COQETVE KTHTUDE TV GELATIN TO
By
Herbert J, Schletunex
A. B., Erookiyn College, 19h2
Suint ted to the Department of Psychology and to the Faculty of the Graduate School of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Fhiloserhy.
Redacted SignatureChairman
Redacted Signature
Redacted Signature
September, 1952
[1953]

I wish to thank the wany pergons tho have haiped batros the

 frecaly ad ovary phane of this moaearch.
 Who fixat Influenced my dealslon bo becom payolologiot. As

 emphargemonts but his kecn eanaitivity to sho date opened may not possibilition and viatas whion tho present theale ondy bemins

 has been a source of enoourgeement troughout ry craduate years.

Ir. sibyllo F . Hecalma mas of mrat assistante duxing tha planning and pliot phatos of the investigation as was Int Nobant n. Holt. I an also indebtea to mp holt for hia very holphul ontiont readings of the menugcript at various atagos, Dre Gardnge furphy,
 also of groat holp tmough thein friendy cathoinm and suggestons:

Thanis ara du Dre Whilian wiksel1 for hid eooperation in
 to wird dane hobb sor her ufacling wallingess to sharo the
 the ecrestal drafte and for dolng man of the woric of the atatiothoni malyaes. Thake are alao due 縕as LoLafay Coyne for her help in perfomung tha btatideleal andyas.

Tha researoh wrortad upon in thif dissertation is part of
 which are tupported by the Wathonal inatitates of nealth, Hotred

H. J. Se
Page
HIST OR TABLES \$1.
LIST OF FIMURES vit.
cratera
I. ImTEODUCETOH 1
II. STATEx HYPOTHESES 8
3II. BXHKDNWMAL HROEDURWS 26
Frporinental taaks. 26
Size-estimation teat. 26
Picture-sorting test. 34
Color-word Interierence test. 37
Personal inventory. 40
Sumary of experimental prooedures. 4
Subjocts. 43
Statistical treatment 4
 ITHTRFHAETOE TEST. 47
V. Funtum herutis and IMflicamions of The PICTUBN-SORTTM 59
Y . Quantitarye nusulese preconal JUWEMTORY 67
VII. ITEM AMALTSTS OF TAE PHMGONAL NVETTORX. 73
VIII. OOSSISE*GIFS IN DIFEOTION AS WELL AS IN AHOMIT OF ERLDR IM GIZE-ESTMATIOH 82
 FOR TUETIER 家ULK 68
X. SUwarr. 100

Page

ATHEDDI 102

DDBLTOMRATIX 113
I. Fight Pictures Nated Indificarent by at Ioagt 6 out of 10 extreme Focussers and no more then 4 out of 10 extreme Jon-10cussars : 60
II. Moan Wumbers of Indiferent Ratings Given by 10 Focusaing Subjecte and 10 Non-Focusging Subjects to Three Categories of Picturos 62
IIf. Mem Humber of gortinge and Regyonse Thmes for PLeture-Sowting Test 64
 Between tho vocussing and Hon-Tocussing Oroupa in Aecordance with the Key 74
F. Inventory Items Wheh Disuriminate Nather Lees sharply Eetriecn the Yocusaing and Ren-Pocusedng Groups Than aid the Ftemg In Trble IV 75
VI. Inventory Items inich Disariminate Detween the Focussing and Hon-Focussing Groups and Contradiot the Key 70
VII. Vaxianoe Table for nata fros alyo-Estimation Test in pilot Study on Slxteen Subjects 103
7III. Scoren on All Testa Ror Forty Subject 104
EX Rellability Coeffiaients for Erincipal Testo 108
X. Forty-bix Personal Inventory Item Relating to Comannication with, Ixpreasion of, and Control of Emotions. 109
I. Size-estimation test. Mean error for 40 subjects 50
2. Size-estimation test. Comparison of mean error scores of focussers ($N=10$) and non-focussers ($\mathrm{N}=10$) on five neutrally-loaded (NL) and five emotionally-loaded (EL) discs and on six high error provoking (H) and six low error provoking (L) discs 50
3. Size-estimation test. Relation of Error on identical, projected discs to error on neutrally-loaded (NL) discs 51
4. Size-estimation test. Relation of error on identical projected discs to error on emotionally-loaded (EL) discs 51
5. Size-estimation test. Relation of error on identical projected discs to error on "illusion" (ILL) discs 51
6. Size-estimation test. Relation of error on neutrally-loaded (NL) discs to error on emotionally-loaded (EL) discs 52
7. Size-estimation test. Relation of error on neutrally-loaded (NL) discs to error on "illusion" discs 53
8. Relation of error in size-estimation ofneutrally-loaded (NL) dises to number ofindifferent ratings in picture-sorting test 54
9. Relation of error in size-estimation of identical, projected discs to number of indifferent ratings in picture-sorting test. 55
10. Relation of error in size-estimation of neutrally-loaded (NL) discs to amount of interference in color-word test 56
11. Relation of error in size-estimation of neutrally- loaded discs to number of inventory items (out of 46) answered according to the key for an ideal, "emotionally free" person 69
12. Falation of constisnt errex (observinf Alens) in siseentipation of mentraly-loaded (ML) dices to nowar of inventory 1 tams (cut of 46) answerd aecording to the key for an iden, "emotionaliy" free ${ }^{\text {Hi }}$ perton 70
13. Nelation of mubar of indifferent ratinges in piotaremserting tost to mumber of inventory itema (out of lu6) answered accordint to the key for an ideal, "emotionnily-froe permon 72
14. Sizementisation teet. biblation of constant errox on nsutrally-loaded (fin) discs to eontant erros on motionnlly losded (eL) dieas 82
15. Sisemestimation test. Relation of axi thmethemsror (signs ignored) to constant-error (sisus ifnored) on neutraliy-leacied (al) dises 83
16. Esaematimation test. Nelation of arithuetionerror
(8igns ignored) to constant-error (aigns considered) on motionally-1oaded (BL) dises 83
17. Eisa-eatimation teat. Reletion of axithoticmerror (alens icmored) to constant-errer (eigns considered) on Midentiaal" projected dises 83
18. Relation of corstant-error (biens considered) In size- estimation of neutrally loaded (hi) diace to mumber of indifferent matinge in picturemsoriting test. Al
19. Fielation of corstantmerror in sicemettimation of neutrally-loaded (NL) dises to amount of interference in color-word interference tent 86

During the past fev yoars there has been a surge of interest among psychologets in the borderiand around the area of perception. The worle of Husphy (50,55,63,74), Bruner ($10,16,60,61$), and K1esn (43,47) and their raspective collaborators, anons others, reflects a ohift of attention from perception as a separate area of investigation, with lavs unto itself, to perception as one way of studying the whole person. It has becona alnost a oomomplace that various atates of tho organism, such os fatigue ($21,48,66,85$), drug Intoxiontion (81, 85), hunger (51, 67, 68), thirst (47), personal value or noed imolvement $(1,2,3,11,19,63,64)$, and social prescures (76) can influence perception in a predictable manner. All these studies document the growirg conviction that perceptien in general can be influenced by motivational and situational factors. It is not a lons atep from this conviction to the belief that perscnaltty and perception are not as discrete aspects of the person as tradition would have them, and that such studics, especially those which indieste the extent to which percoption can be "Influenced" by values ard needs, ixplicate personality es the source of these influences.

Some of thece invostigntors (h6) have asked whether such Encralized relationehips exprese all that can be asid about the
mutual influencea of personality and perception. ${ }^{1}$ while there can be no cuarrel uith efforts to seek generalized relstionships and to describe the charseteristica of a generalized perceptual apparatus and "personality", it acems important to alarify the corditions under whion these generalisations are true and to point out the inplicit limitations which they force upon our thinking sbout personality, as it berre upon perception.

It is the primary purpose of this thesis to show that the search for such generalised part-relationships, taken as the paradign for the investigation of the complex inter-relationships of personality and perception, by-passes an important acurce of variables which condition these relationships. This tource is the person hanself and the way he is organized to perceivem-or, more generally, his cagnitive organization. A second purpose ia to cemonstrate the operation of one such variable which has direct eignificance for the stady of valuea and needs as they affect perception.

In one of the carliest of the recent investigations in this area (1 h) it was found that a disc bearine a positive symbal

[^0](dollar sign) was fudged larger than one bearing a negative symbol (gwastika) and that both were judged larger than ono bearing a "peutral" design (scuare with diagonals). The Investigators inferred from thee wosults a percoptual principle of "eccantuation" whioh re-states a phenomenon common in everydiay experience: that thinge which are importiont to us locm larger in our aight. Another eariy study (11) made essantially the save point in demonstrating that in general the more valuable a coin, the more its alve was overmentimated by ten-year-old ohildren. Subsequentiy, other studiss have shown that "accentuation" is not an inevitablo consequence of the prosence of a value or need durime a aize diserimination.

Bruner surgested at a later time (10) that the secentuation effect is markecly diminished when the subject tekes a highly oritical, necuraoy-oriented set, and that it disappears under optimal viewing conditione. Thur, while evidence for accentuation as the inevitable consequence of the intrusion of value-stimulation upon size fodgment is equivocal, there is enough evidence to suggest that the phenowenon dees oocur, particularly under conditions of gudgment which make accurato responsea difficult. Eut lat us repeat a caution offered in a eritique of the accertuation hypothesia (16): the accentuation effect is based upon the averaged responses of a group of aubjects, scme of whom over-estimated in their size judgrente, some of whon under-estipated, and some of whom did neither consistently. While such averaging has definite uses, it

Is well to kecp in mind the Ifmitatione imposed upon our ecneralining When we "averge outh relevant vasinbles. We oan speak only of tho effect of a gereralized recd or value upon generalized perception. Ve mast 1 Enore the 1 diocyncresies and trate, in phort, the perconalitues of individul perceivere ss theme may systenatically contribute to orror. Wote againg this oxfticism does not epeck ageinat tivexistence of meh proceases as "accentuation". It is intended to remind us that the relationshifa from which they are Inforred transcond individual porceivers and obecure a whole realm of other possible relationships. The exclueive search for generaliwations about perception (of the orier of "accentuation") neceesamily eliminates from consideration the perceiver, whe is, after all, the locus of both personality and perception.

This is not to say that individunl difforences have until now been entirely ifrored (although tidis is very nearly the osse). It ia certainly farr to aey, however, that they have recejved notiane like the systematic attention directed at attributes of the stimilus and at gemmalized metivational variablea. studies by Bruner and Oeodman (11), and much earlier by finot (7), for instance, Indicate that ouch effocts as "accentration or varions "illusiong" are most emsily elicited among children. The ease with which thit can be achieved cecreases with age. Ecoromic atatus (11) has also been shawn to have an affect upon size perception, ospectally amone children, and hes recently been shown to interuct with affecta of age (63).

To aum up, it would sem that perception (taking siee judgrant at a regresentative task) involves not merely the wimple matter of comparing retinal image sizes; but is a complex affur in which the entire perzon could be expected to participate and upon which such extraneous (to the task) matters as value, need, noward and panishant, etc., may, but need not, Intrude. ${ }^{\text {I }}$

Even under optimal oonditions the influence of the ge extranecus factors upon the performance of subjects is not invariant. Under the best of conditions almost all investigators report large and freguentiy consistent individual difforences among subjects. Klein, Echlesinger, and Heistor (1,6) gay, with recard to the direction of error macte by their bubgecta, that some tonded conaistently to cver-estireste, whilo others oonstatentiy under-ertimated the sise of the gtinulus dises while atili otherm over and under-eatimeted Indiscriminately: A gimiar finding is hinted at by Ninturn and Reese (51) in a ttudy of judguents of visuri muber. But overvestinstion coes not in itself nocessarily ingly an accenturtine effect of a value or need Intrusion. In the Brunor and Postran atudy (Ih) and in the Kiein, Schlesingor, and Heister oritique (46) it was observed that even

1. This is not to oay that the necessary relationship between motivational or personaiity variablee and percoption is one of interference. Tht in the context of the gtudies diecuseed and the invostigetions we described only this aspect of all the possible rolationships will be coneidered.
"neutral" diace were overmestinated aignifioantiy. In the lattar study blank discs were overmestimstod even more than alsce bearing eymbols. The latter study also showed that the conditions for judgwent profoundly influenced the direction of error. When the disc to be judged was a bright image progected on a ground Elase soreen and was idention in all respects with the comparian (variable) disc, error was ainimal and tended in direction more tcward under-estimation. Even whthout thece findings, which oust doubt upon the primary statue of accentuation an variable cescriptive of a relationship between value and perceptiong we might ask as did Klain, Schleringer, and heister: thy shovid the presence of a value or a meed nocessamily result in accentastiont

A hint way be taken frow an early study in this general area by levine, Chein, and farphy (50) who obecrved that subjects who were mildiy mangry tended to nssociaten ambiguous figures in tertse of socd more often than not. Eut when gubjects were more acutely mancy these ame mbipuous figurez were much less often associnted with food. These experinenters suggested that the effect of food deprivation could promote autism in one way when it was only relldy felt but encourafe heightened appreciation of reality when it was more severe. A scmewhat analogous finding is reported by Bruner and Ocodian (11), whose rich ohiluren, astiristing the aize of a half-dollar from menory, over-astinated far wore than poor children under the same conditions. These Investigators hypothecised that among the poor children fantasy ia
choked off and hence the newory lumge of a higily valued coin leade to a relative undermestimation when compared with tho direct aize eatimation with the coin preacent.

We can, at the very leact, conclude that the effects of a value or nesd cannot be understood nithout reference to other factors, even under perceptual conditions optimal to eliait their effect. The latest factor to be inveked to axplain auch findinge is the why in which people are crganieed to deal with values and neede. This direotion of inquiry wes eugeeted by Klaing Echlesingery and teleter (146) and was taken up in a recent Investigation by Klein and 9 alowon (47) and by the water in the present atwdy. Hlein and Salowon have dhown that the arount of Influence of aperimentally Induced thirgt upon the size ottimation of dines bearing thirst-related pictures is direatiy related to the persoris control pattern for dealing with potentisl interferencea es determined by eolor-word interference test.

The present study will show that the way acrson is organized to deal with petential interfercnces has consequencea not only for accuracy in aizemestimation but for fore peral aspects of personality functioning well.

STATEHENT OF MTOBLKN

AND HPPOTMSES

Before advancing soma wpotheses about the way one aspect of cognitive organization may express itself in perceptual tasks, let us pause for a while to the up some loose endse

In ofting earlier work on this problem, wo have had to speak as if the offect of an Intrucive need or value must be a nubjective enlarging or diminishing of the atimulue object. There are a nurber of reasons why this may not be a nsefil assumption. Among thes ares (a) where over-eatimation has been demonstrated, It has been ahom to be mrelated to the positive or nagative quailty of the value $(24,16)$; (b) it has been shown not to be related excluaively to the presence of value or need stimulation; the leyal of difficulty of the conditions for judgent influencen the dircction of error and nneutral atimulus objecta are alzo over-estinated (19,46); (c) group parformances indicating an overestimation tendency have been shown to include both persons who over-ostimate considorably and others who may even under-estimata, though not to the bame extont (1.6): (d) many individual bubjects who over-astinnte on the avarago under-estimate at tirnes (L6). For these empirical reanons alone it would seen adriabble to make no firi comatment at this time as to the ultimate significance of the directional agpect of arror.

Lat us return for a monent to consider the sizo eatimation tagk. In a typical design the subject is asked to matoh the size
of a diac bearing some ralue or need symbol by adfusting the aizo of a bright dise projected on a ground-glass sereen in front of him, The task is a straightforward one and all the necessary and suffiaient conditions for adequate performance are provided. Also present, however, is the value or need symbol-an additional, taskirrelevant variable. the symbol, however, is not unique in this respect to the subject, for there are many other variablos present, both within the aubjeot and extarnal to him, whioh are Irrelovant to the accurate performance. (We might add parenthetically that its uniqueness is largely in the experimenter's eyos, for it is this of all the irrelevancies present that he expoots and hopes will intrude.) It is the subject's task to focus on the few relevant variables wille excluding the influence of all others. For accurate performance he must adopt and maintain a set for directed, aslective attention upon the relevant varisbles.

Several questions may be asked about a subject in such a situation, in addition to those related to the detalls of the value or need symbol. First, how capable is he of making the discriminations csilled for? This is, in part, question about his visual acuity-a well-designed experiment will control this. Second, how capable is he of adopting and maintaining muoh a set for directed and celective attention? This variable is one which is not usually

1. Obviously visual acuity and the ability to alopt a set for selentive attention cannot be independent variableo aince visual acuity could hardly be measured if such a set were not maintained.
constiered, since it is more conventent to assume that the reading of Identical instruotions to all subjects insures the establishment of task-sets identioal in kind, degree, durability, ma aficinncy. Claarly the posaibility of adoptine such a set is one of our per-
 in performing the task adequatoly testifies to the eeneral availability of the set. The queation can be raiaed here, if all the necessary and mufficient condtions for accuracy are present both within the situation and within the subject: why ehould an irrelevant need or value stimulus influence performance at all There is spparently no logioal or phyaical necessity for such an Influence to occur. Ferhaps; then, we can re-invoke and broaden the euggeotion that people may diffor with rospect to thair coping with noed or value atimulation. Wo would propose that people difer in their abilitias to deal with intrupive Irrelevancies under conditions winch do not 21 terally prevent acequate performance of the task. The concern here is not with direction but merely with asount of error.

Wo have spokon looaly about an ability to be nocurate in the face of potential interference. But as an explanation the assuaption mercly of an ability to be aocurato would hardiy seem to do justice even to the faots already know. For instance, it Is hardif plausible, in reviesing Bruner and coodman'a (11) data, to assume that Fich ten-fear-old children are maraly bettor able to be accurate than poor ones in judging the size of coins. We need instead a new concept, one winich is not ambarrassed by the
possibility that the potentiality for conoontrating is widespread or universal. (While we expect that people may differ in the degree to which their percoptual equipment perwits accuracy, we weula like to rule out of consideration such differcnces here.)

What is intanded is that individuals manifest different organizatione of "adaptive properties" (43) in dealing with such a task as siso eptimation and that these different styles of organization are one deterainant of theiz responses.

We think of theae different stylen of oreanization as reflecting different comitive attitudeg, as the organising principlos af personal-cognitive organization are called in the theoretical framework proposed by Klein and his co-workers. ${ }^{1}$ Klein has doscribed the way in wisich persona who are organized cognitively about one or another of these attitudes eraploy adaptively the various potentialities and properties of the perceptual apparatus and other atructural "giveng" in order to maintain equilibriun between inner pressures and outer exigencies. To convey something of the flexibility of cognitive organization these attitudes have been referred to as "preferred etyles" of behavior. This implies not consoiously adopted predillotions but rather relatively stable "habitual" modes of behavior characteristic

1. A presentation of this theoretical framesforic and experimental support for it oan be found in iteras (43-47) in the 11st of references.
of individuals under relatively wide ranges of conditions, though not necessarily "binding" upon him under all circumstances. The aim of this formulation is to account for usual and typical behaviors by-passing for the time, consideration of behavior in emergencies, under severe stress, or under other unusual circumstances. The phenomenology of the size-estimation task suggests one possible preferred style of organization or cognitive attitude which could be called focussing. It might show itself in the habitual maintenance of a narrowed attitude which favors concentration on relevancies and ignoring irrelevancies. Such a style of organization would make for high accuracy in tasks which require the ignoring of irrelevancies for adequate performance. Focussing is intended to mean here not only the ability to take and maintain such a set for accuracy when it is appropriate to do so, but also an underlying preference for experiencing in a narrowed, discriminating way, even when the task does not demand such an approach. This is not to say that persons who easily adopt a set for directed, focussed attention will necessarily be unable to relinquish it when it is clearly inappropriate. It does imply, however, that the more the adoption of such a set is based upon this cognitive attitude of focussing, the less easily will it be relinquished when inappropriate.

It would be unnecessarily specialized and uneconomical to hypothesize a principle of personality organization solely to account for individual differences in accuracy of size-estimation. But the size-estimation task which first caught our attention may well
serve as a defining situation for a cognitive attitude which has far broader application. In more general torms we might think of a porson who strested the cognitive attitudo of focunging an one who would seek out and be most cosifortable with the kind of experience which can continuougly be jugtified in terms of outer reality.

Wo ansume that people can be ranked in terns of the extent to which they are comatted to focussing. At the other and of the continum from those who etress focussing we would expoct to find persons who prefor to experience far nore incluaively. Such peoplo would be less intent upon cheoring their inner experiences against sone "objectivol fact and would be more prone to accept then uncriticaliy for wat the axe. Nhile they would be able to adopt a pet for accuracy, there would be for then much less of an inner fequirement to exparience in suoh a fashion. We would expect that they would be 1 ass maccesaful and efficiont in adopting and maintaining guch a set and much more prono to tho kinds of Interferencos which task-irreloysnt stimulus attributes might provoke.

We have ongested a personality variables cognitive attitude of focussing-winch may ascount for some of the individual diferences in perfoxmances on task requiring accuracy in the face of potential interference. The teat of auch a kypotheaized variable 19, of course, the operational consequances that can be derived from it.

Lat us sumparime our thinking about our hypothesized oegnitive attitude of focussing in a definition. In the setting of thin investigation we mean by:

Focussing

1. A cognitive attitude whioh makes use of the fact that cognitive atructure is such that concontration is possible. It implies habitual and even stressed aployment of the ability to concentrate as a way of adapting to (dealing with) both inner. presaure and the puter world.
2. A readiness to take and maintain a obt for marrowod attention and hence a corresponding lack of Ilexibility in relinquiahing such a set in favor of another, particulariy one involving the opposed requirement, broader, nore inclusive, and less critical acceptance of stimalation. While the person may bo auase that he ooncentrates, it ia not intended to define thia cognitive attitude as a conscious one in the sense thet in any eituation the person deliberately chooses it from a variaty of poselble ones. It is for hin the "natural" wey to approach a aituation.
3. Focussing characterizes people in varying degreasw-wo should expeot to find a continuw from extreme focusaers to extrema non-focuaserg.

This dofinition of focussing hypothesincaseveral properties for this cognitive attitude which can be tested experimentaliy:

1. The general hypothesis which guideg this study is that people differ in the extent to which they $B t r e a s$ focuasing in their cognitive organization. They differ therefore in their ability to maintain a set for narrowed and geleotive attention that would permit them to carefully sereen out the stiaulation which is rolevant at ang given tise from that which is irrelevant. thus, in a task Like sieowstimation, which requires accuracy in the face of potentially Interfering irrelevancies, those persons who are more strongly comaitted to focussing ahould find the required task-set more congenial with their natural bent. They should be more accurate than those wose cognitive organizations Include an attitude for which the line batween the task-relevant and the task-irrelevant is not eharply drame.

In order to offer experimental support for this hypothesis we must show firgt that people diffor in the accuracy of their aizeestimations in the presonce of irrelovant atimulation. Further, we must chow that they maintain their differences conaistently enough to juetily ranking them and considering their ranks to be characteristic of thers. Second, wo must show that a cognitive attitude is at work here and rule out the possibility that our oubjecta differ meraly in their ability to be accurate. Ve must, therefore, denonstrate that knowing a subject'a accuracy under conditione of fudument in which irrelovant stinulation is at a practioal minimu does not perrit us to predict his degree of accuracy then irrelevant stinulation is more intense. We could
furthar support our contention that a preferrod attitnde and not merely a mattor of "absolutel ability is involved if we could mow that the nature of the tanic-irrelevant gtiencil is an Irportant detersinant of the extent to thich people adopt a concentrating act and hence the extent to which they are accurate. If it could be show that the diapargion of error soores is malles in the total smaple athen the irrelevanoies are more flagrant, more "eye-catchine"-more interesting or provokings and that this "shrinkage" is due largely to the insroved accuracy of our erstahile "inacourate" subjects, then this would gupport the inference that among the subjects are those who tend to concentrate habitunlly and those who can adopt anch a net but tend to do so vigorously only when atimuLated by the provocative nature of the Irrelovancies.
2. We have hypothesized as a property of focussing that the more a person is comitted to focuasing as a principle of organigation, the more disficulty he will have in adopting a takact which is antithotical to it. We must show, for instance, that dubjects who ndo velln in aiva-estimation (1.e.s ara acourate) tend to do relatively poorly on a task which requiren a broad, nonoritical ncoeptance of inner experience, with a aimitanoous Lenoring of outer gtandards.

Such a deranatration choula holp us to eatablish that the Individual differences we describe are not between "good" and Mbad" perceivers, but betinen people whose cognitive organigation meot difforent adaptive prescriptions, Whethar tho one or the other
adaptive presaription results in a "good" or "bad" outcona, accordIng to the experimenters' aritorias should depend on how well the task requirements and the personal adaptive requirements are suited to each other.

It is not ansy to conceive of m meaningful task which meets in some degroe the requircanent of scoreability without also providings at least inglicitiy, nome external standurd by means of which scoren ulll ba judged. Most tasks which come to mind demand conformance to ano "objective" criterion. This task must not demand accuracy and mut require tabic-set which is distinctiy uncongenial to a person's posaible inner requirements for accuraoy and vertifiable experionce. The task to be described below fills thas bill only approximately.

The job of deviaing a buitabla task to demonstrate our point rosolvad into dircovering task requirements opposed to tho narrowed and discriminating comitive attitude which wo have named focusping. The key to our solution lies in the presumption that this attituce favora verifiable experience. The narrow and focussed attitude refera to confiruation of imor exporience in terms of facte and attributes of the "outoide world"" A takk requirement uncongenial with this would be one which domands "unverifiable experienco," axperience waich by ita nature is not logical, or orderly, or rational and for which a facility at coneentration would be more a handicap than a help.

Detailed procedures of this task and its construction are stated in the follouing sactiong let us describe it hers in more general terms. The task is one which requires subjects to sort sixty pictures into three piles solely on the basis of the instantaneous, initial feeling of liking or disilke wich the picture inspires in them. If the picture inspires no feoling at all, it is to be placed in the middle "indifforent" category. The pictures range widely from imoouous and even dull representations through a number which are of considerablo human interest to a fey that aro ofther gory, aggressively toned, or sexually provoking. The instructiona specirically direct the subjact to abjure any conventional; external standard for his choices. He is to respond only to his om transient enotional state.

The task set required, therefore, is such as to make that which ras irpelevant in the size-satimation task relevant in the present task. In the one situation the expeotation of the subject was that he should ignore the value or need stimulation as well as othor irrelevant stimulus-attributes and concentrate upon the otinulusmattribute of size alone. In our picture sorting task it is only these former irrelevancies and their cmotional inpact upon the aubjeat which are relevant. It would follow from the nature of the cognitive attitude we have posited that people who for adaptive purposes atress a narrowed and focusses outlook as the motif of their exporiencing would find it difficult to adopt a task set so antithatical to this. on the other hand, a person
whose adaptive requircnents favor more inclusive experioncing should have far less difficulty in adopting such a task set. Since there in no external atandard of right or arong for this task we can judge a subject's performance only by the way he copes with the teak requirement. It is necessary to assume that responses of Mike" and "dislike" actually raflect omotional oxperiancos which were recognimed and acted upon by the subject. Responses of "Ike" or "dislike" will be taken to mean that the subjeat allowed the enotionnl irpact of the ploture to influence his behavior. Hhothar the response was "like" or "dislike" is not pertinent to our argumont. The response "indifferent", howover; is of a different order. While it is permitted by the instructions given tho subject, its use Indicates that despite the directive, the emotional impact of the picture, If any, did not Influence the subjeot's behavior. It eeems a truism that anything, particularly a picture, has the potentiality to arouse some degroe of feeling about itaelf in an observer who is aot to recognize zuch feelings. We can therefore legitinately ask whether subjecta who are completely capablo of adopting the gpirit of the instructions for their taskset could moaningfuliy use an "indifferent" ategory of judgment. The experience of indifference, after all, implies the absence of feeling Since the spirit of the fask requirement is for the subject to open hinself to his fecling, a judgment of "indifferenty indicates difficulty in adopting the required set. For this task, therafore, the number of uindifferent" choicas in the criterion by which wo will judge the dagree of difficulty which the aubject experienced
in adopting the required set. 1 We must demonstrate a negrative relationship between aceuracy in sizomstimation and the number of "indifferent" choicea in the picture sorting teat.
3. It is a vital point in our argument that with respect to their interference with elso entimation, values and noeds, and more generally, enotional stimuli can be considered merely one class of irrelovancles astong many which must be ignored by the subjeat. This is too broad a clatr to be teated filly in this Investigation, but a demonstration crucial to our argument and supporting of the broader olain can be made. Our size-estination task recuired judgments of disos of two major classes, those bearing pictures with emotional connotations oalled the "emotionallyIonded" (BL) dises, and those faced in dirferent colors and textures and of different weights whioh wo called "noutrally-loadod" (ML) discs. Each class offers a different order of tank irrelovant stimuli. In team of our hypotheals, however; these should have sifallar effactio on accuracy. In order to offer experimental mupport for this hypothesis we mist show that the exror associated with "enotionaliy-loaded" dises is predictable from arror on "neutrallyloaded" disca.
4. Up to this point we have described operations that could test neveral assumed properties and consequences of our hypothesized

1. Other indices of this, Including the aubject's subjective experience, will be disoussed bolow.
cognitive attitude, all of wich are vital to ite clajn to be a principle of oognitive orgariation. But we have used the tern cogntive organization as if it were for some purposes synonyatous whth personality organization. Having assumed that foougsing, among the other cognitive attitudes, underlies cognitive experience, It seems plausibla that it should have linka to personality organization in genaral. In particular, our disougsion of focueging suggeats that the aspect of personality organization which has to do with the availability of enotional experience and the expreseion and control of amotions may be closely linked to our cognitive attitude. We propose that people whore cognitive functioning is organised about a narrowed and focussed attitudo under the influence of which they prefer to exolude emotional influences as irrolevant w111 differ considerably in theis general emotional experience from those whose cognitive functioning is not so organized.

It Is difficult to find adequate tests for hypotheses about pergonality traits, While prolonged clinioal investigetion might give us the information we destre, it would hardy be feabible in the context of this study. The varioue psychologieal tosts, particularly projective techniques, might lend themselves to our purpose, but since the answers to our questions via this route could be given only by complex interpretations of test responges which thansolves rafor to perceptual behaviora, wo would be traverwing a eircular path rather than leaping to another lovel of theorizing. The solution adopted for this atudy was to cut the Cordian Knot
by asking the subjects to doscribe thomselves with respect to thoir om emotional experiencing. An inventory was constructed (to be used for other purposes as well) which included a numbor of items pointed at emotional experienca, and our subjects were asked to rate themselves. While we aro in a sense employing an unvalidated "personality test," it is proposed that the items theriselves have high "face validitys" Thes can be so directiy related to the questiona acked that this need not be an objection.

It aeens reasonable to expeot that subjects who atress this cognitive attituds of focussing chould be charseterised in their emotional experience by relativaly fim control over emotional expression, should tend to be in a relatively poor communication uith their emotional processes and little given to actines uith conviotion, especially impulsively, on the basis of their feeling states. On the other side, thoy should prefer to think things through before acting, to prize being objective and diepassionate, and to rely with more confidonce upon their thinking than upon their feelings. We would expect subjects who aro at the other end of the continuum to be constantly in freer commanication with their feeilings and to be much freer and more open in their experience and expression of emotion. They should have greater conviction concerning their feelings.

The demonatrations desoribed thus far lead us step-wiae in the testing of our hypothesised cognitive attitude from defining
 othorvise hove no apparcht link to perotption. Fentht ask fumther: How wearal is fombing in predioting indivinual diferencoa in other parocptual taske requiring tho rubject to zence jnkrusive smelevanotes? Bnco there id hardy an 14mit to the nubbor of tasice meatins thit aisple description, we cun only expect to point toward an ansuer to thin cuestion. Two other peroptatal tasks wore performed by our subjecte. one of them, distance estriation *aty was deatinad to have the asmo formal atructure as our aiseestimation task. All the condtions for an acourats (ronoonlay) distance match (on the basie of gise cues alono) were provided, wile othew task-irmelevant stismlut attributes wich night be, but need not be, Interfering: aleo wera prexonts For a numer of our
 estimation. Fow theac aubjecte the matohing of the bizea of tha stimulumectros was phenomenaliy quite difforont Iren a dietance matoh of the game cards. Tho Incinge fiom this tat were thus completaly equyrochl and have little relevanco tor the prodent probleay though they point to on intorading phenomenon deserving Importigation in its om right. They will bo anitted from thia thesis. The other tomik was the fasliar colormord interfercnce test developed by Etroop (78). While quito a different task from dithor alizo or diatance estimation in that apoed well na accuxacy Is roquired, this tert wat inciuded bocaust it in one froquentiy thougity of in connection with Intorterence by a tusitirrelevant variablo.

Let us sumariae the main points to be tested.

1. The general hypothesis under which this investigation is conceived is that people differ from cach other along a continuum with respeot to the degree to which they stress focussing in their cognitive organizationg.
2. Stress on this cognitive attitude should make easier the adoption of a aet for acuracy whan the task requires auch a set. The congruence of the cognitive attitude and the task requirement should male for high accuracy on the dafining task, size-astimation.
3. Conversely, when the task requirement is changed so that it is incongruent with the cognitive attitude, persons mose cognitive organizations stress focussing ahould find it difficult to adopt the appropriate task set.
4. Fooussing should also promote the effeotive adoption of a set for accuracy when the nature of the irrelevant and interfering stimuli is not in itself such an to proroke special efforts at diacrimination or a particularly watchful attitude. Accuracy on "neutraliy-loaded" (NL) discs should prediot accuracy on "emotionally. loaded" (EL) diacs.
5. It is further hypothesizod that the cognitive attitude of focussing has relevance not oniy to perceptual experience, but also to areas of personality functioning--particularly the experience, expression, and control of emotions. Those persons who stress
focussing in their cognitive organizations should deseribe themselves as being relatively unesotional, in stricter control of, and having Iesa conviction in their gnotions than those who do not stress this attituda.
6. If foousing has general applicabslity in explaining individual differences in perceptual tasks requiring ncouracy or efficiency in the face of Imelevant, interforing stimull, then wo should be able to prediot from our defining task to othor teats falling under this description.

EXPKTMUTAL HOCEDURS

Eaporixantal Tasks

The Ave axperimental procedures used In thia invegtitation wero first urted out in apllot study with 16 subjects. The aims of the pilot study wore (a) to ace if large mough and consiatent enough incividual variations would occur in these tasks to permit the kind of explanation we had in mind; (b) to bae if our subjocts' performanees wore solfmconsistent among the taka) (c) we wnited to secure information to help us aelect the most effective taskotimuld and whods of presentation for the full investigetion. E1ze-Estimation TeBt ${ }^{2}$

Since the sisemastimation tast is one which has been frequently used to demonetrate much effeote os "accentuation" and since it was also used by investigators offering oritiques of the theoriting and mothecolegy of such invertigations (h6) it was decided to ust this takk as the central ono of this investigation. It was used as the defining tavk for focursing, i.e., it furmished oriterion meacures of nccuracy from whith the degroe of atrese emone our subjecte on the cornitive attitude of focussing was inferred.

In the inll investigation the teat mas oonduoted as follows The subject wat sested at a table facing a black box, 18 inches lonf,

1. Frocedurea are descriked in the order they were given to the subjects.

18 inches wide and 9 inchob deep. The front panel of the box hold two circular ground-glass panes cach 4 inohes in diameter and 8.5 inchor between eenters with the ground faces inside. Close behind the right hand pane was mounted a 12-leaf init diaphragm, linked mechanically to a knob in the upper rightmand corncr of the face of the box. The diaphragm operine cast a ahades on the ground-gless ecreen which deflned a bright disc. Ita ditmeter was adjustable from 25 to 59 millimeters and could be read on a scale at the side of the bax. the acale faced the experimenter and wat outside the subject's view. While the variable dise vas not actually a true elrole, the 12 elliptical Leaver of the diaphrag cast a shadew whioh was all but Indictingulehable from a true circie in the ranfo frem 40 to 59 milimeters in diventer-a range which includes nearly all of the sige-obtimations of our eubjects. Oniy a few subjocte comented on the slight irregularity of the outilno and none reported any afficulty in making the fudgrente roquired.

Eehind the leftmand pane was a atandard lantern silde holder. During this experisent the slide holder contained a piece of black paper with a circular cut-out whioh, when illuminated fren behind, cast a shadow on the eround-glaes sareen. The bright, circular patch wge exactly 50 millimeters in diameter. Eiach field wan 111 uminated from behind by its own 25 matt, atandard, frostod bulb onclosed in a metal can having a guartor-inch aperture at the end faoing the panes. This arrangoment of lamps and aperturea

0ast tharp ahadow of both the diaphragra and the prapared lantarn slide on their reopective groumd-glace panet and gave ficid intensitice of 2.7 fect oandles. Since the intensity of the Illumination of a ground glass coreen dropped off tharply as the subject's Ine of viaion departs from the axie of the fllumination syator, the box was diled to aud the helght of the subject so that he looked drectly at the eround glase penes from a distande of about 13 inches.

In the full imvertigation the task conaisted of four parts. Tho subjeat wes sonted comfortably at the apparatas and it was adjusted to suit him. The working of the disphrami by the knob was denonstrated and the subject was allowed to try it out for himelf.

I. Fremesta with identical stimius-disog:

Both ground-glese fields were 311 uninated. The subjoct was direoted to make the right-hand variable flald eractly the sare alwe as the laft-hand standard field. Tho following Intructions vere ziven:

HYou are to make the right-hand dise oxnctiy the same size as the left-hand dice by turning this knob. When you are satisfied that they are exactiy the eame sise, take your hand off the knob. There are no time 1inits to this. Tou noy work at your own comfortable pace."

Onee the tatir was undertteod by the subject four eacending ${ }^{2}$ and four descomilus triale were given in order $A, D, D, A ; A, D$, D, k e The purpose of this firet pre-test was to provide an Indication of the cubject's accuracy at siace atimation when both staniard and comparison were Identical-both were projected disce of the ame brightness ard color lying in the ame fromtal plane. The two dises werr projected at aliehtiy differont hel enta on their ground glase sareens to thet the subject would have to compare the two diacs rather than the diatance from the diso to the edge of the pane. Under this concition for size estimation the wunt af irrelevant atwalation contribated by the field was minimal. Better conditions fer accuracy could hardly have been realized save by Hoving the two Holds cleser together in spacs.

II. Pra-test vith 11ght and heavy Eray discs:

The filluaination of the laftmand field was turned off and the aubject wes handed a eray-palnted dise $1 / \mathrm{l}^{\prime \prime}$ thick and 48.5 millimaters in dimeter. He vos drected to hold this as deronstrated in the palm of hie hand adjacent to the variable stimulus field and in a mamer oonfortable to hin. He was ercouraged to rost his left elbov on the table and to find position that he could hold comfortrbly for some time. Agein the subjectis task was to adjust the projeoted, variablo disc to exactly the aane sise as the disc held in hia left hand. The instructiens efven the

[^1]subjeat were the same as for Part I modifled for the different condition for judgrent. The subject was also wamed to keep his left hand againet the face of the box and not to nove it nny clezer to the variable diee than vas demonstrated, if these aded Instructions beemed neceasary. Two ascending and two descendirs trials in order A, D, D, A were given ouccessively with this eray dise.

An Identical gray dise which had been holloved out on the reveree side and waighted with lead was then substituted for the firet eray disc and four more trials taken in the same way. This was then followed by four more trials with the light eray dice and another four with the hoavy Eray disc. Through this procodure a "weight-sige" iliusion could be tected for. The difference in weight between the two gray dises (10.9 grams and 50.5 graus) was very apparent to all mubjects, nost of whom commented with surprise at the unaxpeoted weight of the heavy gray disc.

III. Main portion of test:

The subject uas presented with 12 dises, one at a time. Each diso was fudged only once until 01112 had beon seen. Four auch aterics were given with the order of presentation within each serles randomized. Thus 48 Judgents in all were made. Two of the four serles were given as tscerding judgents and two deacending judementa in order, A, D, D, A. The inetructions given the subjoct were the same ae for Part II except that the subject was told to
return the dise to the exporimenter after each judgront. The 12 disce ransed from 48.5 adilimeters in dioneter to 52 milinneters In dianeter. This alight variation in size mas introduced in order to break up a possible set of "eamenesa" and to help asmure that esch aise would be judged individually.

Pive of the disce represented the variables of color, wolent, texture and reflectivity. These were tosk-irrelevant differences Which ripht have, but need not have; intruded upon the size eatimation to be rade. There five diace included the light gray (aray) and heavy gray (ify ${ }^{\prime} y_{0}$) dises ased in preliminary testing. a dise faced with black velvet (B1'k.), a disc faced with red construction paper (hed) and a disc faced with yellow construotion peper (Ye1.). These five wll be referred to as the "relotively-neutrally-10aded" asce, and aborevinted as HL dises. Five other disce were each faced with a picture having enotional connotations. These pletures inoluded a pasing, all-but-nude, nmuscleman" (fan), a photograph of an electrocution (Eleo.), a made woman lyirg prone on bed (Prone), rather fuszy photograph of a nude women from the waist up (Fur-), and a photograph of a couple in a pesgionate enbrace (Cl'ch.). All of these pletares were cut-outs from magazines and completaly covered the face of the disct. Ho margins showed. The plotures were such as could (and did) pase through the malla as parts of photographic magazines or ad mogeaines "for

1. The abbreviations in parentheaes are those used to designate esch disc in Figure 1 and Table VIII.
sen only," and mone of them was realy porncgraphic. This series of ifve discs, then, bore pictures whioh because of their content and oxplicit affective mpeal might interfere with the required size eotimetions. These flve diect will be referred to as the "emotionallyloaded" discr, and abbreviated as the EL diecs. While the "emotional londirg" of the EL dises was nt Arst presumad, incuiry follewing the teet catabliahed that thoy were, in fact, nare "intaresting" and provocative. All subfecta indionted that they were not unduly bothered by the content and vome openly expreted a preference for them. The subjects' spontaneous and requested reactions fully bore cut the presuned difference in affective comotation of the ML and EL ditas.

The other two disen of the veries bore pletures with no such explicit affective comotationg one bore a photograph of a stran bench hat taken from above (itst). Because of the shadews anat this could be seen either in correct or in reverrea perspective, I.e.g eithar an hat or as aind of tunrol. The other bow a photograph of a rather ornate chair with a round upholeterad eent (Ch'ro). The picture was mounted so that the chair seat was almost concentric with the edges of the disc. Doth of thece were included because in pilot teating their optical illuaion charaoter ceewed to provoke difficulties which were camented upon by the subjecte. The reversible perspeative of the one and the round chair seat of the other tended on the whole to interfere with scourate size estivation. These two disos will be referrod to as the

TV. Festeteot with identical stimalus dizes:
This was a repetition of Paxt I and the conditions and Instructions were identioal with that Part. This last series of tyials was included in order to provide cheok upon posatble Tatigua, boredoa, and Iearning or other effects which might oave a change in parforance over tive. Eince both stratification and randomation were employed in ordering the four trials for esoh disc, terporal changee were nirimized by the design.

Wio rest perlod was edven curine the course of thie test, other than the brief intervel between Parta; unlese the subject asked for 1t. The subject wes urged ind helped to miake himself comfortable bofore beginnine the teat in order that he might deliver his optioum performance. Hormal room illumination prevailed throughout the tast. Folloning the teat the nubject was allared to express hingelf freely sbeat it, and this led into on incuiry into his experience with it, particulax difficulties, eto.

The scorea for the aeveral parts are given In torms of total amount of error, 1.0., with the signt of tha errors ignored. The bagic soore it the total mount of error for all 4 triala on each disc. To obtain a comparable figure the oum of the errort for Partsi and IV, where 6 trialy were eiveng were ench divided by two. Average errore for cach one of three clasees of discs, HL, EL, and ILL, were obtained by dividing the total error for the class by the number of diacs in the claes.

In the pilot etudy 20 disos had been nsed. These included
additional disce in all three alasses. The 12 disce for the full
Investigation were those in each class which produced the most
error. The pilot atudy differed from the full investigation, too,
In that the four trials for each disa wore given succesalvely.

Pieture Sorting Test:

The subgect was aeated at able in ordinary room ilimanation.
He way given the folloulng instruotions.
"I have here a atack of oards which I want you to place in three plies in front of you. It it wost 3 mortant that yeu understand the basis on which you ere to sert these pictures into the three piles. I want yeu to look at each picture in turn and put it inte one of the three piles depending on the instantaneeas reeline which the pioture inspireo in you. If the feelint which the picture inspires in you is one of 14 ing put the picture in the pile at your right. Ifitia one of delike, put it in a pile to your left. And finaliy, if the picture inspiret in you no feeline at all, one way or the other, put it in the middle. Thare are no standards for this teaty the oniy thing that matters is the iumediate fealine which each picture nay aroues in you. I specifleally do not want you to make any judgment about the picturn'o artiote quality, style. or technicue, the artist, should you recegnise himg or anything else of that kind. This is not to be an artistio of oritical eveluation of any kind of the pietures. I merely want you to react to each pioture in terrs of the first feeling which it arouses. Only if it arousen mofing at all are you to place it in the niddle plle. You do not have to justify your sortinge. There are no rifht and urong answers and it dees not matter which picture onds up in shioh pile or how many ead up in any pile. This is not a teat of epeed either, work oniy ss cusckly an is confortablo for you. At whatever pace you woris, please work steadily without interxupting the tack for questiens or anything olse until you are finished. Please hold the cards in your lap and sort then one at a time into the three piles."

Any queations which the subject had about these instruotions or what he was to do were answercd, as far as posaible, by repeatine apropriate portions of the original instructions. Any particular difficultios which the subject exporienced in grasping the instruotions were noted on the date shect. The eubject was helped to understand as well ae he could the kind of performance whith was expected and only after this appeared to be accomplished as vell as it could be was the teet begun.

The exporimenter noted the axact time at which each cari was placed by means of an electro-megnetic pen connecticd to a continucue-feed kywograph. The aubject was told that the experimenter wocld do this bat that it was not intonded to hurry him. Iach oubfect was asked and none reported any feeling of tine premoure on this test. Any opecial algns of indecision were roted os were changes in aortinge, spontanecus reaiarks, festures or other indications of the Eubjeat's etate during the test.

At the end of the teet the eubject vas allowed to express hineelf mpontancously if he whed to do so, and if it was not apparent from his comsents, a byotomatie inquiry was ooncusted into the degree of difficulty or comfort he experienced, what he thought he Has doing, how raturel the toak aecred to hing and whether he customarily experienced in the tarms that the task reguired.

Spacial atrese was placed in the inquiry unon what the aubject experienced in comection with indifferent choices, particulariy to zee if there vero really accompanied by no feeling at alls or if perhaps equal but opposite feelinge were present, or if alight feelinge were prevent which were not above sone subjectaentablished eriterion level for sartind of pietures Into either IHe or dislike ontegories. The subject wat then asked if there were any pictures winch he acrted into the Indifferent category not so much because ho had no feeling at the time about them, but becaseo he would prefer mot to express any feeling about than. He was then asked if any of the pictures in the like oategory were put thero not so mach becausa the iramediate feclint he rot for the picture was one of 14 king , but because he folt he ourht to put the picture into that eategery, i.e.0, thie was nthe sort of then one was appooed to $74 k$ " or "people chould Ilke this sort of picture." Similar questions vere asked about the dialike category. If the subject chowed any indicntion that he had experienced anything Ilke this the individual cards in each corting wert reviewed with him and the batid for each corting noted. The few instances of inarked indeaisions noted during the teat here inquired into as well.

The basio acore for this test was the muber of cards sorted Into each entegory. Our hypothesis related only to the mamer of piotures eorted into the indifferent category. The average timea for each of the judment categeries as vell as for tho tosk as a
whole wes couputed as an additional datum of possiblo Interest but without any aypothesia about them.

The materials for this teat consisted of 60 pictures, neinly cut-outs frem magazinos and other periodicala, each nounted on a 7×7 inch, white, oardboard mat. The cards were numbered perially in their lower ximhthand cornors but were not marked in any other way. The picturcs were quito varied in content, styla of execution, artistic quallty and purpese. They ineluded news photorraphe of hungry foresn children, reproductiona of nedern abstraot paintings, children'a drawingy, wonochronatic Ithegrapha, mude photographic studjes, portroits; ote. The range of onotional atimulus-value was very wide. In the pilot study none of the pictures was chosen univerumly as liked, disidked or indifferent although a maber of them ahowed fasty consistent trende tonart the one or the other pilo. No pioture was chosen consistextiy as indifferent. The pictures themselves are not repreduced here partly because of the dirficulty in obtaining the copyright holders' permesion and more imprtantiy Cectuse the findings oppear to be due less to particular qualities of the pietures than to a rerponee-tendency amon our aubjects. It appears doubtful that the particular pletures uged are of ercat sienificance for the problen or resulte.

Color-Word Interference Test (78):

The nubject was sented comfortably at a table under ordinary room illumingtion. He was given the following instruotions:

> This next is a teet of bperd and accurncy. I want to sce how fast you can read a pare of color-worde which I will hand to you."

The experimenter handed the subject sheat A, a practice sheet consintin of a letter-size sheet of white paper mounted on stiff cardboard. On this wes typed in black a liat of 100 color-worde (red, blue, green, and yellew) in random order, ten worde to m Inne, and ten lines to the pare. At the head of the page was one additional line apaced awny from the reat and Intended for practice. Cevering all but the practice line wth another aheet of paper the experisonter told the subjects

Miead this top line for practice aloud, as quickly as you can, like this.n

The exparimenter then quickly read the firet few words alloking his otopwatch conspicuousiy es he started.

How you begin and read the werds on this Ine as quickiy as you can."

If the subject evidently read the vords with real effort to read quickly, he then was allowed to read the reat of the page while the experimenter timed hia by atopwatch, notire the tise for ench two lines. If tho aubject did not seem to bo reacting hie mexdmum apeod he was encouraged to try the prectice Ine apain with the speed derand cuphasized. When tha Eubject finfohed this firat shoet it was removed and ho was handed another sheet, sheet B, Iaid out exactiy dice the first except that instesd of words it had a gecies of x in occupying the
same spaces and positions as the words on the fixst page. These $X^{\prime} s$ were each typed in a diferent color (again red, green, yellow, and blue) but in such a fachion that no color appeared where it color nare appeared before. The subject was again shoued the top practice line and tolds

Mow I want you to read aloud as quickly as you pousibly cen the colors which you oet here."

The experimenter again demonstrated and timed the performanes in the ame fashion 0 for the first gheet. All errorg, corrections and hesitstions were noted, When the subject was finiahed the experimenter romoved this ohect and handed him a thisd one, sheot 0 , which had on it the same arrangencent of colow-word as on theet A but printed in the same colorg at were on sheat B. On sheet C no color-word mpeared in ita own color. The administration was again conducted and timed as for the other two sheets.

Fallewir ${ }^{\text {res }}$ the tak an incuiry was made into the subject's experiences. The basio score is the ratio of the time noeded to read the colors with the words interfering to the tive needed to read the colors sione. This is abbreviated in Table VIII as $0 / B$. The eubject wad penalized for uncorrected errors by the addition of one unit time for ach unoorrected error.

Personal Inventory

The subject was aeated as he was for the color-word teat and pioture-sortirs tegt and wes handed a bocklet. He was agked to read the cover sheat which contained instructions and then, If he had no further questions, to proceed. The inventory conasted of 139 1tems. He rated cach itom on a sevenopoint scele in which 1 signifled "completely true" for him, and 7 "completely false". A ratiry of if indiasted "neither true nor false" for him. If the subject preferred not to answer a guestion on pereonal erounds or if he did not understand a gusstion, he wes free to ondt it. He kes epecifically instructed to answer each question individually and not to atteran to be consistent.

The core of the inventory for the purpose of this Inveatigation wan a group of 46 items (see Tablo X) which wera scattered throughout the inventory and which related to appects of the subject's anotional experience, control and expression. These 46 items inciuded 24 which should have been answered true in some degree and 22 wht ch ehculd have been anzwered false in some degrea by an "Ideal person" who cruld be described as complately "free" in his affactive life, i.e., one tho commuleates easily with his foelings, expressea them eacily, and foelo minimu reed for special afforts at affective control. Thus the way that this clubter of 46 items was constructed provided a key (established a priori by the experimenter and cheaked ixiependentiy by tre other elinical psychologista) to evaluate responaes to these items. The
buste acore fer the inventory win the muber of responsea out of a poasible 46 which agreed with the hey. For this purpose a ratirg of 1,2 , or 3 was counted an true and a rating of 5, 6, or 7 ae false Batinge of 4 wero merely not counted. Thus a high score indicsted good agreanont with the key, implying great freedom of affective expresaion, easy commanication with his feelings and minimal necessity for special afferts at affective control. Agreement with this key was used to evaluate the emotional experience, control and expression of subjeota acoring high and low in accuracy on the sice-antimation task.

The balence of the inventory was composed of additional clusters of itens concorned with various other aspeote of behavior and experience not directly related to the hypotheses to be tested In this investigation. For the purpose of this study they gerved merely as nriller" itoms.

Summary of Experimental Procedures:

I. Size-ectimation tost: The aubjocta natched the aize of twelve hand held dizcs with variable disc of light. Four trials were given for each disc. Five of the dacs (UL) were faced wh different colors, textares and different from each other in weight and thickneas. Another five (EL) differed from -ach other only in being saced with different eaxually or afgressively tonod pletures. Two other diacs (IIN) were faced with pictures which had no perticular emotional connotation but
whose ofrcular deagns wght interfare with aize estimation. Whis main portion of the teet was preceded by ofght trials for each of aght and heavy grty dise from which it was hoped to cein a measure of "aize-seight illusion". The test as a whole was prececec and followed by effht triala in which the oubjocts matched the dize of an illuminated diac on a ground glass ourface identical when adjacent to the variable etimulus diso. This was intended to provide a minimum irrelevant and interfering otimiation.
II. Fioture norting teat: The aubject sorted sizty pictures varyine in content, style and emotional inpact into three piles aceording to whether the firet feeling inspired in hin ty the pleture was one of likingy dislike, or loft him with no feelinf at all. The ingtructions atresced that the subject vas to take a bet of regpondint to his first feeling about each picture and to use the irdifferent oatofory ony if no facling was arouted.
III. Color-word interferonce teat: The subject read first, for pratice, a sheet bearing 100 color words, red, green, yellew and blue, repoated in randon order. He then read as quickly as poseible a ainilar sheet containing the actual colors themselves. Followine this be read, agaln for epeed, the 100 colors when these were the colors of the ink in which conflicting color words were printed.
IV. Personal inventory: The subject rated 139 iters relating to his personal behavior and experience on a seven point scale ranging irom completely true for him to completely false for him, Forty-six of these items constituted a scale measuring the experience, expression and control of emetions. Only the ratings of these 1,6 item will be considered here.

The battery of procedures was given in almost every case during one aession which lasted between 2] to 3 hours. This wide range reanted from the pollcy of allowing each subgect to work at his preferred psee (in all except the colar-word interference teat).

SUEJECTS

Forty subjects comprised the sample for the full 1nvestigation, or thece 29 were women and 11 were men ranging in age from 18 to 30 . Their mean age wes 23.6. The subjects were drawn from two main sourcese 8 of them were sophosiore and junior univeraity students who volunteered with the understanding that they would be paid for their time. Thirty-two were employees of the Memingor Foundation, (clerieal workors, adjunctive-therapy students and ataff members and nurses) who volunteered as subjecta with the undarstanding that the testing would be done on work time. Some of the studente were, at the time of testing, enrolled in psychology ecurges but none were fanillar with the area of this Investigation, No Independent mensure of intelligence was available
for the suibeets, but a rough estimate of intelligence level 1s provided by the fact that 31 of than elther wer then attending or had attended scme college on univeralty. Thus it can be safely procumed that the subjects were of at least normal intelilgence, nostly above average. since oll of the taske required at least nowal viewal acuity, no aubgect wes accepted whose Fision was mot correctable to normal standards (20/20) with alasses. No zubgects were colon-blind.

Wach subject way teated individucily. Gubjects were Introdued to tho eesting with an explanation that the experimontar'e Interest yas in the possiblo connections between number of perceptual taske mioh outhardy seemed quito diffarent. Thair interest was solicited. s11 of the eubjocta had expreseed their Interest initlally by volunteering, the mall payments made could hardly have served as a mafor incentive in view of the travel and incorverience which appointexnts entailed. Noerly ell Eubjects expreased thoir interest at the cloce of testing to volunteer for addtional reacarch if they were needed.

STATIETTCAL THEATHEM

The scores yielded by each of the taets are: Slze estination tost: All scores are siven in teres of total gnount of error, i.e.g with the sienc of the errers ignored. The basic ecore ia the total ancunt of errar for all four trials on each dise. To obtain a comparable figure the sums of the errora
for Parts I and IV, where oight trials were giver, were each didided in half. Average errors for cech one of the threo olassea of disea, thy EL, and ILL, wore obtained by dividing the total orror for the alass by the number of diecs in tho class.

Pcture sorting tsate The basic score is the muber of pactures out of 60 sorted into the indifferent category.

Coler-word interference test: The basic acore is the ratio of the time needed to read 100 colora with conflioting colownorda interfering to the tine needed to read 100 colngs witheut interfering colerwords.

Personal Impertory: The basic acore is the muber of agreaments between the pubjeot's ratinge of 46 iteme pertaining to emotional experience and a preceternined koy devised for an 1denl "emotionally-fref person.

The experimental deaign lands itself best to corrblational malysis and product-monent correlationa are referred to throuphout. Hut we will also have recourse to a crudar neanume of association, cht-square. The reason for this is that many of our data (from the ploture serting test and inventory), while having the cutward appearance of exact quantification, are probably of relatively low precision. For these data a neesure of ascociation conaittod only to such a broed diatinotion as, blowe or below the nedian, seens mere appropriate than a prectse, sensitive weraure of
relationship. In some instances to follow, the usa of both typen of mensures where the nost precise would serve may acem redundant. Eut in other instances, where the acattering of accres lowert the significanoe of the more sensitive correlation cocrefcient, chi-square, presuming less about the data, nay Indicate an apprediable essociation and represent matters pore farly, Sinea the foumfold table frow which chi-uguare is compated will genarnily have a theoretical frequency for asch cell of only ten, the Yates correction for contimuty is used tinroughout.

PLCTURE SORTIM TEST, AND COLOR-WODD TMTEREMENOE TESTS

A sumanary of the data of the full inveatigation is prosented in the appendix. The subjects are ranked in ordar of their average
 accurate and pubject gho least nccurate. These orror acores will be used as the beat measure of the hypotheaized comitiva attitude of focussing:

The comparable findings for the size-astimation task of the pllot study ($N=16$) were analyeed by means of a doubla elasolfication analysis of variance. (See appendix.) These showed that the primary variablea (subjects and dizes) were significant at better than the one per cent level. Tho interactions (subjects x disos) also tended to be aignifieant. Becauge of the dafiniteness of these indings, wich in effoct only confirn provious finding (46), this analyala was not repeated with the data frem the full inveatigation. This analysis mswered only one of the queations thioh we must put to the data. By asmuring us that within tho task mubjects tond to err coneistentiy upon the various discs, they make it reasonable for us to attempt to cxplain the consiatency.

Let us then see hove well our hypothesiged connitivo attitude can explain the consistenoies and differances in the data. Let us look flret at our defining task, the sise-astimation tast.

We should expect, if the presence of value or need in itself leads to greater error, that the average error on the Wh dises should be larger than the average eryor on the ki dises. The difference, however, between 8.03 me. for the ML discs and 7.41 for the $E L$ discs, is not statistically significant. All we can say is that the prosence of the Irrelavant need or value did not Iead to greater exror than other kinds of irrelevancies.

The findings offer encouragement to our hypothesis that a cognitive attitude is involved here. This hypothesis led us to expect that the differences in accuracy among our mubjects would be greatest when the irrelevant stinulation was least provoking, 1.e., in a sense more "subtle" or "insidious.! Under guch circumotancos, those subjects who would be prono to focus sharply in any case rould do 50 , whilo thoze not 80 inclined as a preferred mode of adaption would Ind little provocation in the nature of the irrelevancies to focus sharply. When the irrelevancies are more flagrant and attontion-demanding; we should expect that even those who are not habitual focussers will be provoked into more acuto concentration. We oan see too that the individual differences in acouracy tend to be samiler on the EL than the NL discs. The atandard deviation for the IL dises ia 4.59 mm . as compared with 3.72 for the EL discs. The difference is in the expected direction but not quite large enough to be aignificant at the . 05 level.

In order to establish our thesis that the individual differences in siremestixation mong our subjects can bo explained In terms of a cognitive attitucio it will firct be necessary to rule out the nore obrious explanation that they differ merely in percoptual acuity. The experimental deaign used offers several checke upon thia question and these will be taken up in their context in the discussion of renults to follow. 1

We can find aupport in the data for our expectation that subjects who are habitual focusserg (i.e., very accurate on the NL . discs) should be little affected by tho nature of the irrelevancies present in the field as compared with subjects who are not halitual focusserg ($1 . e_{0}$, very inaocurate on the hl discs). As can be seen from Pigure 2., the mean difference between the average orrorg on the dL and NL discn for subjacts 1-10 (most accurato) is $f 2.21$ man. For subjeats 32-40 (laast accurate) the mean difference 18 - 4.47 ma. The difforence betwocr those two mean differences is signifioant at bettor than the . 01 leval. The plue and mime aigns of the mean difforences indicate that the focuseers tended to have somowhat greater error on the gh than the $H L$ disee while the non-focussers showed a bignifioantly larger decrease in error in this comparison. The deorease in accursey of the focussers on the kL discs raises a puzeling question for wioh no answer is inmediately apparent.
2. References to thin issue aill be found on pp. 43: 49, 51, and 52.

We can suggest that the fooussers are working at thoir maximun efficienoy so that any additional streas or distraction such as 1s afforded by the EL diacs can only impair their performance. The non-focussers who we presum are working at less than their maxinum capacity for fooussing may be provoked by the attentiondemanding nature of the EL discs to focus more offectively. We can conclude, however, that the difference botween the 5D's of the HL and NL distributions rofleota in large part an increase in accuracy of the "non-habitual focussing" arbjects in connection with the more obvious irrelevancies of the EL disce. This finding also tends to argue against the poasible objection that the difforences in accuracy are due to difforences in the trait, "ability to be accurate, anong our aubjeots.

Further light can bee ahod upon this issue if we depart, for the moment, from the priori N. and EL breakdown of tho dines and choose instead an operational derinition of the "interferonce potency ${ }^{n}$ of tho dises. Let us compare our focussers and non-focussarg on those dises which yiclded the largest and the smallest orrors for the entire population of 40 subjacts. Such a breakdom outa acrosa the NL and EL categories and is not, of course, an indopendent one. As can be zeen from Figure 1., the high-errors disce are the "heary," "gray," mblack," Mran," "fuasy," and "prone" diges. The low error discs include the "red," Nyellow," "ohair," "hat," "olinch," and "electrocution" discs. This comparison in presented as part of plgure 2. It is obvious (considering only these 20 extreas

Figure 1. Size-estimation test. Mean error scores for 40 subjects.

Figure 2. Size-estimation test. Comparison of mean error scores of focussers ($N=10$) and non-focussers ($N=10$) on five neutral-ly-loaded (NL) and five emotionally-loaded (EL) discs and on six high error-provoking (H) and six low error-provoking (L) discs.
subjects) that the difference botween those dises most produotive of error and those least productive of error is contributed oniy by our son-foousing subjects. This finding of fers some additional eupport for the contention that the prime difference botween these groups of subjeata is not in absolute sbility to be accurate by remomphasiaing that the dogree of accuracy attained by the nonfocusging subjects varies considerably depending on the dices judged.

In order to help preclude the possibility that differences In genoral ability to be accurata among our gubjects micht confound the picture, wa had colected subjecta wose vision was correctable to normal standards, We have, however, further experinental ohecks upon the "ability question." In addition to judging the hand-held NL, BLy and TLU dison, each subjeot also estimated the size of a projected dise of light equivalent in all respects to the variablo stirailus. Under those oonditions of judgont irrolevant otimulation in the vicinity of the comparizon ifield was recuced to a minimum. We should expect maller exrorg under these conditions than with aise-estimation of hand-held discs. If an ability factor ia at work, however, we ahould also expect to find a relationship between orrors in this situation and arrors in connection with the three Classes of cises. Figares 3, 4 , and 5 are scatter diagrams ploting errors under conditions of identical standard and comparison discs against each of the three classes of hard-held discs. The soatter dingrams clearls indicate no appreciable relationship. The two-by-

MEAN ERROR ON IDENTICAL DISCS
Figure 3. Size-estimation test. Relation of error on identical, projected discs to error on neutralls-loaded (NL) discs.

Figure 4. Sizo-estimation test. Relation of error on identical, projected dises to error on emotionally-loaded (EL) dises.

LEAN ERROR ON IDENTICAL DISCS
Flgure 5. Sizemestimation toat. Relation of error on idanticol, projected discs to error on "illusion" discs.
two tables formed by dividing the distributione at the medians show onif a chance breakdow. Clearly, then, the individual variation in siec-estimation of the hand-held dises in not explainable merely by invoking possible aifferences in ability to be accurate among our subjectse

We can find support in the data for our contention that emotional gtimulation, grafted as it was upon the siza-estimation task, can be regarded as merely an additional irrelevancy. Let us compare our subjects in their average errors on the NL and IL diacs.

Figure 6 is a scatter diagram plotting each zubject's average error on the NL dises against his orror on the EL disos. While the seatter of these plote is considerable, the relationship 1s apparent. The Pearson correlation coeffioient computed from these data is $f .61 .2$ When the data are divided along the medians of the two distributions, the two by-two table thus formed yields a chi-equare correated for continuity of 2.5 , which io sienificant at approximatoly the. 06 lovel with a one-tail test. Thus we can state with some confidence that the error on the EL dises which, according to current fashion, might be "explained" by the "values and needs" aspociated partioularly with these stimuli; is predictable from a knowledge of the subjoct's performance on the same tazk

[^2]

Figure 6. Size-estination test. Rolation of error on neutrally-loaded (NL) dises to error on emotional-ly-lcaded (RL) discs.
thon the value and need stimili are absont. Porhapa more inportantiy, this finding sugeasts strongly that we may do bottor to look for our explanation in the relationship of the subject to the task rather than in the relationship of values or needs to perception. 1,2 Pisure 7 plots the relationship between the Ni, diacs and the Illusion dises. Again the rolationship is apparent, the corralation coefficient 4.66 . The two-by-two table formed by cuts at the medians of the two distributions yields a chi square corrected for continuity of 2.5 which is significant at about the . 06 level for a one-tail test. the aistributions, however, are highly akewed and a two-by-two table formed cuts at the moans of the two distributions yields a cht square of 3.6 which is significant at about the .03 level with a onemtail test. It is clear from these findings that there is a systomatic variation amons subjects and comsiatency within subjects in estimating the alze of all thrac olassas of disos as there would have to be if our hypothesis is to stend.

The findings thus sar support the contention that people dipfer in the degree to which they focus on relevancies and ignore irrelevanoies, with the result that saxe are more accurate than

1. Aven greater consintency is seen in the performancas of aubjects when the comparison is made on the basis of constunt (algebrate) arrorg rather than total (arithnetic) errors. Bee pp. 82ff.
2. This is not intended to imply that other needs and values present in the subject are without influence on his performances. The pressent discusaion in limited to the values and needs which may have been injected by the BL stimulus dises.

Figure 7. Sluemestimation test. Relation of grrom on neatrailyloaded (NL) discs to error on "jllusion" dises.
otherg in their aizewestimations under conditions where various Kinds of irrelevant atimulation are present. It has also been shown that ability to ignora irrelevancies like anotion-laden or need or value related pietures is predictable from the subjeot's performance under conditiong when the irrelevancies are of a formal, "neutral" kind without expliait motional oonotations. To denonetrate further that a cognitive attitude is at work here we must show that this readiness to adopt a act of focusging upon irrelevancies has as its opposite face a relative inability to adopt an opposing aet-one for a broadenod, inclusive, non-aritical acceptance when the task derands thle latter set. The rationale for the pieture sorting test ied us to predict that persong whose atressing of the cognitive attitude of foousging notted them low error scores on the gize-astiration test should be relatively less able to react to the plotures with any conviction of feeling about then, dither of like or of disilike, and mhould therefore accumulate nore ratings of "indifferent" than will those who do not particulariy atress this attitude.

Figure 8 is ascattar diagram plotting error in sige-estimation for the five NL discs againgt the muber of indiffarent ratings in the picture sorting test. 解ile the scatter of the acores is wide, a clear negative relationship is apparent. The scattering reduces the correlation coefficient to - -21 . The four-fold table is fomed by dividing the sige-estimation distribution at its

Flgure 8. Relation of error in size-estimation of neutrally-loaded (NL) discs to number of indifferent ratings in picture-sorting test.
median and the indifference acore distribution at twenty choices. ${ }^{1}$ The ohi-square corrected for continuity is 4.96 , which is Bienificant at about the per cent level with a one-tall test.

As a further oheck on the "ability factor, "Figure 9 plote the error in sieceestimation of the 1dentical, projected disca against the indifierance score. This yields an insignificant, negative correlation coefficient of -16 , while the four-fold table yielda a chi-square corrected for centinuity of zero.

A measure of "woight-bize" iliusion was obtained by taking the alfference between the means of the oigit pre-teat triale with the light gray and with the heavy gray discs. This did not relate apprectably with any of the other measureg uged in the investigation.

Our genaral deaign in this presentation of resulta is to offer experimental apport for our hypothesized cognitive attituds by chacking predictions which gpan levals of theorizing (o.ge, perception and perconality). We should expect one thing more of our hypothesized attitude, horever: that it be able to prodiot performance in other perceptual tasks which, like the dafining takk, aise-satimation, require the subject to concentrate for the attalnment of accuracy in the face of potentially interfering

1. The theoretical expectanoy for any one category of a threecategory teat having gixty iteras. of coursc, the three categories and their scores are not independent of each othor; a high Indifferent acore implies few like and disliko ratings.

MEAN ERROR ON IDENTICAI DISCS
FIgure 9. Relation of error in sizeestimation of identical, projected dises to number of indifferent ratings in picture-sorting test.

Irrelevant gtimulation. We orieinally chose two of the many pousible tasks which meat thase formal requirements in ordor to make a beginning effort to stucy the problas of generality of focuasing in perception.

The findinge for one of these testes, the coler-word test, are plotted ageinet average error on the NE dibes in Figure 10. A Elance at the distribution of color-word teat scores shows that It is a very constricted one oompared with that for the alse-nstimation test. The narrow range of color-word interference acores and the acattering of acores in this distribution sharply lover the correlation betreen tha two distributions. This was computed as f.01. If, however, the two distribntions are divided in hale at thetr medians, the resulting two-by-two table yiclds a chi-Equmre corrected for continuity of 2.5 , which is gignificant at tho .06 Level for a one-tail teat. Thus, cespite the narrow distribution of colormord teat acoregy wo oan see that low arrors in sizeestumation of NL discs tend to be associated with low interforono on the color-word tests.

The findings from the other test, the distanco-ostimation test, are not presentod here becauno it seana alear that the phenomenology of the distancemestimation task was quita diffarent for different abjocts, offectively confounding the meaning of tho error in aistanco-cstimation which we were attempting to prediat. It is a point for investigation in itself that people experiencod

Figure 10. Relation of error in size-estimation of neutrally-leaded (NL) dises to amount of interference in color-word interference test. C/B ratio is time needed to read colore with words interfering to time needed to read colors alone。
this distanco-estimation task so differentiy. Perhaps a still uncuspected personal of cogntive variabla was at work hera. our prosent highly equivocal findings only sugeest this poosibility but do not eive us the opportunity to axplore it further. At any rate, 1t would seen advieable to discount the aignificance of owr Indings about distancoestimation and to reserve as an open question the genarality of our hypotheaised cognitive attitude uith reapect to tho estination of diatance.

Let us panse for a mozent to recapitulate our findinge.

The pleture sorting test, sisemstination test, and colorword interference test have put on trial oeveral of the properties whioh we oariker derived frow the hypothesized cognitive attitude of focussing. We have ghow thats

1. The most likely alternative explanation for consistencies In aiaomastimation, an nebility factor," ia not sufficient to gacount for the findings.
2. Emotional-loading doen not of itself produce greater error than other irrelevanoies in the field tat rathor tends to produce less error than other irreleyancies among subjects prone to inturference.
3. Error on anotion-Iaden dises is prodiotable from arror on non-enotion-laden discs.
4. Anount of color-word interference is associated with amount of error in sisemestimation.
5. Greatar accuracy in the aisemeztimation toot is associated whth afficulty in adopting a get of broadened accoptance of stimulation which would allow Iroc access of inner feelings into experience.

Sowe Implioations of these, the last especielly, havo already been touched upon (ppe 16ff). Because of the irportance of the picture sorting test to our hypotheais, we will prosent additional findings from this test in somo detail.

CHAFTES V

OF THE FLCTURE-SOTLMO TEST

The teat pletures aponned a wide range of content and erotional stimulus-value. It would be interesting to see If pietures of difforent content and comotation were responded to differenty (in terms of indifferent choicen) by those cubsecte who are oreanized arcund the cognitive attitude of focussing and those who are not. To this and a kind of item andyzia of the teat was undertaken. In order to highlight whatever difforences misht appear between persons presumably at the extromes of the continuus for this attitude, the upper and lower 25 per centa of the $H L$ dises diatritution were compared. There were ten aubjects in cach group.

As a Inct btep those pictures vere separated which were ratad indifferent by at least elx out of the ten subjecta in the "focuasing" group and by no more than four out of the "non-focussing" group. Table I 11sto the pictures which meet this tert.

It is noteworthy that, out of the eight pictures in this group seven (i.e., all but number 27) can fairly be sala to be hechly charged exotionally. This table sugeests that the focusbere were oven leas able to respend in terms of their feelings when the pleturea to be respended to (or perhape because the pletures to be responded to) were of an motionally-Excitine kind.

Heture Rumber:	Description	$\begin{gathered} \text { Foousserg } \\ \text { (Low brror Grcup) } \\ (N=10) \end{gathered}$					
		1	D	${ }^{1}$	L	D	I
7.	Photograph of a fomsle muda doing a backbend tovard the viewer.	2	3	6	5	3	2
17.	Honochrose 1thograph "London Soene ${ }^{4}$.	2	2	7	5	4	1
37.	Fhotograph of statuo of a female nute.	2	1	7	4	3	3
39.	Photograph of a man sobbing uncontrollably.	0	3	7	2	7	1.
49.	Photegraph of a mado female back on which thadows of iron grill. work are cast.	1	2	7	7	0	3
52.	Dramatho photograph of a hand with an amputated ilingers banduged.	2	2	6	3	5	2
56.	Photograph of a hillside in India with carcascea and zkeletons of onimals acattered about.	1	3	6	1	8	1
57.	Fhotegraph of a Elicl's head, scrcaning in fright.	2	2	6	6	1	3

1. L, D and I refer to the three categories Like, Dislike and Indifferent.

Conne step further, the piotures mere goited into groups of relatively homogencous content or emotional conotation Because of the variety of content representod In the pletureng only a fay groupe of eny apprecisble aize can be selected if they are to be at all homogenecus. Two groupa of pictures were selected which can be said to to enotionaliy' charged. One group of 11 contalined pletures of pronounced
 pronounced erexual connotations. athird group of 13 had Fictures which, in comparison with thoes of the other two groups, an be conaldared rather neutral in motional tome. Sow arbitratinegs, of courge, is involved in deflning the erotionai tone of pletures this is a matter subject to Individual interpretation. It is perhaps most arbitrary of all to say that a picture is "noutral", and it must be emphasined that this distinction is meant in a restricted and cosparative sense. The plotures in the neutral growp wore eelected on the basia of being (at least to the exparinanter) unprovecative. While certainjy they are all subject to omotional interpatetation, they tend in content and cxecution to be arab and unexating.

The mean number of indifforent ratinga given to anoh group of piotures by the ten extreme focussing and ten extreme non-focusaing andects are compared in Table II.

	$\begin{gathered} \frac{\text { Fccussers }}{\text { (Lorror droup) }} \\ (N=10) \end{gathered}$	$\begin{gathered} \text { Hen-Foousmers } \\ \left(\begin{array}{c} \text { Gigh Error Group }) \end{array}\right. \\ (N=10) \end{gathered}$	Eifference	t	p
Agereseive					
Pictures $(n=11)$	3.18	.73	2.45	3.90	$<.05$
Scrual					
P1etures $(n=12)$	5.50	3.08	2.42	3.91	<.05
Neutrel					
piotures $(n=13)$	4.70	3.46	1.24	1.59	-m

The focussing group can be seen to be hifhest in indifference aholces for ach of the catogorien of pictures. The differense between the two groups seme greatest for the two categories of erretionally charged patures. These findinge tend to support tho carlitw evegeation that focussing aubjects may have espedal dfficulty ragpording on the beste of their feeline when the etimulus material in motionally provocativa.

It in obvious fron a plance at Table II that we are far from having unanimity of indifference in the focuseing group. The non-focusoing group is more homogereous in this respect. bone of these three categoriea of pictures is es efficient in discriwinating letween the two extrew groups of subjecta an is the total series of 60 piotures. The nean number of indiferonce chrices on the whole test for the extrome focussing group is 25.5 and for the non-focuscin swoup, 15.3 , these mean aso on opposite oides of the theoretically expeoted fifure of 20 chaices. The difference between them is aignificant at better than the . 01 level. The respense times for the picturemerting test wore also analywed. The pattern of sertins and response times are sumarized in Table III.

Table III shows that there is very littie difference, on the whole, between the response times for the threo response ategoriez. The finding of alightly laner responee time for the indifferent pictures secas ressonable, but the difference

between it and the other times is mot aigniricant. The foeuseing eubjecte appear to have shorter response times for the total test, and expecially for their indifferont responser, than the non-focusaing subjeats, but these differences are not significant. A glance at the raw data (Table VIII) shows the wide range of response times. For the total test the means reppanse tives range from 1.48 seconds to 6.32 seconds. The subjecta; of course, were apecifically instruoted to work at their most comfortabia pace.

The inquiry conducted after the pioture-sorting toat was quite informative in the case of some subjects and rather less so for others. Not many subjecte were able to verbalise cleariy the experiences they had during this teat. It is cur imprestion that the fewer the indifferent responcea and the more comfortable the task set to reepond on the basis of the first feeling aroused, the leas could the experience be verbalized (although there vere exceptions to this). It secmed as if for such bubject: the tank and their reaponses were self-evident. A typisal comaent by such a eubsect (fin6, five indifferent reaponses) was "generally, if I like or disilike aeracthing it doesn't take meng to decide it. I'm that way with moat thingamwhat I like, I Like....." For contrast, here is a comrent by another subject (16,26 indifferent responses) MI had trouble deciding which left me indiferent and which I disliked.. Those which I liked were for varicus and sumdry reasons... I tried
to evaluste the photos at first...the first two I liked would be indifferent if I did it agein. They're not as good as I theught they were at first."

The latter coment cleariy indicaten that the taok set, to free onaelf to reapond to onels feolings, as regutred by the Instructions for the test, was rever established by this subject, whose eyprosch to the pictures wes evaluative and oritical.

The Inquiries also warn us about hew vulnarable the indifferent oatogory scere in. Several of our subfoctsperticularly those who had difficulty in adopting the required task-set-remdefined the tosk for thameelves and in doirg so eave spurionsly low indifferent scorse. An example lis subject 27 (3 indifferent reapones) who stated, mot many gave mo a real fealing... I tried to keep then out of the middle. I felt I'd like to decide one way or the other." Such consonts tell us how important it is to make sure that the subject is actually cperatizy under the task set which the instructions attempt to
 at face value in buch a test as this witheut thoroush inquiry into his experience.

We have shom that the picture sorting test data support our hypothesis of a comitive attitude that favors the formation of sots for narroved and focussed attontion and makes difficult tho adoption of antithetical sets. In the course of this dessonstration wo proposed (and gave some evidence to support) linking emotional gtimalation with other tasir-imelevant stimulation. Again, wo must emphasize that from a logioal Vlewpoint omotional gtimulation and inner feelinge need not be thought of in this way, except when the tast explicitiy or inplicitly deifnos thera so. This was the case for the size-estmation test. The picture sorting test, however, specifically required an antithetical oot. In it emotional stimuli and Innar feelings were to be allowed to guide behavior. The differences which energed arong our subjects in this tack not only support our thinking gbout the role of focussing, but sugsent further that our subjects also differ widely in thoir motional ilfe in general. If this suggestion could be verified it would add weight to our argument that focusging, as a cognitive attituce, could be regarded as a prinoiple of personality organization. It would help us to designate at least one aspeot of personality organization to mich fooussing is relevant.

The incluaton in the teat battery of a personal inventory with items aived at the ways people experience, express, and control emotions makes it possible for us to relate the indings
from whioh we infor aupport for the existence of a cognitive attitude of focugsing to this moro general arpeat of personality functioning. Tho 46 inventoxy items were keyed true and false from tho viempoint of how an "ideal person" who tends to be completely free in experiencing and exproasing emotions, and who feels littie need for supgressive control of enotions should answer them.

The deciston to kay each iten only as true or false (considering a rating of one through three as true, and a rating of Ifve through seven as false, with ratings of four not counted) was made after observing various aubjeots rate the inventory and after Inspecting all the completed Inventorics. It was obvious that ubjecte used the inventory rating salo in vastiy different waya. Sone obvicualy felt constrained to rate all items olther one or seven, winie othara hovered closely about the mid-point in their ratings. While such varying uses of the inventory soales would in thenselvas provide an interesting subject for investigation, in the present context they make unfise a too literal acceptance of the numerical ratinge. Thus, only the fact that a rating mas above four or under four was considered. Fach oubject therafore received a acore which reflected the nuaber of agrements betweon his ratings of the items and the previously established key.

The scores ranged from 12 to 37 agremonts with the key. The expected frequency of agremonts with the key for a 46 item
test with a two-catogory response choice is $23 .{ }^{1}$ The mean acore was 25.73 the median was 25 . The relative positions of the mean and the median, as well as the location of both above the expected number of agroments indicate that either our soale is binsed milidly or that our subjecte on the whole aro, or say they are, amotionaliy free.

Figure il is a seatter diagram plotiting the number of Inventory items answered according to the key against tho orror in size-estimation of the NL dises. The prediction based on the properties of our hypothesized cognitive attitude would be that those subjects in thom the focussing attitude is stressed should describe themelvea as relatively unenotional, as relatively distant and without conviction in their emotional experience, as preferring a relatavely narrow range of enotional exporience, and as favoring suppreseive control over their emotions. We should therefore expeot a ponitive relationship between anount of error in sizeestimation (our defining score for focussing) and the inventory score, 1.e., our focussing subjects ahould have lower inventory woores than our non-focussing subjeote.

[^3]

Figure 11. Relation of error in sizemestimation of neutrally loaded discs to muber of inventory items (out of 46) answered according to the key for an ideal, "emotionaliy-frees person. The seven plots encircled by the dottad line are discussed in the text.

The relationship bettreen the variablas plotted on the ocatter diagrain ia jmediately apparent although again there is considerable scattering of scores. The corralation coofificient 1sf.23, which does not reach significance. The two-by-two teble formed by dividing the two distributions at thair medians yielda a chi-square corrected for continuity of 0.12 which is eignificant for k one-tail tast beyond the . 005 level. The mean inventory score for our 10 focussars, 23.3 as against 28.5 for the 10 nonfocussers, The difference of 5.2 yields a t of 2.270 , whioh is aimificant at better than the 03 leval for a onomall test.

The neattaring of scores; which reduces the correlation coefficient, appears to be localtsed largely in a cluater of seven plots. These are enoircled on the scatter diagram. An examination of these bcores indicatos that four out of the beven were from subjecta uho typically under-eatimated the aize of discse since the distribution of errors in the alea-estination of the unlonded discs in quite markediy skewed positivoly this finding was further Inveatigated. Figure 12 is acatter diagram in finch the inventory seore is plotted against the subjected constant crrors (observing signs) on the ML diacs, Instead of one linoar relationship, as Figure 11 shous, the plots now seem to fall along two regression Iines, with the irventory ecore increasing with inoreases in nogative as well as in positive error. The two correlation cooficients are $f .34$ and - . 44 , both of which approach gignificanco at the .05 leval. The correlation coofficient for all of the cases, not

SIZEmESTIMATION TEST. MEAN CONSTANT ERROR ON NL DISCS
Figure 12. Relation of constant error (observing signs) in sizemestimation of neutrailylouded (M) diseg to number of finventory iteas (out of 46) anarered according to the koy for on inesi, "swotionaliynfre person,
separating poeitive from negative error, 18 - . OL . Evidently, for our purposes high positive error and high negative error areequiva-lent-atha amount of error rather than its direction is related to the cognitive attitwde we have hypothesized. Thia is not to say that direction of error may not have consequences of its own which are not tappod by this study, but meroly that amount, rather than direction of error, predicts the personality attributes which we have derived from our hypotheaised cognitive attitude.

In Figure 12, it is evident that the two regression lines for the positive exror diatribution and the negativo orror distribution do not have the same slope. The greater alope for the negative error diatribution accounts for the olustering of the coriant plots in Figure 11. Wo can offer tho guggestion that a probable reason for the difference in alopes (rhich is related, also, to the marked positive akowing of the constant-error distribution) is that the sise-estimation tadk with hand-held discs makes for a systematie bias toward over-estimation: We can venture that thia comes about because the hand-held dise 18 held about two inches nearer the zubject than tho plane of the variable, projected diec. This provices, in iffoct, a miniature "gisomeonstancy" aituation in wiloh a more diatant variabla diso is to be adjusted to the size of a nearer atandard. Such a situation on a larger seala typicaliy yields judgnents which aro compromises between the "law of size constancy" and the "law of the visual. angley Thus, the expected judgment, with reapect to the true
objeot eise, is an over-estination. Those subjects, therefore, who tend to under-estimate (for matover reason) do so against the "pull" of the stuation. It zems reasonable to suppose further that the aftuational bias, in effact, cancels out some of theix tendency toward under-astimation and, from the viewpoint of total errors, Lowerg theif error zcore. such a hypothetical process would account zor a steoper slope for under-estimation.

At might have been mepected from tha rolationahipo demonstrated above, the inventory score is nogatively related to tha pieture-sorting teat indiference acore. Pigura 13 is a scatter diagram plotting this relationship. It jielde a correlation of -. 22 whioh, though in the proper direction, does not reach significanoe. A two-by-two table dividing the inventory distribution at the median and the pioture sorting test distribution at its theoretical rid-point yields a chi-square corrected for continuity of 2.64, winioh in algafleant at approximately the .06 loval for a one-tail tast.

Thus far wave used our inventory only in terms of the mubor of agreements with our predeternined key. We have been thle to show that focussing as defined by accuracy on the size-estimation test and further delineated by the picturo sorting test can be used to predict a plobal quality of enotional experience reflocted in the oluster of 46 Itoms an a whole. An Item analyshs should sharpen our conception of the quality of emotional expeniences which are predictable.

FICPURE-SORTING TEST. INDIFFEBENT SCORE
Figure 13. Relation of number af indfferent ratings in picturg-sorting test to number of invantory items (cut of 46) answered according to the key for an ideal, "emotionally-Iree" person.

ITH A MALESS OF THE PEREOHAL INVEMORY

Our purpose is to highlight tho items of the inventory which contributed most to the relaticnshipa betwoen the inventory score und the defining task, sizematimation. In order to do so, only the responses of the ten aubjects lowest in error (focussers) and the ten highest in error (nom-focuseare) in the size estimation of the NI_{I} disen will be compared.

An exarination of the inventory rosponses for the frecuaing and non-focussing aroups inacdiately mace olear that while the response to the cluster of itom as a whole clearly differentiates the groups, less than half of the iteme discriminate individually between the two ercupe with any effectiveneas. To increase our underetandigy of the differences between the two grows in terms of these itera, those which discriminate mast clearly and those which deceriminte ralatively less cloarly will be precented ecearately. The ittom annlyees are aumarized velow in Tables IV and V. The iters aelected for these tablas were theiee to which the two erowes reaponded in accordance with the key set up before the investigation. For Table IV only those iteme wer chooen upon whith the two groups clearly divereed in their response tonconcics, 1.e., six or wore in each group of ten responded in the direction set up by tha key. In Table V are thoce itens which diacririnated between the two groups in accordance with the key for each item, but not as sharply yithin one or the other group as did the items

	$\begin{gathered} \text { Focusbera } \\ (\text { Lem } 2 \text { Lror Drowp }) \\ (N=10) \end{gathered}$			$\begin{gathered} \text { (Mon-Focussers } \\ (N=10) \end{gathered}$		
30. Item	T	0	8^{1}	T	0	F
10. Ecmotines I talk wyolf into feeling the way I think I should.	6	3	1	4	0	6
56. Sometimea I get wo emotionaliy involved in a question that I oan't think straipht.	3	0	7	6	0	4
60. Hy spixits dopend very much on my surroundings a glocsw rocm makes me feel that way too.	3	1	6	8	0	2
96. At the movies I icientily myself casily with the charactere on the nareen and feel almost as if I were going through their adventures.	3	1	6	7	0	3
102. At different times I seem to love and hate the mase poole.	2	2	6	6	2	2
126. I measily noved to teara by a and part in a movio.	3	0	7	2	0	1
132. Hy feelinge are easily hurt by ridicule or by the slighting remarks of othere.	3	0	7	8	0	2

1. T, 0 and F in this and the following tables refer to True (ratines of 1-3), neither frue nor False (rating of 4), and Palee (ratings of 5-7). The response category called for by the key in show by underilning the aprropriate colwana.
-74.

TabIE V

	$\begin{gathered} \frac{\text { Fooussers }}{} \\ \text { (Lout Error Group) } \\ \binom{\text { I }}{\text { O }} \end{gathered}$			$\begin{gathered} \text { Mon-Focuesera } \\ (\mathrm{Hgh} \text { Error Group }) \\ (\mathrm{N}=10) \end{gathered}$		
Ho. Item	T	0	F	T	0	F
23. I can get considerable relief for My feelings out of a geod ery.	5	0	5	8	0	2
42. I consider mycelf a rather unerstional porson.	3	3	4	0	0	10
53. I find that I tend to be guided more by ny feelings about thinge than what I know about them.	5	1	$\underline{4}$	9	0	2
06. I have a rather sentimental attitude teward most thinge in 1ife.	5	2	3	10	0	0
95. Givine way to one' emotione seems to me selgn of weakness.	3	3	4	1	0	2
118. Scomitres I talk myself out of havime feelings.	3	4	3	2	0	8
330. I pride myoelf on my self-control.	5	1	4	1	2	1
135. In inclined to liot myelif go" emotionally.	1	1	8	5	2	3

of Table IV. On thes Itew one group showed a strong temioncy In the predicted direction, while the ether group showed only a weak tendency, 1.0 .0 fewer then five of the ten subjects arsvered In the predioted drection. In no case did elther eroup show a strone tendency oppozine the predtction.

Taken at face value the reants for these itcus eugeat that the dicference between the two groups hes to do with the experiencing of feelinfs and tho recegrition of thair inportance. If we can let the magerity speak for the whole on these items the non-fecussers clearly describe thomelvee as "omotional" people who are ware of their feelinge, who relate themelves to others frecly, end who casily become enotionally involved with others. The fnouesers, on the other hand, deacribe thamelves lurgely in negative terns on thece items by indicating that thoy do not appis to then. It is intaresting tiat only one cut of the seven itews (kio) deals with positive experience of the focuesers. This polnts at a findine which Table V will make clearer, that our Irventory had suoceeded far botter in capturing the emotional experiences of pen-focursers than of focusgers. Porhape it is not enrpising, in view of our hypothesen about the focusacrs playing down of affective procetses in favor of verifiaile expritence" that their exotional experiences should be rather elueivo.

Although four out of the eight items in Table V ere nired at the experiences which were hpothesized as characterizing focussers, the distinction between focussors and non-focussers on these items are due to the almost unanimous rejection of then by the nen-fccusecre. The focussers as a group do not really comit themselves on thene itens. They take their only strone stard in refecting atem number 135 which statea "I am inclined to let myself so emotionaliy". To refterate, the nonmiccuscers energe at a much more clearly cerined grom in teras of their self-ratinge on the inventory. The focussers establith thenselves an quito different from the non-fooussers, but tend not to cormit therselves (though, with one noticeable exception, iter 10) to any positive qualitios of enctional experience of their own. ${ }^{2}$

It is also clear that for the most part the non-focussers show far fewor inatances of wabjecto nowering neither true mor false to these items. Combining the itens of Tabies IV and ∇ for this purpese, we find only six instanoes in the non-focussing group of subjecte uaing the ratings "raither true nor false" for

1. Iters $41,95,110$ and 130.
2. This comparison is linited to those iters uhich discrininated betwean the groups in accordance with the key. There are a nurber of itexis which do not disoriminate and on which the focusecrs indicate somekhat ereatar involverent with feelings. This could be inferred from the findings that the mean inventory acore for the focussers is 23.3 and the mean of the non-focussers is 20.5 . The cocussers are thue slightly above the thecretical mid-point (23) for the acale. We see therefore that with respect at least to this present sample of subjects the inventory is biased in the direction of describing people as emotionally free.

TADIE UT

 GROUPS AHD COMTADICT THE KET

	$\begin{gathered} \text { Focussers } \\ \text { (Lew Error 6roup) } \\ (N=10) \end{gathered}$					
Ho. Item	T	0	F	T	0	7
4. In ruore the "happy-gomincky" type than a roody type of pareon.	5	4	1	3	2	5
103. I sometimea wish I could feel as deeply about things as other people seem to.	3	1	6	6	3	1

故位 answers as opposed to 26 instances in the focusaine group. It exema a fair inference, upen looking at the responses to all 161 tems, that the non-focusairy subjects, as a group, had much less difficulty in making up their minds one way or the other about theee iters than did the focussing subjects. It weuld seem pesaible to attribute the unclear emotional status of the focussers entirely to the erudeness or bias of the inventory. Indeed this objeotion can hardiy be muled out with the data in hand. But the evidence is clear encugh that on items which the non-focuseere have ilttle dirficulty in acceptins or rejecting, the focusgers tend to hedge. It deen not seem an iaplausible inferense that those enbjects are, as a greup, simply not sure nbout this area of experdence. Such an inferonce rould fit casily with our fypothesis of poor cemmication botween the focussers and their twotional processes. It also secme consistent with their lerver mumber of indifferent choices on the pleture sorting test.

Thus far we have looked only at the ftems which discriminate in accordince with our key. To round out the picture we mast leok alco at those itoms which discrisimate in the opposite direction. of the 16 item only two were rated ty the two groups in such a way as to contradict eleariy the hypothesis made about them.

These items are ahoun in Table VI above.

1. Ve do not include here the twenty-rine items which either did not discriminate at all between the groups or where the differences in repponse tendencies betwen the groups were no slight as to nake individual attention to the items unjuatisiable.

Aided by hindeight, we may wonder why item lil wac included in the cluster of feeling items. The writer's best guess is that it atomed from his notion at that time that parsons who are more freciy in commanication with their feclings and wo exert leso suppressive control over ewotions would theroby be "happior" than these who did the opposite. A iittle refleation, however, indicates that this need hardiy be true. Also, "moody" is a term which could debcribe a pereon with streng feelinge while "happy-go-lucky" could be taken to mean "carefres" in the senso of not feeling one's troubles mach. Answored as it was, the item does not aeem to contredict aither the letter or the general spirit conveyed by the cluster of stoms which discriminated in accordance with the key (Tables IV and V). In itself, it does not challenge any of the hypothescrimplied in the key mr any of the othar iters taken individualiy. Item 103 offerw a bomewhat different problem for explenation. In part it, too, appeare based upen a notion of the writar bhich, on aftorthought, seems open to question. The point of the item was the writer's expectetion that those subjects who weuld have difflculty in recognising their feelinge or who had iittie conviction in thea weuld wish to be different, to be "freer," in terms of the winter's value-syatem. Upon renlection, we may wonder why this would need be so.

There is no reason why our focusoing subjects should necesearily experience their medes of dealing with emotions as "a difficulty". These speculationn are Bupported by the faot that

Item 103 is the only itom of the 16 which is couched in terms of "I whon." all of the othexs call only for a description of expertenes. Ferieps it is not surprieing, theng that it is our non-focusaine aroup, those for whon we hypothesizod freater freedom In their hamdive of seelings and anotions, who wish to feel even nore intensely than thoy do and wo net a pratum upon this kind of oxpertonce.

To sum up the contribution of tho inventory data: Doth tho more formal link to our dofining task (sigemegtimation), fia the koy and inventory seoren, and the examination of itens which discriminate between the two groupe aupport the hypotheses about the cognitive attitude of focusaine mion led us, in the Firat place, to uad the inventory. It acean taite clear that the fecusers behave toward their motional procesces us they did toward irrelevancies in the field of the aizemestimation tobt.

COMSISTENOISS IN DIRESTIOM AS WUL AS MOUNT OF MHOR In SLZE-SSTITATIOA

Throughout this thesis we have used anount of error in afseestifnation of the Kl diseg as a measure rerlocting the dagree to wifeh our zubjects stress the cognitive attifude of focmesingothile our cogritive attitude has bean linked operationally to a mesure of amont of error and our interestg turn armost cntiroly mon it, it would be hard to overlook the fact that in ruch of our data the subjeoto thow ingreasive consistencies in tho direction as vell as in the arount of their orrors.

Fieure 14, for example, plota the relationship botween the constant errorg for the HL dince against the constant errors for the EL discs. The relationghip in mparent and tho correlation coefficient of $\neq .93$ speaks for 1 te strength. This ifinding confirms a suggestion mada in an carlier paper (46) that for many aubjecte such congistencies might be tho mule. It caats etill moro doubt upon "accentuation" as an emplanatory principlo for over-estimation In the presenco of imposed value- or need-stimulation. Obviously, If subjecte who over-astimate omotionally-laden disce also tend to over-catinate non-minotionally-laden disos to the extent that this correlation indicatea, then we need hardis seck any Epecial explanation for the one case of over-antiration alone.

Before going further to aeo how well the constant errors on this task relate to the other tasks of this invostigation, it

MEAN CONSTANT ERROR ON NL DISCS

Figure 14. Size-estimation test. Relation of constant-arror on neutral ly-loaded (NL) discs to constant-error on emotionally-loaded (EL) discs.
vould be well to look at the relationship between the total error nasure which has been used throughout this study and the constisnt erros measure to which wo have just turned our attention. Figure 15 plota constant errorg against the total errorg for the group of IL diecg. The lines which divide the upper and Iower halves of the graph at a 45 degree angle indicate where amch plot ehould fall if ail twenty twiala on wheh it was based resulted in orrora in n single direction. If a aubjeot has over-estinated or under-extimated unfomivy hia plot will be on that line. To the extent that a mubjectia errors includod over-ostimations as well as under-osstimations, his plot wll deviate from the line. The proportionate distance alons the vertioal exis from a plot to either line indicaten the proportion of his total errors which resulted fran over-estimation or under-astimation.

It Is imediately obvious that the greater the total error the more errors tend to be made in a aingle direction. Despite the pact that the constant error measure and the total error measure can logically be uncorrelated, it is also claar that the scatter diagram formed by these plots would indicato a very high correlation between then (correlating over- and wadereatimations with the total error meparately). Figure 16 indicates that this atato of affairs is true for the E_{L} disce in aizementimation, too. Figuro 17 shows that this is trus too, though to a momewiat lesser extent, even for the aize-estimation of the identical projected dises.

Figure 15. Size-estimation test. Relation of arithmetio-error (signs ignored) to constant-error (signs considered) on neutrallyloaded (NL) discs.

Figure 16. Size-estimation test. Relation of arithmetic-error (signs ignored) to constant-error (sighs considered) on emotionallyloaded (EL) discs.

Figure 17. Size-estimation test. Relation of arithmetic-error (signs ignored) to constant-error (signs considered) on "identical" discs.

The stigificance of thit finding of high correlntiong botween our total error neasures and constont error meacures is that in any comparison of the two neabures we would bo in many cases comparing the sane seores. We are thus in no position to moke a firm coxparison between the two zeesures with the lata ot hand. It would be interestIng, however, to wake aven a tentative comprisison between thane In order to do vo we wowld have to ignore those scores which aro the sam in both measuring bystema (and from whioh wo whould, therefore, be able to nake identical predictions) and confine ourselvon to those acorea which differ in the two measuring syetems and from which we might have different expectations. In the case of our deijning tark, size-eatissition of tha NL discs, we should be most intereated to see sinether the high and relatively hieh under-estinators (and there are only a for of them) tand to behave mora in the fashion predicted for aubjecta who make high total error or whother they behave difforently.

Figure 18 plots the constant errore in size-estimation of our NU discs against the pioture-corting test indifference scores. While the scattering of piots will obviously not giald an appreciable correlation coofficient, a two-by-two tablo zomed by divicing the indifferent category score distribution at the chance frequancy of 20 and the constant orror distribution at its madian yields a ohi-square correoted for continuity of 3.63 , withich is sigmificant at somewhat luetter than the 05 level for a tro-tail. test. As was obsaryed above, tha high and relatively high over-

SIZE ESTIMATION TEST. CONSTANT ERROR ON NL DISCS. DOTTED LINE DIVIDES SIZE ESTIMATION DISTRIBUTION AT MEDIAN, 4.8 mm 。

Figure 18. Relation of constant-error (signs considered) in sizeestimation of neutrally-loaded (NL) discs to number of indifferent ratings in picture-sorting test.
eatimations wifin contributo atrongly to the relationsilp here are the sane high total exfon seores which contributed to the strong relationship seen in Flgure 8. The crucial question mast be nnswered by looking at the larger under-eatinations (exeluding those under-astirations gron by subjects in tho focussing guoup, t.e., the ten subjects lowest in error). 1 geferring once again to Hfare 15 , we find that the plots of the five abjects givine the largest under-estimations are mabered. Thess ame subjects' plots are numbered in Flgure lo. It is Imediately clear that these five subjecte behave on the picture sorting test in tha ranner predicted for high total error subjects, and their location in the in the present constant error geatter diagrara tends to diainish rather than enhance the relationship. It seens reasonable to expect that in a larger sample with a grestor muber of consistent underestimators the relationship between conatant exror on these diacs and the picture eorting test indifference score would be mell lower, if not wiped out entirely.

[^4]The effectiveness of the constant error acore in predicting inventory rasponses was discussed previousiy in connection with Fiture 12. It pecas clear here, too, that the consistently high under-estimators behave in the same manner as the high over-entimators and that the relationship between tho biaemestimation faek and the Inventory is beat demonstrated by the total error measure.

Figure 19 is a gattor diagram plotting the constant error In sise-eatimation for the NL discs againat the color-word interference score. The clustering of scores obviously will not yield a gignificant corrolation coafficient. A two-by-two table formed by dividing the two distributions along thoir medians ylelds a chiequare which is not significant at the 5 per cent level. The constant error seasure does not seem even as officient a predictor of the color-word interference score as was the total error measure plotted in Pigure 10.

To sum up the findings in connection with direction of errore We havo shown that tho consistencies in constant error cannot be related to the other experimental tasks in the same nanner as oould the total orror moasure. This is not to suggest that the facts of consistent over-astimation and consistent under-mstmation among eubjects are unimportant ones. Far from it, they suggest that at least ons additionsl varisble in cognitive organization is operating. This thesis, however, is not prepared to sucgest the nature of the variable or what te consequences might ba. It should be clear from the forogoing that in terms of the tasks and hypotheses with which

Figure 19. Relation of constant error in size-estimation of neutrally-loaded (NL) discs to amount of interference in color-word interference test. C/B ratio is time needed to read colors with words interfering to time needed to read colors alone.
this investigntion has been concerned, thone subjects who underastimato considerably and those who over-estimate considerably may be combinod and corpared with those who do neither.

CEAFTER TX

DLscucsion

It raf ght be well, before detallint eome of the broader Amplications of the relatiorshipa we have found, to cumarize them and the retionale whioh led us to look for then.

The anount of crror in the ditemestimation of 1 L disca wab shown to predict the monat of error in the size-estimation of EL diace indiceting thot a more feneral expianntion is necebary for errors in aixemectimation than one based on the direct influence of amotional etimulation. The preciction of the mant of orror in the sizemestimation of tho ILJ discs also support this indication. The otise for the cognitive attitude of fecussing advanced to acceunt for these findings waw strengthened when it was thow that the amount of error in the sizemestimation of the WL discs could also be ned to predict the number of indifferant ratingegiren by aubjects to a series of pictures to which they were required to react in terms of their fancediato fealing of Ithing or dinlike. Hzh eccuracy on the aise-astisation task was gssociated with many indirfarent ratings. The Iink making thes relatienship understardable wes that in the size-estination tesk the set roquired was to attene only to the relevant etwniugattribute of sise and innore or suppress the possible intrusive gtimulation offered by the irrelevant differences in color, texture ete. of the NL dian and the amotion-laden associations
to the piotures facing the EL discs. Effective pexformance on this task was trus eeen to be a function of boing able to take a set to exelude irrelavancien in the field. The pleturesortinf test, on the other hand, explicitly made tesk-relavant fust these kinds of feelined or wotional assoolations which In the gize-estimation tesk were taslo-irrelevant. The relationship ebtained betwen these tasko chowed that factily In adonting the task-set for narrowed and focuseed attention inplied a relative ingbility to adopt the opposing ons of pormiting a broad acceptance of etimulation both from the tiwulus fiald and from within the pereen and offered support to the ougection that a personality variable wns involved in the apparent preference for the one or the other type of taak set. Accuracy in asemetimation was aleo bhown to be probably related to color-word interference.

The prediction by the eizemestimation orror 8 core of the persensl Inventory reaponses relatod to the experiencing, expression and control of emotions lent further suppart to this oungestion. Those aubjecta who wre least accurate in the gizeestimation task are who eave fewcet indificrent ratinge on the pictire-sorting test described themselves on the peraomal inventory as being freer in their expression of amotions, oxercising leas suppressive control over then and being in more open corsunication with their owotions than those subjecta who were most acournte and gave more indifferent ratings.

The wost plausible alternative hypothesis to account for the consisteroles in the afzemestimation task, that our subjecte differ only in perceptual acuity, in an. "absolute" ebility to be accurate, could hardly explatn the rolationships to the picture-sorting tesk or to the personal inventory nor would it have led us to look for them. This alternative wpotheais, hovever, was more directly shown to be untonable by the demonstration that accuracy in oizemastisation in the procence of a practical minfmom of irrelevant bimulation in the fiald was not significantiy related to accuracy in size-estimation of the EL, EL or ILL classes of disos. The "ability" hypothesis was also weakened by the finding that those oubjects who were least eccurate on the Ni disce improved in accuracy when judging the EL disca whose Irrelevancies were wore patent and provoked greater attention to the task.

The predictions we mode and the relationshipe found have Jed us stepmaise from a task traditionaliy considered "Fure perception" to a frect of persorality functioning far removed from any obvious corncction with perception. These unilkoly predictions were derived from our hypothesized cognitive attitude of fecuseing; a concept which pormity us to tie tegether in a single explenatory framework bohaviors traditionally regarded es havine little in comson.

Perhaps the major contribution of this thesis hes been to show that the seareh for "relationshifs between personality and perception has penarally overlcoked at least one luportant variables the ceenitive organsation of the perceiver. This finding highleghts ond consequence of thinking of perception and peraonality as two roalms which are distinct and relatively autonomocus but which, under apecial circwatances, infiuance oach other. As observed prevlously, the kind of influence which has most of ten been otudied has beon that in which motivatien (as an aspect of perwonality) has Interfered with percoption. Even the oholoes of concepta (6. 5 e. sutias) indicates the natare of the infuence which is presured. It is an if in some quarters the spirit of the investigations inspired by the nnew look" has been to detunk the purity of perception and show that human frailtiea, needs and geals can as easily pley hob with laboratorym derived prinoiples of perception an they oan with Itie outaide the inberatory. Thare sems to be an implicit value juchment, however, that, though perception is not the virginal thing ahe was repated to be, navartheleas be cught to be so. It is hard to cecape the implications that "autibn" for instance, is bad and that "eccentuetion" tolls wowe thing abcut us to our aisereditthat these are flant in our ability to perceive. The investigatora who have identified these phencrent have in effect oxtended the maxitu, "to err is human", into the formerly aseptically precise reaches bohind the brase inetrumentes.

These Amplied valueg reflect in part tho atreas that the lisgeat segment of our oivilization places upon accurate perceptiong upon calm objectivity which fudgen the "facte" while hoping for the trimeph of renson. Perceptiom, according to such a view, ghorld give us the facts and tell uthow the world really is. That perception might aliultaneousiy project upen the world outside wome consequences of inner processea could only raflect a disorder in a basioally faithful reproducting oystom, He would thus be forced to the conclusion that if perception is "healthy", It will be as the truditional textbeck format would have it, autonemaus and independent in principle, if not alway in fact. Perhape it is implicit thinking of thie kind which in part dictates the choice of tasks such as alacoestimation that build arenas for conflicts between "basioally orderly" perception and "bssicnily undisciplined" motivatione. In such oituations "ecod perceivers" would be expected to ahou little "interference" by the emotional stimalation.

The size-estimation task introduced emoticmally tinged etinuli as extranenus and irrelevant irtrusions upon the tekk. The value or nseds so represented were expected to intrude upon and Interfere with performance. This is, of courveg not the necessary relationship of values or neads to perception. It veuld not be hard to think of inetances were values and needs are sppropriate guices to perception-but this is not so in the urad situations in which this mi-influence is mecsured.

Ferhaps more thought about cur values about perception wight lead us to reconsider the uge of cuch take an sizeestinetion paradigas for tho study of parsonality and perception. If this paper has made a contribution toward this end, it will be by having chown that in choosing euch e pargoicm, we in erfect, place a value upon cre styls of cognitive oreanistion or pereonality organization and suppress others. By an uniting gars pro toto we then are lod to draw conclusions sbout perception and persomilty oxemination in general.

One consequenoe of cuberuint value and need offecte yrion perception under the feneral headiry of dealing with irrelevanciea in perception is that we are lea to look at the influence of other, non-mativational, task-ixrelevant variablea. Ae lons as the problem in viewed solely in terms of the influence of motivation upon perception, no wore general theory is possible. Tho work and inagination which led to the proposing of auch concepts as "gutiem" and "eccentuation" succeeded in prying the study of perception locse from the confines of laboratory Invectigations of autochthorous procosees and etpanius variables.

These gtudies added the qualification to our knowledge about perception that while perception indeed has its oun 2aws; there are situations ("flukes", as it were) in which the "normal" ccurse of perceptual evente is "influenced" by a motivational variable.

We balieve that a larger theory of bohavior, within which general theories of perception and personality must be lodged, will result not from tearing down the barriers between two adjacent chapter headings in the text book of general psychology-perception and motivation-but by reformulating the problem so that at the foous of our Investigations is not a rarified abstraction, perception or motivation, with their interrelationahips, but rather the percoiver. Without him no atudy of perception vould be possible.

Our hypothesized cognitivo attituca has led us to make predictions which oxperimentation has, on the whole, borne out. The mere fact of sucocesfin, atatisticaliy acceptable predictions is not enough, houever, to force acceptance of the theory from which they eprang. It is necessary not only to be able to epan the gaps between isolated and zolf-contained areas of behavior or experience, but also to show that the isolation and self-containment were morg apparent than real. Whila the earlier presentation of our bypothesis suggested that we might look for relationships between accuracy in size-estimation and enotional experience, no atrong case was made for the likelthood of finding such a relationchip.

Perhaps we can make cloarer the 1inks between our defining task of aize-astimation in the presence of 1rrelevancies in the field and qualities of personality functioning having to do with the exporience, expresalon, and control of enotions. We can draw a parallel between the explicit task-set--to be accurate-for the gize-eatimation test and the kinds of implioit sots which may be
taken by people in the course of everyday behavior. The injunction, "be accurate," can be paraphrasod as, "nake your experience conforn exactiy with the size-attribute of the stimulus." Viowed in this way, the size-estimation task, uni-dimensional as it is, shares a great deal with mach of extra-laboratory experience.

It is cortainly true that much, if not noarly all, of our everyday behavior is governed by the "reality principle." By this shorthand expression we mean that in our overyday behavior we act with respect to objects and other people under circumstances in which our behavior and evaluation of gituations must need be predictablo. Our behavior and oxperiences conform far noro than less to standards and conventions which either coincide with some objective fact, some thing "out thero," or with some consensus. This conformity and prediotability of everyday behavior requirea that we frane our oxperience in a atructure of conventional logic. To the extent that we are "adjusted," we think logically and act consistently upon these thoughts.

Tot at the same time we all have within us the potentiality for a quite different mode of functioning. We have inner needs, feelings, enotions, and affects which, in a repine ordered by logic and convention, must frequentiy be ignored or auppressed if our "primary" logical purposea are to be served. In the most general sense, these inner processes often may bo intruaive irrelevancies upon the course of logical thinking and bchavior. In behaving as чe are each expected to in our everyday Lives, the fact that

We are hungry, or tired, or in love; or angry, that wa aro capable of liking or disliking, wre all oxtraneous. We function in tpite of feeling quate differently or even at cross-purposes from the way know we must aot.

These observations re-state truisma. We reiterate thes only to make the point that peoplo may well differ in the degroe to which they nust excluido fron thoir everyday experience the knowledge, recognition, and "sense of comunity" with their feelings and enotione. For som people the possibility of a non-logioal mode of response may be more threatening than for others. For some, wo can auppose, there is not oniy the common neoessity to act diferentiy from the way they may feel, but, further, they must not feel differently from the way they net. In terms of our theory we could say that auch people organize their experienca around a "core" attitude, a principle of focussing- The essence of the resulting styles of experiance is the minimising of the potentially intrusive, enotional aspects of their personalities, the adaptive advantage gained in this wry, wo presure, is the lessening of tha threat to such persons of a possible disturbance of reality testing. ${ }^{1}$

1. Wo are incebted for some of our hunches about the relationship of focusging and crotional exporience to Fread's formuations about the dofense mechanier of isolation (27). While focuseing. and isolstion seem to ohare coxmon ground, it carnot be claimed, on the basis of this atucy, that they have the ame meaning.

It Is matter of comson obsorvation that nome people permit a great deal more commaioation uith their feoling-gtates than do others and that this does not necegsarily interfere grosaly with reality testing or conventional behavior. verely think of some peoplo as more labile, perhapa more impulsive, than others and thoir opposite numbers perhapy as more Mbusinessilke;" "cold, "or "dry." We ragt eaphasizt once again that we are not diatinguishing between good and bad in porsonality organization but ars indicating various possible styles of organization. We are not making invidious comparisons among these atyles. We aro merely pointing out that they eadst and that ther have different consequences for a theory of cognitive and personality organiaation.

Ne belleve that we have established at loast a plausible analogy between the formal atructure of the alze-estimation test and that of everyday goal-directod behavior. Porhaps furthor experimantation and/or adrances in theory will shod light upon this and the further question implied: fly are people organized so differently?

We cannot hope to anticipate all the question which arise In the reader's mind as he re-traces our exploration, but wo are avare of several large issues about which we hope he would have questions. Some of theas have bean underinned in the text of the paper.

Certainiy more work is neadod to discover the meaning of the inmreasiva consistenales in direction of error among our subjects. He have been able to show only (and only with a moderate degrese of certainty) that directional consietencies do not relato to the cognitive attitude of focusainge In torms of our predictions, extreme over-estimators and extreme undar-estinatore were shom to be much wore Iike aach other than aither was like an accurate subject. The facts of these direotional consibtencios ramain, however, and only additional woris will settio the pusaling question of their moaning.

The isgue of gencrality of prediction to perceptual taska other than simeastimation was left almost an open as when wo flyat raised it. Fhile the color-word test gave us inid encouragement, the distance-eatination tost onif raised now issuss without answaring any of the queations wo gut to it. Other tasks which it night be interesting to ample in foliow-ap studies are weight-ostinntion takks and loudness disorimination tasks having the gara formal atructure with regard to irrelowancies as the size-estimation task. A distance-estipation tagk in which the experience of distance is unequivocal would also be a valuable addition to such a ytucus.

Dur picture sorting test was intended to meot the need for a task requiring a bet opposito to narrowed and focussed attention upon atimulus attributes and it wag fairly successful in meeting this need. It mould help clinch the point we wanted to make if
othor tasks were devised in which stress on non-focussing or a broadened acceptance of atirulation could be domonstrated, not by poor performance, as on the sire-estimation task, but on 1 tes oum torras.

We ralsed another problen when we denongtrated that people differ in their cognitive and parsonality organtuation and stress various principlea of organization in different degroes. It is oniy natural to ask, if one doen not in doing so expeot an insodiate answar: How can we account for the differencef Perhaps such a question must wait until we havo established the facta of differances in organization more firmily. If we may opeculato in advance of the rillenium when all the facts are neatly in place, perhapa wo can suggeet that we will need to have recourse to soxe genotio theory.

A more imainent problea is that of the relationship between focussing and other cognitive attitudes (47) which have bean experinentally isolated through the medim of tasks different in many ways from our adzometanation taik and yot ainilar to it in other ways. A青 with tho other quastions we have raised here, wo have no ready ansuer for this one. We can only afeiva its frsportance and stato that data have and are being collected which any shod wora light upon 1t.

The purpose of this thesis was to demonstrate that a cognitive attitude of focussing can bo used to account for individual differences in a tivsik requiring accuracy in the presence of irrelevant and intrusive atimulation. Thia cognitive attitude, or perceptual style, was used to prediot individuals' periormances in other tasks permitting an approach in terms of narrowod, focussed nttention or in torms of a broad, inclusivo, and less critical acceptance of stimulation.

Forty mubjects wore asked to estimata tha sizes of hand-hold dises, some of whioh (NL) bore irrolevant stimulation in the form of gurface color, texture, or weight and others of which (RL) bore pictures having open sesual on agryeasive connotations. Two other discs (IIL) bore circular forms minch made the estimation of their siseacifficult. An analogous task in distanoe-egtiration was also employed but gave equivocal results and is not reported upon here. A ploture morting tast measured ability to take a set for broadened acceptance of atimuli, particularly amotional stimuli which in other contexts might be deemed task-irrelevant. A color-word interference teat offered an additional measure of susceptibility to interference. A personal inventory neasured tho degree to which subjects in their everyday life favored free expresaion of feelings, minimum control over them and maximum attuncrient to them.

Subjects' accuraoy on the NL dises was shown to be predictive of accuracy on the BL and IJ dises as well as of performance on the plature aorting test, color-word interfarance test, and personal Inventory, It was demonstrated that a percoptual attitude was at work rather than meroly an ability to be accurate by showing that these relationshipe did not hold when accuracy in sizemestimation under conditions of minimum irrelevant stimulation was used as a criterion.

Strong tendencies in direction of error as woll as accuracy were demonstrated in the siza-estimation task. However, no relation could be demonstrated between direotion of error and periformance on the other tasks.

Triplicetions of the findinge wero disounsed in relation to that in commonly thoucht of as "good" and "bad" performance in parception and in ternus of the current fashion of ascribing particular percoptual effecta to personal values, needs, or other states of the organien. The thesis attempted to demonstrate that a Eignificant and often overlooked variaole ia the way in which the peraon is organized cognitively to deal with value, need, or other Btimuli whici ray intrude upon the task.

APFEMDIX

- 102 -

TABLE VII

VARIANGE TADLE FOR DATA FHOM STZE-DSTISATION TEST

 TH PILAT STUMY OH SIXTET SUWJECTS| Source | df | Sum of Squares | Hean Square | F | p |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Subjects | 15 | 825.620 | 55.04 | 52.92 | . 01 |
| plecs | 19 | 95.837 | 5.04 | 4.84 | . 01 |
| Interaction zubjects X dives | 285 | 878.10 | 3.08 | 2.96 | . 01 |
| Hithin call | 960 | 1,004.637 | 1.04 | | |
| TOTAL | 1279 | 2,804,185 | | | |

SILE ESTIMTION TEST

	Hean Lrror for three claseesof diacs, Main Tent			Hean Error on Pre-rest discaI fart II			
3	$\begin{aligned} & 5 \mathrm{M} \\ & \text { discs } \end{aligned}$	$\begin{aligned} & 2 \text { ILL } \\ & \text { digcs } \end{aligned}$	$\begin{aligned} & 5 \mathrm{EL} \\ & \text { dises } \end{aligned}$	$\begin{aligned} & \text { "drent*" } \\ & \text { dise } \end{aligned}$	$\begin{aligned} & \text { Gray } \\ & \text { diee } \end{aligned}$	$\begin{aligned} & \text { Hesvy } \\ & \text { dise } \end{aligned}$	$\begin{aligned} & \text { Difference } \\ & \text { Heagy - Aray } \end{aligned}$
1	2.04	5.95	7.08	. 73	1.54	1.89	. 35
2	2.56	4.25	4.70	1.50	2.22	2.30	. 08
3	2.97	3.85	3.59	.35	2.27	3.72	1.145
4	3.14	3.20	2.56	1.80	1.87	1.57	-. 30
5	3.20	1.65	3.90	.90	1.87	1.ls2	-. 115
6	3.84	8.40	7.46	. 53	1.95	4.15	-. 80
7	4.56	6.50	8.86	1.40	2.25	1.90	-. 35
8	4.72	4.10	4.90	. 70	2.37	3.02	. 65
9	4.82	6.30	8.92	1.24	. 98	1.84	. 86
10	4.94	7.75	6.92	1.38	2.61	. 82	-1.33
11	5.02	9.70	8.20	2.02	. 85	1.04	. 19
12	5.06	7.00	7.96	. 80	2.84	2.77	-. 93
13	5.06	4.15	5.36	. 87	2.15	2.20	.05
14	5.10	4.70	5.72	. 60	3.4	4.39	. 75
15	5.26	4.55	3.98	. 80	2.27	2.27	. 00
16	5.40	5.10	4.00	. 73	1.944	1.32	. .62
17	5.50	9.55	10.30	1.55	3.89	2.52	-1.37
18	5.82	5.00	3.90	. 95	3.25	3.94	. 79
19	5.96	3.65	3.20	2.02	1.27	2.22	. 95
20	6,00	3.05	6.72	1.06	2.07	3.27	1.20
21	6.12	8.10	7.94	. 38	3.93	3.66	-. 27
22	6.42	17.15	14.20	.33	2.05	1.47	-. 58
23	6.88	3.46	3.66	. 26	3.17	4.27	1.10
24	7.20	7.50	7.80	. 96	2.82	5.64	2.82
25	7.26	5.35	6.98	.65	1.87	1.90	.03
26	7.28	5.05	7.40	. 70	2.60	2.00	-. 60
27	7.42	3.90	4.80	1.67	3.52	4.24	. 72
28	7.16	5.30	7.74	.96	2.92	3.27	. 35
29	9.64	5.30	4.20	2.02	3.55	7.19	3.24
30	10.40	10.30	9.84	. 62	6.32	6.65	. 33
31	11.30	6.95	5.68	.78	9.00	8.32	- 68
32	21.36	7.05	8.18	2.48	4.72	5.22	. 50
33	33.08	12.35	10.50	. 07	9.87	11.19	1.32
34	13.50	8.15	8.98	3.39	6.40	8.07	1.67
35	14.70	4.65	6.72	2.04	5.99	6.87	. 88
36	15.80	8.45	8.20	.96	4.22	6.90	2.68
37	16.10	13.85	11.26	. 91	7.75	8.00	.25
38	16.50	7.30	7.04	1.52	9.37	10.57	1.20
39	18.80	23.60	22.14	. 58	6.96	7.50	. 54
40	19.20	15.95	16.56	.56	9.85	11.32	1.47

Note --Basie score is total arithretic error for four trials per dise in milimeters.

Humer of Pleturea Sorted Ast				Hean Thite (seconds) for each choies ontegory			Total Time (Seconds			
5	Lite	Indif.	Dial.	Like	Indif.	DHsi.	A	B	c	C / B
1	20	24	16	3.30	2.90	2.90	3h. 4	70.3	138.15	2.97
2	28	27	15	1.60	1.57	1.40	23.2	37.0	69.2	1.60
3	22	21	17	4.111	5.74	4.69	33.6	51.0	94.8	1.85
4	16	23	21	1.32	2.40	2.20	31.8	46.0	75.0	1.63
5	25	12	23	3.81	3.78	3.46	33.5	59.2	99.2	2.67
6	11	31	78	1.58	1.45	1.55	43.4	83.0	123.6	1.48
7	17	30	13	2.77	3.19	2.96	30.4	51.2	92.8	1.81
8	17	33	10	6.52	6.20	5.64	34.8	66.6	110.0	2.65
9	7	29	24	2.26	1.97	2.23	36.0	46.0	76.2	1.65
10	20	25	15	4.95	4.40	3.85	35.6	68.8	110.8	1.62
12	24	9	27	3.90	4.24	3.64	37.8	67.6	88.2	2.45
12	21	28	11	2.74	2.30	2.20	30.8	69.8	123.6	1.76
13	22	21	17	3.50	3.36	3.65	34.4	55.0	99.0	1.80
14	25	13	22	2.57	3.11	3.00	29.6	55.4	92.4	1.66
15	39	5	16	2.35	2.92	2.57	37.4	56.2	109.2	2.02
16	8	26	26	2.25	2,06	2.42	35.0	72.0	119.2	1.65
17	26	314	20	2.79	3.47	3.62	40.2	62.0	94.0	1.51
18	315	9	17	4.83	6.00	6.84	37.6	70.4	90.2	1.39
19	21	23	16	L.94,	6.50	5.20	36.8	58.6	122.0	2.08
20	17	13	30	2.98	2.92	3.65	37.2	58.2	94.1	1.61
21	17	13	29	3.86	3.67	2.58	39.0	63.0	101.2	1.60
22	18	20	22	2.55	2.51	2.40	41.2	63.4	131.8	2.08
23	19	30	11	5.30	5.50	5.20	41.0	68.0	103.6	1.52
24	14	34	12	5.00	3.90	3.60	32.2	51.4	102.0	1.98
25	28	5	27	1.97	2.96	2.11	46.0	70.2	122.4	1.76
26	21	16	23	2.79	2.93	2.68	33.4	51.2	89.2	1.74
27	26	3	31	2.70	4.16	2.60	35.2	40.5	85.6	1.76
28	26	6	28	2.80	2.83	2.32	33.9	73.6	130.8	1.77
29	20	17	23	3.54	3.52	3.76	33.0	68.6	130.0	1.89
30	16	34	10	3.61	3.70	3.38	30.6	1.6 .8	80.0	1.70
31	26	15	19	3.06	3.77	3.53	39.2	69.0	99.2	1.45
32	16	20	2	3.72	4.00	3.20	37.8	10.6	56.4	1.98
33	22	13	25	2.10	2.06	2.20	29.0	54.8	115.4	2.10
34	32	4	24	5.30	6.20	4.64	30.8	49.0	82.2	1.68
35	40	10	10	4.00	4.20	3.140	42.8	69.2	135.6	1.96
36	20	15	25	2.53	2.16	3.07	34.6	62.0	103.2	2.66
37	13	29	18	5.23	5.00	6.14	30.2	56.2	81.2	1. 14
38	15	15	30	4.11	5.70	4.00	31.8	51.0	79.0	1.54
39	34	17	9	7.07	5.14	4.32	35.0	64.4	124.8	1.90
12	18	15	27	1.70	1.84	1.85	37.4	76.8	150.2	1.95

FERSONAL THEMTORX	
	of Agreerenta with Key
2	17
2	23
3	25
4	20
5	33
6	18
7	23
8	22
9	27
10	25
11	2
12	31
13	21
$1{ }_{1}$	13
15	31
16	23
17	24
18	22
19	12
20	23
21	37
22	30
23	32
24	23
25	27
26	36
27	19
28	27
29	30
30	23
31	24
32	27
33	26
34	35
35	28
35	37
37	26
38	29
39	33
40	19

TADLE IX

Sine-Estingation Tost:
形 dises81
IHI diver 76
EL dincs 69
Plataure-Sorting:
Indiferent choloes 82
Porsonal Irventory:
Agremeate with Key 71
*Computed by means of fuder-Richardson Pormula 21.

FORTY-SDX PEDSONAL INVENTOAY ITFMS RELATINO TO COMUNICATION UTHE, EXPRESSION OF, AMD COATZOL OF GMOTIOM

See page 43 for explanation of key
10. ITE KEY
3. I tend to forn "crushos" on people easily. x
9. I can't honestly may that I have over been in 1ova. 7
10. Sometimes I talk nyscif into fealing the way I think I ghouid. F
11. Even when I mast excited or angry thers is always a part of mo which stays aloof, cold, and uninvolved. F
12. Whan others around me LoEe thoir heads and bacome involved I can ubusily reroain cool. and collected. F
17. I am slow to warz up to people an friende. F
22. I can't bear to see an animal in pain. T
23. I can get considerable relief for ng feelings out of a good ary. 2
26. I manage to enjoy myself at most anything I do. T
34. I become very mquamish at the aight of blood. T
35. Wo one knores the way I really feel about things. F
40. 偖 mood tonds to be quite atables I tend to feel about the game regardinss of weather or Little ovente of the day. F
4. I considen magalf a rather unenotional porzon. F
倖。
12．I liks to kemp ay private foelinga hidden even from people tho lonou me fairly well． F
Wh．IIm wora tho Mhapy－80－lucky typo than a moody type of percon． t
53．I Ilind that I tend to be gaided more by 4 feolings blout thinge than what I know Bout them． T
56．Somatimos I get so mationaliy involved in a quastion that I can＇t think atraight． r
57．I sometimas hava the experience of romembering a painful or frightening inoident and find that I ctill thudder aven at the thought of 1t． T
58．hy judgrent of a perron is likely to be influancod by the way I feol sbout him． T
60．ly mpleits depend vory much on my aurround－ Inges a efloomy room makes me feel that way too． T
69．I don＇t really 1iko or dialiko anybody． F
63．I frequentiy notice that then others around me are deeply moved（asddoned）I have no particular feeling one way or the other． F
86．I hayp a rather eentingotal attitude toward most thinge in 2ife． 竟
87．I am froquently only amasod by thinge which might dieturb other people． 7
88．I an nover quite sure of what I foel about anythinge F
95．0iving why to ond mations recme to me a gign of waskess． F
96．At the movies I identify mysalf easily with the charactare on the corven and feel almost as if I there going through their adventures． T
102．At difierent times I neen to love and hate the same people． T
103．I sometimos wish I could ieel ge daeply about thinge as othor people aem to． $\%$
105．I feal that I an teraparamentrally different from nost peoplo． F
106．When I find nyself closo to taara at a sad part of a novie I try to auppress then and not be so enotional． T
107．I can get quite angy，but it usuality blows over quidciy． T
109．I find that I feal with my friends；when theg are happy，I an happy． T
21．I somatimea feel＂anty＂without axy feeling at all． F
122．somotimes，evon though I know how I ousht to feel．I don＇t really foel that way． F
118．Sometinas I taik myself out of having feelingr． F
122．I＇m cosily noved to holp people wio are sick，unfortimato，or unhappy． T
123．I don＇t get nuch fun out of 1ifo． F
126．I am nasily noved to tearg by a sad part in movie． T
127．I I_{m} apt to fall in 1ove sather easily． T
126．哖 spirita get a real lift out of a sudden nice change in the weather． T

TABLE X (CONTIMUED)

80.ITYHKY
130. I prida magelf on ray self control. F
13. I usualiy feal froe to tell a person uhat I think aboxt hlat. 7
135. It inolined to vet myself go" arotionally. T
137. I don't mako a secret of the way that I feal about axything. T

1. Anabacher, H. Perception of mumber as affected by the monotary value of the objects, Arch. Paychol.s 1937, 215.
2. Ansbacher, H. Judgrents of number of postage stampsi A continuation to the psycholozy of cocial norms. J. Peychol., 1938, 5, 347-350.
3. Ashley, W. Re, Harper, R. 3., and Runyon, D. L. The perceivod siza of coins in nomal and hypnotically induced economic states. Am. J. Pgycho1., 1951, LKVI, 56L-672.
4. Bakor, K. H. Pra-experimental set in distraction experiments. J. Ren. Psychol., 1937, 16, Lif1-488.
5. Baker, K. Bo, Hylie, R. C., dagne, R. K. The offects of an interfering task on the loarning of a complex motor kkill. J. Izp. Psychol., 1951, 11, 1-9.
6. Belmont, L. and Birch, H. G. Re-individualizing the ropression hypothosis. J. Abz. Eoc. Psychol., 1951, 46, 226-235.
7. Binat, A. La measure des illusions visuelles chez 1 'enfant. Rev. Philios., 1895, 느.
8. Doernstain, $\mathrm{H}_{\text {. }}$ on the functional relations of the senso organs to one another and to tho organima as a whole. J. gen. Pbycho1., 1936, 15, 117-131.
9. Brewer, P. W., Ammons, R. B., and Ammons, C. N. Influence of brief noise on rotary pursuit performance. Hot. Skills Res. Exch., 1951, 3, 10-15.
10. Bruner, J. S. Personality dymanics and the process of perceiving. in R. R. Blake and O. V. Ransey, (Eds.) Perceptions An Approach to Personality, New York: Ronald Fress, 1950.
11. Hrunar, J. S. and Coodnan, C. Value and need as organizing factors in perception. J. Abnorm. Soc. Foychole, 1947, 42, 33-44.
12. Bruner, J. So, Fostman, L., and Macainnied, F. Personal values as deterafnants of perceptual selcotion. Amer. Paychologist, 1947, 8,285 (Abstract).
13. Bruner, J. S. and Pontman, Lu Tension and terision release as organizing factors in perception. Jo Personality, 1947, 15, 300-306.
14. Bruner, J. S. and Fostaian, Lo Symbilic value $2 s$ an organieing factor in perception. J. Soc. Poychol., 1914, 27, 203-208.
15. Bruner, d. So and Postrian, L. Perception, cognition and behavior. Jo Personality, 1949, 18, 11-31.
16. Bruner, J. S. and Modrigues, J. S. Some determinants of apparent size. Paper read at A.P.A.; Chicajo, 1951. (Abstrect in Amer. Psychologist, 6, 1951, 317-318.)
17. Bullough, E. on the apparent heavinass of colors. 3r. J. Psychol., 1907, 2, 111.
18. Camoron, H. and Cameron, h, A. Exporimontal atudies in thinking: I. scattered speech in the responses of nomal anbjects to incorplete seatences. J. Yxp. Psychol., 1943, 32, 617-627.
19. Campbell, Is. The cognitiva aspects of notor pexformances and their boaring upon general motor ability. Jo Kxp. Psychol., 1936, 19, 323-333.
20. Carter, C. F. and Schooler, K. Value, need and other factoro in perception. Psyahol. Rev., 1949, 56, 200-207.
 HeGraw-ilill, 1938° (Chapter Ih).
21. Crosland, H. R., Taylor, H. R., and Newaome, S. J. Intelligenco and susceptibility to the Nuller-ijer illusion. y. Fap. Paychoze, 1927, 10, 40-51.
22. Daahtell, F. J. Pundamentals of General Psycholony. New Fork: Houghton Mifilin, 2937, द5

2h. De Camp, J. B. The influmee of colour on apparent weight. J. Exp. Psycho1., 1917, 2, 347.
25. De silva, H. .n. and colub, 日. L. The influence of smeli on resction tirie. J. Een. Fsycho2., 1937, 16, 279-282. (Abstract.)
 et dimenaion. 3. Psychol. Norm, Fath., 191:0, 41, 37, 33, 425-417.
27. Hread, Se The Problem of Anxiety, Hew York Norton, 1936.
28. ailbert, 0 . H. Inter-sensory facilitation and inhibition. J. gen. poychol., 1941, 24, 381-407.
29. Ulbson, d. J. The reproduction of Hisually received form. J. Fxp. Pstchol, 1929, 12, 1-39.
30. Grahas, O. H. Behavior and the psychophysical methodas An analysig of somo recent experiments. Pgrohol. Rav., 1952, 59. 62-70.
31. Graham, G. H. Visual perception. In S. S. Stevens, (Xd.), A Handibook of Frpertmental Psychology. New York: John inley, 1951.
32. Gundlach, 0 . and Nacowbrey, O. The affect of color on apparent s12e, Ais. J. Fisyohol., 1931, 13, 109.
33. Hartman, G. H. Changes in visual acuity through sinultaneoum stimulation of the other senses. J. Ixp. Prychol., 1933, 26, 333-392.
34. Hartridyc, Ho, Fielpo, J., and tiedl, n. An 511usion of give. Nature, Iond. 191.5, 156, 118-269, 636-637.
35. Henderson, M. T., Grevs, A., and Darlow, ${ }^{\text {J. }} \mathrm{A}$ atudy of the offect of mutic distraction on reading officiency. J. apel. Paycho1., 1945, 29, 313-317.
36. Honneraan, R. H. A photometric etudy of the perception of object-color. Arch. Paychol., 1935, 179.
37. hevner, K. Fxperimental studies of the affective value of colors and 1ines. J. appl. Fsychol., 1935, 29, 385.
38. Howard, H. J. A tost for the judgent of distance. Am. J. Ophthan, 1919, 2, 650-675.
39. Holway, A. H. and Boring, F. O. Doteminants of apparent tisual aise uith diatance variant. An. J. Peychol., 1041, 婴, 21-37.

LD. Huang, I. The aizeweight illusion in relation to the perceptual constancies. J. een. Fsychol., 1945, 33, 43-63.
14. Huang, I. The sizewoight illusien and the HFeleht-density illusion. ${ }^{\text {J }}$ Jo gen. Pyychole, $1915,2945,33,65-64$.
42. Katrin, D. and furray, B. Instability in color-nomine in normal and anomalous coservers. has. J. Foychol, 1934, 46, 611.
43. Aoin, G. S. sdaptive properties of sensory functioning. 3nall. Herninger chin., 1949, 13, 16-23.
4. Klein, O. S. and Schleainger, H. J. Where is the perceiver in perceptual theory? J. Personality, 1949, 18, 32-47.
45. Klein, G. S. The parsonal vorld througin parcoption. In R. R. Blaice and G. V. Rameg, (Eds.) Perceptionz an approach to personality. Neu Yorks Ronald [reas, 1950, 325-355.

L6. Klein, Q. S., Echlesinger, H. J., and Keloter, D. E. The effect of persend values an parcoption an experimental oritique. Peychoi. Rev., 1951, 58, 95-112.
17. Klein, G, S. and Galomon, A. Cognttive stylo ard regulation of nead. Amer. Frychologist, 1952, 7, 321-322. (Abatract.)
18. Latrd, D. A. The influence of notise on production and fatigue, as related to pitch, sengation Invol, and steadiness of the noise. J. app1. Peycho1., 1933, 17, 320-330.
49. Lambert, W. W., Salom, R. Le, and Haison, P. D. Reinforcement and axtinction as factors in sive-estimation. J. Bxp. Fsycho1., 1949, 39, 637-541.
50. Levina, R., Chein, I., and turpty, O. The relation of the intensity of a need to the anount of perceptual distortiont a prelininary report. J. Foychol., 1942, 283-293.
51. Hoclelland, D. C. and Atkinson, J. W. The projective expression of needs: I. the effect of different intensities of the hunger drive on perception. J. Paychol., 1948, 25, 205-222.
52. Hecougall, W. Outline of Abnomal Foyciology. Ned York: Scribners, 1926.
53. Reainnies, E. The role of value orientation in perception and asseciation. Doctors dissertation, Harvard University, 1940.

5h. Hinturn, A. E. and Reese, T. W. The offect of difierential reinforcenent on the discrimination of vioual number. J. Fogoho1., 1951, 31, 201-231.
55. Rurping, C. Perbomality: biosocial approzeh to orizine and structure* Mew York: llarper, 2947.
56. Nurray, H. A. Explorations in Personality. New York: Oxford university, 1931.
57. Pastore, H. Need as a doterminant of perception. J. Ysychol., 1949, 28, $1457-175$.
58. Plaget, Jo and Lambercier, M. Tho visusi comparison of heigits at variebla distances in the fronto-parallel plane. Arch. Paychol, Ceneve, 1943, 29, 175-253.
59. Plaget, J. and Lambercier, M. The problena of visual comparison In depth-aize constancy-and the systematio crror of the standard. Arch. Psychol., 29143, 29, 255-303.
60. Fostran, Lo and Bruner, do S. The reliability of constant errors in psychophysical measurements. J. Fsychol, 1946, 21. 293-299.
61. Postman, Le and Brumor, J. S. and KcGinnies, E. Personal values as aelective factors in percoption. J. Abn. Soc. Paychol., 1940, 43, 142-154.
62. Proshansky, H. and Murphy, O. The effects of roward and punishment on perception. J. Fsychol., 1942, 13, 295-305.
63. Fosenthal, D. O. Attitude towards money, need, and methods of presentation as deteminants of perception of coins from adx to ten years of age. Amer. Poycholoziat, 1951, 6, 317. (Abstract.)

6l. Rosenthal, B. and Lovi, J. Vaiue, need and attitude toward money as determinants to perception. Amer. Paycholorist, 1950, 5, 313.
65. Zyan, T. A. Interrelations of aensory syatams in percoption. Fsychol. Bull., 1940, 37, 659-598.
66. Ryan, T. A. Work and Tffort: The Psychology of Production. Wew York: Ronald Fress, 1977.
67. Sanford, R. H. The effect of abstinence from food upon imaginal processes; a proliminary experinent. J. Esychol., 1936, 2, 129-136.
68. Sanford, R. H. The effect of abstinence from food upon imaginal processes: a further experiment. J. Fsychole, 1937. 3, 145-159.
69. Sargent, S. S. how shall wo study individual differences. Prychol. Rev, 1914, 19, 170-181.
70. Seashore, R . H. Fork Hethods: an often neglected factor underIying indiviAual differences. Psyohol. Ravo, 1939, 46, 123-214.
7. Schlooberg, H. Sterooscopic depth from single pletures. Ans. J. Fsychol, 1911, 54, 610-615.
72. Schonbar, R. A. The interaction of observer pairs in judging viaual extent on movemont: the formation of social norms in "struatured" situations. Arch, Psychol., 1945, 299.
73. Serrat, W. D. and Karwosid, T. An inveatigation of the effect of auditory stimulation on visual seneitivity. J. Exp. Prychol., 1936, 19.
74. Schafor, R. and Murphy, 0 . The role of autiem in a vigual figure-ground relationship. J. Exp. Psyohol., 1943, 32, 335-343.
75. Sheehan, K. R. A study of individual consistency in phenomenal constancy. Arch. Pbychol., 1938, 222.
76. Sherif, H. A study of some social factors in perception. Arch. psychol., 1935, 187.
77. Smith, K. R. Intermittent loud noise and mental performance. Science, 1951, 111, 132-133.
78. Stroop, J. Re studios in interference in serial verbal reactions. J. Exp. Ysychol., 1935, 18, 643-51.
79. Taylor, J. A. The rolationship of anciety to the conditioned cyelid response. D. Exp. Psyahol., 1951, 41, 81-92.
80. Thurstone, L. L. A factorial atucy of perception. Pbychometric Monog., 2944, i.
61. Valentine, N. L. Fxperimental Foundations of Deneral Psycholory. New Yorkt mhinehart, 19Liv. (Chaptor \&)
82. Vernon, 3. D. Tha perception of distance. Brit. J. Pgychol., 1937, 26, 1-11, 115-119.
83. Warden, C. J. and Flym, F. L. The effect of color on apparent sige and welght. Am. J. Prychol., 1925, 37, 398.
84. Kashburn, M. F. and Grose, S. L. Voluntary control of likes and dislikes. Am. J. Puychol., 1921, 32, 284.
85. Woodrorth, R. 3. Experimental Psychology. New Yorky Holt, 1938.
86. Hoodworth, R. S. Pgyohology. (fourth odition) New York: Holt, 1945.

[^0]: 1. In what followe words denoting such different avemues of approach to the person as perception, connition, and personality will occasionaily be used $\overline{\text { min }}$ if they have the etatus of eystema in relation to each other. This will be especially notieeable in difccusaions of "rolationships between personality and perception". This usege is solf-conscious, however, and is followed when eroater precision would make it diffioult to discuss earlier investigations relevant to thise one, some of which have been cast, at least implicitiy, in auch larquage.
[^1]: 1. Ascending refere to thowe trials whioh bogen with the variable dibe smaller than the standard. Descerding refere to those trials which began with the variable disc larger than the standard.
[^2]: 1. With 40 cases, a correlation coefficient of .312 is needed for significance at the .05 level. Theeffect of extrena cases on product mommt correlations is discussed below.
[^3]: 2. Although three catogories were aotualiy providod-true, false, and neither ture nor falge-ratinge of four (neither true nor false) Were rolatively infrequent arong our subjects. Our 10 focusaing subjecte have an average number of "4" ratinge of 4.9 winle the non-focussing have an average muaber of 74^{n} ratings of 2.5 . It seems appropriate, therefore, to considar this as easentialiy a two-category test, ignoring for this purpose the fer "neithar true nor falsa" responses.
[^4]: 2. Obviously an important consideration here is the bian of the entire distribution toward over-atimation. There are relatively few under-estimators amone our subjocts and fewer atill of these are consistent under-eatimators. Thus, while our data are not sufficient to make a iinal distinction between these two measures, the behavior of the fen relatively conslstent under-estimators available to us for study is auggestive.
