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Abstract

Remote attestation is a process of establishing trust between various systems on a network. Until

now, attestations had to be done on the fly as caching attestations had not yet been solved. With the

blockchain providing a monotonic record, this work attempts to enable attestations to be cached.

This paves the way for more complex attestation protocols to fit the wide variety of needs of users.

We also developed specifications for these records to be cached on the blockchain.
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Chapter 1

Introduction

Trusting other computers on a network becomes more hazardous every day. This work is a tiny step

towards reducing those hazards. Remote attestation is a way of building trust between systems on

a network. An attestation request of a target from an appraiser is a sort of health checkup for the

target. A cache of these checkups forms a health record of the target. This can cut down on repeat

appraisals. And opens future avenues of research for trusting a system based upon its history.

For example, an administrator adding a new printer to a network can appraise the printer offline

ensuring that the device booted from a secure state, with up-to-date firmware. See Perlroth (2013)

for an attack on networked printers. This can form the initial checkup of the health record. Every

reboot or firmware update can be appraised and have such a check up added to the health record.

Making this record available for others on the network to read will allow third parties to be sure that

this printer is approved. Unlike with people, these health records of systems may be made widely

available.

In order to be widely available on the network, health records must be able (1) to be appended

by appraisers, (2) to not be modified, (3) to not be erased, and (4) to be available to all on the

network. The first three conditions form a sort of monotonicity for the records in order to allow

proper functioning and to prevent covering up a bad checkup. The fourth condition is a requirement

shielding the health records from a denial of service attack. A private blockchain meets all these

requirements. Blockchain is monotonic, and its decentralized nature helps with the high availability

requirement.

We use the blockchain as a database, not because it is trendy, but because in this scenario a

decentralized ledger is advantageous to a centralized database. A central database is by its very
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nature able to be modified as well as erased, allowing an attacker to alter/remove bad checkups.

This makes such a database a single point of attack on the network. They are also a single point of

failure for denial of service attacks. And so, the choice of blockchain is not made capriciously.

Finally, we wrote specifications for these health records in the proof assistant Coq. In order to

do temporal specifications, we used Grant Jurgensen’s computational tree logic library from his

masters thesis (Jurgensen, 2022), which was developed inside our research group. We formally

specified our health records and proved that it satisfies some monotonicity criteria. This is assuming

that an adversary cannot override the blockchain consensus mechanism, e.g. a 50%+ 1 attack.

Such an attack is outside our threat model as it requires the attacker to be in control of more of the

network than we can reasonably accommodate.
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Chapter 2

Background

2.1 Blockchain

In 2008, the pseudonymous Satoshi Nakamoto wrote a white paper (Nakamoto, 2008) describing the

cryptocurrency Bitcoin and its underlying blockchain technology. A blockchain is a decentralized,

distributed, digital ledger that consists of records, or blocks, which account for transactions between

multiple computers, or nodes. The originating block in a blockchain is known as the genesis block.

All other blocks include a hash of the previous block, linking all the blocks into a chain, and a

cryptographic signature to ensure integrity.

2.1.1 Ethereum

Note that Satoshi’s Bitcoin can be viewed as a state transition system, in which the state is the

ownership status of every mined bitcoin and the transition function takes a state and collection of

transactions (including the mining of new coins) to produce a new state. The Bitcoin blockchain

is the path through the system which starts at the genesis block and ends at the present time.

This blockchain allows for a limited, stack-based scripting language. Ethereum is an open source

blockchain contrived by Vitalik Buterin. Buterin and other founders created Ethereum to provide

the additional functionality of allowing nodes to run immutable, Turing-complete, decentralized

applications—smart contracts—on this new blockchain.

In Ethereum, the state is made up of objects called accounts which have 20 byte addresses.

Accounts consist of four fields: (1) a counter called the nonce, which counts how many transactions

the account has sent and act as a unique identifier for the account’s transactions; (2) the account’s
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current ether balance, where ether is the primary cryptocurrency of Ethereum; (3) the account’s

contract code, if any; and (4) the account’s storage, which is empty by default. There are two

types of accounts: externally owned accounts which are controlled by private keys and contract

accounts which are controlled by their contract code. The state transitions are direct transfers of

value and information between accounts. Externally owned accounts have no code and can send

messages by creating and signing transactions. Contract accounts execute their code upon receipt of

a message which allows them to read and write to internal storage, send other messages, and create

new contracts. Further, contract accounts have direct control over their own ether balance and their

own key/value storage which allows for persistent variables.

Transactions within Ethereum are cryptographically signed data packages that store messages,

sent by externally owned accounts, and contain the following information.

1. The message recipient

2. A signature of the sender

3. An amount of ether to transfer from the sender to the recipient

4. An optional data field

5. A StartGas value which is the maximum number of computational steps the transaction’s

execution is allowed to take

6. A GasPrice value which is the fee the sender pays per step of computation

The gas fields act to prevent denial of service attacks against the system. Messages are like

transactions except that they are sent by contract addresses instead of externally owned addresses.

Messages are objects that are never serialized, exist only within the Ethereum execution environment,

and contain everything that a transaction does with the exception of the signature and the GasPrice

field (Buterin, 2022).

We are using a private, Ethereum blockchain to cache the results of remote attestations in a

health record.
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2.2 Remote Attestation

Remote attestation is the act of creating evidence for properties of a target and transferring this

evidence over a network to another party, known as the appraiser. Evidence takes the form of direct

and local measurements, taken by the appraiser, of the target. An protocol for remote attestation is a

cryptographic protocol involving a target, an appraiser, an attester, and possibly other parties acting

as proxies of trust. Such a protocol is supposed to supply evidence which the appraiser considers

authoritative while respecting the privacy goals of the target (Coker et al., 2010).

2.2.1 Copland

Copland is a domain specific language with formal semantics designed to expresses attestation

protocols. A phrase, which is a term in the language, describes a single protocol.

A ::= USM a

| KIM P a

| CPY | SIG | HSH | · · ·

T ::= A

| @PT

| (T → T )

| (T
π

≺ T )

| (T π∼ T )

The meta-variable P represents a place, which is where attestation protocols are interpreted. USM a

is a user-space measurement with a abstracting the details. KIM P a is a kernel integrity measurement

such as those done by the Linux Kernel Integrity Monitor (Loscocco et al., 2007). The CPY, SIG,

and HSH are a minimal set of evidence operations which represent copying, signing, and hashing.

The phrases T1 → T2, T1
π

≺ T2, and T1
π∼ T2 compose two sub-phrases and dictate an execution

order. T1 → T2 specifies that T2 follows T1 and consumes the evidence that T1 produces. T1
π

≺ T2
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requires sequential execution also but splits prior evidence between T1 and T2 using the projection

functions π := ⟨π1,π2⟩, with T1 pulling from π1 and T2 from π2. T1
π∼ T2 allows for asynchronous

execution, again splitting evidence between the sub-phrases using the projections forming π . @PT

has the place P interpret the phrase T and return the resulting evidence (Petz & Alexander, 2019).

Our remote attestations will be done in the Copland language. In other words, the nature of each

checkup in a health record will be described using Copland.

2.3 Tools

The programming language CakeML and proof assistant Coq were the two primary tools used in

this work. CakeML is a variant of the Standard ML programming language. The formal semantics

and compiler for CakeML is verified in HOL4 proof assistant. This language, along with some

foreign function calls to C, was used to talk to the Ethereum blockchain as well as implement

the attestation manager. Coq is another proof assistant which utilizes the calculus of inductive

constructions, a higher-order typed lambda calculus. Coq was used to model the health records and

prove the model correct.

2.4 Literature Review

Bampatsikos et al. (2019) came up with a way to for a prover, or attestation target, with limited

computational power to prevent a denial of service attack by a malicious verifier, or appraiser. The

idea is that in mission critical applications, an IoT device can use remote attestation to protect itself

and its users from attack by acting as a prover to another, more computationally powerful machine

which acts as an appraiser, whose job it is to attest to the health of the prover. However, it may be

possible to overwhelm the simple prover with a multitude of requests from the appraiser. In order

to prevent a malicious appraiser from launching a denial of service attack against the target, the

authors purpose that the appraiser pay a fee on the public Ethereum network for every request. This

prevents such attacks by making them prohibitively expensive.
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In Javaid et al. (2020), the authors purpose to utilize blockchain technologies to act as a

distributed database of trusted IoT devices. The nodes of the blockchain not only mines for new

blocks but also appraises the IoT devices—which are the provers—and registers new devices. One

of the main contributions is the use of physically unclonable functions (PUFs) which act as roots

of trust for the IoT devices which likely lack a hardware root of trust such as a Trusted Platform

Module (TPM). Devices which are able to provide valid proof of their proper state are put on a

trusted list, while those that cannot provide proof are put on a restricted list or even dropped from

the network.

Our work does not require the use of blockchain for its cryptocurrency purposes, nor does it

require blockchain nodes to perform special tasks like device registration and verification. Instead,

we focus upon devices with sufficient computational power and use the blockchain only as a

distributed database to store results of attestation requests. This means that not only can a verifier

validate the most recent attestation request of a prover, but also validate any and all of the prover’s

past requests. This work opens up new discussions about how a device can be judged based upon its

history.

2.5 Software Bill of Materials

• CakeML version 1322

• ganache version 7.1.0

• GCC version 11.3.0

• geth version 1.10.17

• nodejs version 12.22.9

• solidity version 0.5.16

• Truffle version 5.5.14
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• web3.js version 1.5.3
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Chapter 3

Design and Implementation

3.1 CakeML

3.1.1 Communicating with the Blockchain

One can talk to the Ethereum blockchain using JSON remote procedure calls over HTTP. A very

basic C FFI shim for TCP/IP communication is used in front of the CakeML code as shown in figure

3.1. Using algebraic data types to represent HTTP requests and responses, we can read and write

HTTP over the network. When reading responses, parser combinators are employed during the

interpretation. The body of the HTTP messages are JSON encoded data, which is again represented

in CakeML by algebraic data types, with parser combinators assisting in the reading as well. This

minimal C shim shrinks our implementations exposure to attacks and other bugs to more acceptable

levels. The parser combinator code as well as the code to parse HTTP messages and the JSON

bodies was tested by trying it out on a handful of examples that should parse successfully and a

handful of examples that should fail to parse. The code to format or print HTTP messages and the

Blockchain

C TCP/IP Shim
Parsing

Generic contract handler
Function specific handler

JSON/HTTP

Figure 3.1: Communication with blockchain using CakeML
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JSON bodies was tested by visually inspecting the output of a handful of examples and by piping

the results to the blockchain to see whether an error resulted.

An example POST query and response is posted below which will call a smart contract method

that creates a transaction on the blockchain.

HTTP POST query:

{ "jsonrpc": "2.0",

"method": "eth_sendTransaction",

"params": [{

"from": "0xb60e8dd61c5d32be8058bb8eb970870f07233155",

"to": "0xd46e8dd67c5d32be8058bb8eb970870f07244567",

...,

"data": "0xd46e8dd6..."

}],

"id": 1

}

Response:

{ "id":1,

"jsonrpc": "2.0",

"result": "0xe670ec64..."

}

The fields of the JSON objects are described below.

• method tells the blockchain software what type of call this will be.

• from is the address of the caller, and who is responsible for the gas fees.

• to is the address of the callee which in our case is a smart contract.

• data contains the method of the smart contract to be called as well as the value of the

parameters in contract ABI form.
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• result has the results of the method call in contract ABI form.

The contract application binary interface (ABI) format is a way to encode the values on which

smart contracts operate. It is a 32 byte wide encoding with variable length values such as strings

prefixed by their length. As an example, encoding the pair (“hello world”, 29) as a (string,

uint256) tuple, one would start with the string would be prefixed by its length—11 or 0xb—and

then be converted into UTF-8 format padded with zeros in the least significant bits, then the number

would be converted to its hexadecimal equivalent 0x1d padded with zeros in the most significant

bits. Finally, these 32 byte wide hexadecimal strings are concatenated together in the following

order: the number of bytes from the start of the result to the start of the length of the string “hello

world”—64 or 0x40 bytes, the encoded value of the unsigned integer, the encoded length, and the

encoded string. In the end, we get the following byte string.

0x0000000000000000000000000000000000000000000000000000000000000040

000000000000000000000000000000000000000000000000000000000000001d

000000000000000000000000000000000000000000000000000000000000000b

68656c6c6f20776f726c64000000000000000000000000000000000000000000

In order to call a function with signature foo(string, uint256) with this particular tuple value,

we would take the hash of the signature using the Keccak-256 hash function, take the most significant

4 bytes from the hash, and prepend them to the ABI encoded tuple yielding 0x24ccab8f00...00.

As the JSON messages from the blockchain address the particular smart contract function

to be called, we have a CakeML function to send and receive messages directed at each smart

contract function. However, we capitalize upon the remaining, common structure of these messages

with generic CakeML functions which are called by the more specialized functions. Again, refer

to figure 3.1 for a diagram outlining this process. Both generic and specific CakeML functions

return a Result data type which encapsulates correct, expected return values in an Ok constructor

and all other return values in an Err constructor, short for “Error”, which in these cases wraps a

string-valued error message. As there are multiple ways that communicating with a blockchain can
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fail, returning an error message seemed to be the more useful for future users of this work. The code

to encoding and decoding the Ethereum ABI was tested by communicating with the blockchain and

getting the expected results.

3.1.2 Health Record

The health record for a node on a network is stored on the blockchain as a JSON object. It has the

following fields.

• appraiserId a byte-string representing the identifier of the appraiser. We plan on having

this be a hash of the appraiser’s public key.

• phrase a JSON representation of the Copland phrase.

• result a JSON value representing the result of the appraisal.

• signature an optional byte-string holds the appraiser’s signature of this stringified JSON

object.

• targetId the identifier for the target of the attestation, again another byte-string.

• timestamp an integer value for the timestamp from when the appraisal was completed.

• targetPubEncKey a byte string representing the target’s public encryption key.

• targetPubSignKey a byte string representing the target’s public signing key.

At the moment, the result is a simple boolean value indicating whether or not the appraiser

approved of the Copland phrase for the target. Right now, we are using simple unsigned integers for

the identifiers. The signing algorithm used is RSA with SHA-512. This code that reads and writes

health records to the blockchain was tested by writing a record and reading the same record back

and comparing the two.
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3.1.3 Attestation Manager

The attestation manager is implemented as a server listening for attestation phrases to evaluate and

returning the evidence generated. A client looks for a fresh checkup in the health record on the

blockchain. If a fresh record is found, the client goes no further. Otherwise, it sends a fixed phrase

to the attestation manager, receives the evidence for the phrase, evaluates the evidence, and puts

this checkup on the blockchain. In this case, the client is also serving as an appraiser of evidence

due to the simplicity of our research group’s demos. This code was tested by other members of our

research group using code they had written to do other aspects of the particular demo.

3.2 Coq

3.2.1 History

The Coq History module is a generalization of and specification for health records. It defines a

“history” of values with type T as a list over a boolean decidable type T , which are types equipped

with a boolean equality operator as well as a propositional equality operator which agree with one

another. Histories match what the smart contract permits: appending to a list, reading values from

the list, and clearing the list entirely. They do not model the access control mechanisms of the smart

contract, which permit certain authorized blockchain accounts to modify the list.

Definition history := list T.t.

Definition history_add (x: T.t)(h: history) := cons x h.

Definition history_peek (h: history) :=

match h with

| nil => None

| cons x h' => Some x

end.

Definition history_empty (h: history) := h = nil.
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Fixpoint history_find (x: T.t)(h: history) :=

match h with

| nil => false

| cons x' h' =>

if T.eqb x x'

then true

else history_find x h'

end.

Using the computational tree logic (CTL) developed in our research group for Coq, we proved

that immediately after appending a value to a history either the history contains this value or is

cleared (history_found_next); that whenever a value can be found in a history, at the next moment

in time, the same value can be found in the history or the history is cleared (history_found); and

that a value added to a history stays in the history until the history is cleared (history_kept). The

last goal is a sound and complete model for the smart contract because the transitions that modify

the history list in the smart contract are exactly one transition that appends a single item to the list

and another that clears the list entirely.

Inductive history_step: relation history :=

| history_add_step:

forall (h: history)(x: T.t), history_step h (history_add x h)

| history_clear_step:

forall (h: history), history_step h nil.

Instance history_step_transition: transition history_step :=

{ trans_serial := history_step_serial }.

Lemma history_found_next (h: history)(x: T.t):

tentails
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history_step

(history_add x h)

(AX (tlift

(fun h' =>

history_find x h' = true \/

history_empty h'))).

Theorem history_found (h: history)(x: T.t):

tentails

history_step

h

(timpl

(tlift (fun h' => history_find x h' = true))

(AX (tlift

(fun h' =>

history_find x h' = true \/

history_empty h')))).

Theorem history_kept (h: history)(x: T.t):

tentails

history_step

(history_add x h)

(AW

(tlift (fun h' => history_find x h' = true))

(tlift (fun h' => history_empty h'))).

The CTL library works on paths indexed by natural numbers through a state transition system.

The tentails predicate takes 3 arguments: a relation for the transition system, an initial state, and
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a CTL proposition which holds over the transition system. tlift lifts a proposition in Coq to one in

this CTL system. timpl is the implication in the embedded CTL language. The temporal quantifiers

used in the above goals are AX and AW. AX takes one CTL formula and states that it holds in every

state which immediately follows. AW takes two CTL formulas and acts as an “until”—AW φ ψ states

that φ holds at every reachable state until ψ holds. So either φ can hold for all reachable states or φ

holds until ψ holds with no overlap.

3.2.2 Cryptography

The cryptography module models keys as an enumerated inductive type which can either be a

symmetric, public, or private key. Each key is indexed by a natural number, and has an inverse

key—symmetric keys are their own inverses, public keys have a corresponding inverse private key,

and similarly for a private key.

Inductive key: Set :=

| symmetric : nat -> key

| private : nat -> key

| public : nat -> key.

Definition kinverse (k: key): key :=

match k with

| symmetric _ => k

| private k' => (public k')

| public k' => (private k')

end.

Data over a type T can either be a value of type T , a cryptographic key, the result of encrypting

another data value with a key, the result of hashing data, or a pair of data values. Signing a data

value consists of pairing the value with an encrypted hash of the value. It was already proved that
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only the inverse of the signing key can verify the signature (sig_check), and that if the process of

checking the signature of a data value against a key succeeds, then that data value was the result of

signing another value with the inverse key (sign_only).

Inductive data (T: Type): Type :=

| value : T -> data T

| kval : key -> data T

| kapply : key -> data T -> data T

| hash : data T -> data T

| pair : data T -> data T -> data T.

Definition sign {T: Type}(d: data T)(k: key): data T :=

pair d (kapply k (hash d)).

Definition check {T: Type}(d: data T)(k: key): Prop :=

match d with

| pair d' s' =>

match s' with

| kapply k' s'' =>

k = kinverse k' /\ s'' = hash d'

| _ => False

end

| _ => False

end.

Theorem sig_check {T: Type}(d: data T)(k1 k2: key):

k1 = kinverse k2 ->

check (sign d k1) k2.
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Theorem sign_only {T: Type}(d0: data T)(k0: key):

check d0 k0 ->

exists (d1: data T)(k1: key),

sign d1 k1 = d0 /\ k0 = kinverse k1.

3.2.3 All Together

A health record in Coq starts with a boolean, decidable type T . This type is passed into the cryptog-

raphy data type, which we showed is again a boolean, decidable type. Then the cryptographic data

is wrapped by the history module. The pair construct in the cryptography type allows us to create

records of arbitrary length. The types of the record’s fields being a boolean decidable type gives

us the ability to store any basic, practical types that we wish. In other words, we have certainly

modeled the health records which are being written to the blockchain, along with more general data

types.
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Chapter 4

Conclusion

We have developed health records for remote attestations to be put on a private blockchain. This

allows a node on the network to see the entire attestation history of one of its neighbors. The analysis

of such a history is now an open research question. Also, we proved properties for these health

records that establish a kind of monotonicity. Another thing left for future work is the scalability of

this health record system. We have only tested this on a network with a handful of systems on it.

But the lowest hanging fruit of further research is implementing certificate-style attestation

flexible mechanism Helble et al. (2021). In this system, shown in figure 4.1, the appraiser of

evidence is separated from the client into its own process or even its own node on the network. The

client would then check the blockchain for a fresh health record, signed by the appraiser. If no such

record is found, the client sends their Copland phrase to the attester. This attester performs the

prescribed measurement, generates the corresponding evidence, and sends the evidence onto the

appraiser. The appraiser will evaluate the evidence, place a new health record onto the blockchain

containing their evaluation, and hand their evaluation back through the attester to the client.

This work on certificate-style attestation is already under way. And it will be using this work on

blockchains in order to store appraisals in a monotonic way.
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appraiser attester client blockchain

check records

freshest record

phrase

measureevidence

appraise signed result

signed result

signed result

Figure 4.1: Certificate protocol
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