

Abstract

Shifting trends in modern software engineering and cloud computing have pushed system designs

to leverage containerization and develop their systems into microservice architectures. While mi-

croservice architectures emphasize scalability and ease-of-development, the issue of microservice

explosion has emerged, stressing hosting environments and generating new challenges within this

domain. Service meshes, the latest in a series of developments, are being adopted to meet these

needs. Service meshes provide separation of concerns between microservice development and

the operational concerns of microservice deployments, such as service discovery and networking.

However, despite the benefits provided by service meshes, the security demands of this domain are

unmet by the current state-of-art offerings.

Through a series of experimental trials in a service mesh testbed, we demonstrate a need for

improved security mechanisms in the state-of-art offerings of service meshes. After deriving a

series of domain-conscious recommendations to improve the longevity and flexibility of service

meshes, we design and implement two proof-of-concept service mesh systems, Anvil and Ser-

viceFRESH to facilitate frequent, automated rotation of security artifacts (keys, certificates, and

tokens), within service mesh deployments. Anvil is a novel, standalone service mesh with auto-

mated, zero-downtime artifact rotations, while ServiceFRESH is a best-effort service mesh rotation

module for use alongside a current state-of-art service mesh, Consul. The next prototype designed

and developed as part of this work, ServiceWatch leverages these frequent security artifact refresh-

ments and introduces a novel access control monitoring scheme. ServiceWatch effectively provides

holistic monitoring and management of the microservice deployments it hosts. Further, Service-

Watch automatically isolates and removes microservices that violate the defined network policies of

the service mesh, requiring no system administrator intervention. Extending this proof-of-concept

environment, we design and implement a prototype workflow called CloudCover.

iii

CloudCover introduces a verification-in-the-loop scheme and leverages modern service mesh

tools, allowing easy adoption of these novel security mechanisms into state-of-art deployments.

Under a realistic and relevant threat model, we show how our design choices and improvements are

both necessary and beneficial to real-world deployments. By examining network packet captures,

we provide a theoretical analysis of the scalability of these solutions in real-world networks. We

further extend these trials experimentally using an independently managed and operated cloud

environment to demonstrate the practical scalability of our proposed designs to large-scale software

systems. Our results indicate that the overhead introduced by ServiceWatch and CloudCover are

acceptable for real-world deployments. Additionally, the security capabilities provided effectively

mitigate threats present within these environments.

iv

Acknowledgements

I would like to thank everyone who has been involved with the research that I’ve conducted during

my time as a graduate student. Specifically, my lab mates Kailani Jones, Yousif Dafalla, and Ron

Andrews, of which I have had the pleasure of participating and contributing to their research as

well. Also, I would like to thank the entirety of the Undo-Lab research group and the guidance and

support of my advisor Dr. Alexandru Bardas. Alex has been a massive support, mentor, friend,

and teacher for me through both my undergraduate and graduate research experiences. Without

Alex’s help and guidance, this work would not be possible. I would also like to thank Dr. Drew

Davidson for playing an active role throughout my Ph.D. research and providing significant advice

and support for this research. Lastly, I would like to thank all of the members of this committee:

Dr. Alex Bardas, Dr. Drew Davidson, Dr. Bo Luo, Dr. Fengjun Li, and Dr. Huazhen Fang for their

consideration of this work and the comments and advice that have helped refine this work.

The Madison and Lila Self Graduate Fellowship has played an important role in shaping me as

a well-rounded graduate student and Ph.D. candidate. Without their financial support to focus on

research activities and pursue research questions I find interesting, this work would not be what it

is today. Additionally, the training and support provided throughout the four years of the program

and the guidance from the Self Graduate Fellowship staff has been tremendous and has afforded

me many opportunities and freedoms during my time as a Ph.D. student.

I would like to thank my family for the lifetime of support and confidence that they have shown

me and my education. I’m so incredibly grateful to them and they have played a monumental role

in the creation of this work. I thank my parents, Mark and Susan, for giving me every resource

available and for fostering my interest in computers from an early age. The guidance and help

from my brother, Quentin, was extremely important throughout my undergraduate career, and the

friendship and support I have received helped encourage a pursuit of graduate education. I’d like

v

to thank my friends for their continued belief in me and an interest in my pursuits.

Lastly, I would like to thank my wife, Meagan Brucker-Hahn. Meagan has been the greatest

support I could ever imagine and has pushed me to be more than I could have ever achieved on my

own. Through long nights of stress, questioning, and struggle Meagan has been the support that

has provided me strength to pursue this research and educational goal. Since the very beginnings

of my research endeavours, Meagan has never failed to be interested, supportive, and curious of

my work. The unending support, encouragement, and faith in my abilities and work have made the

following document possible. Without Meagan, I would not be the person or researcher who I am

today. For today and everyday, I am forever grateful for Meagan’s love and support.

vi

Contents

1 Introduction 1

1.1 Research Goals . 4

1.2 Contributions . 5

2 Background and Related Work 6

2.1 Enabling Factors for Microservices . 7

2.2 Microservice Architectures . 10

2.3 Service Meshes . 12

2.4 Security Issues in Microservice Deployments . 15

2.5 Related Work . 16

3 Security Artifact Rotations in Service Meshes 18

3.1 Introduction . 18

3.2 Background and Motivation . 21

3.2.1 Microservice Architectures . 21

3.2.2 Service Meshes Overview . 22

3.2.3 Research Gaps in Existing Service Meshes 24

3.3 Threat Model and Security Capabilities . 25

3.3.1 Threat Model . 26

3.3.2 Security Capabilities . 27

3.4 Anvil Design . 30

3.4.1 Core Service Mesh Functionality . 31

3.4.2 Novel Security Features . 32

vii

3.5 Implementation . 34

3.5.1 Anvil Development . 34

3.5.2 Experimental Evaluation Setup . 35

3.6 Evaluation . 38

3.6.1 Consul (ServiceFRESH) Downtime Costs 43

3.6.2 ServiceFRESH Downtime Results . 44

3.6.3 ServiceFRESH Microbenchmark of Downtime Costs 46

3.6.4 Overlay Service Mesh Performance Costs 47

3.7 Discussion and Limitations . 49

3.8 Related Work . 52

3.9 Summary . 54

4 Mitigating Microservice Compromise in Service Meshes 55

4.1 Introduction . 55

4.2 Background and Motivation . 58

4.2.1 Microservice Architectures . 58

4.2.2 Service Meshes Overview . 59

4.2.3 Security Incident Handling in Existing Service Meshes 61

4.3 Threat Model and Security Capabilities . 62

4.3.1 Threat Model . 62

4.3.2 Security Capabilities . 64

4.4 ServiceWatch Design and Evaluation . 69

4.4.1 Malicious Service Mitigation . 69

4.4.2 Attack Window . 70

4.4.3 Access Control Verification . 71

4.4.4 Experimental Evaluation – Access Control Verification 72

4.4.5 Theoretical Evaluation – Access Control Verification 73

4.5 Related Work . 74

viii

4.6 Summary . 75

5 Multi-Hop Access Control in Service Meshes 77

5.1 Introduction . 77

5.2 Background and Related Work . 80

5.2.1 Service Meshes and Microservice Architectures 80

5.2.2 Static Analysis of Source Code . 81

5.2.3 Related Work . 82

5.3 Threat Model . 83

5.3.1 State-of-Art Shortcomings . 84

5.3.2 Novel Attacks . 84

5.4 CloudCover . 86

5.4.1 Architecture and Design . 87

5.4.2 Implementation . 88

5.5 Evaluation . 89

5.5.1 Network Overhead Calculation . 89

5.5.2 Load Testing Experiments . 92

5.6 Discussions and Limitations . 94

5.7 Summary . 97

6 Conclusions and Future Work 98

ix

Chapter 1

Introduction

The domain of software engineering and development has been revolutionized by the capabilities

and novel methods provided by the advent of cloud computing. Namely, microservice architec-

tures [63], a novel paradigm of software design, have emerged as a promising approach to capital-

ize upon the benefits and features of cloud infrastructure and containerization. Service meshes, a

subset of DevOps, have become a leading solution to address the management and security chal-

lenges of the microservices domain [14].

The state-of-art in service mesh tools provide the key contributions of service discovery and

management for microservices [90], load balancing for replicated and distributed microservices,

and critically, security, such as mutual-TLS (mTLS) and authorization for microservice requests [62].

Requiring no microservice code modifications, service meshes deploy service proxies to facilitate

the network communication and security benefits to deployed microservices [9, 46, 55]. This prop-

erty has proven extremely beneficial to microservice developers, allowing them to decompose large

software monoliths into independently operating microservices [63]. In this way, service meshes

have allowed developers to abide by the principle of “separation of concerns” when it comes to

constructing and designing microservices, focusing upon the business functionality of source code

rather than the security and networking concerns of these systems.

Interest in service meshes has been growing in recent years, following a trend of adoption

relative to other popular portions of the DevOps toolset, such as Kubernetes [69], a container

orchestration platform. Additionally, the annual developer survey conducted by the Cloud Na-

tive Computing Foundation (CNCF) [17] has shown that Kubernetes and service meshes have

increased in both adoption and popularity across 2020 and 2021 [18, 19]. As adoption of these

1

tools increases, so too does their maturity and the size of microservice deployments in production

environments.

Despite the significant benefits and features that service meshes provide to microservice ap-

plications, the current state-of-art falls short of matching the dynamic and strong security needs

of microservice deployments. Critically, modern service meshes lack many of the mechanisms

needed to maintain fresh security artifacts (encryption keys/certificates and access control tokens

leveraged in security mechanisms) [45]. In this way, the highly dynamic nature of microservice ar-

chitectures and the frequent redeployment and configuration changes made in these environments

are unmatched by the current offerings in state-of-art service meshes. Additionally, previous work

has identified numerous security flaws and latent vulnerabilities in containerized applications and

container networks. As attackers develop methods to exploit and leverage these threats against ex-

isting systems, the microservices domain faces significant threats to the security of entire deploy-

ments. Among these are: software supply chain vulnerabilities, closed-source third-party code,

and underlying container vulnerabilities [77, 92]. With large software systems developed and de-

ployed following the microservices paradigm, solutions to detect, alert, and mitigate compromise

of service meshes is vital to maintaining control and the overall health of these systems. To make

matters worse, while microservices are designed to be transient and replaced or modified regularly,

the underlying service mesh instances are designed to manage and secure these environments for

long periods of time. Lastly, the challenge of microservice explosion [64, 125] and highly complex

dependency relationships between microservices have created novel attack vectors for adversaries

that are able to gain a foothold presence within deployments. As real-world incidents and mishaps

have shown [23, 92, 112], misconfigurations and misunderstandings regarding the dependencies

between microservices are possible and are difficult to fully understand and capture.

The contributions presented in this work aim to address these security issues and challenges

within the microservice domain. Through novel design choices and implementation, we present a

series of prototype systems that improve upon the state-of-art in microservice security. Primarily,

these prototype systems target the issues of (1) longevity of service mesh systems and maintain-

2

ing security artifact freshness for service mesh components; (2) detecting, alerting, and mitigating

microservice compromise threats in operational service meshes; (3) enhancing service mesh ac-

cess control mechanisms to defend against unaddressed threats in service meshes due to complex

microservice dependency relationships.

3

1.1 Research Goals

This work attempts to address the following research goals:

1. Improve the long-term security and freshness guarantees in service mesh deployments.

2. Address the issue of microservice compromise in service mesh deployments.

3. Address vulnerabilities in service meshes caused by complex dependency relationships be-

tween microservices.

To achieve the research goals posed above, this work presents a series of prototype designs

and system implementations that provide novel capabilities to the service mesh domain. These

prototype systems are then evaluated with respect to performance, network overhead, and network

latency incurred as a cost of operating these additional security measures within microservice

environments. Evaluations and performance analysis were conducted both in cloud computing en-

vironments and in experimental testbeds that emulate the hardware and technology present within

cloud computing infrastructure. In this manner, we attempt to provide realistic scenarios and envi-

ronments to measure the feasibility of these designs for real-world application.

4

1.2 Contributions

By addressing the research goals presented above, this work makes the following contributions to

the field of cyber security and network security:

1. Anvil / ServiceFRESH – Two initial, proof-of-concept frameworks for facilitating security

artifact rotations in service meshes. Anvil is a standalone service mesh with security artifact

rotation implemented as a key feature of the system and ServiceFRESH is a best-effort imple-

mentation to include security artifact rotations in a state-of-art service mesh, Consul. These

proof-of-concepts are evaluated for effectiveness and efficiency with respect to performance

in large-scale systems.

2. ServiceWatch – A novel design and implementation for detecting, alerting, and isolating

microservice instances that are suspected to be malicious or misbehaving. The system is

then evaluated based upon the network overhead imposed by the novel design.

3. CloudCover – A framework for improved access control in modern service meshes that con-

siders novel threats to microservice deployments that are previously unaddressed by previous

work or state-of-art implementations. We evaluate its feasibility for adoption in real-world

systems by considering network overhead and latency imposed upon service-to-service re-

quests in a realistic deployment.

5

Chapter 2

Background and Related Work

A growing rate of adoption and availability for cloud computing offerings have allowed developers

and architects to restructure their systems to make use of the powerful abstractions and resources

present within these environments. With global distribution of datacenters and resources [54],

cloud computing infrastructure has paved the way for software engineers to construct highly avail-

able and resilient systems that can service a global audience while remaining online during some of

the strongest denial of service attacks observed [82, 135]. However, these capabilities and a desire

to redeploy and update software at increasingly higher frequencies have strained the management

and deployment mechanisms that were used by administrators in the past [1]. Ushering in new

challenges of infrastructure management, scalability, and monitoring within large-scale software

engineering, cloud computing has not only brought dramatic benefits to the domain, but significant

challenges as well.

A primary source of strain within these environments is an increasing interest in microservice

architectures [63]. Traditional software, often developed and deployed as a single-server applica-

tion, presents many issues and difficulties when attempting to utilize the available resources and

features of cloud computing. This software model is often referred to as the monolithic archi-

tecture. However, the microservices approach decomposes the monolithic software application

into atomic, singular-purpose application elements that collaborate with one another to achieve the

same high-level capabilities and features. While this practice has enabled administrators to cap-

italize on the benefits of cloud computing and scalability, it has also increased the pressure and

challenges of managing such systems at a global scale.

DevOps, a collection of modern tools and methodologies, has emerged to address these chal-

6

lenges and to streamline the development and operations tasks for modern software and microser-

vice deployments [118]. Heavily emphasizing automation and “pipelines” for the process of soft-

ware engineering and deployment, DevOps tools have appealed to administrators to answer the

issue of microservice explosion [64, 125] that has come about due to the transition of systems from

monolithic to microservice architecture. The remainder of this chapter explores the key enabling

factors for this new software paradigm, the basic architecture of microservice applications, and

the tools that are used to manage these deployments in operational environments. Additionally,

we explore the security challenges and issues present within deployed microservice environments

and the previous research that has examined this domain with efforts to improve the security and

reliability of these systems.

2.1 Enabling Factors for Microservices

The changing landscape of cloud computing, and software engineering as a whole, has given rise

to a higher level of distribution and parallelization of modern software applications. Key contribu-

tions within virtualization and novel services within cloud computing infrastructure have provided

developers and system architects new methods and techniques to develop, package, distribute, and

deploy software at rates dramatically higher than previous capabilities [63, 120]. These mecha-

nisms and techniques have ushered in new software paradigms, namely microservice architectures,

bringing significant benefits to system availability, reliability, and scalability.

In an effort to increase utilization and effectiveness of hardware platforms and servers, virtu-

alization has been a key factor in the evolution of cloud computing. With the ability for cloud

computing infrastructure to facilitate many developers and organizations on singular hardware

platforms, virtualization technologies have improved and changed shape to meet the needs of these

consumers [121]. With virtual machines and containerization becoming commonplace offerings

in cloud computing infrastructure, the ability to provide high availability, replication, and global

distribution to developers and system architects has reshaped the way consumers interact with

software applications [136]. A key difference between virtual machines and container technolo-

7

Single-Server Applications Virtual Machine Applications Containerized Applications

Operating System

Libraries/Utilities

Applications

Operating SystemHypervisor
OS

Libs/
Utils

Apps

OS

Libs/
Utils

Apps

OS

Libs/
Utils

Apps

Hardware Hardware Hardware

Container Engine

Libs/
Utils

Apps
Libs/
Utils

Apps

Figure 2.1: Comparison of Virtualization Architectures

gies is the depth of abstraction that is presented to software applications. In the case of virtual

machines, a thin hypervisor is installed either atop the hardware itself (type-1/native hypervisor),

or atop an existing, end-user operating system (type-2/hosted hypervisor) [87]. Virtual machines

that are deployed into the hypervisor environment then have a dedicated operating system installed

that contains all of the necessary kernel packages and libraries needed to facilitate the applications

and features needed by software engineers. In contrast to this approach, containerization tools,

such as Docker [27] or containerd [21], and operate similarly to a hypervisor, but are installed

atop an existing operating system as “container engines” [87]. Containers themselves are not de-

ployed with their own kernels, as is the case in virtual machines, but rather, share the kernel of

the underlying operating system [99]. In containerized applications, requests to hardware features

or support are first intercepted and interpreted by the container engine and are then passed to the

operating system kernel to be handled [99]. Within a virtual machine hypervisor environment,

such as a type-1/native hypervisor, virtual machines that request hardware features or support first

make requests to the virtual machine kernel, which are then translated by the hypervisor before

ultimately being fulfilled with hardware resources [87]. Figure 2.1 illustrates an abstract view of

the differences between traditional, single-server applications, virtual machines, and containers.

With novel platforms for hosting and deploying software applications, such as containers, the next

key factor for enabling the microservice paradigm are the emerging deployment and management

mechanisms that interact with cloud infrastructure.

8

With a desire to maximize the efficiency and rate at which software can be deployed and

updates can be served in operational environments, new tools for creating, modifying, and de-

stroying infrastructure have been developed. In recent years, the idea of Infrastructure-as-Code

(IaC) [24, 107] and Software-as-a-Service (SaaS) [123] have become common terms in the do-

main of cloud computing and containerization. Tools such as Hashicorp’s Terraform [53] have

provided domain-specific language abstractions for cloud computing platforms that allow system

administrators to create, modify, and destroy virtual machines, containers, and even cloud-specific

resources, such as load balancers. Through these mechanisms, administrators can quickly take

updates and feature additions to software source code and integrate them into operational environ-

ments at increasingly high speeds [123]. Additionally, SaaS offerings through cloud computing

vendors, such as AWS’s Aurora database [3] or ElastiCache [4] caching service provide ready-

to-run configurations of commonly used tools to system administrators for easy deployment and

integration into their software architectures [123]. Once infrastructure is reserved or deployed to

the cloud environments, configuration management tools, such as RedHat’s Ansible [109], Pup-

pet [102], or Chef [104] are used to install, configure, and modify software atop deployed con-

tainers or virtual machines. These tools provide a high degree of automation to the workflows of

software engineers and system administrators, furthering the capabilities of cloud computing to

provide fast and reliable updates to software.

Finally, with the size, complexity, and degree of distribution in these new environments, or-

chestration management tools, such as Kubernetes [69] have evolved to fill the gaps and address

challenges in this domain. Kubernetes provides centralized orchestration, management, and scal-

ing for containerized applications. These key functions enable software engineers to more effec-

tively transition software from containerized source code to globally distributed software systems

that are capable of handling 42 million unique desktop users and over 126 million mobile users

per month, as observed at Amazon [106]. Kubernetes extends the container abstraction and pro-

vides key features such as distributed networking for containers. Acting as an “operating system

for containers”, Kubernetes has continuously increased in its rate of adoption and deployment in

9

Pod
Storage

Container

NodePod PodSidecar
Container

Container
Networking

Node PodPod

Figure 2.2: Overview of Kubernetes Pods and Sidecar Containers

real-world environments [18, 19]. The concept of Kubernetes “pods” is also an important factor

for how containers coordinate and collaborate with one another to achieve the high-level business

goals of deployed software applications [72]. As shown in Figure 2.2, pods are collections of

storage elements and containers that effectively share a common network boundary. Deployed

alongside one another on common hardware, containers deployed in pods operate adjacent to one

another, commonly referred to as “sidecar containers” [12]. This resource structure provides ex-

tremely fast network requests and interactions for containers and storage deployed within the same

pod [12]. Sidecar containers have been a key concept and enabling factor for the security of mi-

croservices when used within service meshes. Additional details about service mesh structure and

design discussed below in Section 2.3. Through this unique feature set and deployment model,

software applications have transformed to be highly distributed, independently operating portions

of a much larger application that collaborate with one another. This paradigm has been coined the

microservice architecture paradigm and has grown dramatically in its adoption and popularity in

large-scale software systems.

2.2 Microservice Architectures

Leveraging the evolution and changes in hardware abstraction and the support of novel automation

and management tools, microservice architectures have emerged as a modern approach to software

engineering and deployment. Additionally, the key capabilities provided by containerization and

10

Proxy

Frontend
Service

External
User

Network
Boundary

HTTPS
Request Proxy

Authen.
Service

Proxy

Database
Service

Figure 2.3: Basic Microservice Deployment with Service Mesh Proxies Installed

container orchestration platforms have pushed software engineers to develop and deploy their ap-

plications in the form of clusters, or “swarms”, of unique, atomic microservices. Through network

requests and collaboration between these microservices, a high degree of availability, reliability,

and scalability are achieved to facilitate the high-level goals of the software application.

The shift in software engineering paradigms from traditional, single-server applications to clus-

ters of distributed and replicated microservices has been a recent development enabled by a long

series of novel tools and mechanisms. The decomposition of single-server applications, referred

to as monoliths, to atomic, often single-purpose components, referred to as microservices has de-

rived many new benefits and accompanying challenges for software engineers [63]. These atomic

components communicate and collaborate in order to achieve the high-level business goals of the

software system. As part of the microservices design, what were once intra-service connections

have now become inter-service connections [110], crossing network boundaries and bringing about

new challenges and concerns with respect to security and reliability. Additionally, as software is

separated and separation of concerns is conducted upon a system, the issue of microservice ex-

plosion emerges [64, 125]. Microservice explosion refers to the tendency for large-scale software

systems that follow the microservices architecture to experience a dramatic increase in the growth

of unique software components that are managed and deployed as part of the system. For ex-

ample, what may have once been a single-server login application to a payroll system may now

involve many microservices that coordinate with one another using network requests to facilitate

11

the same functionality. A frontend user interface that displays the login page and collects user input

may compose one microservice, while the authentication mechanism for checking user credentials

comprises another. It is also reasonable to assume that the storage element for storing user cre-

dentials in a hashed and salted form comprise a third microservice. This basic microservice model

is illustrated in Figure 2.3. In effect, the microservice explosion issue presents new management

and complexity problems for this domain, placing additional strain on the current state-of-art tools

intended to manage and connect these environments. Accompanying the challenges of scalability

and coordination of microservice deployments, the sheer complexity of these environments can

grow to degrees that are difficult to understand for single administrators or engineers. As seen

in recent mishaps at Twitter [23, 112], the complexity and difficulty in understanding all of the

unique dependencies and relationships between microservices can often end in unavailability or

system downtime due to configuration errors.

Platform orchestration tools such as Kubernetes attempt to address these challenge of deploying

and managing containerized applications for scalable and distributed environments. With features

such as auto-scaling, replication, and service abstraction, Kubernetes has been a key technology

for the adoption and growth of microservice applications [69]. While providing key mechanisms

for deployment and infrastructure support for microservice applications, another key concern for

simplifying the development and revision process for microservices is the abstraction of network-

ing and security concerns to other components deployed in the cluster. Namely, these concerns

have been accommodated by service meshes [10, 47, 60, 98], the latest iteration in DevOps tools

and methods to handle microservice architectures.

2.3 Service Meshes

Service meshes are the latest iteration in a series of advancements made by DevOps tools to ad-

dress the challenges and needs of the microservices domain. Namely: once microservices and the

containers that host them have been deployed to an environment, how are they able to locate and

communicate with one another, and how are they secured?

12

While the current state-of-art service meshes vary in terms of design and deployment strate-

gies, all modern service meshes exhibit similar properties. Additionally, they share a common

set of goals and functionality they provide to the microservices they manage. Service meshes

deploy service proxies into the microservice environment and operate as “agents” on behalf of

the microservices. Figure 2.3 depicts this proxy-service relationship and shows how an external

user would interact with the microservice deployment via the entrypoint service’s service proxy.

Service proxies operate at the network boundary of a microservice, or “pod” in the case of a Ku-

bernetes cluster, to intercept network traffic passing between microservices. Service proxies also

communicate with one another to maintain an accurate view of the access control policies deployed

to the cluster and to coordinate identity and authentication among other service proxies [70]. The

management operations and tasks within a service mesh occur within the “control-plane” [70] of

the service mesh and are separated from the logic and traffic that occurs between microservices.

The service-to-service requests between microservices occurs over the “data-plane” [8] of the ser-

vice mesh. All data-plane traffic first passes through the service proxy of the cluster and may

encrypted using mutual-TLS (mTLS) [61]. By applying mTLS for service-to-service traffic in the

cluster, the key security properties of confidentiality, integrity, and authentication are provided to

microservices without the need for any software implementation within the microservice itself.

Additionally, all modern service meshes provide some form of access control to facilitate proper

authorization for service-to-service requests in the deployment [51]. While all modern service

meshes strive to meet these security goals for microservice deployments, the design and structure

of service meshes still varies among the current state-of-art.

Two competing strategies in service mesh design in the current state-of-art tools are platform

independent service meshes and overlay service meshes. Hashicorp’s Consul [47] is an example

of a platform independent service mesh in that it does not require an underlying Kubernetes imple-

mentation to operate, instead allowing system administrators to deploy Consul as a separate binary

application that functions alongside the microservice code [48]. However, despite it’s design, Con-

sul may still be used in conjunction with a Kubernetes platform, able to operate as either a platform

13

independent service mesh, or an overlay service mesh at the administrator’s discretion [50]. In con-

trast to this approach, overlay service meshes, such as Istio [60] and Linkerd [10] heavily depend

upon an underlying Kubernetes deployment to facilitate certain service mesh processes and oper-

ate correctly. The support of an underlying Kubernetes implementation does provide a series of

benefits and capabilities to the service mesh, such as service discovery and management, but limits

the applicability of their deployment in certain environments.

Aside from the differences in deployment options, modern service meshes also differ in their

management structure. For example, in overlay service meshes, the underlying Kubernetes plat-

form is used to facilitate control-plane operations and tasks such as security artifact rotations of

some TLS keys and certificates used within the environment [71]. Alternatively, Consul creates its

own “quorum” structure to provide these processes to administrators, but does not automate them.

Within a Consul deployment, administrators are responsible for selecting a subset of the deployed

service proxies to operate in a “leader-follower” fashion. These nodes comprise the cluster’s “quo-

rum” where tasks such as logs for service mesh state are held and coordinated, new certificates and

keys are generated, service discovery and management is conducted, and configuration changes

for the cluster are possible. Consul’s practice of distributed responsibility and management are not

unique to the domain however. Kubernetes clusters may also be deployed in “high-availability”

mode which provides redundancy and load balancing of control-plane tasks in a similar manner to

the Consul quorum.

Providing clear benefits to enhance system administrators’ abilities in managing and coordi-

nating tasks in their deployments, service meshes are a clear advancement within the domain of

microservices and cloud computing. However, despite the key capabilities and features offered by

service meshes to microservice deployments, there exist open challenges and concerns relating to

the long-term security of service mesh platforms and the potential for microservice compromise

and expansion of attacks within this domain.

14

Tool Security Mechanism
Available Enabled Default

Revocation Redistribution
in Tool? by Default? Lifetime

C
on

su
l

Cluster Message Encryption Yes No ∞ No No

Service Message Encryption Yes No 1 year Yes No

Cluster Access Control Yes No ∞ Yes No

Service Access Control Yes No ∞ Yes No

L
in

ke
rd

v2

Cluster Message Encryption No No N/A N/A N/A

Service Message Encryption Yes Yes 24 hours Yes Yes

Cluster Access Control No No N/A N/A N/A

Service Access Control Yes No ∞** No** No**

Is
tio

Cluster Message Encryption No No N/A N/A N/A

Service Message Encryption Yes No Ext Tool [62] Ext Tool [62] Ext Tool [62]

Cluster Access Control No No N/A N/A N/A

Service Access Control Yes No ∞** No** No**

K
ub

er
ne

te
s Cluster Message Encryption No* No N/A N/A N/A

Service Message Encryption Yes No 1 year Beta Beta

Cluster Access Control Yes No ∞ No No

Service Access Control Yes No ∞ No No

Table 2.1: Security Mechanisms in Service Mesh Tools – A summarized view of the security
mechanisms available in each service mesh tool analyzed, which mechanisms are enabled by
default, and additional details about the actual implementations. ∗Pod-to-pod encryption left to
third-party implementation [72]. ∗∗Inherited from Kubernetes’ Role-Based Access Control sys-
tem [10, 62]. Table appears in [45].

2.4 Security Issues in Microservice Deployments

A growing number of vulnerabilities exploited in containerized applications and the challenge of

microservice explosion has strained the tools and environments that host and manage microser-

vices. Additionally, as adoption of microservice architectures increases, the potential for these

environments to be targeted by adversaries increases.

With the relative youth of service mesh tools in real-world systems, the security capabilities and

support in this domain remains relatively untested. Previous work by Hahn, et al. [45] explored the

state-of-art in service mesh technologies and their security under different configuration settings.

Namely, under default settings, many modern service meshes provide limited security to the sys-

tems they manage, leaving them vulnerable to exploitation by attackers. Due to the fact that these

systems are designed to host and manage clusters of hundreds to thousands of microservices, these

environments can be extremely appealing to adversaries. Once compromised, adversaries may

15

leverage the significant resources of a microservice deployment as a means of launching denial of

service attacks, cryptomining operations, and spam campaigns. Additionally highlighted as part

of this work, many of the service meshes studied fail to incorporate a number of desirable security

mechanisms that other domains have adopted. Namely, infinite or extremely long default lifetimes

of employed encryption certificates exist in nearly all modern service meshes. To compound mat-

ters, at the time of the study, many service meshes failed to provide meaningful mechanisms to

revoke or redistribute fresh certificates should a portion of the microservice deployment need to

be taken offline or redeployed. Under these circumstances, stale, or unmanaged, certificates may

remain active in the service mesh, providing adversaries the potential for legitimate communica-

tion with benign portions of the microservice deployment. The key takeaways from this study

are presented in Table 2.1. In addition to the key vulnerabilities and issues presented by Hahn, et

al. [45], other research works have examined the broader domain from a range of perspectives,

including microservice compromise, container networking issues, and access control for different

applications in the DevOps space.

2.5 Related Work

Previous work in the microservice and service mesh security domain have sought to address a

range of issues and challenges within these environments.

In recent years, growing concern and a range of vulnerabilities and exploits emerging within

microservice applications and the container ecosystem have driven a range of research and devel-

opment to alleviate these issues. With vulnerabilities, such as Log4j [85, 128] making headlines

and leading to significant damage [36, 132] work to understand the existing vulnerabilities and se-

curity issues in containerized applications has emerged [66, 126]. To address these vulnerabilities

and challenges, various works have explored applying principle of least privilege to microservice

systems that were constructed from decomposed monolithic applications [108]. Others have exam-

ined the potential for utilizing security monitoring in container systems [137]. Additionally, work

exploring the dangers of inherent trust within deployed microservices has been considered [124].

16

Work by Nam, et al. [89] explores security of container networks and the vulnerabilities ex-

posed by some container networking systems. They provide a proof-of-concept framework for

mitigating these threats and enforcing proper container networking policies. This work includes

efforts to improve upon the existing state-of-art in service mesh access control through our pro-

totype system CloudCover. CloudCover examines service-to-service traffic within microservice

deployments that operates at higher layers in the networking stack, specifically with service mesh

networking rather than container networking. CloudCover provides defenses against existing vul-

nerabilities caused by complex microservice dependency relationships. However, these methods

may be combined to provide a defense-in-depth approach. Additionally, previous work has con-

sidered proper access control in a serverless application context [2, 25, 116]. However, this work is

limited in scope due to its implementation for serverless applications specifically. Instead, our sys-

tem, CloudCover, applies system-wide access control for service meshes which may be deployed

alongside serverless applications due to their ability to be adopted into service mesh clusters [93].

Work by Li, et al. [76] has investigated the issue of inherent trust within microservices and how

this practice may be exploited by an insider threat. In a similar manner, throughout this work, we

adopt threat models that assume the potential of insider threats or microservice compromise with

an attacker that attempts to take malicious actions within microservice deployments. However, we

expand upon this work by considering a threat model where the complex dependency relationships

and connection maps within microservice deployments enable an attacker to achieve goals if not

mitigated. Specifically, in [76] only single-hop service-to-service connections are considered and

secured when in actuality, multi-hop paths exist in real-world deployments. Due to this, isolated

access control methods are insufficient and a holistic, system-wide access control methodology is

necessary. CloudCover expands upon this work by capturing these relationships and providing a

proof-of-concept framework to address this issue.

17

Chapter 3

Security Artifact Rotations in Service Meshes

3.1 Introduction

Adapting to new developments in software engineering design, service meshes have emerged as a

promising solution to manage and coordinate activities within microservice architectures [15, 100,

110]. Modern software engineering has trended towards a microservice paradigm and away from

the traditional, monolithic structure of software applications [44, 63, 110]. Through separation of

concerns and segregation of software components, the size of deployments has grown dramatically

and the issue of microservice explosion has emerged [64, 125].

Service meshes [37], a growing subset of tools within the wider collection of methods and

practices referred to as DevOps, have filled the role of controlling, maintaining, and connecting

collections of single-purpose microservices. Microservices, often hosted within deployed contain-

ers, but also virtual machines, or even servers, collaborate with one another to achieve high-level

business goals and logic [63]. This design paradigm is broadly referred to as the microservice

architecture and has seen a dramatic growth in popularity in recent years with a range of enter-

prise organizations transitioning their infrastructure to this new paradigm [16, 31–34, 67, 129].

With a broad list of responsibilities and capabilities, service meshes bear the weight of providing

infrastructure management as well as network coordination and connection. For instance, with

the segregation and separation of different aspects of a microservices-based software deployment,

what were once intra-service connections have become inter-service connections. As such, con-

nections between services must now traverse network boundaries. Due to this, service meshes

are now responsible for coordinating and securing these connections connections to uphold the

18

necessary security guarantees.

Despite being charged with responsibilities of network security, current service mesh designs

fail to meet the vital needs of this novel domain. Examples of these shortcomings include: lack

of meaningful, domain-adapted security features, prevention of cryptographic key and certificate

rotation capabilities, and requirement of high-cost underlying container orchestration platforms to

function correctly [10, 60, 73, 98]. As such, the current state-of-art in service mesh designs lack

the means to effectively ensure the security of deployments that they have been designed for [45].

These drawbacks conflict directly with the appeal of microservice architectures and their goals of

rapid deployment, always available resources [63].

The youth of service meshes has allowed for competing designs and structures of tools to

exist in competition within the domain (e.g., Consul [47], Istio [60], Linkerd [10], OSM [98],

Kuma [73], etc.). However, all modern service meshes, fall short in matching the needs of mi-

croservice deployments, either in the longevity of platform security or the performance costs asso-

ciated with underlying platforms [45]. Despite these concerns and challenges, a growing number of

service meshes are being labeled as “graduated” according to the Cloud Native Computing Foun-

dation (CNCF) and marked as “ready for production environments” [127]. Linkerd has already

been labeled as a CNCF graduated project along with Kubernetes [22, 88]. Additionally, the Istio

service mesh has been submitted by Google for inclusion in the CNCF [75]. Growing adoption

of service meshes along with security concerns increases the potential threats posed by the use of

these tools along with an increase in appeal to potential adversaries to target them.

Our prototype systems, Anvil and ServiceFRESH, directly address these areas of concern and

meet the needs of microservice architectures. Through key longevity features and novel security

functionality, Anvil and ServiceFRESH explore the unique capability of security artifact rotations

for service meshes. Focusing on feasibility and cost-effectiveness with respect to the security-

performance tradeoff, we aim to more closely meet the dynamic and flexible needs of the mi-

croservices domain. Anvil is, to the best of our knowledge, the first service mesh that provides

automated, synchronous, lively rotation of all security artifacts utilized within a service mesh.

19

ServiceFRESH, in contrast, is a best-effort framework for integrating these capabilities within a

current state-of-art service mesh. For the remainder of this work, we use the term security ar-

tifact to represent any security materials such as access tokens, encryption keys, or encryption

certificates that may be utilized within a service mesh. Through a demonstration of these key de-

sign decisions, without sacrificing the valuable feature-set present within service meshes, Anvil

and ServiceFRESH embody beneficial security design for future integration in state-of-art service

meshes.

Due to the diversity in design and implementation architectures of current service meshes (Con-

sul, Istio, Linkerd, OSM, Kuma), a direct lateral performance comparison of Anvil to these tools

is difficult and is often unclear with respect to Kubernetes’ [69] relationship with overlay service

meshes. Our primary goal is to demonstrate the feasibility and benefits of the security features our

proof-of-concept system, Anvil, relative to our best-effort implementation of ServiceFRESH. We

present a relevant threat model and security analysis of the state-of-art in service meshes, high-

lighting the design and implementation shortcomings in the current service mesh offerings. We

also demonstrate how the superior security design of Anvil more closely matches the needs of

microservice architectures.

To evaluate the feasibility of Anvil’s design features in practice, we use 29,400 unique CPU

and RAM data points collected in a controlled, testbed environment. We find that the security fea-

tures present in Anvil, such as security artifact rotations, do not incur significant processing costs

(up to 1% utilization when comparing median values across experiment trials). Next, we show

that Anvil’s lively rotation capability, if implemented alongside a current state-of-art service mesh,

Consul, creates inherent system downtime. Through a timing and performance analysis of this

prototype, ServiceFRESH, we report upon the system downtime incurred, which is undesirable in

microservice deployments and is not present in Anvil’s operations. Lastly, we analyze the imple-

mentation and operation costs of a representative overlay service mesh, Istio, being used with the

orchestration platform Kubernetes. Despite bringing Kubernetes to its most lightweight, baseline

implementation, the deployed Istio service mesh was at best matching Anvil’s performance across

20

85,200 unique CPU and RAM utilization data points. However, Anvil showed clear benefits to

system security through improvements to the long-term health of a service mesh by automatically

rotating all certificates, rather than requiring manual administrator intervention [11, 59, 74, 96].

Through the key features of lively, automated security artifact rotations and novel, microservice

security management functionality with minimal overhead, Anvil demonstrates a key understand-

ing of the environments in which service meshes are deployed and more closely addresses the

needs of these areas. As part of this work, we provide the following contributions:

• We analyze service mesh state-of-art designs and identify security shortcomings and limita-

tions that we then accommodate within our prototype solution, Anvil.

• We present Anvil, a service mesh platform with novel security features and lively, automated

security artifact rotations.

• We perform experimental evaluations of Anvil and state-of-art service meshes, showing the

benefits of Anvil relative to alternative tools with respect to performance and downtime.

3.2 Background and Motivation

Advancements in cloud computing and virtualization, have refined the architectures and design

of modern software systems. Current trends in software engineering and cloud computing have

encouraged adoption of microservice architectures managed by orchestration tools, such as service

meshes.

3.2.1 Microservice Architectures

Traditionally, software has been designed as a singular, whole product. This practice has been

referred to as the monolithic software architecture [84]. However, while this practice is simple

to understand and straightforward in terms of design, the scalability, manageability and speed at

which such a system can be deployed and revised is highly limited. Due to this, modern software

21

engineering practices have trended towards the separation of software components or modules into

microservices [130]. These single purpose, atomic elements of a larger software system are de-

ployed in tandem with other components and collaborate to achieve high-level business goals such

as user authentication or product purchasing [83]. Figure 2.3 illustrates a very simplified user-

login microservice deployment with three services handling the “frontend” user-interface, creden-

tial “authentication” management, and a credential storage system in the form of a “database”.

Bringing an increase in the speed to develop, and availability of, online applications, microser-

vice architectures [63] are an emerging software engineering paradigm. Additionally, virtualiza-

tion has been a key enabling technology for the advent of microservice architectures in that many

deployments leverage virtual machines or containers to host the microservice code [64]. With ex-

tremely fast deployment times and increased efficiency by leveraging shared resources, container-

ization played a major role in the adoption and growth of the microservice paradigm [15, 100, 110].

However, as enterprise software expands and the quantity of microservices deployed grows, the

management and coordination of these services is increasingly difficult. Service meshes are the

latest solution, in a series of developments, to address the issue of microservice explosion in large-

scale software. [44, 63, 110]

3.2.2 Service Meshes Overview

Service meshes embody the latest iteration of the DevOps toolset. Namely, due to the aforemen-

tioned microservice explosion challenge, managing and coordinating microservice “swarms” be-

comes increasingly difficult as the size of deployments increases [65, 83]. Figure 2.3 demonstrates

this network architecture with deployed microservices operating a “service proxy” alongside their

microservice code. The service proxy, a key element of the service mesh handles the network con-

nections and security responsibilities of the microservice deployment, separating these concerns

from the microservice code [9, 46, 55].

The current production-ready, state-of-art service mesh tools are Consul, Linkerd, Istio, and

Kuma. [10, 47, 60, 73] (OSM, another notable service mesh, is, at the time of writing, in a pre-

22

2014 2015 2016 2017 2018 2019 2020 2021 2022
Date

0

20000

40000

60000

80000

Gi
tH

ub
 S

ta
rs

Growing Popularity of Service Mesh Tools and
Kubernetes in GitHub Stars Over Time

Linkerd
Consul
Istio
Kubernetes

Figure 3.1: Service Mesh Popularity – Growth in popularity of service mesh tool repositories and
Kubernetes plotted over time in GitHub [38] stars. GitHub metrics collected from [13], a tool that
accesses the GitHub API to collect historical star values.

release stage, but shares many properties with other overlay service meshes. [98]) Interest in ser-

vice meshes has been growing in recent years, following a trend of adoption relative to other

popular subsets of the DevOps toolset. Figure 3.1 illustrates the growing popularity and increased

interest in service mesh tools by measuring the number of “stars” that service mesh repositories

have on GitHub [38]. Additionally, Kubernetes [69], a platform for service mesh tools is becoming

widely adopted and present in enterprise systems.

While the term service mesh is agreed upon within the community and the feature-set that is

provided by service meshes is fairly consistent among the current state-of-art, the implementa-

tion and design choices of service mesh technologies vary. For example, Consul is a standalone,

platform-independent service mesh that can be utilized as a single binary on a range of operating

systems and technologies. In contrast, Istio and Linkerd are both overlay service meshes, reliant

upon an underlying Kubernetes infrastructure to provide the necessary structure and capabilities

for the service mesh to operate correctly. Without an underlying Kubernetes implementation, all

overlay service meshes (Istio, Linkerd, OSM, Kuma, etc.) are unable to provide any of the pur-

23

ported functionality to a microservice deployment, meaning that expertise with Kubernetes and

the associated operational costs of a Kubernetes deployment are inherent when utilizing these

tools. Within Anvil and Consul, rather than depending upon an orchestration platform, like Kuber-

netes, orchestration and management of the cluster is conducted by a specially configured group

of higher-privilege nodes referred to as a “quorum” that handles the consensus and management

functionality for a deployment. Kubernetes, when configured for enterprise environments, also

operates in a “multi-master” mode, where all masters are replicated with identical security arti-

facts, and replicate state changes amongst the group of “masters”. While the design and structure

of Kubernetes is quite different relative to platform-independent service meshes, such as Consul

and Anvil, these tools can be adapted and utilized within Kubernetes deployments [50], showing a

greater flexibility and freedom over the more strict overlay service meshes.

3.2.3 Research Gaps in Existing Service Meshes

While appealing to software engineers and system architects based upon the purported feature set,

service meshes introduce new complexity and challenges to these environments as well. Current,

state-of-art service mesh design lacks many of the attributes and capabilities necessary to match

the needs of the microservice domain.

System Longevity: With the size, complexity, and highly interconnected nature of microservice

deployments, the investment of system administrators and software engineers to build long-lasting

and functional environments is clear. However, as shown in [45] and mentioned previously, mod-

ern service meshes lack many features to maintain these microservice deployments over time. For

example, within the Consul service mesh, lifetime, shared encryption keys are enforced as part of

system design and there is a lack of any rotation and refreshment mechanisms within the tool [52].

Similarly, due to the fact that overlay service meshes require the use of an underlying Kubernetes

environment, these service meshes inherit the limitations present in Kubernetes. One such limita-

tion is the need for manually rotating the certificates that govern the control-plane (communication

network for orchestration components [70]) of Kubernetes deployments [11, 59, 74, 96]. To enable

24

long-lived systems that maintain security over time, greater support for dynamic security methods

are needed in service meshes.

Zero Downtime: Similarly to the long-term health of deployed systems, another equally important

characteristic of the microservice deployments is the desire to maintain high degrees of system up-

time [28, 80, 134]. With the incredibly intertwined nature of microservices and their deployments,

losing uptime in a portion of the deployment, or losing uptime across the entire deployment, can

be extremely costly. With upwards of millions of U.S. dollars lost within an outage of less than

15 minutes [131], corporations like Amazon depend upon service meshes to maintain uptime and

connectivity of services to an extreme degree. Other major retailers see similar losses in revenue

due to lost uptime, as reported by [42]. Already present in overlay service meshes, lively rota-

tions of security artifacts within the data-plane (communication network for microservices [8])

are present [11]. Despite this, refreshment of the full set of security artifacts in modern service

meshes is lacking from all available tools, resulting in inherent system downtime to facilitate this

task [11, 59, 74, 96]. In the case of Consul, due to runtime ingestion of access control policies and

generation of certificates and policies, this downtime can be upwards of 4 minutes to refresh the

artifacts of a 1000 node service mesh cluster. Additional details regarding our best-effort proto-

type to provide security artifact rotation in Consul and its performance are included in Sections 3.5

and 3.6.

3.3 Threat Model and Security Capabilities

Our proof-of-concept system Anvil considers similar potential threats as other service meshes, but

demonstrates novel design choices with respect to security. To combat standard network threats

and external adversaries, Anvil adopts a similar “zero-trust” networking approach compared to

alternative service meshes. Novel to Anvil, however, is long-term system security through frequent,

automated security artifact rotations.

25

Proxy

Frontend
Service

Proxy

Cart
Service

Proxy

Checkout
Service

Proxy

Payment
Service

Proxy Proxy

Cart
Service

Proxy

Checkout
Service

Proxy

Payment
Service

Malicious
Frontend
Service

Figure 3.2: Threat Model Overview – External network threats are adversaries that have no prior
access and no valid permissions within a microservice deployment. They may only interact with
public-facing instances and attempt to eavesdrop on shared networks. Insider threats are valid
entities within the microservice deployment, but are adversary-controlled.

3.3.1 Threat Model

The highly distributed nature of microservice deployments and the ability to utilize cloud infras-

tructure to distribute resources globally create opportunities for adversaries to threaten service

meshes. We consider the two broad categories of external network threats and insider threats as

part of this work.

External Network Threats: One primary category of threats that we account for as part of our

representative threat model are adversaries that have no prior presence within the microservice

deployment or service mesh environment. Due to the highly distributed, potentially global or

multi-cloud, deployments of microservices, network connections initiated between various com-

ponents can often traverse shared, uncontrolled network boundaries [54]. As such, it is extremely

important to consider the potential for skilled adversaries to monitor network traffic in attempts to

eavesdrop or manipulate traffic moving across these networks. Additionally, because traffic leaves

the controlled network boundaries, public-facing endpoints will inevitably be exposed to the pub-

lic IP address space in order to accommodate this functionality [58]. This opens the potential for

adversaries to target these instances with various network-based attacks. Aside from the range of

standard, network-level attacks available to external adversaries, we also consider the more severe

potential of insider threats that are the result of a compromised node or container.

Insider Threats: Growing concerns over the potential for container compromise [77, 119], third-

26

Service
Mesh Tool

Artifact
Rotations

Automated
Rotations

Zero-Downtime
Rotations

Flexible
Deployments

Attack Window
(Data Plane)

Attack Window
(Control Plane)

Anvil 1 minute* 1 minute*
Consul ⊗ ⊗ ⊗ ∞ ∞

Istio ⊗ 24 hours [59] ≥1 year [59]
Linkerd ⊗ 24 hours [11] 1 year [11]
OSM ⊗ 24 hours [96] 1 year [96]
Kuma ⊗ 24 days [74] ≥1 year [74]

Table 3.1: Security Analysis of State-of-Art Service Meshes – Current capabilities and features
of state-of-art service meshes are compared against the Anvil prototype design. Key features such
as zero-downtime, automated security artifact rotations, and platform-agnostic deployments are all
present within Anvil. However, the comparable state-of-art all lack one or more of these features.
*1 minute is the current configured time for rotations within Anvil, however, it is customizable and
may be reconfigured as needed for environment or domain needs.

party software application compromise, and software supply chain vulnerabilities [92], increase the

potential for an adversary to gain access to microservice deployments via deployed applications.

Within this study, we consider the potential for single-node or single-microservice compromise to

be possible for an adversary. From this position, we assume that an adversary may initiate new

network connections to other portions of the service mesh, such as other microservices. However,

we exclude the quorum instances from potential insider threat compromise because they are known

to have higher levels of privilege and responsibility within a service mesh deployment and are not

intended to host microservice application code. In this way, we believe that system administrators

have a larger incentive for increased scrutiny regarding these components within the service mesh

to prevent compromise.

3.3.2 Security Capabilities

To combat these described threats, we make use of some traditional security mechanisms found

within state-of-art service mesh design, but we also introduce novel security features unique amongst

service meshes currently available. Aiming to uphold strong security guarantees, but with a focus

upon long-lived systems, Anvil provides security design that better meets the needs of the mi-

croservice domain.

Zero-Trust Networking: The premise of zero-trust networking is one that matches the needs

27

of microservice deployments quite closely. Rather than having any inherent trust within the de-

ployed components, security mechanisms are used to verify all connections, identities, and content

exchanged between microservices within a service mesh [111]. Similar to the current state-of-

art, Anvil also adopts these accepted security mechanisms to provide zero-trust networking capa-

bilities. Namely, Anvil makes use of symmetric key encryption for gossip messages exchanged

between nodes, x509 TLS certificates to create and secure mutual-TLS connections between ser-

vices, and access control policies and tokens to ensure proper authorization for requests made

between services in the deployment. While the exact implementation of these security mecha-

nisms vary slightly among service meshes, all state-of-art tools either provide a form of each of

these mechanisms or depend upon these mechanisms to be provided by underlying tools, such as

Kubernetes [52, 62, 71, 78]. With this in mind, it is possible to construct a very secure and ef-

fective defense for microservice deployments from modern service mesh offerings. However, as

previously mentioned, the long-term support of this security dwindles in the current state-of-art

service meshes over time as certificates begin to approach expiration and access control tokens

and symmetric encryption keys are exposed for long periods of time. Anvil combats these issues

by providing automated, synchronized rotation of security artifacts throughout the lifetime of the

deployment.

Deployment Longevity: The highly dynamic nature of microservice deployments and the scaling-

up and scaling-down capabilities provided by cloud computing platforms have strained and chal-

lenged the current management solutions available to administrators [63]. As such, questions

regarding the ability for service meshes to be long-lived platforms arise [45]. Consul, a platform-

independent service mesh fails to provide meaningful support for rotating and refreshing security

artifacts used within deployments without fully redeploying the entire service mesh infrastruc-

ture [52]. Additionally, overlay service meshes that depend upon Kubernetes, while gaining some

beneficial security features such as data-plane certificate rotation from the underlying Kubernetes

infrastructure, fail to provide complete security artifact rotation [11, 59]. In this way, manual,

system administrator intervention is required to rotate and refresh the certificates of this system

28

overtime, resulting in system downtime. To combat this issue and prevent the need for system

downtime, Anvil accommodates complete security artifact rotation as part of its design and pro-

vides mechanisms for completing this task in an automated, synchronized manner across all ser-

vice mesh components. Distributed generation and distribution of security artifacts occur within

the Anvil quorum nodes and are then distributed to other components through synchronized file

downloads. Lastly, all service mesh components are notified to perform the necessary configura-

tion changes to rotate to the new set of artifacts and this changeover occurs using a lively certificate

rotation mechanism as part of the Anvil service proxy.

Attack Window Limitation: Due to the transformative, adaptive nature of security artifact rota-

tions in Anvil, it is important to consider the security of the system over a period of time. Within

Anvil, security artifact rotations of all encryption keys, certificate-key pairs, and access control

tokens, are synchronized across the cluster at regular intervals and ensure that artifacts deployed

within the environment are never stale, or in other words, exposed for extended periods of time.

This characteristic of limited exposure provides a constrained window of time for an attacker to

attempt to discover and make use of any of the security-sensitive artifacts within the cluster. As

defined in [6], we see an attack window as a continuous time interval an attacker may leverage

without being interrupted by system changes. In the context of Anvil:

Attack Window – the period of time in which a given set of security artifacts are

active within an Anvil deployment.

Below we formalize this concept within our context.

W = t +Tr (3.1)

Tr = Tgen +Tdist +Tch (3.2)

In Equation 3.1, W represents the attack window, or time in which an adversary has the po-

tential to compromise or discover actively used secret keys or tokens within an Anvil cluster. The

29

variable t represents the time between rotations that is configured by the system administrator of

an Anvil cluster. Tr represents the “time to rotate” that is required for the various processes in

Anvil to transition the cluster from one set of security artifacts to another. Tr is further expanded

in Equation 3.2 where its component times are elaborated.

The variables Tgen, Tdist , and Tch represent the time required to generate a new set of artifacts,

time required to distribute the new set of artifacts to members, and the time required to synchronize

a changing of node configurations within the cluster, respectively. However, Tgen and Tdist may be

performed as background processes that do not affect normal Anvil cluster operations. The only

component of a rotation that requires a synchronized response from cluster members and may incur

downtime within the cluster is Tch, however, in our experimentation, we find that changeover time

within Anvil is extremely fast and results in near-zero downtime rotations of artifacts. Specifically,

a live reload of the node configuration is performed with the new security credentials and the Anvil

process is never stopped. Currently, within the default Anvil configuration, security artifact rotation

frequency (t) occurs every 60 seconds, resulting in over 1440 rotations in a 24-hour period. This

configuration may be altered according to the application needs and the risk that a given system

may accommodate, limited only by the time required to generate the set of artifacts within the

quorum.

3.4 Anvil Design

By reviewing the current state-of-art in service meshes, Anvil was designed to embody the core

service mesh functionality while also introducing novel security features to the domain. Anvil’s

secure-by-design approach iterates on current service mesh design by alleviating many of the short-

comings and challenges found in present-day tools. Anvil provides beneficial security improve-

ments and features in a feasible manner to be included in modern service mesh design.

30

Service Discovery
and Coordination

Service Proxy Secure
Communications

Automatic Rotations

Lively Artifact
Rotations

Security Incident
Handling and Alerts

Anvil Service
Mesh Daemon

Microservice A Microservice B

Figure 3.3: Anvil Service Mesh Features – Along with the baseline service mesh features set,
Anvil introduces lively artifact rotations to avoid system downtime, automated security artifact ro-
tations to ease administrator burden, and security incident detection and alerting, which are novel,
beneficial features in the service mesh domain.

3.4.1 Core Service Mesh Functionality

While the designs of modern service meshes vary widely, the overall goals and core functionality

remain very similar. Different implementations and additional features differentiate competing

technologies from one another, however, the following set of functions are common among all

production-ready service meshes and are also part of Anvil:

Service Discovery and Coordination: Discovery and coordination of deployed microservices is

a key function in allowing service meshes to simplify the networking logic that must be included

within developed microservices. By outsourcing the networking logic to the service mesh and

performing service discovery, registration, and management within the service mesh layer, Anvil

enables application developers to simply reference the dependencies for a given service as simple

network connections and allow the service proxy included with the service mesh to complete the

desired network connections on behalf of the microservice.

Service Proxy: All service meshes aim to provide a layer of networking logic between microser-

vices that are deployed as a part of a larger cluster. Service meshes provide this proxy functionality

by abstracting the network connections between microservices into a “data plane”. Through this

31

abstraction, microservices do not require exact IP addresses or endpoints to contact, instead, uti-

lizing a simplified network request format. Anvil implements service proxying through a series

of firewall rules and routing logic. Microservices deployed within an Anvil cluster are first lo-

cated via the service discovery and coordination mechanisms described above and then the Anvil

proxy re-routes traffic according to the destination service, relaying traffic agnostically on behalf

of microservices. Additionally, incoming requests at the service proxy are routed to the correct

microservice using network metadata included in a request by the sender-side service proxy.

Secure Communications: Due to the presence of service meshes at network boundaries of de-

ployed microservices, service meshes have significant responsibility to provide appropriate traffic

routing, communication security, and speed. Additionally, to simplify microservice development

and implementation further, network connections generated by microservices often do not have

security associated with them. As such, this responsibility falls to the service mesh to implement

and facilitate between microservices. Within Anvil, all microservices, whether creating secure

connections as part of implementation, or not, are secured by Anvil between proxy connections.

As a connection is created from a microservice hosted by Anvil, the service proxy accesses the re-

quest before it leaves the network boundary, TLS is applied along with any relevant access control

tokens, and finally the connection is forwarded to the destination service proxy. Upon arrival at the

destination service proxy, Anvil processes the TLS connection, extracts the service request from

the payload of the connection and forwards the request to the appropriate microservice hosted at

the destination node.

3.4.2 Novel Security Features

Automatic Artifact Rotation: Anvil makes use of a dedicated microservice that is deployed along

with each of the quorum nodes to facilitate the automated generation, distribution, and synchro-

nized rotation of security artifacts within a deployment. This microservice operates collaboratively

on all quorum nodes to distribute the performance and distribution costs of generating a fresh set of

security artifacts for all nodes. Initiated by the quorum leader, the rotation microservice ingests a

32

manifest file of all active nodes, services, and access control policies within an Anvil deployment.

Next, each quorum node is assigned a portion of the manifest file to generate and distribute to other

quorum members. All quorum members then synchronize and store the full set of generated se-

curity artifacts for all components before notifying the remainder of the microservice deployment

of fresh artifact availability. All service mesh components then request and collect their necessary

security artifact set from the quorum and wait to be notified of the rotation synchronization. Upon

receipt of the synchronization, all components perform a lively rotation from one artifact set to

another, effectively transitioning the state of the service mesh from one set of security artifacts to

another with near zero downtime. In experimentation, the interruption caused by rotation was not

measurable and operation of the Anvil deployment continued without failure.

Lively Artifact Reloads: A primary drawback and concern with modern service meshes are de-

sign decisions that conflict with the central theme of high uptime in microservice deployments.

As mentioned previously, in order to refresh the artifacts present within Consul service mesh de-

ployments, an entire shutdown and reconstruction of the service mesh is required. Additionally,

in overlay service mesh instances, the Kubernetes control-plane certificates will eventually expire,

requiring manual system administrator intervention to refresh and rotate these certificates. During

this time, the Kubernetes deployment will be inoperable due to a lack of valid certificates present

within the control-plane. In contrast, Anvil provides generation, distribution, and synchronization

mechanisms by default within its deployments to provide seamless rotations from one security arti-

fact set to the next. Anvil makes use of a lively TLS certificate rotation mechanism by “watching”

the active certificate for file changes. Upon registering a change in the file, it begins to timeout

and complete active network connections and then reinitialize the server with the new configura-

tion in an automated manner. Through experimentation, we find that the interruption to network

connections across the entire cluster are negligible in part because these certificate rotations are

synchronized across all nodes in the cluster at the same time.

33

Anvil Module Lines of Code Rel. Proportion
Service Proxy 847 21%
Service Catalog 259 7%
Leadership Quorum 1343 34%
Security Mechanisms 290 7%
Artifact Rotation 688 17%
User-Interface 329 8%
Other 204 5%
Total 3960

Table 3.2: Anvil Prototype Lines of Code – Written in Golang, this table outlines the major
modules and components involved in the Anvil service mesh codebase as of the writing of this
work.

3.5 Implementation

A range of tools and platforms have been used as a part of this work in order to express the

benefits and features present within Anvil relative to alternative service mesh platforms. Local

development, experimentation environments, and major cloud providers, such as AWS, have been

used to craft the experimental evaluation of our system. Our implementation and evaluation of

Anvil is intended to show the feasibility and beneficial nature of the novel design choices and

security features of Anvil relative to the current state-of-art.

3.5.1 Anvil Development

Anvil is a proof-of-concept, service mesh implementation for the purposes of network security

research and development of novel design choices in the service mesh domain. Anvil is written in

a modular format in the Golang [41] programming language, a common choice for modern DevOps

tools [10, 30, 47, 60, 69, 105]. Table 3.2 shows the high-level modules of Anvil and the respective

lines of code necessary to implement this functionality. While Anvil borrows heavily from the

current designs and implementations of current state-of-art service meshes, the codebase of Anvil is

unique and does not include any direct implementation code from alternative service meshes. Many

of the design choices, such as a “service catalog” similar to the Consul service mesh and the choice

34

of implementing the Raft [94] consensus protocol are found in many implementations. The goal of

Anvil is not to re-invent the service mesh, but rather to demonstrate feasible and beneficial security

designs in an easily modified platform. After examining the repositories and implementations

of alternative service meshes, the strict design and highly-integrated implementation decisions

made in these service meshes would not easily allow for the development and inclusion of these

designs. Anvil is unique in its ability to accommodate the security benefits and features described

previously in Section 3.3 that provide a more dynamic service mesh environment. Further, we

believe that the security designs made in Anvil are applicable and have the potential to greatly

improve the overall design of state-of-art service meshes with the proper engineering effort and

time contributed to their integration in the current state-of-art. Due to this, we evaluate these

beneficial design decisions within Anvil relative to the increase in performance cost over a baseline

operational cost of Anvil and compare the Anvil runtime performance and downtime cost to the

current alternative tools within the space.

3.5.2 Experimental Evaluation Setup

For our experimental evaluation, we made use of two controlled, experimental platforms. Our

performance-level experiment workloads were deployed to a Dell R540 server configured with

128 GB of RAM, Xeon Gold 5117 processor, and 10 TB of SSD storage. This hardware config-

uration is comparable to what would be utilized in production environments, both in on-site and

remote, cloud datacenters [26]. These resources were utilized for all experiments associated with

the development of Anvil and the subsequent evaluation of Anvil and similar state-of-art service

meshes. We additionally make use of AWS’s Elastic Compute Cloud (EC2) [117] infrastructure

to deploy and measure the downtime associated with the Consul service mesh for security artifact

rotations.

Anvil Service Mesh Setup: For our experimental service mesh deployments, 15 virtual machines

were deployed within the testbed environment. 5 were assigned the role of “quorum members”

and were given 4 CPUs and 8 GBs of RAM each. As described in Section 3.2, quorum mem-

35

Consul Quorum LeaderConsul Quorum Leader Consul Cluster MembersConsul Cluster Members

Consul Service
Proxy

Consul Service
Proxy

Rotation
Add-on Module

Rotation
Add-on Module

Hosted
Microservice

Hosted
Microservice

External x509
Hierarchy

External x509
Hierarchy

Consul Process and
Configuration Hooks
Consul Process and
Configuration Hooks

Security Artifact
Generation and Hosting

Security Artifact
Generation and Hosting

Figure 3.4: ServiceFRESH Design and Implementation – Deployed within AWS and using a
separate x509 certificate hierarchy from the Consul TLS structure, ServiceFRESH provides gen-
eration and distribution of security artifacts without Consul code modifications. Despite this, per-
formance and downtime costs due to Consul design result in the ServiceFRESH framework being
unacceptable for use.

36

bers in Anvil and Consul service mesh deployments represent a higher-privileged subset of cluster

members that are responsible for various security and consensus tasks, such as generating TLS

certificate-key pairs for cluster members and keeping a consistent system log. The remaining 10

VMs were assigned as “client members” and were given 4 CPUs and 2 GBs of RAM each. In

standard microservice deployments, client nodes would be responsible for hosting the various mi-

croservices that constitute the business logic of a system. By using similar hardware configurations

to those found in a large-scale benchmark test by HashiCorp [86], these configurations are suffi-

cient for our experimental evaluation to achieve a proper baseline of functionality between each

type of node in the cluster as well as to gauge system performance overall in a small-scale setting.

ServiceFRESH – Platform Independent Service Mesh Setup: To demonstrate the effects of our

“best-effort” prototype, ServiceFRESH, to provide security artifact rotations within Consul, we

leverage Amazon Web Services (AWS) as a platform for deployment. We deploy various sizes of

Consul clusters within AWS’ general-purpose computation nodes, EC2. Our experiments ranged

in EC2 hardware configurations from t2.2xlarge to t2.medium [117] providing 8 vCPUs with 32

GB of RAM and 2 vCPUs and 4 GB of RAM, respectively. ServiceFRESH augments Consul

service mesh deployments by executing a series of Bash and Python scripts that coordinate the

creation, distribution, and configuration of the security artifacts utilized within Consul. Figure 3.4

provides an abstract view of the ServiceFRESH prototype. Our rotation augmentation to Consul

does not require any source code changes and operates separately from Consul. With this approach,

we highlight the true cost of implementing security artifact rotations in Consul utilizing existing

Consul design.

Istio – Overlay Service Mesh Setup: To create an accurate comparison of the performance of

Anvil with a representative overlay service mesh, we design and implement an example workload

within our testbed environment that attempts to mimic the traffic behavior of both Anvil and Consul

quorums as accurately as possible. This example workload generates traffic patterns with the same

frequency of the traffic generated within Anvil and Consul quorum members. We then deploy

this workload via Docker containers within a Kubernetes environment augmented with the Istio

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Anvil No-Rotation Trial Iterations

0

10

20

30
%

 C
PU

 U
til

iza
tio

n
Anvil %CPU Utilization without Rotation Feature Active

Figure 3.5: CPU Utilization in Anvil without Rotations – Box plots show CPU utilization across
all experiment trials of Anvil when security artifact rotations were not active. Trials shown are
those where full data collection was achieved. Median values are heavily focused near 0.5% uti-
lization while outliers extend upwards of 30% utilization, but are highly infrequent.

overlay service mesh. Istio is currently the most widely used service mesh based upon GitHub

metrics [49, 57, 79, 97]. This testbed environment involves 5 VMs with hardware configurations

that match the “quorum members” deployed for the Anvil experimentation. In this way, we have

replicated the quorum environment of Anvil and Consul as closely as possible to properly measure

the overhead imposed by Kubernetes and a representative overlay service mesh. Specifically, we

aim to install and configure an extremely lightweight overlay service mesh deployment to create

as fair a comparison as possible to the Anvil service mesh. Because of this, we choose to deploy

only a single pod (container) upon each of the Kubernetes nodes that make up our 5 VM cluster.

3.6 Evaluation

Anvil is intended to fill a gap in the current state-of-art in service meshes by demonstrating bene-

ficial security design without significant costs to system overhead or deployment downtime. Anvil

combines the flexibility and performance characteristics of platform-independent service meshes

with increased security features of overlay service meshes. Additionally, Anvil provides novel se-

curity features and designs not found within any state-of-art service meshes. Due to these traits,

38

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Anvil Rotation Trial Iterations

0

5

10

15

20
%

 C
PU

 U
til

iza
tio

n
Anvil %CPU Utilization with Rotation Feature Active

Figure 3.6: CPU Utilization in Anvil with Rotations – Box plots show CPU utilization across
all experiment trials of Anvil when security artifact rotations were active. Trials shown are those
where full data collection was achieved. Median values are heavily focused near 0.7% utilization
while outliers extend upwards of 20% utilization, but are highly infrequent.

it is challenging to make a direct lateral comparison of Anvil to alternative options. To properly

evaluate and compare the Anvil prototype with its state-of-art counterparts in service mesh tools,

we combine three aspects of evaluation to place Anvil within the correct context of comparison for

each point of consideration:

• First, we examine the Anvil proof-of-concept and assess the performance cost associated

with Anvil’s rotation capabilities relative to baseline Anvil without rotations.

• Next, we examine the cost of implementing a “best-effort” security artifact rotation system

(ServiceFRESH) alongside Consul due to its lack of rotation capabilities. We evaluate Con-

sul with ServiceFRESH according to the system downtime incurred.

• Finally, we compare the associated CPU and RAM utilization costs of overlay service meshes.

We use the Istio service mesh as a representative example of this design to assess perfor-

mance and operational costs relative to Anvil.

Anvil Experimental Performance Cost: With artifact rotation being a novel contribution within

the Anvil service mesh, it is necessary to consider the performance cost of facilitating this feature

39

No Rotation
Rotation

0

5

10

15

20

%
CP

U
Ut

iliz
at

io
n

Comparison of Anvil Trials with and without Rotations Active

Figure 3.7: CPU Utilization in Anvil (Single Trial) – Box plots of CPU utilization in showing one
experiment trial of Anvil with and without security artifact rotations active (data point distribution
plotted alongside).

40

within an active Anvil service mesh cluster. As such, we leverage the experimental setup previously

described in Section 3.5 to conduct our experiments and measurements. Additionally, we monitor

active CPU and RAM utilization of nodes within the cluster by employing the pidstat [39] Linux

utility. We track each of the system processes that Anvil creates separately and measure their CPU

and RAM utilization as a percentage of the system total. Next, the separate processes are combined

to form an instantaneous measurement of the “cost” of Anvil at any given moment during the

experimentation. Using 29,400 points of utilization data, we plot the CPU and RAM utilization

data into box plots to view the spread and overall locality of the data. CPU utilization data across

all experiments is presented in its entirety in Figures 3.5 and 3.6 which has been separated into

each of the data collection trials performed. As can be seen, the data present within these figures

is highly consistent, showing that our collected data is indicative of consistent behavior of Anvil

within our experimental deployments. To provide a more concise view of how Anvil performs

when rotations are active versus inactive, we plot a single trial of each experimentation within

Figure 3.7 and plot the raw data points alongside each box plot to demonstrate the distribution

of the data in a more concise fashion. Figure 3.8 plots the RAM utilization observed through all

Anvil experimentation trials. Based upon median values across trials, Anvil with rotations active

requires only ∼1% higher CPU utilization in the worst case trial and in the best case trial, Anvil

with rotations active has the same median CPU utilization as Anvil without rotations active. This

is due to the cost of rotation events being amortized over the time period in which the new set

of security artifacts is active within the cluster. The frequency of rotations is configurable within

Anvil and may be modified by system administrators according to their organization’s risk. With

Anvil’s current status, rotations as frequently as every 2 minutes are possible, however, through

optimizations and more powerful hardware configurations, this value may be shortened. For high-

risk scenarios, more frequent rotations, on the order of a few minutes, may be necessary, while

in low-risk scenarios, less frequent rotations, on the order of hours or days, may be acceptable

resulting in very low additional overhead imposed by rotations.

41

No Rotation
Rotation

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 U

til
iza

tio
n

RAM% Utilization of Anvil with and without Rotations Active

Figure 3.8: RAM Utilization in Anvil – Box plots of RAM utilization in Anvil with and without
security artifact rotations active. After a careful examination of collected data that included use of
Golang’s profiling library pprof [40], we believe Golang’s garbage collection responsible for this
behavior and is triggered more often in the case of rotations.

42

100 250 500 1000
Number of Client Nodes in Cluster

0

50

100

150

200

250

Do
wn

tim
e

in
 se

cs
System Downtime Due to Rotation

Consul (t2.2xlarge)
Consul (t2.xlarge)
Consul (t2.large)
Consul (t2.medium)
Anvil (all configs)

Figure 3.9: Downtime of Best-Effort Rotation (ServiceFRESH) – Each line represents a differ-
ent hardware configuration within Amazon Web Services’ EC2 cloud t2-series of virtual machines.
The leader of Consul quorums is required to perform the generation and distribution tasks for clus-
ter startup, this figure represents this cost in terms of seconds for the cluster to move from one
artifact set to another. In contrast, Anvil requires no downtime to facilitate security artifact rota-
tions. For the full dataset, refer to Table 3.3.

3.6.1 Consul (ServiceFRESH) Downtime Costs

While the Consul service mesh provides appealing performance and flexible deployment options

that may be desirable to system administrators, it lacks the foundation for effective rotation of

security artifacts as part of its functionality.

We frame the comparison of Anvil and Consul in terms of the differences in design choice

between Anvil and Consul, primarily the aspect of security artifact rotations and the “downtime”

cost of performing rotations. Downtime is a key metric for service meshes due to a desire for

high-availability and speed related to request-response latency in microservice deployments. In

this scenario, it can be imagined that a compromised node within a deployed Consul cluster has

been detected and in order to maintain protection of the system overall, new security artifacts must

be generated for all nodes and redistributed to all cluster participants.

43

Figure 3.9 displays the results of the best-effort system shown in Figure 3.4 that attempts to

automate the shutdown, artifact creation, artifact deployment and subsequent cluster recreation

of such a scenario. As the Figure 3.9 demonstrates, this cost grows as the system scales in size,

resulting in significant cost to large enterprises that make use of Consul. With a best-case downtime

of 23 seconds and a worst-case downtime of 259 seconds, the cost of system downtime in a Consul

deployment can result in the unavailability of deployed microservices for significant periods of

time.

The downtime cost increases in such a fashion within the Consul service mesh due to highly

centralized design choices with respect to security. In other words, the access control mechanisms

within a Consul service mesh must be created and distributed while the cluster is operational. This

results in significant cluster downtime while nodes wait for security artifacts to be distributed and

configured before service requests may be answered securely. Figure 3.12 highlights these costs at

a finer granularity, showing specifically the processes involved in a Consul rotation that constitute

the total system downtime from a rotation. As the figure shows, the primary sub-processes of

ServiceFRESH that incur downtime are in the generation of TLS certificates and the generation

and ingestion of access control policies and tokens. TLS certificates are required for Consul nodes

to communicate securely with one another and access control policies and tokens are required for

Consul nodes to take actions within the deployment. These actions include joining a deployment

and becoming a member of the service mesh, a node wanting to update its status in the registries

of other nodes to signal that it is online, or a deployed microservice attempting to make a service-

level request to another microservice in the deployment. In contrast, Anvil is able to accomplish

the task of full-system artifact rotation and refreshment without incurring any system downtime.

3.6.2 ServiceFRESH Downtime Results

An important aspect of a system that performs modification of configuration and rotation of se-

curity artifacts in live environments is to measure the effects that these operations have upon the

availability and uptime of services. As part of this study, we aim to provide a comparison be-

44

AWS EC2 Node Type Cluster Size Exp. Trial 1 Exp. Trial 2 Exp. Trial 3 Exp. Trial 4 Exp. Trial 5

t2.medium

100 41 secs 33 secs 40 secs 35 secs 42 secs
250 73 secs 73 secs 73 secs 72 secs 72 secs
500 158 secs 177 secs 125 secs 142 secs 140 secs

1000 259 secs 243 secs 244 secs 264 secs 261 secs

t2.large

100 30 secs 35 secs 42 secs 41 secs 35 secs
250 72 secs 71 secs 71 secs 69 secs 71 secs
500 122 secs 121 secs 119 secs 118 secs 133 secs

1000 261 secs 249 secs 241 secs 243 secs 223 secs

t2.xlarge

100 24 secs 26 secs 28 secs 29 secs 31 secs
250 64 secs 64 secs 64 secs 64 secs 63 secs
500 78 secs 68 secs 88 secs 69 secs 68 secs

1000 157 secs 157 secs 168 secs 158 secs 162 secs

t2.2xlarge

100 19 secs 21 secs 23 secs 25 secs 26 secs
250 40 secs 42 secs 36 secs 39 secs 40 secs
500 65 secs 62 secs 63 secs 63 secs 62 secs

1000 77 secs 77 secs 86 secs 88 secs 77 secs

Table 3.3: Full Dataset for ServiceFRESH Downtime Analysis – to measure the downtime cost
incurred by the ServiceFRESH, five independent experimentation trials were conducted. Each
hardware configuration and cluster size combination were trialed independently of one another
across a series of five observations. The median values across the five runs are highlighted and
correlate to the values presented in Section 3.6: Figure 3.9.

tween Anvil that provides automated security artifact rotations and Consul that does not provide

any support for artifact rotations.

In order to facilitate this functionality within Consul, we design and implement ServiceFRESH,

a “best-effort” rotation add-on to Consul. To measure the downtime cost of operating Consul in

conjunction with ServiceFRESH, we make use of an internal API within the Consul service mesh to

measure the system downtime incurred during a rotation. This internal API, the “consul members”

command, is designed to collect and display the current, visible members of a Consul service mesh.

An important note to make about this API is that it requires a notable amount of processing

time on the node performing the call. Due to this, our measurements involve periodic calls to the

Consul API every 10 seconds. When the API call is made, if the number of “members” observed on

the Consul leader is not the same as the number of nodes that were deployed in a given experiment

trial, then downtime is recorded. The API calls are repeated every 10 seconds, until the response of

the API call matches the expected number of members for a given experimentation trial. When this

value is met, the system is then recorded as being “available” and the accumulation of downtime is

stopped. Table 3.3 illustrates the results of five independent experimentation trials under varying

45

EC2 Type Cluster Size
UDP Key

ACL Wait
ACL Token

TLS Certificates Artifact Bundling
Generation Generation

t2
.m

ed
iu

m 100 0,0,0,0,0 15,15,15,15,15 12,11,12,12,12 8,7,7,7,7 0,0,0,0,0
250 0,0,1,0,0 15,15,15,15,15 30,30,30,30,29 17,17,16,16,17 0,0,0,0,0
500 0,0,0,1,0 15,15,15,15,15 53,52,52,52,53 35,33,33,31,34 0,0,0,1,0

1000 0,0,0,0,0 15,15,15,15,15 94,96,98,100,101 66,66,64,65,67 0,0,1,0,0
t2

.la
rg

e 100 0,0,0,0,0 15,15,15,15,15 12,12,12,12,11 7,7,7,6,8 0,0,0,0,0
250 0,0,0,0,1 15,15,15,15,15 28,28,28,27,28 18,17,17,16,16 0,0,0,0,0
500 0,0,0,0,0 15,15,15,15,15 48,48,48,48,48 34,33,34,32,34 0,0,0,0,0

1000 0,0,0,0,0 15,15,15,15,15 92,92,91,93,92 65,65,65,66,64 0,1,0,0,1

t2
.x

la
rg

e 100 0,0,0,0,0 15,15,15,15,15 6,7,7,7,7 4,4,3,3,4 0,0,0,0,0
250 0,1,0,0,0 15,15,15,15,15 15,15,15,15,15 8,8,9,8,8 0,0,0,0,0
500 0,0,0,0,0 15,15,15,15,15 26,26,25,25,26 16,16,17,18,16 0,0,0,0,0

1000 0,0,0,0,0 15,15,15,15,15 56,55,55,55,55 32,33,34,32,34 0,0,0,0,0

t2
.2

xl
ar

ge 100 0,0,0,0,0 15,15,15,15,15 5,4,4,5,4 2,2,2,2,2 0,0,0,0,0
250 0,0,0,0,0 15,15,15,15,15 7,8,8,7,8 5,5,4,5,4 0,0,0,0,0
500 0,0,0,0,0 15,15,15,15,15 18,14,14,13,14 9,8,8,9,8 0,0,0,0,0

1000 0,0,0,0,0 15,15,15,15,15 28,27,27,27,27 16,16,16,17,16 0,0,0,0,0

Table 3.4: Full Dataset of ServiceFRESH Microbenchmark Experimentation – to measure the
cost that individual processes within ServiceFRESH imposed upon the system downtime, each
computational process was measured independently during rotation events. Each hardware con-
figuration utilized and cluster size under test are provided as rows in the table. Columns of the
table denote the computational process under test, while the values depicted in the table represent
an individual measurement of the process under test. Each cell contains five unique, independent
values, representing the values that were observed during experimentation. All values within the
table are recorded in seconds. The results of this data collection are plotted within Section 3.6:
Figure 3.12.

EC2 hardware configurations and differing amounts of cluster sizes.

3.6.3 ServiceFRESH Microbenchmark of Downtime Costs

To provide a more complete picture of the sources of downtime caused by ServiceFRESH, we

perform a microbenchmark analysis of the individual processes that constitute this “best-effort”

implementation. As part of this study, five computational processes present within ServiceFRESH

were determined as potential sources for the downtime suffered. Table 3.4 displays the full dataset

that was observed throughout our experimentation of ServiceFRESH under varying sizes of Con-

sul clusters. These results were measured as a part of a series of independent experimentation

trials. To perform the microbenchmark analysis of the various computational elements of Service-

FRESH, during script execution, the Unix date system utility was called immediately preceding

the processes and immediately following. Due to the highly parallelized computations occurring

46

as a part of the rotation add-on, the Unix wait system utility was also utilized as a way of ensuring

that all computation from one portion finished and was recorded before the next computational

process was initialized.

As can be seen in Table 3.4, a constant source of downtime across all trials, hardware configu-

rations, and cluster sizes was the need to delay initial operation of the Consul cluster until the ACL

system transitioned from a “legacy” state to the “modern” ACL operational state. This 15 second

cost to cluster operations varies in its proportional effect on the overall system downtime, however,

this cost was necessary in order to ensure correct and complete rotation of security artifacts from

one state to another.

3.6.4 Overlay Service Mesh Performance Costs

Mentioned previously in Section 3.2, the remaining state-of-art service meshes aside from Con-

sul and Anvil require an underlying Kubernetes platform to provide the promised service mesh

functionality. Due to this, a comparison of Anvil performance costs to overlay service meshes is

unreasonable without also accounting for the cost of the underlying Kubernetes platform with the

hosted service mesh.

In order to make the comparison effective, we leverage the experimental testbed described in

Section 3.5 relating to our representative, overlay service mesh, Istio. Specifically, after creating

the network traffic application that mimics Anvil and Consul quorum network traffic, we deploy the

experimental workload and measure process overhead with respect to CPU and RAM utilization.

Again, we leverage the pidstat Linux utility to collect these metrics and combine the individual

process measurements together to get a “snapshot” of the total usage at a given moment in time.

As noted in Section 3.5, the testbed system contained 5 VMs with the relevant software installed

for each of the experiment types and then within each of the VMs, only one container or pod was

deployed onto the VM. , representing an extremely streamlined and lightweight implementation of

Kubernetes and an overlay service mesh.

Leveraging this deployment, we intended to mimic both the computing power and network

47

structure of the Anvil and Consul quorum members which hold higher privilege and responsibility

in a service mesh deployment. In this way, we aim to create as close and as fair a comparison as

possible to the Anvil environment for evaluating the platform-level cost of an overlay service mesh

deployment. In each instance of experimentation, one pod (container) was selected as the “leader”

of the makeshift quorum and the mimicry workload was executed. The processes associated with

running this application and the underlying platform processes were measured for CPU and RAM

utilization. It is important to note that we do not include the overhead of the network traffic

workload in our performance evaluation of Kubernetes and the Istio overlay service mesh. The

performance costs associated with our evaluation of a representative overlay service mesh are only

the processes associated with Kubernetes and the Istio service mesh itself, in a near-idle state.

After collection, the data points gathered were collated according to the experiment conducted and

the type of node deployed. Figure 3.10 displays CPU utilization box plots of our experimental

trials.

Our experimental trials for platform-dependent service meshes were: Kubernetes without TLS

active in the network traffic workload, Kubernetes with TLS active in the workload, Istio without

TLS active in the network traffic workload, and Istio with TLS active in the workload. The median

CPU utilization percentages were 0.5%, 0.5%, 0.75%, and 1.0%, respectively. Next, we considered

RAM utilization as another important factor to evaluate the cost of overlay service meshes.

Figure 3.11 shows the results of the collection and analysis of RAM utilization in our exper-

iments. Following the experimental trials noted previously, the median RAM utilization values

for each trial were 2.08%, 2.12%, 4.65%, and 5.28%. When comparing the cost of each overlay

service mesh experiment trial to the cost of Anvil with security artifact rotations, the CPU uti-

lization and RAM utilization values are very comparable. However, while the system costs are

comparable between Anvil and overlay service meshes, the testbed environment utilized is a near

best-case scenario for overlay service meshes and underlying platform, yet still requires manual

system administrator intervention throughout the lifetime of the deployment as noted in Table 3.1.

Considering this, the design-level benefits and security features that Anvil provides over all state-

48

Kubernetes No Security

Kubernetes TLS

Istio
 No Security

Istio
 TLS

Anvil No Rotations

Anvil Rotations
0

5

10

15

20
Pe

rc
en

ta
ge

 U
til

iza
tio

n

CPU% Utilization of Kubernetes and Istio with and without TLS Active in Mimic Script

Figure 3.10: CPU Utilization of Platforms During Network Mimicry – Box plots illustrate the
spread and locality of CPU utilization. Median values for each experiment are: Kubernetes with-
out workload security features active (0.5%), Kubernetes with workload security features active
(0.5%), Istio without workload security features active (0.75%), Istio with workload security fea-
tures active (1.0%), Anvil without rotations active (0.5%), and Anvil with rotations active (0.75%).

of-art service meshes in conjunction with the comparable performance costs of Anvil to overlay

service meshes is significant.

3.7 Discussion and Limitations

This work presents and demonstrates the design benefits of novel security features and automated

security artifact rotations within the service mesh domain. Anvil, a proof-of-concept system, has

been used to implement and demonstrate the feasibility of these design decisions relative to a

“best-effort” implementation (ServiceFRESH) alongside a current, state-of-art service mesh. As

an initial step in improving the security of service meshes, there are a range of future work oppor-

tunities and considerations associated with this work.

49

State-of-Art Integration: A direct, head-to-head, performance comparison of Anvil to the current

state-of-art in service meshes is not indicative of the security design benefits that Anvil provides,

or of their feasibility in modern service meshes. Rather, we frame our evaluation as a means

to show relative costs and benefits associated with these decisions. Currently, production-ready

service meshes have design decisions that prevent the direct integration or implementation of these

security design decisions. Despite this, the security benefits and feasibility demonstrated by Anvil

show that the engineering effort required to integrate these changes in modern service meshes can

bring improvements to the domain.

Consensus Algorithms: Throughout development and testing, it was discovered that the overall

structure of the Raft [94] consensus algorithm was causing high-levels of network traffic within

Anvil. Specifically, when TLS was enabled within Anvil, the CPU and RAM utilization of the

system rose dramatically. Upon investigation, the cause was discovered to be the implementation

of Raft consensus initiating high numbers of TLS connections for secure messaging between quo-

rum members. Raft was adopted in Anvil to enable a Consul-like quorum structure, providing

scalability and flexibility.

However, after this performance overhead was identified, the Consul codebase was further

examined and the usage of Raft within Consul was found to use long-lived TLS connections for an

extended period of “heartbeat” messages within Consul. In this way, Consul avoids much of the

overhead of renegotiating TLS connections at a high-rate and instead amortizes this cost over the

lifetime of the connection between two quorum nodes. However, the implementation of Raft in

this way conflicts with the flexibility, speed, and dynamic nature of service meshes overall. From

a security perspective, rather than utilizing long-lived TLS connections, service meshes should

renegotiate TLS connections for every message in case a certificate must be revoked or a node

removed from the cluster, the certificate is no longer exposed.

50

Kubernetes No Security

Kubernetes TLS

Istio
 No Security

Istio
 TLS

Anvil No Rotations

Anvil Rotations

0

2

4

6

8

10

12

Pe
rc

en
ta

ge
 U

til
iza

tio
n

RAM% Utilization of Kubernetes and Istio with and without TLS Active in Mimic Script

Figure 3.11: RAM Utilization of Platforms During Network Mimicry – Box plots illustrate
the spread and locality of RAM utilization. Median values for each experiment are: Kubernetes
without workload security features active (2.08%), Kubernetes with workload security features ac-
tive (2.12%), Istio without workload security features active (4.65%), Istio with workload security
features active (5.28%), Anvil without rotations active (2.73%), and Anvil with rotations active
(1.08%).

51

10
0

25
0

50
0

10
00

0

100

200
t2.2xLarge

Linear Trend
Anvil Downtime
ACL Tokens
TLS Certs
ACL Wait

10
0

25
0

50
0

10
00

t2.xLarge

Linear Trend
Anvil Downtime
ACL Tokens
TLS Certs
ACL Wait

10
0

25
0

50
0

10
00

t2.Large

Linear Trend
Anvil Downtime
ACL Tokens
TLS Certs
ACL Wait

10
0

25
0

50
0

10
00

t2.Medium

Linear Trend
Anvil Downtime
ACL Tokens
TLS Certs
ACL Wait

Consul Downtime Microbenchmarks for AWS EC2 Types

Number of Client Nodes in Cluster

Ti
m

e
in

 se
cs

Figure 3.12: Microbenchmark Analysis of ServiceFRESH Downtime Sources – Each figure
represents a different hardware configuration within Amazon Web Services’ EC2 cloud t2-series
of virtual machines. The total downtime associated with performing a rotation within Consul is
separated into the components in which the leader of the quorum spends time. In contrast, Anvil re-
quires no downtime to facilitate security artifact rotations and distributes the generation load among
all quorum members rather than solely the leader. For the full dataset, refer to Appendix 3.6.3.

3.8 Related Work

Service meshes as an element of the DevOps toolset are a relatively recent development. Due

to this, service meshes specifically have not been the target of a significant amount of research.

However, microservices hosted within service meshes and the enabling container and platform

technologies for microservices have been well-studied in literature.

Microservice Security: The microservice security structure has been studied closely and been

shown to be vulnerable to exploits in a number of previous works. Rastogi, et al. [108] evaluate an

automation system for decomposing a monolithic software deployment into a collection of collabo-

rating microservices, the purpose of which, to better adhere to the principle of least privilege [115].

As a part of this effort, Rastogi, et al. developed a special-purpose system that uses a static bind-

ing to communicate between microservices, rather than an examination of the available security

mechanisms within service meshes tools that dynamically connect services. A lack of security pro-

tections in the Docker container environment is noted by Yarygina, et al. [137] and they propose a

security monitoring system for containers as a potential solution to this issue. Such a system could

52

be leveraged as part of the long-term security of a microservice deployment that utilizes the Anvil

service mesh. Trust within deployed microservices is often inherent, as noted by Sun, et al. [124].

The authors study how the trust relationship between deployed microservices may result in the

compromise of an entire system. Further, they propose a system for deploying network security

monitors in microservice environments to detect and block threats to clusters. Anvil extends this

work by providing zero-trust, communication security as a feature of the service mesh. In this way,

exploits and attacks against containers are prevented from corrupting other portions of the service

mesh cluster. Similarly, work by Li, et al. [76] studied how inherent trust among microservices

can be exploited by an insider threat. Assuming the threat model of a compromised microservice

that attempts to make unauthorized requests to other microservices, the authors design and imple-

ment a solution for scanning microservice source code and extracting relevant metadata relating

to network requests. With this extraction, they generate a minimal set of the necessary Access

Control List (ACL) entries necessary for the service mesh to operate correctly. This design could

be leveraged within Anvil to automatically generate a minimal set of network relationships and the

necessary access control tokens for the network connections between microservices deployed in

an Anvil service mesh.

Analysis of Consensus Protocols: Within this study, we utilize the Raft consensus protocol for

log consistency within the Anvil quorum in a very similar fashion to Consul. Work by Sakic, et

al. [113], examines the availability and response time of nodes participating in Raft. With Raft

used as the point of coordination for rotations within Anvil, availability and responsiveness of

quorum members is extremely important.

Aside from the Raft consensus protocol, interest in blockchain technologies has fueled the de-

velopment and proposal of security solutions that leverage blockchain for running consensus pro-

tocols in microservice clusters. Hyperledger Fabric [43, 122] is one such development that aims

to offer consensus and membership support at scale. These studies, examine the security threats to

consensus protocols, such as sybil attacks on collaborative network services. However, blockchain

technology can defeat traditional sybil attacks via proof-of-work or related protocol-level mech-

53

anisms. In contrast, Anvil uses consensus protocols to coordinate service mesh leadership and

facilitate synchronized rotations.

3.9 Summary

As microservice architectures have grown in popularity and the number of components to manage

have exploded, service meshes have assumed the role of managing and coordinating actions within

these deployments. However, the current state-of-art in service mesh technology fails to meet the

security and long-term maintenance needs of the microservice domain. Through an analysis of the

current state-of-art in service meshes and a relevant threat model to the domain, we identify key

shortcomings and gaps in existing research within the area of microservices. Our proposed solu-

tion, Anvil, and our best-effort framework ServiceFRESH explores augmentations to service mesh

design by providing a more domain-conscious approach to security and maintenance in service

meshes. We demonstrate the feasibility of Anvil’s design and features through an experimen-

tal evaluation, comparing Anvil’s benefits with a best effort rotation system, ServiceFRESH. We

recommend that Anvil’s lively, automated rotation of security artifacts and synchronized artifact

loading scheme be included in the development and design of current state-of-art service meshes

to provide a more comprehensive security approach to users of these tools.

54

Chapter 4

Mitigating Microservice Compromise in Service Meshes

4.1 Introduction

Growing demands of software systems and enterprise software have led to developments and in-

novations in how software is deployed. What were once large, single-server applications now span

thousands of containers and virtual machines hosted within massive datacenters globally [63, 110].

The transition of software from the single-server, monolithic structure to the modern, microservice

approach has separated and isolated the logic components of large software systems. However,

this has lead to a dramatic increase in unique components and subsequent dependencies between

components that must be managed. This phenomenon has been referred to as microservice explo-

sion [64, 125].

The microservice explosion issue has rendered previous management and deployment tech-

niques, such as manual deployments and administrator interaction infeasible to use in enterprise

software [1]. However, the benefits of scalability, faster deployments, ease of development, and

separation of concerns push real-world environments to adopt microservice architectures [63]. De-

spite benefits of containerization and virtualization, full redeployments of microservice environ-

ments are impractical, often requiring full reconstruction and configuration of management plat-

forms. Rather, the hosted containers and microservices are intended to be temporal, often capable

of achieving continuous deployment strategies, but the underlying orchestration and management

platforms are intended to be long-lived [63, 110]. This results in a vital need for strong security

capabilities within the management elements of microservice architectures. With a growing need

to maintain and deploy software at increasing speeds, innovations in tooling and management for

55

the microservices domain are necessary [28, 80, 134].

The modern approach to addressing these new challenges in software deployment are service

meshes, a subset of tools within the wider collection of methods and practices referred to as De-

vOps. Service meshes, such as Consul [47] and Istio [60], have filled the role of controlling,

securing, and connecting collections of single-purpose microservices. Microservices, the building

blocks of large software systems, collaborate with one another to achieve high-level business goals

and fulfill user needs [63]. Microservices are often deployed within containers, but may also be vir-

tual machines or even dedicated, physical hosts. This model of system design is broadly referred to

as the microservice architecture and has seen dramatic growth in popularity in recent years with a

range of enterprise organizations transitioning their infrastructure [16, 31–34, 67, 129]. Addition-

ally, trends of widespread adoption and increasing maturity have been noted in surveys conducted

by the Cloud Native Computing Foundation (CNCF) [18, 19].

With a broad list of responsibilities and capabilities, service meshes bear the weight of pro-

viding infrastructure management as well as network coordination and security amongst deployed

resources. For instance, due to the separation of different aspects of a microservices-based soft-

ware deployment, what were once intra-service connections have become inter-service connec-

tions [110]. As such, connections between services must now traverse network boundaries, in-

evitably encountering uncontrolled, shared networks. Due to this, service meshes must also be

responsible for coordinating and securing these connections to uphold the necessary security guar-

antees of the system as a whole [45, 120].

Despite being charged with responsibilities of network security, current service mesh designs

fail to account for the possibility of security issues within microservices and containers. Among

these are: software supply chain vulnerabilities, closed-source third-party code, and underlying

container vulnerabilities [77, 92]. Additionally, real-world incidents and mishaps [23, 92, 112]

show a need for the ability to detect misconfigurations or misbehavior within microservices and

effectively alert on, or mitigate, these events. However, these vital capabilities are lacking in all

modern service meshes. Due to service proxy designs present in all state-of-art service meshes,

56

there is no mechanism to detect, and effectively notify administrators, when access control policies

are violated [9, 46, 55]. These drawbacks conflict with responsibilities delegated to service meshes

and are worsened by the issue of microservice explosion. As microserivce systems grow to tens of

thousands of services, as in [44, 83, 133], the strain on administrators is increased and environment

redeployment becomes infeasible.

Our proposed framework, ServiceWatch, directly addresses these shortcomings with novel se-

curity and design choices. Leveraging automated rotation of all encryption keys, certificates, and

access control credentials used in service meshes (herein referred to as security artifacts), Service-

Watch provides timely mitigations and responses to these threats while preserving the underlying

management structure. In this way, ServiceWatch provides mechanisms for partial compromise

and failure recovery, allowing the service mesh to continue operations without requiring full sys-

tem redeployment, as could be the case in the current state-of-art. Additionally, security freshness

guarantees claimed by alternative tools are automatically maintained in ServiceWatch through the

lifetime of a deployment with no administrator intervention, easing operational burden.

ServiceWatch’s inclusion of these security features in its core design addresses security issues

that are not accounted for in the current state-of-art. Further, the inclusion of these security fea-

tures was impractical to accommodate within these existing tools, requiring significant re-design

and engineering efforts to accomplish. ServiceWatch brings beneficial security features to the

microservice domain by addressing known attacks and issues, such as vulnerabilities present in

Docker [27] container images [119], inherent trust between microservices [124], and unautho-

rized service requests from compromised microservices [76]. In recent years, a model of such

a threat is the Log4j vulnerability [128] causing widespread effects and damage [36, 132]. We

present ServiceWatch’s beneficial design decisions and feasibility as a roadmap for future design

incorporation, allowing tool designers and engineers to adapt their architectures for these novel

capabilities.

Through an experimental implementation of ServiceWatch’s design features, we analyze the

network overhead of our proposed access control verification process, detailed further in Sec-

57

tion 4.4. Using experimental data from a real deployment of the Google “Online Boutique” mi-

croservice example system [103], we show the feasibility of ServiceWatch’s design choices to

handle large environments and how these capabilities scale with the size of the microservice de-

ployment. With reasonable overhead and novel security design, ServiceWatch addresses the key

issues of security management and maintaining strong security posture in microservice deploy-

ments unseen in the current state-of-art.

As part of this work, we provide the following contributions:

• We analyze state-of-art service meshes under a relevant threat model (based on real-world

incidents) and identify security shortcomings and limitations.

• We present ServiceWatch, a service mesh platform with mitigation capabilities for misbe-

havior and misconfiguration and automated security artifact rotations to address against mi-

croservice threats and challenges.

• We present an experimental and theoretical cost analysis of ServiceWatch’s security features

showing its feasibility for use in modern service-mesh design.

4.2 Background and Motivation

Advancements in cloud computing and virtualization, have refined the architectures and design

of modern software systems. Current trends in software engineering and cloud computing have

encouraged adoption of microservice architectures managed by orchestration tools, such as service

meshes.

4.2.1 Microservice Architectures

Traditionally, software has been designed as a singular, whole product. This practice, referred to

as the monolithic software architecture [84] provides straightforward designs, but are highly lim-

ited in terms of scalability, manageability and speed of deployments and revisions. Due to this,

58

modern software engineering practices have trended towards the separation of software elements

into microservices [130]. These simple, atomic elements of a larger software system are deployed

in tandem with many other components to collaborate on high-level system tasks. These tasks

may include user authentication, product purchasing, or inventory management [83]. Figure 2.3

illustrates an example microservice deployment, to demonstrate properties of microservice archi-

tectures. In this work, we utilize a subset of this deployment as a running example and experimental

testbed to show ServiceWatch’s security capabilities and features.

Bringing an increase in the speed to develop online applications, microservice architectures [63]

are an emerging software engineering paradigm bringing key features to enterprise software sys-

tems. Additionally, virtualization has been a key enabling technology for the advent of microser-

vice architectures in that many deployments leverage virtual machines or containers to host mi-

croservice code [64]. With extremely fast deployment times and increased efficiency by leverag-

ing shared resources, containerization has played a major role in the adoption and growth of the

microservice paradigm [15, 100, 110]. However, as enterprise software expands and the quantity

of microservices deployed grows, the management, coordination, and security of these services is

increasingly challenging. Service meshes are the latest solution, in a series of developments, to

address the issue of microservice explosion in large-scale software. [44, 63, 110]

4.2.2 Service Meshes Overview

Service meshes embody the latest iteration of the DevOps toolset. Namely, due to the aforemen-

tioned microservice explosion challenge, managing and coordinating microservice “swarms” be-

comes increasingly difficult as the size of deployments increases [65, 83]. Figure 2.3 demonstrates

this network architecture, showing deployed microservices operating a “service proxy” alongside

their microservice code, which implements the business logic of a given component. The service

proxy, a key element of the service mesh, handles the network connections and security responsi-

bilities of the microservice deployment. By outsourcing these responsibilities from microservice

code, developers may focus on implementing business logic rather than networking and security

59

functionality [9, 46, 55].

The current production-ready, state-of-art service mesh tools are Consul, Linkerd, Istio, OSM,

and Kuma. [10, 47, 60, 73, 98]. Interest in service meshes has been growing in recent years,

following a trend of adoption relative to other popular portions of the DevOps toolset, such as Ku-

bernetes [69], a container orchestration platform. In addition to increased interest in contributors,

stars and forks on GitHub [38], the annual developer survey conducted by the Cloud Native Com-

puting Foundation (CNCF) [17] has shown that Kubernetes and service meshes have increased in

both adoption and popularity across 2020 and 2021 [18, 19] (the CNCF 2022 survey has not yet

been released as of the writing of this article). As adoption of these tools increases, so too does

their maturity and the size of microservice deployments in production environments.

While the term service mesh is agreed upon in literature and the feature-set that is provided by

service meshes is fairly consistent among the current state-of-art, the implementation and design

choices of service mesh technologies vary. For example, Consul may be deployed as a standalone,

platform-independent service mesh able to be utilized as a single binary on a range of operating

systems and technologies, or as an “overlay” service mesh atop Kubernetes [50]. We use the term

“overlay” to indicate a service mesh that is reliant upon an underlying container orchestration plat-

form, such as Kubernetes, to function properly. For example, the Istio and Linkerd service meshes

are permanently reliant upon an underlying Kubernetes infrastructure to provide the necessary

structure and capabilities to operate correctly. Without an underlying Kubernetes implementation,

all overlay service meshes (Istio, Linkerd, OSM, Kuma, etc.) are unable to provide any of the pur-

ported functionality to a microservice deployment. Due to this reliance, the associated operational

costs and expertise requirements of Kubernetes are inherent when adopting any overlay service

mesh.

Within ServiceWatch and Consul, rather than depending upon an orchestration platform, like

Kubernetes, orchestration and management of the cluster is conducted by a specially configured

group of higher-privilege nodes referred to as a “quorum” that handles the consensus and manage-

ment functionality for a deployment. Kubernetes, when configured for enterprise environments,

60

also operates in a “multi-master” mode (with similar responsibilities to a ServiceWatch/Consul

quorum). When Kubernetes is configured in this way, all “masters” are replicated with identi-

cal security artifacts and replicate cluster state changes amongst the group. While the design and

structure of Kubernetes is quite different relative to platform-independent service meshes, such as

ServiceWatch and Consul, both of these service meshes can be adapted and utilized within Ku-

bernetes deployments [50], showing a greater flexibility and freedom over the more strict overlay

service meshes.

4.2.3 Security Incident Handling in Existing Service Meshes

While appealing to software engineers and system architects, service meshes introduce new com-

plexity, attack surface, and challenges to these environments. A primary feature lacking in all

modern service meshes is the ability to detect misconfigurations or misbehavior within deployed

microservices and effectively report or mitigate these incidents. Due to service proxy design deci-

sions present amongst all state-of-art service meshes, there is no mechanism to detect, and effec-

tively notify administrators, when access control policies are violated [9, 46, 55].

All access control decisions for microservices are made at their local service proxy which

can lead to issues, such as resource constraints due to the service proxy’s lightweight nature, a

constrained view of the overall system structure, and no mechanism to alert administrators or

change the offending microservice. Similarly, if a service proxy is misconfigured to have mutual-

TLS connections disabled while the remainder of the deployment has this configuration active,

there is no means to alert an administrator or remediate the specific misconfiguration issue. The

likelihood that a mistake or misconfiguration has occurred in the declaration of a microservice

deployment is increasingly likely as the size of these deployments increases. For example, Netflix,

Spotify, and Uber have all reported deployment sizes of more than 1000 microservices in 2021 [20,

68]. Additionally, Twitter boasted more than 10,000 microservices at a LinuxCon presentation

in 2016 [7]. With system sizes this large, the opportunity for misconfigurations and mishaps to

occur is significantly more likely, as was the case with Twitter recently [23, 112], and the attack

61

Proxy

Frontend
Service

Proxy

Cart
Service

Proxy

Checkout
Service

Proxy

Payment
Service

Proxy Proxy

Cart
Service

Proxy

Checkout
Service

Proxy

Payment
Service

Malicious
Frontend
Service

Figure 4.1: Threat Model Overview – With known issues in microservices and containerized
applications shown in [76, 119, 124], the threat of compromised microservices must be considered
in service mesh operations. Therefore, the interactions between microservices have the potential
for adversarial influence.

surface of such a system also grows and becomes a more appealing target for adversaries. This

reality demonstrates that service mesh security must match the microservice domain and provide

mechanisms for detection, isolation, and recovery from misbehaving microservices.

4.3 Threat Model and Security Capabilities

Due to the diverse, distributed, and resource-sharing properties of microservice architectures, there

are a range of potential threats to service meshes and the microservices they manage and maintain.

As part of this study, we adopt a threat model that assumes microservice code to be untrustworthy

and that microservices are deployed within a malleable, inconsistent network perimeter. These

assumptions have been confirmed in previous research [76, 77, 119, 124] and exist in real-world

deployments [54], aligning with our domain of study. Under these assumptions, we highlight the

ability for our proof-of-concept, ServiceWatch, to demonstrate clear security benefits over current

state-of-art service meshes.

4.3.1 Threat Model

The highly distributed nature of microservice deployments and the ability to utilize cloud in-

frastructure to distribute resources globally has created increased opportunities for adversaries to

62

threaten service meshes. We consider the two broad categories of external threats (adversaries with

no prior access to service mesh resources) and microservice threats (adversaries originating from

within service mesh resources, e.g. - a compromised microservice) as part of this work. Addition-

ally, we deem direct compromise of ServiceWatch/Consul quorum nodes and overlay service mesh

master nodes to be out-of-scope with respect to this work. We acknowledge that compromise of

these elements is possible, but we believe that system administrators have a higher incentive and

higher degree of control over these elements due to their increased level of privilege and the fact

that they should not host microservices within service mesh deployments.

External Network Threats: The properties of cloud computing platforms and the globally dis-

tributed nature of modern enterprise software systems forces system administrators to maintain

a malleable, inconsistent network perimeter with respect to their deployments. Due to the fact

that microservice architectures have intricate and complex dependency relationships among the

deployed microservices, direct network access to components that may be located in different dat-

acenters or even different regions globally is often necessary. In this manner, there is an inherent

lack of a distinct network perimeter for these deployments, causing some microservices to be di-

rectly exposed to shared, uncontrolled networks [54, 58]. As such, it is extremely important to

consider the potential for skilled adversaries to monitor network traffic in attempts to eavesdrop or

manipulate traffic moving across these networks. These standard, network-level attacks attempt to

compromise the confidentiality, integrity, and availability of deployed microservices. Aside from

the array of standard, network-level attacks available to external adversaries, we also consider the

more severe potential of microservice threats that are the result of a compromised node or con-

tainer.

Microservice Threats: With the potential of compromised microservice containers [76, 77, 119,

124], third-party software application compromise, and software supply-chain vulnerabilities [92],

opportunities for an adversary to gain access to microservice deployments via deployed applica-

tions are increasingly concerning. A prime example of such an issue is the Log4j vulnerabil-

ity [128], allowing remote-code-execution that has the potential to provide attackers with access to

63

the service mesh network after compromise. Within this study, we consider the potential for single-

node or single-microservice compromise to be possible for an adversary. From this position, we

assume an adversary has complete control over the component and service mesh proxy instance.

Using this vantage point, they may initiate new network connections not explicitly defined within

the microservice application code and may attempt to move or expand horizontally within the mi-

croservice deployment. However, as discussed previously, we exclude the ServiceWatch/Consul

quorum instances and Kubernetes masters from potential insider threat compromise because they

are known to have higher levels of privilege and responsibility within a service mesh deployment

and are not intended to host microservice application code. In this way, we believe that system

administrators have a larger incentive for increased scrutiny with respect to these components to

prevent complete compromise of the service mesh deployment.

4.3.2 Security Capabilities

To combat these described threats, we use traditional security mechanisms already present within

state-of-art service mesh design, but also introduce novel features and design changes unique

amongst currently available service meshes. Aiming to uphold strong network security guarantees,

freshness of security artifacts, and system-wide access control, ServiceWatch provides security de-

sign that better meets the needs of the microservice domain.

Misbehavior and Misconfiguration Mitigation: As described in Section 4.2, service meshes pro-

vide “management” functionality within the control-plane of a microservice deployment, while the

microservices themselves are a “managed” element, within the data-plane. The control-plane is

responsible for infrastructure management tasks, such as securing requests between microservices

and enforcing access control policies. ServiceWatch’s novel security functionality draws many

similarities to self-adaptive software systems [5, 114]. However, we adopt these strategies to de-

tect and mitigate nefarious or incorrect behaviors in microservices, rather than improving system

throughput or performance.

Unique to modern service meshes, ServiceWatch provides additional security guarantees re-

64

+

CB

A

A C

A C

C
B

A A

CB

1 2 3

Figure 4.2: Access Control Verification System – The ServiceWatch quorum participates in the
approval or denial of requests made between microservices. In this way, (t) should a service be
misbehaving or be misconfigured, the quorum can deny the request and then mark the service for
isolation and investigation. (t + 1) Fresh certificates will not be distributed to this service and a
system administrator will be notified. To reintroduce the service to the active cluster, (t + 2) the
administrator, or automated reintegration system, will simply attach a fresh set of artifacts to the
service and integrate it to the active environment.

lated to the enforcement of access control. By involving the ServiceWatch quorum nodes in the

approval and denial of access control tasks from microservice requests, the quorum may make

informed decisions about the distribution of fresh security artifacts in future rotation periods. This

process, illustrated in Figure 4.2, allows ServiceWatch to provide automated detection, isolation,

and remediation of misbehavior within a microservice deployment. Additionally, by empowering

all quorum members to verify access control requests, ServiceWatch prevents the possibility of a

single-point-of-failure in this process.

ServiceWatch implements this informed revocation mechanism by making use of the frequent,

coordinated security artifact rotations that occur regularly within the deployment. Every rotation

within a ServiceWatch deployment involves a set of processes to generate, distribute, and activate

a collection of security artifacts among the nodes in the cluster. However, based upon microservice

behavior and node availability, the set of nodes for which security artifacts are generated is variable

and is subject to adaptations within the cluster. These adaptations, controlled and managed collec-

tively by the ServiceWatch quorum are able to be modified automatically by quorum members that

detect issues, or manually by a system administrator wishing to implement deployment changes.

Work by Pauley, et al. [101] has shown that the dynamic nature and frequent scaling events in

cloud resources can be exploited due to latent configurations issues present within deployments.

65

Figure 4.2 depicts a scenario in which a latent configuration in microservice A has caused misbe-

havior in the microservice deployment. At time period t, microservice A has been misconfigured

to improperly request resources from microservice C instead of microservice B to which it was

originally intended to receive information from. The ServiceWatch quorum during regular oper-

ations will detect these improper requests and mark microservice A for investigation. When the

rotation occurring at time t+1 occurs, microservice A will be seamlessly removed from the cluster

because it has not received a fresh set of security artifacts and the system administrator will be no-

tified to investigate the reason for A’s removal. Following an investigation, the administrator may

solve the misconfiguration present within A and mark it for reintroduction within a deployment

manifest hosted by the ServiceWatch quorum. This results in the quorum at time t +2 generating

a valid set of artifacts for microservice A and allowing its reintroduction with valid credentials.

Similarly, compromised microservices, are isolated, allowing administrators to investigate threats

as they occur. These novel capabilities allow ServiceWatch to appropriately monitor and secure

highly dynamic microservice deployments without impeding the benefits service meshes provide

to these environments.

Zero-Trust Networking: The premise of zero-trust networking is to verify all connections, identi-

ties, and content exchanges between microservices within a service mesh, rather than relying upon

inherent trust within the deployed components [111]. This approach matches the needs of the

microservice domain closely and is implemented as an explicit design goal within ServiceWatch.

Similar to the current state-of-art, ServiceWatch adopts these accepted security mechanisms

for zero-trust networking capabilities. Namely, ServiceWatch makes use of symmetric key encryp-

tion for membership messages, naming, and service metadata exchanged between nodes; x509

TLS certificates to create and secure mutual-TLS connections between services; and access con-

trol policies and tokens to ensure proper authorization for requests made between services in the

deployment. While the exact implementation of these security mechanisms varies slightly among

service meshes, all state-of-art tools either provide a form of each of these mechanisms or depend

upon an underlying platform. In the case of overlay service meshes, Kubernetes provides this

66

ServiceWatch

Consul

Istio

Linkerd

OSM

Kuma

Service
Mesh

Automatic
Rotations

Attack Window
(Data Plane)

Attack Window
(Control Plane)

Time to
Alert

1 min* 1 min* Immediate

24 hours [30]

24 hours [6]

24 hours [47]

24 days [40]

1 year [6]

1 year [47]

1 year [40]

1 year [30]

Table 4.1: Security Analysis of State-of-Art Service Meshes – Support for domain-relevant se-
curity features in current state-of-art service meshes. ServiceWatch supports very short attack
windows and immediate notification of violations, while alternative meshes have long windows of
attacker opportunity and fail to report occurrences of violations. *1 minute is the current config-
ured time for rotations within ServiceWatch, however, it is customizable and may be reconfigured
as needed for environment or domain needs.

functionality [52, 62, 71, 78].

In contrast to other service meshes, ServiceWatch implements mandatory zero-trust network-

ing, enabling a “secure-by-default” approach to the service mesh. An additional concern to the

long-term security of a service mesh is the exposure of security artifacts for long periods of time.

ServiceWatch’s design prevents security from dwindling over the lifetime of a deployment by re-

freshing security artifacts automatically, maintaining freshness and avoiding expiration and long-

term exposure. Alternative service meshes may be capable of performing security artifact rotations,

however, these processes involve manual administrator action and may be infeasible as deploy-

ments scale. ServiceWatch’s ability to notify system administrators of access control violations

is novel to service meshes. Due to their presence within the access control verification loop, Ser-

viceWatch quorum members have unique insights to microservice behavior and activity. When a

violation occurs, ServiceWatch notifies administrators immediately, while alternative tools have no

alerting capabilities because access control is verified at the recipient service proxy.

Attack Window: The highly dynamic nature of microservice deployments and the scaling-up and

scaling-down capabilities provided by cloud platforms have strained and challenged the manage-

67

ment solutions available to administrators [63]. As such, questions regarding the ability for service

meshes to be long-lived platforms arise [45]. As Table 4.1 shows, Consul, fails to provide meaning-

ful support for automatic rotation and refreshment of security artifacts used within deployments

without requiring manual administrator intervention [52]. Additionally, overlay service meshes

that depend upon Kubernetes, while gaining some beneficial security features such as data-plane

certificate rotation from the underlying Kubernetes infrastructure, fail to accommodate control-

plane rotations as well, falling short of complete security artifact rotation [11, 59]. In this way,

manual, system administrator intervention is required to rotate and refresh the certificates of this

system as time progresses, often resulting in necessary system downtime. With certificate lifetimes

of more than a year in some overlay service meshes, the potential for certificate exposure increases

as well.

Table 4.1 illustrates the benefits of the security and design choices made within ServiceWatch

relative to alternative service mesh tools. ServiceWatch accommodates complete security artifact

rotation as part of its design and provides mechanisms for completing this task in an automated,

synchronized manner across all service mesh components. Distributed generation and distribu-

tion of security artifacts occur within the quorum of higher-privileged ServiceWatch nodes, and

are then distributed to other components through synchronized file downloads. Lastly, all service

mesh components are notified to perform the necessary configuration changes to rotate to the new

set of artifacts and this changeover occurs using a lively certificate rotation mechanism as part of

the ServiceWatch service proxy. As the service mesh transitions from one set of security artifacts

to another, we observe no noticeable downtime or drop in microservice availability as part of this

process. In contrast, alternative service mesh technologies may not support automatic security

artifact rotations, or may only support a subset of the artifacts to be rotated automatically. Addi-

tionally, alternative service meshes expose security artifacts for significant periods of time before

retiring their use in a deployment, extending an adversary’s ability to use compromised artifacts.

68

4.4 ServiceWatch Design and Evaluation

ServiceWatch expands upon the current state-of-art in service meshes by employing a scalable

design, while also providing a novel approach for enabling unique, domain-conscious capabilities

to the microservice space. Through its ability to detect, isolate, and alert upon potentially malicious

or misconfigured services, ServiceWatch provides the next logical step in service mesh design by

enabling service meshes to properly manage and enforce security across the microservices they are

intended to manage and maintain.

4.4.1 Malicious Service Mitigation

Leveraging a security artifact rotation process, ServiceWatch is capable of seamlessly isolating

and mitigating microservice compromise within a microservice cluster. The issue of microservice

compromise, container compromise, and latent issues within microservice code have been studied

and have shown that inherent trust of microservice behavior is dangerous to large-scale systems.

ServiceWatch addresses this issue by providing a mechanism to identify when authorization vio-

lations occur within microservices and remediate these events in a timely manner. Our process of

access control verification (described in detail below) allows ServiceWatch to perform a high-level

security evaluation of microservices that make requests within a service mesh and to seamlessly

remove them from the operational environment to be examined and remediated. Figure 4.2 il-

lustrates this process in panels (t + 1) and (t + 2). By marking suspicious services for removal

from the operational cluster and alerting system administrators, the benign operation of the mi-

croservice cluster may resume without issue and the overall security posture of the cluster may

be maintained. Once remediated, replaced, or reconfigured, the offending microservice may be

easily reintroduced to the operational environment by updating a service mesh inventory file and

distributing fresh security artifacts to the entity.

69

4.4.2 Attack Window

Through the automatic and frequent security artifact rotations present within ServiceWatch, guar-

antees of freshness and up-to-date cluster state are ensured. Additionally, ServiceWatch makes use

of an update-able system manifest (either by the ServiceWatch quorum or system administrator)

to determine which entities in a microservice deployment are provided fresh security artifacts, and

subsequently which entities remain a part of the microservice cluster. Within ServiceWatch, se-

curity artifact rotations of all encryption keys, certificate-key pairs, and access control tokens, are

synchronized across the cluster at regular intervals and ensure that artifacts deployed within the

environment are never stale, or in other words, exposed for extended periods of time. This char-

acteristic of limited exposure provides a constrained window of time for an attacker to attempt to

discover and make use of any of the security-sensitive artifacts within the cluster. In conjunction

with the verification-in-the-loop feature of ServiceWatch, these capabilities combine to limit the

actions and effects that an attacker may have against the microservice deployment before they are

detected and removed from the operational environment. As defined in [6], we see an attack win-

dow as a continuous time interval an attacker may leverage without being interrupted by system

changes.

In the context of ServiceWatch, we utilize the following definition of “attack window” in this

research:

Attack Window – the period of time in which any given set of security artifacts are

active within a ServiceWatch deployment.

Below we formalize this concept within our context.

W = t +Tr (4.1)

Tr = Tgen +Tdist +Tch (4.2)

70

In Equation 4.1, W represents the attack window, or time in which an adversary has the potential

to compromise or discover actively used security artifacts within a ServiceWatch cluster. The

variable t represents the time between rotations that is configured by the system administrator of a

ServiceWatch cluster. Tr represents the “time to rotate” that is required for the various processes

in ServiceWatch to transition the cluster from one set of security artifacts to another. Tr is further

expanded in Equation 4.2 showing its component elements.

The variables Tgen, Tdist , and Tch represent the time required to generate a new set of artifacts,

time required to distribute the new set of artifacts to members, and the time required to synchronize

a changing of node configurations within the cluster, respectively. However, Tgen and Tdist may be

performed as background processes that do not affect normal ServiceWatch cluster operations. As

described in Section 4.3, the ServiceWatch quorum is responsible for the generation and distribu-

tion of security artifacts, meaning that microservice tasks and performance are not effected by this

workload. The only component of a rotation that requires a synchronized response from cluster

members and may potentially incur downtime within the cluster is Tch, however, in our experimen-

tation, we find that changeover time within ServiceWatch is extremely fast due to the use of lively

certificate rotations and results in near-zero downtime rotations of artifacts. Specifically, the Ser-

viceWatch process is never stopped during rotation of certificates and no noticeable or measurable

effect to system downtime is observed. Currently, within the default ServiceWatch configuration,

security artifact rotation frequency (t) is configured to occur every 60 seconds, resulting in over

1440 rotations in a 24-hour period. This configuration may be altered according to the application

needs and the risk that a given system may accommodate, limited only by the time required to

generate, distribute, and synchronize changing the set of artifacts.

4.4.3 Access Control Verification

In order to provide strong access control guarantees across microservice deployments, Service-

Watch introduces a novel verification-in-the-loop mechanism to the standard checks performed by

service proxies when a microservice request is made through the service mesh data-plane. Fig-

71

ure 4.2 illustrates the control logic involved during these events. Examining panel (t) of the figure,

microservice A makes a request to microservice C. Upon receipt, the service proxy intercepts the

traffic bound for the target microservice and verifies that the request is authenticated, encrypted,

and maintains integrity before beginning the checks for authorization. To verify that the requesting

service is authorized to receive resources from microservice C, the request metadata and attached

access control token(s) is forwarded to any member of the ServiceWatch quorum.

When a quorum member receives an authorization request, the same authenticity and integrity

checks are performed between the verification requester and the quorum member before the list of

policies and valid access control tokens are searched. If a valid token and policy are located, the

quorum member responds with a binary TRUE value to microservice C and the resources requested

by A are ultimately exchanged between microservices. Figure 4.2 also illustrates the process of

handling verification denial. In the event of a microservice requesting a resource they do not have

authorization to, a binary FALSE is sent to the verification requester, the connection between the

two microservices is severed, and the requesting microservice is marked for isolation, excluded

from future security artifact rotations, and an administrator is alerted to investigate the occurrence.

By including the ServiceWatch quorum entities, in the access control verification loop, not only is

ServiceWatch able to provide redundancy in enforcement of access control, but a holistic view of

the overall health of the cluster is achieved. From this position of oversight, quorum members make

informed decisions as to which microservices are deemed “healthy” and which should receive

updated, fresh security artifacts during the next rotation period.

4.4.4 Experimental Evaluation – Access Control Verification

When a resource request is made between any two microservices in a ServiceWatch deployment,

the service proxies first examine and verify the authenticity and integrity of every message re-

ceived, then extract the attached authorization headers and forward the request’s metadata along

with the authorization header to the quorum for verification. In our experimental testbed environ-

ment, based upon the Google Cloud Platform “Online Boutique” example microservice deploy-

72

0 1000 2500 5000 7500 10000
Number of Service Requests per Second

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
M

eg
ab

yte
s T

ra
ns

fe
rre

d
pe

r S
ec

on
d

Network Overhead per Second
Osys (Oreq+Oresp)
Oreq

Oresp

Figure 4.3: Theoretical Network Overhead – Using the experimental data collected by our small-
scale testbed, we plot the overall system overhead (Osys) expected and the component parts (Oreq
and Oresp). Even as the system scales to tens of thousands of requests per second, the system-wide
overhead remains manageable. With 10,000 microservice verification requests per second in the
cluster, we observe a system network load of ∼4.28 MB/sec.

ment [103], we find that the network cost of this process requires a single TLS connection from the

recipient service to the quorum carrying a payload size of 290.91 bytes on average. The subsequent

verification decision that the quorum responds with was found to be 137.2 bytes on average. These

results coincide with the system-level design of ServiceWatch, requiring only small amounts of

request metadata to be included in the verification request and a simple binary response necessary

to complete the quorum verification loop.

4.4.5 Theoretical Evaluation – Access Control Verification

Expanding upon our real-world observations of ServiceWatch’s network burden, we formalize the

system-level overhead using the following equation:

Osys = (Oreq +Oresp)∗n (4.3)

73

In Equation 4.3, the overall system-level overhead (Osys) is computed by a summation of the

size of verification request payloads (Oreq) and the size of verification response payloads (Oresp)

multiplied by the number of service requests (n) occurring across the entirety of the cluster at any

given moment. Figure 4.3 illustrates this computation as the size of the cluster increases (and the

subsequent number of service requests between microservices also increases).

As shown by the figure, the overall system cost for providing our novel verification-in-the-

loop for microservice requests scales linearly with the number of requests generated within the

deployment. In the event of 10,000 microservice verification requests per second, the overall

system network load is ∼4.28 MB/sec. However, the above calculation represents the total cost of

network load to the entire microservice deployment, but does not depict the network load imposed

upon each of the ServiceWatch quorum nodes individually. ServiceWatch allows service proxies

to choose a verifier among any of the quorum members because the verification token log is shared

amongst all members. Due to this, verification overhead is distributed across the quorum. As part

of our experimentation, we utilized 5 quorum nodes, splitting the cost equally across members.

ServiceWatch is able to accommodate any number of quorum nodes, but tradeoffs of system cost,

network overhead of quorum maintenance, and system complexity should all be considered when

designing a microservice deployment.

4.5 Related Work

Microservice and Container Security: The security structure of microservices and containerized

applications has been studied closely and been shown to be vulnerable to exploits in a number of

previous works. Rastogi, et al. [108] evaluate an automation system for decomposing a monolithic

software deployment into a collection of collaborating microservices, the purpose of which is to

better adhere to the principle of least privilege [115]. As a part of this effort, Rastogi, et al. devel-

oped a special-purpose system that uses a static binding to communicate between microservices,

rather than an examination of the available security mechanisms within service meshes that dy-

74

namically connect services. A lack of security protections in the Docker container environment

is noted by Yarygina, et al. [137] and they propose a security monitoring system for containers

as a potential solution to this issue. Such a system could be leveraged as part of the long-term

security of a microservice deployment that utilizes the ServiceWatch service mesh. Trust within

deployed microservices is often inherent, as noted by Sun, et al. [124]. The authors study how

the trust relationship between deployed microservices may result in the compromise of an entire

system. Further, they propose a system for deploying network security monitors in microservice

environments to detect and block threats to clusters. ServiceWatch extends this work by provid-

ing zero-trust, communication security as a feature of the service mesh. In this way, exploits and

attacks against containers are prevented from corrupting other portions of the service mesh cluster.

Access Control in Service Meshes: In a similar manner, work by Li, et al. [76] studied how inher-

ent trust among microservices can be exploited by an insider threat. Assuming the threat model of

a compromised microservice that attempts to make unauthorized requests to other microservices,

the authors design and implement a solution for scanning microservice source code and extracting

relevant metadata relating to network requests. With this extraction, they generate a minimal set

of the necessary Access Control List (ACL) entries necessary for the service mesh to operate cor-

rectly. The proposed system design addresses the primary concern of microservice explosion by

creating an automated methodology for determining the appropriate set of access control policies

for a microservice deployment. This design could be utilized within ServiceWatch to automatically

generate a minimal set of network relationships and the necessary access control tokens for the net-

work connections between microservices deployed in a ServiceWatch service mesh. Afterwards,

ServiceWatch’s novel verification-in-the-loop capability would enforce those policies.

4.6 Summary

ServiceWatch expands upon the current state-of-art, scalable service mesh technologies by en-

abling service meshes to consider authorization requests between microservices as an indicator of

75

overall system health. Through a novel detection, isolation, and mitigation scheme, ServiceWatch

introduces the next logical step in service mesh security mechanisms to the domain. Through an ac-

cess control monitoring system that involves the privileged quorum nodes and scales appropriately

with microservice deployments, ServiceWatch provides effective security, even as the microservice

explosion phenomenon challenges these environments. ServiceWatch embodies a design for future

service meshes that provides them the means to manage and maintain the health of microservice

clusters autonomously, easing administrator burden.

76

Chapter 5

Multi-Hop Access Control in Service Meshes

5.1 Introduction

The explosion in popularity of online software services and applications has created a dramatic

increase in the size, complexity, and interconnectedness of software deployments. An enabling

factor to this has been cloud computing and the development of novel computing abstractions such

as virtualization and containerization. With these advances, the structure and strategy of deploying

software has shifted from large, single-server applications to distributed, network-connected com-

ponents referred to as microservices [63]. This transition from monolithic software design to large

pools of collaborating microservices has enabled software engineers to develop systems that are

more reliable, robust, and scalable, relative to monolithic software applications [63, 120]. Further,

the separation and isolation of software components has allowed developers to test, debug, and

scale their applications in a more focused fashion. However, adoption and growing popularity of

the microservices paradigm has lead to a significant increase in the quantity of unique software

elements that must be deployed and an explosion in the number of dependency relationships that

exist between these components. Referred to as the microservice explosion [64, 125] challenge,

this phenomenon of large, interconnected webs of unique services has strained the management

and security methods of modern software systems.

With modern tooling and practices, broadly referred to as DevOps, emerging to address the

microservice explosion challenge, the construction and management of microservice architectures

is changing rapidly. Service meshes, the latest in a series of iterations in DevOps have become

appealing ways to manage and deploy microservice architectures with a number of state-of-art im-

77

plementations available, such as Istio [60], Linkerd [10], and Consul [47]. Additionally, platform

orchestrators such as Kubernetes [69] address the challenge of rapidly deploying and managing the

computation infrastructure upon which microservices operate. Despite these advancements, open

challenges and security concerns still remain in the microservices domain. Namely, concerns over

inherent trust between containers that host microservices [124], software-supply-chain issues [92],

and critical flaws in microservice software [66, 126] all provide potential for adversaries to gain

footholds within microservice deployments and escalate their privilege and capabilities within tar-

get systems.

Due to these open vulnerabilities and challenges within microservices and container technol-

ogy, we identify two novel threats that are previously unaddressed by related work and state-of-art

technologies. Namely, we refer to these threats as the “confused deputy” attack and the “short

circuit” attack. These threats are enabled due to the complex dependency relationships that exist

between microservices. With such a complex web of connections and paths between microservices

in real-world deployments [23, 112], these threats go uncaptured by existing methods in service

meshes and access control. The confused deputy attack involves an adversary manipulating a valid

service-to-service hop, but causing a benign service to create an invalid path to a resource the

adversary should not have access to. The short circuit attack similarly involves an adversary con-

trolling an intermediate hop in a microservice path, but truncating the valid path to generate an

illegitimate hop that makes requests to a microservice without a valid origin request. The details

of these threats are discussed further in Section 5.3. To alleviate these adversarial actions we de-

sign and implement a system able to handle such a complex threat model. Through robust static

analysis methods and a holistic, system-wide view of access control, we are able to alleviate these

issues in deployments managed by our proof-of-concept framework, CloudCover.

As part of this work, we introduce CloudCover, a novel access control verification framework

that addresses the issue of microservice compromise within microservice deployments. We make

use of modern, state-of-art tooling, but design and implement a novel, verification-in-the-loop

approach to address the potential for adversarial presence and influence within a deployed ser-

78

vice mesh that hosts microservices. Verification-in-the-loop is enabled by deploying a standalone

verification oracle alongside microservices and their service mesh service proxies. In this way,

CloudCover implements a strong, stateful method for access control that maintains knowledge and

history of the service-to-service requests as they propagate through a microservice deployment and

traverse the existing dependencies. Through a static analysis of microservice source code, network

requests made through source code APIs are traced through the entirety of the microservice de-

ployment and are used to populate a dependency graph of service-to-service requests that occur

within the cluster. By extracting the possible paths through the dependency graph, CloudCover

provides insights and visibility into the complex and interconnected dependency relationships be-

tween the large number of unique microservices present within modern software. Using graph

traversal, we use CloudCover to derive a series of network access policies that are then used to

populate the ruleset needed for verification. Within our verification-in-the-loop system, Cloud-

Cover is involved in all access control decisions regarding service-to-service requests that occur

within the microservice system. By providing request introspection and verification at every hop

in a service request path, CloudCover is able to track and maintain long-term access control for

the lifetime of a service request as it propagates through the environment. Providing authorization

decisions to the service proxies located next to deployed microservices, CloudCover provides the

necessary oversight and capabilities for service meshes to provide holistic, system-wide introspec-

tion into microservice behavior and actions. This unique and novel capability within CloudCover

provides a vital security mechanism to service meshes that prevents adversaries from manipulat-

ing dependency relationships between services to achieve their goals. CloudCover achieves this

protection with minimal overhead and is a drop-in system designed to be implemented in existing

software systems that are currently deployed.

Combining novel designs and capabilities with existing tooling, CloudCover presents a novel

framework for improved access control in service meshes that leverages existing administrator

expertise and knowledge. Additionally, CloudCover effectively provides administrators a means

to enforce zero-trust networking policies and apply the “principle of least privilege” to the mi-

79

croservices that they deploy, providing a complete and strong system-wide security policy for all

microservice traffic.

As part of this work, we make the following contributions:

• We analyze and identify two novel, unaddressed threats within microservice environments

caused by complex microservice dependency relationships.

• We present an open-source, scalable code-scanning methodology to expose microservice

dependency relationships and we enumerate these dependencies for access control policy

generation.

• We design and implement CloudCover, an industry-ready solution for multi-hop access con-

trol verification in microservices that ingests the dependency relationships between microser-

vices and utilizes a novel verification-in-the-loop approach for policy enforcement.

• We evaluate CloudCover for its feasibility to be used in modern large-scale software systems

with tens of thousands of microservice requests generated per second.

5.2 Background and Related Work

With cloud computing emerging as a dominant model of deploying distributed software for a global

scale, DevOps tools and methodologies have been created to address the new challenges of man-

aging and controlling these environments. With microservice architectures gaining popularity,

service meshes have been embraced to provide networking and security logic that manages mi-

croservice behaviors and connections. CloudCover expands upon this current state-of-art with

improvements to access control mechanisms in service meshes for microservice deployments.

5.2.1 Service Meshes and Microservice Architectures

The primary goal of service meshes is to provide network abstraction and security for microser-

vices. In an effort to allow developers a simplified process of developing and deploying their soft-

80

ware, the responsibilities of service discovery, connection, and management has been delegated

to service meshes. Leveraging service proxies, service meshes implement a sidecar application

alongside microservice code that intercepts network traffic and requests to and from microser-

vices. This adjacent positioning of service proxies allows them to provide traffic introspection and

layer in security mechanisms such as access control and mutual-TLS (mTLS) for microservice

applications. Figure 2.3 illustrates this network architecture and the implementation of service

proxies that provide mTLS connections and access control between elements of a microservice de-

ployment. Through these capabilities, confidentiality, integrity, authentication, and authorization

are provided to microservice applications, but do not require any source code changes to the mi-

croservices themselves. By securing all network connections between microservices and verifying

all requests, service meshes are a critical first step in microservice architectures towards adopting

“zero-trust networking”.

In the current state-of-art service meshes, access control authorization is conducted through a

series of policies and traffic rules present in each of the deployed service proxies. These network

policies, often requiring significant manual effort by system administrators, are consulted each time

a network request is made to a target service mesh. Based upon the outcome of running these rules

against the received traffic, the request is either denied entry to the microservice, or is accepted and

the request payload is ultimately forwarded to the target microservice. However, under this model,

access control policies are checked in isolation at the receiving service proxies and may leave the

microservice deployment open to adversarial actions, such as the confused deputy and short circuit

attacks. These threats, previously unaddressed in prior work, are discussed further in Section 5.3.

5.2.2 Static Analysis of Source Code

Previous work by Li, et al. [76] has demonstrated a capability of leveraging microservice source

code as a ground truth for mapping the dependencies between microservices. Using static analysis

methods to locate and extract the relevant connection information from programming language

APIs, AutoArmor has shown a capability for generating a graph of microservice dependencies.

81

Extending this work, we leverage the dependencies that are extracted from the dependency graph

demonstrated in AutoArmor as the policy foundation for CloudCover. CloudCover then populates

a policy ruleset which is used as the foundation for the verification-in-the-loop authorization by

the CloudCover verification oracle. CloudCover further addresses key shortcomings in the work

by Li, et al. [76] and considers the potential for complex microservice dependencies that are not

accommodated by existing service mesh technologies.

5.2.3 Related Work

Previous work in the microservice and service mesh security domain have sought to address a

range of issues and challenges within these domains.

Container and Microservice Security: In recent years, growing concern and a range of vulnera-

bilities and exploits emerging within microservice applications and the container ecosystem have

driven a range of research and development to alleviate these issues. With vulnerabilities, such as

Log4j [85, 128] making headlines and leading to significant damage [36, 132] work to understand

the existing vulnerabilities and security issues in containerized applications has emerged [66, 126].

To address these vulnerabilities and challenges, various works have explored applying principle of

least privilege to microservice systems that were constructed from decomposed monolithic appli-

cations [108]. Others have examined the potential for utilizing security monitoring in container

systems [137]. Additionally, work exploring the dangers of inherent trust within deployed mi-

croservices has been considered [124].

Access Control Methods in DevOps: Work by Nam, et al. [89] explores security of container

networks and the vulnerabilities exposed by some container networking systems. They provide a

proof-of-concept framework for mitigating these threats and enforcing proper container network-

ing policies. CloudCover expands upon this work by providing proper access control for microser-

vice deployments that operate at higher layers in the networking stack, specifically with service

mesh networking rather than container networking, and we defend against existing vulnerabilities

caused by complex microservice dependency relationships. However, these methods may be com-

82

bined to provide a defense-in-depth approach. Additionally, previous work has considered proper

access control in a serverless application context [2, 25, 116]. However, this work is limited in

scope due to its implementation for serverless applications specifically. Instead, CloudCover ap-

plies holistic, system-wide access control for service meshes which may be deployed alongside

serverless applications due to their ability to be adopted into service mesh clusters [93]. Work by

Li, et al. [76] has investigated the issue of inherent trust within microservices and how this practice

may be exploited by an insider threat. In a similar manner, we adopt a threat model that assumes

the potential of insider threats or microservice compromise with an attacker that attempts to take

action within a microservice deployment. However, we expand upon this work by considering a

threat model where the complex dependency relationships and connection maps within microser-

vice deployments enable an attacker to achieve goals if not mitigated. Specifically, in [76] only

single-hop service-to-service connections are considered and secured when in actuality, multi-hop

paths exist in real-world deployments. Due to this, isolated access control methods are insufficient

and a holistic, system-wide access control methodology is necessary. CloudCover expands upon

this work by capturing these relationships and providing a proof-of-concept framework to address

this issue.

5.3 Threat Model

A range of concerns and known issues plague the microservices domain, however, the benefits

that this deployment and software engineering paradigm bring to large-scale systems continues to

be attractive to system designers. Of particular concern are issues related to the hosted services

themselves and the security of the containerized applications that perform the business logic of

software systems. For example, software supply-chain issues, inherent trust among containers,

latent misconfigurations within containers, and a host of container vulnerabilities have been previ-

ously found in research and reported to developers. Due to these factors, it is clear that deployed

microservices should be untrusted during operation and should have only the minimum necessary

permissions and access within a deployed environment.

83

5.3.1 State-of-Art Shortcomings

As part of this work, we assume that the previously discovered issues and vulnerabilities within

the microservice domain have the potential to manifest within real-world deployments. As such,

we stipulate that an adversary has the potential to compromise or maintain access to an arbitrary

microservice deployed within a target environment. From this standpoint, the adversary has the ca-

pability to create arbitrary network connections, attempt to contact other microservices within the

deployment, and even to maliciously make requests to other microservices. This threat model was

previously presented and leveraged in work by Li et al. [76]. This work expands upon the threat

model presented in [76] by introducing two novel threats to the microservice domain that are not

addressed by the work presented by Li et al.. Namely, these threats are the confused deputy attack

and the request chain short circuit. We do not make assumptions regarding adversarial actions with

respect to tampering or modification of application data. We deem these out-of-scope and instead

focus upon the ability for an adversary to create network requests to other microservices within

the deployment. We elaborate on these threats and the characteristics of microservice deployments

that enable their existence below.

5.3.2 Novel Attacks

Due to the extremely complex and interconnected nature of microservice deployments, it is highly

challenging to accurately describe and map all of the potential connections that microservice may

make between one another. As such, we identify a previously uncharacterized structure that ex-

ists within microservice deployments that we refer to as multi-hop connections. These types of

connections can be thought of as “dependency chains”. Beginning with an origin service, a target

endpoint is selected and some amount of work or data is requested from the target. However, in

order to fulfill this request, the original target service, deemed a “helper” must make a new request

to another service before ultimately returning the final response to the origin service. This rela-

tionship of services requesting resources via other services is shown below in Figures 5.1 and 5.2.

Through these behaviors and processes, more complex dependencies structures, or paths, are cre-

84

Proxy

Helper
Service

Proxy

Compromised
Service

Proxy

Database
Service

Legitimate
policy path

Incorrectly
forwarded

request

Figure 5.1: Confused Deputy Attack

ated within microservice architectures that are unable to be captured and addressed by any current

state-of-art methods in service meshes or access control.

Confused Deputy Attack: Within the context of this work, we refer to the “Confused Deputy

Attack” as one that occurs when an benign service is leveraged for malicious purposes via a legit-

imate intermediary hop. Due to current implementation of access control in service mesh tools,

these multi-hop relationships are unable to be reasoned about in totality. Rather, current service

mesh tools examine service-to-service requests in isolation, enforcing defined policies only at the

recipient service proxy. This shortcoming allows an opening for adversaries to traverse legitimate

paths and manipulate the intermediary, or “helper” services to do their bidding for them. In this

way, the intermediary service is unknowingly participating in a malicious action and is a “confused

deputy” on the behalf of the adversary. The scenario depicted in Figure 5.1 shows how a compro-

mised service traverses a legitimate path between them and the deputy in order to make illegitimate

requests against a terminal service, such as a database where user credentials or sensitive data may

be stored. However, despite the strength of this attack under current service mesh design, the im-

provements and novel implementation of CloudCover allows us to detect and mitigate such threats

in service meshes. The design of CloudCover is presented further in Section 5.4.

Short Circuit Attack: With intricate relationships between microservices in a deployment, we

believe that an additional threat present within the domain is one that enables attackers to “short

circuit” multi-hop service relationships. In other words, with the existence of a legitimate multi-

hop path in a microservice deployment, the entirety of the path should be secured and access should

85

Proxy

Login
Service

Proxy

Helper
Service

Proxy

Database
Service

Legitimate
request origin

Short Circuit
of legitimate

path

Figure 5.2: Short Circuit Attack

only be provided in the case where the origin service generates the beginning of the service chain.

As Figure 5.2 shows, if an adversary has presence and control of a microservice that exists along

a multi-hop service path, they may choose to generate illegitimate requests towards target services

that exist further along the multi-hop path. Again, due to the fact that current service mesh design

only account for isolated, single-hop service-to-service connections between elements of the de-

ployment, this complex dependency relationship goes addressed. In this way, the adversary may

bypass the requirement for the legitimate service to be the originator of the service request chain

and may instead simply replay or generate new, illegitimate requests towards the target service, as

is shown in Figure 5.2. By accounting for the entirety of the service request path and enforcing

proper pre-requisite approval for service requests in a microservice deployment, CloudCover is

able to prevent such threats in deployments, ensuring that “zero-trust” [111] networking is main-

tained and malicious presence within a microservice deployment is limited.

5.4 CloudCover

Utilizing the current state-of-art technologies in DevOps and service meshes, we design and im-

plement CloudCover to address the shortcomings in access control enforcement for microservice

deployments. We elaborate on our novel verification-in-the-loop design and describe the imple-

mentation testbed utilized to evaluate CloudCover for real-world deployments.

86

Service
A

Proxy

Access Control Enforcer

Service
C

Proxy

Service
B

Proxy

Figure 5.3: Verification-in-the-Loop – Service proxies in a microservice deployment consult with
an access control verification oracle for decisions regarding approval or denial of all service-to-
service requests. We implement this verification oracle using Open Policy Agent [95]. Addition-
ally, to preserve the full context of microservice request paths, we leverage the etcd [30] key-value
storage system to temporarily hold previous-path metadata. In our experiments, we deploy etcd as
a standalone service or as a microservice sidecar container to explore performance benefits.

5.4.1 Architecture and Design

Due to the observed issues within the current state-of-art in microservice access control, holistic

visibility and control over microservice behavior and request routing is critical in providing a so-

lution to the noted threats. As such, we design CloudCover to operate as a supplemental access

control system alongside the existing tooling used for deploying and operating microservice de-

ployments. Namely, we focus upon deploying an access control verification oracle that is able to

be contacted via the service proxies that are deployed at the network boundary of all microser-

vices utilized within a service mesh. Instead of utilizing the built-in access control methods that

are provided by the service mesh, we re-route all request verification to the verification oracle for

approval. By re-routing this traffic to a standalone entity within the deployment, observation of mi-

croservice behavior can be captured and holistic, system-wide visibility into the security concerns

of the cluster are possible. An additional concern however is that the normal service-to-service

traffic conducted by the default service proxies within a service mesh do not carry all of the nec-

essary request metadata to perform the access control verification tasks. To accomplish this, we

deploy storage elements for temporary storage of previous request metadata so that a record or

87

“chain” of previous request information can be passed along with the service payload. Once this

request metadata is compiled by the recipient service proxy, the verification request is made to the

access control oracle, a verification decision is rendered, and the result is returned to the service

proxy. If the verification decision is to accept the traffic, the request is stripped of any verification-

in-the-loop materials, and is ultimately passed to the target microservice.

While this design necessitates new network connections be generated by the service mesh ele-

ments for effectively processing access control verification in CloudCover deployments, separating

the access control logic from the service proxy logic is essential to provide the holistic, system-

wide protection that CloudCover offers. Otherwise, administrators are left with isolated, single-hop

access control verification that leaves microservice deployments open to potential compromise and

attack. We provide an overview of CloudCover’s implementation details and the setup for our ex-

perimental testbed below. Afterwards, in Section 5.5, we provide theoretical and experimental data

to support the feasibility and scalability of CloudCover’s deployment in real-world environments.

5.4.2 Implementation

We implement our previously described approach using industry-standard technologies, namely

Kubernetes for container orchestration and management of workloads. Atop Kubernetes [69], we

leverage the Istio [60] service mesh for service proxy capabilities and service management and

discovery. Next, we make use of Open Policy Agent (OPA) [95] for providing the mechanism

of enforcement for microservice requests made within the deployment and we utilize etcd [30]

for storage of tokens and source chains from previous connections. The combination of these

technologies and the overall structure of deployment is provided in Figure 5.4.

Next, we deploy experimental workloads of our proposed design to a private managed and

operated cloud environment. This environment is comprised of 52 desktop hosts with identical

hardware configurations of Intel i7-9700K (3.60GHz) CPUs and 16 GB of RAM. These desktop

hosts are connected via a 1 Gbps switching network. Additionally, an industry-grade Dell Pow-

erEdge [26] server was used for Kubernetes control-plane purposes to coordinate the deployment

88

0 1000 2500 5000 7500 10000
Number of Service Requests per Second

0

10

20

30

40
M

eg
ab

yte
s T

ra
ns

fe
rre

d
pe

r S
ec

on
d CloudCover Network Overhead per Second (Standalone Configuration)

Osys (Oreq(etcd + OPA)+Oresp(etcd + OPA)+Oack(etcd + OPA))
Oreq(etcd + OPA)
Oresp(etcd + OPA)
Oack(etcd + OPA)

Figure 5.4: Network Overhead of CloudCover (standalone configuration) – Under a “stan-
dalone” deployment configuration where both OPA [95] and etcd [30] are deployed separately
from the microservice deployment, we calculate the network overhead imposed. Under 10,000
service-to-service requests across microservices in the cluster occurring per second, we observe a
network overhead of ∼36.54 MB/sec.

and management of workloads. To evaluate the feasibility and scalability of CloudCover for real-

world workloads, we design a series of experiments to capture the network costs and performance

behavior of CloudCover in different circumstances.

5.5 Evaluation

The evaluation of CloudCover is comprised of two components: an analysis and theoretical calcu-

lation of the network overhead imposed by CloudCover components and experimental microser-

vice deployments under load. This approach is intended to elucidate both the security-performance

tradeoff and the network overhead costs that exists when making use of CloudCover for microser-

vice access control enforcement in service meshes.

5.5.1 Network Overhead Calculation

To evaluate the feasibility and practicality for CloudCover’s deployment in real-world environ-

ments and applications, we first consider the network load imposed upon the microservice deploy-

89

ment due to network connections generated to CloudCover components. During initial testing and

design, we implement CloudCover with OPA and etcd operating as separate services within the

service mesh that are reachable via the service proxies operating alongside the deployed microser-

vices. We refer to this configuration as the “standalone” configuration of CloudCover. To measure

network cost and number of generated connections in the system, we leverage the ksniff [29]

Kubernetes plugin that deploys an instance of Wireshark [35] at the Kubernetes pod boundary to

collect and report network traffic that passes through the pod.

CloudCover Standalone Configuration: Based on our experiments and observations, in the

“standalone” configuration, CloudCover requires 5 new network connections by the service mesh

service proxy to facilitate CloudCover’s verification-in-the-loop system. We mathematically rep-

resent the cost of these network connections below in Equation 5.1 and provide the observed cost

values in bytes exchanged in Equation 5.2.

Osys = (Oreq(e+OPA)+Oresp(e+OPA)+Oack(e+OPA))∗n (5.1)

Osys = (2673+2992+360)∗n (5.2)

Namely, 2 network connections are required on the inbound route to store the received Cloud-

Cover tokens, and the received CloudCover microservice hop history. Additionally, 1 network

connection is required to be made to OPA for the access control request that determines whether

the traffic is allowed to traverse to the target microservice. Lastly, 2 network connections are

required on the outbound route to retrieve the stored tokens and hop history before passing the net-

work request to the next target microservice in the request chain. Based on our results from ksniff

experiments, the total cost of this process is 5 network connections with a total size of 6.025 KB

exchanged as part of the TLS handshakes and data exchange between elements. Using this exper-

imental data, we perform scalability calculations to extrapolate the overall network load imposed

upon a microservice deployment that makes use of CloudCover. The results of the extrapolation of

90

CloudCover’s cost in large-scale systems is provided in Figure 5.4. As we observe, in microservice

deployments that generate 10,000 service-to-service requests per second, CloudCover imposes a

total network load upon the deployment of roughly 36.54 MB per second, which we believe to be

an acceptable cost for large, performant networks. The other component of cost that we consider

with respect to network load when using CloudCover is the additional response latency imposed

upon microservices by having to generate new network connections to the verification-in-the-loop

system. These details are discussed below in Section 5.5.2 where we perform load testing upon

CloudCover.

CloudCover Sidecar Configuration: In an effort to offset and improve the performance and limit

the cost of CloudCover on microservice deployments, we design and implement an alternative

configuration for CloudCover that makes use of etcd within a sidecar container that operates

alongside of deployed microservice containers in a similar way to the service mesh service proxies.

By adapting CloudCover in this way, we are able to avoid the need for 4 network connections to

leave the pod boundary and make connections to the temporary storage element.

Osys = (999+162+72)∗n (5.3)

Equation 5.3 represents the optimized cost of CloudCover when operating in the sidecar config-

uration and significantly decreases the network packets and size of packets that traverse pod bound-

aries and cause network load on the system. In this scenario, only 1.233 KB are exchanged as part

of the verification-in-the-loop process and only 1 network connection is required to communicate

with OPA for access control requests. Under these circumstances, for microservice deployments

that generate 10,000 service-to-service requests per second, CloudCover imposes a total network

load upon the deployment of about 12.25 MB per second. Details regarding network latency costs

imposed under this configuration and the performance of CloudCover relative to a baseline, no

security active configuration are provided below in Section 5.5.2.

91

Trial Type Total Reqs Avg. Latency (ms) 90% Latency (ms) Reqs/sec
Default 37937 3909 4100 63.23
Istio Authz. 37265 3979 4300 62.11
CloudCover (standalone) 36962 4012 4200 61.60
CloudCover (sidecar) 38587 3844 4100 64.31

Table 5.1: BookInfo Experiment Results – Using Istio’s BookInfo [56] example deployment as
the target microservice system, we conduct load testing trials over a 10 minute time frame using
Python’s Locust library [81]. These experiments used a Locust configuration of 250 concurrent
users, spawned at a rate of 25 new users per second, and full experiment duration of 10 minutes.
The target page queried was the BookInfo ProductPage service and the endpoint of “/productpage”.

5.5.2 Load Testing Experiments

To capture the practical overhead imposed upon a microservice deployment when using Cloud-

Cover, we conduct a series of performance trials using the Locust load testing framework. We

test example microservice deployments provided by state-of-art cloud providers as example sys-

tems and additionally design a lightweight, multi-hop testbed using dummy services as a best-case

microservice performance baseline. These experiments were conducted within our testbed envi-

ronment as discussed previously in Section 5.4.

BookInfo Example: The BookInfo example deployment [56], provided by Istio, is comprised of

four microservices. We deployed the example system in our testbed environment under various

security configurations and present the results of these experimental trials with respect to total

number of requests answered, average latency, 90% latency, and requests per second. The results

of which are presented in Table 5.1 with all trials lasting 10 minutes. As seen by the results,

the BookInfo example deployment behaves nearly identically in all trials conducted with every

form of security configuration having little to no effect on the results. We believe that this is

due to the microservices themselves consuming the vast majority of processing time associated

with the requests. In addition to this behavior, we also observe that the request connections made

to the BookInfo deployment are held open for a significant amount of time after the request is

made. Even through attempts to manually close the connection via the load testing application, the

BookInfo behaved at the rates observed in Table 5.1. The outcome of this series of trials indicates

92

Trial Type Total Reqs Avg. Latency (ms) 90% Latency (ms) Reqs/sec △ Reqs/sec
NoSec 1-hop 2389526 60 85 3982.54 —
NoSec 2-hop 1763016 82 140 2938.36 —
NoSec 3-hop 12233605 118 250 2056.01 —
NoSec 4-hop 923177 159 340 1538.63 —
NoSec 5-hop 732724 201 430 1221.21 —
Istio Authz 1-hop 2347843 61 88 3913.07 -69.47
Istio Authz 2-hop 1668969 87 150 2781.62 -156.74
Istio Authz 3-hop 1114017 131 260 1856.70 -199.31
Istio Authz 4-hop 791131 185 370 1318.55 -220.08
Istio Authz 5-hop 635204 232 450 1058.67 -162.54
CC Standalone 1-hop 717258 203 280 1195.43 -2387.11
CC Standalone 2-hop 406495 363 570 677.49 -2260.87
CC Standalone 3-hop 361766 410 580 602.94 -1453.07
CC Standalone 4-hop 267769 554 730 446.28 -1092.35
CC Standalone 5-hop 237863 624 800 396.44 -824.77

CC Sidecar 1-hop 1074254 136 240 1790.42 -2192.12
CC Sidecar 2-hop 644579 229 350 1074.30 -1864.06
CC Sidecar 3-hop 538086 275 450 896.81 -1159.20
CC Sidecar 4-hop 433796 341 550 722.99 -815.64
CC Sidecar 5-hop 314473 471 730 524.12 -697.09

Table 5.2: Multi-Hop Fake Service Experiment Results – Using a collection of
fake-service [91] containers deployed as microservices and connected to one another via up-
stream dependencies, creating varying levels of service “hops”, we conduct load testing trials over
a 10 minute time frame using Python’s Locust library [81]. Additionally, we vary the configu-
ration and deployment strategy of CloudCover by operating etcd as a sidecar container for the
fake-service applications. These experiments used a Locust configuration of 250 concurrent
users, spawned at a rate of 25 new users per second, and full experiment duration of 10 minutes,
which targeted the “/” endpoint of the first fake-service in the chain.

that when implemented with microservice systems that consume most of the request processing

time, CloudCover has very little impact on the performance outcomes of the deployed system.

Fake Service Multi-Hop: To capture and compare the performance results of CloudCover in a

microservice application that spends minimal time processing microservice requests, we conduct

experimental trials with microservices emulated by the fake-service container deployment [91].

Under this configuration, the microservices themselves are extremely lightweight web server de-

ployments that perform little to no manipulation on the incoming request information. Addition-

ally, we construct trial scenarios with incrementally increasing numbers of service-to-service hops

to represent “deep” microservice deployments where there are many dependent services that re-

93

quire the results of upstream service calls before ultimately returning their response to the origin of

the request. The results of these experiments are presented in Table 5.2. As shown in the table, ba-

sic Istio authorization policies perform very near the baseline, no security deployments, however,

Istio authorization policies only consider isolated, single-hop access control leaving deployments

open to exploit from the confused deputy and request chain short circuit attacks discussed in Sec-

tion 5.3. The Istio authorization policies are enforced adjacent to the microservices deployed and

do not involve new network connections that leave the pod network boundary, resulting in little

overhead over baseline performance. While in comparison, CloudCover configurations introduce

new network connections in order to consult access control decisions with the OPA verification or-

acle. However, CloudCover mitigates the novel threats we consider as part of this work, providing

a stronger, more holistic access control mechanism within service mesh deployments.

To offset the cost of verification-in-the-loop required network connections, we explore various

configurations and deployment structures for CloudCover. Namely, we believe that access control

in service meshes is a vital component to security microservice systems and that administrators will

have incentive to ensure performant applications at the cost of additional computing nodes/hosts.

Due to this, we deployed CloudCover in a replicated fashion and investigate the performance

under various degrees of replication of OPA and etcd components. These results are presented

in Table 5.3. A notable comparison within these scenarios is the baseline performance relative to

basic Istio authorization policies relative to CloudCover when deployed with etcd as sidecars and

OPA with 5 replications. Under this model, CloudCover is able to achieve performance very close

to Istio and even close to baseline performance. Due to the fact that the microservices deployed

are so lightweight and minimal, we believe that these results are promising for CloudCover to be

adopted in real-world deployments to secure practical microservice systems.

5.6 Discussions and Limitations

When considering whether to centralize or decentralize access control in distributed environments,

it is critical to consider a range of effects and tradeoffs. Specifically, performance and security

94

Trial Type Total Reqs Avg. Latency (ms) 90% Latency (ms) Reqs/sec △ Reqs/sec
NoSec 5-hop 732724 201 430 1221.21 —
Istio Authz 5-hop 635204 232 450 1058.67 -162.54
CC 1-OPA 2-etcd 338163 438 600 563.61 -657.60
CC 1-OPA 3-etcd 368907 402 570 614.85 -606.36
CC 1-OPA 4-etcd 379362 391 540 632.27 -588.94
CC 1-OPA 5-etcd 388362 382 510 647.27 -573.94
CC 2-OPA 1-etcd 222267 668 860 370.45 -850.76
CC 3-OPA 1-etcd 239349 620 800 398.91 -822.29
CC 4-OPA 1-etcd 246717 602 770 411.20 -810.01
CC 5-OPA 1-etcd 236343 628 810 393.91 -827.30
CC 2-OPA 2-etcd 352668 420 550 587.78 -633.43
CC 3-OPA 3-etcd 400608 370 490 667.68 -553.53
CC 4-OPA 4-etcd 413539 358 460 689.23 -531.98
CC 5-OPA 5-etcd 413915 358 460 689.86 -531.35
CC 2-OPA sidecar-etcd 466758 317 500 777.93 -443.28
CC 3-OPA sidecar-etcd 499264 290 470 832.11 -389.10
CC 4-OPA sidecar-etcd 529294 280 440 882.16 -339.05
CC 5-OPA sidecar-etcd 551640 268 420 919.40 -301.81

Table 5.3: Multi-Hop Fake Service Replication Experiment Results – Using a collection of
fake-service [91] containers deployed as microservices and connected to one another via up-
stream dependencies for a total of 5-hops, we conduct load testing trials over a 10 minute time
frame using Python’s Locust library [81]. Additionally, we vary the configuration and deployment
strategy of CloudCover by adding replicated instances of OPA [95] and etcd [30], but also explor-
ing the effect of operating etcd as a sidecar container for the fake-service applications. These
experiments used a Locust configuration of 250 concurrent users, spawned at a rate of 25 new users
per second, and full experiment duration of 10 minutes, which targeted the “/” endpoint of the first
fake-service in the chain.

95

are vital in environments that are designed to operate with high performance and strong reliability

guarantees. Below, we discuss these considerations with respect to CloudCover and potential

threats highlighted as part of this work.

CloudCover Deployment Strategies: Through our experimental observations of microservice

systems under load, we observe performance loss due to the use of CloudCover. However, through

informed deployment options, such as placing the etcd component in a sidecar container for the

deployed microservices and replicating multiple instances of OPA for load balancing, a large por-

tion of this cost is offset. Specifically, we observe the best performance of CloudCover under the

sidecar etcd and 5 replicated instances of OPA scenario, achieving highly performant response rate

and good levels of requests per second. Due to this, we recommend that administrators looking to

implement CloudCover as part of their deployments consider following this configuration.

Security vs. Performance: As with any security solution, it is important to consider the security-

performance tradeoff that exists by introducing new processes and tasks that may effect perfor-

mance of a system. While cloud computing and microservice architectures are highly appealing

due to their performance and reliability, security is a vital consideration that should be accounted

for in system architecture and design. As we have discussed previously, CloudCover is the only

access control solution for microservice architectures that addresses the novel threats of a con-

fused deputy and request chain short circuit attack. Enforcing proper access control in large-scale

systems becomes increasingly difficult to reason about and understand as a system administrator

as the size of the deployment grows. Additionally, with large amounts of service-to-service re-

quests occurring per second within these deployments, the traditional monitoring and observation

tools present for microservices may not be able to report errors or provide administrators insights

into microservice behavior in a timely manner to prevent such attacks from occurring within their

environments. Therefore, deploying an automated, comprehensive security system such as Cloud-

Cover will significantly strengthen the security posture of these deployments without requiring

administrator intervention or effort.

96

5.7 Summary

As microservice applications grow in their rate of adoption and popularity in modern software,

the threats of microservice compromise and latent vulnerabilities bring new challenges to the se-

curity of the service mesh domain. CloudCover seeks to address these challenges by providing

system-wide, holistic access control in service meshes. Through multi-hop dependency tracking

that leverages static analysis source code scanning methods, CloudCover is able to track and mon-

itor service-to-service requests that occur in microservice deployments. Additionally, through a

novel verification-in-the-loop approach, CloudCover provides accurate verification for service re-

quests at each step in the request propagation process. CloudCover embodies complete access

control authorization security for the complex and interconnected nature of microservices that is

not currently addressed by available tools and previous work.

97

Chapter 6

Conclusions and Future Work

The growing popularity and interest in microservice applications has stressed the current manage-

ment and security systems available. While service meshes present appealing benefits and address

many of the security needs present within the microservice environment, their current designs fall

short in their ability to meet the dynamic properties of this domain. Through this work, we have

demonstrated improvements and initial steps towards more closely aligning the service mesh se-

curity capabilities to the microservice domain. Specifically, we provide: (1) an initial investigation

into supporting security artifact rotation automatically in service meshes; (2) a novel microservice

misbehavior and misconfiguration detection, altering, and mitigation scheme for improving long-

term health of microservice deployments; and (3) a novel framework for verification-in-the-loop

access control in current state-of-art service meshes that addresses the needs to defend against

previously unaddressed threats in microservice applications that exploit complex dependency re-

lationships between services.

By examining the current state-of-art in service mesh technologies and considering the existing

challenges and shortcomings in modern tools, we designed, implemented, and evaluated our pro-

totype systems of ServiceFRESH and Anvil. Attempting to address the primary issues of security

artifact freshness and the long-term security health of service mesh deployments, ServiceFRESH

and Anvil provide an important analysis into the security-performance tradeoffs of enabling secu-

rity artifact rotations within this domain. Some of the insights and capabilities presented within

these works are now found within modern service meshes, such as lively artifact reloading capa-

bilities, as seen in the Consul service mesh. In addition to providing security artifact rotations,

Anvil explored the ability for a service mesh to perform informed artifact revocation. This secu-

98

rity artifact revocation was employed under the circumstances that a microservice be suspected of

misbehavior or misconfiguration. This key insight and capability was critical to the development

and implementation of ServiceWatch.

ServiceWatch leverages the underlying service mesh design and capabilities provided by the

Anvil prototype, but explores the unique capability and effects of informed security artifact revo-

cation. Service-to-service requests made as part of a ServiceWatch cluster are inspected by the

ServiceWatch quorum to ensure that access control policies are enforced and maintained as part of

the deployment. From their unique position of access control checking and security artifact gener-

ation, ServiceWatch quorum nodes are able to make informed decisions regarding which portions

of a microservice deployment should receive refreshed artifacts. When a service-to-service re-

quest is denied for violating an access control policy, ServiceWatch marks the offending element

for removal, automatically and seamlessly removing the element from the operational environment

requiring no system administrator effort. In this way, ServiceWatch provides the service mesh do-

main with the unique and novel capability of microservice isolation and mitigation, expanding the

current state-of-art to maintain security across the lifetime of the microservice deployment.

Building upon the concepts of ServiceWatch, we designed and implemented CloudCover.

Within ServiceWatch’s design, we integrate the privileged quorum nodes as a primary compo-

nent in the process of access control between microservice instances. CloudCover expands upon

this process by considering the underlying relationships between microservices. With incredi-

bly complex and interconnected dependencies between microservices in real-world deployments,

the potential for adversaries to manipulate these relationships is tremendous. Additionally, the

current state-of-art in service mesh access control does not account for complex relationships

between microservices that extend beyond single-hop relationships. Due to this, we identified

two novel threats in the microservices domain that exploit the dependency structure of these sys-

tems and consider multi-hop relationships. To defend against these threats, we implemented a

novel verification-in-the-loop approach that provides visibility to microservice request behavior in

a system-wide, holistic manner. Through this capability, CloudCover is able to detect violations

99

in multi-hop request paths and deny the service-to-service requests from occurring, preventing the

exploitation of our identified threats. CloudCover is a drop-in solution for modern service meshes

and microservice applications, capable of supporting tens of thousands of microservice requests

per second.

To expand upon this work for future development and research, we believe that the microservice

architecture and service mesh domain is very promising for advancement and significant progress

in securing software systems. Specifically, as part of this work, we present improvements to ser-

vice mesh access control mechanisms through our framework, CloudCover. We believe that while

CloudCover’s current performance is feasible and acceptable in practical applications, there are

improvements possible in the design and performance of the system. Namely, due to the na-

ture of microservice applications and the desired property of “zero-trust” [111] within the cloud

computing domain, there are design improvements possible in the structure of the system. We

believe that possibility of compromised microservices present within a deployment encourages

general distrust and suspicion of messages exchanged between microservices. Due to this, apply-

ing the verification-in-the-loop framework to a distributed blockchain [122, 138] hosted alongside

deployed microservices as sidecar containers may bring performance improvements while still re-

taining the multi-hop verification capabilities currently available in CloudCover. In addition to

framework design and improvements to the CloudCover implementation, we believe there is sig-

nificant work available in the source code scanning and static analysis portion of this research.

Namely, compiled and third-party applications that are used within a microservice deployment

may present promising attack vectors to adversaries. Currently, CloudCover is able to scan avail-

able source code for microservice network requests, however, real-world systems often include

third-party software or compiled applications where source code is unavailable. Under the threat

of compromise to these systems, it is important for system administrators to still be able to exercise

and identify which dependencies exist to these components and the proper access control policies

to enforce upon their environments.

We provide these contributions, designs, and future work recommendations to the community

100

of cloud computing and microservice architectures to improve on the existing security mechanisms

and designs for long-lived, highly scalable systems. Additionally, through our experimental eval-

uations of the discussed contributions, we present these results to demonstrate the feasibility of

these designs for inclusion in existing technologies and solutions for real-world systems.

101

References

[1] Aksakalli, I. K., Celik, T., Can, A. B., & Tekinerdogan, B. (2021). Systematic approach

for generation of feasible deployment alternatives for microservices. IEEE Access, 9, 29505–

29529.

[2] Alpernas, K., Flanagan, C., Fouladi, S., Ryzhyk, L., Sagiv, M., Schmitz, T., & Winstein, K.

(2018). Secure serverless computing using dynamic information flow control. Proceedings of

the ACM on Programming Languages, 2(OOPSLA), 1–26.

[3] Amazon Web Services (2023a). Amazon aurora (accessed 04/2023). https://

aws.amazon.com/rds/aurora/.

[4] Amazon Web Services (2023b). Amazon elasticache (accessed 04/2023). https://

aws.amazon.com/elasticache/.

[5] Andersson, J., De Lemos, R., Malek, S., & Weyns, D. (2009). Reflecting on self-adaptive

software systems. In 2009 ICSE Workshop on Software Engineering for Adaptive and

Self-Managing Systems (pp. 38–47).: IEEE.

[6] Bardas, A. G., Sundaramurthy, S. C., Ou, X., & DeLoach, S. A. (2017). Mtd cbits: Moving

target defense for cloud-based it systems. In Computer Security – ESORICS 2017 (pp. 167–

186).: Springer International Publishing.

[7] Benedict, M. & Charanya, V. (2016). How we built a metering & charge-

back system to incentivize higher resource utilization (accessed 07/2022). https:

//www.linux.com/training-tutorials/how-we-built-metering-chargeback-

system-incentivize-higher-resource-utilization-michael/.

102

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://www.linux.com/training-tutorials/how-we-built-metering-chargeback-system-incentivize-higher-resource-utilization-michael/
https://www.linux.com/training-tutorials/how-we-built-metering-chargeback-system-incentivize-higher-resource-utilization-michael/
https://www.linux.com/training-tutorials/how-we-built-metering-chargeback-system-incentivize-higher-resource-utilization-michael/

[8] Bouyant, Inc. (2023a). Architecture (accessed 07/2022). https://linkerd.io/2.12/

reference/architecture/.

[9] Bouyant, Inc. (2023b). Proxy Configuration. https://linkerd.io/2.12/reference/

proxy-configuration/ (accessed 07/2022).

[10] Buoyant, Inc. (2023a). Linkerd (accessed 01/2020). https://linkerd.io.

[11] Buoyant, Inc. (2023b). Manually rotating control plane tls credentials | linkerd (accessed

01/2020). https://linkerd.io/2.12/tasks/manually-rotating-control-plane-tls-

credentials/.

[12] Burns, B. & Oppenheimer, D. (2016). Design patterns for container-based distributed sys-

tems. In 8th {USENIX} workshop on hot topics in cloud computing (HotCloud 16).

[13] bytebase (2022). Star-history.com, the missing github star history graph of github repos

(accessed 07/2022). https://github.com/bytebase/star-history.

[14] Chandramouli, R. & Butcher, Z. (2020). Building secure microservices-based applications

using service-mesh architecture. NIST Special Publication, 800, 204A.

[15] Chen, L. (2018). Microservices: Architecting for continuous delivery and devops. In 2018

IEEE International Conference on Software Architecture (ICSA) (pp. 39–397).

[16] Christopherson, J. (2017). Spaceflight uses HashiCorp Consul for Service Discovery and

Runtime Configuration in their Hub-and-Spoke Network Architecture (accessed 02/2020).

https://www.hashicorp.com/blog/spaceflight-uses-hashicorp-consul-for-

service-discovery-and-real-time-updates-to-their-hub-and-spoke-network-

architecture/.

[17] Cloud Native Computing Foundation (2023). CNCF Cloud Native Interactive Landscape

(accessed 01/2020). https://landscape.cncf.io.

103

https://linkerd.io/2.12/reference/architecture/
https://linkerd.io/2.12/reference/architecture/
https://linkerd.io/2.12/reference/proxy-configuration/
https://linkerd.io/2.12/reference/proxy-configuration/
https://linkerd.io
https://linkerd.io/2.12/tasks/manually-rotating-control-plane-tls-credentials/
https://linkerd.io/2.12/tasks/manually-rotating-control-plane-tls-credentials/
https://github.com/bytebase/star-history
https://www.hashicorp.com/blog/spaceflight-uses-hashicorp-consul-for-service-discovery-and-real-time-updates-to-their-hub-and-spoke-network-architecture/
https://www.hashicorp.com/blog/spaceflight-uses-hashicorp-consul-for-service-discovery-and-real-time-updates-to-their-hub-and-spoke-network-architecture/
https://www.hashicorp.com/blog/spaceflight-uses-hashicorp-consul-for-service-discovery-and-real-time-updates-to-their-hub-and-spoke-network-architecture/
https://landscape.cncf.io

[18] Cloud Native Computing Foundation (CNCF) (2020). CNCF Survey 2020

(accessed 01/2022). https://www.cncf.io/wp-content/uploads/2020/11/

CNCF_Survey_Report_2020.pdf.

[19] Cloud Native Computing Foundation (CNCF) (2022). CNCF Survey 2021 (ac-

cessed 10/2022). hhttps://www.cncf.io/wp-content/uploads/2022/02/CNCF-Annual-

Survey-2021.pdf.

[20] CloudZero (2021). Netflix architecture: How much does netflix’s aws cost? (accessed

07/2022). https://www.cloudzero.com/blog/netflix-aws.

[21] containerd Authors (2023). containerd – an industry-standard container runtime with

an emphasis on simplicity, robustness and portability (accessed 04/2023). https://

containerd.io/.

[22] Conway, S. (2018). Kubernetes is first cncf project to graduate (accessed 07/2022). https:

//www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-graduate/.

[23] Corginia, C. (2022). Elon musk and twitter’s system design (accessed 01/2023).

https://corgicorporation.medium.com/elon-musk-and-twitters-system-design-

8bc2a97680e6.

[24] Dadgar, A. (2023). What is Infrastructure as Code and Why is it Important? (ac-

cessed 04/2023). https://www.hashicorp.com/resources/what-is-infrastructure-

as-code.

[25] Datta, P., Kumar, P., Morris, T., Grace, M., Rahmati, A., & Bates, A. (2020). Valve: Securing

function workflows on serverless computing platforms. In Proceedings of The Web Conference

2020 (pp. 939–950).

[26] Dell (2022). Servers: Poweredge servers | dell usa (accessed 01/2022). https://

www.dell.com/en-us/work/shop/dell-poweredge-servers/sc/servers?~ck=bt.

104

https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
hhttps://www.cncf.io/wp-content/uploads/2022/02/CNCF-Annual-Survey-2021.pdf
hhttps://www.cncf.io/wp-content/uploads/2022/02/CNCF-Annual-Survey-2021.pdf
https://www.cloudzero.com/blog/netflix-aws
https://containerd.io/
https://containerd.io/
https://www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-graduate/
https://www.cncf.io/blog/2018/03/06/kubernetes-first-cncf-project-graduate/
https://corgicorporation.medium.com/elon-musk-and-twitters-system-design-8bc2a97680e6
https://corgicorporation.medium.com/elon-musk-and-twitters-system-design-8bc2a97680e6
https://www.hashicorp.com/resources/what-is-infrastructure-as-code
https://www.hashicorp.com/resources/what-is-infrastructure-as-code
https://www.dell.com/en-us/work/shop/dell-poweredge-servers/sc/servers?~ck=bt
https://www.dell.com/en-us/work/shop/dell-poweredge-servers/sc/servers?~ck=bt

[27] Docker, Inc. (2023). Docker Home (accessed 04/2023). https://docker.io.

[28] Duvall, P. (2018). Measuring DevOps Success with Four Key Metrics (accessed

01/2020). https://stelligent.com/2018/12/21/measuring-devops-success-with-

four-key-metrics/.

[29] eldadru (2023). ksniff (accessed 04/2023). https://github.com/eldadru/ksniff.

[30] etcd (2023). etcd (accessed 04/2023). https://etcd.io/.

[31] Fishner, K. (2014). How Lithium Technologies Uses Consul in a Hybrid-Cloud Infrastructure

(accessed 02/2020). https://www.hashicorp.com/blog/how-lithium-technologies-

uses-consul-in-a-hybrid-cloud-infrastructure/.

[32] Fishner, K. (2015a). Consul in a Microservices Environment at Neofonie GmbH

(accessed 02/2020). https://www.hashicorp.com/blog/consul-in-a-microservices-

environment-at-neofonie-gmbh/.

[33] Fishner, K. (2015b). How BitBrains/ASP4all uses Consul for Continuous Deployment

across Development, Testing, Acceptance, and Production (accessed 02/2020). https://

www.hashicorp.com/blog/how-bitbrains-asp4all-uses-consul/.

[34] Fishner, K. (2015c). Using Consul at Bol.com, the Largest Online Retailer in the Netherlands

and Belgium (accessed 02/2020).

https://www.hashicorp.com/blog/using-consul-at-bol-com-the-largest-online-

retailer-in-the-netherlands-and-belgium/.

[35] Foundation, W. (2023). Wireshark (accessed 02/2020). https://www.wireshark.org/.

[36] FTC CTO, FTC DPIP staff, and the FTC AI Strategy team (2021). Ftc warns

companies to remediate log4j security vulnerability (accessed 01/2023). https:

//www.ftc.gov/policy/advocacy-research/tech-at-ftc/2022/01/ftc-warns-

companies-remediate-log4j-security-vulnerability.

105

https://docker.io
https://stelligent.com/2018/12/21/measuring-devops-success-with-four-key-metrics/
https://stelligent.com/2018/12/21/measuring-devops-success-with-four-key-metrics/
https://github.com/eldadru/ksniff
https://etcd.io/
https://www.hashicorp.com/blog/how-lithium-technologies-uses-consul-in-a-hybrid-cloud-infrastructure/
https://www.hashicorp.com/blog/how-lithium-technologies-uses-consul-in-a-hybrid-cloud-infrastructure/
https://www.hashicorp.com/blog/consul-in-a-microservices-environment-at-neofonie-gmbh/
https://www.hashicorp.com/blog/consul-in-a-microservices-environment-at-neofonie-gmbh/
https://www.hashicorp.com/blog/how-bitbrains-asp4all-uses-consul/
https://www.hashicorp.com/blog/how-bitbrains-asp4all-uses-consul/
https://www.hashicorp.com/blog/using-consul-at-bol-com-the-largest-online-retailer-in-the-netherlands-and-belgium/
https://www.hashicorp.com/blog/using-consul-at-bol-com-the-largest-online-retailer-in-the-netherlands-and-belgium/
https://www.wireshark.org/
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2022/01/ftc-warns-companies-remediate-log4j-security-vulnerability
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2022/01/ftc-warns-companies-remediate-log4j-security-vulnerability
https://www.ftc.gov/policy/advocacy-research/tech-at-ftc/2022/01/ftc-warns-companies-remediate-log4j-security-vulnerability

[37] Fulton III, S. (2018). Service mesh: What it is and why it matters so much now

(accessed 01/2020). https://www.zdnet.com/article/what-is-a-service-mesh-and-

why-would-it-matter-so-much-now/.

[38] GitHub, Inc. (2023). Github (accessed 07/2022). https://github.com.

[39] Godard, S. (2022). pidstat(1) — linux manual page (accessed 01/2022). https://man7.org/

linux/man-pages/man1/pidstat.1.html.

[40] Google (2022a). Github – pprof (accessed 01/2022). https://github.com/google/pprof.

[41] Google (2022b). The go programming language (accessed 01/2022). https://go.dev/.

[42] Gremlin, Inc. (2022). The cost of downtime for the top us ecommerce sites (accessed

07/2022). https://www.gremlin.com/ecommerce-cost-of-downtime/.

[43] Gupta, D., Saia, J., & Young, M. (2019). Peace Through Superior Puzzling: An Asymmetric

Sybil Defense. In 2019 IEEE International Parallel and Distributed Processing Symposium

(IPDPS) (pp. 1083–1094).: IEEE.

[44] Haddad, E. (2015). Service-oriented architecture: Scaling the uber engineering codebase as

we grow (accessed 01/2021). https://eng.uber.com/service-oriented-architecture/.

[45] Hahn, D. A., Davidson, D., & Bardas, A. G. (2020). Mismesh: Security issues and challenges

in service meshes. In International Conference on Security and Privacy in Communication

Systems (pp. 140–151).: Springer.

[46] HashiCorp (2023a). Connect Proxies. https://developer.hashicorp.com/consul/

docs/connect/proxies (accessed 07/2022).

[47] HashiCorp (2023b). Consul by HashiCorp (accessed 01/2020). https://www.consul.io/

index.html.

106

https://www.zdnet.com/article/what-is-a-service-mesh-and-why-would-it-matter-so-much-now/
https://www.zdnet.com/article/what-is-a-service-mesh-and-why-would-it-matter-so-much-now/
https://github.com
https://man7.org/linux/man-pages/man1/pidstat.1.html
https://man7.org/linux/man-pages/man1/pidstat.1.html
https://github.com/google/pprof
https://go.dev/
https://www.gremlin.com/ecommerce-cost-of-downtime/
https://eng.uber.com/service-oriented-architecture/
https://developer.hashicorp.com/consul/docs/connect/proxies
https://developer.hashicorp.com/consul/docs/connect/proxies
https://www.consul.io/index.html
https://www.consul.io/index.html

[48] HashiCorp (2023c). Download Consul (accessed 04/2023). https://

developer.hashicorp.com/consul/downloads.

[49] HashiCorp (2023d). Github hashicorp/consul (accessed 02/2020). https://github.com/

hashicorp/consul.

[50] Hashicorp (2023). Kubernetes (accessed 01/2020). https://www.consul.io/docs/k8s.

[51] HashiCorp (2023a). Manage ACL Policies | Consul (accessed 02/2020).

https://developer.hashicorp.com/consul/tutorials/security/access-control-

manage-policies.

[52] HashiCorp (2023b). Security Model (accessed 04/2023). https://

developer.hashicorp.com/consul/docs/security.

[53] HashiCorp (2023c). Terraform by HashiCorp (accessed 04/2023). https://

www.terraform.io/.

[54] Hashizume, K., Rosado, D. G., Fernández-Medina, E., & Fernandez, E. B. (2013). An anal-

ysis of security issues for cloud computing. Journal of internet services and applications, 4(1),

1–13.

[55] Istio (2023a). Architecture. https://istio.io/latest/docs/ops/deployment/

architecture/ (accessed 07/2022).

[56] Istio (2023b). Bookinfo application (accessed 04/2023). https://istio.io/latest/

docs/examples/bookinfo/.

[57] Istio (2023c). Github istio/istio (accessed 02/2020). https://github.com/istio/istio.

[58] Istio (2023d). Ingress gateways (accessed 07/2022). https://istio.io/latest/docs/

tasks/traffic-management/ingress/ingress-control/.

107

https://developer.hashicorp.com/consul/downloads
https://developer.hashicorp.com/consul/downloads
https://github.com/hashicorp/consul
https://github.com/hashicorp/consul
https://www.consul.io/docs/k8s
https://developer.hashicorp.com/consul/tutorials/security/access-control-manage-policies
https://developer.hashicorp.com/consul/tutorials/security/access-control-manage-policies
https://developer.hashicorp.com/consul/docs/security
https://developer.hashicorp.com/consul/docs/security
https://www.terraform.io/
https://www.terraform.io/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/ops/deployment/architecture/
https://istio.io/latest/docs/examples/bookinfo/
https://istio.io/latest/docs/examples/bookinfo/
https://github.com/istio/istio
https://istio.io/latest/docs/tasks/traffic-management/ingress/ingress-control/
https://istio.io/latest/docs/tasks/traffic-management/ingress/ingress-control/

[59] Istio (2023e). Istio / security faq (accessed 01/2020). https://istio.io/latest/about/

faq/security/.

[60] Istio (2023f). Istio (accessed 01/2020). https://istio.io.

[61] Istio (2023g). Secure Gateways (accessed 04/2023). https://istio.io/latest/docs/

tasks/traffic-management/ingress/secure-ingress/.

[62] Istio (2023h). Security (accessed 02/2020). https://istio.io/latest/docs/concepts/

security/.

[63] Jamshidi, P., Pahl, C., Mendonça, N. C., Lewis, J., & Tilkov, S. (2018). Microservices: The

Journey So Far and Challenges Ahead. IEEE Software, 35(3), 24–35.

[64] Jaramillo, D., Nguyen, D. V., & Smart, R. (2016). Leveraging microservices architecture by

using docker technology. In SoutheastCon 2016 (pp. 1–5).: IEEE.

[65] Jewell, T. (2018). The exploding endpoint problem: Why everything must become an api

(accessed 01/2022). https://thenewstack.io/the-exploding-endpoint-problem-why-

everything-must-become-an-api/.

[66] Jian, Z. & Chen, L. (2017). A defense method against docker escape attack. In Proceedings

of the 2017 International Conference on Cryptography, Security and Privacy (pp. 142–146).

[67] Joy, G. (2017). Distil Networks securely stores and manages all their secrets with Vault

and Consul (accessed 02/2020). https://www.hashicorp.com/blog/distil-networks-

securely-stores-and-manages-all-their-secrets-with-vault-and-consul/.

[68] Krishna, H. (2021). 5 microservices examples: Amazon, netflix, uber, spotify, and etsy

(accessed 07/2022). https://www.sayonetech.com/blog/5-microservices-examples-

amazon-netflix-uber-spotify-and-etsy/.

[69] Kubernetes (2023a). Kubernetes - Production-Grade Container Orchestration (accessed

01/2020). https://kubernetes.io/.

108

https://istio.io/latest/about/faq/security/
https://istio.io/latest/about/faq/security/
https://istio.io
https://istio.io/latest/docs/tasks/traffic-management/ingress/secure-ingress/
https://istio.io/latest/docs/tasks/traffic-management/ingress/secure-ingress/
https://istio.io/latest/docs/concepts/security/
https://istio.io/latest/docs/concepts/security/
https://thenewstack.io/the-exploding-endpoint-problem-why-everything-must-become-an-api/
https://thenewstack.io/the-exploding-endpoint-problem-why-everything-must-become-an-api/
https://www.hashicorp.com/blog/distil-networks-securely-stores-and-manages-all-their-secrets-with-vault-and-consul/
https://www.hashicorp.com/blog/distil-networks-securely-stores-and-manages-all-their-secrets-with-vault-and-consul/
https://www.sayonetech.com/blog/5-microservices-examples-amazon-netflix-uber-spotify-and-etsy/
https://www.sayonetech.com/blog/5-microservices-examples-amazon-netflix-uber-spotify-and-etsy/
https://kubernetes.io/

[70] Kubernetes (2023b). Kubernetes components (accessed 07/2022). https://

kubernetes.io/docs/concepts/overview/components/.

[71] Kubernetes (2023c). Kubernetes Docs (accessed 02/2020). https://kubernetes.io/

docs/concepts/cluster-administration/networking/.

[72] Kubernetes (2023d). Kubernetes Pods (accessed 02/2020). https://kubernetes.io/

docs/tutorials/kubernetes-basics/explore/explore-intro/#kubernetes-pods.

[73] Kuma (2023a). Kuma (accessed 01/2022). https://kuma.io/.

[74] Kuma (2023b). Mutual tls | kuma (accessed 01/2022). https://kuma.io/docs/1.2.x/

policies/mutual-tls/#usage-of-provided-ca.

[75] Lardinois, F. (2022). Google donates the istio service mesh to the cloud native computing

foundation (accessed 07/2022). https://techcrunch.com/2022/04/25/google-donates-

the-istio-service-mesh-to-the-cloud-native-computing-foundation/.

[76] Li, X., Chen, Y., Lin, Z., Wang, X., & Chen, J. H. (2021). Automatic policy generation for

inter-service access control of microservices. In 30th USENIX Security Symposium, USENIX

Security 21).

[77] Lin, X., Lei, L., Wang, Y., Jing, J., Sun, K., & Zhou, Q. (2018). A Measurement Study on

Linux Container Security: Attacks and Countermeasures. In Proceedings of the 34th Annual

Computer Security Applications Conference (pp. 418–429).

[78] Linkerd (2023a). Automatic mTLS (accessed 02/2020). https://linkerd.io/2.12/

features/automatic-mtls/index.html.

[79] Linkerd (2023b). Github linkerd/linkerd2 (accessed 01/2022). https://github.com/

linkerd/linkerd2.

[80] Liquibase (2023). 9 DevOps Metrics Teams should Track (accessed 04/2023. https://

www.liquibase.com/resources/ebooks/devops-metrics.

109

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/concepts/cluster-administration/networking/
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/#kubernetes-pods
https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/#kubernetes-pods
https://kuma.io/
https://kuma.io/docs/1.2.x/policies/mutual-tls/#usage-of-provided-ca
https://kuma.io/docs/1.2.x/policies/mutual-tls/#usage-of-provided-ca
https://techcrunch.com/2022/04/25/google-donates-the-istio-service-mesh-to-the-cloud-native-computing-foundation/
https://techcrunch.com/2022/04/25/google-donates-the-istio-service-mesh-to-the-cloud-native-computing-foundation/
https://linkerd.io/2.12/features/automatic-mtls/index.html
https://linkerd.io/2.12/features/automatic-mtls/index.html
https://github.com/linkerd/linkerd2
https://github.com/linkerd/linkerd2
https://www.liquibase.com/resources/ebooks/devops-metrics
https://www.liquibase.com/resources/ebooks/devops-metrics

[81] Locust.io (2023). Locust - a modern load testing framework (accessed 04/2023). https:

//locust.io/.

[82] Ltd, R. (2018). The mikrotik routeros-based botnet.

[83] Mauro, T. (2015). Adopting microservices at netflix: Lessons for architectural de-

sign (accessed 01/2022). https://www.nginx.com/blog/microservices-at-netflix-

architectural-best-practices/.

[84] Mazlami, G., Cito, J., & Leitner, P. (2017). Extraction of microservices from monolithic

software architectures. In 2017 IEEE International Conference on Web Services (ICWS) (pp.

524–531).: IEEE.

[85] Mirza, M. (2022). Protect kubernetes workloads from apache log4j vulnerabilities (ac-

cessed 03/2023). https://aws.amazon.com/blogs/containers/protect-kubernetes-

workloads-from-apache-log4j-vulnerabilities/.

[86] Mishra, A. & McCarron, P. (2021). Service mesh at global scale (accessed 01/2022). https:

//www.hashicorp.com/cgsb.

[87] Morabito, R., Kjällman, J., & Komu, M. (2015). Hypervisors vs. lightweight virtualization:

a performance comparison. In 2015 IEEE International Conference on cloud engineering (pp.

386–393).: IEEE.

[88] Morgan, W. (2021). Announcing linkerd’s graduation (accessed 07/2022). https://

linkerd.io/2021/07/28/announcing-cncf-graduation/.

[89] Nam, J., Lee, S., Seo, H., Porras, P., Yegneswaran, V., & Shin, S. (2020). Bastion: A secu-

rity enforcement network stack for container networks. In Proceedings of the 2020 USENIX

Conference on Usenix Annual Technical Conference (pp. 81–95).

[90] NGINX (2015). Service discovery in a microservices architecture (accessed

110

https://locust.io/
https://locust.io/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://aws.amazon.com/blogs/containers/protect-kubernetes-workloads-from-apache-log4j-vulnerabilities/
https://aws.amazon.com/blogs/containers/protect-kubernetes-workloads-from-apache-log4j-vulnerabilities/
https://www.hashicorp.com/cgsb
https://www.hashicorp.com/cgsb
https://linkerd.io/2021/07/28/announcing-cncf-graduation/
https://linkerd.io/2021/07/28/announcing-cncf-graduation/

01/2020). https://www.nginx.com/blog/service-discovery-in-a-microservices-

architecture/.

[91] nicholasjackson (2023). fake-service – simple service for testing upstream service commu-

nications (accessed 04/2023). https://github.com/nicholasjackson/fake-service.

[92] Ohm, M., Plate, H., Sykosch, A., & Meier, M. (2020). Backstabber’s knife collection: A

review of open source software supply chain attacks. In International Conference on Detection

of Intrusions and Malware, and Vulnerability Assessment (pp. 23–43).: Springer.

[93] O’Keefe, M. (2019). Welcome to the service mesh era: Introducing a new istio blog

post series (accessed 04/2023). https://cloud.google.com/blog/products/networking/

welcome-to-the-service-mesh-era-introducing-a-new-istio-blog-post-series.

[94] Ongaro, D. & Ousterhout, J. (2015). The raft consensus algorithm. Lecture Notes CS, 190,

2022.

[95] Open Policy Agent (2023). Open policy agent (accessed 04/2023). https://

www.openpolicyagent.org/.

[96] Open Service Mesh (2023a). Certificate management | open service mesh (accessed 01/2020).

https://release-v0-11.docs.openservicemesh.io/docs/guides/certificates/.

[97] Open Service Mesh (2023b). Open service mesh documentation (accessed 01/2022). https:

//release-v1-2.docs.openservicemesh.io/.

[98] Open Service Mesh (2023c). Open service mesh (osm) (accessed 01/2021). https:

//openservicemesh.io/.

[99] Pahl, C. (2015). Containerization and the paas cloud. IEEE Cloud Computing, 2(3), 24–31.

[100] Pahl, C. & Jamshidi, P. (2016). Microservices: A Systematic Mapping Study:. In

Proceedings of the 6th International Conference on Cloud Computing and Services Science

(pp. 137–146).: SCITEPRESS - Science and and Technology Publications.

111

https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://www.nginx.com/blog/service-discovery-in-a-microservices-architecture/
https://github.com/nicholasjackson/fake-service
https://cloud.google.com/blog/products/networking/welcome-to-the-service-mesh-era-introducing-a-new-istio-blog-post-series
https://cloud.google.com/blog/products/networking/welcome-to-the-service-mesh-era-introducing-a-new-istio-blog-post-series
https://www.openpolicyagent.org/
https://www.openpolicyagent.org/
https://release-v0-11.docs.openservicemesh.io/docs/guides/certificates/
https://release-v1-2.docs.openservicemesh.io/
https://release-v1-2.docs.openservicemesh.io/
https://openservicemesh.io/
https://openservicemesh.io/

[101] Pauley, E., Sheatsley, R., Hoak, B., Burke, Q., Beugin, Y., & McDaniel, P. (2022). Measur-

ing and mitigating the risk of ip reuse on public clouds. arXiv preprint arXiv:2204.05122.

[102] Perforce Software, Inc. (2023). Puppet infrastructure & it automation at scale (accessed

04/2023). https://www.puppet.com/.

[103] Platform, G. C. (2023). Online Boutique (accessed 12/2022). https://github.com/

GoogleCloudPlatform/microservices-demo.

[104] Progress Software Corporation (2023). Chef software devops automation solutions (ac-

cessed 04/2023). https://www.chef.io/.

[105] Prometheus (2023). Prometheus - monitoring system & time series database (accessed

07/2022). https://prometheus.io/.

[106] Quaker, D. (2023). Amazon stats: Growth, sales, and more (accessed 04/2023). https:

//sell.amazon.com/blog/amazon-stats.

[107] Rahman, A., Mahdavi-Hezaveh, R., & Williams, L. (2019). A systematic mapping study of

infrastructure as code research. Information and Software Technology, 108, 65–77.

[108] Rastogi, V., Davidson, D., De Carli, L., Jha, S., & McDaniel, P. (2017). Cimplifier: Auto-

matically Debloating Containers. In Proceedings of the 2017 11th Joint Meeting on Foundations

of Software Engineering (pp. 476–486).

[109] Red Hat, Inc. (2023). Ansible is Simple IT Automation (accessed 04/2023). https://

www.ansible.com.

[110] Richardson, C. (2015). Introduction to Microservices (accessed 02/2020). https://

www.nginx.com/blog/introduction-to-microservices/.

[111] Rose, S., Borchert, O., Mitchell, S., & Connelly, S. (2020). Zero trust architecture. Technical

report, National Institute of Standards and Technology.

112

https://www.puppet.com/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://www.chef.io/
https://prometheus.io/
https://sell.amazon.com/blog/amazon-stats
https://sell.amazon.com/blog/amazon-stats
https://www.ansible.com
https://www.ansible.com
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/

[112] Ruth, J.-P. S. (2022). What happens if microservices vanish – for better or for worse (ac-

cessed 01/2023). https://www.informationweek.com/strategic-cio/what-happens-

if-microservices-vanish-for-better-or-for-worse.

[113] Sakic, E. & Kellerer, W. (2018). Response Time and Availability Study of RAFT Consensus

in Distributed SDN Control Plane. IEEE Transactions on Network and Service Management,

15(1), 304–318.

[114] Salehie, M. & Tahvildari, L. (2009). Self-adaptive software: Landscape and research chal-

lenges. ACM transactions on autonomous and adaptive systems (TAAS), 4(2), 1–42.

[115] Saltzer, J. H. (1974). Protection and the control of information sharing in multics.

Communications of the ACM.

[116] Sankaran, A., Datta, P., & Bates, A. (2020). Workflow integration alleviates identity

and access management in serverless computing. In Annual Computer Security Applications

Conference (pp. 496–509).

[117] Services, A. W. (2023a). Amazon ec2 t2 instances (accessed 10/2020). https://

aws.amazon.com/ec2/instance-types/t2/.

[118] Services, A. W. (2023b). DevOps (accessed 01/2020). https://aws.amazon.com/

marketplace/solutions/devops.

[119] Shu, R., Gu, X., & Enck, W. (2017). A Study of Security Vulnerabilities on Docker Hub. In

Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy

(pp. 269–280). New York, NY, USA: Association for Computing Machinery.

[120] Smith, F. & Garrett, O. (2018). What is a Service Mesh (accessed 12/2020). https:

//www.nginx.com/blog/what-is-a-service-mesh/.

[121] Smith, J. E. & Nair, R. (2005). The architecture of virtual machines. Computer, 38(5),

32–38.

113

https://www.informationweek.com/strategic-cio/what-happens-if-microservices-vanish-for-better-or-for-worse
https://www.informationweek.com/strategic-cio/what-happens-if-microservices-vanish-for-better-or-for-worse
https://aws.amazon.com/ec2/instance-types/t2/
https://aws.amazon.com/ec2/instance-types/t2/
https://aws.amazon.com/marketplace/solutions/devops
https://aws.amazon.com/marketplace/solutions/devops
https://www.nginx.com/blog/what-is-a-service-mesh/
https://www.nginx.com/blog/what-is-a-service-mesh/

[122] Sukhwani, H., Martínez, J. M., Chang, X., Trivedi, K. S., & Rindos, A. (2017). Perfor-

mance Modeling of PBFT Consensus Process for Permissioned Blockchain Network (Hyper-

ledger Fabric). In 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS) (pp.

253–255).: IEEE.

[123] Sun, W., Zhang, K., Chen, S.-K., Zhang, X., & Liang, H. (2007). Software as a service:

An integration perspective. In Service-Oriented Computing–ICSOC 2007: Fifth International

Conference, Vienna, Austria, September 17-20, 2007. Proceedings 5 (pp. 558–569).: Springer.

[124] Sun, Y., Nanda, S., & Jaeger, T. (2015). Security-as-a-Service for Microservices-Based

Cloud Applications. In 2015 IEEE 7th International Conference on Cloud Computing

Technology and Science (CloudCom) (pp. 50–57).: IEEE.

[125] Taibi, D., Lenarduzzi, V., & Pahl, C. (2018). Architectural patterns for microservices: a

systematic mapping study. In CLOSER 2018: Proceedings of the 8th International Conference

on Cloud Computing and Services Science; Funchal, Madeira, Portugal, 19-21 March 2018:

SciTePress.

[126] Tak, B.-C., Isci, C., Duri, S. S., Bila, N., Nadgowda, S., & Doran, J. (2017). Understanding

security implications of using containers in the cloud. In USENIX annual technical conference

(pp. 313–319).

[127] The Linux Foundation (2022). Cloud native computing foundation – graduated and incu-

bated projects (accessed 07/2022). https://www.cncf.io/projects/.

[128] The MITRE Corporation (2021). Cve-2021-44228 (accessed 01/2023). https://

cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228.

[129] Thomson, R. (2018). LogicMonitor Uses Terraform, Packer & Consul for Disaster Recovery

Environments (accessed 02/2020). https://www.hashicorp.com/blog/logic-monitor-

uses-terraform-packer-and-consul-for/.

114

https://www.cncf.io/projects/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-44228
https://www.hashicorp.com/blog/logic-monitor-uses-terraform-packer-and-consul-for/
https://www.hashicorp.com/blog/logic-monitor-uses-terraform-packer-and-consul-for/

[130] Thones, J. (2015). Microservices. IEEE Software, 32(1), 116–116.

[131] Tunggal, A. T. (2021). The cost of downtime at the world’s biggest online retailer

(accessed 07/2022). https://www.upguard.com/blog/the-cost-of-downtime-at-the-

worlds-biggest-online-retailer.

[132] Uberti, D., Rundle, J., & Stupp, C. (2021). The log4j vulnerability: Millions of attempts

made per hour to exploit software flaw (accessed 01/2023). https://www.wsj.com/articles/

what-is-the-log4j-vulnerability-11639446180.

[133] Watson, C., Emmons, S., & Gregg, B. (2015). A microscope on microservices (ac-

cessed 01/2021). https://netflixtechblog.com/a-microscope-on-microservices-

923b906103f4.

[134] Watson, M. (2017). 15 Metrics for DevOps Success (accessed 01/2020). https://

stackify.com/15-metrics-for-devops-success/.

[135] Wolf, N. (2016). Ddos attack that disrupted internet was largest of its kind in history, experts

say.

[136] Xiao, Z., Song, W., & Chen, Q. (2012). Dynamic resource allocation using virtual machines

for cloud computing environment. IEEE transactions on parallel and distributed systems, 24(6),

1107–1117.

[137] Yarygina, T. & Bagge, A. H. (2018). Overcoming Security Challenges in Microservice

Architectures. In 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE)

(pp. 11–20).: IEEE.

[138] Zheng, Z., Xie, S., Dai, H.-N., Chen, X., & Wang, H. (2018). Blockchain challenges and

opportunities: A survey. International journal of web and grid services, 14(4), 352–375.

115

https://www.upguard.com/blog/the-cost-of-downtime-at-the-worlds-biggest-online-retailer
https://www.upguard.com/blog/the-cost-of-downtime-at-the-worlds-biggest-online-retailer
https://www.wsj.com/articles/what-is-the-log4j-vulnerability-11639446180
https://www.wsj.com/articles/what-is-the-log4j-vulnerability-11639446180
https://netflixtechblog.com/a-microscope-on-microservices-923b906103f4
https://netflixtechblog.com/a-microscope-on-microservices-923b906103f4
https://stackify.com/15-metrics-for-devops-success/
https://stackify.com/15-metrics-for-devops-success/

	DaltonBruckerHahn-Dissertation-Signatures.pdf
	DaltonBruckerHahn-Dissertation-Final.pdf
	Introduction
	Research Goals
	Contributions

	Background and Related Work
	Enabling Factors for Microservices
	Microservice Architectures
	Service Meshes
	Security Issues in Microservice Deployments
	Related Work

	Security Artifact Rotations in Service Meshes
	Introduction
	Background and Motivation
	Microservice Architectures
	Service Meshes Overview
	Research Gaps in Existing Service Meshes

	Threat Model and Security Capabilities
	Threat Model
	Security Capabilities

	Anvil Design
	Core Service Mesh Functionality
	Novel Security Features

	Implementation
	Anvil Development
	Experimental Evaluation Setup

	Evaluation
	Consul (ServiceFRESH) Downtime Costs
	ServiceFRESH Downtime Results
	ServiceFRESH Microbenchmark of Downtime Costs
	Overlay Service Mesh Performance Costs

	Discussion and Limitations
	Related Work
	Summary

	Mitigating Microservice Compromise in Service Meshes
	Introduction
	Background and Motivation
	Microservice Architectures
	Service Meshes Overview
	Security Incident Handling in Existing Service Meshes

	Threat Model and Security Capabilities
	Threat Model
	Security Capabilities

	ServiceWatch Design and Evaluation
	Malicious Service Mitigation
	Attack Window
	Access Control Verification
	Experimental Evaluation – Access Control Verification
	Theoretical Evaluation – Access Control Verification

	Related Work
	Summary

	Multi-Hop Access Control in Service Meshes
	Introduction
	Background and Related Work
	Service Meshes and Microservice Architectures
	Static Analysis of Source Code
	Related Work

	Threat Model
	State-of-Art Shortcomings
	Novel Attacks

	CloudCover
	Architecture and Design
	Implementation

	Evaluation
	Network Overhead Calculation
	Load Testing Experiments

	Discussions and Limitations
	Summary

	Conclusions and Future Work

