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Abstract  

Vertical velocity is the rate at which ice moves vertically within an ice sheet, usually measured in 

meters per year. This movement can occur due to various factors, including accumulation, ice 

deformation, basal sliding, and subglacial melting. The measurement of vertical velocities within 

the ice sheet can assist in determining the age of the ice and assessing the rheology of the ice, 

thereby mitigating uncertainties due to analytical approximations in ice flow models. 

We apply differential interferometric synthetic aperture radar (DInSAR) techniques to data from 

the Multichannel Coherent Radar Depth Sounder (MCoRDS) to measure the vertical displacement 

of englacial layers within an ice sheet. DInSAR’s accuracy is usually on the order of a fraction of 

the wavelength (e.g., millimeter to centimeter precision is typical) in monitoring displacement 

along the radar line of sight (LOS). Ground-based Autonomous phase-sensitive Radio-Echo 

Sounder (ApRES) units have demonstrated the ability to precisely measure the relative vertical 

velocity by taking multiple measurements over time from the same location on the ice. Airborne 

systems can make a similar measurement but can suffer from deleterious spatial baseline effects 

since it is generally impossible to fly over the same stretch of ice on each pass with enough 

precision to ignore the spatial baseline. In this work, we compensate for spatial baseline errors 

using precise trajectory information and estimates of the cross-track layer slope using direction of 

arrival estimation. The current DInSAR algorithm is applied to airborne radar depth sounder data 

to produce results for flights near Summit Camp and the EGIG (Expéditions Glaciologiques 

Internationales au Groenland) line in Greenland. The existing approach estimates the parameters 

in multiple separated steps. However, each step has dependencies on all the values being estimated. 

To overcome this drawback, we have implemented a maximum likelihood estimator that jointly 

estimates the vertical velocity, the cross-track internal layer slope, and the unknown baseline error 
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due to GPS and INS (Inertial Navigation System) errors. We incorporate the Lliboutry parametric 

model for vertical velocity into the maximum likelihood estimator framework.  

To improve the direction of arrival estimation of the internal layer slope, we also explore the use 

of focusing matrices against other wideband direction of arrival methods, such as wideband MLE, 

wideband MUSIC, and wideband MVDR, by comparing the mean squared error of the DOA 

estimates. 
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1 INTRODUCTION 

The quest to unravel the mysteries beyond human perception has captivated humanity for 

centuries. By the late 19th Century, Heinrich Hertz demonstrated that metallic objects could reflect 

radio waves, confirming the earlier hypothesis postulated by James C. Maxwell in his 

electromagnetism work [1]. In 1904, Christian Hülsmeyer built a ship detection device for collision 

avoidance based on this principle [2]. Radar, which stands for radio detection and ranging, was 

born out of this and has grown to be applied in various remote sensing-based applications. World 

War II further accelerated the development of radar technology, and as such, radar has deep 

military roots. There are also a growing number of civilian applications [3]. 

Radar works by transmitting electromagnetic (EM) waves toward a region of interest with 

targets and then receiving and detecting these EM waves after scattering from objects in that 

region. The major subsystems of a typical radar include a transmitter, an antenna, a receiver, and 

a signal processor, as shown in Figure 1-1. 

The transmitter generates the EM waves fed into an antenna that introduces them into the 

propagation medium, usually the atmosphere. If a standard antenna is used for transmit and 

receive, a transmit/receive (T/R) device (usually a circulator or a switch) allows the transmitter 

and receiver to be attached simultaneously.  At the same time, the T/R device provides isolation 

between the transmitter and receiver to protect the sensitive receiver components from the high-

power transmit signal. The transmitted signal propagates through the medium to the target and 

induces currents on the target. The target reradiates into the environment and back to the antenna 

(and receiver circuitry). The received signal at the antenna is a linear superposition of the desired 

targets and unwanted clutter signals. The receiver circuitry amplifies, filters, and subsequently 

digitizes the signal with an analog-to-digital converter (ADC). A detector removes the carrier from 
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the modulated target return signal. The signal processor then analyzes the ADC-captured target 

data.  

 

Figure 1-1: Example radar transmission/reception process [4]. 

Since the signal travels to and from the target, we can find the range, 𝑅 to the target by using the 

distance equals the speed of light, 𝑐, multiplied by time, 𝑡𝑑 , equation. We divide this by 2 to 

account for the two-way travel time. 

𝑅 =
𝑐 × 𝑡𝑑

2
 

1.1 

Generally, the returned signal will have interference from internal and external sources. The 

fundamental function of the radar’s signal processor is to determine the presence of a target and/or 

estimate some target property in the presence of noise [4]. 

Radar has been extensively applied in remote sensing of ice sheets because ice (water) 

exhibits exceptionally low attenuation in specific regions of the electromagnetic spectrum, as 
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illustrated in Figure 1-2. This dissertation centers on the utilization of multipass radar sounder 

interferometry and tomography to investigate ice sheets.  

 

Figure 1-2: Attenuation of water versus frequency bands [5]. 

Ice sheets are a significant part of the Earth's system, and studying their behavior, especially the 

ice-sheet mass balance, which directly affects sea level rise, is therefore essential. Ice-sheet mass 

balance refers to the ice mass gain (accumulation) in relation to loss (ablation), and negative mass 

balance occurs if the loss exceeds the gain. Another example of how ice sheets affect the Earth's 

system is that meltwater from ice shelves (and melting icebergs) can lead to changes in the ocean's 

freshwater balance, hence affect climatic and ecological outcomes. Radar remote sensing can 

measure the thickness and changes in the ice sheets, including ice shelves. The measurements help 

reduce uncertainties in predicting these climatic and ecological outcomes [6]. The Center for 
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Remote Sensing and Integrated Systems (CReSIS) develops radar systems and techniques to study 

ice sheets, and this dissertation focuses on using data collected by the CReSIS multichannel 

coherent radar depth sounder (MCoRDS) [7]. 

1.1 CReSIS Radar Depth Sounder 

CReSIS radar depth sounders (RDS) provide crucial boundary condition information to inform ice 

sheet models and facilitate other ice sheet analyses [8]. The RDS dataset comprises geolocated 

radar profile images along with ice thickness, ice surface, and ice bottom elevations acquired over 

Greenland, Canada, Alaska, and Antarctica. The RDS operates by transmitting a pulse of RF 

energy into the ice sheet, where a fraction of the energy reflects from the ice surface, ice bottom, 

and englacial targets; the reflections being caused by a contrast in the (electromagnetic) 

constitutive properties of the medium. The data collected by the RDSs have been continuously 

acquired since 1993, with support from NASA and NSF grants. 

In the context of radio frequency signal propagation through the ice, it is typically observed that 

the signal detected from the ice surface is of greater magnitude than the signal received from the 

ice bottom. This is due to the attenuation of RF signals as they traverse through the ice and the 

greater range to the target. To adequately capture the large dynamic range of these signals, distinct 

receiver gains are used. To optimize the sensing capabilities of RF signals in ice, using multiple 

waveforms of varying pulse durations, usually two or three, is favored over a single pulse duration. 

In this regard, a waveform with a short pulse duration is employed for nearby targets that do not 

necessitate high sensitivity. For instance, a pulse with a duration of 1 µs coupled with lower 

receiver gain settings is utilized to measure the round-trip signal time for the ice surface echo. This 

way, the transmitter can be fully off before the returned signal arrives. Conversely, a pulse with a 
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longer duration of 10 µs and higher receiver gain settings is used to measure the round-trip signal 

time for the ice bottom echo, thereby enabling enhanced sensitivity. 

1.2 Ice-Sheet Modeling 

It is widely acknowledged within the literature that models, inherently approximations of complex 

realities, should not be unequivocally relied upon to produce perfect outcomes. However, as 

George Box (1987) wrote, “all models are wrong, but some are useful,” we can use models to 

glean some understanding of the complex reality. Simulation of historical variations by models of 

the glaciers and ice sheets can enable the projection of forthcoming changes. These models need 

to consider two primary factors: the mass change induced by accumulation (snowfall) and ablation 

(snowmelt) on the glacier, and the ice flow under its weight [9]. 

Currently, ice sheet models are built upon 2D assumptions, as illustrated in Figure 1-3 for the Pine 

Island Glacier. The ice sheet's contribution to sea level rise (Figure 1-6) can be predicted using a 

2D finite element model (Figure 1-3), the observed surface velocity (Figure 1-4), ice thickness 

(Figure 1-5), and other variables like climatic variables (such as temperature, precipitation, and 

wind patterns), oceanic variables (such as the temperature and salinity of the ocean), and glacier 

geometry. The inputs used to predict sea level rise from glaciers can be quite complex and may 

involve a range of environmental factors. A 2D finite element model is a mathematical 

representation that approximates the behavior of a physical system in two dimensions, such as the 

surface of an ice sheet. The model divides the system into small geometric shapes called finite 

elements and approximates the behavior of each element using mathematical equations. The model 

takes into account the physical properties of the system, such as the mechanical properties of the 

ice, and the boundary conditions, such as the forces acting on the ice. By solving the equations for 

each element, the model can be used to predict the behavior of the system as a whole.  
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The models typically used to simulate the ice sheet for sea-level projection are finite 

element models. They usually use a thin-film approximation (Shallow Ice Approximation) for the 

vertical velocity structure. Part of this comes from the fact that historically it has not been possible 

to measure the distributed vertical velocity of the ice sheet. So, these models have not been 

developed to naturally incorporate englacial datasets like radar layer geometry and radar-derived 

vertical velocity.  This research enables the creation of reliable vertical velocity datasets that can 

be incorporated into new or updated ice sheet models. 

 
Figure 1-3: 2D finite element model and mesh of glaciated catchment [10]. 

 
Figure 1-4: Observations of surface velocity [10]. 
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Figure 1-5: Ice thickness determined from ice-penetrating radar like MCoRDS [10] 

 
Figure 1-6: Prediction of ice sheet contribution to sea-level [10]. 
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1.3 Motivation 

The mass balance of ice sheets is a pivotal determinant in rising sea levels. Accurately 

predicting future sea-level rise relies heavily on reducing parametric uncertainty in ice-sheet 

models. Ice sheet flow models can benefit from englacial ice velocity measurements. Stationary 

ground-based Radio-Echo Sounders, like ApRES units, are being used to produce vertical velocity 

fields. However, the coverage of such systems is limited, and their precise positioning is achieved 

either by leaving them in position between repeat measurements or by using markers (flags) to 

ensure zero spatial baselines. 

In contrast, airborne systems can cover larger areas but suffer from unknown baseline errors 

due to GPS and Inertial Navigation System (INS) errors. Currently, the airborne DInSAR 

algorithm estimates the baseline error due to GPS after Direction of Arrival (DOA) estimation. 

However, the accuracy of DOA estimation is contingent upon a precise baseline. Therefore, a Joint 

Maximum Likelihood Estimation (MLE) of the parameters is proposed to mitigate this issue. 

Comprehensive research endeavors are warranted to better understand the physical processes 

driving ice sheet mass balance and enhance our capacity to forecast its evolution in the face of 

ongoing climate change. 

1.4 Study Area Location 

The Summit region in Greenland has been chosen as the study area for this research. The 

Summit region, as shown in Figure 1-7, is situated in the central part of the Greenland ice sheet, 

and it is the highest point of the ice sheet, reaching an elevation of about 3,216 meters (10,551 

feet) above sea level. This location provides a unique opportunity to study the dynamics of the 

Greenland ice sheet and its response to climate change. 
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Figure 1-7. Geolocation of the study area [11]. (Credit: A. Adolph, M. Albert, and D. Hall) 

One of the primary reasons for selecting the Summit region as the study area is the 

availability of good-quality data within the CReSIS archives. The CReSIS program is a 

collaborative effort between several institutions and government agencies to collect and analyze 

data on the Earth's polar ice sheets using airborne and satellite-based remote sensing technologies. 

The Summit region has been surveyed by the CReSIS program for many years, resulting in a 

wealth of data that can be used to study various aspects of the Greenland ice sheet, such as its 

thickness, velocity, and internal structure. 

Another advantage of the Summit region is the presence of ground truth data that can be 

used to validate the results of the joint estimation process. Ice cores, for example, provide a record 

of past climate change that can be used to evaluate the accuracy of the proposed joint estimation 

algorithm. Additionally, crossing lines allow for accurate measurement of ice thickness and other 
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relevant parameters (e.g. layer slopes), which can be used to calibrate and validate remote sensing 

measurements. Another ground-based system that can provide valuable validation information for 

the Summit region is the phase-sensitive Radio Echo Sounder (pRES) (Figure 1-8) which can 

accurately measure the ice sheet's thickness and other parameters. While the pRES system has less 

coverage than airborne systems, its accuracy makes it a vital ground truth data source. 

The Summit region in Greenland is an ideal location for this research and for studying the 

dynamics of the Greenland ice sheet due to the wealth of available data and ground truth 

information.   

 
Figure 1-8.  Map showing the Summit flight lines relative to ground-based (pRES) data collection. 

(Credit: Dr. Nick Holschuh) 
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1.5 Dissertation Outline 

This dissertation addresses two main problems: joint estimation in multipass interferometry and 

focusing matrices for wideband tomographic processing. Chapter 2 covers the general background 

to introduce concepts necessary to understand the two problems: synthetic aperture radar (SAR), 

direction of arrival (DOA) estimation, and interferometry. 

Chapter 3 discusses the multipass interferometry application in estimating ice layer displacement 

and cross-track slope. This chapter includes the results of the joint estimation framework using 

simulated data and actual data from CRESIS.  It also compares the results from joint estimation 

with ground truth data. 

Chapter 4 looks at the application of focusing matrices in DOA estimation for wideband arrays 

compared to other wideband methods.  

Chapter 5 highlights the conclusions and recommendations drawn from the results in Chapters 3 

and 4. 

1.6 Notation and Terminology 

Where it is not explicitly stated, the following terminology will be used: 

The letter 𝑗 denotes the imaginary part of a number and is defined as √−1. 

Scalar quantities are denoted by uppercase or lowercase letters, while vector quantities are 

denoted by boldface, lowercase letters. Matrices are represented by boldface, uppercase 

letters. 

Complex conjugation is denoted by (⋅)∗. 

(⋅)𝑇 denotes the vector or matrix transpose operation. 

(⋅)𝐻 denotes the complex conjugate, or Hermitian vector or matrix transpose. 
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Tr(⋅) is the trace operator. 

The symbol ∗ denotes convolution. 

Vertical bars | ⋅ | denote the modulus of a complex number or the magnitude of a real 

number. When around a vector, the vertical bars denote the Euclidean norm. 

Double vertical bars ∥⋅∥ denote the Frobenius matrix norm. 

1.7 Publication Record 

Two conference papers were presented in 2020 and 2022 at the International Geoscience and 

Remote Sensing Symposium (IGARSS) and the International Symposium on Phased Array 

Systems and Technology (PAST), respectively. There is one paper on sparse array processing that 

is in the process of being submitted to the IEEE Transactions on Radar Systems. The list of 

publications is summarized here: 

1. B. Miller, G. Ariho, J. Paden and E. Arnold, "Multipass SAR Processing for Radar Depth 

Sounder Clutter Suppression, Tomographic Processing, and Displacement Measurements," 

IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 

2020, pp. 822-825, doi: 10.1109/IGARSS39084.2020.9324498. 

2. G. Ariho, J. Paden, A. Hoffman, K. Christianson and N. D. Holschuh, “Joint estimation of 

ice sheet vertical velocity and englacial layer geometry from multipass synthetic aperture 

radar data,” PAST 2022 – 2022 International Symposium on Phased Array Systems and 

Technology 

3. G. Ariho, J. M. Stiles, and P. S. Tan “Processing of Non-contiguous Radar Transmission 

Spectra,” (to be submitted to the IEEE Transactions on Radar Systems) 
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2 BACKGROUND 

This chapter aims to comprehensively review the background and fundamentals of SAR, 

InSAR, DInSAR, and related techniques. This review will set the stage for a detailed discussion 

of multipass interferometry, which represents a critical component in estimating the vertical 

velocities of ice sheets. 

2.1 Introduction 

Interferometry utilizes the phase difference between two Synthetic Aperture Radar (SAR) 

images to generate a geometric terrain image of the scene. Interferometric SAR (InSAR) combines 

(i.e., interferes) two images acquired from marginally different positions or phase centers to 

produce three-dimensional (topographic) images of the earth’s surface. Differential InSAR 

(DInSAR) is an advanced technique that builds upon the principles of conventional InSAR to 

enable precise measurements of surface deformation over time. Both InSAR and DInSAR make 

use of the interferometric phase to deduce changes in the range to the scene between 2 or more 

SAR images; InSAR handles the phase variations due to the elevation angle of the target, and 

DInSAR handles the phase variations due to radial or range displacements of the target over time.  

2.2 Synthetic Aperture Radar (SAR) 

Synthetic aperture radar (SAR) is a coherent active remote sensing system that exploits the 

platform motion to simulate a very large antenna (aperture) electronically, using the fact that 

several (usually many) pulses illuminate the target (image scene) as the radar beam passes over it. 

A coherent combination of the received signals permits the realization of an effective simulated 

aperture that is considerably longer than the physical antenna length. Figure 2-1 illustrates the 

formation of a synthetic antenna array. Compared to the real (physical) aperture, this larger 
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synthetic aperture leads to finer spatial resolution in the SAR image. A SAR image is a two-

dimensional map of the scattering intensity of the image scene. Each pixel in the radar image is a 

complex number representing the energy scattered back to the antenna. When multiple antennas 

arrayed in the cross-track dimension each collect SAR data, the SAR images can be combined to 

generate three-dimensional images of the scene [12]. 

 
Figure 2-1: Formation of a synthetic antenna array considering horizontal beamwidth on the 

ground. 

For a real aperture radar (RAR), the spatial resolution depends on the size of the physical antenna 

used, pulse duration (𝜏𝑝), and the antenna beamwidth. The larger the antenna, the finer the spatial 

resolution. This dependence on the antenna's physical size can lead to typical resolutions on the 

order of several kilometers. The range, 𝜎𝑟, and azimuth, 𝜎𝑥, resolution for RAR are defined in 

equations 2.1 and 2.2, respectively. 

𝜎𝑟 =
𝑐𝜏𝑝

2
 

 2.1 

 

Velocity vector 

        

Radar beam 

First time SAR 
senses object 

Last time SAR senses 
object 

Distance traveled while object was 
in view = synthetic aperture,     
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where 𝑐 is the speed of light, and 𝜏𝑝 is the compressed pulse duration. For side-looking radar, the 

ground range resolution is 𝜎𝑔𝑟 =
𝜎𝑟

sin(𝜃𝑖)
 where 𝜃𝑖 is the incidence angle. The azimuth resolution is 

given by: 

𝜎𝑥,𝑅𝐴𝑅 ≈
𝜆𝑅

𝑑 
, 

 2.2 

where 𝑑  is the physical/real antenna length, 𝑅 is the distance between the antenna and the object, 

and 𝜆 is the wavelength of the center frequency. 

SAR benefits from the Doppler history of the radar echoes to synthesize a very large antenna that 

allows finer azimuth resolution despite a physically small antenna. Taking the beamwidth of an 

antenna of length 𝑑  to be approximately 𝛽 = 𝜆/𝑑 , we can deduce from Figure 2-2 that the 

corresponding maximum synthetic aperture length is given by    = 𝛽 𝑅𝑜 = 𝜆𝑅𝑜/𝑑 .  𝑅𝑜 is the 

slant range associated with the range of closest approach to the target. The synthetic beamwidth 

for this aperture is 𝛽  = 𝜆/2    where the factor of 2 occurs since both the transmit and receive 

path are affected when the radar platform is moved; hence doubling the effect. This results in the 

azimuth resolution, 𝜎𝑥, given in Equation 2.3.  

𝜎𝑥 = 𝑅0𝛽  = 𝑅0

𝜆

2   
=

𝑑 

2
 

2.3 

Equation 2.3 shows that the azimuth resolution for SAR is independent of both the wavelength 

and the distance from the radar to the target. It further suggests that a shorter antenna offers the 

potential for a finer azimuth resolution because a larger synthetic aperture can be constructed due 

to the wide beamwidth of a smaller antenna [13]. Very small resolution cells are achievable since 

the azimuth resolution is directly proportional to the length of the actual antenna. However, SAR 
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data are rarely processed at the finest possible resolution because of the desire to average the 

returns over several neighboring resolution cells to reduce speckle noise [14]. 

 
Figure 2-2: Illustration of the SAR imaging geometry. 𝛽  is the azimuth beamwidth and 𝑣SAR is 

the sensor velocity[13]. 

The two-dimensional image scene produced by SAR processing is a result of the coherent matched 

filter processing of the raw data, also known as phase history. The processed/focused image has 

two orthogonal axes: the range axis, determined by the time delay of the received pulse, and the 

cross-range (azimuth) axis, determined by the synthetic aperture length. To obtain a geocoded 

image of the physical features of the image scene, the physical features are projected into the two-

dimensional ground plane during processing, shown by the swath in Figure 2-2 [15]. 

The SAR image can have fine resolution in the range direction due to the use of wide bandwidth 

pulses like the linear frequency modulated chirp (Equation 2.4).  
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𝑠(𝑡) = 𝑟𝑒𝑐𝑡 (
𝑡

𝑇𝑝𝑑
) 𝑒𝑗(2𝜋𝑓𝑐𝑡+𝜋𝛼𝑡2) 

2.4 

where the pulse has a carrier frequency 𝑓𝑐, frequency modulation (FM) or chirp rate 𝛼, and duration 

𝑇𝑝𝑑. 

The SAR image also has a fine resolution in the cross-range direction because of the use of a 

synthesized antenna and coherent processing of the phase history of the received signals from 

several successive pulses (also known as azimuth compression). Before the signal processing 

begins, the collection of the target's total phase and amplitude history for the duration of the 

integration or dwell time is required. Typical integration times are application dependent but 

usually on the order of a second [15]. SAR resolves both the amplitude and phase of the 

backscattered echoes. However, the phase of a single SAR image is generally of no practical use 

except when there are two (or more) SAR images that can be used to form an interferometric pair 

or pairs.  

2.3 Interferometric Synthetic Aperture Radar (InSAR) 

Interferometric SAR uses the differential phase from multiple passes or multiple displaced phase-

centers on a single pass to form an image known as an interferogram (measured in radians of phase 

difference). The distance between two passes in the plane perpendicular to the flight path is called 

the interferometer baseline, 𝐵 (Figure 2-3), and its projection perpendicular to the slant range is 

the perpendicular baseline, 𝐵⊥. The slave image is co-registered and resampled to the same grid 

as the master image. The interferogram is the product of the master image and the conjugate of the 

slave image.  
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Figure 2-3: InSAR geometry. 

If we approximate the transmitted signal (of wavelength 𝜆) to a pure sinusoid with phase 𝜙, that 

has a linear relationship with the slant range coordinate, r, we can write: 

𝜙 =
2𝜋𝑟

𝜆
. 

 2.5 

Assuming that the transmitted signal has a phase of zero, then the backscattered signal that travels 

a distance of 2𝑅, incurs a phase delay (in radians) of: 

𝜙 = −
4𝜋𝑅

𝜆
+ 𝜙 𝑐 𝑡 , 

 2.6 

where 𝜙 𝑐 𝑡 is the phase due to the scattering within the resolution cell. 

So, for the master and slave pass, we have 𝜙1 = −
4𝜋𝑅1

𝜆
+𝜙 𝑐 𝑡,1 and 𝜙2 = −

4𝜋𝑅2

𝜆
+𝜙 𝑐 𝑡,2 

respectively. Therefore, the interferometric phase is then given by: 
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𝜙𝑖𝑛𝑡 = 𝜙2 − 𝜙1 = (−
4𝜋𝑅2

𝜆
+ 𝜙 𝑐 𝑡,2) − (−

4𝜋𝑅1

𝜆
+ 𝜙 𝑐 𝑡,1). 

2.7 

Since 𝑅2 = 𝑅1 + Δ𝑅  and if we assume the scattering phases are approximately the same so that 

𝜙 𝑐 𝑡,1 ≈ 𝜙 𝑐 𝑡,2, we can rewrite Equation 2.7 as: 

𝜙𝑖𝑛𝑡 = −
4𝜋ΔR

𝜆
. 

2.8 

The scattering phases are the same when the baseline is small enough that the target scattering is 

coherent between the two passes. This is the case as long the baseline is less than the critical 

baseline for the target, and the target scattering properties have not changed [16]. 

The interferogram phase changes from one range bin to the next due to the slight change in the 

look angle between the range bins. If we denote the perpendicular-to-the-slant-range offset 

between one range bin and the next range bin as 𝑧 , then the change in interferometric range, ΔR, 

between the neighboring range bins can be approximated by 𝐵⊥𝑧 /𝑅  such that Equation 2.8 

becomes [17]; 

𝜙𝑖𝑛𝑡 = −
4𝜋

𝜆

𝐵⊥𝑧 
𝑅

. 
2.9 

This interferometric phase variation can be divided into two contributions: one related to the 

difference in elevation 𝑧 between the two neighboring range bins, and the other proportional to the 

slant range displacement 𝑠 between the two neighboring range bins assuming a flat reference plane 

as shown in Equation 2.10  [18]. 

𝜙𝑖𝑛𝑡 = −
4𝜋

𝜆

𝐵⊥𝑧

𝑅 sin 𝜃𝑖
−

4𝜋

𝜆

𝐵⊥𝑠

𝑅 tan 𝜃𝑖
 

2.10 

The operation of computing and subtracting the already known second term in Equation 2.10 from 

the interferometric phase is known as interferogram flattening or removal of the flat earth 
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interferometric phase. This operation creates a phase map proportional to the relative terrain 

elevation. 

To produce an interferogram, two (or more) SAR images corresponding to the master and slave 

passes are first coregistered by correlation to find the offset and difference in geometry between 

the two images. The slave image is then re-sampled to match the geometry of the master image, 

such that pixels are aligned to the same area on the ground in both images. Then, the conjugate 

multiplication of each pixel within the two images (i.e., the slave image with the complex 

conjugate of the master image) and removal of the phase due to the nominal or known elevation 

of the scene (interferogram flattening) creates the interferogram. The interferometric phase at each 

SAR image pixel is only influenced by the change in the travel paths from the SAR sensor to the 

resolution cell in consideration during the acquisition of each image. Phase unwrapping is then 

applied to produce a continuous deformation field by adding integer multiples of 2𝜋 phase, usually 

in a way that minimizes the overall phase discontinuities and produces the smoothest possible 

phase map. At this point, incoherent areas of the image may be masked out since low coherence 

usually indicates the phase is unreliable. Finally, the interferogram is geocoded by resampling 

from the acquisition geometry into the preferred geographic projection [17, 19, 20]. 

It should be noted that there is an upper limit of the spatial baseline (the critical baseline, 𝐵𝑐), over 

which the interferometric phase is pure noise. For a distributed area target, the critical baseline is 

𝐵𝑐 =
Δ𝑓𝑅 tan(𝜃 − 𝛾)

𝑓𝑜
  

2.11 

where Δ𝑓 is the chirp bandwidth of the radar system; 𝑅 denotes the distance from the sensor to the 

target; 𝑓0 is the transmit frequency; 𝜃 is the incidence angle; 𝛾 represents the slope angle of the 

ground surface or landform, which is generally ignored for simplification [16].  
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Interferometric SAR is used to measure tectonic deformation, volcanic inflation, ground 

subsidence, glacier movement (ice flow and tidal flexing), the stability of built structures, and to 

produce digital elevation maps (DEMs). 

2.4 Differential Interferometric Synthetic Aperture Radar (DInSAR) 

Differential InSAR (DInSAR) [21] reveals the respective topographic changes of an image scene 

that occurred during the time period between the first pass and the current pass, for example, in 

the event of subsidence. The topographic changes of an image scene over time introduce an 

additive phase term that is independent of the baseline; Δ𝜙𝑑 = 4𝜋𝑑/𝜆, where 𝑑 is the relative 

scatterer displacement projected onto the slant range direction. The flattened interferometric phase 

now comprises both the altitude (surface elevation) and motion contributions: 

𝜙𝑖𝑛𝑡 = −
4𝜋

𝜆

𝐵⊥𝑧

𝑅 sin 𝜃𝑖
+

4𝜋

𝜆
𝑑. 

2.12 

To get the differential interferogram, the altitude contribution must be subtracted from the 

interferometric phase, so a DEM must be available for the motion component to be measured. 

The basic principle of the DInSAR technique is illustrated in Figure 2-4 for a single-pixel footprint. 

During the master pass, the sensor generates the first SAR image at a time 𝑡0 associated with the 

phase 𝛷𝑀. Then during the next pass, which is referred to as the slave pass, the sensor acquires a 

second SAR image at a time 𝑡 associated with the phase 𝛷𝑆 and a land displacement 𝑧(𝑡) from 

point 𝑃(𝑡0) to 𝑃′(𝑡). DInSAR methods take advantage of the phase difference 𝛷𝑖𝑛𝑡 = 𝛷𝑀 − 𝛷𝑆 

(i.e., the interferometric phase) to reveal information about the land displacement 𝑧(𝑡).  
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Figure 2-4: The principle of DInSAR 

Therefore, we see that with two passes (i.e., two SAR images of the observed scene), we can 

generate topographic maps using InSAR. When a third flight is combined with these passes, we 

can now perform differential interferometry. Table 2-1 below summarizes the differences between 

InSAR and DInSAR. 

Table 2-1: Summary and comparison of InSAR and DInSAR [22] 

InSAR DInSAR 

Application: Digital Elevation Maps (DEM) Application: Displacement Maps 

Preferably simultaneous acquisitions Acquisitions that span the event to be studied in 

time 

Accuracy in the order of meters Relative accuracy in the order of millimeters 

Perpendicular baseline must be large Perpendicular baseline should be small 

Sensitivity: kz =  −
4𝜋

𝜆

𝐵⊥𝑧

𝜌 sin𝜃𝑖
 Sensitivity:   k𝜙 =  −

4𝜋

𝜆
      k𝑣 =  −

4𝜋

𝜆
Δ𝑡 
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2.5 Direction of Arrival Estimation 

Direction of arrival (DOA) estimation in radar uses signal processing to pinpoint the signal 

scattering’s angle of arrival relative to the sensor. DOA estimation requires a signal model relating 

the positions of the sources or scatterers to the sensor array measurements. For this research, an 

arbitrary planar array is assumed, as shown in Figure 2-5, where the angle 𝜃𝑞 is the direction of 

arrival of a single source. 

2.5.1 Signal model for DOA estimation 

Consider an arbitrary antenna array with a collection of 𝑃 elements in a two-dimensional plane 

with respect to a reference point that will serve as the origin for the array that is near the center or 

centroid of the elements.  Figure 2-5 illustrates this arbitrary planar array configuration. We 

assume 𝑄 sources or targets that are uncorrelated. We also assume the sources to be narrowband. 

We do not make the far-field assumption [23]. 

 

Figure 2-5: Arbitrary planar array configuration 
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The sensors will receive the same signal but at marginally different time instants. Let the signal 

measured at a reference point be denoted by 𝑠(𝜏) and Δ𝜏𝑝denote the relative difference in the 

signal propagation between the reference point and the pth sensor, then the received signal at the 

pth sensor can be written as; 

𝑥𝑝(𝜏) = 𝑠(𝜏 − Δ𝜏𝑝) + 𝑛𝑝(𝜏), 2.13 

where 𝑛𝑝(𝜏) is additive noise. 

From the geometry of Figure 2-5, we can write the extra distance traveled by the signal to each 

sensor relative to the centroid as; 

𝑑𝑝 = |𝒓𝑝𝑞| − |𝒓𝑞|, 2.14 

where 𝒓𝑞 is the range of the 𝑞𝑡ℎ  source and 𝒓𝑝𝑞  is the distance from 𝑞𝑡ℎ source to 𝑝𝑡ℎelement of 

the receiver. 

The corresponding delay in time is obtained by dividing this extra distance by the speed of 

propagation; 

Δ𝜏𝑝 =
𝑟𝑝𝑞 − 𝑟𝑞

𝑐
, for 𝑝 = 1,2, … . . , 𝑃 

2.15 

where 𝑐 is the speed of propagation.  

By combining Equations 2.13 and 2.15, we get the model for a single source [23]: 

𝑥𝑝(𝜏) = 𝑠 (𝜏 −
𝑟𝑝𝑞 − 𝑟𝑞

𝑐
) + 𝑛𝑝(𝜏). 

2.16 

This model is valid for both wideband and narrowband cases. 
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2.5.2 Narrowband Signal Model 

For narrowband arrays with center frequency 𝜔𝑐, the domain of possible values for Δ𝜏 is small 

enough that the signal envelope stays relatively constant over the array, and the signal delayed by 

Δ𝜏 can be approximated by [24]: 

𝑠(𝜏 − Δ𝜏) ≈ 𝑠(𝜏)𝑒−𝑗𝜔𝑐Δ𝜏, 2.17 

where 𝑠(𝜏) = 𝛼𝑒𝑗𝜔𝑐𝜏𝑒𝑗𝜙(𝜏) is the modulated signal, 𝛼 is the amplitude, and 𝜙 the phase of the 

signal.  Using Equation 2.16 in 2.13 yields 

𝑥𝑝(𝜏) = 𝑠(𝜏)𝑒−𝑗𝜔𝑐Δ𝜏𝑝 + 𝑛𝑝(𝜏). 2.18 

By combining this for all sensors into a vector, we get  

[

𝑥1(𝜏)

𝑥2(𝜏)
⋮

𝑥𝑃(𝜏)

] = [

𝑒−𝑗𝜔𝑐Δ𝜏1

𝑒−𝑗𝜔𝑐Δ𝜏2

⋮
𝑒−𝑗𝜔𝑐Δ𝜏𝑃

] 𝑠(𝜏) + [

𝑛1(𝜏)

𝑛2(𝜏)
⋮

𝑛𝑃(𝜏)

]. 

2.19 

This can be written in vector form as 

𝒙(𝜏) = 𝒂(𝜃, 𝜔𝑐)𝑠(𝜏) + 𝒏(𝜏). 2.20 

The vector 𝒂(𝜃, 𝜔𝑐) = [𝑒−𝑗𝜔𝑐Δ𝜏1   𝑒−𝑗𝜔𝑐Δ𝜏2   ⋯    𝑒−𝑗𝜔𝑐Δ𝜏𝑃]
𝑇
 is known as the steering vector. 

Equation 2.19 (and 2.20) is the DOA estimation model for a narrowband source signal. 

2.5.3 Wideband Signal Model 

For wideband signals, the steering vector depends on the frequency since the signal can no longer 

be assumed to remain constant across the whole array, as we did with the narrowband case. To 

formulate the wideband signal model, we need to decompose the wideband signals into several 

narrowband signals using a filter bank. The received signal is a superposition of signals from 

multiple sources that simultaneously impinge on the sensor array. For 𝑄 sources and the 
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narrowband component 𝑠𝑞(𝑚, 𝜔𝑘) associated with the center frequency 𝜔𝑘 of the 𝑞𝑡ℎ source at 

snapshot index 𝑚, we can write Equation 2.19 as 

[

𝑥1(𝑚,𝜔𝑘)

𝑥2(𝑚,𝜔𝑘)
⋮

𝑥𝑃(𝑚,𝜔𝑘)

] = [𝒂(𝜃1, 𝜔𝑘)    𝒂(𝜃2, 𝜔𝑘) ⋯   𝒂(𝜃𝑄 , 𝜔𝑘)]

[
 
 
 
𝑠1(𝑚,𝜔𝑘)

𝑠2(𝑚, 𝜔𝑘)
⋮

𝑠𝑄(𝑚,𝜔𝑘)]
 
 
 
+ [

𝑛1(𝑚,𝜔𝑘)

𝑛2(𝑚,𝜔𝑘)
⋮

𝑛𝑃(𝑚,𝜔𝑘)

], 

 2.21 

This can be written using matrix operations as: 

𝒙(𝑚,𝜔𝑘) = 𝑨(𝜔𝑘)𝒔(𝑚,𝜔𝑘) + 𝒏(𝑚,𝜔𝑘),        𝑚 = 1,… ,𝑀 and 𝑘 = 1,… , 𝐾. 2.22 

Since the steering vectors don’t depend on 𝑚, we write a single matrix expression for all snapshots 

as:  

𝑿(𝜔𝑘) = 𝑨(𝜔𝑘)𝑺(𝜔𝑘) + 𝑵(𝜔𝑘),          𝑘 = 1,… , 𝐾 2.23 

where 𝑿 is 𝑃 ×𝑀 , 𝑨 is 𝑃 × 𝑄, 𝑺 is 𝑄 ×𝑀, 𝑵 is 𝑃 ×𝑀, and 𝑄 < 𝑃. Each of the M columns of 

the matrices corresponds to a separate snapshot. 

2.5.4 Narrowband DOA Methods 

Just as the narrowband signal model is fundamental in developing the wideband signal model, 

similarly, the narrowband DOA methods are vital parts of wideband DOA estimation. A few 

narrowband DOA estimation methods will be highlighted here for the completeness of this report.  

2.5.4.1 Spatial Filtering 

Spatial filtering, which is analogous to convolution in the time domain, involves receiving the 

signal at the sensors and multiplying by filter coefficients and the directions where the power 

estimate peaks define the DOA estimates. The condition for receiving the signal from one direction 

of interest 𝜃𝑞 with no attenuation is the constrain that 𝒘𝐻𝒂(𝜃𝑞) = 1, where 𝒘 is the filter. The 

filter receives signals from that direction while attenuating all other directions. The condition for 
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canceling all other directions is 𝒘𝐻𝒂(𝜃) ≈ 0 for 𝜃 ≠ 𝜃𝑞. The received signal from different 

sensors, represented by vector 𝒙(𝑚,𝜔𝑘), is filtered with 𝒘 to obtain 

𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝜔𝑘) = 𝒘𝐻𝒙(𝑚,𝜔𝑘). 2.24 

The spectrum estimate when 𝒘 has been designed for 𝜃𝑞 is given by 

𝑆(𝜃𝑞) = 𝒘𝐻(𝜃𝑞)𝑹̂𝒘(𝜃𝑞), 2.25 

 where 𝑹̂ =
1

𝑀
∑ 𝒙(𝑚,𝜔𝑘)𝒙

𝐻(𝑚, 𝜔𝑘)
𝑀
𝑚=1  is the estimated covariance matrix. 

Beamformer: This is the most basic spatial filtering estimation method, which seeks to minimize 

𝒘𝐻𝒘 subject to 𝒘𝐻𝒂(𝜃) = 1, when 𝒘 is independent of the data. The solution to this optimization 

problem is 

𝒘 =
𝒂(𝜃)

𝒂𝐻(𝜃)𝒂(𝜃)
=

𝒂(𝜃)

𝑃
, 

2.26 

 where 𝑃 is the number of variables in 𝒘. Inserting Equation 2.26 into 2.25 yields the spectral 

estimate: 

𝑆(𝜃) =
𝒂𝐻(𝜃)𝑹̂𝒂(𝜃)

𝑃2
. 

2.27 

 Minimum Variance Distortionless Response (MVDR): Also known as the Capon method, MVDR 

involves designing a filter 𝒘 such that the overall power of the signal (𝐸 [|𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑|
2
]) is 

minimized subject to receiving a signal from one direction undistorted, i.e., to minimize 

(𝐸 [|𝑥𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑|
2
]) subject to 𝒘𝐻𝒂(𝜃) = 1. Using the Lagrange multiplier technique to handle the 

constrained optimization, the solution to this optimization problem is; 

𝒘 =
𝑹̂−1𝒂(𝜃)

𝒂𝐻(𝜃)𝑹̂−1𝒂(𝜃)
. 

2.28 
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 And using Equation 2.25, we get the spectral estimate as: 

𝑆(𝜃) =
1

𝒂𝐻(𝜃)𝑹̂−1𝒂(𝜃)
. 

2.29 

When the estimated covariance matrix is accurate enough, MVDR resolves sources better than the 

beamformer because of the data dependency of the optimization problem. 

2.5.4.2 Parametric Methods 

Parametric methods assume a model for the signal and estimate the parameters of the model. 

Usually, this is the assumption that the signal is a linear composition of complex exponentials. 

Examples of parametric methods include ESPRIT, MUSIC, and MLE, but we shall only expound 

on the MUSIC and MLE algorithms. 

MUltiple SIgnal Classification (MUSIC)[25]: MUSIC breaks the signal into noise and signal 

subspaces by applying eigenvalue decomposition to the covariance matrix (𝑹) of the 

measurements and generates a pseudospectrum that peaks very sharply around the true angles. 

Using the signal model in Equation 2.22, the covariance matrix can be expressed as: 

𝑹 = E[𝒙𝒙𝐻] = E[(𝑨𝒔 + 𝒏)(𝑨𝒔 + 𝒏)𝐻)] = E[𝑨𝒔𝒔𝐻𝑨 + 𝑨𝒔𝒏𝐻 + 𝒏𝒔𝐻𝑨𝐻 + 𝒏𝒏𝐻] 

 = 𝑨E[𝒔𝒔𝐻]𝑨𝐻 +  𝑨E[𝒔𝒏𝐻] + E[𝒏𝒔𝐻]𝑨𝐻 + E[𝒏𝒏𝐻] .      

 

 2.30 

Denoting the 𝑄 ×  𝑄 source covariance matrix with 𝑹  and noise covariance with 𝑵𝑐, we can write; 

𝑹 = 𝑨𝑹 𝑨
𝐻 +𝑵𝑐 , 2.31 

since the noise and the source signals are not correlated. By assuming that the noise is complex 

white noise, 𝑵𝑐 is simplified to 𝜎𝑛,𝑘
2 𝑰.  

𝑹(𝜔𝑘) = 𝑨(𝜔𝑘)𝑹 (𝜔𝑘)𝑨
𝐻(𝜔𝑘) + 𝜎𝑒,𝑘

2 𝑰. 2.32 
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The rank of 𝑨𝑹 𝑨
𝐻needs to be equal to the number of sources 𝑄. 𝑨𝑹 𝑨

𝐻 is positive semidefinite 

with 𝑄 non-zero eigenvalues and 𝑃 − 𝑄 eigenvalues equal to zero. The eigenvalue decomposition 

(EVD) of 𝑹 has the eigenvectors in 𝑼 and eigenvalues1 on the diagonal of 𝑽: 

𝑹 =  𝑼𝑽𝑼−1. 2.33 

𝑼 can be split into two parts: 𝑼𝑆 has the 𝑄 first eigenvectors corresponding to the eigenvalues 

𝜆1, 𝜆2⋯𝜆𝑄 and 𝑼𝑁 holds the rest of the eigenvectors corresponding to the eigenvalues 

𝜆𝑄+1, 𝜆𝑄+2⋯𝜆𝑃. 𝑼𝑆 is known as the signal subspace and 𝑼𝑁  as the noise subspace. 

From the definition of eigenvalues and the positive semidefinite properties of the two components 

of 𝑹; 

𝑹𝑼𝑁 = 𝑼𝑁 [

𝜆𝑄+1 0 0

0 ⋯ ⋮
0 0 𝜆𝑃

] = 𝑼𝑁 [
𝜎𝑛
2 0 0
0 ⋯ 0
0 0 𝜎𝑛

2
] = 𝜎𝑛

2𝑼𝑁 . 

2.34 

 But also, from Equation 2.33, 

𝑹𝑼𝑁 = 𝑨𝑹 𝑨
𝐻𝑼𝑁 + 𝜎𝑛

2𝑼𝑁 . 2.35 

 Such that; 

𝑹𝑼𝑁 = 𝑨𝑹 𝑨
𝐻𝑼𝑁 + 𝑹𝑼𝑁 ⟹  𝑨𝑹 𝑨

𝐻𝑼𝑁 = 0. 2.36 

 Since the steering vectors are linearly independent, 𝑨𝑹  has full rank, implying that;  

𝑨𝐻𝑼𝑁 = 0. 2.37 

 

 

 

1 It is assumed that the eigenvalues are sorted in descending order i.e., 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑃. 
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The true angles of the sources 𝜃1, …… , 𝜃𝑄 satisfy 𝒂(𝜃𝑞)𝑼𝑁𝑼𝑁
𝐻𝒂𝐻(𝜃𝑞) = 0, and the MUSIC 

pseudo-spectrum peaks very sharply around the true angles when using the estimated covariance 

matrix to obtain 𝑼𝑁 and is given by; 

𝑆(𝜃) =
1

𝒂(𝜃)𝑼𝑁𝑼𝑁
𝐻𝒂𝐻(𝜃)

. 
2.38 

MUSIC requires a decision for the number of sources 𝑄 prior to performing the final spectrum 

estimation. This decision can have a major impact on the result. Sravya et al and Mohanad et al 

discussed model order estimation to estimate 𝑄 in [26] and [27]. Assuming the white noise model 

for the covariance matrix of the noise, the Minimum Description Length (MDL) criterion [28] can 

be used to detect the number of sources using Equation 2.39. 

𝑀𝐷 (𝑞) = − log

(

 
 
(
∏ 𝜆𝑑

(1/𝑃−𝑞)𝑃
𝑑=𝑞+1

1
𝑃 − 𝑞

∑ 𝜆𝑑
𝑃
𝑑=𝑞+1

)

(𝑁−𝑞)𝑀

)

 
 

+
1

2
𝑞(2𝑃 − 𝑞) log𝑀 

 

 2.39 

The minimum of the MDL criterion gives the estimate of the number of sources: 

𝑄̂ = arg min
𝑞=1,2,…,𝑃

𝑀𝐷 (𝑞). 

 

2.40 

It should be noted that the number of sources 𝑄̂ for coherent methods can also be estimated using 

the Akaike Information Criterion (AIC) [29]; 

𝐴𝐼𝐶(𝑞) = (𝑃 − 𝑞)𝑀 log(

1
𝑃 − 𝑞

∑ 𝜆𝑑
𝑃
𝑑=𝑞+1

(∏ 𝜆𝑑
𝑃
𝑑=𝑞+1 )

1/(𝑃−𝑞)
 
) + 𝑞(2𝑃 − 𝑞), 

2.41 

 such that; 
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𝑄̂ = arg min
𝑞=1,2,…,𝑃

𝐴𝐼𝐶(𝑞). 2.42 

Maximum Likelihood Estimator (MLE): DOA estimation using MLE tries to maximize the 

likelihood function that the received signals came from a particular set of angles (𝜃). By assuming 

that the noise 𝒏(𝑡) is a stationary, ergodic, and Gaussian process of zero mean and variance 𝜎2𝑰 

with statistically independent samples, we can write the joint density function of the sampled data 

as:  

𝑓(𝑿) = ∏
1

𝜋 det[𝜎2𝑰]
exp (−

1

𝜎2
|𝒙(𝑚,𝜔𝑘) − 𝑨(𝜃)𝒔(𝑚,𝜔𝑘)|

2) .

𝑀

𝑚=1

 

 2.43 

The log likelihood function is given by 

𝑳(𝜃) = −𝑀𝑃 log 𝜎2 −
1

𝜎2
∑|𝒙(𝑚,𝜔𝑘) − 𝑨(𝜃)𝒔(𝑚,𝜔𝑘)|

2,

𝑀

𝑚=1

 

2.44 

with constant terms disregarded. 

We can further write the log-likelihood function as 

𝑳(𝜃) = ∑|𝑷𝑨(𝜃)𝒙(𝑚,𝜔𝑘)|
2
= Tr(𝑷𝑨(𝜃)𝑹),

𝑀

𝑚=1

 

2.45 

where, 𝑷𝑨(𝜃) = 𝑨(𝜃)(𝑨𝐻(𝜃)𝑨(𝜃))
−1

𝑨𝐻(𝜃) is the projection of the steering matrix. 

For deterministic MLE, the maximum likelihood estimate is found by maximizing the 

deterministic cost function below, assuming that the noise variance and target signal are unknown 

but non-random [30]; 

𝑱𝑀𝐿𝐸 = Tr(𝑷𝑨(𝜃)𝑹), 2.46 

MLE seeks to maximize the cost function, 𝐽𝑀𝐿𝐸  such that; 
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𝜃 = argmax
𝜃

(𝑱𝑀𝐿𝐸). 2.47 

2.5.5 Wideband Methods 

In this section, wideband methods that are frequently encountered in signal processing are 

discussed. The wideband spectrum estimate 𝑆 is evaluated at grid points denoted by 𝜗𝑔 while using 

a subset of the sub-bands denoted by 𝜅. The reasoning behind the use of a subset of the sub-bands 

is that the low and high-frequency sub-bands are often susceptible to low signal-to-noise ratio and 

aliasing. Wideband methods can broadly be categorized as incoherent, coherent, or sparse. Sparse 

methods, which are generally formed around 𝑙1-optimization, for example 𝑙1-SVD, are not 

discussed here. Note that the maximum likelihood estimator method extends to wideband 

processing, too, and does not fall into the above categories [31]. 

2.5.5.1 Incoherent Wideband Methods 

The incoherent methods are based on incoherently averaging narrowband results. They utilize 

narrowband methods for each sub-band  𝜔𝑘 independently and then combine these independent 

estimates that are denoted by 𝑆𝑘. The wideband spectrum estimate 𝑆 is the summation of the sub-

band  spectra. Summation-based MVDR (MVDR-S) and summation-based MUSIC (MUSIC-S) 

are examples of incoherent wideband DOA methods whose algorithms are presented below. The 

measurements are represented by 𝑿𝑘 and the angle grid by 𝜗1, … , 𝜗𝐺 

Summation-based MVDR (MVDR-S): For each 𝑘𝑡ℎ sub-band  (where 𝑘 ∈ 𝜅), the covariance matrix 

𝑹̂𝑘 is estimated as 𝑹̂𝑘 =
1

𝑀
𝑿𝑘𝑿𝑘

𝐻  , and for each of 𝐺 grid points, a corresponding narrowband 

spectrum estimate 𝑆𝑘 is processed as 𝑆𝑘(𝜗𝑔) =
1

𝒂𝐻(𝜗𝑔)𝑹̂𝑘
−1𝒂(𝜗𝑔)

 . Then the wideband spectrum 

estimate 𝑆 is the summation of the sub-band  spectra estimates: 
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𝑆(𝜗𝑔) = ∑ 𝑆𝑘(𝜗𝑔)
𝑘∈𝜅

. 2.48 

Summation-based MUSIC (MUSIC-S) [25]: For each 𝑘𝑡ℎ sub-band  (where 𝑘 ∈ 𝜅), the following 

are done: 

• The covariance matrix is estimated as: 𝑹̂𝑘 =
1

𝑀
𝑿𝑘𝑿𝑘

𝐻. 

• The EVD of 𝑹̂(𝜔𝑘) is calculated as: 𝑹̂(𝜔𝑘) = 𝑼̂(𝜔𝑘)𝑽̂(𝜔𝑘)𝑼̂
−1(𝜔𝑘). 

• The number of sources 𝑄̂𝑘 is estimated using Equation 2.40. 

• The matrix 𝑼̂𝑁(𝜔𝑘) is obtained, that contains eigenvectors of 𝑼̂(𝜔𝑘) corresponding to the 

𝑃 − 𝑄̂𝑘 smallest eigenvalues. 

Like with the MVDR-S algorithm above, for each of 𝐺 grid points, a corresponding narrowband 

spectrum estimate 𝑆𝑘 is processed as 𝑆𝑘(𝜗𝑔) =
1

𝒂𝐻(𝜗𝑔,𝜔𝑘)𝑼̂𝑁(𝜔𝑘)𝑼̂𝑁
𝐻(𝜔𝑘)𝒂(𝜗𝑔,𝜔𝑘)

 . Then the wideband 

spectrum estimate 𝑆 is the summation of the sub-band  spectra estimates: 

𝑆(𝜗𝑔) = ∑ 𝑆𝑘(𝜗𝑔)
𝑘∈𝜅

. 2.49 

2.5.5.2 Coherent Wideband Methods 

The coherent methods transform the sub-bands to a single reference frequency (generally the 

center frequency) so that narrowband methods can be applied. This contrasts with the previously 

discussed incoherent methods that combine the individual DOA estimates from different sub-

bands by summing the individual outputs. The Coherent Signal-Subspace Method (CSSM) 

algorithm that Wang introduced and Kaveh [29] performs the DOA estimation based on a single 

covariance matrix, the universal spatial covariance matrix (USCM), that characterizes the 

wideband signal. For the single reference frequency 𝜔0 that is representative of the wideband 

signal; we can write the narrowband signal model (Equation 2.32) as: 
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𝑹(𝜔𝑘) = 𝑨(𝜔0)𝑹 (𝜔0)𝑨
𝐻(𝜔0) + 𝜎𝑛,0

2 𝑰. 2.50 

We can then apply a subspace method like MUSIC to this model. The proceeding section 

demonstrates that these transformed sub-bands approximate the narrowband signal model. The 

method for estimating the transformation is discussed in chapter 4. 

Coherent methods are based on the idea that a steering matrix 𝑨(𝜔𝑘) can be transformed into 

another steering matrix 𝑨(𝜔0) at the reference frequency 𝜔0 by using an 𝑃 × 𝑃 transformation 

matrix 

𝑻(𝜔𝑘)𝑨(𝜔𝑘) = 𝑨(𝜔0). 2.51 

This matrix is called a focusing matrix [29]. The measurements are transformed by this matrix: 

𝒀𝑡(𝜔𝑘) = 𝑻(𝜔𝑘)𝑿(𝜔𝑘). 2.52 

 Using Equation 2.52, the covariance of the transformed measurements then becomes 

𝑹𝑡(𝜔𝑘) = ∑ E[𝑿𝑡(𝜔𝑘)𝑿𝑡(𝜔𝑘)
𝐻]

𝑘∈𝜅
= ∑ E[𝑻(𝜔𝑘)𝑿(𝜔𝑘)𝑻(𝜔𝑘)

𝐻𝑿(𝜔𝑘)
𝐻]

𝑘∈𝜅
 

= ∑ 𝑻(𝜔𝑘)𝑹(𝜔𝑘)𝑻(𝜔𝑘)
𝐻

𝑘∈𝜅
. 

 2.53 

When Equation 2.53 is used in Equation 2.32 to substitute for 𝑹(𝜔𝑘) while using the statement of 

Equation 2.51, we get 

∑ 𝑻(𝜔𝑘)𝑹(𝜔𝑘)𝑻(𝜔𝑘)
𝐻

𝑘∈𝜅
= ∑ 𝑻(𝜔𝑘)𝑨(𝜔𝑘)𝑹 (𝜔𝑘)(𝑻(𝜔𝑘)𝑨(𝜔𝑘))

𝐻
+ 𝜎𝑘

2𝑻(𝜔𝑘)𝑻(𝜔𝑘)
𝐻

𝑘∈𝜅
 

= ∑ 𝑨(𝜔0)𝑹 (𝜔𝑘)𝑨(𝜔0)
𝐻 + 𝜎𝑛,𝑘

2 𝑻(𝜔𝑘)𝑻(𝜔𝑘)
𝐻

𝑘∈𝜅
.                           

For Unitary transformation matrices, this simplifies to 

∑ 𝑻(𝜔𝑘)𝑹(𝜔𝑘)𝑻(𝜔𝑘)
𝐻

𝑘∈𝜅
= 𝑨(𝜔0)∑ 𝑹 (𝜔𝑘)𝑨(𝜔0)

𝐻 + 𝐾∑ (𝜎𝑛,𝑘
2 )𝑰 

𝑘∈𝜅𝑘∈𝜅
.  2.54 
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By denoting 𝑹 (𝜔0) = ∑ 𝑹 (𝜔𝑘)𝑘∈𝜅 , 𝜎𝑛,0
2 = 𝐾∑ 𝜎𝑛,𝑘

2  𝑘∈𝜅 , and 𝑹(𝜔0) =

∑ 𝑻(𝜔𝑘)𝑹(𝜔𝑘)𝑻(𝜔𝑘)
𝐻

𝑘∈𝜅 , Equation 2.54 becomes similar to Equation 2.50 and hence concludes 

the proof. A subspace method such as MUSIC is now applicable to the estimate 𝑹̂(𝜔0) =

∑ 𝑻(𝜔𝑘)𝑹̂(𝜔𝑘)𝑻(𝜔𝑘)
𝐻

𝑘∈𝜅 , from which the wideband spectrum can be obtained. MUSIC would 

require a decision for the number of sources 𝑄 in order to performing the final spectrum estimation 

and this is achieved by using the model order estimation methods shown in section 2.5.4.2 

(Equations 2.41 and 2.39). 

2.5.5.3  Wideband Maximum Likelihood Estimator 

To extend the MLE discussed in section 2.5.4.2 to the wideband case, the signal bandwidth is 

subdivided into 𝐾 sub-bands and the narrowband MLE is applied to the combined likelihood 

function, which is the summation of all the individual likelihood functions assuming the sub-bands 

are independent[31]. The wideband MLE cost function then becomes; 

𝑱𝑊𝑀𝐿𝐸 = ∑𝑱𝑀𝐿𝐸(𝜔𝑘)

𝐾

𝑘=1

, 
2.55 

where 𝐽𝑀𝐿𝐸(𝜔𝑘) is the narrowband MLE cost function at frequency 𝜔𝑘. 

Wideband MLE maximizes the cost function such that; 

𝜃 = argmax
𝜃

(𝑱𝑊𝑀𝐿𝐸). 2.56 

2.6 SAR Processing for Layered Media 

The dielectric properties of ice sheets are depth-dependent. This is due to variations in the density 

and chemistry of the ice, as well as the presence of impurities such as dust and air bubbles. The 

dielectric properties of the ice are typically estimated using a model that assumes the ice is a 

layered media with variation in the z-axis (vertical) only. 
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Range Doppler Algorithm (RDA) and Chirp Scaling Algorithm are signal processing techniques 

commonly used in radar imaging and remote sensing applications. However, in wideband 

scenarios, these algorithms cannot be applied reliably. In wideband scenarios, F-k migration (𝜔_𝑘 

algorithm (WKA)) is more reliable.  

The RDA algorithm employs a two-dimensional Fourier transform to convert the raw radar data 

from the time domain to the range-Doppler domain. The algorithm then applies filtering and 

thresholding to suppress noise and clutter and enhance the target signals.  

The Chirp Scaling Algorithm employs a time-domain scaling operation to transform the signal 

from the received domain to the transmitted domain, where it can be processed more efficiently.  

The F-k migration algorithm is based on the principle of wave propagation and is used to 

compensate for the effect of phase delays that arise due to variations in the radar antenna position. 

The F-k migration algorithm applies a two-dimensional Fourier transform. This transformation 

converts the data from the space-time domain to the frequency-wavenumber domain, where phase 

delays can be more easily identified and corrected. The algorithm then applies a phase correction 

to the data and performs an inverse Fourier transform to produce the final high-resolution image 

of the target scene [32]. 

 F-k migration is based on the exploding source model [33] and the scalar wave equation: 

𝛹 = 𝑒−𝑗𝒌𝑇𝑹+𝑗𝜔𝑡 2.57 

where Ψ is the wave function, that represents the amplitude and phase of the wave at a given point 

in space and time. 𝒌 is the wavenumber vector, which describes the direction and magnitude of 

the wave's propagation in space. 𝑹 is the position vector, which describes the location of the point 

in space where the wave function is being evaluated. 𝜔 is the angular frequency, and 𝑡 is time. 
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The rectangular components of the wavenumber vector obey the separation equation; 

𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2 = 𝑘2 = 𝜔2/𝑣𝑚

2  2.58 

where 𝑣𝑚 is the phase velocity, and 𝑘𝑥, 𝑘𝑦, and 𝑘𝑧 are the rectangular components of the 

wavenumber vector in the 𝑥, 𝑦, and 𝑧 axis. 

2.6.1 F-K Migration Algorithm  

The first step in the F-K migration algorithm is to transform the SAR signal data from the time 

domain to the frequency domain using a two-dimensional fast Fourier transform (FFT). 

In the next step, a reference function is computed for a selected range, usually the mid-swath range. 

This reference function is then multiplied by the frequency-domain data to apply both range and 

azimuth compression (reference frequency multiply (RFM)). The targets at the reference range are 

correctly focused, but targets away from that range are only partially focused. 

The next step in the F-K migration algorithm is to use Stolt interpolation to focus the remainder of 

the targets that were not fully focused by the RFM step. Stolt interpolation is a form of frequency-

wavenumber (F-k) migration that uses linear interpolation to adjust the wave numbers of the signal 

data in the frequency domain. 

The final step in the F-k migration algorithm is to transform the data back to the space-time domain 

using a two-dimensional inverse fast Fourier transform (IFFT). This step generates the final image 

in the SAR image domain, which is a focused representation of the subsurface targets [32]. 

Figure 2-6 summarizes the process flow for the F-k migration algorithm. 
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Figure 2-6: The F-k migration algorithm [32]  

2.6.2 Uniform Dielectric Half-space Model 

The uniform dielectric half-space model assumes that the subsurface consists of a uniform, 

homogeneous layer of a single dielectric material that extends to infinity in the horizontal direction. 

This model is often used as a first-order approximation of the subsurface. In the uniform dielectric 

half-space model, the subsurface is assumed to be characterized by two parameters: the 

permittivity and the conductivity of the material. The permittivity is a measure of how much the 

material can store electric charge, while the conductivity is a measure of how well the material 

conducts electricity. These parameters affect the way in which electromagnetic waves propagate 

through the subsurface and are used to model the reflection and transmission of these waves. While 
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the uniform dielectric half-space model is a useful approximation of the subsurface in some 

applications, it may not be accurate for more complex subsurface structures. In such cases, more 

sophisticated models, such as the layered subsurface model, may be necessary to accurately 

represent the subsurface and interpret the GPR data [34]. 

2.6.3 F-K Migration for Layered Media 

F-K migration for layered media involves extrapolating the wavefield through each layer 

individually by applying a phase shift to the wavefield at each depth within the layer [35].  

For an image 𝐼(𝑥, 𝑧) of the exploding sources, a wave field 𝑝(𝑡,  𝑥,  𝑧) is computed when the 

imaging condition is to set 𝑡 =  0, such that;   

𝐼(𝑥,  𝑧) =  𝑝(𝑡 =  0, 𝑥 𝑧,  ). 2.59 

The field in time-space coordinates under this condition in equation (2.59) becomes:  

𝐼(𝑥, 𝑍 + Δ𝑧) = ∬ 𝑃(𝜔, 𝑘𝑥, 𝑍)𝑒
𝑗𝑘𝑧Δ𝑧𝑒𝑗𝑘𝑥𝑥d𝑘𝑥d𝜔

+∞

−∞

 
2.60 

where 𝑃(𝜔, 𝑘𝑥, 𝑍) is the wave field.  

Equation (2.60) is iteratively applied to create an image line by line by applying it for all depths, 

Z + Δz, to be imaged. If we consider 𝑙 =  1,  2, … ,   layers as illustrated in Figure 2-7 and let 𝑑𝑙 

and 𝑐𝑙 denote the thickness and wave velocity of layer 𝑙, respectively, then,  

𝑘𝑧𝑙 = −sgn(𝜔)  √
𝜔2

𝑐̂𝑙
2 − 𝑘𝑥2 

2.61 

where the effective wave velocity 𝑐̂ = 𝑐/2 is used because the exploding reflector model is 

assumed. 
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Extrapolation through several layers directly is not possible in a multilayer case, but extrapolation 

within each layer is still possible;   

𝑃(𝜔, 𝑘𝑥, 𝑍𝑙 + Δ𝑧) = 𝑃(𝜔, 𝑘𝑥, 𝑍𝑙)𝑒
𝑗𝑘𝑧𝑙Δ𝑧 ,  Δ𝑧 < 𝑑𝑙 2.62 

where 𝑃(𝜔,  𝑘𝑥, 𝑍𝑙  ) denotes the field at the interface 𝑍𝑙, and 𝑃(𝜔,  𝑘𝑥, 𝑍𝑙+ Δz) denotes the field 

at a depth z =𝑍𝑙+ Δz. 

 

Figure 2-7: Layered media geometry [35] (Credit: Martin H. Skjelvareid et al., 2011) 

For layer 𝑙, the imaging algorithm can be summarized as follows: 

1. The wave field at the top of the layer interface, 𝑃(𝜔,  𝑘𝑥,  𝑍𝑙) is computed. 

2. At each depth 𝑍𝑙  +  Δ𝑧 to be imaged within the layer: 

• The wave field is shifted downwards with Δ𝑧 by multiplying with a phase factor to 

obtain 𝑃(𝜔,  𝑘𝑥,  𝑍𝑙  +  Δ𝑧), using equation 2.62. 

• An image line 𝐼(𝑥,  𝑍𝑙 +  Δ𝑧) is created by integrating with regard to ω and inverse 

transforming with regard to 𝑘𝑥, according to equation 2.60. 

The Stolt interpolation may be adapted to the multilayer case to enable imaging of an entire layer 

through a single inverse Fourier transform rather than creating an image of each layer line by line.  
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The traditional F-k migration method involves focusing on a specific reference point or the center 

of the scene and applying Stolt interpolation to correct the rest of the scene. However, when 

adapting this method for a dielectric half-space, each row is focused on individually. This means 

that the IFFT step can be avoided by using summation, which can significantly increase processing 

speed for multi-layer setups. To achieve this, an additional phase delay is added to the previous 

result without having to re-compute the previous rows. This is because each subsequent row has 

the same information as the previous rows, but with a slightly more updated perspective. Following 

this process can reduce the need for time-consuming steps, resulting in faster and more efficient 

processing [36]. 

2.6.4 CReSIS RDS Data Processing 

The Radar Depth Sounder (RDS) processing steps are described by [37]. The processing steps for 

involve converting quantization to voltage, removing DC-bias, applying channel compensation, 

and pulse compression. The SAR processing involves applying an along-track spatial frequency 

window and finding the location of the ice surface using a fully automated approach. The channel 

combination combines channels within a sub-array, followed by multi-looking and spatial 

averaging. The primary error sources for ice-penetrating radar data are electronic system noise, 

multiples, and off-nadir reflections. The echogram is used to track ice surface and ice bottom 

reflections, which is usually done manually. The antenna beam structure and data processing are 

designed to reduce off-nadir reflected energy sources. 
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3 MULTIPASS INTERFEROMETRY 

3.1 Introduction 

This chapter examines the utilization of Multipass (DInSAR) methods on data obtained from the 

Multichannel Coherent Radar Depth Sounder (MCoRDS). These techniques allow us to assess the 

vertical movement of layers within the ice sheet located beneath the surface of an ice sheet [36]. 

The cartoon in Figure 3-1 illustrates the dynamics involved in multipass interferometry.  Here we 

have two passes imaging the ice sheet below. The accumulation rate is a measure of snowfall, and 

in steady state, it equals the surface velocity of the ice sheet. For airborne systems, there exists a 

baseline between the passes since the aircraft cannot easily retrace the same trajectory for each 

pass. 

 

Figure 3-1: Multipass interferometry. 
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To estimate the vertical displacement accurately, we account for the spatial baseline by 

incorporating precise trajectory information and determining the cross-track layer slope through 

the direction of arrival analysis. MCoRDS [7] is a multichannel radar that was developed by the 

Center for Remote Sensing and Integrated Systems (CReSIS) and has 15 cross-track antenna 

elements (four on the left wing, seven on the fuselage, and four on the right wing), which are used 

for array processing [7]. The MCoRDS specifications are shown in Table 3-1 below.  Multipass 

results from flights along the EGIG line and near the Summit camp in Greenland are discussed 

here [36].  These results illustrate the capabilities of the DInSAR algorithm. 

Table 3-1: Typical operating parameters for the MCoRDS radar in the CReSIS instrument package 

[7]. 

Parameter MCoRDS/I 

Measurement Bedrock topography, 3D Imaging,  

Deep internal layering 

Center frequency 195 MHz 

Bandwidth 30 MHz 

Peak transmit power up to 1200 W 

Pulse duration 1 to 30 μs 

Pulse repetition frequency (PRF) < 12 kHz 

Operational altitude 500 to 10,000 m 

Measurement depth < 4 km 

Vertical resolution ~ 6 m in ice (Twin Otter / NASA P-3) 

    ~ 20 m in ice (NASA DC-8) 
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3.2 Problem Formulation 

Ground-based Autonomous phase-sensitive Radio-Echo Sounder (ApRES) [37] units have been 

widely utilized to successfully capture point measurements of the vertical velocity field of ice 

sheets using DInSAR [19]. The spatial baseline is eliminated with ground-based units because the 

unit can be precisely positioned or even left in place for the required repeat measurements. 

However, we cannot achieve a zero spatial baseline with airborne systems, leading to displacement 

measurement errors if the spatial baseline is not adequately accounted for. 

The scattering sources for the DInSAR measurements are quasi-specular near-horizontal englacial 

layers throughout the ice column, as shown in Figure 3-2.  

 

Figure 3-2: Multipass geometry. 

The phase difference between two radar passes taken at different times gives an indication of the 

average vertical velocity of the layer under investigation [36]. If we consider a set of 𝑃 passes (𝑝 =
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1, …… , 𝑃), the cross track geometry shown in Figure 3-2 shows that 𝐵𝑧,𝑝 and 𝐵𝑦,𝑝 are the 𝑧 and 𝑦 

coefficients respectively of the 𝑝𝑡ℎ baseline vector between pass 1 and the pth pass.   𝜃𝑙 is the 

Direction of Arrival (DoA) of the signal in air, and 𝜃 𝑙  is the cross-track slope of the internal layer, 

l.  𝜃 𝑙   is also equal to the DoA within the ice. Using Equation 2.12, which makes use of the plane 

wave approximation, and subtracting the phase change for pass 𝑝 from that of pass 1, we get the 

interferometric phase, 𝜙,  due to the spatial baseline and layer displacement for pass 𝑝 relative to 

pass 1 as 

𝜙 = −𝐵𝑧,𝑝𝑘 cos 𝜃𝑙 + 𝐵𝑦,𝑝𝑘 sin 𝜃𝑙 + 𝑟𝑙,𝑝𝑘, 3.1 

where 𝑘 =
4𝜋

𝜆
 is the wavenumber in air, 𝜆 is the wavelength in air, sin 𝜃𝑙 = 𝑛𝑖 sin 𝜃 𝑙 , 𝑛𝑖 is the 

refraction index of ice, and 𝑟𝑙,𝑝 is the range displacement of layer, l. The layer slope is assumed to 

remain the same over the collection period of the passes. 

For simplicity, each element of the antenna array on the aircraft is treated as a separate pass. For 

the case of MCoRDS, there would be 15 passes corresponding to the 15 antenna elements in the 

system. This simplification allows us to assume that the temporal baseline is zero (thus 𝑟𝑙,𝑝 = 0), 

and that baseline components are known precisely (using information from the inertial 

measurement unit – IMU and ground surveys of antenna elements that account for wing lift during 

flight). With these assumptions, the interferometric phase for a single flight can be obtained using 

𝜙 = −𝐵𝑧,𝑝𝑘 cos 𝜃𝑙 + 𝐵𝑦,𝑝𝑘 sin 𝜃𝑙  . 3.2 

We can now use classic tomographic SAR techniques [38] with Equation 3.2 to estimate 𝜃𝑙. 
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3.2.1 Layer Slope Errors and Baseline Errors:  

From Equation 3.2 we can evaluate the uncertainty associated with the interferometric 

measurements using the Tylor series expansion, and assuming statistical independence. We can 

then write the displacement accuracy as a function of cross-track slope and baseline as 

𝜎𝜙
2 = (

𝜕𝜙

𝜕𝐵𝑦
)

2

𝜎𝐵𝑦

2 + (
𝜕𝜙

𝜕𝐵𝑧
)
2

𝜎𝐵𝑧

2 + (
𝜕𝜙

𝜕𝜃𝑙
)
2

𝜎𝜃𝑙

2 . 
3.3 

where 𝜎 is the standard deviation. Dividing this equation by the wavenumber we get the 

displacement equivalent;  

𝜎𝑑
2 = 𝜎𝐵𝑦

2 (sin 𝜃𝑙)
2 + 𝜎𝐵𝑧

2 (cos 𝜃𝑙)
2 + 𝜎𝜃𝑙

2 (𝐵𝑦 cos 𝜃𝑙 + 𝐵𝑧 sin 𝜃𝑙)
2
. 3.4 

From Equation 3.4, a plot (Figure 3-3) showing the contribution of the baseline components to the 

error in the displacement was obtained. For 𝐵𝑦 curve, 𝜎𝐵𝑦 = 0.05𝑚 and for  𝐵𝑧 curve, 𝜎𝐵𝑧 =

0.1𝑚. We see that the contribution of the 𝐵𝑦 and 𝐵𝑧  errors depend on 𝜃𝑙  only and not the nominal 

value of 𝐵𝑦 and 𝐵𝑧  respectively. This shows that errors in 𝐵𝑦 do not directly affect the 

displacement accuracy for small layer slopes, but errors in 𝐵𝑧 directly impact the displacement 

accuracy. Note that baseline errors are constant with depth. This means that they do not affect the 

interpretation of the relative velocity and strain rate and are therefore of lower concern. 
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Figure 3-3: Displacement accuracy as a function of baseline. 𝜎𝐵𝑦 = 0 and 𝜎𝐵𝑧 = 0.1 m. 

Likewise, we can also determine the displacement accuracy as a function of the slope and the 

resultant plots are shown in  

Figure 3-4 and Figure 3-5 for 𝐵𝑧 and 𝐵𝑦 components respectively. For these plots, 𝜎𝜃𝑙
= 0.2°.  It 

can be seen from Equation 3.4 that the errors in the slope are amplified by 𝐵𝑦, 𝐵𝑧, and the slope. 

Reasonable repeat pass accuracy of tracks is known to be on the order of 5 m RMS error.  

Figure 3-4 shows that large vertical baselines can be tolerated since the displacement errors are 

small with respect to the vertical baseline. Figure 3-5 shows that even for the very small slope 

error of 0.2°, displacement errors greater than 1 cm are expected with this trajectory accuracy. 

When displacement accuracies on the order 1-2 mm are desired, the horizontal baseline must be 

kept below about 0.25 m. Given that the ideal airborne trajectory accuracy is 5 m RMS, one 

possible solution may be to use a large aperture, i.e., greater than 5 m, so that different sub 

apertures from each trajectory can be utilized for the phase centers of the respective apertures to 
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meet the tight horizontal baseline requirement. Finally, note that layer slope errors are a function 

of depth since the layer slope is a function of depth. These errors directly impact the interpretation 

of the vertical velocity and strain rate as a function of depth – the primary measurements of interest. 

 
Figure 3-4: Displacement accuracy as a function of layer slope and cross-track baseline (𝐵𝑧). 

𝜎𝐵𝑦 = 0 and 𝜎𝐵𝑧 = 0. 

 
Figure 3-5: Displacement accuracy as a function of layer slope and cross-track baseline (𝐵𝑦). 

𝜎𝐵𝑦 = 0 and 𝜎𝐵𝑧 = 0. 
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Relative displacement accuracy as a function of position/baseline accuracy can also be determined 

by considering two layers that have different displacements but experience the same 

position/baseline error. Using the small angle approximations, the relative displacement error, 𝑑𝑟, 

is given by; 

𝑑𝑟 =
𝐵𝑧,𝑝(𝜃𝑙2 + 𝜃𝑙1)

2
(𝜃𝑙2 − 𝜃𝑙1) − 𝐵𝑦,𝑝(𝜃𝑙2 − 𝜃𝑙1). 

3.5 

where 𝜃𝑙1 and 𝜃𝑙2 are the DoA’s corresponding to the two layers. 

Dividing the relative displacement error into a component caused by the 𝑧-baseline and the 𝑦-

baseline, we get; 

𝑑𝑟,𝑧 =
𝐵𝑧,𝑝(𝜃𝑙2 + 𝜃𝑙1)

2
(𝜃𝑙2 − 𝜃𝑙1), 

3.6 

and 

𝑑𝑟,𝑦 = 𝐵𝑦,𝑝(𝜃𝑙2 − 𝜃𝑙1). 3.7 

GPS vertical position errors tend to be about twice that of horizontal position errors based on the 

MCoRDS GPS manufacturers Novatel and Applanix. Assuming the trajectory error in 𝑧 is twice 

that of the trajectory error in 𝑦, we can write 𝐵𝑧,𝑝 = 2𝐵𝑦,𝑝 for the purposes of determining the 

displacement offset. If we further assume that the trajectory drift is random and independent in 𝑦 

and 𝑧, then we can take the square root of the variances; 𝑑𝑟,𝑅𝑀𝑆 = √𝑑𝑟,𝑧
2 + 𝑑𝑟,𝑦

2 . 

Assuming 𝜃𝑙2 + 𝜃𝑙1 ≪ 1 and 𝜃𝑙2 − 𝜃𝑙1 ≪ 1, then  

𝑑𝑟 ≈ 𝐵𝑦,𝑝(𝜃𝑙2 − 𝜃𝑙1) ≈ 𝐵𝑦,𝑝 sin(𝜃𝑙2 − 𝜃𝑙1). 3.8 

This is similar in form to that obtained for a single layer: 𝑑 ≈ 𝐵𝑦,𝑝 sin(𝜃𝑙). This shows that the y-

dimension of the unknown cross track baseline is the most important to relative displacement 

measurement. 
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The accuracy of slope estimation in the error analysis is found to be magnified by the baseline. 

Longer baselines, which are larger apertures, generally result in more precise slope estimates. This 

effect cancels out the magnified layer slope error caused by the baseline. The beamwidth (𝐵𝑊) of 

the delay and sum beamforming technique can be determined using the equation 𝐵𝑊 =  𝜆/𝑑. To 

estimate the beamwidth numerically, a rule of thumb is to use three times to ten times over the 

delay and sum beamforming technique. The beamwidth can now be expressed as 𝐵𝑊 =  𝜆/(3𝑑) 

or 𝜆/(10𝑑).  

In general, higher signal-to-noise ratio (SNR) values result in more accurate direction of arrival 

(DOA) estimations. Multiple baselines can enhance DOA estimation accuracy by providing 

additional information to resolve ambiguity.  

The MUSIC algorithm is SNR dependent and provides better resolution than the delay and sum 

beamforming technique. The resolution is inversely proportional to the baseline, while the error is 

proportional to the baseline. However, they roughly cancel out so that the error is independent of 

the baseline. The best results may be obtained by using a large baseline to calculate the slope and 

a small baseline to estimate the displacement. 

3.2.2 Vertical Velocity Modelling 

Englacial ice velocity evaluation is an important factor in dating ice (e.g. to determine the ideal 

location for an ice core site) [39]. To model the vertical velocity profiles, we need to first 

understand the geometry of the ice divide flow model as illustrated in Figure 3-6. The ice divide 

is the border dividing the opposing flow directions of ice in an ice sheet. The area to the sides of 

the divide are called the flanks. We expect lower vertical velocities near the divide than with the 

flanks [39]. For our modelling, we assume that the ice accumulates at a steady and homogeneous 

rate, 𝑎, at the ice sheet surface [39]. 
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An ice sheet is in equilibrium when its average surface elevation is not changing. In this case, there 

is still snow accumulation due to new snow falls. This new snow accumulation becomes a new 

layer on top and the layers from the previous years each move down as illustrated in Figure 3-7. 

 

Figure 3-6: Ice divide flow model geometry. 

 

Figure 3-7: Ice sheet layer illustration. 
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The overburden pressure due to the weight of the new snow accumulation layer causes 

compression in the deeper ice layers by pushing air out of the snow. This is called firn compaction. 

In addition to firn compaction, the overburden pressure causes divergence of the ice by pushing 

the ice to the sides. This is referred to as ice flow or ice strain. In equilibrium, the amount of snow 

accumulation is equal to the vertical velocity, and thus; 

𝑆𝑛𝑜𝑤 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 𝐹𝑖𝑟𝑛 𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑖𝑜𝑛 + 𝑆𝑡𝑟𝑎𝑖𝑛 𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 3.9 

From the Lliboutry (1979) model (Equation 3.10) [39], we are able to plot the expected vertical 

velocity profiles as shown in Figure 3-8. 

𝑣(𝑣 , 𝑝, 𝜁𝑙) = 𝑣 (1 −
𝑝 + 2

𝑝 + 1
(1 − 𝜁𝑙) +

1

𝑝 + 1
(1 − 𝜁𝑙)

𝑝+2) 
3.10 

where 𝜁𝑙 is the elevation of layer 𝑙 normalized to the ice thickness, 𝑣  is the vertical velocity at the 

surface, and 𝑝 is the ice rheology parameter. Figure 3-8 shows an example for several different 

realizations of the ice rheology and a typical annual snow accumulation (0.02 m) and ice thickness 

(2750 m). 
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Figure 3-8: Expected vertical velocity profiles 

It is important to note that the Lliboutry model is a simplified representation of the behavior of ice 

and may not accurately capture all of the physical processes that are important for accurately 

modeling ice dynamics. Nonetheless, it remains a widely used and well-established model for 

studying ice sheets and glaciers and can provide useful insights into the behavior of these complex 

systems. 

3.2.3 Vertical Velocity Measurement 

The ice sheet vertical velocity measurement can be done using ground-based or airborne methods. 

Ground-based methods are conducted from the ice sheet's surface or the surrounding terrain, while 

airborne methods involve using aircraft or satellites to gather data from above the ice sheet. 

Ground-based systems can provide high-resolution data on small spatial scales. Ground-based 

systems include seismic surveys, ice core analysis, strain gauges, and ground-based radar.  On the 

other hand, airborne methods can cover larger areas more quickly and provide a more 
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comprehensive view of the ice sheet. Airborne methods can include airborne radar systems, laser 

altimeters, or satellite-based remote sensing techniques. These methods can provide data on the 

entire ice sheet or large portions of it, allowing for a better understanding of the overall behavior 

and trends of the ice sheet. Combining these methods may provide the most comprehensive 

understanding of ice sheet dynamics. 

3.2.3.1 Airborne or Spaceborne Systems 

Satellite Altimetry: Satellite altimetry measures the distance between the satellite and the Earth's 

surface, which can be used to infer changes in ice surface elevation over time. By combining this 

information with other data, such as ice density and surface slope, researchers can estimate the 

internal vertical velocity of the ice sheet. This method can provide a large-scale view of ice sheet 

vertical velocity, but it may not be as accurate as other methods. 

 

Airborne Radar Systems: Radar altimetry measures the distance between the aircraft and the ice 

surface, which can be used to infer ice surface elevation changes over time. Ice-penetrating radar 

can provide detailed images of the internal structure of an ice sheet. By analyzing these images, 

researchers can identify and measure the motion of different layers within the ice sheet. Vertical 

englacial velocity profiles have been estimated using repeat-pass interferometry with the 

multitemporal airborne radar sounding surveys: like MCoRDS from CReSIS , and High Capability 

Airborne Radar Sounder (HiCARS) from the University of Texas.  

 

Airborne Laser Altimetry: This method uses laser pulses to measure the height of the ice surface 

and its variations. By combining the height measurements with GPS data, the surface velocity of 

the ice can be determined. 
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3.2.3.2 Ground-based Sounder Systems 

Seismic surveys: Seismic surveys can measure an ice sheet’s vertical motion by placing sensors on 

the ice surface and using sound waves to measure changes in ice thickness. Researchers can 

calculate ice sheet vertical velocity by combining seismic data with GPS data. 

 

Ice Core analysis: Ice core analysis provides information about ice sheet vertical velocity by 

analyzing the age of layers in ice cores to determine how quickly the ice sheet has accumulated 

over time. 

 

Global Positioning System (GPS): GPS receivers can measure the vertical motion of ice sheets 

when placed on the ice surface to measure the changes in height over time. This method can 

provide accurate ice sheet vertical velocity measurements, but it is limited to areas where GPS 

signals can be received. 

 

Strain Gauges: Strain gauges can be attached to the ice sheet surface to measure the deformation 

of the ice as it moves. By measuring the changes in strain over time, it is possible to determine the 

velocity of the ice sheet. 

 

Ground-based Radar Systems: These can measure the thickness of the ice sheet and the internal 

layers within the ice. By comparing radar images taken at different times, it is possible to determine 

the vertical velocity of the ice sheet. An example of a ground-based radar systems for which this 

has been demonstrated include the network-analyzer based phase-sensitive radio echo sounder 

(pRES) and the deramp on receive autonomous phase-sensitive radio echo-sounder (ApRES).[40] 
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3.3 Review of Prior Work 

Since the DInSAR technique was first proposed in 1989 by Gabriel et al [41], it has been improved 

and applied to  monitoring and measuring of phenomenon such as glacier movement [42], volcanic 

activity [43], seismic activity [44], mining activity [45], and urban subsidence [45]. DInSAR’s 

accuracy is in the order of a few millimeters in monitoring ground displacement along the Radar 

line of sight (LOS). However, DInSAR is prone to temporal decorrelation of surface scatterers due 

to surface change processes, spatial decorrelation due to the large baseline between SAR image 

acquisitions, atmospheric disturbances causing variation in signal delays, and problems with 

resolving the phase ambiguity [46] [47]. These lead to a limited number of image pairs suitable 

for interferometric processing. 

The accuracy of future sea-level rise projections is limited by parametric uncertainty in ice-sheet 

models [48]. Dating ice cores requires knowledge of englacial ice velocities and it is done by 

counting annual variations in ice properties. This is well expounded upon by Kingslake et al. 

(2014) in [39] where the measured (from radar data) vertical velocity was fitted to the expected 

vertical velocity model using the Lliboutry (1979) model. Ground-based phase sensitive Radio 

Echo Sounders (pRES) are commonly used in measuring deformation in real-time using time-lapse 

imagery of point targets in the subsurface as demonstrated by Nichols et al. (2015) [37]. For 

airborne applications, we need to isolate changes in range for subsurface targets associated with 

ice flow using the well-known precise time-varying platform position. Castelletti et al. (2020) and 

Miller et al. (2020) showed that differential interferometric methods can be used on airborne radar 

depth sounder data to estimate the englacial range displacement of ice-sheet internal layers by 

using data from the High Capability Radar Sounder (HiCARS) and MCoRDS respectively [36, 

49].    
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This research applies new swath radar processing techniques to englacial layering to facilitate 

subsurface interferometric processing of the Operation IceBridge (OIB) radar data archive. This 

will result in the concurrent production of fine-resolution maps of the subglacial topography and 

direct observations of ice deformation and transport from measured englacial vertical velocities. 

These data products will be used to evaluate ice-sheet dynamics on various timescales, which will 

expand on the understanding of glacier processes that affect ice mass balance and sea-level rise. 

By measuring patterns of englacial velocity associated with solely stable ice-divide flow (the 

Raymond effect), subsurface radar interferometry can be used to diagnose ice-divide response 

times over longer timescales than any other observational method [39]. We use distributed 

interferometric measurements to provide the first comprehensive estimate of Greenland divide 

dynamics and identify any disequilibrium (englacial velocities that are inconsistent with surface 

mass balance, surface velocity, and elevation) in ice flow across the divide that might drive future 

divide migration. 

3.3.1 DInSAR Algorithm 

SAR interferometry requires a pixel-to-pixel match between common scattering features in SAR 

image pairs, and thus coregistration, which aligns the SAR images from two passes, is an essential 

step for accurately determining phase difference. The imprecise repeat-pass geometry makes 

coregistration difficult. 

The following steps highlight the process of the current DInSAR algorithm (Figure 3-9) 

implemented in the CReSIS toolbox: 

1. Equalization and time shift of each MCoRDS SAR image to correct for system phase and 

time deviations for each channel or pass. 
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2. Coregistration of the SAR images using cross-correlation and motion compensation 

assuming zero slope layers. In this step, each image is projected onto a master image using 

the trajectory information followed by interpolating each image onto the along-track master 

image pixel locations. A time-delay is applied in the frequency-domain to each image to 

compensate for the difference in elevation between flights. This time delay removes the 

phase and time delay due to the vertical component of the baseline for zero-slope or 

perfectly horizontal layers. 

3. Estimation of the direction of arrival for each image pixel using the array of coregistered 

images to estimate cross-track slope phase contributions. This step only uses passes from 

a single flight to ensure precise knowledge of the relative baselines. In this step, the 

coregistered images are combined using the Multiple Signal Classification (MUSIC) 

array processing method and the DoA of the returned signal is estimated using a basic 

peak tracking algorithm.  

4. The coregistered images are interfered after application of phase corrections for motion 

compensation using the estimated cross-track slope and estimated GPS position errors. 

Cross-track slope compensation involves applying a phase correction after motion compensation 

and before array processing that is based on the estimated cross-track slope.  The phase correction 

is related to the slope by the interferometric phase in Equation 3.2.   
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Figure 3-9: The CReSIS DInSAR Algorithm. 

The DInSAR algorithm is applied to data from NASA Operation Ice-Bridge (OIB), and section 

3.3.2 shows the results for the flights near the Summit camp in Greenland and the EGIG 

(Expéditions Glaciologiques Internationales au Groenland) line.  

3.3.2 CReSIS Toolbox Multipass Algorithm Results  

The existing multipass method exploits passes from a single flight, as discussed in section 3.3.1, 

to estimate the layer slope, 𝜃𝑙, and then uses this result and differential interferometry to estimate 

𝑟𝑙,𝑝  from two separate flights. Figure 3-11, Figure 3-12, and Figure 3-13 show the resulting 
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interferogram, coherence plot, and range displacement for a pair (2012 and 2014) of NASA 

Operation Ice-Bridge (OIB) flights near Summit in Greenland after motion and cross-track slope 

compensation. The dark or black regions in the interferogram correspond to low coherence, 

whereas bright or colorful regions designate high coherence. It should be noted that baseline 

components for the second flight have an additional error due to the GPS trajectory errors. 

 

Figure 3-10: Baselines across combined frames from the Summit line. 

From Figure 3-10, it can be seen that the baselines vary between 0 m to about 40 m. This gives an 

indication of the separation between the repeat flights. 

In multipass interferometry, the baseline determines the spatial resolution of the interferogram and 

affects the accuracy of the displacement measurement. If the baseline is long, the spatial resolution 

of the interferogram is high, but the deformation measurement is less sensitive. On the other hand, 
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if the baseline is short, the spatial resolution of the interferogram is low, but the deformation 

measurement is more sensitive [50]. 

As described in the previous chapter, in traditional InSAR, the height-to-phase conversion 

equation is given by: 

𝑧 = −
𝜙𝑖𝑛𝑡𝜆𝑅 sin 𝜃𝑖

4𝜋𝐵⊥
 

3.11 

From this equation, it can be seen that as the baseline increases, the interferometric phase becomes 

more sensitive to height changes. In other words, larger baselines result in greater sensitivity to 

height changes. Equivalently for ice sheet measurements, larger baselines lead to finer layer slope 

resolution. Conversely, smaller baselines result in lower sensitivity to height changes.  

It is important to note that the relationship between baseline and accuracy is not linear and depends 

on several other factors, such as the coherence of the interferogram, the noise level, and the 

geometry of the imaging system. Therefore, the optimal baseline for a given DInSAR application 

depends on a careful trade-off between spatial resolution and sensitivity to height changes. 
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Figure 3-11: An example of an interferogram made by two flights near Summit, Greenland. 

 
Figure 3-12: Coherence plot for passes near Summit, Greenland. 
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Figure 3-13: An example of the range displacement at the center of the interferogram. 

We see that the vertical velocity plot in Figure 3-13 exhibits the same general trend as the plot 

derived from the Lliboutry model in Figure 3-8. We expect close to zero vertical velocity at the 

bottom (bedrock), which gradually increases in a near-linear way towards the surface, as shown in 

the plot obtained from actual data.  

Furthermore, the results of combined repeat pass images from the EGIG line are presented here. 

The master pass for all results is pass 8 which was taken in 2014. The plots presented in this section 

show the baseline between each pass and the master pass (Figure 3-14), the interferogram (Figure 

3-15), the interferogram coherence (Figure 3-16), and the estimated vertical strain rates based on 

the phase ramp within the interferograms (Figure 3-17). 
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Figure 3-14: Baselines across combined frames from the EGIG line. 

From Figure 3-14, it can be seen that the baselines vary between 0 m to about 140 m. This gives 

an indication of the spatial separation variation between the repeat flight trajectories. 
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Figure 3-15: 2011 to 2014 Interferogram from the EGIG line 

 

Figure 3-16: Coherence plot for 2011 to 2014 for the EGIG line 
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Figure 3-17: Vertical velocity (depth change) estimate between 2011 and 2014 for EGIG line. 

Figure 3-15 shows the plot of the interferometric phase for 2011 to 2014 passes. Each pass 

produces an image from each of the 15 antenna elements. The 15 images from each flight are 

coherently summed according to the delay and sum beamformer before forming the interferometric 

phase between the flights. As the time separation decreases, the phase wrapping reduces since the 

phase wrapping represents the integration of the vertical strain rate of the ice sheet over time. The 

longer the integration duration, the greater the accumulated displacement will be. Due to the ice 

physics at this location, the layers at the top of the image are moving away from the radar faster 

than the layers at the bottom. Therefore, as we travel back in time, the layers at the top of the image 

would have been closer and closer to the radar, and this is the cause of the increasing positive 

phase toward the top of the image. The opposite is true toward the bottom of the images. 
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The coherence for the interferogram is shown in Figure 3-16. The phase and coherence are 

estimated using a 9 by 45 boxcar window. 

Figure 3-17 shows the vertical velocity calculated for the 2011 to 2014 interferogram and using 

the entire time gate of each interferogram to estimate the phase ramp. The phase ramp is estimated 

using an oversampled FFT of the interferogram. Estimating the vertical strain rate or change in 

velocity with depth is done by estimating the slope of the phase ramp present within the 

interferogram images. At this location, the vertical velocity and the vertical strain rate are expected 

to be greatest at the surface and decrease in rate until they approach zero at the bedrock in 

agreement with the ice sheet model of Figure 3-8. The vertical velocity plots exhibit a kink for 

both the EGIG and Summit lines that is attributed to a waveform-to-waveform phase discontinuity 

that is discussed in section 3.4.7. 

These results show that airborne DInSAR is possible with MCoRDS data. The strain rate 

measurements are consistent with the expected trend. 

3.4 Joint Parameter Estimation  

To improve the accuracy of both the tomographic swaths and vertical velocity measurements 

produced from multipass measurements, joint parameter estimation has been implemented first on 

simulated data and then on actual data collected by CReSIS.  

The standard deviation of the baseline errors that are due to GPS/INS trajectory errors can be 

estimated based on manufacturer datasheets and precise point positioning (PPP) software. The 

standard deviation of this position error is on the order of 5 cm. Since this error affects all the ice 

layers in the ice column the same way, the relative displacement measurement between layers in 

a single column is unaffected to the first order, but the direction of arrival measurement to handle 

the slope is directly affected. 
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The range displacement of layer 𝑙 is related to the horizontal and vertical displacement by: 

𝑟𝑙,𝑁 = cos(𝜃𝑙) 𝑣𝑙𝑡𝑝 + sin(𝜃𝑙) ℎ𝑙𝑡𝑝 , 3.12 

where 𝑣𝑙 is the average vertical velocity of the layer, ℎ𝑙 is the average horizontal velocity, and 𝑡𝑙,𝑝 

is the temporal baseline between pass 𝑝 and pass 1. 

We jointly solve for the observed directions of arrival, 𝜃𝑙 for each layer, the baseline, and the range 

displacement using a maximum likelihood estimator (Figure 3-18), similar to array calibration 

using surface scatterers [51]. Instead of solving for the slope from a single flight, then solving for 

the displacement between two flights, followed by estimating the baseline, we jointly solve for 

these.  

Finally, we incorporate parametric models for the vertical displacement and the above-mentioned 

horizontal velocity into the maximum likelihood estimator framework. The vertical velocity model 

parameters that are tuned by the maximum likelihood estimator are the vertical velocity at the 

surface, 𝑣 , and an ice rheology parameter, 𝑝. The vertical velocity is equal to the surface 

accumulation when the ice sheet is in a steady state, and this may be estimated from other remote 

sensing measurements or weather models [52]. Similarly, the horizontal velocity can be measured 

from satellite remote sensing measurements [53] and propagated to depth using models [54]. 

The estimated vertical velocity is compared against ice flow models from the glaciology 

community, pRES/ApRES measurements, and ice core data. These are trusted sources of data that 

can be used as ground truth for vertical velocity.  The estimated cross-track slope is compared to 

that obtained from along-track SAR processing of crossing lines. 
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The joint estimation framework is applied to data collected by MCoRDS over the Summit line. 

The Summit Line was chosen because it has multiple flights, the presence of in-situ measurements, 

and the fact that the Summit Line crosses the ice divide. 

 

Figure 3-18: Proposed joint estimation framework. 

By extension from Equation 2.45, the log-likelihood function for the joint estimation of the 

parameters for each SAR pixel can be written as; 

𝑳𝑟,𝑐 = −𝑀𝑃 log 𝜎2 −
1

𝜎2
∑  |𝒙𝑟,𝑐  − 𝑨(𝜃𝑙,𝑟,𝑐 , 𝑣𝑙,𝑟,𝑐, ℎ𝑙,𝑟,𝑐, 𝐵𝑦𝑐 , 𝐵𝑧𝑐)𝒔𝑟,𝑐|

2
𝑀

𝑚=1

, 
3.13 

where the subscript 𝑟 and 𝑐 represent range bin (rows) and range line (column) indices 

respectively, 𝐵𝑦𝑐 and 𝐵𝑧𝑐 are the baseline errors, 𝑣𝑙,𝑟,𝑐 is the vertical velocity (which is constrained 

by the ice rheology parameter, 𝑝𝑟,𝑐 and surface velocity, 𝑣 ,𝑟,𝑐), ℎ𝑙,𝑟,𝑐 is the model-constrained 

horizontal velocity, and 𝜃𝑙,𝑟,𝑐 is the slope. The steering matrix elements for pass 𝑝 are now defined 

as 
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𝒂(𝜃𝑙,𝑟,𝑐, 𝑣𝑙,𝑟,𝑐 , ℎ𝑙,𝑟,𝑐, 𝐵𝑦𝑐 , 𝐵𝑧𝑐) = 𝑒−𝑗𝑘(𝑑 + 𝑟𝑙,𝑁)

= 𝑒−𝑗𝑘((𝑣𝑙,𝑟,𝑐𝑡𝑝−𝐵𝑧𝑐) cos𝜃𝑙,𝑟,𝑐+(𝐵𝑦𝑐+ℎ𝑙,𝑟,𝑐𝑡𝑝) sin𝜃𝑙,𝑟,𝑐), 

 3.14 

where 𝑡𝑝 is the temporal baseline, 𝑑 = −𝐵𝑧𝑐,𝑝 cos 𝜃𝑙,𝑟,𝑐 + 𝐵𝑦𝑐,𝑝 sin 𝜃𝑙,𝑟,𝑐 is the displacement 

derived from Equation 3.2, and 𝑟𝑙,𝑁 = cos(𝜃𝑙,𝑟,𝑐) 𝑣𝑙,𝑟,𝑐𝑡𝑝 + sin(𝜃𝑙,𝑟,𝑐) ℎ𝑙,𝑟,𝑐𝑡𝑝 is the range 

displacement from Equation 3.12. The steering vector above is obtained by taking into account the 

contributions from the layer motion and offsets added to all the slave pass sensors because of the 

GPS error.   

We can now write the joint estimation log-likelihood function as 

𝑳(𝜃, 𝑣 , 𝐵𝑧 , 𝐵𝑦) = ∑∑𝑳𝑟,𝑐

𝑁𝑡

𝑟=1

𝑁𝑥

𝑐=1

, 

3.15 

where  𝑁𝑥 is the number of along-track samples in the complex SAR image (i.e. number of range 

lines in the azimuth dimension) and 𝑁𝑡 is number of fast-time samples in the complex SAR image 

(i.e. number of snapshots in the range dimension) to consider in the joint estimation.  

As in Equation 2.47 the joint maximum likelihood estimation is achieved by doing the 

maximization across all these log likelihood cost functions: 

𝜃, 𝑣 , 𝐵𝑧 , 𝐵𝑦 = arg max
𝜃,𝑣 ,𝐵𝑧,𝐵𝑦

∑∑(𝑷𝑨(𝜃,𝑣 ,𝐵𝑧,𝐵𝑦)
𝑹)

𝑁𝑡

𝑟=1

𝑁𝑥

𝑐=1

. 

3.16 

3.4.1 Joint Estimation Simulation 

To demonstrate the feasibility of the joint parameter estimation framework for vertical velocity, 

cross-track slope, and baseline errors, preliminary results from a MATLAB simulator are 

presented in section 3.4.2. 

The simulation set-up makes the following assumptions: 
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• Each flight has 15 antenna elements, and each element is considered to be a single pass (15 

passes per flight). Therefore, for each flight, the baseline is precisely known between the 

passes. The baseline between passes on different flights is not precisely known because the 

GPS error for each flight is different. The baseline error exists between flights i.e., between 

the first 15 passes and the next 15 passes. Fifteen elements were considered to match the 

elements found on the MCoRDS system (Table 3-1). 

• It is assumed that SAR processing is done and we do not consider the effects of ice. 

• It is assumed that there is no along-track variation of parameters and that all variation is in 

the cross-track or range dimension. 

The maximum cross-track slope and maximum absolute slope change are constrained to 1 degree. 

The baseline error is limited to 0.1 m. The maximum vertical velocity is constrained to 1 m/a, and 

does not change over time, and changes slowly (and linearly) versus depth. Therefore, the vertical 

velocity model can be fitted with a 1st degree polynomial as a function of depth and does not 

change in the along-track direction. The simulation was set up using 100 cross-track pixels and 50 

along-track pixels for 100 Monte Carlo runs.  

The joint MLE framework outlined earlier was used to estimate the parameters, and then it was 

run for different vertical velocities, cross-track slopes, and baseline errors. Then, all the likelihood 

functions were summed up using those errors. This sum is the overall likelihood for that particular 

set of vertical velocity, slope, and baseline error parameters. The joint estimate for the vertical 

velocity, cross-track slope, and baseline error parameters is the set of parameters that gives the 

highest summed likelihood.  

In general, the joint estimation simulator is capable of handling data from any number of passes 

collected across any number of flight lines as long as the steering vectors for the passes can be 
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parameterized and the parameters estimated uniquely. The initial version of the simulator considers 

a limited set of possible dependencies (e.g., zero correlation between fast-time samples, constant 

internal layer slope field, constant baseline error, linear vertical velocity dependence on depth, and 

no dependence in along-track). The simulator will be adapted to consider fast-time correlation and 

more complex spatial dependencies for each of the other parameters. The simulator and joint 

estimator will also be adapted for deployment on a computer cluster. 

3.4.2 Simulation Results 

The following simulation results were obtained after running the optimizer for the joint estimation 

of vertical velocity, cross-track slope, and baseline errors. Figure 3-19 to Figure 3-21 show the 

RMSE analysis for each of the parameters, and we see that as the SNR increases, the RMSE 

reduces as expected.   

 

Figure 3-19: RMSE plot for baseline errors. 
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Figure 3-20: RMSE plot for vertical velocity. 

 

Figure 3-21: RMSE plot for slope. 

The RMSE plots above are not smooth, probably due to the limited number of runs used in this 

simulation. However, the general trend is clear. 
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Figure 3-22 shows the interferograms generated using passes on the same flight and therefore, 

there is no temporal baseline between the 15 elements on the same flight. The master pass is pass 

1. These results are similar to non-differential InSAR processing results. 

 

Figure 3-22: Interferograms for passes 2 and 8 (using pass 1 as the master pass). 

 

Figure 3-23: Interferograms for passes 16 and 30 (using pass 1 as the master pass). 
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Figure 3-23 shows interferograms obtained using passes from the second flight and the master pass 

from the first flight. These results are differential InSAR results and include both an unknown 

baseline error and a target position shift due to the temporal baseline. For both the single flight 

passes and the repeat flight passes, the master or reference pass used to form the interferograms is 

pass 1.  

In the pairs of interferograms shown in Figure 3-22 and Figure 3-23, the top plots show the 

measured interferograms, and the bottom plots show the interferograms generated by the jointly 

estimated parameters. For the correct jointly estimated parameters, these plots should be identical 

except for the effects of the additive noise to the signal, as shown in Figure 3-22 and Figure 3-23. 

From the results, we saw that there is potential for the concept of using joint estimation rather than 

breaking the problem down to solving for the slope from a single flight and then solving for the 

vertical displacement between two flights, followed by estimating the baseline between flights.  

After optimizing the solver and setting up the simulator to be as close to the real-life environment 

as possible, this joint estimation framework is applied to actual data collected by CReSIS, and the 

results are discussed below.  

3.4.3 Joint Estimation with MCoRDS Data 

The current multipass routine (Figure 3-9) has been modified to apply joint estimation after co-

registration instead of the former stepwise implementation as shown in Figure 3-18. To increase 

the efficiency of the algorithm, the data is broken down into blocks in both the fast time and slow 

time axis. This is made possible because of the assumption that the parameters being estimated 

don’t change too quickly within the block. This is in agreement with the physical ice sheet 

dynamics. The joint estimation algorithm is applied to data from flights near Summit camp for the 

years 2012 (frame 8) and 2014 (frame 41). The geographical location of the two frames is shown 
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in Figure 3-24 and Figure 3-25 for 2012 and 2014 respectively. The results are compared with 

ground truth data to validate the joint estimation framework performance. 

 

Figure 3-24: 20120330_03 frame 8 (shown in red). 
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Figure 3-25: 20140502_01 frame 41 (shown in red). 

3.4.3.1 MATLAB Implementation 

The MATLAB implementation of the joint parameter estimation task uses a global optimization 

method. The optimization algorithm used is the Sequential Quadratic Programming (SQP) method, 

which is a type of nonlinear programming optimization method. The optimization finds the best 

set of parameters that minimizes the cost function for the given dataset. 
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The optimization is performed using the fmincon function, which is a built-in optimization function 

in MATLAB that solves constrained nonlinear optimization problems. The function requires an 

initial guess for the parameters (i.e., the lower and upper bounds for the parameters), and 

optimization options. 

Then the MATLAB GlobalSearch function is used to perform a global search for the optimal 

solution. This function starts by performing several local searches in different parts of the 

parameter space and then combines the local solutions to find the global optimum. The function 

requires an optimization problem as an input. 

The objective function is defined to calculate the cost or the error between the estimated data and 

the actual data.  

The optimization problem is divided into small blocks of data, and the optimization is performed 

independently on each block using the same objective function. This approach is used to reduce 

the computational cost and allows for parallel processing of the optimization problem. The optimal 

parameters for each block are stored and interpolated to span the entire data. 

Local minima can be a concern even when the cost function has a global minimum. If the 

optimization algorithm gets stuck in a local minimum, it may not find the global minimum. 

However, with Global optimization algorithms such as such as the globalsearch function in 

MATLAB, we can avoid getting stuck in local minima. These algorithms search the entire 

parameter space to find the global minimum rather than just searching for a local minimum. 

Analyzing the local minima of the cost function can help us understand the behavior of the 

optimization algorithm and identify potential improvements. 

We perform a local minima analysis for grid values between -5 and 5 for optimization parameters, 

and we see that the cost function has a global minimum, as shown in Figure 3-26 to Figure 3-31. 
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For each of these figures, only two parameters are compared by evaluating the cost function at the 

grid values while keeping the rest of the parameters constant at the optimal values obtained during 

joint estimation.  

 

Figure 3-26: Cost function analysis for baseline errors. 

 

Figure 3-27: Cost function analysis for baseline errors (surface plot). 
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Figure 3-28: Cost function analysis for surface velocity and ice rheology parameter. 

 

Figure 3-29: Cost function analysis for surface velocity and ice rheology parameter (surface 

plot). 
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Figure 3-30: Cost function analysis for slope parameters. 

 

Figure 3-31: Cost function analysis for slope parameters  (surface plot). 
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3.4.4 Joint Estimation Results 

The joint estimation framework produces results for baseline errors, as shown in Figure 3-32 and 

Figure 3-33 for horizontal and vertical baseline, respectively. The baseline values are adjusted 

accordingly using these estimated baseline errors. This adjustment ensures that the range 

measurements are more accurate and can be used for further analysis or processing. 

The rheology of ice refers to how ice deforms under stress, and it is an important parameter for 

understanding the flow of ice in glaciers and ice sheets. The joint estimation framework produces 

estimates of the ice rheology parameter which is used in the Lliboutry model. 

Figure 3-34 shows the joint estimation results for vertical velocity for selected block columns. 

They all exhibit the predicted trend as per the Lliboutry model. These are averaged to generate the 

mean vertical velocity profile in Figure 3-35. The mean vertical velocity estimates are validated 

against the results from pRES estimation, which act as the ground truth for vertical velocity 

estimation (Section 3.4.5). 

Figure 3-36 shows the joint estimation results for the cross-track slope for selected block columns. 

These are averaged to generate the mean cross-track slope profile in Figure 3-37. The mean cross-

track slope estimates are validated against the results from crossover analysis which act as the 

ground truth for cross-track slope estimation (Section 3.4.6). 



83 

 

 

 
Figure 3-32: Estimated horizontal baseline error. 

 
Figure 3-33: Estimated vertical baseline error. 
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Figure 3-34: Vertical velocity joint estimation results for selected columns of blocks. 

 

Figure 3-35: Averaged vertical velocity profile. 
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Figure 3-36: Cross-track slope joint estimation results for selected columns of blocks. 

 
Figure 3-37: Averaged cross-track slope. 
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3.4.5 pRES Results for Vertical Velocity Estimation Validation 

Vertical velocity estimates from pRES data around Summit (Figure 3-39) are used to compare 

with the results of vertical velocity from the joint estimation framework. The pRES results are 

taken as the ground truth because ground-based sensing systems like pRES can be precisely 

situated. 

The process of generating vertical velocity estimates from pRES data follows the steps below: 

• Load pulse compressed pRES data. 

• Perform coregistration of the monitor (secondary) acquisition onto the base (reference) 

acquisition. 

• Generate an interferogram between the two acquisitions. 

• Use the unwrapped interferometric phase to calculate the displacement (Figure 3-38) 

between the two acquisitions using equation 3.17: 

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝜙 
𝜆

4𝜋
  

3.17 

where 𝜆 is the pRES wavelength. 

• Derive the vertical velocity (Figure 3-39) by dividing the displacement by the time span 

between acquisitions: 
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Figure 3-38: pRES displacement. 

The vertical velocity profile generated from pRES data shows a reducing trend toward the bed 

rock as expected from Lliboutry’s model. This result is used as the ground truth to evaluate the 

performance of the joint estimation framework in estimating the vertical velocity profile from 

airborne radar data as shown in Figure 3-40 and Figure 3-42. 
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Figure 3-39: pRES vertical velocity estimation. 

The temporal baseline between measurements for the pRES site was two years, and the 

corresponding vertical velocity estimate is shown in Figure 3-39.  The vertical velocity estimates 

from the joint estimation framework and pRES are plotted together in Figure 3-40. We see that 

they both have the same gradient trend, and the corresponding error plot is shown in Figure 3-42. 

The errors near the surface (within the firn) and at depths beyond 1000 m have big error 

magnitudes due to the quality of data in these regions. From the magnified plots (Figure 3-41 and 

Figure 3-43), we see that the joint estimation results for vertical velocity matched those generated 

from the pRES data. 
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Figure 3-40: Validation of joint estimation vertical velocity results with pRES results. 

 
Figure 3-41: Validation of joint estimation vertical velocity results with pRES results 

(magnified). 
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Figure 3-42: Error in vertical velocity estimation. 

 

Figure 3-43: Error in vertical velocity estimation. (magnified). 



91 

 

 

3.4.6 Crossover Analysis for Slope Estimation Validation 

Crossover analysis is the technique used to validate the accuracy of cross-track slope estimates 

obtained from the joint estimation framework. The technique involves comparing the slopes 

estimated from two radar tracks that intersect at a common location or crossing point. The rationale 

behind this technique is that if the slopes estimated from the two tracks are accurate, they should 

be consistent with each other at the crossing point. The crossing line needs to be at about a 90-

degree angle to the primary line for the along-track slope of the crossing line to match the cross-

track slope of the primary line. If the angle is too oblique, then this method does not work well.  

We use crossover analysis as the ground truth to assess the accuracy of the joint estimation of the 

cross-track slope. The steps below outline the process of obtaining the slope using crossovers: 

Obtaining Crossover Data: Crossover data refers to measurements taken by the radar depth 

sounder that flies over the same location at different times, creating a "crossover" point where the 

tracks intersect.  The perfect crossover data is obtained when the tracks intersect at 90 degrees 

such that the along track slope of the crossing track at this point is aligned with the cross-track 

slope of the primary track. 

Identification of Crossover Points: Identify the crossover points in the data where the aircraft flew 

over the same location at different times. This is done using the layer tracking tool developed by 

CReSIS for radar depth sounder data. The primary frame is 41 from the 201405_01 segment 

(Figure 3-25). Figure 3-44 shows the available crossovers that are over 80 degrees at the 

intersection. The dotted vertical line indicates the crossing point. We use frame 20180423_01_55, 

which is at 85.47 degrees and has the lowest error, as shown in Figure 3-44. The coordinates of 

the intersection are 72.668 N, -37.980 W. The range line values for the intersection are obtained 

from the layer tracking tool for both the primary and the crossover frame. 
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Estimate Cross-track Slope: Using the joint estimation framework, we estimate the cross-track 

slope as before and extract the cross-track slope as a function of depth at the specific crossing 

point. 

Estimate Along-track Slope of the Crossing line: We extract data around the crossover point 

without a lot of variability in the slope profile in the crossover frame. We use two methods to 

estimate the along-track slope of the crossing line: manual and automatic.  

 

Figure 3-44: Crossover analysis in 20140502_01_41 frame. 
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3.4.6.1 Manual Crossover Analysis 

Using frame 20180423_01_55, we manually track the layers (Figure 3-45) and calculate the along 

track slopes of the crossover frame at different depths (Table 3-2). This gives a rough estimate of 

the slope since the height change is manually picked with the cursor.  

 

Figure 3-45: Manual tracking of depth change within the crossing line frame. 

The manually obtained depth changes are tabulated in Table 3-2 and the corresponding along track 

slopes calculated. The comparison of the joint estimation cross-track layer slope results with the 

crossing line along-track layer slope calculation is shown in Figure 3-46 and Figure 3-47. We see 

that even with the rough along-track slope estimates, the joint estimation of cross-track layer slopes 

is not far off from the ground truth. These rough estimates also serve as inputs to constrain the 

joint estimation algorithm. 
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Table 3-2: Rough calculation of along-track slope by manually tracing the depth change. 

Depth at 47 km 

along track (m) 

Depth at 49.5 km 

along track (m) 

Gradient 

(rad) 

Slope (rad) 

[arctan(Gradient)] 

Slope in 

degrees 

474.476 470.603 -0.00155 -0.00155 -0.08876 

1202.56 1198.65 -0.00156 -0.00156 -0.08961 

1276.15 1268.4 -0.0031 -0.0031 -0.17762 

1400.08 1396.2 -0.00155 -0.00155 -0.08892 

1640.19 1636.32 -0.00155 -0.00155 -0.08869 

1682.79 1675.05 -0.0031 -0.0031 -0.17739 

1729.26 1717.65 -0.00464 -0.00464 -0.26608 

1992.62 1981 -0.00465 -0.00465 -0.26631 

2732.32 2728.45 -0.00155 -0.00155 -0.08869 

3506.88 3561.1 0.021688 0.021685 1.242436 
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Figure 3-46: Crossover analysis to validate the cross-track slope estimate from the joint estimation 

framework. 

 
Figure 3-47: Error in the cross-track slope estimate from the joint estimation framework.  
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3.4.6.2 Automatic Crossover Analysis 

To automate and to obtain better estimation of the along track slope in the crossing line, we have 

developed the process where we use the phase ramp within the along-track FFT filter coefficients 

and a Constant False Alarm Rate (CFAR) detector. The CFAR detector is an algorithm that is 

capable of estimating the noise variance for a specific range cell, known as the cell under test 

(CUT), by analyzing data from adjacent range cells that serve as training cells. This method 

assumes that the noise characteristics of the training cells are similar to those of the cell under test. 

Additionally, the CFAR detector assumes that the training cells are free from any target signals, 

and that the data in the training cells only consist of noise. Buffer cells, or guard cells, are included 

between the CUT and the training cells to prevent signal leakage into the training cells, which may 

adversely affect the estimation of the noise variance. Furthermore, the training cells should be 

selected from ranges that are not too distant from the CUT, as illustrated in Figure 3-48. The CFAR 

method used is the greatest-of-cell-averaging. 

 

Figure 3-48: CFAR structure (credit:  Mathworks). 

The automatic along-track process follows the steps below: 

• Load radar data. 

• Determine the number of range lines before and after the crossing point reference line 

based on the size of the data matrix and layer roughness. 
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• Perform coherent noise removal and also remove DC components by averaging in the 

along-track dimension. 

• Compute FFT (with oversampling) of the extracted data along each along–track row and 

convert the output to power (the square of absolute values). 

• Apply a 2D filter to average in the fast-time domain. 

• Apply the CFAR filter in the fast-time dimension to remove clutter.  

• Find the index of maximum magnitude in each row in the along-track dimension. 

• Compute the FFT coefficients that account for the phase shift due to the slope and 

calculate the phase shift, Δ𝜙, corresponding to the index of maximum magnitude 

(𝑖𝑑𝑥𝑚 𝑥): 

Δ𝜙 =  − 𝑗2𝜋
𝑖𝑑𝑥𝑚 𝑥

𝑁
, 

3.18 

where 𝑁 is the size of the FFT. 

• Convert the phase shift to range shift, 𝑑𝑟, by dividing it by the wavenumber: 

𝑑𝑟 =
Δ𝜙

𝑘𝑟
, 

3.19 

where 𝑘𝑟 =  4 𝜋/𝜆. 

• Finally, convert the range shift to slope by dividing the range shift by the along-track 

spacing (𝑑𝑥): 
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𝑠𝑙𝑜𝑝𝑒 =  𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑑𝑟

𝑑𝑥
) 

3.20 

This along-track slope (3.20) is compared with the joint estimation cross-track slope result.  

We use the CReSIS Qlook2 script to load data for frames 55 and 56 of the 20180423_01 segment 

and combine them. We use two frames because the crossing point within frame 55 is near the end 

of the frame, and to allow for about 1000 range lines around the crossing point, we need to combine 

the two frames. We select 1000 range lines around a crossing point and compute the FFT (Figure 

3-49) of the data in the along-track dimension. CFAR (Constant False Alarm Rate) filtering is 

applied to the Fourier-transformed data to remove clutter (Figure 3-50). The index of the maximum 

magnitude in the FFT is used to calculate the phase change (Figure 3-51) in the data. The phase 

change is directly proportional to the along-track slope. The plot of the estimated along-track slope 

around the crossing point is shown in Figure 3-52. 

 

 

 

2 https://ops.cresis.ku.edu/wiki/index.php/Qlook 
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Figure 3-49: Azimuth FFT around the crossing point. 

 
Figure 3-50: CFAR detection. 
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Figure 3-51: Crossline along-track phase change. 

 
Figure 3-52: Crossline along-track slope. 
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Figure 3-52 shows the estimated along-track slope at the crossing point in degrees. The slope 

represents the change in elevation with respect to the along-track direction of the radar. The 

accuracy of the slope estimation is poor below range bin 600 because the layers at these depths are 

not clearly imaged (poor data quality). The error between the joint estimation slope values and the 

corresponding along-track slope estimates gives an indication of the accuracy of the joint 

estimation algorithm for the cross-track slope variable.  

 

Figure 3-53: Validation of cross-track slope with along-track slope from crossover analysis.  
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Figure 3-54: Absolute error in estimating the cross-track slope.  

The absolute error between the good range bins shows that the joint estimation of the cross-track 

slope was very close to the along-track slope estimate. 

3.4.7 Inter-Waveform Equalization  

Multiple (usually two or three) waveforms of varying durations and gains are required to reliably 

image the surface, inner layers, and ice bottom. The images corresponding to each waveform are 

formed and then combined to form one composite image, as illustrated in Figure 3-55 for frame 

20140405_01_001 from the 2014 Greenland campaign. Due to changes in the radar settings for 

each waveform, the system impulse response is slightly different for each waveform. 
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Figure 3-55: Three images (waveform 1 focused on the surface, waveform 2 focused on the near-

surface internal layers, and waveform 3 focused on the deep internal layers and ice bottom) create 

the combined image on the right. 

The interferometric phase plot between the two different passes is expected to be a smooth and 

continuous curve when the SNR is high. However, there can be inter-waveform phase and 

amplitude discontinuities at the waveform transitions especially if the passes are from different 

radar configurations where the waveform transitions of the two passes do not coincide. For 

example, if pass one used three waveforms and pass two used two waveforms. The combined 

image may have discontinuities corresponding to each inter-waveform transition.  For passes from 
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the same radar configuration with the same settings, the waveform transitions occur concurrently 

so the interferometric phase is continuous, as illustrated in Figure 3-56 (a). If waveform transitions 

occur at different points in the equalization record or the change between waveforms varies, then 

fast-time discontinuities in the interferometric phase will occur as illustrated in Figure 3-56 (b).  

                  

Figure 3-56: (a) Concurrent inter-waveform transition between passes.  (b) Discontinuities can 

occur due to the master pass transitions from waveform 1 to waveform 2 and waveform 2 to 

waveform 3.   

When processing radar data, equalization is employed to abate errors induced by the non-ideal 

system hardware. These errors modify the magnitude and phase response of the received 

waveforms. The current equalization process accounts for relative errors between the ADC 

channels but not relative errors between the waveforms.  
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Equalization will be implemented using two approaches to mitigate these waveform-to-waveform 

discontinuities. Both methods involve finding a complex coefficient for each waveform to multiply 

the corresponding waveform by, such that unwanted system variations between waveforms are 

eliminated.  

The first method is to apply a complex coefficient correction to each waveform by finding the 

optimal offset that causes the least root mean square fitting error to the interferogram phase model 

derived from the Lliboutry (1979) ice sheet velocity model at the waveform-to-waveform 

transition in the interferograms.  This method is applicable to inter-waveform transitions that don’t 

have an overlapping region at the transition (as illustrated in Figure 3-57) and therefore no common 

target between the waveforms. This lack of sufficient overlap between waveforms leads to gaps in 

the resulting interferograms.  

 

      

                                  (a)                                                                                   (b) 

Figure 3-57: (a) Inter-waveform phase discontinuity illustration with no overlapping region. (b) 

Inter-waveform phase discontinuity correction. 

To correct for the discontinuity, such that waveform 2 as illustrated in Figure 3-57 follows the 

trend of waveform 1, a complex number that eliminates the discontinuity is estimated. Due to the 
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expected smoothness (trend) of the phase, it is possible to take the measurement from the 

waveform 1 region and estimate what it should be in the waveform 2 region near the transition.  

Then a multiplicative scaling complex coefficient is applied to waveform 2 to shift it to the right 

value and remove the discontinuity as illustrated by the black line in Figure 3-57.  

The second approach is to estimate equalization coefficients by tracking an internal layer at the 

transition when waveforms overlap so that both waveforms measure the same internal layer and 

then use this common target to find a coefficient that makes the measurements from each 

waveform as consistent as possible. The coefficient is estimated by averaging the complex ratio of 

waveform 2 to waveform 1 scattering in the overlapping region. The random phase from the SAR 

processed data for two waveforms is illustrated by the sketch in Figure 3-58 (a) where we have an 

inter-waveform transition region that overlaps (waveform 1 – red and waveform 2 – blue). This 

means that the waveforms capture the same target in this overlapping region in fast-time and the 

corresponding phase due to the scatterers in the overlap region should be the same (ignoring 

thermal noise) in both instances since the radar system and the scene are the same. The 

multiplicative scaling coefficient of the form ℊ ∙ 𝑒𝑗ϑ is applied to waveform 2 to shift it to the right 

value and remove the discontinuity as shown by the black waveform in Figure 3-58 (b). ℊ 
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represents the relative amplitude change and 𝜗 the relative phase change between the passes at the 

transition region for the common target. 

We assume that the complex coefficient estimates for method 1 and method 2 are constant as a 

function of time such that all pixels in the overlap region for a segment (i.e., many range bin - 

range line combinations) can be used to estimate the single complex equalization coefficient. 

       

(a)                                                                            (b) 

 

Figure 3-58: (a) Illustration of inter-waveform discontinuity when both waveforms measure the 

same target. (b) Interferogram phase after inter-waveform phase discontinuity correction. 

3.4.7.1 Inter-Waveform Equalization Results 

The averaged phase for waveform 1 and waveform 2 before inter-waveform equalization is shown 

in the plot of Figure 3-59. We see a discontinuity around the range bin 280 to 300. This is 

compensated for, and Figure 3-60 shows the averaged phase after inter-waveform equalization, 

and the discontinuity around the range bin 280 to 300 has been eliminated. Furthermore, the 

vertical velocity profile plot (Figure 3-62) after the inter-waveform equalization does not have the 

kink evident in the pre-equalization plot (Figure 3-61). 
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Figure 3-59: Averaged phase without inter-waveform equalization between waveform 1 and 

waveform 2. 

 

Figure 3-60: Averaged phase after inter-waveform equalization between waveform 1 and 

waveform 2. 
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Figure 3-61:Vertical velocity profile without inter-waveform equalization. 

 

Figure 3-62:Vertical velocity profile after inter-waveform equalization. 
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4 FOCUSING MATRICES 

4.1 Introduction  

As discussed in section 2.5.5.2, transformation or focusing matrices are used to coherently 

combine sub-bands. This process provides improved results over incoherent wideband DOA 

methods [27]. The focusing matrices transform the signal subspace of each sub-band in the 

wideband signal into the reference frequencies signal subspace. The DOA estimation is then 

carried out via narrowband signal processing. The challenge is to design the optimal focusing 

matrices that can do this transformation appropriately. From Equation 2.51, we can see that the 

angles defining the steering vectors that form the matrices 𝑨(𝜔𝑘) and 𝑨(𝜔0)  are unknown, which 

creates a challenge in defining the focusing matrix 𝑻(𝜔𝑘). In this report we shall focus on 

rotational signal subspace (RSS) focusing matrices that were shown to be effective in [55]. 

4.2 Problem formulation 

To deal with the problem of unknown steering angles, we build candidate steering matrices 

denoted by 𝑩(𝜔𝑘) that use initial DOA estimates such that 𝑻(𝜔𝑘) = 𝑩(𝜔0)𝑩(𝜔𝑘)
−1. The matrix 

𝑩(𝜔𝑘) is of size 𝑃 × 𝑃. For RSS focusing matrices, rather than making the candidate matrices to 

be 𝑃 × 𝑃, the following constrained minimization is done: 

minimize ∥ 𝑩(𝜔0, 𝜶) − 𝑻(𝜔𝑘)𝑩(𝜔𝑗, 𝜶) ∥𝐹 

subject to 𝑻(𝜔𝑘)
𝐻𝑻(𝜔𝑘) = 𝑰 

 4.1 

where 𝜶 is a set containing angles, obtained before the estimation process, that define 

the steering vectors of 𝑩. 𝜶  contains the angles {𝜃𝑞 , 𝜃𝑞 − 0.25 ∗ 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ, 𝜃𝑞 +

0.25 ∗ 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ} for 𝑞 > 1. These focusing angles can be preliminary DOA 
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estimates from a beamformer. The solution to Equation 4.1 is detailed in [55] and is 

given by; 

𝑻(𝜔𝑘) = 𝑽(𝜔𝑘)𝑼(𝜔𝑘)
𝐻 4.2 

 where 𝑽 and 𝑼 are the left and right singular vectors of 𝑨(𝜔𝑘, 𝜶)𝑨(𝜔0, 𝜶)
𝐻. 

4.3 Review of Prior Work 

Maximum likelihood (ML) and signal subspace approaches are prominent methods for direction 

of arrival finding in array signal processing. The signal subspace methods in contrast to maximum 

likelihood, do not require a slow nonlinear iterative search which also poses a risk of not 

converging to the desired solution due to many local minima [56]. The signal subspace methods 

in wideband scenarios are classified as either incoherent or coherent. The incoherent processing 

category involves the decomposition of the wideband signal into narrowband components. Each 

non-overlapping narrowband component is then subjected to narrowband signal subspace 

processing to obtain preliminary estimates which are averaged to yield the final estimate [56].  

Wang and Kaveh in [27] proposed the application of focusing matrices in coherent signal subspace 

processing for DOA estimation of wideband sources. The signal subspaces of the narrowband 

components of the wideband signal are aligned using focusing matrices. To perform parameter 

estimation, one reduced covariance matrix is generated by combining the focused narrowband 

covariances. 

4.4 RSS Focusing Matrices  

To implement RSS focusing matrices, a wideband signal model was developed for P sensors, Q 

sources, K sub-bands, and M snapshots in MATLAB as follows: 
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𝑿𝑚(𝑓𝑘) = 𝑨𝜃(𝑓𝑘)𝑺𝑚(𝑓𝑘) + 𝑵𝑚(𝑓𝑘)          𝑘 = 1,…𝐾  and 𝑚 = 1, . . , 𝑀 4.3 

where 𝑓 is the ordinary frequency which is related to angular frequency by 𝑓 = 𝜔/2𝜋, 

𝑿𝑚 (𝑓𝑘) =  [𝑥1𝑚 (𝑓𝑘), 𝑥2𝑚(𝑓𝑘),⋯ 𝑥𝑃𝑚(𝑓𝑘)]
𝑇 is the discrete Fourier coefficients of the received 

signal, 𝑺𝑚 (𝑓𝑘) =  [𝑆1𝑚 (𝑓𝑘), 𝑆2𝑚(𝑓𝑘),⋯𝑆𝑄𝑚(𝑓𝑘)]
𝑇
is the discrete Fourier coefficients of the 

unknown signal radiated by the 𝑞𝑡ℎ source,  𝑵𝑚 (𝑓𝑘) =  [𝑁1𝑚 (𝑓𝑘), 𝑁2𝑚(𝑓𝑘),⋯𝑁𝑃𝑚(𝑓𝑘)]
𝑇is the 

discrete Fourier coefficients of the additive noise received at the 𝑝𝑡ℎ sensor, 

𝑨𝜃(𝑓𝑘) =  [𝒂𝜃1(𝑓𝑘), 𝒂𝜃2(𝑓𝑘),⋯𝒂𝜃𝑞(𝑓𝑘)] is the 𝑃 ×  𝑄 steering matrix, and 

𝒂𝜃𝑞(𝑓𝑘) =  [𝑒−𝑗2𝜋𝑓𝜏1(𝜃𝑞), 𝑒−𝑗2𝜋𝑓𝜏2(𝜃𝑞), ⋯ 𝑒−𝑗2𝜋𝑓𝜏𝑃(𝜃𝑞)]
𝑇
is the steering vector. 

Here we note that for a Uniform Linear Array (ULA)  𝜏𝑝(𝜃𝑞) =
(𝑝−1)𝑑

𝑐
sin(𝜃𝑞) with 𝑑, 𝜃𝑞 , and 𝑐 

referring to sensor separation, arrival angle, and speed of light respectively. For the case of 

arbitrary array, the delay is given by Equation 2.15. 

With the signal model implemented, the RSS focusing matrix described above was constructed by 

following three stages: 

• Computation of 𝑨𝜃(𝑓𝑘)𝑨𝜃
𝐻(𝑓𝑜)  

• Computation of the left 𝑼(𝑓𝑘) and right 𝑽(𝑓𝑘) singular vectors3 of 𝑨𝜃(𝑓𝑘)𝑨𝜃
𝐻(𝑓𝑜) .   

• Computation of the RSS focusing matrix 𝑻𝜃(𝑓𝑘) = V(𝑓𝑘)𝑼(𝑓𝑘)
𝐻  

 

 

 

3 SVD reference: https://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm 

https://en.wikipedia.org/wiki/Ordinary_frequency
https://web.mit.edu/be.400/www/SVD/Singular_Value_Decomposition.htm
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The algorithm for applying focusing matrices in wideband DOA estimation is outlined below. 

Householder Signal Subspace Transformations (HSST) that are well explained in [56], are 

included for comparison. 

• Construct the signal model. 

• Use MVDR-S to estimate initial group angles, 𝛽𝑖 and number of sources, 𝑄. 

• Calculate preliminary focusing angles using the group angles: 

For RSS: use 𝛽𝑖, 𝛽𝑖 − 0.25 ∗ 𝐵𝑒𝑎𝑚𝑤𝑖𝑑𝑡ℎ, 𝛽𝑖 + 0.25 ∗ 𝐵𝑒𝑎𝑚𝑤𝑖𝑑𝑡ℎ. 

For HSST: use 𝛽𝑖, 𝛽𝑖 − 0.1 ∗ 𝐵𝑒𝑎𝑚𝑤𝑖𝑑𝑡ℎ, 𝛽𝑖 + 0.1 ∗ 𝐵𝑒𝑎𝑚𝑤𝑖𝑑𝑡ℎ. 

• Initialize the transformed measurement covariance matrix 𝑹(𝑓𝑜) to zeros. 

• For 𝐾 sub-bands: 

Estimate the narrow band covariance matrix, 𝑹(𝑓𝑘). 

If 𝑄 =  1, build diagonal focusing matrix 𝑇(𝑓𝑘) . 

If 𝑄 >  1, build RSS or HSST focusing matrix 𝑻(𝑓𝑘).  

Update 𝑹(𝑓𝑜) = 𝑹(𝑓𝑜) + 𝑻(𝑓𝑘)𝑹(𝑓𝑘)𝑻(𝑓𝑘)
𝐻. 

• Use MUSIC to estimate the wideband spectrum using 𝑹(𝑓𝑜).  

To demonstrate the functionality of the algorithm, a Monte Carlo simulation using four 

uncorrelated sources at 8, 13, 33, and 35 degrees was done, and the following results were 

obtained. An eight-element uniform linear array of omnidirectional sensors was used like in [55]. 
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For each of the 100 snapshots used, a processing band of 80 to 120 Hz (𝑓0 is 100 Hz) is traversed 

by 𝐾 =  33 frequency bins. 

 

Figure 4-1: The sample statistics of the bearing errors for the RSS and HSST methods. 

RSS method has comparable performance as HSST method except at low SNR values. Figure 4-2 

shows that the DOAs can be correctly estimated using the MUSIC algorithm. 
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Figure 4-2: MUSIC Spectrum for RSS and HSST methods. 

4.5 Comparison of Focusing Matrices with Other Wideband Methods 

DOA mean square error (MSE) analysis is used to compare the focusing matrices method against 

other wideband methods such as wideband MLE, wideband MUSIC, and wideband MVDR and 

the results are shown in Figure 4-3 and Figure 4-4. From these plots, we see that the extra 

processing cost of using focusing matrices may not be advantageous over the other wideband 

methods currently being used in radar depth sounder data processing. 
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Figure 4-3: Comparison with other wideband methods. 

The MUSIC and MVDR spectra (Figure 4-3) are superior to the spectrum obtained using focusing 

matrices. Likewise, the RMSE plot (Figure 4-4) shows no clear advantage of using focusing 

matrices over MUSIC and MVDR.  

 

 



117 

 

 

 

Figure 4-4: RMSE comparison with other wideband methods 

 

  



118 

 

 

5 CONCLUSIONS AND FUTURE WORK 

The work presented in this dissertation aims to measure the vertical velocity of ice sheets using 

differential interferometric synthetic aperture radar (DInSAR) techniques. The research explores 

using a maximum likelihood estimator to jointly estimate the vertical velocity, cross-track internal 

layer slope, and unknown baseline error due to GPS and inertial navigation system errors. The 

joint estimation framework produces results for baseline errors, vertical velocity, and cross-track 

slope, which are validated against ground-based and crossover analysis results. The research 

findings demonstrate that the joint estimation framework can estimate the vertical velocity profile 

from airborne radar data with reasonable accuracy, especially within the region where the 

echogram data quality is good.  

The study also investigates the use of focusing matrices against other wideband direction of arrival 

methods. The results suggest that the extra processing cost of focusing matrices may not be 

advantageous over the other wideband methods currently used in radar depth sounder data 

processing. 

This work contributes to understanding ice flow in glaciers and ice sheets. It has potential 

applications for improving models used in predicting the behavior of ice sheets in response to 

climate change. 

5.1 Future Work 

The joint estimation framework presented in this dissertation could be further improved by 

incorporating machine learning or artificial intelligence techniques (e.g., feature extraction, post-

processing and analysis). Machine learning techniques can be used to extract relevant features 

from SAR data and other auxiliary data, such as topography and surface elevation, that can be used 

as inputs to the Maximum likelihood joint estimation framework.  Artificial intelligence techniques 
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can be used to post-process and analyze the Maximum likelihood joint estimation framework's 

outputs, such as identifying patterns or anomalies in the estimated parameters. These can lead to 

more accurate and efficient estimation of ice sheet vertical velocity and tomography 

measurements. These techniques can be explored to further improve the accuracy and robustness 

of the joint estimation framework.  

The current joint estimation framework presented in this work can be further improved by 

incorporating additional information, such as the ice temperature and density, which can affect the 

ice rheology and flow.  

While this work focused on Greenland, DInSAR techniques can be applied to other regions to 

obtain vertical velocity measurements and improve our understanding of ice flow dynamics. This 

can help to refine existing ice flow models and improve predictions of future ice sheet and glacier 

behavior under different climate scenarios. 
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7 APPENDIX 

7.1 Processing of Non-contiguous Radar Transmission Spectra 

This is a draft of a paper being prepared for submission to the IEEE Transactions on Radar 

Systems. This work on processing of non-contiguous Radar transmission spectra was undertaken 

before the main Ph.D. research objective was streamlined and therefore it is only included here in 

the appendix. The authors are Gordon Ariho, James M. Stiles, and Peng Sen Tan. 

Abstract—  In recent times, the issue of spectral congestion has become a growing concern 

in the radar community. Furthermore, the telecommunications industry has been advocating 

for access to segments of the spectrum that have traditionally been generously allocated to 

radar systems. To address this issue, an information theoretic approach is used to design 

optimally "thinned" transmission spectra. However, this thinning of the spectrum can lead 

to a degradation in estimation accuracy. In scenarios where there is a sparse target profile, 

reduced estimation performance can be deemed acceptable, and the bandwidth can be 

thinned to improve spectral efficiency. Achieving spectral efficiency allows for the freeing of 

portions of the radar bandwidth, enabling spectrum sharing between radar and other 

wireless systems. To process the thinned spectra, an iterative reduced-rank minimum mean-

square error (MMSE) algorithm is proposed. This algorithm is applied to the radar 

measurement model, with simulated target profiles used to evaluate the algorithm's 

performance. The results demonstrate the effectiveness of the proposed iterative algorithm 

and the potential for achieving significant spectral efficiency gains through the thinning of 

the radar spectrum. This work is of particular interest to researchers and practitioners in 

the fields of radar systems and telecommunications, where efficient spectrum utilization is 

crucial for meeting increasing demand. 
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 Index Terms— Sparse spectrum, MMSE, Iterative Reduced-Rank MMSE, Spectral 

Efficiency, Spectrum Sharing.  

I. INTRODUCTION 

Radar applications have enjoyed generous frequency allocations within the UHF band for a long 

time. However, with the increasing demand for bandwidth-hungry applications in other 

communication systems and spectral congestion within radar systems, this privileged status can 

no longer be sustained indisputably. Spectrum is a costly resource and radar technologies must 

now be designed with spectral efficiency in mind. Within the radar array processing framework, 

spectral efficiency can be defined as the optimal use of bandwidth to achieve acceptable 

performance with minimal degradation as if the original full bandwidth were still in use, enabling 

lower bandwidth occupancy. Spectral efficiency further requires that the radar has good spectral 

containment within its allocated bandwidth to avoid interfering with other wireless applications’ 

signals, taking into consideration the high-power transmission typical of active radars. 

Consequently, if this spectral efficiency could be achieved, then some portions of the radar 

bandwidth can be freed to facilitate spectrum sharing between radar with other wireless 

communications systems.  

If the spectrum is modeled as a summation of distinct spectral lines, then a contiguous spectrum 

can be represented by the expression in equation (1) for a pulsed radar:  

𝑠(𝜔) = ∑𝑠𝑛𝛿(𝜔 − 𝑛𝜔)

𝑁

𝑛−1

(1) 

where 𝑠(𝜔) is the original contiguous spectrum, 𝑁 is the number of spectral lines, each defined by 

the Dirac-Delta function 𝛿(𝜔) shifted by a frequency location 𝑛𝜔, and 𝑠𝑛 is the weighting. 

By inspection of (1) for a pulsed radar system, it can be seen that spectral thinning can be 
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performed by optimally removing some spectral lines without degrading the radar resolution. The 

remainder of the spectral lines can now be spaced at any frequency interval as long as it is lower than 

the pulse repetition frequency (to avoid range ambiguity). This is equivalent to pulse repetition 

interval jittering in pulsed radar. If we consider each spectral line as an individual narrow-band 

coherent transmitter/receiver, then the contiguous spectrum can be represented by a uniform linear 

array (ULA) in which each array element (a coherent transmitter/receiver) corresponds to a spectral 

line. Linear arrays allow many different array patterns to be synthesized depending on how each 

element is excited [1].  

It can be shown that when the ULA is not filled (hence a non-uniform array at this point), it can 

still achieve almost similar performance to the original filled ULA with some estimation degradation. 

Consequently, higher peak side-lobe levels (PSL) and higher integrated side-lobe levels (ISL) can 

occur leading to possible false alarm detection and higher target estimation error variance 

respectively. The level of degradation in performance is directly proportional to the number of 

removed elements [1]. These removed spectral lines can be utilized by other wireless applications. 

Marginal Fisher’s Information (MFI) [2] is used to design informationally-optimal sparse spectra as 

detailed in [1]. These MFI generated sparse spectra are used to study the performance of the reduced-

rank minimum mean-square error (RRMMSE) algorithm being proposed here. 

When the classic one-step MMSE is applied to low-sample support cases, it results in either many 

false alarms or missed detections of the real targets of interest. Reduced-rank MMSE (RRMMSE) 

is proposed for low-sample support situations where it is applied iteratively to perform estimation of 

sparse targets within range. The proposed RRMMSE is related to compressive sensing, matched 

pursuits, and clean algorithm. Compressive sensing uses fewer measurements than conventional 

methods to recover signals by taking advantage of the signal sparsity and sensing incoherence [3]. 
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Matched pursuit incrementally constructs a series of sparse approximations to the signal [4]. The 

clean algorithm is primarily a deconvolution method that is used to clean noisy observed data in 

order to recover a sparse illumination distribution, for example, stars in the sky [5]. 

One of the previous research done on RRMMSE involved algorithms that employ correlation-

subtraction architecture based on the multistage Wiener filter [6]. In this research, it is demonstrated 

that the reduced rank algorithm performed as good as the full-rank MMSE when sufficient sample 

support was ensured. This is achieved without implementing eigen-decomposition, matrix inversion, 

or construction of blocking matrices, which would be computationally expensive. Another 

RRMMSE algorithm that is proposed in [7], is based on a classification algorithm and a release-

merge adaptive partition algorithm which updated the partition and the receiver's coefficients 

concurrently. This algorithm is shown to perform better than the previously proposed ones such as 

the partial despreading MMSE receiver and the cyclically shifted filter bank receiver, with even a 

smaller number of taps [8]. This paper seeks to expound and propose a statistical iterative reduced-

rank MMSE algorithm by building on work done in [1]. 

II. PROBLEM FORMULATION 

To model the received radar signal, a general linear model is considered (2): 

𝐯 = 𝐇 𝜸 + 𝐧 (2) 

where 𝐯 is a 𝐾 × 1 radar measurement vector, 𝐇 is a 𝐾 ×  𝑀  observation matrix (sensing matrix), 

𝜸 is an 𝑀 ×  1  vector with each element 𝛾𝑖 corresponding to the complex scattering coefficient of 

an individual target within range, and 𝐧 is complex measurement noise vector (Gaussian). The 

matrix 𝐇 defines the propagation characteristics of a channel for a given transmit signal. 

A sparse transmit spectrum results in a matrix 𝐇𝐻𝐇 that is less than full rank (i.e., insufficient 

independent measurements for the number of unknowns!). Frequently, the range profile 𝜸 is not 
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full rank since there are many resolution cells without detectable targets. For these cases, a sparse 

transmit spectrum might be informationally sufficient to estimate 𝜸. The problem is to determine 

the subspace of 𝐇𝐻𝐇  where detectable targets exist. An iterative approach has been developed, 

wherein a reduced-rank MMSE is used to iteratively identify and construct this detectable target 

subspace. 

A. Cramer-Rao Lower Bound (CRLB) and Marginal Fisher Information 

From the linear model in (2), we can denote the estimation of the vector 𝜸 with 𝜸̃. There is always 

an error associated with this estimation of 𝜸, such that the estimated 𝜸̃ will not be identical to the 

original 𝜸. The estimation error, 𝝐 , and corresponding covariance matrix, 𝐊𝜖, when using the 

MMSE estimator can be obtained as follows: 

𝝐 = 𝜸̃ − 𝜸 (3) 

𝐊𝜖 = 𝔼{𝝐𝝐′} (4) 

The lower bound of the error covariance is given by the Cramer-Rao Lower Bound (CRLB) [9]. 

The CRLB is equal the inverse of the Fisher Information matrix of the measurement vector which 

can be expressed by:  

𝐉 = 𝔼 {[∇𝜸 ln (𝑓(𝑣|𝛾)(𝐯))] [∇𝜸 ln (𝑓(𝑣|𝛾)(𝐯))]
𝐻

} (5) 

where ∇ is the gradient operator and 𝑓(𝑣|𝛾)(𝐯)   is the probability density function of 𝐯  given 𝜸. 

MFI is a measure of the new information gained when the 𝐾𝑡ℎ spectral element is added to the 

(𝐾 − 1)𝑡ℎ previous spectral elements. It can be viewed as the reduction in uncertainty from an 

information theory perspective. The Marginal Fisher Information matrix obtained from the 𝐾𝑡ℎ 

spectral element is defined as the nonnegative definite matrix Δ𝐈(𝐾) given by: 

Δ𝐈(𝐾) =  𝐉𝐾−1
−1 − 𝐉𝐾

−1 (6) 
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where 𝐉𝐾 is the Fisher Information matrix obtained from 𝐾 spectral elements in vector 𝐯, and 𝐉𝐾−1 

is the Fisher Information matrix from (𝐾 − 1) spectral elements. 

From the MFI matrix, Δ𝐈(𝐾), the MFI from the 𝐾𝑡ℎ spectral elements is defined as: 

MFI =
1

𝑀
× Tr(Δ𝐈(𝐾)) (7) 

where Tr(⋅) is the trace operator and 𝑀 is the number of elements (targets) in the vector 𝜸. 

Equation (7) can further be written as: 

MFI =
1

𝑀
× [Tr(𝐉𝐾−1

−1 ) − Tr(𝐉𝐾
−1)] (8) 

which can also be written in terms of the covariance matrix as: 

MFI =
1

𝑀
× [Tr(𝐊𝜖(𝐾−1)) − Tr(𝐊𝜖(𝐾))] (9) 

MFI measures the incremental change in information resulting from one change in elemental 

design. It is analogous to Mutual information in Shannon information theory. 

The sparse spectra used in this research are generated based on the MFI algorithm developed in 

[1] where a more detailed expose of the algorithm is given. For completeness of this paper, a high-

level description of the construction of the sparse arrays using the MFI algorithm is provided. MFI 

measures the change in information resulting in one individual element in relation to the remainder 

of the elements in the sensor. In [1], it is shown that the construction of the sparse spectrum by 

employing the MFI metric can be achieved by removing either a block of frequencies or an 

individual frequency at a time during the optimization process. The approach of using a block of 

frequencies at a time allows for construction of practical sparse spectrum that is less granulated. 

The single spectral line at a time approach leads to a resultant sparse spectrum with small gaps that 

are not practical for reuse in other applications. Optimal spectral locations for the frequency blocks 
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are determined iteratively using the MFI metric. The frequency block size used in this paper is 

1.25\% of the filled spectrum. Investigation done with other block sizes is not included in this 

paper. The interval between adjacent frequency samples within each block satisfies the Nyquist 

sampling requirement. 

 

Fig. 1. 50% bandwidth sparse spectrum 

The coarray, 𝑐(𝑙), of a sparse array is defined as the autocorrelation of the element weights [11] 

and it is used to evaluate the constructed sparse spectrum arrays. 

𝑐(𝑙) = ∑ 𝑤𝑛𝑤𝑛+|𝑙|

𝑁−|𝑙|−1

𝑛=0

 (10) 

where 𝑤𝑛 ∈ {0,1} is the element weight that corresponds to the presence (1) or absence (0) of the 

array element at location n and 𝑁 is the total number of elements in the filled array. When 𝑐(𝑙) >

1, 𝑙 is a redundant lag whereas for 𝑐(𝑙) = 0 the coarray has a hole at lag l. A perfect array should 
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have a coarray with no holes or redundancies except for lag zero. These perfect arrays do not exist 

for 𝑛 >  4. 

MFI is used to iteratively construct sparse, non-contiguous radar transmission spectra that is 

informationally optimal. We showcase the 50% and 75% filled spectra in Fig.1 and Fig.2, 

respectively. These figures show the MFI generated frequency locations (top), and the 

corresponding coarray (bottom). 

The MMSE estimator (11) is applied to the radar measurement vector from (2) to obtain the 

estimated 𝜸̃ as shown (12): 

 

Fig. 2. 75% bandwidth sparse spectrum 

𝐖𝑀𝑀𝑆𝐸 = 𝐊𝛾𝐇
𝐻(𝐇𝐊𝛾𝐇

𝐻 + 𝐊𝑛)
−1

 (11) 

𝜸̃ = 𝐖𝑀𝑀𝑆𝐸𝐯 (12) 
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where 𝐊𝛾 is the a priori target covariance matrix and 𝐊𝑛 is the covariance matrix due to the 

measurement noise. Correspondingly, the error covariance when using the MMSE estimator can 

be given by: 

𝐊𝜖 = 𝐊𝛾 −𝐊𝛾𝐇
𝐻(𝐇𝐊𝛾𝐇

𝐻 +𝐊𝑛)
−1

𝐇𝐊𝛾 (13) 

which is equivalent to [10]: 

𝐊𝜖 = (𝐇𝐻𝐊𝑛
−1𝐇  + 𝐊𝛾

−1)
−1

(14) 

Since the Fisher information matrix, 𝐉𝐾 is equal to the inverse of the error covariance matrix, 𝐊𝜖, 

then 𝐉𝐾 can be written as: 

𝐉𝐾 = (𝐇𝐻𝐊𝑛
−1𝐇  + 𝐊𝛾

−1) (15) 

If 𝐊𝛾 and 𝐊𝑛 are defined as 𝜎𝛾
2𝑰 and 𝜎𝑛

2𝑰 respectively, then (14) and (15) can be rewritten as (16) 

and (17) respectively: 

𝐊𝜖 = (𝜎𝑛
−2𝐇𝐻𝐇  + 𝜎𝛾

−2𝑰)
−1

(16) 

𝐉𝐾 = (𝜎𝑛
−2𝐇𝐻𝐇  + 𝜎𝛾

−2𝑰) (17) 

III. RRMMSE ALGORITHM 

The flow chart in fig.3 highlights the iterative RRMMSE algorithm. The algorithm starts by 

assuming that there is only one target and takes the highest estimate to be the only target. In the next 

iteration, the algorithm assumes there are two targets and takes the highest two estimates as the true 

targets. This goes on until all the targets are estimated. The number of targets should be less than or 

equal to spectral lines within the thinned spectrum for this algorithm to work. The key performance 

metric is the mean-squared error of the scattered range profile estimate. The baseline for the evaluation 

is a conventional fully filled (i.e. contiguous) transmission spectrum and matched filtering. 

The iterative RRMMSE is applied to the measurement vector 𝐯 and the simulated range profile 
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estimated. The MATLAB simulation is setup as described below: 

Initialization: Detectable sparse targets 𝜸 are simulated to occupy 10%, 20%, 30%, 40%, 50% and 

60% of the resolution cells using random permutation. The target profile amplitude ranges from -10 to 

30dB. The complex Gaussian noise, 𝐧 is generated as:   𝐊𝑛 = 𝜎𝑛
2𝑰. The apriori sensing matrix 

(normalized response to each range bin), 𝐇 is generated. The apriori target covariance matrix, 𝐊𝛾 is 

generated as 𝐊𝛾 = 𝜎𝛾
2𝑰. The linear observation model is implemented as: 𝐯 = 𝐇 𝜸 + 𝐧. 

 

Fig. 3. Iterative Reduced-Rank MMSE 

Iterative Reduced Rank MMSE: The RRMMSE estimator is applied to the measurement vector, and 

the target scattering coefficient 𝛾𝑖 among all 𝑀 possible targets in the range profile that has the largest 

magnitude identified. This is assumed to be the true value of the target at this location; 𝜸̃ = 𝐖𝑀𝑀𝑆𝐸𝐯 

where,  𝐖𝑀𝑀𝑆𝐸 = 𝐊𝛾𝐇
𝐻(𝐇𝐊𝛾𝐇

𝐻 + 𝐊𝑛)
−1

. The apriori target covariance matrix 𝐊𝛾 for the location 

in the radar range profile is then updated using: 𝜎𝛾
2 = 𝛾̃2 + 𝜎𝜖

2. Since it can be shown that 𝐇𝐊𝛾𝐇
𝐻 =

∑ 𝜎𝛾𝑚
2 𝐻𝑚𝐻𝑚

𝐻
𝑚 , we can update only 𝐊𝛾 instead of the sensing matrix 𝐇. 
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For the next iterations, the RRMMSE estimator is applied to the set of all combinations of 𝐺 target 

scattering coefficients with each 𝐺-target combinations consisting of the already tracked (identified) 

target locations (𝑗1,  𝑗2, … . , 𝑗𝐺−1) along with the 𝑔𝑡ℎ target location. From the set of 𝑀 combinations 

of the estimated 𝐺-element 𝛾̃𝐺, the 𝑔𝑡ℎ target location to be identified is the location that has the largest 

magnitude among all the 𝑀 locations excluding (𝑗1,  𝑗2 … . , 𝑗𝐺−1). The current estimated values of the 

target scattering coefficients (𝛾𝑗1, 𝛾𝑗2, … , 𝛾𝑗𝑔) are assumed to hold the true values of the targets at these 

locations. Like in the first step, the a priori target covariance matrix 𝐊𝛾 is updated.  

The iterations continue till the average mean square error (MSE) of all M targets in the error 

covariance matrix, 𝐊𝜖 converge: 𝐊𝜖 = 𝐊𝛾 − 𝐊𝛾𝐇
𝐻(𝐇𝐊𝛾𝐇

𝐻 + 𝐊𝑛)
−1

𝐇𝐊𝛾. 

This iterative RRMMSE estimator algorithm (summarized in fig.3) is applied to each of the target 

profile scenarios and the result is a computationally tractable estimate of range profile 𝜸, with near 

MMSE accuracy. 

IV. RESULTS AND DISCUSSION 

The reduced-rank MMSE algorithm described above is applied to the different sparse spectra and 

the mean square error (MSE) performance analyzed. Different target profiles which are a percentage 

of range cells with detectable targets are used: 10%, 20%, 30%, 40%, 50% and 60%. Key results that 

demonstrate a particular pattern are showcased here. The average MSE from the error covariance 

matrix and the average MSE from ground truth are calculated using (18) and (19) respectively. 

MSE𝐾𝜖
=

1

𝑀
× Tr(𝐊𝜖) (18) 

MSE𝐺𝑇 =
1

𝑀
× [(𝜸 − 𝜸̃)𝐻(𝜸 − 𝜸̃)] (19) 

The baseline for this evaluation is a conventional fully filled (i.e. contiguous) transmission spectrum 
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and matched filtering. 

Matched filtering provides extremely poor estimate accuracy for thinned transmit spectra as shown 

in fig.4 and fig.5 for the 20% and 50% detectable targets using 50% and 75% filled spectrum 

respectively. 

Fig.6 illustrates the gradual improvement in estimation accuracy with increasing iterations. The 

first snapshot shows that the target estimation is still poor because this is a matched filter result. 

The next snapshot shows an improvement in estimation of the targets, and this gets better till the 

significant targets are all estimated as shown in the last snapshot of the process. 

The Iterative Reduced-Rank MMSE estimator can provide excellent estimation accuracy for all, 

but the smallest targets as shown in fig.7 and fig.8 for the 20% and 50% detectable targets using 

50% and 75% filled spectrum respectively. 

If the number of detectable targets is less than the measurement rank, a sparse spectrum can be as 

effective as a fully filled transmit bandwidth. Thinning the spectrum will increase time to 

convergence as shown in fig. 9 and increasing the number of detectable scatterers in the range 

profile will also increase time to convergence as shown in fig.10. Fig. 10 shows that the 100% 

target profile estimation with a 75% filled spectrum doesn’t converge since the target profile is 

greater than the 75% filled spectrum.  
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Fig. 4. Matched filtering: 20% detectable targets, 50% filled spectrum. 

 
Fig. 5. Matched filtering: 50% detectable targets, 75% filled spectrum. 
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Fig. 6. Iteration Snapshots: 20% detectable targets, 50% filled spectrum. 

 

Fig. 7. Iterative RRMMSE: 20% detectable targets, 50% filled spectrum. 
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Fig. 8. Iterative RRMMSE: 50% detectable targets, 75% filled spectrum. 

 

Fig. 9. Estimation Error: 20% detectable targets. 



142 

 

 

 

Fig. 10. Estimation Error: 75% filled spectrum. 

V. CONCLUSION 

The iterative reduced-rank minimum mean-square error (RRMMSE) algorithm has been 

demonstrated to perform well in scenarios where the target profile is less than the sparse spectrum 

size. Furthermore, the effectiveness of the iterative RRMMSE algorithm has been shown in various 

sparse array scenarios where the sparse spectrum is greater than or equal to the target profile. The 

versatility of this algorithm allows for its application to MFI generated sparse spectra, uniform 

sparse spectra, randomly generated sparse spectra, or any other type of sparse spectra. This 

proposed algorithm has the potential to be extended to other areas such as direction of arrival 

(DOA) estimation, where the target profile is sparse. It is important to note that the proposed 

RRMMSE algorithm is related to compressive sensing, matched pursuits, and clean algorithm. The 

creation of spectral gaps through the thinning of the radar transmission spectrum can facilitate 

spectrum sharing, provided that other wireless emitters exist exclusively within these spectral gaps. 



143 

 

 

Additionally, the use of a sparse spectrum processed iteratively with RRMMSE can be as effective 

as a fully filled transmit bandwidth, as long as the number of detectable targets is less than the 

measurement rank. Overall, the proposed iterative RRMMSE algorithm holds promise for 

mitigating the effects of spectral congestion and enabling efficient spectrum sharing between radar 

and other wireless systems, while maintaining acceptable estimation accuracy in sparse target 

profile scenarios. 
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