

This naturally increases the adaptive degrees of freedom, and can offer improved performance

for less MML. The subsequent implementation of APC requires construction and inversion of a

unique D×D structure covariance for every ℓ. With brute force, this corresponds to a complexity of

∼O(D3)1 for both construction and inversion. Thus, in aggregate the complexity will be∼O(D3L)

every iteration.

This general philosophy of an extended filter lengths was examined in [140, p. 194-198]

where a "block" processing methodology proposed to avoid forming and inverting a unique matrix

for every delay index, thus, reducing computational cost and memory requirements. As the filter

length is taken to the limit, the “full” L×1 linear receive model from (2.21)

u = Vx+n
1The ∼ is included as incorporation of beamspoiling and unity constraints correspond to a small, but non-zero,

increase in complexity. Likewise, construction has a cost of O(D2(D+N−1)) which after dropping the smaller terms
yields O(D3).
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is used where the ith APC estimate is performed as

x̂ = WHu (6.16)

with W corresponding to the L×L−N +1 bank of RMMSE filters computed via

W = R−1
uu VP (6.17)

where Ruu is the current estimate of the structured-covariance matrix. For the "base form" (i.e.

prior to incorporating straddling or model uncertainties), the "full" structured covariance is then

found as

Ruu = VHPV+Rn. (6.18)

Uncertainties, beamspoiling, and a gain constraint can likewise be incorporated through a similar

procedure as the snapshot-based model to yield a generic representation of

Ruu = RV +Rz +Rn (6.19)

where RV, Rz, and Rn are the structured-covariance matrices for the waveform/sources, model

error uncertainty, and noise respectively.

Solving (6.17) necessitated explicitly forming Ruu and multiple L×L linear systems, which

through brute force corresponds to O(L3) for each respective operation. However, as V is banded

and P is diagonal, the "full" structured covariance matrix Ruu will correspond to hermitian banded

matrix with a matrix-bandwidth of N and can be constructed for O(N2L). The Cholesky decom-

position of the full form will likewise have O(N2L) complexity and subsequent forward-backward

substitution will cost O(NL).

The Toeplitz properties of V can also be leveraged to further reduce the cost of constructing Ruu

(as will be discussed in Section 6.2.1), but the Cholesky decomposition of the full representation

still has O(N2L) complexity. However, extracting a D×D submatrix of Ruu that correspond to the
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Figure 6.9: Illustration of Extracting the Snapshot Structured-Covariance from the "Full" Struc-
tured Covariance

respective indices of y(ℓ) as

Ryy(ℓ) = J(ℓ)RuuJT (ℓ) (6.20)

where J(ℓ) is a D×L extraction matrix with

J(ℓ)x =

[
xℓ−1−D−N

2
xℓ−D−N

2
· · · xℓ+D−D−N

2 −2

]T

,

will exactly yield the respective structured covariance matrix for the snapshot model, though, trun-

cation or padding of Ryy(ℓ) may be necessary to produce appropriate sized filters for the "edge"

delay indices [87]. See Figure 6.9 for a visual illustration of this extraction. Thus, if construction

of Ruu can be performed efficiently, extracting each Ryy(ℓ) will not require any additional cost

(previously O(D2(D+N−1))≈ O(D3) for every delay).
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6.2.1 Constructing the Structured-Covariance Matrices via diagonal Con-

volution

From (6.5), we observe that the structured covariance follows a 2-Dimensional convolutional rela-

tionship with respect to Rγ,z and the diagonal source covariance matrix

P(ℓ) =



ρ
(
ℓ−N +1− D−N

2

)
. . .

ρ (ℓ)

. . .

ρ
(
ℓ+D−1+ D−N

2

)


(6.21)

w.r.t. ℓ, which can be equivalently expressed as

Rsz (ℓ) = Rs (ℓ)+Rz (ℓ)

=
D

∑
i=−N+1

pi+N (ℓ)JiRγ,zJT
i

=
D

∑
i=−N+1

ρ

(
ℓ+ i− D−N

2

)
JiRγ,zJT

i

(6.22)

where pi (ℓ) = Pi,i (ℓ) corresponds to the ith element on the main diagonal of source correlation

matrix. As the shifting operations are symetric with respect to the rows and columns, the diagonals

of Rsz (ℓ) will correspond the convolution ρ (ℓ) and the diagonals of Rγ,z

Furthermore, as a change in ℓ will simply shift the respective pi (ℓ),

diag{Rsz (ℓ)}d =


Udpx (ℓ) 0≤ d ≤ N−1

diag{Rsz (ℓ)}∗−d −N +1≤ d ≤−1

0 else

(6.23)
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where Ud is the D−d×D+N−1 convolution matrix

Ud =



uN−d,d · · · u1,d 0 · · · 0

0 uN−d,d u1,d
. . . ...

... . . . . . . . . . 0

0 · · · 0 uN−d,d · · · u1,d


, (6.24)

ui.k =
[
Rγ,z

]
i,i+k (6.25)

correspond to the diagonals of Rγ,z, and

px(ℓ) = diag{P(ℓ)}0

is a D+N−1×1 vector corresponding to the main-diagonal of the source-correlation matrix.

The diagonals of the "full" representation can likewise be calculated via

diag{RVz}d =


Udpx 0≤ d ≤ N−1

diag{RVz}∗−d −N +1≤ d ≤−1

0 else

(6.26)

where Ud is now the L−d×L−N +1 convolution matrix

Ud =



u1,d 0 · · · 0
... . . . . . . ...

uN−d,d
. . . 0

0 . . . u1,d

... . . . . . . ...

0 · · · 0 uN−d,d


(6.27)
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and

px = x̂⊙ x̂∗.

is the power estimate for the entire L+N−1 range interval. As p(ℓ) will correspond to a shifted

segment of the "full" p, Rsz (ℓ) can be constructed using portions of the "full" structured covariance

diagonals via (6.20). Thus, the aggregate cost constructing all structured covariance be O((N−

1)(L)log(L)) where the "N− 1" stems from the hermitian symmetry of Rγ,z and noting that the

convolution matrix for the (N − 1)th diagonal itself is a diagonal-matrix and does not require

frequency-domain convolution.

6.3 Reduced Complexity Full APC Implementations

While the "full" APC structured covariance can leverage efficient banded Cholesky decomposition

Ruu = LuuLH
uu (6.28)

for O(N2L) complexity, solving for the bank of RMMSE filters

LuuLH
uuW = VP (6.29)

via forward-backward substitution with Luu will be ∼O(NL2)2 and can be computationally pro-

hibitive. Furthermore, incorporating beamspoiling and a unity constraint further increases com-

plexity by ∼O(kNL2) and ∼O(L2) respectively. For the unconstrained case (e.g., no unity con-

2Here we note that this order of complexity is only approximately O(NL2) as V has many zero elements that can be
ignored during the forward/backward substitutions. These zeros may also be leveraged to modestly improve efficiency
of the unity constraint and beamspoiling operations.

153



straint) with no beamspoiling, (6.16) can alternatively be expressed as

x̂ = WHu

= PVHR−1
uu y

= PVH ỹ

(6.30)

which only requires a single linear system solve

LuuLH
uuỹ = y (6.31)

for O(NL) and the remaining matrix multiply with PVH can be computed efficiently using fre-

quency domain convolution and elementwise-multiplication. However, beamspoiling and unity-

constraints are generally necessary for a robust estimate and can not be easily incorporated in this

formulation. Thus, to retain efficiency we must take an alternative approach.

6.3.1 Reduced Complexity Template-Based Approach

First, the template-based RMMSE implementation is assessed as it does not explicitly require

a unity constraint or beamspoiling updates. For an arbitrary delay invariant 2Z + 1× 1 desired

response vector

g =

[
g−Z g−Z+1 · · · g−1 g0 g1 · · ·gZ

]T

(6.32)

with

gi = g∗−i,

the corresponding RMMSE filters will have the form

W = R−1
uu VPG (6.33)
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where

G =



g0 g−1 · · · g−Z 0 · · · 0

g1 g0
. . . . . . . . . ...

... . . . . . . . . . . . . 0

gZ
. . . . . . . . . g−Z

0 . . . . . . . . . . . . ...
... . . . . . . . . . . . . g−1

0 · · · 0 gZ · · · g1 g0



(6.34)

is a (L−N + 1)× (L−N + 1) Hermitian-Toeplitz matrix. Applying (6.33) to the measurement

vector is then expressed as

x̂ = WHy

= GHPVHR−1
uu y

= GHPVH ỹ

(6.35)

which again only requires a single linear system solve

Ruuỹ = y. (6.36)

Leveraging the hermitian banded structure of Ruu, (6.36) can be solved with O(N2L+NL) com-

plexity. The subsequent multiplication with GHPSH can then be performed efficiently using fre-

quency domain convolution and elementwise-multiplications for O(L log(L)+(L−N +1)+(L+

Z) log(L+Z)). Including the efficient formulation of the structured covariance, "full" template-

based RMMSE will have a complexity of

O((N−1)L log(L)+N2L+NL+L log(L)+(L−N +1)+(L+Z) log(L+Z))

per iteration which no longer scales with L2 or N3.
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6.3.2 Outlier-Based Low-Rank Approximate Implementation

As the APC initialization is typically formed using the matched filter, the first few iterations are

virtually guaranteed to incorporate sidelobe contributions into the source correlation estimate. Ad-

ditionally, even after convergence, the scatterer estimates whose sidelobe contributions would be

below the system noise floor will likewise be incorporated. Thus, APC inherently performs sev-

eral redundant operations as suppressing "sidelobes" from sidelobes (e.g., suppressing things that

aren’t really there) or from low-powered scattering should not provide an improved estimate. Thus,

treating P as a full rank matrix does not inherently improve the efficacy or convergence of APC.

Alternatively, a pseudo-APC iteration may be posed by excising all redundant elements from P

and only retaining the signatures that are both high power and not likely to be sidelobes. The result-

ing APC structured covariance matrix can then be represented as diagonal plus low-rank, enabling

efficient implementations via Woodbury’s identity [141] or low-rank/sparse factorization updates

[121]. Selection of what components to suppress requires an additional "detection" stage, resulting

APC framework implementation is now akin to matching pursuit [142] or CLEAN [106, 143, 144],

though, the use of a filter-based objective and statistical model uncertainty does differentiate these

philosophies.

While there are many different approaches one could take to select the non-zero source direc-

tions in range or range-Doppler space, here we examine a inexpensive ordered statistics approach

[145] in range as a proof of concept, leaving assessment and analysis of alternative or improved

detection routines for future work. The proposed outlier selection routine requires two stages. First

a length N moving median is applied to the current estimate source powers as

pmed = moveMed{|x̂|2} (6.37)

where pmed provides an ordered statistical estimate of the noise plus sidelobe floor for each range

bin. This moving vector then is used to determine which indices correspond to outliers above the
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noise plus median floor via a simple threshold check of

Ω = i ∈
{

γpmed,i < pi; γ
σ2

n
sHs

< pi

}
(6.38)

where Ω is a length rΩ range of outlier directions where γ∼20 used to incorporation of "false-

alarms" into the structured covariance. This range of directions is then used to form the low-rank

approximate source correlation matrix

RV = VHPV

≈ RV,Ω

≈ VH
ΩPΩVΩ

(6.39)

where VΩ and PΩ are L× r and rΩ× rΩ matrices corresponding to the outlier elements of V and P

respectively. Note, VΩ is likewise sparse as each column of V will have only N non-zero elements.

To incorporate straddling uncertainty, one must simply form (6.39) via convolution with a sparse

px using (6.26) or leverage the low-rank straddling approximations from Section 3.1.1 as

A

∑
a=1

VH
a,ΩPΩVa,Ω

where Va,Ω is from the A dominant eigenvectors and eigenvalues of (3.15).

The resulting approximate structured covariance

Ruu,Ω = RV,Ω +Rz,Ω +Rn (6.40)

can then be used to form the bank of APC filters efficiently, though, the order of complexity is

dependent on straddle-compensation methodology, number of outliers, how close the outliers are

spaced, and the solver used. For Cholesky decomposition the cost will generally be much less than

O(N2L), but the exact order is a function of the outlier spacing and does not have a closed form

solution. When using Woodbury’s the order of complexity again does not follow a closed form
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solution, but will largely be a function of ∼O(r3
Ω

L). The sparsity of VΩ and V offers potential

for further complexity reduction but will not be assessed here for brevity. Both the Cholesky and

Woodbury methodologies are likewise amenable to inexpensive beamspoiling inverse downdates,

though it is no longer necessary to apply for every direction since P is sparse.

6.4 Robust and Efficient APC Experimental Evaluation

We now seek to apply these efficient NIMPC implementation to the open-air experimental PROFM

CPIs used in Sections 3.4, 4.6, and 5.3. Here four different APC implementations will be applied

to the open-air measurements to evaluate the efficacy of the proposed approaches. The first case

will leverage the traditional beamspoiling, model uncertainty, and a unity constraint using the

full model. Here the model uncertainty was estimated using by measuring the variance across

a repeated CPI collected in loopback. The second test case leverages the same beamspoiling,

model uncertainty, and unity constraint, but the interpolation based straddle compensation from

Section 6.1 was also incorporated. For the third test case, the template-based APC approach from

Section 6.3.1 was used, where the same desired response from the template-based LS MMFs in

Section 3.4 was used. The final test case also leveraged beamspoiling, straddle uncertainty, model

uncertainty, and a unity constraint, however, here the structured covariance was approximated

using the outlier/detection methodology proposed in Section 6.3.2, where the threshold parameter

was set to γ = 10. The corresponding parameters and dimensionality used for this experiment are

provided in Table 6.1. Here, each of the APC approaches were applied to 3 iterations and (when

it was applied) the beamspoiling was configured to match the nominal MF resolution. This table

likewise includes the average number of outliers (across pulses) for each iteration when using the

low-rank approximate implementations.

Next, Table 6.2 illustrates the order of complexity for constructing the full structured covari-

ance using a direct (sparse matrix multiplication), convolution, or only outliers for the final APC

iteration. Note, here the outlier construction was performed via matrix multiplication, but it can

likewise be formed via convolution if it would provide a lower cost. Here the convolution-based
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Measurement Parameters
Parameter Variable Value

Sample Rate fs 50MHz
3dB Bandwidth B 33.3MHz
Pulse Duration T 4.5µseconds

Samples in Waveform N 276
Number of Pulses M 1000

Fast-time Samples processed L 2500
Fast-Time Filter Samples D N
Number of APC Iterations I 3

Avg Number of Outliers Iter 1 rout 38
Avg Number of Outliers Iter 2 rout 92
Avg Number of Outliers Iter 3 rout 112

Table 6.1: Table of Open-Air Experimental Parameters for PROFM CPI of 1000 waveforms

Construction order of Complexity
Brute Force 1.90E+8
Convolution 7.76E+6

Outlier (Final Iter)a 5.87E+6

Table 6.2: Complexity for constructing the Structured Covariance Matrix

aCan also be formed via convolution method, and in general does not explicitly need to be constructed.

approach sees a little more than an order of magnitude in cost.

The computational complexity for the Cholesky decomposition of the full and approximate

outlier structured covariance matrices are then provided in Table 6.3. As a point of comparison,

the aggregate computational complexity for the decompositions of each delay with the traditional

snapshot APC formulation is likewise provided. Here, requiring only a single matrix decompo-

sition with the full formulation sees an improvement by over two order of magnitude over the

snapshot case as the banded structure enables an efficient decomposition (illustrated in Figure

6.10). Additionally, an approximate order of complexity based on the number of non-zeros for the

outlier case (the final iteration has the most outliers) is formed and sees another improvement of

two orders of magnitude. Note, this complexity roughly acts as an upper bound and paralleliza-

tion techniques may further improve this cost. To visualize this complexity reduction, Figures

6.11-6.13 illustrate the first pulse’s detected outliers (left) and corresponding structured covariance
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Order of Complexity for Cholesky Decompositions
Snapshot D = N 5.26E+10

Full 1.90E+08
Outlier (Final Iter) 2.83E+06

Table 6.3: Complexity for Cholesky Decompositions
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Figure 6.10: Full Structured Covariance (left) and it’s Lower Triangular Cholesky Decomposition
(right)

matrix for each iteration of APC.

The order of complexity for applying performing an APC iteration for each of the respective

approaches is then listed in Table 6.4. In aggregate, use of the full model theoretically improves

complexity by an order of magnitude over the snapshot approach, though alternative approximate

implementations can potentially offer a reduction in complexity for either approach [85, 146–

148]. When solving only a single linear system via the template-based approach in Section 6.3.1,

the complexity is reduced by an order of magnitude. For the outlier approach, a Woodbury im-

plementation sees a reduction in cost by another order of magnitude, but may run into stability

concerns when using single precision (as opposed to double). That being said, for this experi-

mental assessment, use of Woodbury’s identity did not create any numerical precision issues. The

Cholesky approaches see a slight increase in theoretical complexity but will generally be more

stable. Again, here we do not seek to provide an exact "flop" count for each respective approach,

but merely illustrate a sense of scale.
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Figure 6.11: Detected outliers (left) and Structured Covariance (right) for first iteration
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Figure 6.12: Detected outliers (left) and Structured Covariance (right) for second iteration
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Figure 6.13: Detected outliers (left) and Structured Covariance (right) for third/final iteration
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Order of Complexity
Snapshot D = N w Conv Construnction 5.28E+10

Full with Unity Constraint 1.92E+09
Full Template-Based Approach 1.99E+08
Outlier Approach (Woodbury’s) 1.52E+07

Outlier Approach (Cholesky) 3.43E+07

Table 6.4: Average Complexity for single APC Iteration

Next, the RMS range estimates for each approach are illustrated in the left side of Figure 6.14

while the right side corresponds to the expected noise power of the output filters. Relative to the

MF, each of the APC approaches sees a significant reduction in sidelobe level and does not yield

the extended range-response visible with the LS MMF approaches. In terms of the noise power,

the approaches that leverage a unity constraint typically see 0.5dB or less MML, though there is a

spiking behavior corresponding to strong scatters. For the template based approach, the noise gain

is generally higher (∼3dB) but sees a fairly significant noise gain when the estimates are below

the noise floor or the scattering power is high. A change in template may help mitigate this effect,

but template "tuning" is currently a heuristic process. Focusing on the sub-plots corresponding to

the direct path, as expected the template-based APC approach sees a fairly broad roll-off initially

commensurate with the template-based LS MMF. The APC approach that does not have straddling

compensation likewise sees a broadened response due to the likely sub-sample offset of the direct

path. Both the straddle-compensated exact and approximate outlier implementations are robust to

this broadening effect.

Next, the range processed measurements for the respective APC approaches were used to

perform Doppler estimation. First, examining the "baseline" implementation with no straddling

compensation in Figure 6.15 we see that APC offers RSM suppression on par with MiCRFt and

NIMPC, but does not require the reduction in unambiguous Doppler or joint-dimension cancel-

lation. However, as with the LS MMF and MiCRFt ISL cases (without compensation), we see a

streaking behavior in Doppler corresponding to dominant sources. This effect is largely due to the

same mainlobe modulation induced by the beamspoiling present with the LS MMS, however, the
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Figure 6.14: RMS range estimates (left) and noise powers (right) for the Full APC implementations
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Figure 6.15: Baseline Range-Doppler Estimate for PROFM CPI using APC

range-varying noise power will produce a similar streaking behavior.

Next, the straddle compensated APC range-Doppler estimates are shown in Figure 6.16. Here,

the compensation has resulted in a significant reduction in mainlobe modulation and the streaking

in Doppler has been significantly reduced. Here, the residual streaks still likely correspond to

mainlobe modulation as the range-varying noise power is roughly commensurate with the MF as

seen in Figure 6.14.

For the template-based APC shown in Figure 6.17, the clutter and vehicle estimates are com-

mensurate with the approaches that leverage a unity constraint. However, the lack of a constraint in-

duces significant background floor fluctuation and likewise creates a streaking behavior in Doppler
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Figure 6.16: Range-Doppler Estimate for PROFM CPI using APC with Straddling Compensation
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Figure 6.17: Range-Doppler Estimate for PROFM CPI using APC with template-based objective

corresponding to the dominant scatters. Unlike the beamspoiled case, this streaking in Doppler

is not due to mainlobe modulation but rather relatively the large noise-gain seen in Figure 6.14.

Thus, while the template-based approach offers improved efficiency, it may not be well suited

for applications that require a subsequent processing stage (e.g. Doppler estimation after range

processing).

Lastly, estimates from the outlier based approximate implementation are shown in Figure 6.18.

Here, the final iteration of APC only incorporates 112 outliers (effectively suppressing only ∼5%

of the possible directions) and yields significant improvement to the RSM background for both the

intersection and direct path. However, the approximate covariance was not able to achieve quite the
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Figure 6.18: Range-Doppler Estimate for PROFM CPI using Approximate Outlier APC with
Straddling Compensation

performance of the exact formulation and the intersection RSM levels are 2dB higher. That being

said, it achieved this estimate with a two orders of magnitude reduction in complexity and a very

minimalistic outlier detection approach. Additionally, since the approach incorporates straddling

compensation via a low-rank approximation to Rγ , the Doppler streaking is fairly minimal and on

par with the exact implementation.
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Chapter 7

Generalized SINR Loss Constrained LS MMFs

As mentioned in Section 2.4, the LS MMFing approaches effectively approximate the receive

snapshot model as delay invariant and design the filter MMF response to control range-sidelobes.

Previous work [72, 74, 75, 78] leveraged this delay invariant form to pose LS MMF QCQPs that

directly control MML as opposed to heuristic tuning of the regularization term σ2. However, these

QCQPs were restricted to the sidelobe minimization MMF formulation (i.e., ISL or peak sidelobe

level minimization) and white Gaussian noise. While system thermal noise is predominantly white,

hardware effects such as spurs from analog-to-digital-converters will introduce colored noise. Ad-

ditionally, as the current RF environment is congested with commercial communication systems,

modern radars often must contend with additive in band interference. Direct solvers to the QCQP

also tend to be computationally intensive. While previous work attempted to address this complex-

ity, the proposed techniques required an expensive eigen decomposition or a approximation to the

filter can degrade filter efficacy.

Here, generalizations to the QCQP are proposed yield a tractable optimization problem for an

SINR constraint that addresses colored noise and in-band interference. Furthermore, these con-

straints are extended to the template-based objective function. The algorithmic framework to solve

these QCQPs via the Lagrange Dual problem is then outlined. Extensions to solver methodologies

from [74, 75] for the SINR formulation are then examined and a new computationally efficient

solver is introduced.
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7.1 Generalized SINR Loss Constraint

Consider the receive signal model comprised of D samples corresponding to a particular point in

range,

y = γv+ c+ i+n, (7.1)

where γv is the desired scattering response to be estimated, and γ is the complex scattering coef-

ficient. The vectors c, i, and n represent clutter (signal-dependent scattering from other ranges),

external interference, and noise, respectively. Note, here the delay index ℓ has been excluded as

the LS MMF formulation inherently assumes the statistics are delay independent.

After application of the filter w to the signal model y (i.e., wHy), the output SINR can be

defined as

SINR{w}= |γ|2|wHv|2

E {|wHc+wH i+wHn|2}
. (7.2)

Assuming the clutter, interference, and noise are independent and zero-mean, the SINR can be

rewritten as

SINR{w}= |γ|2|wHv|2

wH(Rc +Ri +Rn)w
, (7.3)

where Rc = E {ccH}, Ri = E {iiH}, and Rn = E {nnH}, are the D×D clutter, interference, and

noise covariances, respectively. In theory, if all covariance structures are known, the optimal SINR

filter can be determined by maximizing this quantity with respect to w. If the covariance matrices

are assumed constant with range, then the max SINR filter for each range bin are identical and can

be efficiently implemented using a convolution.

Define the interference-plus-noise covariance as

R = Ri +Rn. (7.4)

Here, it is assumed that i and n can be treated as stationary random processes resulting in a covari-

ance with Hermitian Toeplitz structure for R and therefore does not alter with range. Within the
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context of radar-communications cohabitation, this stationarity assumption is made as communi-

cation systems typically operate on longer timescales than radar. Furthermore, it is also assumed

that the noise covariance Rn is full-rank while the interference covariance Ri has rank r≪ L which

can be incorporated efficiently via low-rank updates (see Appendix A.1). This specific definition is

used to differentiate spectrally narrowband interference (low-rank) from “broadband” interference

(not easily represented as low-rank) which would be subsumed in Rn. Here, the covariance R is

assumed known or estimated via the collection of "quiet" (TX not active) measurements and can

be utilized for the design of w.

The clutter energy component in the denominator of (7.3)

wHRcw = wH (SPSH− γ
2vvH)w

represents range-sidelobe energy from scatterers at offset ranges coupling into our range of interest

via the filter w. While clutter range-sidelobe energy can be treated as an interference source in this

SINR formulation, in general, the relative weighting of the “interference” sidelobes is a function

of range based on the delay profile of the illuminated scene (e.g. more akin to the MMSE form

of (2.55)). Therefore, the resulting clutter covariance would likewise vary with range and would

not be Toeplitz in structure, breaking the range invariance of max SINR filter design. Instead, we

can address the clutter power by directly minimizing its contribution via the MMF design methods

discussed prior (i.e., reducing range sidelobes). However, it is still desired that the range sidelobes

are addressed within the context of the interference and noise environments.

“Noise gain" or MML are terms used to describe the loss SNR of mismatched filtering due

to deviation from the matched filter. Previous works have focused on limiting white noise MML

by placing constraints on loss in SNR relative to the MF (optimal for WGN) [74, 75]. Here,

this framework is generalized to both interference and colored noise by constraining the SINR

loss given a known interference-plus-noise matrix R. The filter SINR loss is derived solely on

the interference and noise contributions, while the clutter (i.e., range sidelobe contribution) is
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minimized via the objective function akin to [71].

The reformulated SINR at the output of the filter w (considering only interference and noise)

is

SINR{w}=
|γ|2
∣∣wHv

∣∣2
wHRw

. (7.5)

The filter that maximizes this quantity is well-known [84] and can be computed as

wmax ∝ R−1v, (7.6)

yielding a maximum SINR of

SINRmax = |γ|2vHR−1v. (7.7)

Therefore, the SINR loss relative to SINRmax is defined as1

LSINR{w}=
SINR{w}
SINRmax

=
|wHv|2

(vHR−1v)(wHRw)
(7.8)

which is bounded as 0 ≤ LSINR{w} ≤ 1. Note, for a white-noise-only case (i.e., R is a scaled

identity matrix), the max SINR filter is simply the matched filter and the SINR loss becomes the

SNR loss formulation from [74, 75].

In general, the max SINR filter from (7.6) may not have desirable range sidelobes depending on

the nature of the waveform modulation and interference structure. However, by allowing the MMF

to deviate from (7.6) (thus necessitating a loss in SINR), we can improve the sidelobe performance

of w. Furthermore, by bounding the SINR loss by a user-specified value ρ , we can control how

much w deviates from the max SINR form. Therefore, to meet this constraint the QC MMF must

satisfy

1Note that this definition of loss is technically a gain since it is less than unity; however, this definition of loss is
commonplace in the literature.
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|wHv|2

(vHR−1v)(wHRw)
≥ ρ (7.9)

where 0≤ ρ ≤ 1 is the degree of acceptable loss relative to the maximum SINR.

Since the solution of w = R−1v yields a value of unity (corresponding to 0 dB of SINR loss),

the QC will always have a feasible solution for any 0≤ ρ ≤ 1 and will guarantee a tractable QCQP.

While perhaps less practical, for the sake of generality, loss constraints relative to maximum SNR,

such as
SINR{w}
SNRmax

=
|wHv|2(

vHR−1
n v
)
(wHRw)

,

or any such variation can likewise be formulated. However, such constraints are not guaranteed

to be feasible for all ρ > 0 and, as such, the primary focus of this work utilizes the LSINR{w}

formulation from (7.8).

After trivial algebraic manipulation, (7.9) can be expressed in standard QC form as

wH (B−vvH)w≤ 0, (7.10)

for

B = ρ
(
vHR−1v

)
R. (7.11)

With the template-based MMF formulation, this quadratic constraint is necessarily non-convex as

the matrix B−vvH will always have a single non-positive eigenvalue. Therefore, adding this SINR

loss constraint to the template-based MMF problem results in a non-convex problem statement.

Despite this non-convexity, certain QCQPs with indefinite quadratic constraints are tractable [80]

and the globally optimal MMF can still be found.

For the direct ISL minimization problem, all feasible solutions must satisfy the equality con-
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straint wHv = 1, thus (7.10) can be simplified as

wHBw−1≤ 0. (7.12)

Since B is PD, (7.12) is a quadratic constraint. Therefore, the addition of the SINR loss constraint

does not alter the convexity of the direct ISL minimization problem statement.

7.2 Generalized Form of the QCQP

As both the ISL and template constrained objectives may be expressed as a standard QCQP, here

the ISL objective is expressed as

min
w∗

wHT̃w

s.t. wHCw+a≤ 0

wHv = 1

(7.13)

and template objective as

min
w∗

wHTw−2Re
{

wHb
}

s.t. wHCw≤ 0
(7.14)

such that both Lagrangians may be represented in a notationally consistent manner as

L {z;λ}= zH (D+λQ)z−2Re{zHb}+λa (7.15)

where

D =

 T̃ v

vH 0

 , z =

 w

µ

 , b =

 0

1

 ,

a =−1, Q =

 C 0

0T 0

 , C = B
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for ISL and

D = T, z = w, b = SHp,

a = 0, Q = C, C = B−vvH

for template2.

Again, note that for the template formulation C has a single negative eigenvalue by defini-

tion. While this constraint makes the problem non-convex, it has been shown the globally optimal

solution can be determined for non-PSD QCQP with a single QC as long as the Hessian of the

Lagrangian remains PD [108, p. 653]

T+λC⪰ 0, (7.16)

and Slater’s condition holds (i.e., there exist a w such that the constraints are strict), which can be

easily proved when

w =
R−1v

vHR−1v
.

Therefore, strong duality will hold for both (7.13) and (7.14) such that the optimal Lagrange mul-

tipliers λ⋆ (and µ⋆) can be determined via the Lagrange dual problem.

7.3 The Lagrange Dual Problem

The dual function G{λ} is found via an infimum of the Lagrangian with respect to z as

G{λ}= inf
z∈D

L {z,λ}, (7.17)

where D is the domain of z where the objective function exists and the quadratic constraint is

satisfied. Taking the derivative of L {z,λ} w.r.t. z∗, setting equal to zero, and solving for z reveals

2Note, while here the derivations focus on base LS MMF notation from Section 2.2, the straddle compensation
approaches from in Section 3.1 can likewise be introduced without loss of generality.
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the form of the optimal mismatch filter as

zopt{λ}= G−1{λ}b (7.18)

where

G{λ}= D+λQ. (7.19)

Thus, maximization of the dual function

G{λ}=

 −bHG−1{λ}b+aλ λ ∈ (λ−,λ+)

−∞ otherwise
(7.20)

will yield z⋆ and is strictly concave in the valid range of λ ∈ (λ−,λ+).

7.3.1 Bounds for the Dual

By definition, the Lagrange multiplier inherently has a lower bound, λ− = 0≤ λ and the upper

bound (denoted λ+) is determined according to the PSD requirement (T̃+λC⪰ 0 or T+λC⪰ 0).

Therefore, the valid regions of λ for the ISL objective is the domain of all real numbers (since B

is PD and T̃ is PSD), while the valid regions for the template correspond to when

T+λC = T+λ

(
B−vvH

)
⪰ 0 . (7.21)

As
(

B−vvH

)
has only a single negative eigenvalue and T is PSD, λ+ corresponds to the only

positive λ such that

det{T+λ

(
B−vvH

)
}= 0 (7.22)

where det{·} takes the determinant of the matrix. (7.22) may be expressed as the generalized

eigenvalue problem [149]

Tφ i = µi

(
B−vvH

)
φ i (7.23)
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where φ i and µi are the ith generalized eigenvector and eigenvalue respectively. Since
(

B−vvH

)
is nonsingular for any 0 < ρ < 1, (7.23) can alternatively be expressed as the standard eigenvalue

problem (
B−vvH

)−1

Tφ i = µiφ i (7.24)

and λ+ will correspond to the only negative eigenvalue of
(
B−vvH)−1 T. However, in practice

solving for λ+ directly is computationally expensive and is not strictly necessary for maximizing

the dual since any λ̂+ that satisfies λ⋆ ≤ λ̂+ ≤ λ+ may be treated as an effective upper bound due

to the concave behavior in the valid regions of λ .

7.3.2 Derivatives of the Dual Function

The first derivative of (7.20) in the feasible region can be found via chain rule as

G
′
{λ}= δ

δλ

(
−bHG−1b+aλ

)
=−bH δ

δλ

(
G−1)b+a

(7.25)

where the functional notation of λ for G has been dropped for brevity. Next, the derivative of an

inverse matrix [141] is used to find

δ

δλ

(
G−1)=−G−1 δ

δλ
(G)G−1 (7.26)

where only scalar dependencies on λ are present, thus,

δ

δλ
(G) = Q. (7.27)

The second derivative is likewise computed so that concave nature of the dual may be utilized to

achieve superlinear convergence near the maxima via Newton’s method. Through applying chain
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rule

G
′′
{λ}= δ 2

δλ 2

(
−bHG−1b+aλ

)
=−bH δ 2

δλ 2

(
G−1)b

(7.28)

which can be expanded as

δ 2

δλ 2

(
G−1)= 2G−1 δ

δλ
(G)G−1 δ

δλ
(G)G−1

−G−1 δ 2

δλ 2 (G)G−1
(7.29)

where
δ 2

δλ 2 (G) = 0. (7.30)

Thus, (7.29) reduces to

δ 2

δλ 2

(
G−1)= 2G−1 δ

δλ
(G)G−1 δ

δλ
(G)G−1 (7.31)

which does not require additional matrix inversions beyond what was found with the first deriva-

tive.

Evaluating the dual, its derivatives, and MMF yields

w{λ}=
(
T̃+λB

)−1 v

vH
(
T̃+λB

)−1 v

G{λ}= 1

vH
(
T̃+λB

)−1 v
−λ

G
′
{λ}=wH{λ}Bw{λ}−1

G
′′
{λ}=−2wH{λ}B

(
T̃+λB

)−1 Bw{λ}

−2
wH{λ}Bw{λ}(

vH
(
T̃+λB

)−1 v
)2

(7.32)
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for the ISL formulation and

w{λ}= (T+λC)−1 v

G{λ}=−vHw{λ}

G
′
{λ}= wH{λ}Cw{λ}

G
′′
{λ}=−2wH{λ}C(T+λC)−1 Cw{λ}

(7.33)

for the template formulation (where C = B−vvH). Explicit algebraic proofs for the ISL case are

given in Appendix A.3.

7.3.3 Maximizing the Dual

While Newton’s method can converge to the optimal super-linearly when λ̂ is close to λ⋆ [76,

p. 44], near the boundaries T+λC may ill conditioned which may lead to steps that exceed the

feasible region. To ensure convergence, the proposed maximization procedure utilizes an effective

upper and lower bound (λa,λb) for the range of feasible λ as

λ
− ≤ λa ≤ λ⋆ ≤ λb ≤ λ

+.

A Newton’s step is taken from to the boundary point (either λa or λb) that corresponds to the larger

Dual value. If the step yields a new point λ ∈ (λa,λb), then the boundary of the range is updated

based off the sign of G
′{λ}. When Newton’s exceeds the range, a regula falsi update [150] (akin

to secant method) is used to update the range. If both Newton’s and regula falsi do not sufficiently

shrink the range of the bounds, bisection is used. The algorithm is stopped if either the initial

λa ≈ 0 satisfies the QC, or when |G′{λ}|2 is within a desired tolerance.

As the dual is a scalar value, the search for the next query λ is computationally inexpen-

sive and computational cost per iteration is driven by a single evaluation of the dual and it’s

derivatives. A basic outline of the maximization procedure is provided in Algorithm 1 where

the EvaluateDual{·} function corresponds to evaluating (7.32) or (7.33) depending on the ob-
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jective function. Thus, to ensure fast and stable convergence one must set an initial effective

range that spans the optimal (i.e., λ⋆ ∈ (λa,λb)) and is contained within the valid region (i.e.,

(λa,λb) ∈ (λ−,λ+)).

As the lower bound for λ is zero, the initial λa may be set either to zero or a small value

λa =
tol

ρ (vHR−1v)
≈ 0 (7.34)

to ensure T+λC is not singular. The search for the upper boundary is somewhat more challenging

as a λb too large may result in slow convergence or may exceed λ+. For the ISL case, λ+ = ∞ so

λb can simply be estimated iteratively via Newton’s step from λa or a multiplicative increase (e.g.,

λb = 10λa) where the sign of the derivative will inform if the new estimate updates λa or λb. As

mentioned in Section 7.3.1, the upper bound for the template objective can be explicitly computed

via a generalized eigen decomposition, however, this can be computationally intensive. Alterna-

tively, λb can be iteratively estimated using the procedure outlined in Section 7.4.2 which will

asymptotically approach λ+ and will rapidly yield a viable λb (empirically one or two iterations

are typically sufficient).

7.4 Computational Cost and Efficient Implementations

For both objective functions, the computational complexity is primarily driven by the inversion

and multiplication of a Hermitian Toeplitz matrix which we expressed as

T{α}= T+αRn (7.35)

where α is a strictly positive variable that is a function of λ . The remaining components (e.g.,

beamspoiling updates for the ISL case, subtraction of λvvH for the template case, and addition

of low-rank interference) can later be incorporated for a relatively low computational cost via

low-rank matrix updates. Woodbury’s is the natural choice for these updates (Appendix A.1) but,
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Algorithm 1 Dual Maximization

λa← λ̂−[
ŵa, Ga, G

′
a, G

′′
a

]
← EvaluateDual{λa}

if SINRLoss{ŵa} ≥ ρ then
w← ŵa
Return w

λb← EstimateU pperBound{λa}[
ŵb, Gb, G

′
b, G

′′
b

]
← EvaluateDual{λb}

if
∣∣∣G′b∣∣∣2 < tol then

w← ŵb
Return w

while G
′
b > 0 do[

ŵa, Ga, G
′
a, G

′′
a, λa

]
←
[
ŵb, Gb, G

′
b, G

′′
b, λb

]
λb← EstimateU pperBound{λa}[
ŵb, Gb, G

′
b, G

′′
b

]
← EvaluateDual{λb}

if Ga > Gb then[
ŵ, G, G

′
, G

′′
, λ

]
←
[
ŵa, Ga, G

′
a, G

′′
a, λa

]
else[

ŵ, G, G
′
, G

′′
, λ

]
←
[
ŵb, Gb, G

′
b, G

′′
b, λb

]
while

∣∣∣G′∣∣∣2 < tol do

λ ← λ − G
′

G′′

if λ /∈ (λa,λb) then

λ ← G
′
bλa−G

′
aλb

G′b−G′a

if λ−λa
λb−λa

< tol or λb−λ

λb−λa
< tol then

λ ← λa+λb
2[

ŵ, G, G
′
, G

′′
]
← EvaluateDual{λ}

if G
′
> 0 then[
ŵa, Ga, G

′
a, G

′′
a, λa

]
←
[
ŵ, G, G

′
, G

′′
, λ

]
else[

ŵb, Gb, G
′
b, G

′′
b, λb

]
←
[
ŵ, G, G

′
, G

′′
, λ

]
Return w
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depending on the numeric precision and matrix conditioning, low-rank inverse Cholesky updates

[121] may be necessary to ensure numeric stability. While there are several operations involving

T−1{α}, the Hermitian Toeplitz structure enables efficient representation and multiplication by

computing just the first column of the inverse (see Sections 2.7.3 and 2.7.4). Thus, the compu-

tational complexity per iteration will be dominated by a single linear system solve as the inverse

Toeplitz matrix-vector multiplications can be computed with O (Dlog(2D)) cost and the low-rank

inverse updates ∼O
(
r3), will not affect the order of complexity in EvaluateDual(·).

For K EvaluateDual(·) instances in Algorithm 1, the order of complexity will follow O
(
KD3)

for a brute force linear system solve as a unique system is formed for every λ . However, as (7.35)

is inherently Hermitian Toeplitz, Levinson-Durbin recursion can be used to reduce the complexity

to O
(
KD2) [109, p. 81-85]. There are more computationally efficient solvers [111, 112] that may

push O (KDlog(D)) for larger matrices, but numeric instability or a high constant complexity may

hinder their use for this application.

Additionally, it is worth noting that T is banded with a matrix-bandwidth of N. Thus, when Rn

is also banded, then the computational complexity can be reduced to O
(
K
(
z2L+Dlog(2D)

))
via a

banded Cholesky decomposition where z is the max matrix-bandwidth between T and Rn. Further

complexity reduction may be possible by utilizing a banded Levinson implementation [120] or

banded Circulant update [151], though again, these solvers may face challenges with numeric

instability or high constant cost.

Iterative solvers such as preconditioned conjugate gradient (PCG) may also be used to solve the

linear system to within some fixed tolerance. For Toeplitz systems, Circulant preconditioners [122]

can be incorporated rather inexpensively and are often very effective when the spectral content of

signal and noise is not sparse (see Section 3.2.1). For an average of JC PCG iterations per system,

the computational complexity of PCG with a Circulant preconditioner is O (KJCDlog(2D)) and

JC∼(η log(D) + 1) [152] where η is the condition number after preconditioning and can often

greatly outpace a direct solver with negligible error (see Figure 7.4 and associated discussion in

Section 7.6.1).
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[74] proposed performing an eigen decomposition of T and pre-multiply out the eigenvectors

to diagonalize subsequent calculations resulting in a computational complexity of O
(
D3 +DK

)
.

While the approach in [74] was proposed for white noise MML (i.e., a diagonal B and no inter-

ference or colored noise), a generalized implementation can be applied for an SINR constraint as

derived in Section 7.4.1. However, the O
(
D3) cost of eigen decomposition may still be prohibitive

for longer filters.

[75, 153] suggested that T could be approximated as a Circulant matrix so that the system can

be diagonalized by a fast Fourier transform (see Section 2.7.2). Likewise, this philosophy may

be extended to form Circulant approximations for T and B to diagonalize SINR constrained form.

This in turn greatly reduces computational complexity to O (Dlog(D)+DK), but yields an infinite

impulse response (IIR) approximation to the true finite impulse response (FIR) MMF that may not

be efficacious in all situations. Truncation of the IIR MMF may alleviate the spreading of model

error, but said truncated will induce additional model mismatch [81]. Regardless, certain scenarios

are amenable to the IIR Circulant approximate MMF and may even improve performance as the

number of filter taps is equal to the number of delay indices.

As the eigenvalues of a Toeplitz matrix and it’s Circulant approximation are asymptotically

equivalent as D→ ∞, the approximate QCQP may be first solved at low cost to provide an initial

estimate for λ⋆. If this initialization is then close to the optimal for the Toeplitz QCQP, the required

number of iterations may be greatly reduced.

Here, the current effective bounds of λ and the structure of the Toeplitz Matrix inverse are

leveraged to develop informed preconditioners to solve the current (7.35). For initial system cor-

responding to λa ≈ 0, the inverse Toeplitz matrix is either computed via PCG with a Circulant pre-

conditioner or through a direct solver depending on the spectral content of s. The search for λb is

then performed using PCG using the inverse Toeplitz matrix of the λa system as the preconditioner.

Once the range (λa,λb) has been established, novel Upper-Lower Bound (ULB) preconditioners

constructed via an optimal a pareto weighting of the current upper and lower Toeplitz inverses are

utilized to update all future Toeplitz systems. Section 7.4.3 outlines this ULB preconditioner in
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more detail and provides performance bounds for specific cases.

This approach requires solving initial Toeplitz systems corresponding to λa yielding a constant

complexity of O (T (x)) where T (x) denotes the cost of the initial solve (can be direct solution

∼O
(
D2) or PCG ∼O (2JCD log(2D))). The search for λb then has a cost of O (8FJ1D log(2D))

where F corresponds to the number of calls to EstimateU pperBound{·} that were required and J1

was the average PCG iterations for the inverse Toeplitz preconditioners. Subsequent instances of

(7.35) are solved using the ULB preconditioners yielding a cost of

O(16KGJ2D log(2D))

where KG is the number of iterations required for the Dual search to converge and J2 was the

average number of PCG iterations for the ULB preconditioners. In total, the order of complexity

is for a pure PCG implementation is ∼O((2JC + 8FJ1 + 16KJ2)D log(2D)). Further assessment

and comparisons regarding convergence and complexity of the ULB preconditioner are examined

in Section 7.6.1 and Section 7.4.3.

7.4.1 Extending previous efficient solvers to the General SINR QCQP

In [74, 75] the QC is configured to constrain MML for white noise, meaning B is a uniform

weighted diagonal and λB effectively acts as diagonal loading on the eigenvalues of T. Thus, [74]

suggests performing an initial eigen decomposition

T = UΛUH (7.36)

and rotating all parameters by the eigenvectors U, e.g,

w̃ = UHw,
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the rotated Dual becomes a function of the sum of diagonal matrices

UH (T+λB)U = Λ+λB. (7.37)

This QCQP can then be solved efficiently using element wise vector-vector operations to solve for

w̃⋆, and a final rotation of

w⋆ = Uw̃⋆

will yield an equivalent optimal solution.

This procedure does help improve computational complexity of the Dual maximization, but the

eigen decomposition has a computational complexity of O(D3) which can still be a computational

hindrance for longer filters. [75] leveraged this same eigen decomposition philosophy, but instead

replaced T with it’s Circulant approximation such that the eigen vectors corresponded to the DFT

matrix (see Section 2.7.2). The eigen decomposition and parameter rotation can then be performed

with O (Dlog(D)) complexity, however, the resulting filter is effectively an IIR approximation to

the true FIR MMF.

For the generalized SINR QC (B not necessarily diagonal), but eigen decomposition based

diagonalization is still possible. When both T and B are replaced with their Circulant approx-

imations, both sets of eigenvectors will correspond to the DFT, thus, the diagnonalized form is

simply

UH (T+λB)U = Λ+λΛB (7.38)

which still has complexity of O (DlogD). For the Toeplitz case, the Cholesky decomposition of

B = LBLH
B (7.39)

can be used to express the hessian as

T+λB = LB
(
L−1

B TL−H
B +λ I

)
LH

B (7.40)
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such that the eigen decomposition of

L−1
B TL−H

B = ŨΛ̃ŨH (7.41)

and variable rotation with respect to

LBL̃H

results in a diagonalized QCQP Dual. Doing so does require additional decompositions and matrix-

matrix multiplies, all with the same expensive O(D3) order of complexity.

7.4.2 Rapid Estimation of the Template Upper Bound

Computing the upper bound for the template form requires determining when

T+λ

(
B−vvH

)
⪰ 0 . (7.42)

For any ρ > 0 there exists a feasible λa such that

T+λa

(
B−vvH

)
= A{λa}−λavvH ⪰ 0

and

G
′
{λa}> 0.

Given a small (or zero) initial guess for λa (i.e., (7.34)) where

det{A{λa}}> 0 (7.43)

and

det
{

A{λa}−λavvH}> 0, (7.44)
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the downdate weighting β that satisfies

det
{

A{λa}−βvvH}= 0

=
(
1−βvHA−1{λa}v

)
det{A{λa}}

(7.45)

can be computed via a rank-1 determinant update formula. This weighting is agnostic to det {A{λa}}

and can be computed as

β =
1

vHA−1{λa}v
= λb. (7.46)

Since B is PD,

A{λb}> A{λa}

and

A−1{λb}< A−1{λa}

such that (
1−λbvHA−1{λb}v

)
>
(
1−λbvHA−1{λa}v

)
= 0

meaning the estimate upper bound will asymptotically approach λ+ but never reach it. Fortunately,

any λb that satisfies

G
′
{λb}< 0

may be treated as an effective upper bound since the problem is concave. Thus, this asymptotic up-

date procedure is used to iteratively estimate an effective upper bound as the EstimateU pperBound{·}

function in Algorithm 1. An illustrative example is shown in Figure 7.1 where the first upper bound

estimate satisfied G
′{λb}< 0.

7.4.3 Lower-Upper Preconditioner

Rather than strictly using a Circulant preconditioner for to solve each Toeplitz system, information

from the previous iterations can be leveraged to develop more effective preconditioners. Once an
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Figure 7.1: Iterative estimate of the template-based dual upper bound

upper and lower bound (λa and λb respectively) for the Dual has been established, PCG attempts

to solve for the inverse of

Z{λ}= T+λB (7.47)

where λa≤λ≤λb defines the bounds and both Z−1{λa} and Z−1{λb} were previously computed

to evaluate the dual for previous iterations. As B is PD, the eigenvalues of Z{λ} have a similar

bounded relationship as λ , thus a preconditioner M−1{λ} that involves linear combinations of

Z−1{λa} and Z−1{λb} can be an effective preconditioner as long as it clusters the eigenvalues

of the preconditioned system, has low complexity for matrix-vector multiplication, and remains

hermitian PD.

A preconditioner of the form

M−1{λ ,γ}= γZ−1{λa}+(1− γ)Z−1{λb} (7.48)

can be applied with O(16Dlog(2D)) complexity and (in a similar vein to the analysis in Section
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7.4.1) can be shown to have eigenvalues of

f{µ,γ}= γ
µ +λ

µ +λa
+(1− γ)

µ +λ

µ +λb
(7.49)

where µ corresponds to the eigenvalues of (7.41). A similar eigen functional relationship can be

drawn for alternative linear combinations of Z−1{λa} and Z−1{λb}, but for brevity and simplicity

here the focus is on a simple pareto combination. Additionally, upper and lower bounds for µ can

be determined as

0≤ µ ≤ µ̂u

where the lower bound stems from the PSD nature of T and µ̂u is calculated via the max eigen

values of the Circulant approximate system of T divided by the white noise variance since true

max eigenvalue µu ≤ µ̂u and are asymptotically equivalent as D→ ∞.

Taking the derivative of (7.49) with respect to µ can be used to determine the positive extrema

(at most two) by rearranging into a single fraction and using the quartic equation of the numerator.

These extrema, µ = 0, and µ = µ̂u can then be used to determine the condition number for various

γ . The best possible pareto weight can then quickly be determined by minimizing the extrema

distance through an inexpensive quarry search. For the optimal γ , clearly

f{µ,γ} ≤ µ +λ

µ +λa

and

f{µ,γ} ≤ µ +λ

µ +λb

will hold as a value of 0 or 1 will yield the respective preconditioned functions as illustrated the

examples in Figures 7.2 and 7.3 where the largest eigenvalue is greater than and less than λb

respectively and the normalized range of (λa,λb) corresponds to λb = 105λa which is a larger (and

worse performing) range than would realistically show up in Algorithm 1.
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Figure 7.2: Condition Number Bounds for the ULB Preconditioner when µu > λb
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Figure 7.3: Condition Number Bounds for the ULB Preconditioner when µu < λb
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7.5 A Note on Multi-Waveform Generalizations and Quadratically Con-

strained MiCRFt

For a waveform agile CPI, some waveforms may have a better natural fit meaning the SINR loss

may vary waveform-to-waveform. Rather than optimizing each MMF to satisfy the constraint

individually, (7.13) and (7.14) may be modified to instead constrain the aggregate SINR loss for M

waveforms as

min
w∗1,···w∗M

M

∑
m=1

wH
mT̃mwm

s.t.
M

∑
m=1

wH
mCmwm−M ≤ 0

wH
mvm = 1 m = 1, · · · ,M

(7.50)

for the ISL objective or

min
w∗1,···w∗M

M

∑
m=1

wH
mTmwm−2Re

{
wH

mbm
}

s.t.
M

∑
m=1

wH
mCmwm ≤ 0

(7.51)

for the template objective. The dual for (7.50) and (7.51) then have an analogous form to the single

waveform case where optimal set of filters can be solved by maximizing with respect to a single

Lagrange multiplier.

A SINR QC constraint can likewise be incorporated into MiCRFt by simply extending the

interference plus noise covariance to a block formulation via

R̄ = R̄ī + R̄n̄ (7.52)

with

R̄ī = E
{

īīH
}

and

R̄n̄ = E
{

n̄n̄H}
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where ¯̄i =
[
iT1 iT2 · · · iTQ

]T
and ¯̄n =

[
nT

1 nT
2 · · · nT

Q

]T
are the concatenated interference and noise

vectors for the Q subsets respectively. The remaining QCQP can then be set up using this interference-

plus-noise matrix to form a block QC and the QCQP can then be solved using Algorithm 1 by

replacing each respective vector/matrix with its block counterpart. Depending on how the SINR

matrix is posed, MiCRFt may attempt to suppress interference via a complementary cancellation

across subsets, e.g. the block interference-plus-noise covariance is non-zero on the off-diagonal-

blocks. As the complementary condition requires presumming across slow-time, MiCRFt inher-

ently operates on a longer time-scale than the LS MMFs and the LTI assumption of the interference

may not be as accurate. Thus, it may be beneficial to enforce that the interference-plus-noise ma-

trix is strictly a block-diagonal such that the interference is addressed on a per-filter basis (e.g., on

a shorter-time scale) and the complementary condition only addresses sidelobes.

7.6 QC LS MMF Closed-Loop Assessment

To evaluate the efficiency of the proposed QCQP algorithm and efficacy of the resulting filters,

two coherent processing intervals (CPIs) of FM waveforms were generated on a Tektronix arbi-

trary waveform generator (AWG). Both CPIs consisted of 500 pulses with a center frequency of

3.45 GHz, 10 micro-second pulse duration, a 3dB bandwidth of 50 MHz (time-bandwidth product

of 500), and a 10 kHz PRF (10% duty cycle). The first CPI followed a standard repeated LFM

chirp waveform framework, while the second used a waveform agile set of non-repeating opti-

mized random FM (RFM) waveforms with a Gaussian power spectral density [73]. The AWG was

connected to a bandpass filter and class A amplifier to model TX amplification, followed by an

attenuator, bandpass filter, low-noise amplifier (LNA), and then a Rhode & Schwarz spectrum ana-

lyzer with a sample rate of 65 MHz (κ=1.3) so that closed-loop measurements of the waveforms on

real hardware could be collected. Note, relative to the first experimental test, these waveforms cor-

respond to an increased TB such that the respective MMFs have more DoF. This particular dataset

was selected as the LS MMFs from the first experiment induced higher intersection RSM due to
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Dual Evaluations
tol 10−3 10−6 10−9 10−12

# calls 33 45 48 52

Table 7.1: Calls to EvaluateDual{·} - ISL MMF D=4N, ρ=-2dB, k=3

the extended filter length. This dataset on the otherhand, can not see the intersection without the

use of LS MMFs.

Using these loopback measurements, a multi-variable MMF performance surface can be cre-

ated to assess the contribution of the multitude of free variables (template choice, degree of beam-

spoiling, filter length, mismatch loss, etc.). However, as general trends for these MMF parameters

have been examined previously [55, 154] and since the QCQP form guarantees the resulting filter is

optimal with respect to the objective function, the remainder of this section is restricted to a select

few examples to illustrate particular aspects of the contributions from this work. A more thorough

tabularized assessment of MMF performance with respect to the free variables is examined using

open-air experimental measurements in Section 7.7.

7.6.1 Algorithm Performance

First, to demonstrate the efficiency of the proposed algorithm a Toeplitz-model ISL QCQP with

a diagonal interference-plus-noise covariance (i.e. a white noise MML only form) was posed for

the LFM waveform with filter size D = 4N four times the duration of the transmit waveform, a

SINR loss constraint of ρ =−2dB, and mainlobe beamspoiling of k = 3. The dual maximization

algorithm was then run for this QCQP with different stopping/PCG tolerances. The resulting MMF

responses are illustrated in Fig. 7.4 where even the largest tolerance (tol = 10−3) induces only

small errors and smaller tolerances (tol ≤ 10−6) all yield effectively identical results. The total

number of EvaluateDual{·} calls in Algorithm 1 for the respective tolerance is shown in Table 7.1

where ∼45 evaluations were required to effectively convergence to the fidelity of the model.

Next to test the rate of convergence for the proposed preconditioners, the same QCQP was

solved and total number of PCG iterations was recorded for conjugate gradient (CG) without a
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Figure 7.4: Resulting MMFs for different tolerances

preconditioner, the optimal Circulant preconditioner for each system (PCG Circ), and the pro-

posed approach. These results are shown in Table 7.2 where the proposed approach consistently

required ∼4× fewer iterations than either of the alternatives. However, as the proposed approach

requires more and often larger FFTs, the order of complexity to solve the dual for these PCG ap-

proaches was likewise calculated and compared to other proposed Toeplitz solvers as shown in

Table 7.3. Here the “brute force"" heading corresponds to a solver that does not utilize the Toeplitz

structure (such as [155]), “Eigen"" corresponds to the eigen decomposition approach in [74], while

“Levinson” utilizes Levinson-Durbin recursion [109, p. 81-85] as the Toeplitz solver. Here the or-

der of complexity for solvers that utilize the Toeplitz show a significant reduction in cost, though,

it should be noted that the eigen decomposition approach of [74] front-loads the computational

burden which can offer significant performance improvement when multiple QCQPs are posed for

same Toeplitz components, (e.g., solving multiple filters for the same waveform with different ρ ,

k, etc.).

While this order of complexity metric demonstrates that the proposed approach has the low-
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Number of PCG iterations
tol 10−3 10−6 10−9 10−12

CG 3366 18954 40906 66283
PCG Circ 668 1417 2359 3412
Proposed 141 239 380 487

Table 7.2: Total number of PCG iterations - ISL MMF D=4N, ρ=-2dB, k=3

Order of Complexity
tol 10−3 10−6 10−9 10−12

Brute Force [155] 6.70E+11 9.14E+11 9.74E+11 1.06E+12
Eigen [74] 2.03E+10 2.03E+10 2.03E+10 2.03E+10

Levinson [109] 2.48E+08 3.38E+08 3.60E+08 3.91E+08
CG 1.14E+8 6.42E+08 1.39E+09 2.24E+09

PCG Circ 4.52E+07 9.60E+07 1.60E+08 2.31E+08
Proposed 3.85E+07 6.59E+07 1.06E+08 1.35E+08

Table 7.3: Order of Complexity - ISL MMF L=4N, ρ=-2dB, k=3

est theoretical cost, typical MMF lengths are amenable to parallelization which can significantly

improve runtime of the PCG solvers relative to the direct approaches when utilizing parallel pro-

cessing on a GPU. In particular, a Levinson approach is inherently recursive and necessitate D2

sequential loops which can create a bottleneck, while the PCG approaches are largely limited by

the number of sequential fast Toeplitz matrix-vector multiplies (from preconditioning and/or mul-

tiplication with the CG hessian). To provide a semblance of potential for parallelization Table 7.4

provides the total number of sequential Toeplitz multiplies required for the PCG solvers compared

with the number of non-parallelizable Levinson loops, where parallelization has the potential to

improve runtime by orders of magnitude.

Sequential Toeplitz multiplies/Levinson recursions
tol 10−3 10−6 10−9 10−12

Levinson [109] 90024 122760 130944 141856
CG 3366 18954 40906 66283

PCG Circ 1336 2834 4718 6824
Proposed 471 816 1313 1669

Table 7.4: Total number of non-parallelizable Toeplitz multiplies/Levinson recursions - ISL MMF
D=4N, ρ=-2dB, k=3
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7.6.2 Closed-Loop MMF Results

Using the loopback captured waveforms, ISL QCQPs were posed for each waveform to examine

the range and frequency characteristics of the filter responses with and without in band interference

for a fixed SINR loss of ρ = −2dB, filter length of D = 4N and variable degree of beamspoiling:

k=3 - MMF 1 (orange); k=5 - MMF 2 (yellow); k=13 - MMF 3 (purple). Figure 7.5 illustrates

the RMS range response to give a sense of per-pulse sidelobe levels while Fig. 7.5 illustrates the

mean frequency response across the CPI. The top row of subplots in each figure correspond MF

(blue) and MMFs for the LFM waveform with an SNR loss constraint (a.) and with an SINR loss

constraint (b.) relative to the optimal filter (green) and interference (black) generated via a 50 ms

OFDM communication waveform with 4 MHz of bandwidth and is 20dB above the noise floor, i.e.

the interference-to-noise ratio (INR) is 20dB. The bottom row of subplots (c. and d.) correspond

to the same QC applied to each of the PROFM waveforms individually3.

For the SNR constrained filters, the rage-sidelobe levels trend lower as the degree of beam-

spoiling increases while the spectral shape becomes “smoother” until the beamspoiling subsumes

the first sidelobe where a rippling effect starts to appear present and a shoulder-lobe behavior ap-

pears in the range domain. The relatively small degree of oversampling on receive (κ=1.3) and

fairly flat spectral content likewise induces a “ringing” behavior at multiple of N samples, which is

a well known artifact [55]. The relatively flat frequency characteristics of the LFM waveform pro-

vide a convenient surface in which the MMF can easily induce a smooth frequency response (and

thus low sidelobes), while the random and spikey nature of the PROFM waveforms typically yield

higher RMS sidelobes. However, due to the non-repeating nature of the agile CPI, these range

sidelobes will actually achieve a noise-like coherent averaging effect proportional to the number of

pulses (500∼27dB) and the zero-Doppler slice will have a range sidelobes corresponding to mean

frequency response. That being said, as the range-sidelobes change pulse-to-pulse performing

Doppler processing will result in a “smearing” of ambiguity due to RSM.

3For a waveform agile CPI, it is likewise possible and likely desirable to apply the QC in terms of the aggregate
SINR loss across the whole CPI, rather than for each waveform individually. Doing so simply involves the summation
of several components and only necessitates trivial modification of the dual and its derivatives via chain rule.
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When the interference is incorporated into the QCQP, the MMFs attempt to place a notch in

the region of the interference which in turn induces a sinc-like sidelobe roll-off in range. A similar

phenomena has been observed when spectral notching is incorporated on transmit and is due to

the inverse Fourier relationship between sinc and rectangular functions. In terms of range-sidelobe

levels, this spectral notch significantly degrades sidelobe suppression for the LFM waveform until

a large degree of beamspoiling is incorporated. Interestingly, outside of the sinc-like roll-off,

the RMS PROFM range-response does not degrade as significantly as the LFM even though the

average frequency responses behave similarly.

7.7 QC LS MMF Open-Air Experimental Results

Next the attenuator from the closed-loop setup was removed and the respective transmitter and

receiver chains were connected to parabolic antennas. This test setup was taken to the roof of

Nichols hall at the University of Kansas and placed in a pseudo monostatic configuration where TX

and RX happens simultaneously (see Fig. 7.7). The antennas were pointed at an intersection with

moving vehicles∼1000 meters away and the two CPIs from the previous section were sequentially

transmitted to collect open-air experimental measurements of a scene with moving vehicles and

stationary clutter. Note, these the selected pulse duration and test setup resulted in direct path

sidelobes that extend ∼1500 meters which subsume the intersection.

For the first open-air experiment, a white noise MML constraint QC was used to generate

Toeplitz MMFs for the LFM and PROFM CPIs using the ISL MMF 2 parameters from Section

7.6.2 (ρ=-2dB; D = 4N; k=5) as well as template objective MMFs with ρ=-2dB, D = 4N, and p

defined as a Gaussian times a Tukey window in the frequency domain corresponding to a desired

3dB oversampling of κw = 1.3 where the Tukey component was incorporated to coarsely model the

anti-aliasing filter4. These MMFs were then applied to the respective measurements and Doppler

4While a template design designed to be gaussian may have lower sidelobes, accounting for the sharp rolloff
induced by the anti-aliasing filter typically enables the waveform-filter response to better match the template for less
mismatch loss. Additionally, distortion an model errors due to range straddling is most significant on the edge of the
band, thus avoiding placing energy there naturally provide some robustness towards range straddling.
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Figure 7.5: RMS Filter Response for MF and MMFs with ρ=-2dB; D = 4N; k=3 (MMF 1), k=5
(MMF 2), or k=13 (MMF 3)
a. - LFM with SNR constraint; b. - LFM with SINR constraint; c. - PROFM with SNR constraint;
d. - PROFM with SINR constraint;
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Figure 7.6: Mean Frequency Response for MF and MMFs with ρ=-2dB; D = 4N; k=3 (MMF 1),
k=5 (MMF 2), or k=13 (MMF 3)
a. - LFM with SNR constraint; b. - LFM with SINR constraint; c. - PROFM with SNR constraint;
d. - PROFM with SINR constraint;
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Figure 7.7: Open-Air Experimental Test Setup

processing with a Taylor window was performed. Figure 7.8 illustrates the range-Doppler maps of

the intersection where the top row of subplots (a.-c.) correspond to the LFM MF, ISL MMF, and

template MMF respectively while the bottom row (d.-f.) correspond to the same QCQP setup but

for the PROFM CPI. As each filters was normalized to yield a pulse-compression peak of unity,

the color axes (and all subsequent color axes) are normalized such that 0 dB corresponds to the MF

noise floor. For the LFM CPIs, the range-sidelobes extending from the direct path (seen at zero

velocity and∼1050 meters) and targets are clearly reduced using the MMF approaches, though the

background floor has come up slightly due to the MML. For the PROFM MF, the direct path RSM

appears as a significantly raise background floor which masks all the movers and makes detection

unlikely. After applying the MMFs to the PROFM measurements, the background floor is push

down ∼24 dB which correlates well with what was expected with the loopback assessment from

Fig. 7.5. While the direct-path RSM floor is still higher than the noise floor, many of the movers

are now detectable which was not possible with the MF.

Next, the synthetic OFDM signal from Section 7.6.2 was added to the open-air measurements

with an INR of 20 dB and the corresponding Toeplitz QC MMFs were generated using the same

parameters as before. Additionally, the optimal SINR filters with the same filter length as the MF

(D = N) were generated. Figure 7.9 illustrates the output after range-Doppler processing when
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Figure 7.8: Toeplitz Model D=4N, ρ=-2dB, k=5 (ISL) or κw = 1.3 (template) with no interference

using the MF (a., c.) and optimal SINR filter (b., d.) for the LFM (top row a.-b.) and the PROFM

(bottom row c.d.) CPIs respectively. For the LFM MF (a.), the additive interference source leads

to a raised background floor which masks most of the movers. After applying the optimal SINR

filter (b.) the movers are again visible, though they have an extended range response due to the

spectral notching behavior seen in Fig. 7.6 and noise floor has raised slightly. The application of

the optimal SINR filters to the PROFM measurements (d.) does not provide much benefit relative

to the MF (c.) as the direct-path RSM is unaffected by the optimal filter. Figure 7.10 provides a

histograms of the intersection background floor for the MF when no interference is present (left)

as well as a comparison between the MFs and optimal SINR filters when interference is present

(right). Here it is clear that the optimal SINR filters are able to largely retain the performance of

the MF with no interference present for this OFDM interferer.

Figure 7.11 then provides a visualization the range-Doppler maps of the intersection after the

QC MMFs are applied where the top row of subplots (a.-c.) correspond to the LFM optimal

SINR filter, ISL MMF, and template MMF respectively while the bottom row (d.-f.) correspond to
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Figure 7.9: Matched Filter vs Optimal SINR filters for OFDM interference with 20dB INR
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Figure 7.10: Histogram of intersection for PROFM and LFM Waveform sets with (right) and
without (left) interference
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Figure 7.11: Toeplitz Model D=4N, ρ=-2dB, k=5 (ISL) or κw = 1.3 (template), OFDM interfer-
ence with 20dB INR

same respective the PROFM MMFs. Here the LFM MMFs alleviate much of the extended range

response, though some near-in sidelobes remain. The PROFM MMFs again provide a significant

reduction in RSM relative to the optimal SINR filter and matched filter where the background

floor has been reduced by ∼15 dB and ∼20 dB for the ISL and template objectives respectively.

While the improved performance of the template objective may seem unintuitive at first since the

spectral notch is diametrically opposed to the Gaussian template, it can be explained through a

philosophy similar to [156]. Where the ISL objective seeks to find the MMF that has the lowest

sidelobes for every pulse, the template objective tries to match all filter responses to the same

template. When incorporating an interference covariance, this desired response effectively changes

to account for the frequency characteristics of the interference, but the per-pulse desired response

largely remains the same. Thus, the template MMFs have a response with range-sidelobes that

are higher (due to the spectral notch) but are correlated on a per-pulse basis. This correlation

then results in a reduction of RSM as the pulse-to-pulse range-sidelobes coherently combine when

performing Doppler processing.
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Toeplitz MMFs - median of intersection (dB)
MF Opt SINR Template Objective ISL Objective

D N N 2N 4N N 2N 4N 4N 4N 4N 4N N 2N 4N 4N 4N 4N 4N
ρ (dB) 0 0 0 0 -2 -2 -3 -1 -2 -2 -2 -2 -2 -3 -1 -2 -2 -2

Beamspoiling κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=2 κw=3 k=5 k=5 k=5 k=5 k=5 k=3 k=7
PROFM 31.66 31.66 31.66 31.66 30.16 22.43 7.03 7.03 7.03 6.69 7.41 30.16 22.39 6.76 6.70 6.73 11.72 7.34

LFM 0.12 0.12 0.12 0.12 1.41 1.61 2.27 0.81 1.60 1.00 1.75 0.83 0.77 0.78 0.76 0.77 1.55 1.94
PROFM w intf 32.05 32.79 31.52 31.42 30.85 23.24 9.22 12.74 9.61 10.19 15.59 33.68 26.58 13.99 19.91 15.92 13.30 10.57

LFM w intf 20.06 0.70 0.56 0.56 1.36 1.70 2.45 0.84 1.57 1.37 1.82 2.10 2.21 2.97 1.16 2.06 1.82 2.37
PROFM w tr 31.66 31.66 31.66 31.66 30.16 22.43 14.70 14.70 14.70 14.65 15.50 30.16 22.39 14.73 14.69 14.71 16.50 14.67

LFM w tr 0.12 0.12 0.12 0.12 1.41 1.61 2.27 0.82 1.61 1.00 1.75 0.83 0.77 0.78 0.76 0.77 1.55 1.93
PROFM w intf + tr 32.05 32.79 31.52 31.47 30.85 23.24 15.70 17.08 15.87 16.13 18.82 33.68 26.58 20.07 21.87 20.19 17.50 18.69

LFM w intf + tr 20.06 0.70 0.56 0.56 1.36 1.70 2.44 0.84 1.57 1.37 1.82 2.10 2.21 2.97 1.16 2.06 1.82 2.37

Table 7.5: Toeplitz MMFs - median of intersection (dB)

To give a sense of MMF performance vs parameter selection, Table 7.5 was generated using

the median of intersection power to provide an ordered statistical estimate of the background floor.

In the table, the various filter parameters are tested with additive interference (denoted with the intf

label) as well as with a simulated front-end transmit-receive (TR) switch in which the first 1% of

samples are zeroed out (∼10% of the direct path) each PRI (denoted with the tr label). In practice,

a TR switch would likely zero out the entire direct path to avoid transmitting and receiving simulta-

neously. However, this experimental test setup is largely SNR limited (output power ∼1Watt) and

the close proximity of the intersection causes a more representative implementation to zero out a

significant portion of the mover energy. Thus, while not a perfect representation of reality, this TR

implementation to at least provides a semblance MMF degradation when partial pulse-eclipsing is

present.

As a final experiment, the efficacy of the Circulant approximate MMFs in the SINR QC context

was examined. First, the experiment from Fig. 7.11 was recreated using the same SINR loss

constraint (ρ = −2 dB) and beamspoiling/template parameters, however, the filters were formed

using the IIR approximate Circulant MMFs where the filter length was equal to the number of

samples in a PRI (D = LPRI). This approximation was performed for both the QC MMFs and the

optimal SINR filters. Figure 7.12 illustrates these results with the same ordering as Fig. 7.11.

Here the Circulant MMFs largely retain or slightly outperform the Toeplitz MMFs as LPRI > 4N

and there are no significant model errors from pulse eclipsing or multiple-time-around-clutter for

this PRF an transmit power. Interestingly, the Circulant approximate optimal SINR filter resulted

in a surprising reduction in RSM by ∼2 dB, which may be an artifact of the long filter length.
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Figure 7.12: Approximate Circulant Model D=LPRI , ρ=-2dB, k=3 (ISL) or p-gaussian shape,
OFDM interference with 20dB INR

Circulant Approximate MMFs - median of intersection (dB)
MF Opt SINR Template Objective ISL Objective

D N 0.5LPRI 1.5LPRI LPRI 0.5LPRI 1.5LPRI LPRI LPRI LPRI LPRI LPRI 0.5LPRI 1.5LPRI LPRI LPRI LPRI LPRI LPRI

ρ (dB) 0 0 0 0 -2 -2 -3 -1 -2 -2 -2 -2 -2 -3 -1 -2 -2 -2
Beamspoiling κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=1.3 κw=2 κw=3 k=5 k=5 k=5 k=5 k=5 k=3 k=7

PROFM 31.66 31.66 31.66 31.66 3.65 3.58 3.55 3.54 3.55 3.48 4.44 3.81 3.77 3.81 3.65 3.74 10.27 4.30
LFM 0.12 0.12 0.12 0.12 1.64 1.64 2.05 0.83 1.64 0.92 1.75 0.77 0.77 0.77 0.76 0.77 1.56 1.47

PROFM w intf 32.03 43.07 30.84 31.31 30.32 6.26 6.43 8.38 6.43 6.56 10.17 30.37 14.71 11.28 18.18 13.89 11.69 6.70
LFM w intf 20.06 20.29 0.46 0.47 1.59 1.91 2.84 1.09 1.96 1.94 2.23 1.65 1.98 3.15 1.35 2.30 1.93 2.40

PROFM w tr 31.66 31.66 31.66 31.66 14.89 14.36 14.26 14.22 14.24 14.22 15.04 14.78 14.48 14.48 14.26 14.38 16.03 14.84
LFM w tr 0.12 0.12 0.12 0.12 1.64 1.64 2.05 0.83 1.64 0.92 1.75 0.77 0.77 0.77 0.76 0.77 1.56 1.47

PROFM w intf + tr 32.03 43.20 30.91 31.38 30.45 15.11 15.09 15.64 15.15 15.26 16.75 30.51 19.59 19.50 20.84 19.52 16.88 18.17
LFM w intf + tr 20.06 20.43 0.46 0.47 1.59 1.91 2.85 1.09 1.96 1.95 2.22 1.66 1.98 3.15 1.35 2.30 1.93 2.40

Table 7.6: Circulant Approximate MMFs - median of intersection (dB)

A tabulated performance evaluation of these Circulant approximations is provided in Table 7.6,

where alternate filter lengths correspond to truncations or zero-padding of the PRI.
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Chapter 8

Conclusions

In this work, various extensions and efficient implementations for structure-based estimation have

been proposed to support waveform-agile MTI pulsed-radar operation. Algorithm efficacy has

been tested in simulation, hardware-in-the-loop, and open-air experimental measurements and

shown to generally enhance practical performance and robustness. Theoretical computational

complexities have been provided, where the efficient implementations offer significant reduction

in cost. Additionally, proposed iterative frameworks offer reductions in storage requirements and

have the potential for hardware acceleration as the reformulated implementations only require

vector-vector and FFT/IFFT operations. Below is an itemized summary of contributions from this

work for each corresponding chapter.

Chapter 3 Contributions: Efficient Straddle-Robust Least Squares Mismatched

Filtering

⋄ Proposed and developed range straddling robustness measures for the LS MMF ISL QP

· Incorporation of straddling uncertainty yields ISL MMFs that avoid high frequency

components

· On-grid samples are commensurate with continuum of possible sub-sample shifts

· Filter response continuum yields significantly lower sidelobes near zero-delay than the

uncompensated ISL MMFs and does not suffer from the sinc-like off-grid ringing effect

· Resulting filters have a more restricted solution space, slightly raising on-grid peak-
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sidelobes level (∼1-2dB) but significantly reducing mainlobe modulation effect when using

a waveform agile CPI

⋄ Assessed viability and complexity of efficient MMF solvers

· Showed both the uncompensated and straddle compensated LS MMFs have Toeplitz

structure and can be constructed and represented efficiently through summation across the

diagonals of a signal-correlation matrix

· Inverse Toeplitz identity offers rapid beamspoiling updates and performs matrix-vector

multiplications via elementwise multiplication and FFTs/IFFTs

· Demonstrated that the straddle compensated signal-correlation matrix can be well ap-

proximated as low-rank, enabling efficient beamspoiling updates

· Levinson recursion based implementations offer improved complexity over direct solvers

· Banded Cholesky approaches offer further complexity for filters that are much longer

than the respective waveform

· Assessed preconditioners for conjugate gradient implementations which offer further

improvements to computational complexity and storage requirements

·Additionally, as each PCG iteration is performed with vector-vector multiplications and

FFTs, it is amenable to further parallelization and hardware acceleration that is not possible

with the Levinson or Cholesky approaches

⋄ Experimentally validated all approaches on hardware-in-the-loop and open-air measure-

ments

· All LS MMFs show improved direct path RSM, however, the longer filter length ex-

tends the response in range and results in a higher intersection RSM floor

· Straddle compensated ISL and template-based LS MMF show significant improvement

in mainlobe modulation and improved direct path roll-off
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Chapter 4 Contributions: Mismatched Complementary on Receive Filtering

⋄ Proposed the Mismatched Complementary on Receive Filtering framework for arbitrary FM

waveforms

· Leverages the variable sidelobes structure of unique waveforms within a subset to de-

sign filters that achieve a complementary sidelobe cancellation after presuming is performed

· Accounts for spectral oversampling by incorporates beamspoiling or template-based

objective

· Trades off Doppler sensitivity and unambiguous velocity to significantly increase de-

sign DoF

⋄ Generalized straddling uncertainty for MiCRFt framework

· Filter response continuum yields significantly lower sidelobes near zero-delay than the

uncompensated ISL MMFs and does not suffer from the sinc-like off-grid ringing effect

· Resulting filters have a more restricted solution space, yielding a broadened mainlobe

response but significantly reducing mainlobe modulation effect when using a waveform agile

CPI

⋄ Assessed viability and complexity of efficient MiCRFt solvers

· Showed both the uncompensated and straddle compensated MiCRFt forms have a

Toeplitz-block structure and can be constructed and represented efficiently through sum-

mation across the diagonals of a signal-correlation and signal-cross-correlation matrix

· Subsequent permutation of MiCRFt matrix yields Block-Toeplitz matrix structure

· Inverse Block-Toeplitz identity offers efficient beamspoiling updates and performs

matrix-vector multiplications via multiplication with the smaller block-components and block

FFTs/IFFTs

· Multi-channel Levinson recursion based implementations offer improved complexity

over direct solvers
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· Banded Cholesky approaches offer further complexity for filters that are much longer

than the respective waveform

· Reposed MiCRFt filter form offers potential to further reduce cost when the number of

waveforms within a subset is large (Q > 4)

· Assessed viability of conjugate gradient implementations which offer improvements to

storage requirements but may need further developments to improve convergence

· That being said, the PCG iterations are still inexpensive to apply and leverage FFTs,

thus, for some cases it may still outperform the Levinson or Cholesky approaches

⋄ Experimentally validated all approaches on hardware-in-the-loop and open-air measure-

ments

· MiCRFt approaches showed suppression of RSM to the model uncertainty floor for

∼1.5dB of mismatch loss, but halves the unambiguous velocity

Chapter 5 Contributions: Alternate Joint Range-Doppler Clutter Cancella-

tion Representations and Efficient Implementations

⋄ Computationally Efficient NIMPC Implementations

· Proposed alternative NIMPC filter solution to reduce computational complexity and

memory requirements when the number of clutter slices is less than the number of pulses

· Alternative representation supports both multichannel levinson and banded Cholesky

solvers

· Proposed reduced complexity method to solve for the NIMPC unity gain weights

· Proposed method to solve for NIMPC uniform noise weights and evaluated when this

approach provides a complexity reduction

· Examined the efficacy of PCG for NIMPC and found that it primarily serves as a

method to reduce memory requirements, and not necessarily improve computational cost for
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the preconditioners evaluated

⋄ Projection NIMPC Implementation

· Reposed NIMPC in a null-space projection framework

· Computational cost of Proj-NIMPC scales with the number of clutter directions rather

than number of waveforms, and does not require computing and storing multiple filters

· The required linear system is Toeplitz-Block-Toeplitz and can be solved efficiently with

multichannel levinson or banded Cholesky

· Proj-NIMPC is extremely amenable to PCG and inexpensive preconditioners can ex-

ceptional RSM suppression for only a few (5-10) iterations

⋄ Evaluated the reformulated NIMPC and Proj-NIMPC using open-air experimental measure-

ments

· All the NIMPC methods were able to suppress clutter RSM to the model uncertainty

floor

· Reformulated NIMPC provided nearly ten orders of magnitude reduction in complexity

relative to a brute force solve, and three orders of magnitude improvement over an efficient

solver

· The Proj-NIMPC framework pushed the computational cost even lower with an addi-

tional two orders of magnitude improvement over the Reformulated NIMPC approaches

· PCG for Proj-NIMPC saw overall the lowest order of complexity and likely will see

even more practical speedups over the multichannel levinson approach as it performs most

operations elementwise or utilizing FFTs/IFFTs

Chapter 6 Contributions: Robust Adaptive Pulse Compression

⋄ Proposed and developed measurement-based range straddling robustness measures for APC
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· Incorporation of straddling uncertainty yields estimates that avoid sinc-like broadening

effect seen when APC is applied on near critically sampled (κ ≈ 1) architectures

· Additionally, provides robustness towards mainlobe modulation effect seen when APC

is applied to waveform agile radar

⋄ Generalized an APC filter beamspoiling technique to yield an arbitrary template-based RMMSE

framework

· Like the template-based LS MMFs, this framework helps mitigate super-resolution

induced MML and provides natural robustness to straddling

· Additionally, this template-based objective avoids additional covariance beamspoiling

and unity constraint operations, which leads to more computationally efficient implementa-

tion

· However, the lack of a traditional unity constraint can still produce significant noise

floor fluctuation and can produce an effect similar to Doppler streaking from mainlobe mod-

ulation

⋄ Proposed Low-Rank approximate APC implementation

· Approach attempts to avoid incorporating redundant or uninformative information into

the source covariance estimate

· The basic concept couples generic CFAR detection of scatterers, with the iterative

refinement of APC

· Implementation of this work leverages an simple inexpensive moving median thresh-

old detection routine, but likely can be generalized and improved with more sophisticated

approaches

⋄ Further evaluated the "block" or "full" APC implementations and developed efficient imple-

mentations for certain configurations
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· Leveraged the "full" structured covariance to effeciently form every snapshot-based

structured covariance simultaniously

· Demonstrated that construction of the structured covariance could be performed via

diagonals convolution of a signal correlation matrix and the source covariance matrix, which

significantly reduces computational burden

·Using the template-based RMMSE framework, a "full" APC iteration can be performed

by solving a single banded hermitian linear system, and subsequent matrix operations can be

performed efficiently by leveraging Toeplitz-vector frequency domain multiplication

·Alternatively, by leveraging the low-rank approximate implementation enables efficient

filter solutions using low-rank factorizations or Woodbury’s inverse identity

⋄ Proposed APC techniques were then evaluated on open-air experimental measurements from

a waveform agile CPI

· The straddling robust implementation of APC saw RSM suppression down to the model

uncertainty floor, without the required dimensionality tradeoffs of MiCRFt and NIMPC

· Additionally, incorporating straddling robustness significantly reduced mainlobe mod-

ulation effects present with previous APC configurations

· The template-based APC implementation provided source estimates commensurate

with the other approaches, however, the lack of a unity constraint induced more noise gain

and Doppler streaking from high powered scattering

· The low-rank approximate implementation offered significant improvement in RSM

levels over the MF when only incorporating 112 outliers which corresponded to a two orders

of magnitude decrease to computational complexity

·However, this low-rank implementation could not fully suppress RSM to the same level

as the "full-rank" approaches and the RSM background floor is 2dB higher
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Chapter 7 Contributions: Generalized SINR Loss Constrained LS MMFs

⋄ Proposed a generalized SINR Constrained QP for LS MMF formulation

· Approach builds off of previous work which examined a SNR constraint ISL LS MMF

· Here generalizations for a template based objective and an SINR constraint are intro-

duced

· Generic framework provides the means to solve for the globally optimal constrained

LS MMF via the Lagrange Dual problem

· Explicit bounds for the Dual are then provided via a generalized eigen decomposition,

but in practice this expensive decomposition is not necessary to solve the optimal filter

· The Dual, its derivative, and second Derivative are then used to develop a maximization

algorithm that yields the optimal MMF

· Extensions of the QCQP and dual maximization to account for aggregate SINR loss

across multiple waveform and a QCQP implementations of MiCRFt are then discussed, but

further analysis and development is left as future work

⋄ Efficient Dual Maximization Contributions

· The efficient implementations from previous works (for the SNR constrained ISL ob-

jective) are generalized for this SINR constrained framework

· An rapid upper bound estimation technique for the template-based objective is devel-

oped to avoid performing an expensive generalized eigen decomposition

· Efficient direct solver routines that leverage levinson recursion and banded Cholesky

are discussed

· An efficient and parallelizable PCG implementation is then developed where the solver

leverages a novel upper-lower bound preconditioner that provides rapid and accelerating

convergence
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⋄ Experimental evaluation of SINR constrained LS MMFs

· Template-based and ISL LS MMFs were both designed using the proposed maximiza-

tion algorithm and efficient solvers using hardware in the loop measurements and were

shown to offer an improvement in complexity two orders of magnitude lower than eigen

decomposition based approach

· The proposed preconditioner likewise outperformed both Circulant preconditioners and

efficient Levinson based implementation

· This preconditioner may offer further practical speedups as it converged in significantly

fewer iterations than the circulant preconditioners and is likewise only requires Toeplitz

matrix-vector multiplications that can be computed rapidly using FFTs/IFFTs

· Open-air experimental validation confirms that trading off minor SINR loss can yield

a significant reduction in range sidelobes and reveal scatterers that were previously masked

by RSM
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Appendix A

Appendix

A.1 Toeplitz Plus Low Rank Linear Systems

A rank-r update to the inverse of matrix A (or linear system solve Ad = x) may be incorporated

via the Sherman–Morrison–Woodbury (or Woodbury’s for shorthand) formula

(
A+UΛUH)−1x =

A−1x−A−1U
(
Λ
−1 +UHA−1U

)−1 UHA−1x
(A.1)

for an “update" (i.e. incorporating low rank interference Ri = UΛUH) or

(
A−UUH)−1 x =

A−1x+A−1U
(
I−UHA−1U

)−1 UHA−1x
(A.2)

for a “downdate" (e.g., beamspoiling UUH = S̃H S̃), though they are functionally equivalent. For

PD hermitian Toeplitz matrices, matrix-vector multiplication with A−1 can be applied with O (8L log(2L))

and the r× r “capacitance” matrix
( (

Λ−1 +UHA−1U
)

or
(
I−UHA−1U

) )
is PD. Thus for the

Toeplitz case, the order of complexity for both forms is O
(
16L log(2L)+ r2L

)
.

In theory, the inverse update will be accurate as long as the capacitance matrix is PD, which

is always the case for (7.17) for any non-zero λ in the feasible region. In practice however, nu-

merical precision and ill conditioning often cause instability when using (A.1) and (A.2) [157]. A

heuristic rule of thumb that helps ensure the update is stable, is to compute the MMF with ∼2×

the numerical precision of the waveform s, but in general this may not always be practical.
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Alternatively, an iterative update procedure via PCG or preconditioned generalized minimum

residual (PGMRES), where A−1 acts is treated as the preconditioner, may offer some robust-

ness towards numeric instability. Both approaches have (theoretically) guaranteed convergence

in at most r + 1 steps as the preconditioned system has r non unity positive eigenvalues and

at most r + 1 clusters of eigenvalues, though iterations may be necessary in practice for poorly

conditioned systems. The choice of PGMRES vs PCG largely stems from how well the ca-

pacitance matrix is conditioned, where PGMRES will likely offer the more robustness. Nei-

ther the order of complexity for PGMRES O
(5

2(r+1)2(r+2)2L log(2L)+ r(r+1)L
)

nor PCG

O (10(r+1)L log(2L)+ r(r+1)L) will significantly increase computational burden when r << L,

but they will add additional latency.

A.2 Inverse of the KKT matrix

As the KKT matrix has a block form, the block matrix inverse identity

D−1 =

 T v

vH 0


−1

=

 A g

gH b

 (A.3)

where

A = T−1−T−1v
(
vHT−1v

)−1vHT−1, (A.4)

g = T−1v
(
vHT−1v

)−1
, (A.5)

and

b =−
(
vHT−1v

)−1
(A.6)

can be used to find the stationary points of the Lagrangian or simplify the QCQP Dual function

[76, p. 456].
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A.3 Algebraic Simplifications for the ISL Dual

For the ISL dual function, G−1b only requires computation of the second block column of (A.3)

as
G−1b = (D+λQ)−1 b

=

 T̃+λC v

vH 0


−1 0

1



=


(T̃+λC)

−1v

vH(T̃+λC)
−1v

1
vH(T̃+λC)

−1v


(A.7)

where the vector with bH further simplifies the dual as

bHG−1b =
1

vH
(
T̃+λC

)−1v
. (A.8)

Likewise, multiplication by Q allows for the simple expansions of

QG−1b =

 C(T̃+λC)
−1v

vH(T̃+λC)
−1v

0

 (A.9)

which can be used to calculate the first derivative and reveals that the second derivative only re-

quires an additional multiplication with the first block element of (A.3).
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