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Abstract

Advanced battery management is as important for lithium-ion battery systems as the brain is for

the human body. Its performance rests on the use of fast and accurate battery models. However, the

mainstream equivalent circuit models and electrochemical models have yet to meet this need well,

due to their struggle with either predictive accuracy or computational complexity. This problem

has acquired urgency as some emerging battery applications running across broad current ranges,

e.g., electric vertical take-off and landing aircraft, can hardly find usable models from the literature.

Motivated to address this problem, we develop an innovative model in this study. Called BattX,

the model is an equivalent circuit model that draws comparisons to a single particle model with

electrolyte and thermal dynamics, thus combining their respective merits to be computationally

efficient, accurate, and physically interpretable. The model design pivots on leveraging multi-

ple circuits to approximate major electrochemical and physical processes in charging/discharging.

Given the model, we develop a multipronged approach to design experiments and identify its pa-

rameters in groups from experimental data. Simulation and experimental validation proves that the

BattX model is capable of conducting accurate voltage prediction for charging/discharging across

low to high C-rates.
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Chapter 1

Introduction

Lithium-ion batteries (LiBs) are a key power source for consumer electronics, electrified trans-

portation, smart grids, and renewable energy. Compared with alternative secondary storage sources,

they provide a set of outstanding characteristics, including high energy/power density, high nom-

inal voltage, no memory effect, low self-discharge rates, and long cycle life [1–3]. Recent tech-

nological advances have further improved their power delivery and cost efficiency for a wider

application spectrum. The safe and high-performing operation of LiB systems require advanced

battery management, which encompasses a wide range of tasks such as condition monitoring,

charging control, cell balancing, and aging diagnostics [4–7]. High-quality dynamic models are

fundamental to almost all battery management tasks. While the growing research has led to a va-

riety of useful models, the literature still lacks fast and accurate models for applications involving

charging/discharging from low to high current rates. To fill this gap, we propose a first-of-its-kind

equivalent circuit model named BattX and demonstrate its predictive fidelity over broad C-rate

ranges in this thesis.

1.1 Literature Review

Research on LiB dynamic modeling has flourished in the past decades to produce an extensive

collection of literature. The mainstream models generally fall into two categories: electrochemical

models and equivalent circuit models (ECMs). Electrochemical models explicitly describe electro-

chemical reactions, transport of lithium ions, and distribution of charge and potential inside a LiB

cell. Depending on the need for accuracy, they exist on diverse scales, from atomic/molecular to
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species level, and in different dimensions, from 1D to 3D and beyond, and are often coupled with

different physical processes, e.g., thermodynamics and stress/strain [8]. Generally, electrochem-

ical models present high mechanistic fidelity as well as high computational complexity. Battery

management researchers hence must selectively focus on those that offer a desirable accuracy-

computation trade-off, due to practical demands for fast computation. A favorable choice is the

pseudo-2D Doyle-Fuller-Newman (DFN) model, which describes the diffusion of lithium ions and

charge transfer across the electrodes, electrolyte, and separator of a sandwich cell [9]. The search

for more efficient models has led to the single-particle model (SPM), which represents each elec-

trode by a single spherical particle and neglects electrolyte dynamics [10]. The simplification en-

hances computational efficiency to a great extent but also limits the SPM model to low-to-moderate

C-rates (around or less than 1 C). Subsequent studies have emerged to expand the SPM model by

adding characterization of a cell’s thermal behavior [11, 12], electrolyte dynamics [13–17], stress

buildup [17], or degradation [18], to elevate its prediction capability. The literature has also pre-

sented a few computational methods to speed up the simulation of the SPM model or its improved

versions [19, 20].

ECMs represent another important pathway to modeling LiBs. They are circuit analogs com-

posed of electrical components to simulate a cell’s dynamic behavior, capture phenomena in charg-

ing/discharging, and track state-of-charge (SoC) and power capability. With simple structures, they

are accessible for interpretation, easy to calibrate, and scalable to large LiB systems composed of

many cells. Also, they are governed by low-order ordinary differential equations, which allows for

very fast computation. These benefits combine to make them popular candidates for real-world

battery management systems with limited computing resources [21]. A basic ECM, called the

Rint model, cascades an open-circuit voltage (OCV) source with an internal resistor, in which the

voltage source is SoC-dependent [22]. The Rint model can be added to a set of serially connected

RC pairs to describe the transient behavior in a cell’s voltage response, leading to the so-called

Thevenin model [1, 23]. Depending on the number of RC pairs used, one can set the model to cap-

ture transients at multiple time scales [24]. The literature has presented a few approaches to modify
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the Thevenin model for better accuracy. For example, the study in [3, 25] incorporates hysteresis

in charging/discharging; in [26–29], different circuit parameters (e.g., the internal resistance) are

made dependent on the SoC, temperature, or current loads, and the OCV is parameterized using

different function forms for higher fitting accuracy. Even though phenomenological ECMs and

electrochemical models were largely two disparate threads of research, a growing number of stud-

ies have explored developing ECMs drawing upon electrochemical modeling. The work in [30, 31]

proposes the nonlinear double capacitor (NDC) model to approximate the ion diffusion in the elec-

trodes of a cell and characterize the nonlinear voltage behavior simultaneously. This model is

interpretable as a reduced-order circuit analog to the SPM, and it is further supplemented in [32]

with a data-based voltage hysteresis model to attain better accuracy. The study in [33] derives an

ECM using circuit elements to characterize charge transfer and diffusion potentials; the derivation

also helps explain some conventional ECMs from an electrochemical perspective. In [34], an ECM

is coupled with diffusion dynamics to attain higher prediction accuracy. It is increasingly recog-

nized that we can combine ECMs with machine learning. Such hybird models, by design, utilize

data-driven representation to elevate the accuracy of ECMs in presence of biases or uncertainty, as

reported in [35–37].

Structural simplicity underlies the wide use of ECMs in battery management but also restricts

their accuracy. Most of today’s ECMs are accurate enough for only low C-rates, and recent

progress has led to ECMs that are provably suitable for about 1 C [30, 31]. However, the liter-

ature still faces an absence of ECMs capable of predicting a cell’s voltage behavior from low to

high C-rate ranges. This gap will pose potential barriers for some emerging battery-powered ap-

plications that must operate across wide current ranges. One example is electric vertical take-off

and landing (eVTOL), which requires discharging of up to 5 C in the take-off and landing phases

and necessitates precise models to fulfill high-stakes safety requirements [38].
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DFN Model

Electrochemical models

Figure 1.1: Relations of the BattX model with some existing battery models. The light blue and

red arrows represent model simplification; the grey dashed arrows represent comparability.

1.2 Statement of Contributions

In this thesis, we present the first ECM designed to predict over broad current ranges. We take

inspirations from the SPM with electrolyte and thermal dynamics (SPMeT) to enable the design.

Specifically, we propose equivalent circuits to separately simulate a LiB cell’s electrode, elec-

trolyte, and thermal dynamics as well as their effects on the terminal voltage, and then conjoin

the circuits to set up the ECM. The obtained model, called BattX, comprehensively accounts for

different dynamic processes key to a cell’s charging/discharging behavior, making it distinct from

existing ECMs. This characteristic endows the model with excellent prediction capability from

low to high C-rates. The model also retains relatively compact structures to offer high computa-

tional efficiency, carrying the potential to facilitate embedded battery management applications.

Centering around the BattX model, this paper delivers the following specific contributions.

• We propose the principled design of the BattX model and further elucidate the underlying

rationale by showing its connections with the SPMeT model in detail.

• We develop a multipronged parameter identification approach to extract the parameters of
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the BattX model from measurement data made on LiBs. This approach can make the model

readily available in practice.

• We provide experimental evaluation results to validate the effectiveness and accuracy of the

BattX model. The experiments involve charging/discharging across broad C-rate ranges and

consider operation profiles of eVOTL as a case study.

Fig. 1.1 further illustrates the connections of the BattX model with some existing models. As

is shown, there is a cascade of simplification from the DFN to the SPMeT to the SPM model in the

domain of electrochemical models, and the simplification goes from the BattX to the NDC to the

Thevenin model in the domain of ECMs. The BattX model is an ECM in form but can be viewed

as a circuit analog to the SPMeT model. It thus combines the respective advantages of both types

of models to be fast and accurate. Note that the SPMeT model allows for mathematical model

order reduction to speed up computation. However, compared to those numerical reduced-order

models, the BattX model well lends itself to physical interpretability and experimental calibration.

1.3 Organization

The thesis is based on the research reported in [39, 40], and the rest of it is organized as follows.

Chapter 2 presents the BattX model in detail. It is followed by a derivation of the model and

a summary of inspirations gained from the SPMeT model in Chapter 3. Chapter 4 develops a

parameter identification procedure for the BattX model. Chapter 5 contains the validation via

simulation and experiments. Finally, Chapter 6 summarizes the conclusions and the opportunities

for future work.
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Chapter 2

Development of the BattX Model

This chapter presents the structure and governing equations of the BattX model. The detailed

rationale for the model design will be provided in Chapter 3.

At the core, the BattX model attempts to characterize the multiple major dynamic processes

innate to a LiB cell in order to capture the cell’s behavior from low to high current rates. This

is akin to electrochemical modeling to a certain extent, but the main difference is that the BattX

model leverages circuit analogs to simulate the processes. Fig. 2.1 shows the overarching structure

of the model. As shown, it consists of four coupled sub-circuits, which are labeled A to D. These

sub-circuits are designed to approximate the cell’s electrode-phase diffusion, electrolyte-phase dif-

fusion, thermal evolution, and voltage response, respectively.

To begin with, sub-circuit A uses a chain of resistors and capacitors to approximate lithium-ion

diffusion in the electrode phase. Its governing equations are

V̇s,1(t) =
Vs,2(t)− Vs,1(t)

Cs,1Rs,1

+
I(t)

Cs,1

, (2.1a)

V̇s,i(t) =
Vs,i−1(t)− Vs,i(t)

Cs,iRs,i−1

+
Vs,i+1(t)− Vs,i(t)

Cs,iRs,i

, i = 2, . . . , N − 1 (2.1b)

V̇s,N(t) =
Vs,N−1(t)− Vs,N(t)

Cs,NRs,N−1

, (2.1c)

where I is the applied current, with I > 0 for charging and I < 0 for discharging, Vs,j for

j = 1, . . . , N are the voltages across the individual capacitors Cs,j , Rs,j are the resistors that the

current must flow through, and the subscript s indicates solid phase. We set 0 ≤ Vs,j ≤ 1 for the

purpose of normalization and then define the SoC as the percentage ratio of the currently available
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Figure 2.1: The BattX model comprising: sub-circuit A to simulate the lithium-ion diffusion in the

electrode phase; sub-circuit B to simulate the lithium-ion diffusion in the electrolyte phase; sub-

circuit C to simulate heat conduction and convection; and sub-circuit D to simulate the terminal

voltage.

charge over the total charge capacity, which is

SoC =

∑N
j=1Cs,jVs,j∑N

j=1Cs,j

× 100%.

That is, SoC = 100% when Vs,j = 1 for all j, and SoC = 0 when Vs,j = 0 for all j. A brief

interpretation of sub-circuit A is as follows, with more details to be shown in Chapter 3. Overall,

the charge transfer between the capacitors in the circuit mimics the diffusion of lithium ions in the

solid phase or electrode. Then, Vs,j for j = 1, . . . , N correspond to the lithium-ion concentrations

at N different locations, from the surface to the center, that spread along the radius of an electrode

sphere; Cs,j for j = 1, . . . , N are analogous to the volumes of the subdomains if one subdivides the

electrode sphere at these discrete locations; Rs,j for j = 1, . . . , N − 1 resist the charge transfer or

equivalently, the solid-phase diffusion in the SPMeT model, and are hence inversely proportional

to the diffusivity.

Along similar lines to sub-circuit A, sub-circuit B uses a resistor-capacitor chain to approximate

7



the diffusion of lithium-ions in the electrolyte. Its dynamics are governed by

V̇e,1(t) =
Ve,2(t)− Ve,1(t)

CeRe

+
I(t)

Ce

, (2.2a)

V̇e,2(t) =
Ve,1(t)− 2Ve,2(t) + Ve,3(t)

CeRe

, (2.2b)

V̇e,3(t) =
Ve,2(t)− Ve,3(t)

CeRe

− I(t)

Ce

, (2.2c)

where the notations above have similar meanings as in (2.1), and the subscript e refers to the

electrolyte. We let 0 ≤ Ve,j ≤ 1 for j = 1, 2, 3 as in the case of Vs,j , and further assume that

Ve,j = 0.5 for j = 1, 2, 3 when the cell is at equilibrium. One can interpret sub-circuit B as

analogous to the one-dimensional electrolyte-phase diffusion being discretized along the spatial

coordinate. In particular, Ve,j for j = 1, 2, 3 can be associated with the lithium-ion concentrations

at the locations of the anode, separator, and cathode, andRe embodies resistance to diffusion in the

electrolyte. The spatial discretization is assumed to be uniform, thus leading to the same values of

Re and Ce for each region as shown in (2.2).

Sub-circuit C is a lumped circuit model for the thermal dynamics, with the design inspired

by [41]. Here, we consider the cell to be cylindrical without loss of generality and concentrate its

spatial dimensions into two singular points that represent the surface and core, respectively. This

simplification allows us to describe the evolution of the temperatures at these two points, Tsurf and

Tcore, by

Ṫcore(t) =
Q(t)

Ccore

+
Tsurf(t)− Tcore(t)

RcoreCcore

, (2.3a)

Ṫsurf(t) =
Tamb(t)− Tsurf(t)

RsurfCsurf

− Tsurf(t)− Tcore(t)

RcoreCsurf

, (2.3b)

where Tamb is the ambient temperature, Csurf/core and Rsurf/core represents the thermal capacitance

and resistance at the surface and core, respectively, and Q is the internal heat generation rate

accompanying electrochemical reactions inside the cell during charging/discharging. From a heat

transfer perspective, (2.3a) approximately describes the heat conduction between the cell’s surface
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and core, and (2.3b) grasps the convection between the surface and the ambient environment.

Further, Q is characterized as

Q = −I [Us (SOC)− Us(Vs,1)−Ro,T I] , (2.4)

where Us(·) is the nonlinear OCV function, Vs,1 is defined in sub-circuit A, and Ro,T is the internal

resistance. Ro,T is not a constant and instead depends on SoC and Tcore to capture the polarization

resistance. It is given by

Ro,T = Ro(SoC) · exp
(
κ1

(
1

Tcore
− 1

Tamb

))
, (2.5)

where κ1 is a constant coefficient. In the equation above, the first term Ro(SoC) captures the

dependence of Ro,T on Vs,1 and takes the form

Ro(SoC) = γ1 + γ2 · exp (−γ3SoC) , (2.6)

where γi for i = 1, 2, 3 are coefficients, and the second term shows the temperature dependence due

to the Arrhenius law. Similarly, an Arrhenius relationship can be used to capture the relationship

between the electrode-phase diffusion constant and temperature:

Rs,1,T = Rs,1 · exp
(
κ2

(
1

Tcore
− 1

Tamb

))
. (2.7)

Finally, sub-circuit D summarizes the effects of the solid-phase and electrolyte-phase dynamics

on the terminal voltage. It contains two voltage sources, Us and Ue, in series with an internal

resistance Ro,T . The terminal voltage, U , is given by

U = Us(Vs,1(t)) + Ue(Ve,1(t), Ve,Ne(t)) +Ro,T I(t). (2.8)

Here, Us simulates the solid-phase OCV. As the SPMeT model mandates that the open-circuit
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potential of solid material relies on the lithium-ion concentration at the surface of the electrode,

Us should come as a function of Vs,1, and its exact form will depend on the cell. Next, we need to

determine the form of Ue. In the SPMeT model, the electrolyte potential depends on the electrolyte

concentration at the anode and cathode. We hence make Ue as a function of Ve,1 and Ve,Ne and

express it as

Ue(t) = β1

(
ln

(
Ve,1(t) + β2
Ve,3(t) + β2

))
, (2.9)

where βi for i = 1, 2 are constant coefficients. Putting together all the above equations, we will

obtain a complete description of the BattX model. This model is the first ECM that can predict

over broad current ranges, due to the integration of the circuits approximating the electrode, elec-

trolyte, and thermal dynamics into a whole. The model design also leads to profound comparability

with electrochemical modeling, especially the SPMeT, which will be revealed further in the next

chapter. We will address the identification of the model parameters in Chapter 4.
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Chapter 3

Rationale for the BattX Model Design

In this chapter, we will draw on the SPMeT model to explain the rationale for the design of the

BattX model. We will show that the SPMeT model if appropriately discretized, will reduce to a

structure that is approximately equivalent to the proposed circuit analogs of the BattX model. Our

main references about the SPMeT model include [14, 16, 42]. We will focus on expounding sub-

circuits A, B, and D, with the sub-circuit C-based lumped thermal model well addressed in [41].

3.1 Connection between Sub-circuit A and SPMeT

The SPMeT model characteristically couples the SPM model with the electrolyte and thermal

dynamics. What it inherits from the SPM model is the representation of the electrodes as two

spherical particles. The diffusion of lithium-ions in each particle follows Fick’s second law in

spherical coordinates [11, 12]:

∂cs,j(r, t)

∂t
=
Ds,j

r2
∂

∂r

(
r2
∂cs,j(r, t)

∂r

)
, (3.1)

where cs,j is the solid-phase (electrode) lithium-ion concentration, Ds is the constant diffusion

coefficient, and r is the radial coordinate. The subscript j ∈ {n, p}, where n and p refer to the

anode (negative) and cathode (positive), respectively. The boundary conditions for (3.1) are

dcs,j
dr

∣∣∣∣
r=0

= 0,
dcs,j
dr

∣∣∣∣
r=Rj

= − Jj
Ds,j

,
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Figure 3.1: Spherical discretization of an electrode particle.

where R is the radius of a particle. The molar flux J at the electrode/electrolyte interface is given

by

Jp(t) =
i(t)

FSp

, Jn(t) = − i(t)

FSn

,

where i is the applied current density, with i > 0 for charging and i < 0 for discharging, S is the

surface area of a particle, and F is Faraday’s constant.

Next, let us reduce the PDE in (3.1) into a system of ODE equations using a finite volume

method [43, 44]. The subscript j ∈ n, p will be dropped in sequel without causing confusion.

First, we subdivide the particle into a set of continuous finite volumes at discrete locations r1 =

R > r2 > . . . > rN > rN+1 = 0 that spreads inward from the surface to the center, as show in

Fig. 3.1. The amount of lithium-ions within the ith finite volume is given by

Qi(t) =

ˆ ri

ri+1

cs(r, t)dV =

ˆ ri

ri+1

cs(r, t) · 4πr2dr,

12



for i = 1, . . . , N . Then, using (3.1), we have

Q̇i(t) =

ˆ ri

ri+1

ċs(r, t) · 4πr2dr =
ˆ ri

ri+1

d

(
4πDsr

2∂cs(r, t)

∂r

)
=

4πDsr
2
i

∂cs(r, t)

∂r

∣∣∣∣
ri

− 4πDsr
2
i+1

∂cs(r, t)

∂r

∣∣∣∣
ri+1

.

(3.2)

To proceed, we replace cs(r, t) by the average lithium-ion concentration within the ith finite vol-

ume, c̄s(ri, t):

c̄s(ri, t) =
Qi(t)

∆Vi
, (3.3)

where ∆Vi = 4π(r3i − r3i+1)/3. From (3.2)-(3.3), it follows that

˙̄cs(r, t) =
4πDsr

2
i

∆Vi

∂cs(r, t)

∂r

∣∣∣∣
ri

−
4πDsr

2
i+1

∆Vi

∂cs(r, t)

∂r

∣∣∣∣
ri+1

.

Then, we approximate the concentration gradient along the radial coordinate as

∂cs(r, t)

∂r

∣∣∣∣
ri

=
c̄(ri−1, t)− c̄(ri, t)

∆ri
,

where ∆ri = (ri−1 − ri+1)/2. Given the boundary conditions, we further have

˙̄cs(r1, t) = − 4πDsr
2
2

∆V1∆r2
(c̄s(r1, t)− c̄s(r2, t)) +

4πr21
∆V1FS

i(t), (3.4a)

˙̄cs(ri, t) =
4πDsr

2
i

∆Vi∆ri
(c̄s(ri−1, t)− c̄s(ri, t))−

4πDsr
2
i+1

∆Vi∆ri+1

(c̄s(ri, t)− c̄s(ri+1, t)) , (3.4b)

˙̄cs(rN , t) =
4πDsr

2
N

∆VN∆rN
(c̄s(rN−1, t)− c̄s(rN , t)) . (3.4c)

for i = 2, . . . , N − 1. The above ODEs show the spatially discretized solid-phase diffusion. Note

that they share the same structure with (2.1). A closer inspection of (2.1) and (3.4) suggests: 1)

13



Figure 3.2: Three regions immersed in the electrolyte.

Vs is a mirror of c̄s(r, t), and its distribution reflects the distribution of lithium-ion concentrations

inside an electrode particle; 2) Cs is a mirror of ∆V , associating the capacitance with the volume

of a finite volume element within the particle; 3) Rs roughly corresponds to ∆r/(Ds · 4πr2) to

grasp the effect of Ds, ∆r and r on the diffusion resistance at different locations. This unveiled

connection with the SPMeT model justifies the design of sub-circuit A.

3.2 Connection between Sub-circuit B and SPMeT

The SPMeT model includes one-dimensional electrolyte diffusion, which also follows Fick’s sec-

ond law. Electrolyte diffusion is considered in the electrode and separator domains that are all

immersed in the electrolyte. Based on the coordinates in each domain as shown in Fig. 3.2, the

governing equations are

∂ce,p(x, t)

∂t
= De

∂2ce,p(x, t)

∂x2
+

1− t0c
ϵe,pFLp

i(t), (3.5a)

∂ce,sep(x, t)

∂t
= De

∂2ce,sep(x, t)

∂x2
, (3.5b)

∂ce,n(x, t)

∂t
= De

∂2ce,n(x, t)

∂x2
− 1− t0c
ϵe,nFLn

i(t), (3.5c)

where ce,j for j ∈ {n, p, sep} is the lithium-ion concentration in the electrolyte surrounding the

anode, cathode and separator, ϵe,j is the electrolyte volume fraction,De,j is the electrolyte diffusion

14



coefficient, and t0c is the constant transference number. We assume that ϵe,j and De,j are the same

for any j ∈ {n, p, sep}. The boundary conditions are given by

∂ce,p(0p, t)

∂x
=
∂ce,n(Ln, t)

∂x
= 0,

∂ce,p(Lp, t)

∂x
=
∂ce,sep(0sep, t)

∂x
,

∂ce,sep(Lsep, t)

∂x
=
∂ce,n(0n, t)

∂x
,

ce(Lp, t) = ce(0sep, t),

ce(Lsep, t) = ce(Ln, t).

To convert (3.5) into ODEs, we concentrate the electrodes and separator into singular points and

further suppose Lp = Ln and Lsep is negligible. The singular point that represents the electrodes

are located at the midpoint of each domain, and the average lithium-ion concentration is denoted

as c̄e,j . Then, we apply the finite difference method to (3.5) and obtain

˙̄ce,p(t) =
4De

L2
(c̄e,sep(t)− c̄e,p(t)) +

1− t0c
ϵeFL

i(t), (3.6a)

˙̄ce,sep(t) =
4De

L2
(c̄e,p(t)− 2c̄e,sep(t) + c̄e,n(t)) , (3.6b)

˙̄ce,n(t) =
4De

L2
(c̄e,sep(t)− c̄e,n(t))−

1− t0c
ϵeFL

i(t). (3.6c)

As is seen, (3.5) is structurally similar to (2.2), and the similarity lends to the interpretation

of (2.2) through the lens of electrochemical modeling. Specifically, we can associate Ve,1, Ve,2 and

Ve,3 with c̄e,p, c̄e,sep , and c̄e,n, respectively. Further, Ce can be linked with the spatial lengths of the

electrode domains, which decide the volume of the electrolyte, and Re comes as the inverse of De

to measure the resistance against electrolyte diffusion.
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3.3 Connection between Sub-circuit D and SPMeT

In the SPMeT model, the terminal voltage V consists of four terms that represent the solid-phase

OCV, electrolyte-phase voltage, overpotential, and voltage over the film resistance, respectively.

Then, coming back to sub-circuit D of the BattX model, Us mirrors the solid-phase OCV, Ue

corresponds to the electrolyte-phase voltage, and Ro,T plays a role to mainly capture the film

resistance as well as the overpotential effect. Less trivially, we elaborate on the form of Ue in (2.9).

The electrolyte-phase voltage is given by

ϕe(0p, t)− ϕe(Ln, t) =
Lp + 2Lsep + Ln

2k̄
i(t) + kconc (lnce(0p, t)− lnce(Ln, t)) , (3.7)

where ϕe is the electrolyte electric potential, and k̄ and kconc are two coefficients that are related

to electrolyte conductivity and molar activity. The first term above is accounted for through Ro,T .

Following the discussion in Chapter 3.2, we can approximate the second term as

kconc (ln c̄e,p(t)− ln c̄e,n(t)) .

This form is found to bear equivalence to (2.9), when making linear projections of c̄e,p(t) and

c̄e,n(t) to Ve,1 and Ve,3, respectively.
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Chapter 4

Parameter Identification for the BattX Model

In this chapter, we investigate how to determine the parameters of the BattX model. To this end,

we separate the model’s parameters into different groups based on the dynamic processes that they

belong to or prominently influence. We then design experiments accordingly and use different cur-

rent profiles to excite different dynamic processes and obtain voltage or temperature data suitable

for the identification of the corresponding parameter groups. Finally, we extract the parameters

from the data, group by group, through data fitting and some empirical tuning.

To begin with, we set up the following parameter groups for the BattX model:

• ΘUs = {αi, i = 0, 1, . . . , 16}, which includes the parameters in Us in sub-circuit D;

• ΘRo = {γi, i = 1, 2, 3}, which includes the parameters in Ro in sub-circuit D;

• Θs = {Cs,i, i = 1, . . . , N,Rs,j, j = 1, . . . , N − 1}, which includes the parameters of sub-

circuit A;

• ΘTh = {Csurf , Rsurf , Ccore, Rcore}, which includes the parameters in the lumped thermal

model in sub-circuit C;

• Θe = {Ce, Re, β1, β2}, which includes the parameters in sub-circuit B and the parameters in

Ue in sub-circuit D;

• ΘArr = {κ1, κ2}, which includes the Arrhenius-law-related parameters;.

By grouping the parameters as above, we can design different current input profiles to stimulate

different parts of the cell’s dynamics so as to identify the parameters group by group. This multi-

pronged approach includes the following steps.
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Step 1: Identification of ΘUs . Since Us represents the OCV source, we can capture it by

applying a trickle constant current with a magnitude of 1/30 C to fully charge or discharge the

cell. As the current is extremely small, sub-circuit A, which is an analog to the solid (electrode)-

phase diffusion, is almost always at equilibrium, with Vsi = SoC for i = 1, . . . , N (SoC can

be obtained via Coulomb counting); meanwhile, sub-circuits B and C, Ue, and the voltage across

Ro,T , are all negligible in this case. Hence, U ≈ Us, and we can construct the following data fitting

problem to identify ΘUs:

Θ̂Us = argmin
ΘUs

∑
tk

[U(tk)− Us (SoC(tk); ΘUs)]
2 , (4.1)

where k is the discrete time index in the experiment.

Step 2: Identification of ΘRo . Ro is an integral part of the internal resistance Ro,T , and Ro =

Ro,T when T = Tref . To identify ΘRo , we apply a 0.5 C pulse current profile, which includes long

enough rest periods between two consecutive pulses to allow for sufficient voltage recovery, to

discharge the cell from 100% to 0% of SoC when the ambient temperature is Tref . With discharging

at 0.5 C, the cell will only see a negligible increase in its temperature, and Ue ≈ 0. For the terminal

voltage U , we will see a sharp drop or jump at the beginning or end of every pulse, and this is

almost solely due to the voltage change across Ro. Therefore, using the voltage jump, one can

approximate Ro as

R̃o(t∗) =

∣∣∣∣U(t∗+1)− U(t∗)

I

∣∣∣∣ , (4.2)

where t∗ is the instant when a pulse stops. Further, the instantaneous SoC can be readily determined

via Coulomb counting. CollectingRo for all t∗, we can formulate the following data fitting problem

to estimate ΘRo:

Θ̂Ro = argmin
ΘRo

∑
t∗

[
R̃o(t∗)−Ro(ΘRo ; t∗)

]2
. (4.3)
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Step 3: Identification of Θs. The number of parameters in Θs depends on N , and when N is

large, Θs will be poorly identifiable to defy accurate estimation. To formulate a tractable identifi-

cation problem, we assume that

Cs,i = ηiCs,1, Rs,j = σjRs,1, (4.4)

where ηi and σi for i = 1, . . . N and j = 1, . . . N − 1 are pre-specified coefficients with η1 = σ1 =

1, and
∑N

i=1 ηiCs,i is the total capacity of the cell. This allows us to consider only two parameters,

i.e., Θs = {Cs,1, Rs,1}, greatly facilitating the parameter estimation. The simplification is also

reasonable—the difference among Cs,i and Rs,j can be viewed as a result of the selection of the

discretization points as shown in (3.4), and one can specify ηi and σj assuming that they result

from a certain selection. The practical selection of ηi and σj can be done through an analysis of the

discretization shown in Chapter 3.1 and tuning. Going forward, we apply a 0.5 C constant-current

profile to discharge the cell from full to zero SoC. In this setting, sub-circuit A is excited, but

the dynamics of sub-circuits B and C have no appreciable effects. That is, the cell’s temperature

remains almost the same, and Ue ≈ 0. We can conduct data fitting as below to find out Θs:

Θ̂s = argmin
Θs

∑
tk

[
U(tk)−Ro

(
Θ̂Ro ; tk

)
I(tk)− Us

(
Vs,1 (Θs; tk) ; Θ̂Us

)]2
, (4.5)

where Θ̂Us and Θ̂Ro have been obtained in Steps 1 and 2, and the form of Vs,1(Θs, t) is derived in

Appendix.A.

Step 4: Identification of ΘTh. Based on [41], a straightforward idea to determine ΘTh is to fit it

to the measurement data of Tsurf and/or Tcore given the lumped thermal model in (2.3). However,

the idea is hard to be applied here, becauseQ in our model is dependent onRo,T , as shown in (2.4),

and unavailable beforeRo,T is identified. To overcome this issue, we choose to use prior knowledge

to guide the estimation of ΘTh. Here, we can approximate Rcore based on the conductivity of

the cell’s electrode materials and jellyroll structure. Furthermore, we can infer Rsurf and Csurf

from the form factors and specifications, casing material (usually aluminum), and the cooling
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system. Finally, Ccore can be deduced given the cell’s total heat capacity. A 2C constant current

full discharge profile is used to acquire the data encompassing significant temperature changes.

With the measurement data, we can begin from the approximate values of the parameters and

continually tune them until achieving sufficient fitting accuracy to finalize Θ̂Th.

Step 5: Identification of Θe and ΘArr. Sub-circuit B will have substantial effects on U only at

high C-rates. Therefore, we use a 3 C constant current profile to fully discharge the cell such that

large enough Ue will result and present itself into the voltage response. This then allows to identify

Θe. In the meantime, 3 C discharging will subject the cell to important temperature increases,

which, in turn, will drive down ΘArr-dependent Rs,T and Ro,T and influence the voltage response.

As such, we need to consider the estimation of Θe and ΘArr together. The following data fitting

problem can be formulated:

Θ̂e, Θ̂Arr = arg min
Θe,ΘArr

∑
tk

[U(tk)−Ro,T

(
Θ̂Ro ,ΘArr, Ttk ; tk

)
I(tk)

−Us

(
Vs,1

(
Θ̂s,ΘArr, Ttk ; tk

)
; Θ̂Us

)
− Ue (Θe; tk)]

2.

(4.6)

Here, Ue depends on Ve,1 and Ve,3 as shown in (2.9), and the explicit form of Ve,1 and Ve,3 is shown

in Appendix.B. Note that no closed-form expression of Us exists in this step, as the changing Rs,T

makes sub-circuit A become a time-varying system. It is thus impossible to solve the problem

in (4.6) using nonlinear optimization. To alleviate the difficulty, we suggest to apply some empiri-

cal tuning. Specifically, we can pick a sample of ΘArr using prior knowledge, then estimate Θe by

solving the above data fitting problem, and iterate this procedure until getting the lowest possible

fitting errors. Despite the time and effort needed, this iterative method is often found effective with

a sufficient number of tries.

The above steps together constitute our parameter identification approach for the BattX model

and are summarized in the flowchart in Fig. 4.1. The following remarks summarize our further

insights.

Remark 1 We point out that the data fitting problems outlined in Steps 1-5 are non-trivial to solve,
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Place cell in test bench and 

rest for 1 min

CCCV Charge at 0.25C

Rest for 30 mins

CC Discharge at 1/30C

Rest for 1 hour

0.5C Discharge for 5 mins

Rest for 2 hours

Repeat till cutoff Voltage

CCCV Charge at 0.25C

Rest for 30 mins

CC Discharge at 0.5C

CCCV Charge at 0.25C

Rest for 30 mins

CC Discharge at 2.0C

CCCV Charge at 0.25C 

Rest for 30 mins

CC Discharge at 3.0C

Offline Parameter Extraction

Intermittent 

Discharge

Figure 4.1: Flowchart for the multipronged experimental data generation and parameter identifica-

tion.

as they entail nonlinear nonconvex optimization. The nonconvexity can easily get the parameter

search stuck in local minima to produce physically meaningless parameter estimates. To mitigate

the issue, it is sensible to constrain the search within a believably correct parameter space [24].

Specifically, one can set up approximate lower and upper bounds for every possible parameter and

then limit the numerical optimization within the resultant parameter space. The prior knowledge

used to establish such bounds can be derived from both experience and observation or analysis

of the measurement data. Other helpful ways to overcome the local minima issue include adding

regularization terms that encode prior knowledge of some parameters and applying different initial

guesses to repeatedly run the numerical optimization [24].

Remark 2 We consider Samsung INR18650-25R cells (see Chapter 5.2 for the specifications) as

a baseline when selecting the discharging C-rates in each step of the above approach, because

they are used in the experimental validation of the BattX model (see Chapter 5.2). However, a user

or practitioner may need to adjust the specific C-rates, depending on the cells to apply the model.

The overall guiding rule is the same—using current profiles of different C-rates to excite different

dynamic processes to obtain data informative for the identification of the parameters associated

with each process.
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Chapter 5

Simulation and Experimental Validation of the BattX Model

This chapter presents the simulation and experimental validations of the model. Both sets of vali-

dation will include model identification followed by validation.

5.1 Simulation-Based Validation

All simulations are carried out using GT-SUITE Version 2023, a multi-physics systems simulation

platform [45]. GT-SUITE executes a pseudo-two-dimensional electrochemical model through the

GT-AutoLion template. We set the electrochemical model to simulate an NMC811 energy-dense

pouch cell with a nominal capacity of 18 Ah and run it to generate synthetic datasets. We then

calibrate the BattX model using the datasets and compare its prediction performance relative to the

electrochemical model.

5.1.1 Model Identification

The OCV-SOC relationship was directly extracted from the AutoLion1D model and used in Us as

a lookup table, thus, eliminating the need to find Θ̂Us . The identification then follows the steps

highlighted in Fig. 4.1.

• First, the electrochemical model was run with a 0.5 C pulse load profile shown in Fig. 5.1.

The voltage from the simulation was used to calculate Ro using (4.2) and then (4.3) to find

Θ̂Ro . The calibrated R̂o is given by

R̂o = −0.0383V 3
s1 + 0.0875V 2

s,1 − 0.0655Vs,1 + 0.0226.
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Figure 5.1: Terminal voltage profile under intermittent discharging at 0.5 C to identify ΘRo and

fitting of Ro(SoC) with R̃o based on Θ̂Ro

Fig. 5.1 compares R̂o with the benchmark truth, showing satisfactory accuracy.

• Next, the OCV-SOC relationship from the electrochemical model was transferred into the

BattX table in a table lookup format. Then, using some knowledge of the electrochemical

model and of the spatial discretization, we can specify

ηi = {1, 0.6066, 0.3115, 0.1148, 0.0164} ,

σj = {1, 1.77, 4.00, 15.98} .

Then, a 0.5 C constant-current discharge was applied to the electrochemical model. The

voltage output from the simulation was used to identify Θ̂s. The identified parameters are

summarized in Table 5.1, and the comparison between the predicted terminal voltage and

the benchmark is shown in Fig. 5.2.

• Finally, the electrochemical model was simulated under 1.5 C and 2 C constant-current dis-

charge loads separately. The voltage and average temperature data from the simulation were

used to identify Θ̂Th, Θ̂e, and Θ̂Arr. The optimal parameters are summarized in Tables 5.2

23



Figure 5.2: Terminal voltage fitting under 0.5 C constant-current discharging based on Θ̂Us

and 5.3 with the prediction results shown in Fig. 5.3.

The above summarizes the identification of the BattX model using AutoLion1D. Next, we

apply the identified model to new datasets to further validate it.

5.1.2 Model Testing and Validation

To test the predictive capability of the calibrated BattX model, we generated new datasets based

on the electrochemical model. The first tests assess the model using low and high constant cur-

rent discharge profiles. Fig. 5.4 shows the voltage prediction at 0.25 C and 3 C constant-current

discharge. It is seen that the BattX model can deliver good accuracy in both cases.

The next dataset was generated based on a profile from the Worldwide harmonized Light ve-

hicles Test Cycles (WLTC), which are real-world dynamometer tests by light-duty vehicles. Here,

Table 5.1: Estimation of Θs

Cs,1 Rs,1

Initial Guess 33316 0.07
Lower Bound 30000 0.01
Upper Bound 35000 0.15
Optimal Value 33124 0.02
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Figure 5.3: Terminal voltage and temperature fitting under 1.5 C and 2 C constant-current dis-

charging based on Θ̂e, Θ̂Th, and Θ̂Arr

Figure 5.4: Voltage prediction by the BattX model versus the benchmark truth at 0.25 C and 3 C

constant-current discharge
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Figure 5.5: Voltage and temperature prediction by the BattX model versus the benchmark results

for a WLTC cycle

we normalized the power loads to be appropriate for the cell, supplying the cell with currents vary-

ing from −2 to 3 C. The voltage and temperature prediction by the BattX model are shown in Fig.

5.5, showing excellent agreement with the benchmark.

The third dataset was intended for LiB-powered eVTOL. Although eVTOL has attracted in-

creasing interest as a promising solution to urban air mobility and decarbonization of aviation,

conventional ECMs are hardly suitable for them, because they require high-rate discharging in

the takeoff and landing phases [38]. The proposed BattX model holds a promise to overcome the

issue. We consider a notional eVTOL flight here, which includes three phases, takeoff, cruising,

and landing. The three phases are assumed to require discharging at 2.8 C, 0.8 C, and 2.8 C. The

Table 5.2: Estimation of ΘTh

Rsurf Rcore Csurf Ccore

Initial Guess 0.65 0.25 120 250
Lower Bound 0.59 0.10 100 180
Upper Bound 0.75 0.50 150 320
Optimal Value 0.71 0.12 117 189
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Figure 5.6: Voltage and surface temperature prediction by the BattX model versus the benchmark

results for multiple eVTOL cycles

corresponding discharging power for the considered cell is 54 W, 16 W, and 54 W, respectively.

Accordingly, we generated a current load profile sequentially comprising multiple flight cycles

with the three-phase pattern until the cell reaches its cutoff voltage. Fig. 5.6 shows that the BattX

model achieves accurate prediction compared with the benchmark truth. Especially, the accuracy

is found satisfactory at the times of high discharge rates. The surface temperature prediction in

Fig. 5.6 also well agrees with the actual temperature.

To sum up, the testing and validation results show the high accuracy and fidelity of the BattX

model across low to high currents in different use scenarios. Next, we present the validation results

using experimental data.

Table 5.3: Estimation of Θe and ΘArr

β0 Re Ce κ1 κ2
Initial Guess 1.2 45000 1e-4 18 40
Lower Bound 0.9 35000 8.0e-5 15.0 10.0
Upper Bound 2.0 70000 1.2e-4 22.0 50.0
Optimal Value 1.9 53088 8.6e-5 21.6 27.1
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Figure 5.7: Experimental setup. Left: the PEC® SBT4050 battery tester; right: the cell placed in

an Arbin high-current cylindrical cell holder.

5.2 Experimental Valdation

All the experiments were conducted on a Samsung INR18650-25R cell with NCA cathode and

graphite anode using a PEC® SBT4050 battery tester and placed in an Arbin cylindrical cell holder,

as shown in Fig. 5.7. The cell’s nominal capacity is 2.5 Ah, nominal voltage is 3.6 V, maximum

cut-off voltage is 4.2 V, minimum cut-off voltage is 2.5 V, and maximum continuous discharge

current is 20 A. The tester is able to run charging or discharging tests of up to 40 V and 50 A under

arbitrary current or power load profiles. The cell holder is capable of testing high-capacity 18650

cells at up to 200 A.

Similar to to the simulation validation, the experiment is comprised of two parts. The first

part collected datasets following the parameter identification approach in Chapter 4 to identify

the model parameters. In the second part, new datasets were generated to evaluate the predictive

capability and computational cost of the identified model against the Thevenin model.

5.2.1 Model Identification

The experiments and model identification procedure is as follows.

• Based on Chapter 4, we first charged the cell using the popular constant-current/constant-

voltage method, let it rest for one hour, and then fully discharged it using a 1/30 C constant-

current load. We calculated the total capacity to be 2.55 Ah using the Coulomb counting
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method and then intended to use the voltage data to find Θ̂Us . The following non-linear

function was used to predict the OCV of the cell:

Us(Vs,1) = h1 (Vs,1) ·H (0.9− Vs,1) + h2 (Vs,1) ·H (Vs,1 − 0.9) ,

where H(·) is the Heaviside step function, h1(Vs,1) captures the behavior when Vs,1 ≤ 0.9 as

h1(Vs,1) = α0 + α1
1

1 + exp(α2(Vs,1(t)− α3))
+

α4
1

1 + exp(α5(Vs,1 − α6))
+

α7
1

1 + exp(α8(Vs,1 − α9))
+

α10
1

1 + exp(α11Vs,1(t))
+ α12Vs,1(t),

and h2(Vs,1) is for when 0.9 < Vs,1 ≤ 1 with

h2(Vs,1) = α13exp(α14Vs,1) + α15exp(α16Vs,1).

Here, αi for i = 0, . . . , 15 are constant coefficients. Then, Θ̂Us was found based on (4.1):

Θ̂Us = {−9.048,−2.360,−12.986, 0.010, 13.036,−32.840,−0.087, 2.359,

−14.863, 0.055,−0.788,−7.136, 0.966, 31.132,−3.414, 0.513, 1.816} .

The SoC/OCV fitting result under the obtained Θ̂Us is shown in Fig. 5.8.

• Next, the cell was charged to full again, idled for one hour, and then discharged under a

0.5 C pulse load profile. Specifically, a load was applied for five minutes, followed by a

one-hour rest, and this cycle continued until the cut-off voltage was met. Fig. 5.9 shows the

profile, which includes a total of 12 pulses. With the data, we calculated Ro at different SoC

via (4.2) and then used (4.3) to compute Θ̂Ro as shown in Table 5.4. The reconstructed Ro is
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Figure 5.8: SoC/OCV curve fitting based on Θ̂Us .
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Figure 5.9: Identification of ΘRo: (left) terminal voltage profile under intermittent discharging at

0.5 C to identify ΘRo; (right) fitting of Ro(SoC) with R̃o based on Θ̂Ro .

compared with the measurements in Fig. 5.9.

• Going further, we fully charged the cell again as in the previous steps, and then fully dis-

charged it using a 0.5 C constant-current load, with the objective of identifying Θs. As

explained in Chapter 4, we could impose a pre-determined relation like (4.4) to reduce the

number of parameters to estimate. Here, we let the spherical particle be discretized into five

finite volumes, and the resulting ηi and σj are

ηi = {1, 0.6066, 0.3115, 0.1148, 0.0164} ,

σj = {1, 1.77, 4.00, 15.98} .
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Table 5.4: Identification summary for ΘRo , Θs, and ΘTh: initial guesses, bound limits, and final

estimates.

Name γ1 γ2 γ3 Cs,1 Rs,1 Csurf Rsurf Ccore Rcore

Initial Guess 1 1 1 4391 0.090 7 6 20 1
Lower Bound - - - 3600 0.054 3 3 5 0.5
Upper Bound - - - 5500 0.167 12 20 50 7
Final estimate 0.026 0.061 14.36 4521 0.114 10 7 40 4

Fig. 5.10 illustrates a comparison between the predicted terminal voltage (with the dynamics

of sub-circuits B and C neglected) based on Θ̂s and the measurements. Table 5.4 shows the

estimation for Θ̂s.
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Figure 5.10: Terminal voltage fitting under 0.5 C constant-current discharging based on Θ̂s.

• Then, we ran a 2 C constant-current discharging test to collect the temperature data. The

cell’s surface temperature increased by about 10 K throughout the test. We leveraged prior

knowledge and empirical tuning to determine ΘTh, as suggested in Chapter 4. While the

procedure is coarse-grained, we obtained Θ̂Th that leads to accurate fitting with the surface

temperature data and physically reasonable estimation of the core temperature, as shown in

Fig. 5.11. Table 5.4 summarizes the numerical estimates of Θ̂Th.

• Finally, the cell was fully discharged at a constant current of 3 C to excite the cell’s elec-

trolyte dynamic and thermal behavior more discernible, for the purpose of identifying Θe and
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Figure 5.11: Temperature fitting and prediction based on Θ̂Th.
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Figure 5.12: Terminal voltage fitting under 3 C constant-current discharging based on Θ̂e.

ΘArr. Following Chapter 4, we iteratively tuned Θ̂Arr and then ran (4.6) to find Θ̂e until the

achievement of both physically sound estimates and accurate voltage data fitting. Fig. 5.12

shows that the BattX model based on all the identified parameters fits well the measured

voltage, and Table 5.5 shows the estimation results.

From above, we have come up with an explicit setup of the BattX model for the cell. Next, we

will fit the model to new datasets to assess how well it predicts.
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Table 5.5: Identification summary for ΘArr and Θe: initial guesses, bound limits, and final esti-

mates.

Name Ce Re β1 β2 κ1 κ2
Initial Guess 1032 0.028 0.53 0.31 15 22
Lower Bound 500 0.002 0.42 0.19 10 10
Upper Bound 5000 0.080 1.00 0.423 100 100
Final estimate 3691 0.007 0.789 0.317 30 70

5.2.2 Model Testing and Validation

To further evaluate the obtained BattX model, we generated new datasets by applying a variety of

load profiles that span a range of currents. The first tests involved fully discharging the cell at a

constant current of 0.5, 1, 4, and 5 C separately. Fig. 5.13 compares the BattX model’s prediction

of the terminal voltage against the measurement, where a close match is observed in all four cases.

Note that, even though the model was identified based on tests of only up to 3 C, it can well predict

4 C and 5 C, suggesting its high fidelity.

Further, we adopted the Urban Dynamometer Driving Schedule (UDDS) as a variable load

profile and scaled it to be between −8 C and 5 C to validate the BattX model. Here, we desire to

compare the BattX model against the popular Thevenin model with two RC pairs. To calibrate the

2RC Thevenin model, we utilize the same nonlinear OCV relationship shown in Fig. 5.8 and then

use the 1 C constant-current discharging data to determine all its RC parameters. The validation

result is shown in Fig. 5.14. The top figure in Fig. 5.14 illustrates the load profile, which includes

both charging and discharging as well as a rest period. The voltage prediction of the BattX model,

as shown in Fig. 5.14, closely follows the true voltage overall. A slight discrepancy appears at the

end of the test when the cell is about to be depleted. This is likely because the radical changes

of the internal resistance at low SoC and high temperature are hard to be thoroughly captured.

By contrast, the 2RC Thevenin’s model gives a poor prediction, especially when the current load

is above 1 C. Fig. 5.15 then demonstrates the comparison of the predicted surface temperature

by the BattX model with the measurement, showing an acceptable accuracy. The estimation of
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Figure 5.13: Voltage prediction for constant-current discharging at 0.5, 1, 4, and 5 C.

the core temperature is also given in Fig. 5.15, which is reasonable by empirical knowledge and

observation.

Similar to Chapter 5.1, we consider a notional eVTOL flight, which includes three phases,

takeoff, cruising, and landing [38]. We generated a current load profile sequentially comprising a

flight, full discharge, and another flight. Fig. 5.16 displays the current load profile over time and

the voltage prediction by the BattX model and by the 2RC Thevenin model. It is seen that the

BattX model achieves accurate prediction compared with the measurement. Especially, the accu-

racy is found satisfactory at times of high discharge rates. The 2RC Thevenin’s model, however,

generates considerably larger prediction errors and finds itself struggling to capture the cell’s volt-

age behavior at high C-rates. These error magnitudes render the model far from sufficient for the

eVTOL application. For the BattX model, the surface temperature prediction in Fig. 5.17 also well

agrees with the actual temperature, and the core temperature estimation shows a real trend that one
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Figure 5.14: BattX versus 2RC Thevenin’s under a UDDS load. Row 1: the UDDS-based current

load profile; row 2: the actual and predicted voltage; row 3: zoomed (left: 2RC Thevenin’s; right:

BattX); row 4: the voltage prediction error.
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Figure 5.15: Temperature prediction by the BattX model versus the measurements in the UDDS-

based test.
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Figure 5.16: BattX versus 2RC Thevenin’s under an eVTOL profile. Row 1: the current load

profile; row 2: the actual and predicted voltage; row 3: zoomed (left: 2RC Thevenin’s; right:

BattX); row 4: the voltage prediction error.
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Figure 5.17: Temperature prediction by the BattX model versus the measurements in the test sim-

ulating an eVTOL operation cycle.

can trust to be close enough to the truth.
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Chapter 6

Conclusions

LiBs have found their way into many sectors as a key technology to drive forward electrifica-

tion and decarbonization. For LiB applications, computationally fast and accurate ECMs are a

bedrock for real-time monitoring and simulation to ensure their performance and safety. Although

the literature has presented several different ECMs, none of them is effective when current loads

range from low to high. To overcome the problem, we proposed the BattX model in this the-

sis. This model is an ECM in its form, but unlike other ECMs, it lends to interpretation as a

quasi-electrochemical model. This is because it is designed to use separate yet coupled circuits

to approximate the lithium-ion diffusion in the electrode and electrolyte phases, heat transfer, and

nonlinear voltage behavior in charging/discharging of a cell. With this novel design, the model

offers high predictive accuracy over broad current ranges and still retains relatively simple struc-

tures for low computational costs. We also developed a parameter identification approach for the

model. The approach groups the parameters based on the dynamic processes or components that

they belong to and then identifies the parameters of each group using experimental data. Finally,

the simulation and experimental validation showed that the BattX model has high accuracy and

fidelity across low to high C-rates.

While our study proposed and validated the BattX model, there is still an abundance of oppor-

tunities to further improve it or build new study based on it as our future work. Specifically, we

can deal with the following aspects.

• Internal Resistance: In its present form, the BattX model considers SoC- and temperature-

dependent internal resistance. It will be worthy to add the dependence on the C-rate to the
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characterization of the internal resistance, as many LiB cells exhibit this feature.

• Heat Generation: A LiB cell has four different sources of internal heat generation: resis-

tive heat dissipation, reversible entropic heat, heat produced or consumed through chemical

reactions, and heat produced due to the formation and relaxation of concentration gradients

within the cell [46]. The BattX model only captures the resistive dissipation, because the last

two terms can be assumed to be negligible for cylindrical cells. However, the reversible en-

tropic heat generation becomes more prevalent for certain chemistries, such as LFP [46, 47].

We can enhance the model accounting for this phenomenon.

• Hysteresis: A LiB cell’s OCV can be different depending on the direction of the current,

which is known as hysteresis. A common practice is to take the average of the OCV during

discharge and charge to find the true OCV of the cell. The BattX model determines Θ̂Us

by fitting to the average OCV data. We believe that the voltage prediction can be further

improved by adding a hysteresis term to the BattX model.

• Degradation: A LiB cell will experience capacity and power fade, as a result of complex

degradation mechanisms, including SEI growth, active material isolation, or lithium plating.

Degradation is a slow process but still critically affects the model accuracy. Currently, the

BattX model needs to be re-calibrated to address degradation-caused parameter changes. It

will be interesting and useful to improve the model such that it is able to handle the effects

of degradation throughout the cell’s clycle life.

• SoC estimation: It is a non-trivial task to estimate the SOC of a cell. This is especially true

for the BattX model, because its complexity is higher than other ECMs to a certain extent.

In order to accurately predict SoC using the model, nonlinear estimation techniques will be

needed, and it is an open question to make an effective design.

In summary, the BattX model proposed in this thesis advances the state of the art in battery

modeling, with potential use in a wide array of applications. The presented study will also open
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subsequent research pursuits to further improve the model and leverage it to enable different battery

management tasks.
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Appendix A

Derivation of Vs,1 under Constant Current I

In Chapter 4, the identification of Θs in (4.5) requires the expression of Vs,1 when the applied

current I is constant. The derivation is as follows.

Consider the governing equations of sub-circuit A in (2.1) under the assumption in (4.4), and

rewrite them compactly into the following form:

V̇s(t) = AsVs(t) +BsI(t), (A.1)

where

Vs =

[
Vs,1 Vs,2 · · · Vs,N

]⊤
,

As = µsΩs,

µs =
1

Cs,1Rs,1

,

Ωs =



−1
η1σ1

1
η1σ1

0 · · · · · · 0

1
η2σ1

− 1
η2σ1

− 1
η2σ2

1
η2σ2

0 · · · 0

...
...

... . . . . . . ...

0 · · · · · · 0 1
ηNσN−1

−1
ηNσN−1


,

Bs =

[
1

Cs,1
0 · · · 0

]⊤
.
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The solution to (A.1) is given by

Vs(t) = eAstVs(0) +

ˆ t

0

eAs(t−τ)BsI(τ)dτ.

When I is constant, it becomes

Vs(t) = eAstVs(0) +

ˆ t

0

eAs(t−τ)dτ ·BsI. (A.2)

To find the explicit form of Vs(t), we must derive the expression of eAst. To this end, we look at Ωs

first and note that it is rank-deficient with one zero eigenvalue. Further, assume the other non-zero

eigenvalues to be distinct, and denote the eigenvalues of Ωs as λi for i = 1, 2, . . . , N with λ1 = 0.

Then, by the Cayley-Hamilton theorem, we have

eAst =
[
Φ−1ϕ(µs, t)

]
⊗ Ωs, (A.3)

where

Φ =



1 λ1 · · · λN−1
1

1 λ2 · · · λN−1
2

...
... . . . ...

1 λN · · · λN−1
N


,

ϕ(µs, t) =

[
1 eµsλ2t · · · eµsλN t

]⊤
.

The operator ⊗ is defined as

a⊗ A =
n∑

i=1

aiA
i−1,
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for a ∈ Rn×1 and A ∈ Rn×n. Inserting (A.3) into (B.2), we obtain

Vs(t) =
[
Φ−1ϕ(µs, t)

]
⊗ Ωs · Vs(0) +

ˆ t

0

[
Φ−1ϕ(µs, t− τ)

]
⊗ Ωsdτ ·BsI

=
[
Φ−1ϕ(µs, t)

]
⊗ Ωs · Vs(0) +

[
Φ−1

ˆ t

0

ϕ(µs, t− τ)dτ

]
⊗ Ωs ·BsI

=
[
Φ−1ϕ(µs, t)

]
⊗ Ωs · Vs(0) +

[
Φ−1

(
ϕ̄(µs, t)− ϕ̄(µs, 0)

)]
⊗ Ωs ·BsI, (A.4)

where

ϕ̄(µs, t) =

[
t eµsλ2t

µsλ2
· · · eµsλNt

µsλN

]⊤
.

Given (A.4), Vs,1 can be expressed as

Vs,1(t) = e⊤1 Vs(t),

where e1 =

[
1 0 · · · 0

]⊤
N×1

.
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Appendix B

Derivation of Ve,1 and Ve,3 under Constant Current I

The explicit expressions of Ve,1 and Ve,3 under a constant current I are needed to represent Ue for

the identification of Θe in (4.6). We can follow similar lines in Appendix.A to find them out. Let

us rewrite the governing equations of sub-circuit B in (2.2) compactly as

V̇e(t) = AeVe(t) +BeI(t), (B.1)

where

Ve =

[
Ve,1 Vs,2 Ve,3

]⊤
,

Ae = µeΩe,

µe =
1

CeRe

,

Ωe =


−1 1 0

1 −2 1

0 1 −1

 ,

Be =

[
1
Ce

0 − 1
Ce

]⊤
.

The solution to (B.1) under a constant current I is

Ve(t) = eAetVe(0) +

ˆ t

0

eAe(t−τ)dτ ·BeI. (B.2)
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The eigenvalues of Ωe are 0,−1,−3, respectively. By the Cayley–Hamilton theorem, it follows

that

eAet =
[
Ψ−1ψ(µe, t)

]
⊗ Ωe, (B.3)

where

Ψ =


1 0 0

1 −1 1

1 −3 9

 ,

ψ(µe, t) =

[
1 e−µet e−3µet

]⊤
.

Based on (B.3), we can derive that

Ve(t) =
[
Ψ−1ψ(µe, t)

]
⊗ Ωe · Ve(0) +

[
Ψ−1

(
ψ̄(µe, t)− ψ̄(µe, 0)

)]
⊗ Ωe ·BeI, (B.4)

where

ψ̄(µe, t) =

[
t − e−µet

µe
− e−3µet

3µe

]⊤
.

With (B.4), one can extract Ve,1 and Ve,3 from Ve.
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