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ABSTRACT 

Researchers monitor species’ populations for a variety of purposes, including surveillance 

of endangered or rare species for conservation goals, mitigation of public health threats caused by 

diseases vectored by insects, and threats to native populations by invasive species. Achieving each 

of these goals is essential to healthy ecosystems and human societies. For instance, species 

important in biodiversity conservation provide valuable ecosystem services, and disease vectors 

and invasive species impose heavy economic burdens, along with acute, negative impacts on 

human health and well-being. As such, the need for robust, efficient, and widely-applicable 

biodiversity monitoring techniques is at a premium. 

Traditional monitoring approaches generally involve labor-intensive data collection 

processes, with relatively short survey windows and limited spatial coverage. As such, these 

techniques are often unable to meet the increasing demands of global conservation and public 

health surveillance. Recent technology advances offer tools, such as audio recording devices, 

camera traps, and network systems, for transferring digital data, that have revolutionized aspects 

of biodiversity monitoring. However, while they can provide longitudinal, highly accurate data, 

these devices generate massive amounts of information that can overwhelm conservation 

biologists and public health providers.  

One solution is to apply real-time, automated systems to process and analyze such data 

streams. Deep-learning techniques can provide a cyberinfrastructure that can achieve real-time, 

automated species identifications deriving from such automated devices. They also provide the 

opportunity to explore, test, and discover unknown or overlooked evolutionary, ecological, and 

behavioral phenomena regarding target species or regions, making them potentially powerful tools 

for future basic research in biology. Lastly, as deep-learning techniques can be implemented in 
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citizen-science platforms, they allow community members to participate in public health and 

biodiversity science in meaningful and actionable ways. 

Here, I present three examples of potential applications of such automated species 

identification systems. In each example, I explore the potential power of these tools by challenging 

an advanced deep-learning technique, TensorFlow Inception v3, to identify a set of taxa under 

different goals, all centered on accurate species identifications. The first chapter of my work 

delivers a comparison between a deep-learning-, image-based species identification system, and 

conventional classifiers for insect vectors of Chagas disease in Mexico and Brazil. The second and 

third chapters focus on the identification of acoustic signals made by taxa, using the trick of 

converting sounds to spectrograms: images representing auditory features. Specifically, the second 

chapter demonstrates successful application of a deep-learning model to a diverse clade of closely-

related frog species in the Philippines, using single-note mating calls. The third chapter explores 

the potential for application of automated identification platforms to mosquito species using 

wingbeat patterns, with emphasis on participation of citizen scientists to improve surveillance of 

disease vectors. 
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INTRODUCTION 

Biodiversity surveillance covers a wide range of goals, including monitoring rare or 

endangered species for conservation (Barata et al. 2017), discovering new species and 

understanding their ecological or evolutionary roles in the ecosystem (Brown and Gonzalez 2007, 

Carvalho et al. 2010, Brown et al. 2015a), and detecting invasive species or disease vectors to 

mitigate their harms and costs (Bogich et al. 2008, Smolinski et al. 2017). Traditional monitoring 

approaches generally rely on sending skilled observers or “parataxonomists” to pre-determined 

sites for collecting data. These methods are costly, laborious, and mostly short-term in nature, 

limiting monitoring efforts to small-scale and short-term assessments of regions, generally with 

the exclusion of remote and hard-to-access sites (Ogden 2018, Wang and Gamon 2019). As such, 

traditional biodiversity survey methods generally suffer from under-sampling through both space 

and time, as well as human biases related to knowledge of taxa and access to sites.  

To address these limitations, researchers have begun to utilize high-tech devices for 

monitoring species populations (Brown et al. 2002, Webster and Budney 2017), including high-

end remote sensors (Papeş et al. 2010, Wang and Gamon 2019), powerful microphone arrays 

(Blumstein et al. 2011), and high-resolution camera traps (Rowcliffe et al. 2011, Schmeller et al. 

2017). In addition to providing more objective, higher-quality data, these devices are able to record 

metadata associated with digital objects precisely, and in some cases transfer data to a central 

facility for storage (Hill et al. 2018). More recent technological advances have allowed researchers 

to monitor biodiversity using more general equipment, including smartphones (Mukundarajan et 

al. 2017, Nugent 2018), drones (Zhang et al. 2016), and personal cars (Ascensão et al. 2020), which 

offers the added advantage of opportunities for involvement of citizen scientists. Although these 

technologies provide researchers with more data with which to address more research questions 
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and understand complex biodiversity shifts better, high-end devices generate enormous amounts 

of data that can easily overwhelm researchers (Villanueva-Rivera and Pijanowski 2012, Klein et 

al. 2015). That is, too often, data are collected, but never analyzed, and analyzing such enormous 

quantities of data is highly prone to human error. 

In addressing this issue, one effective solution is to develop automated, machine-learning-

based, real-time species identification systems that are implemented in mobile phone applications, 

cloud-based web applications, or high-performance clusters. One example of these models are 

deep neural networks (DNNs), a newly introduced set of machine-learning algorithms that 

typically outperform other classifiers (Schmidhuber 2015, Smith et al. 2019). DNNs are trainable 

computational models that comprise several stack of processing layers, each of which learns more 

abstract information from input data based on information gained by previous layers (Lundervold 

and Lundervold 2019). These powerful algorithms can efficiently analyze data and reduce their 

dimensionality, significantly improving the time needed to analyze data and making more 

information usable for researchers. Convolutional neural networks (CNNs; Yamashita et al. 2018) 

are a subset of DNNs--they contain many layers and are specialized for image recognition, which 

makes them ideal for species identification systems. In addition, CNN-based platforms, such as 

TensorFlow (Abadi et al. 2016), PyTorch (Ketkar 2017), or MXNet (Chen et al. 2015) can allow 

researchers to deploy flexible, state-of-the-art, deep-learning application to citizen-science-

implemented projects, accelerating data processing to improve our understanding of global 

biodiversity. 

Here, I present an exploration of one advanced, deep-learning-based cyberinfrastructure, 

TensorFlow Inception v3, as regards three biological questions, to test the performance and utility 

of such models in the fields of biodiversity conservation and public health. The first chapter of this 
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dissertation focuses on identifying vectors of Chagas disease in Mexico and Brazil, by challenging 

the model with two groups of cryptic species complexes, Triatoma dimidiata and Triatoma 

phyllosoma. Chagas disease, a serious, chronic disease that causes cardiac morbidity and mortality, 

is a public health threat across the Americas (Rassi et al. 2010); as a consequence, this chapter 

represents an important early step in creating tools important in mitigating the negative health and 

economic impacts associated with this disease.  

The second chapter demonstrates the potential for accelerating species discovery rates 

using deep-learning-based models. Here, we used sound spectrogram images representing simple 

bioacoustic features of advertisement calls (only single notes) associated with 41 closely-related 

frog species in the Philippines (Brown et al. 2012, Brown et al. 2015b) to test TensorFlow’s ability 

to discriminate among species, and to test its performance in discovering and “flagging” recordings 

of novel species that are not present in the reference library. As the Philippines represents a 

significant biodiversity hotspot, with 110+ amphibian species (90% of which are endemic to this 

archipelago) and showing one of the highest rates of species discovery in the world (Rowley et al. 

2009, Diesmos et al. 2015), this work is an important step to conserving known species diversity 

and identifying unknown biodiversity.  

Finally, the third chapter outlines the availability of infrastructure for detecting invasive species of 

public health interest, benefiting from citizen science involvement. In this chapter, we used 

recordings of mosquito wingbeats collected by built-in smartphone microphones to identify 

mosquito species native to Douglas County, Kansas. A specific challenge of interest was to assess 

the ability of the identification algorithms to detect two potential novel invasive species of public 

health importance, Aedes aegypti and Anopheles gambiae, not currently present in the study area. 

Because mosquito-borne diseases are responsible for hundreds of thousands of deaths around the 
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world each year, and because mosquito species distributions are predicted to shift significantly 

with climate change (Reiter 2001), this pilot study explores the potential utility of citizen-science-

based automated identification systems to monitor the spread of harmful diseases to northern 

latitudes.  
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CHAPTER 1. Deep learning algorithms improve automated identification of 

Chagas disease vectors 

1.1 Introduction 

Vector-borne diseases, such as malaria, Zika, dengue fever, Chagas disease, and 

chikungunya, impose enormous economic and social burdens on public health (Sinkins and Gould 

2006), and rank among the most serious threats to human health (Nauen 2007). An important 

element in predicting risk of such diseases, and developing strategies to control them, is detailed 

surveillance of arthropod vector species (Mukundarajan et al. 2017). Identifying vectors can be 

challenging, requiring significant training and increasingly uncommon taxonomic expertise (Drew 

2011), a phenomenon termed the “taxonomic impediment” (de Carvalho et al. 2007). As a result, 

providing broad regions with necessary arthropod vector identification expertise by traditional 

means is often not feasible given political boundaries, logistical obstacles, and variability of 

country-specific human health resources (Schofield et al. 2006). One promising potential solution 

involves developing automated species identification systems that can aid in meeting these 

important challenges.  

Chagas disease occurs in most countries in the Americas, causing serious cardiac morbidity 

and mortality among infected individuals over years or decades if untreated (Coura and Viñas 

2010). The disease is caused by the unicellular parasitic protozoan, Trypanosoma cruzi 

(Trypanosomatida: Trypanosomatidae), transmitted mainly through feces of blood-sucking true 

bugs belonging to the hemipteran subfamily Triatominae (Hemiptera: Reduviidae) (Coura and 

Viñas 2010). Estimates suggest that 8 million people exhibit symptoms of the disease, and that 

>100 million people are at risk of infection worldwide (Coura and Viñas 2010, WHO 2018). Given 

failings in many public health systems across the Americas, epidemiological surveillance for 
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Chagas disease is either minimal (e.g., in Mexico) or incomplete (e.g., in Brazil), and diagnosis 

and treatment are often too late and therefore less effective (Martins-Melo et al. 2012, Ramsey et 

al. 2014).  

Many efforts have tested diverse inferential approaches in the challenge of identifying 

insects accurately. Recently, a new set of machine-learning classifiers, called deep neural networks 

(DNNs), have been designed; they are similar to artificial neural networks (ANNs; Dayhoff and 

DeLeo 2001), but with multiple hidden layers between the input and output layers, instead of 

having only three layers total (i.e., input, one hidden layer, and output). The high capability of 

DNNs has resulted in widespread use of these techniques in other such inference challenges 

(Schmidhuber 2015). DNNs have outperformed traditional methods (e.g., linear discriminant 

analyses) in various classification tasks (Schmidhuber 2015). Here, we used TensorFlow (Abadi 

et al. 2016), an open-source software platform, representing the most recent addition to the deep-

learning toolbox (Rampasek and Goldenberg 2016; Google Brain Team; 

https://research.google.com/teams/brain/), to explore the challenge of automated Chagas disease 

vector identification. 

The purpose of this study was to test whether deep-learning techniques can improve 

abilities to identify Chagas disease vectors of Mexico and Brazil successfully, using a collection 

of digital images of triatomines from our previous work (Gurgel-Gonçalves et al. 2017). To 

address this question, we designed an automated, DNN-based species identification system for 12 

Mexican and 38 Brazilian species, which we tested using images withheld from the calibration 

process. This study thereby lays a foundation for many automated identification capabilities in 

medical entomology, and more broadly in biodiversity science. 
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1.2 Materials and Methods 

We tested whether state-of-the-art, deep-learning techniques (TensorFlow; Abadi et al. 

2016) can successfully identify digital images of 12 Mexican triatomine species and 38 Brazilian 

triatomine species. We implemented four steps: (1) adapt and configure TensorFlow to the needs 

of this analysis; (2) create different sets of images, based on different levels of automated pre-

processing, from available images, as inputs; (3) apply and test TensorFlow under diverse 

circumstances; and (4) use secondary information (i.e., distributional information) to reduce 

numbers of species in our identification exercises. We implemented all analyses in Python (version 

2.7, available at http://www.python.org/). These steps are described in greater detail below.  

Previously (Gurgel-Gonçalves et al. 2017), we presented work on automated identification 

of triatomine species from Mexico (12 species) and Brazil (39 species). That work involved full 

automation of processing of images before analysis into a set of landmarks and distances among 

them, and then analysis using traditional statistical classifiers, such as linear discriminant analysis 

(Fisher 1936) and artificial neural networks (Dayhoff and DeLeo 2001). Identifying the Mexican 

species was a particular challenge to our classifiers, and of course we were interested in improving 

identification rates for Brazilian species also. Therefore, we decided to use more advanced 

classifiers for both Mexican and Brazilian triatomines. To be able to compare our results, we used 

the same species and same images for this study (Appendix 1, Appendix 2); however, given small 

numbers of images available for Eratyrus mucronatus (Stål) (Hemiptera: Reduviidae) (n=11), we 

removed this species from the Brazilian pool. 

 

http://www.python.org/
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1.2.1 Photographs as input 

In our previous study, we had observed that most triatomine images then available were of 

poor quality, such that the resulting identifications were not reliable. Consequently, project 

personnel designed a photo apparatus that would permit taking consistent, high quality, repeatable 

photographs of triatomines at low cost (Gurgel-Gonçalves et al. 2017). This apparatus allows users 

to employ iPods or cell phones for taking photographs. Team members photographed triatomine 

species from various institutions across Mexico (Centro Regional de Investigación en Salud, 

Instituto Nacional de Salud Pública México; Laboratorio Estatal de Salud Pública de Guanajuato; 

Universidad Autónoma Benito Juárez, Oaxaca; Universidad Autónoma de Nuevo León, 

Monterrey), and Brazil (Universidade de Brasília, FIOCRUZ Bahia, FIOCRUZ Rio de Janeiro, 

FIOCRUZ Minas Gerais, Universidade Estadual Paulista), using the 5th and 6th generations of 

iPods. Detailed information about the apparatus and protocols for capturing images is provided in 

Gurgel-Gonçalves et al. (2017). 

The photographs that we used as our “reference library” for our identifications are of high-

quality, and are openly available at http://dx.doi.org/10.5061/dryad.br14k; they are described in 

great detail by Gurgel-Gonçalves et al. (2017). These photographs are consistent in orientation, 

background color, pixel resolution, and quality, which made automation of their processing 

feasible. Subsequent steps were automated (Gurgel-Gonçalves et al. 2017), including removing 

(digitally) the background from the images, and identifying the body edge, yielding two sets of 

images (raw photographs, and images cleaned to remove background) to understand how deep-

learning would perform with different quality levels of images as input (Figure 1). The processing 

step was automated fully and the program code is openly available in the appendices of our 

http://dx.doi.org/10.5061/dryad.br14k
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previous paper (Dryad Digital Repository: http://dx.doi.org/10.5061/dryad.br14k; Gurgel-

Gonçalves et al. 2017). 

 

 

1.2.2 TensorFlow 

TensorFlow is an open-source software platform (Abadi et al. 2016) that supports deep-

learning research and applications, having been released by researchers at Google (Google Brain 

Team; https://research.google.com/teams/brain/). We adapted and configured TensorFlow for 

application and use in our project via Python. We adjusted two parameters from their default 

values: validation percentage and number of training steps. Although the default setting for 

validation percentage was 10%, given small numbers of images available for some species, we 

Figure 1. An example image of an individual of Triatoma dimidiata Hg1. (A) raw image, (B) final image with 

background removed digitally. 
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had to increase this number to 16%. For number of training steps, although the default value was 

4000 steps, we explored different numbers and compared the results to find the optimum balance 

between computing time and classification efficiency.  

To evaluate the classifier, it is necessary to set some images aside from classifier 

development entirely. Given the limited numbers of photographs available for some of the species, 

we used a leave-one-out cross-validation approach for evaluation. That is to say, as a trade-off 

between maximizing numbers of samples for training the classifier and optimizing computing 

time, in each round, we left out n images, or one image from among the n species in that country, 

with which to evaluate the model. 

 

1.2.3 Identifying faunal subsets based on distributional information 

Generally, classifier accuracy decreases as the number of classes that must be distinguished 

increases. In the preliminary work, triatomine species were immediately separated into two 

independent groups; those occurring in Mexico and those in Brazil. This separation is natural since 

almost no triatomine species occur naturally in both countries, exception for Panstrongylus 

rufotuberculatus (Champion) (Hemiptera: Reduviidae). Independent classifiers were created for 

the two groups. Within these two groups, we applied the same technique on a finer scale, to 

determine if using a specialized classifier that discriminates only among species known to be 

present near the location at which a sample is taken will improve the ability to correctly classify 

triatomine samples. We used the same binary maps as in our previous study (Gurgel-Gonçalves et 

al. 2017), summarizing potential geographic distributions for each of the 12 Mexican and 38 

Brazilian species. Ecological niche modeling techniques and data sources are described in detail 

in Gurgel-Gonçalves et al. (2012), Ramsey et al. (2015), and Gurgel-Gonçalves et al. (2017). 
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Hence, in Python 2.7, we created 399 and 2019 local fauna sets for the Mexican and Brazilian 

triatomine species, respectively, using the distributional information to create subsets of species 

that co-occur at the same sites. We trained and tested the classifier employing samples restricted 

to those local faunas. The range of numbers of species in local fauna subsets was 2-11 for Mexican 

species and 2-12 for Brazilian species. 

 

Figure 2. Effects of different numbers of training steps on identification rate (%) and processing time (h) using 

TensorFlow for Mexican (top) and Brazilian (bottom) triatomine species. 
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1.3 Results 

As a preliminary step, we tested identification success for raw versus cleaned images for 

Mexican species, to see whether TensorFlow shows reduced correct identification rates using raw 

images. The identification rate for raw images was almost the same as that obtained using the 

cleaned images (i.e., 82.9% overall identification rate for raw images, versus 83.0% for cleaned 

images); since our goal was to compare the results of TensorFlow with those deriving from the 

statistical classifiers used in our previous study (Gurgel-Gonçalves et al. 2017), for all succeeding 

analyses in this study, we elected to use cleaned images, only noting the potential for simpler 

processing in future work.   

We calibrated our models for Mexican and Brazilian species using different numbers of 

training steps, and considered two factors to find optima for training TensorFlow (Figure 2): (1) 

correct identification rate, which improved up to a certain point, but then reached a plateau, beyond 

which we saw no significant improvement, and (2) processing time (in hours), which showed a 

positive linear relationship with number of training steps. For the Mexican dataset, with 12 species, 

2000 emerged as an optimum number of training steps, which resulted in an 83.0% overall 

identification rate (Figure 2); the largest gap between the processing time trace and identification 

rate occurred following this number of steps. Above this number of training steps, subtle 

improvements in identification rate were possible (up to 83.1%), but processing time was 

significantly longer (7 hours instead of 3.5 hours). Based on the same logic, we chose 12,000 

training steps as an optimum number for Brazilian species, at which we achieved an 86.7% overall 

identification rate (Figure 2). The Brazilian dataset had a plateau that was more obvious: overall 

identification rate barely reached a maximum 87.0%, yet processing time increased from 30 to 80 
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hours. It should be noted that the amount of time discussed above is only for training TensorFlow 

over all images in the reference library with multiple replicate analyses; for identification of a 

single image, it only takes a few seconds. 

 

 

Figure 3. Comparison of identification rates (%) between TensorFlow and statistical classifiers (Gurgel-Gonçalves et 

al. 2017) at species level for Mexican and Brazilian triatomines. 
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We plotted and compared the results of TensorFlow with those from our previous study 

(Gurgel-Gonçalves et al. 2017), at the species level (Figure 3). We applied a paired t-test on 

outcomes, which produced p-values of 0.028 and 0.025 for Mexican and Brazilian triatomines, 

respectively; given that the p-values were <0.05, we concluded that the DNN-based results are 

statistically significantly better than our previous results. For Mexican species, we noted 

improvement in identification rate for 9 out of 12 species using TensorFlow (Figure 3). Although 

T. mazzottii Usinger correct identification rates declined from 77.3% to 63.6% using deep learning, 

we noted significant improvement for the T. dimidiata (Latreille) complex (T. dimidiata Hg1 

increased from 70.5% to 84.1%, T. dimidiata Hg2 from 76.7% to 86.7%, and T. dimidiata Hg3 

from 82.5% to 87.5%), T. mexicana (Herrich-Schaeffer) from 80.0% to 97.8%, and T. barberi 

from 72.4% to 80.0%. Most notably, we saw improvements for T. nitida Usinger and T. 

phyllosoma (Burmeister, 1835), which were very challenging for our previous classifiers, from 

46.7% to 73.3% and 46.6% to 69.0%, respectively. For Brazilian species, identification rate 

improved for 23 out of 38 species, including 6 with major improvements: T. vandae Carcavallo, 

Jurberg, Rocha, Galvão, Noireau & Lent from 69.0% to 79.3%, T. sordida (Stål, 1859) from 81.2% 

to 92.7%, T. rubrovaria (Blanchard, 1843) from 59.3% to 79.6%, T. melanica Neiva & Lent from 

79.3% to 89.3%, T. circummaculata (Stål) from 85.7% to 95.5%, and T. brasiliensis Neiva from 

76.6% to 92.2%; identification rates for 5 out of 38 species stayed the same (Figure 3). A highlight 

was that T. rubrovaria had shown the weakest classification success with statistical classifiers, but 

with deep learning improved dramatically. However, 3 species showed major declines: R. milesi 

Carcavallo, Rocha, Galvão & Jurberg (Hemiptera: Reduviidae) from 89.2% to 74.4%, T. delpontei 

Romana & Abalos from 86.7% to 74.2%, and T. maculata (Erichson) from 89.7% to 77.5%, 

compared with the results of the statistical classifiers. The confusion matrices for both Mexican 
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and Brazilian species, summarizing numbers of images for each species identified correctly or 

misidentified as another species, are presented in the supplementary data of this paper. 

 

 

Figure 4. Summary of identification rates (%) for various combinations of species: 2-11 different species 

combinations for Mexican faunas with 399 faunal subsets, and 2-12 species combinations for Brazilian faunas with 

2019 faunal subsets, using the distributional information. Gray triangles represent average identification rates for 

each Brazilian local fauna, and large black triangles show the overall average of identification rate for each fauna 

size. Black dots represent average identification rates for each Mexican local fauna, and large blank circles show the 

overall average of identification rate for each fauna size. 
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1.3.1 Faunal subsets 

Because classifier accuracy improves when fewer classes are compared, to reduce numbers 

of species being compared, we used geographic information for the distributions of Mexican and 

Brazilian triatomines to refine identification efforts, testing 399 and 2019 faunal subsets for the 

two countries, respectively. For Mexican species, faunal subsets ranged 2-11 species (Figure 4). 

TensorFlow was able to increase the overall identification rate for comparing two species up to 

95.8%; average identification rates for most local faunas (25 out of 31) were in the range of 95-

100%. As expected, increasing the number of species compared, the overall identification rate 

declined gradually, and leveled off at around 83.0% for 8 to 11 Mexican species. For Brazilian 

species, the overall identification rate for comparing two species was 98.9% (Figure 4). Adding 

more species to the Brazilian pool, the overall identification rate decreased to a plateau of about 

94.0% with 11 species. For 1853 out of 2019 Brazilian local fauna subsets, TensorFlow’s 

identification performance was 95% or better. 

 

1.4 Discussion 

Chagas disease causes serious cardiac morbidity and mortality among infected individuals 

over the course of years or decades (Coura and Viñas 2010), yet epidemiological surveillance, 

diagnosis, and treatment are often late or inefficient owing to shortage of expertise and failings in 

many public health systems (Martins-Melo et al. 2012, Ramsey et al. 2014). Arriving at such 

diagnoses depends rather crucially on vector awareness and correct identification, which is the 

focus of our work. To that end, we have explored deep neural networks (Schmidhuber 2015) to 

automate several key inferential tasks. We successfully identified both Mexican and Brazilian 

triatomine species with considerable improvement in overall identification rates, compared to our 
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previous results (Gurgel-Gonçalves et al. 2017). Incorporating distributional information for 

species allowed us to reduce local fauna sizes in analyses, making identification easier, which 

increased overall identification rates for local faunas still more. 

A crucial advantage of using TensorFlow was eliminating the need for pre-processing 

images for our identification system. That is, we compared TensorFlow classification performance 

based on the cleaned and raw images for the Mexican species, which were the most challenging to 

our statistical classifiers (Gurgel-Gonçalves et al. 2017). TensorFlow achieved almost the same 

overall identification rate using the raw images, which opens important future possibilities, such 

as developing identification based on photos taken by local residents with mobile phone cameras. 

Including geographic information to create local faunas or faunal subsets (Gurgel-Gonçalves et al. 

2012, Ramsey et al. 2015) significantly improved our results, reaching an average accuracy of 

95.8% for Mexican triatomines and 98.9% for Brazilian triatomines. Another advantage of 

TensorFlow is that it is open source software: TensorFlow’s flexible architecture allows easy 

adaptation and deployment of the software on different platforms including desktops, clusters of 

servers, edge devices, and mobile phones (https://www.tensorflow.org/). 

 

1.4.1 Deep neural networks 

Applying TensorFlow to our dataset presented some challenges, a major one was the 

number of images available for each species. To the best of our knowledge, this is the first study 

using TensorFlow to identify triatomines. To take advantage of deep learning algorithms to 

improve identification rates at the species level, we would ideally have access to many more 

images for each species. We are working along several lines to build such photographic resources, 

but clearly small sample sizes will be a continuing challenge in this work. A second major 

https://www.tensorflow.org/
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challenge, a consequence of the first, was the model validation method. We would have been 

happier with our results if we had enough images for each species to follow k-fold cross validation 

approaches (Kohavi 1995), instead of leave-one-out approaches to evaluate our model, as the 

former offer greater independence between calibration data and evaluation datasets. 

Photo quality could constitute a limitation in future analysis. These problems could derive 

from characteristics of the photographed specimens, such as how dirty it is, the mounting 

orientation of the specimen, or whether or not the specimen has a pin through its thorax. Other 

variables that must be considered before full implementation, such as in a “citizen scientist” 

setting, with photographs captured with ordinary mobile phone cameras, could be evenness of 

lighting, distance between camera and insect, and how well focused is the image. Future 

experiments will evaluate the degree to which these factors compromise identification ability, to 

verify how robust and reliable our automated identifications can be under different circumstances. 

 

1.4.2 Problem species 

Although we were impressed by the improved correct identification rates that we obtained, 

several “problem species” remained, which need to be discussed in more detail. To identify 

“problem species”, we considered a threshold for each dataset relative to overall country-specific 

identification rates. For Mexican species, we chose 70.0% as the threshold, which resulted in 

having two problem species, T. mazzottii and T. phyllosoma, with 63.6% and 69.0% overall 

identification rates, respectively. Total sample size for T. mazzottii was 22 images, of which 8 were 

misidentified, and for T. phyllosoma of 58 images, 18 were misidentified. Out of 8 incorrectly 

identified samples for T. mazzottii, 2 were identified as T. longipennis Usinger, and 6 as T. 

phyllosoma. For the 18 misidentified records of T. phyllosoma, 2 were identified as T. pallidipennis 
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Stål, 8 as T. mazzottii, and 8 as T. longipennis. The difficulty of TensorFlow to identify these 

species may be related to the morphological similarity between them, as they all belong to the 

phyllosoma complex (Lent and Wygodzinsky 1979). However, neither morphological identity nor 

more recent evolution of the dimidiata complex haplogroups affected the ability to distinguish 

among them. Future experiments with more images should improve correct identification rates. 

For Brazilian triatomine species, we selected a 75.0% correct identification threshold, 

below which five species had lower identification accuracy of 70-74%: R. milesi, T. delpontei, T. 

guazu Lent & Wygodzinsky, T. platensis Neiva, and T. williami Galvão, Souza & Lima. All 7 

incorrectly identified images of T. delpontei were identified as T. platensis; other problem species 

were confused with 2-4 other species. Again, TensorFlow limitation to distinguish between T. 

delpontei and T. platensis may be related to morphological similarities (Monteiro et al. 2018). 

 

1.4.3 Future perspectives 

In the future, we anticipate deployment of these systems more broadly in terms of both user 

communities and species under study. The ability to use raw images makes the process of 

collecting images from different sources (e.g., public health service personnel, citizen scientists) 

feasible, while maintaining the high accuracy of identification. Our next steps will make this 

technology available for photographs captured with ordinary mobile phone cameras, and thus 

broadly accessible to all via a mobile-phone application. The system will (1) permit distinguishing 

triatomines from non-triatomines, and (2) extend triatomine taxonomic coverage to the whole of 

the Americas. Extension of such approaches to other medically important arthropod groups is 

eminently feasible, and could be implemented with relatively little effort, at least in terms of 

computation. Taxa such as ticks, in particular, are significant vectors of many human and livestock 
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pathogens (Parola et al. 2005), and could be the most suitable candidates for immediate future 

studies as they are larger, relatively two-dimensional and can be characterized via a single dorsal-

view image. Extending the methodology to mosquitoes and other dipterans may not be too far off 

(Giordani et al. 2017). 
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1.7 Appendix 

Appendix 1. Summary of species analyzed, sample size in terms of numbers of photographs, and 

successful identification rates (%), in our previous analyses (Gurgel-Gonçalves et al. 2017) 

versus using deep learning techniques, for the 12 Mexican species in this study. Hg1 – Hg3 

represent three distinct haplogroups of Triatoma dimidiata complex. 

Species Sample size 

Statistical 

classifiers 

success rate 

(%) 

Deep 

learning 

success rate 

(%) 

Panstrongylus rufotuberculatus (Champion, 1899) 13 100.0 100.0 

Triatoma barberi Usinger, 1939 30 72.4 80.0 

Triatoma dimidiata (Latreille, 1811) Hg1 44 70.5 84.1 

Triatoma dimidiata (Latreille, 1811) Hg2 30 76.7 86.7 

Triatoma dimidiata (Latreille, 1811) Hg3 40 82.5 87.5 

Triatoma gerstaeckeri (Stål, 1859) 12 83.3 83.3 

Triatoma longipennis Usinger, 1939 52 72.5 76.9 

Triatoma mazzottii Usinger, 1941 22 77.3 63.6 

Triatoma mexicana (Herrich-Schaeffer, 1848) 45 80.0 97.8 

Triatoma nitida Usinger, 1939 15 46.7 73.3 

Triatoma pallidipennis Stål, 1872 44 90.7 93.2 

Triatoma phyllosoma (Burmeister, 1835) 58 46.6 69.0 

Total sample size and average success rates 405 80.3 83.0 
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Appendix 2. Summary of species analyzed, sample size in terms of numbers of photographs, and 

successful identification rates (%), in our previous analyses (Gurgel-Gonçalves et al. 2017) 

versus using deep learning techniques, for the 38 Brazilian species assessed in this study. 

Species Sample size 

Statistical 

classifiers 

success rate 

(%) 

Deep 

learning 

success rate 

(%) 

Cavernicola lenti Barrett & Arias, 1985 32 93.3 100.0 

Panstrongylus diasi Pinto & Lent, 1946 30 96.7 100.0 

Panstrongylus geniculatus (Latreille, 1811) 45 93.3 100.0 

Panstrongylus lignarius (Walker, 1873) 30 85.7 93.3 

Panstrongylus lutzi Neiva & Pinto, 1923 35 88.2 88.2 

Panstrongylus megistus Burmeister, 1835 85 91.7 96.5 

Psammolestes tertius Lent & Jurberg, 1965 36 100.0 97.2 

Rhodnius brethesi Matta, 1919 28 96.4 96.4 

Rhodnius domesticus Neiva & Pinto, 1923 30 96.3 96.7 

Rhodnius milesi Carcavallo, Rocha, Galvão & Jurberg, 2001 43 89.2 74.4 

Rhodnius montenegrensis Rosa et al. 2012 43 84.6 88.1 

Rhodnius nasutus Stål, 1859 80 82.2 88.8 

Rhodnius neglectus Lent, 1954 67 83.3 90.9 

Rhodnius pictipes Stål, 1872 43 95.3 97.7 

Triatoma arthurneivai Lent & Martins, 1940 32 78.1 84.4 

Triatoma baratai Carcavallo & Jurberg, 2000 29 82.8 89.7 

Triatoma brasiliensis Neiva, 1911 64 76.6 92.2 

Triatoma carcavalloi Jurberg, Rocha & Lent, 1998 38 86.8 89.5 

Triatoma circummaculata (Stål, 1859) 22 85.7 95.5 

Triatoma costalimai Verano & Galvão, 1958 64 85.7 90.6 

Triatoma delpontei Romana & Abalos, 1947 31 86.7 74.2 

Triatoma guazu Lent & Wygodzinsky, 1979 29 64.3 72.4 

Triatoma infestans (Klug, 1834) 55 83.3 87.3 

Triatoma juazeirensis Costa & Felix, 2007 20 81.0 81.0 

Triatoma lenti Sherlock & Serafim, 1967 39 78.9 77.5 
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Species Sample size 

Statistical 

classifiers 

success rate 

(%) 

Deep 

learning 

success rate 

(%) 

Triatoma maculata (Erichson, 1848) 40 89.7 77.5 

Triatoma matogrossensis Leite & Barbosa, 1953 33 75.0 81.8 

Triatoma melanica Neiva & Lent, 1941 29 79.3 89.3 

Triatoma pintodiasi Jurberg, Cunha & Rocha, 2013 26 88.0 84.0 

Triatoma platensis Neiva, 1913 28 74.1 71.4 

Triatoma pseudomaculata Correa & Espínola, 1964 56 70.9 75.0 

Triatoma rubrovaria (Blanchard, 1843) 55 59.3 79.6 

Triatoma sherlocki Papa, Jurberg, Carcavallo, Cerqueira & 

Barata, 2002 
32 93.5 90.6 

Triatoma sordida (Stål, 1859) 96 81.2 92.7 

Triatoma tibiamaculata (Pinto, 1926) 41 92.7 85.4 

Triatoma vandae Carcavallo, Jurberg, Rocha, Galvão, Noireau 

& Lent, 2002 
30 69.0 79.3 

Triatoma vitticeps (Stål, 1859) 48 85.1 80.9 

Triatoma williami Galvão, Souza & Lima, 1965 20 70.6 70.0 

Total sample size and average success rates 1584 83.9 86.7 
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CHAPTER 2. Deep learning technology improves auditory biodiversity 

assessment and new candidate species identification in a hyper-diverse and yet 

underestimated species assemblage from an island archipelago 

2.1 Introduction 

Species new to science are continuously being described, and therefore many evolutionary, 

ecological, and behavioral phenomena and processes remain to be discovered (Scheffers et al. 

2013; Tonini et al. 2020). However, habitat destruction is triggering the rapid loss of species 

unknown to science (Bryan et al. 2013; Tapley et al. 2018). Recent efforts to overcome this arms 

race between species discovery and extinction (Klein, McKown & Tershy 2015; González-del-

Pliego et al. 2019) have focused on development of automated monitoring devices, such as passive 

recorders for monitoring species with acoustic mate-recognition signals (i.e., bats, birds, frogs, 

crickets; Chen & Wiens 2020). Research using conventional recordings and new automated 

devices, however, has generated exorbitant quantities of data, at a pace faster than they can be 

analyzed (Brabant et al. 2018). As such, a need for automated processing tools and acoustic species 

identification has emerged. 

 Patterns of seasonal phenology, diel activity, habitat use, and focal species monitoring have 

been the subject of acoustic signal inventories (Sugai et al. 2019) and biodiversity assessments 

(Wimmer et al. 2013). The use of advertisement calls for integrative amphibian species 

delimitation and identification has increased steadily (Vieites et al. 2009; Brown & Stuart 2012; 

Philippe, Felipe & Celio 2017), but automating species discovery from environmental recordings 

has not been applied widely. 

 The advertisement calls of amphibians are primary phenotypes for mate-recognition 

(Gerhardt 1994; Wells & Schwartz 2007) and analyses of temporal and spectral acoustic data have 
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been used widely to assign populations to species (Gerhardt 1978; Vignal & Kelley 2007; Feinberg 

et al. 2014). Once species-specific signals have been characterized quantitatively, automated 

classification methods can be employed for identification and assignment of species from natural 

soundscapes (Aide et al. 2013; Zhao et al. 2017). However, fundamental challenges arise when 

species new to science are recorded: classification is prevented by an absence of their 

temporal/spectral signal properties in training data sets. 

 Increased use of images for automated species identification (Rzanny et al. 2017; Villa, 

Salazar & Vargas 2017; Khalighifar et al. 2019) suggests that the highly stereotyped nature of 

anuran signals (Narins & Capranica 1977; Gerhardt 1994) as characterized in sound spectrograms 

(sensu Wells 2010), could be exploited for image-based species identification. To explore this 

possibility, we selected the Philippine frog genus Platymantis (family Ceratobatrachidae), for three 

reasons. First (A) Platymantis has been the focus of intensive surveys of advertisement call 

variation (Brown, Alcala & Diesmos 1997; Brown et al. 1997; Brown et al. 1999; Brown, Alcala 

& Diesmos 1999) and the fast pace of species description (Brown & Gonzalez 2007; Brown & 

Stuart 2012; Diesmos et al. 2015), and identification of candidate species for future taxonomic 

studies (Brown et al. 2015a,b) demonstrate the prevalence of considerable underestimated species 

diversity (Brown et al. 2013, 2015b). Additionally, (B) as the focus of recent molecular 

phylogenetic analyses, Platymantis is a demonstrably monophyletic, Philippine-endemic clade 

(Brown et al. 2015b), sister to the similarly-diverse Papuan genus Cornufer. Thus, the geographic 

and systematic understanding of Platymantis is much improved over earlier work (Inger 1954). 

Third, (C) calls of nearly all recognized Platymantis species (AmphibiaWeb 2020, 

https://amphibiaweb.org) are available in the public domain. The combination of available call 

resources (large samples of calls from recognized and undescribed species), and a robust 

https://amphibiaweb.org/
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phylogeny as an historical framework render Platymantis a promising focal system for research in 

automating species identification, with intended future expansion of the system to incorporate 

comparative phylogenetic methods. 

Automation offers a solution for tasks requiring repetition when experienced workers are 

lacking or cost-prohibitive (Gaston & O'Neill 2004). Recent computer science developments in 

image classification and signal processing provide new tools that may improve biodiversity 

assessment in taxa representing visual identification challenges (MacLeod, Benfield & 

Culverhouse 2010; Guirado et al. 2019). Although automated species identification systems using 

handcrafted feature extraction has shown promising results (Holmgren, Persson & Söderman 

2008; Kumar et al. 2012; Gurgel-Gonçalves et al. 2017), it requires advanced expertise and 

programming to accomplish robust performance.  

In recent years, a robust group of classifiers has been introduced (Deep Neural Networks, 

DNNs; Schmidhuber 2015), which outperform existing methods in various classification tasks 

(Ramcharan et al. 2017; Smith et al. 2019). One of the state-of-the-art DNN platforms is 

TensorFlow (Abadi et al. 2016), an open-source software platform designed by the Google Brain 

Team (https://www.research.google.com/teams/brain). One crucial advantage of applying 

TensorFlow is the Transfer Learning technique, which is a shortcut for achieving high-

performance classification. This approach involves using a large dataset to train a model, and then 

re-training with a new calibrating dataset both to improve identification rates at lower 

computational cost. 

Here, we applied TensorFlow Inception v3 (Szegedy et al. 2016), implemented in the 

Linux environment (Ubuntu, version 18.04; https://www.ubuntu.com), to explore the challenge of 

automating frog species identification. We explored two major challenges in this study: (1) 

https://www.research.google.com/teams/brain
https://www.ubuntu.com/
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whether TensorFlow is able to discriminate among species of Philippine forest frogs, based on 

simple visual-image representations of auditory signals, and (2) whether TensorFlow could go 

beyond simple inventory to accelerate new candidate species discovery by objectively identifying 

undescribed species. To address these questions, we designed an automated, DNN-based species 

identification system for 41 described versus undescribed Platymantis species, which we tested 

using single-note call spectrograms. This study thereby lays a foundation for automated 

identification capabilities in biodiversity conservation and assessment via auditory signals. 

 

  

Figure 1. Examples of images used for identification of 20 currently recognized species of Philippine forest frogs, 

genus Platymantis (Brown et al. 2015b), available from the Cornell Lab of Ornithology Macaulay Library. Each 

spectrogram has the same time duration (one second), and frequency limits (1-5.5 kHz). 
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2.2 Materials and Methods 

2.2.1 Data processing 

We obtained and analyzed frog recordings from two sources: (1) a large collection of 

Philippine frog advertisement calls collected, archived (by RMB and colleagues), and made 

publicly available via Cornell University’s Laboratory of Ornithology and Macaulay Library of 

Natural Sounds (https://www.macaulaylibrary.org), and (2) recent collections (2005–2019) of 

numerous undescribed species (review: Brown et al. 2015b; Diesmos et al. 2015), to augment 

sample sizes of previously described species and add distinctive new candidate species identified 

with genetic and phenotypic characters (RMB, unpublished data). Additional collection-associated 

natural history information, frog microhabitats, community composition, recording methodology 

(device information, digitization specifications), and metadata are available via the Macaulay 

Library portal and the KU Herpetology online Specify database, as well as via GBIF, iDigBio, and 

other aggregators; behavioral context of calls, and qualitative descriptions of calls are available in 

original descriptions (e.g., Brown & Gonzalez 2007; Siler et al. 2007, 2010; Brown et al. 2015a). 

We surveyed 175 recordings, representing 20 species (Figure 1) using the cross-platform 

audio editor Ocenaudio (https://www.ocenaudio.com). This software is based on Ocen 

Framework, a powerful library to simplify and standardize manipulation and analysis of audio 

files. We clipped 20 high-quality single notes per each species, and saved each as 32-bit, single-

channel WAV files (44.1 kHz sampling rate). To standardize temporal scale across comparisons, 

we designated a duration of one second; all known Platymantis species’ single notes fit this range. 

To do so, we added silence in equal length to the beginning and the end of each clipped single 

note. Then, we used  R packages warbleR (Araya‐Salas & Smith‐Vidaurre 2017) and Seewave 

(Sueur, Aubin & Simonis 2008) to generate spectrograms across a standardized range of 

https://www.macaulaylibrary.org/
https://www.ocenaudio.com/
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frequencies, 1.0–5.5 kHz; all known Platymantis calls fall within this range (Figure 1). To generate 

oscillograms, we chose a fast-Fourier transformation (FFT) of 512 points, with 90% overlap 

between two successive windows. We saved all spectrograms as Portable Network Graphics 

(PNGs). 

 

2.2.2 Model architecture 

Convolutional neural networks (CNNs) are a subset of DNNs that are specialized for image 

classification tasks and pattern recognition. One of the main advantages of CNNs is the ability to 

perform automated feature extraction, eliminating the need for hand-crafted feature extraction. 

CNN architecture is built on three types of layers: (1) convolutional layers, which are the most 

important because they apply hierarchical feature extraction and decomposition of input images; 

(2) pooling layers, which carry out operations to reduce numbers of parameters and necessary 

computation; and (3) fully connected layers, which perform the actual classification at the end of 

the pipeline. 

CNNs require large training datasets to achieve accurate classification rates. Although 

training on a large dataset provides a powerful framework, building and training a CNN from 

scratch is both computationally expensive and time consuming. To overcome these limitations, we 

used a transfer learning technique. Transfer learning means using experience acquired from 

classification task A in classification task B. This technique allows the user to retrain the final 

layer of an existing model on the training set associated with a new classification task. One of the 

most successfully implemented models of transfer learning is Inception v3 (Szegedy et al. 2016)—

a CNN, implemented in TensorFlow (Abadi et al. 2016). This CNN consists of 48 layers, and is 

trained on >1M images from the ImageNet database (http://www.image-net.org). Inception v3 is 

http://www.image-net.org/
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widely recognized for outperforming other models in challenges involving classifying images into 

thousands of classes (Russakovsky et al. 2015). 

 

Figure 2. Map of Philippines, with Pleistocene Aggregate Island Complex (PAICs) faunal regions (colored shading) 

used to create realistic species pools (Challenge 4) to enhance identification. Map simplified to include only PAICs 

relevant to this study. 
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2.2.3 Classification challenges 

We designed four classification challenges using single-note spectrograms and we assessed 

whether TensorFlow (Inception v3) is capable of successfully identifying Platymantis species 

based on frequency distributions of individual call notes of each species. For the training process, 

we modified two parameters of the model: (1) number of training steps, and (2) validation 

percentage. We explored different numbers of training steps and compared results to find an 

optimum balance between computing time and classification efficiency. Given our limited number 

of images per species (n=20), we increased the validation parameter to 20%. For the same reason, 

we used a leave-one-out cross validation technique (Molinaro, Simon & Pfeiffer 2005) to evaluate 

model performance in Challenges 1, 3, and 4. The four classification challenges we explored are 

as follows: 

1. Applying TensorFlow to identify species available from the Cornell Library of 

Natural Sounds: We applied TensorFlow to data from the Macaulay Library, including 20 

recognized species of Platymantis (from among 33 described forms; Brown et al. 2015b), as 

classes for input. We generated 400 spectrograms (20 per species) for the identification challenge. 

2. Challenging TensorFlow with species not in the reference library: We trained 

TensorFlow on all images (i.e., 400 spectrograms) from Challenge 1 as an image reference library. 

Then, we applied the trained model to a test dataset from 22 robustly-identified species from recent 

field surveys by RMB. We addressed two questions: (1) could TensorFlow identify species 

existing in its reference library among the unknown species when they constitute new recordings 

obtained from different individuals? And, more importantly, (2) how does TensorFlow perform 

when it encounters species that do not exist in its reference library? To answer these questions, we 
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generated 20 spectrograms per species for this new dataset, resulting in a total of 440 spectrograms, 

to be subjected to identification using the CNN developed in Challenge 1.  

3. Challenging TensorFlow to identify all 41 species for which recordings are 

available: We increased the number of species in the TensorFlow reference library to 41 by adding 

21 new, undescribed species (one species in the new dataset was already present in reference 

library, owing to a recent taxonomic change; Brown et al. 2015b). Then, we followed the same 

procedure as in Challenge 1, to test performance on a reference library that is twice as large as the 

original (i.e., 41 classes). 

4. Faunal region-based identification in natural species pools: We used distributional 

data (Brown et al. 2015b; Diesmos et al. 2015) to create subsets of species, with the goal of 

generating separate classification tasks with lower numbers of classes (species) per task (local 

species pools, reflecting documented patterns of co-distributed species from the archipelago’s 

faunal regions). First, we grouped the 41 species (20 described species, plus 21 undescribed 

candidate species) based on Philippine islands they inhabit, resulting in 15 subsets of co-occurring 

species in “communities” of 3 to 27 species (Figure 2). Then, we trained and tested the classifier 

employing the set of samples from the species found on those islands. Finally, we calculated the 

overall correct identification rate across 15 islands to compare with that based on the full reference 

library. 

 

2.3 Results 

We calibrated models for classification challenges using different numbers of training 

steps, and considered two factors to find optima for training TensorFlow (Khalighifar et al. 2019): 

correct identification rate and processing time. As a result, for all challenges except Challenge 3, 
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we chose 4000 training steps as an optimum number. For Challenge 3, given the number of species 

(41 species), 8000 training steps proved to be the optimum number. The details of results 

associated with each classification task are as follows: 

 

Figure 3. Confusion matrix for 20 currently recognized species of Philippine forest frogs, genus Platymantis (sensu 

Brown et al. 2015b) using a leave-one-out cross-validation technique. Red = correct identification; yellow = 

misidentifications. All values of zero are removed for ease of visualization. 

Challenge 1. We created a confusion matrix to depict TensorFlow’s initial results with 20 

species (Figure 3). The overall correct identification rate was 94.3%. We achieved 100% correct 

identification rate for 11, and 90% or above for 17, species. The lowest identification rates were 

for closely-related species Platymantis isarog and P. montanus, with 70 and 75% correct 
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classification, respectively. We did not detect any systematic errors in TensorFlow classification, 

such as repeatedly confusing one species with another. 

 

Figure 4. Confusion matrix resulting from challenging TensorFlow with potential species unknown to the reference 

library—numeric species identifiers from Brown et al. (2015b). Columns = species in the reference library; rows = 

potential unknown species, with exception of P. isarog (see text). Red numbers = certainty rates below 40%; black = 

41–85%; green >85%. Far right column = average certainty rate for species identifications. 

 

Challenge 2. TensorFlow provides each image identification task with two 

elements/features: suggested species names and a certainty rate. Certainty rate can be a factor by 

which to evaluate classifier performance on test images as well. After applying TensorFlow on a 

testing dataset consisting of 22 species, we considered two factors to evaluate model performance: 
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(1) number of images per class assigned to a species present in reference library, and (2) average 

certainty rate associated with those identifications (Figure 4). Among the 22 species in the test 

dataset, only one, P. isarog, was also present in the reference library; however, the remainder were 

new to the training set. As a result, it was impossible for TensorFlow to provide a correct answer 

for the other 21 species. The overall certainty rate for those 21 species was 65.5%. However, in 

Challenge 1, the overall certainty rate for the 20 species present in reference library was 83.6%. 

After using Mann-Whitney U test in Python 3.8.2, the results showed that TensorFlow yielded a 

significantly lower certainty rate for the 21 new species to the reference library (U=56379.5, P-

value=1.09e-19). 

Certainty rates in Challenge 2 ranged from 38.4–98.1%. TensorFlow yielded an overall 

certainty rate ≥90% for only 2 of the 22 species in our test dataset, one of which was a correct 

identification. That is, all images associated with P. isarog identified as P. isarog with an average 

certainty rate of 98.1%. In contrast, all P. diesmosi images were identified as P. insulatus with a 

94.3% average certainty rate. Another species with a relatively high average certainty rate was P. 

sp. 4, a taxon originally described as “P. rivularus” (Taylor 1923), which is expected to be elevated 

from synonymy of P. subterrestris with ongoing studies (Brown et al. 2015b). Individuals of this 

population were identified as P. isarog, P. guentheri, and P. montanus, with an average certainty 

rate of 87.8%. The lowest certainty rates yielded by TensorFlow were for three undescribed 

species, P. sp. 12 (onomatopoeically nicknamed “churink” with a 38.4% average certainty rate), 

P. sp. 44 (“Ee-yow” with a 50.1% average certainty rate), and P. biak (with a 51.7% average 

certainty rate), which were classified as 10, 7, and 6 different species, respectively. Among the 

species in the reference library, the most frequently suggested species was P. guentheri, which was 

suggested for 15 of 22 species in our test dataset. However, regarding two evaluation factors 
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mentioned above, in none of those cases, could P. guentheri be considered as the primary 

identification for those species (Figure 4). 

 

Table 1. Summary of species analyzed, success in terms of number of images correctly identified, failure in terms of 

number of misidentifications, and correct identification rate for 20 described species of Platymantis (sensu Brown et 

al. 2015b) and 21 new, undescribed candidate species. Sample size for each species is 20 images; undescribed 

species specifier numbers follow Brown et al. (2015b). 

Species Success Failure 

Correct 

identification 

rate 

Platymantis banahao 20 0 1.00 

P. cagayanensis 20 0 1.00 

P. corrugatus 20 0 1.00 

P. dorsalis 20 0 1.00 

P. guentheri 18 2 0.90 

P. hazelae 19 1 0.95 

P. indeprensus 19 1 0.95 

P. insulatus 20 0 1.00 

P. isarog 14 6 0.70 

P. levigatus 20 0 1.00 

P. luzonensis 19 1 0.95 

P. mimulus 20 0 1.00 

P. montanus 16 4 0.80 

P. naomii 19 1 0.95 

P. paengi 20 0 1.00 

P. polillensis 20 0 1.00 

P. quezoni 16 4 0.80 

P. rabori 20 0 1.00 

P. spelaeus 18 2 0.90 

P. subterrestris 20 0 1.00 

P. biak (formerly sp. 37) 20 0 1.00 

P. cf cornutus 19 1 0.95 

P. cf lawtoni  18 2 0.90 

P. cf sierramadrensis 18 2 0.90 
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Species Success Failure 

Correct 

identification 

rate 

P. diesmosi (formerly sp. 2) 20 0 1.00 

P. sp. 3 14 6 0.70 

P. sp. 4 18 2 0.90 

P. sp. 6 18 2 0.90 

P. sp. 8 19 1 0.95 

P. sp. 12 19 1 0.95 

P. sp. 14 20 0 1.00 

P. sp. 15 20 0 1.00 

P. sp. 16 18 2 0.90 

P. sp. 17 19 1 0.95 

P. sp. 22 20 0 1.00 

P. sp. 23 19 1 0.95 

P. sp. 25 19 1 0.95 

P. sp. 38 “double call” 19 1 0.95 

P. sp. 38 “single call” 20 0 1.00 

P. sp. 44 19 1 0.95 

P. sp. 49 18 2 0.90 

 

Challenge 3. Training TensorFlow on all 41 species, we observed a mere 0.2% decline in 

overall correct identification rate (i.e., overall correct identification rate for 41 species was 94.1 

versus 94.3% for 20 species in Challenge 1). Although we added 21 species to the reference library, 

we observed no negative impact on correct identification rates, even though such impacts were 

noted in our previous work (Khalighifar et al. 2019). TensorFlow was able to identify 37 of 41 

species with ≥90% correct identification rate; 17 species were identified with 100% identification 

rate. The lowest correct identification rates were for P. isarog and P. sp. 3 (sensu Brown et al. 

2015b) with 70% (Table 1). Similar to Challenge 1, no species was detected to be mis-identified 

repeatedly as another species in particular. 
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Challenge 4. Classifier accuracy generally improves as the number of classes that must be 

distinguished decreases (Khalighifar et al. 2019). To improve accuracy and reduce numbers of 

species, we used geographic information (species distributions from Diesmos et al. 2015) to refine 

identification efforts. Species subsets ranged from 3 on Gigante, Panay, and Romblon to 27 on 

Luzon (Figure 5). As expected, TensorFlow was able to increase the overall identification rate 

from 94.1 to 98.7% by incorporating distributional information.  

Average identification rates for more than half of the islands (8 of 15) were 100%. Luzon 

Island hosts 27 species, and scored the lowest overall identification rate, 94.6%. We noticed that 

another factor affecting overall identification rate for each island was species composition. That 

is, for some islands with lower numbers of species, we nonetheless found a lower overall 

identification rate as well. For example, species from Siargao and Dinagat islands, with the same 

species composition (Platymantis corrugatus, P. dorsalis, P. guentheri, and P. rabori) had a lower 

overall correct identification rate than Mindanao Island, a far larger landmass with at least six 

species (96.3% versus 100%). 

 

2.4 Discussion 

Pressures such as habitat loss, invasive species, pollution, and climate change are 

increasingly affecting amphibian populations (Blaustein et al. 2011; Pili et al. 2019). Frog 

populations have been regarded as excellent bio-indicators owing to their sensitivity to 

environmental change (Katti, Ghodgeri & Goundadkar 2016; Houston, Melzer & Black 2018). 

The Philippines has impressive endemic biodiversity (~110 amphibian species; 90% endemic; 

Diesmos et al. 2015), and documentation of species diversity using rapid, efficient inventory 

techniques, capable of detecting new species, is increasingly needed. This challenge is the focus 
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of work which we hope will automate rapid candidate species discovery, to then allow researchers 

to target strategically subsequent statistical species validation (e.g., Barley et al. 2013; Chan et al. 

2017), to be followed by formal taxonomic description (Brown et al. 2015b) as logical steps 

towards characterizing the archipelago’s amphibian biodiversity. 

 

 

Figure 5. Island-based identification for 20 currently-recognized species of Philippine forest frogs (sensu Brown et 

al. 2015b) and 21 new, undescribed Platymantis species, incorporating biogeographic information (island bank-based 

faunal regions; Brown et al. 2013) and species distribution information (Diesmos et al. 2015). Note that although we 

incorporated distributional information (PAICs) in our analyses, this figure summarizes individual island results. Each 

point is only associated with two elements; (1) number of species per island (x-axis), and (2) correct identification 

rates (y-axis). 

 

To this end, we explored CNN Inception v3 as a means by which to automate several key 

inferential tasks. We successfully identified Platymantis species with an impressive overall 

identification rate based on single call note characteristics, which was a surprising result for field 

biologists (RMB and colleagues) who are accustomed to discovering and describing Platymantis 
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species based on temporal patterns of note repetition, complex call elements, and rich spectral 

properties of many calls (Brown & Gonzalez 2007; Siler et al. 2007, 2010; Brown et al. 2015b). 

Incorporating distributional data (grouping species by Pleistocene island bank-based faunal 

regions) allowed us to create realistic subsets of species pools. This further increased overall 

identification rates by reference to the relevant, naturally co-occurring species pool. 

 

2.4.1 Deep neural networks 

TensorFlow’s flexible architecture allows easy adaptation and deployment on different 

platforms including desktops, clusters of servers, edge devices, and mobile phones 

(https://www.tensorflow.org/). Inception v3 is a sophisticated network given the number of layers 

(48), and is already trained on more than a million images.  

However, one major challenge was the number of call notes (input spectrograms) available 

for each species. To address this, future studies should access more recordings per species, 

particularly those represented now by recordings of few individuals. Despite this limitation, our 

study is a novel use of a deep-learning platform to distinguish between closely-related species of 

frogs using simple, single-note, two-dimensional depictions of primary mate-recognition cues 

(mating calls). A second challenge, also related to sample size, was model validation. We would 

have been more satisfied with our evaluation if we had more recordings from numerous individuals 

to utilize k-fold cross-validation (Kohavi 1995) instead of leave-one-out approaches, because the 

former offers greater independence between calibration and evaluation datasets. 

 

https://www.tensorflow.org/
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2.4.2 Taxonomic identification 

In this study, we demonstrate the efficacy of deep learning technology for reliably 

identifying—and distinguishing among—closely-related frog species, as exemplified by single-

note call segments (Figure 1). Given known phylogenetic relationships (Brown et al. 2015b), we 

were surprised that multiple closely-related species pairs were distinguished from one another 

perfectly (100% success). For example, species pairs P. indeprensus and P. mimulus (both 

members of the subgenus Lupacolus), P. hazelae and P. montanus (subgenus Tirahanulap), and 

P. levigatus and P. insulatus (subgenus Lahatnanguri) could each be predicted, by virtue of their 

close phylogenetic relationships, to have similar spectral (frequency-related) and temporal (time-

related) call properties—which they do (Figure 1). Still, with only a single isolated note per 

species, TensorFlow is able to distinguish them and correctly classify species’ identity, when 

presented with a large sample of positively identified individual notes (i.e., known populations of 

confidently-identified species, based on fully documented voucher specimens deposited in 

biodiversity repositories). 

 That said, illustrative examples of how the methods failed in our study—cases where 

identification was problematic, attributed to multiple species, or when a sample of notes were 

classified to wrong species—are worthy of consideration. In these cases (Table 1), two categories 

of identification errors emerge: Type A stems from closely-related species, with brief, pure-tone, 

constant-frequency calls, whose calls are exceptionally simple, intra-specifically invariant, and 

even inter-specifically quite difficult to distinguish. Referred to as “cloud frogs,” members of 

subgenus Tirahanulap (former “P. hazelae Group” species; Brown et al. 2015b; Diesmos et al. 

2015) are all diminutive (1–3 g body mass), primarily higher-elevation moist, closed-canopy shrub 

frogs. Their close phylogenetic relationships (Brown et al. 2015b) and remarkably similar 
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microhabitat preferences render it no surprise to us that TensorFlow had difficulty distinguishing 

P. isarog, P. montanus, P. sp. 3, P. sierramadrensis, and P. lawtoni. Another category of error 

was exemplified (Type B) by instances of apparent convergence in frequency modulation, 

exemplified by unrelated species such as P. dorsalis (subgenus Lupacolus), P. guentheri 

(Tahananpuno), and the amplitude-modulated, rapidly-repetitive pulse-train calls of taxa like P. 

luzonensis, P. sp. 6, and P. sp. 8. (Tahananpuno). In these taxa, it is little surprise that single-note 

call components are occasionally mis-specified by TensorFlow, given that they are essentially 

homologous call elements (Brown et al. 2015b), temporally arranged to differ only by numbers of 

notes per call and calling rate (Brown et al. 1997a,b; Brown et al. 1999a,b; Brown et al. 2015b). 

However, given that only a few closely-related species pairs exhibit overlapping, sympatric 

geographic ranges (Diesmos et al. 2015), our confidence is further bolstered with the confirmation 

that automated discrimination can be enhanced by limitation of species classes to realistic species 

pools (Brown et al. 2013; see below). In summary, we take these results as encouraging in that the 

efficacy of automated species identification can be improved with biogeographic information. 

 Our refinement of the method, using biogeographically-relevant species sets and limiting 

species identifications to co-distributed taxa, resulted in a dramatic improvement in method 

performance (Figure 4), particularly when considering caveats discussed above. By limiting the 

possible universe of a species’ identification to the biogeographically-relevant species pools, i.e., 

we both (1) improved performance of identifications of known taxa, and (2) drew attention to 

(analytically singled out) unknown, new, or undescribed taxa (Figures 2, 3). These features will 

be valuable in identifying taxa for subsequent ‘validation’ of unconfirmed candidate species, using 

independent data streams (phenotypic data, genetic information, ecological characteristics, etc.).  
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Across broader taxonomic scales and phylogenetic relationships (e.g., Chan & Brown 

2017), other means (biogeographic realm, ectomorph type, classification, etc.) of 

restricting/limiting candidate species pools may prove useful for ‘fine-tuning’ of TensorFlow’s 

automation of species recognition. Additional caveats for future consideration include (1) single 

notes per species and (2) sample sizes, which will be limited for rare species, those that occur at 

naturally low abundances, or taxa characterized by reduced detection probabilities due to cryptic 

microhabitat preferences, narrow activity patterns, or seasonally-limited reproductive cycles 

(Wells 2010). Avenues for future development of these methods in our immediate plans include 

application to additional taxonomic groups (e.g., insects, birds), and automation of call detection 

from environmental sound samples as a precursor step to automated species identification. 
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CHAPTER 3. Application of deep learning to citizen-science-based mosquito 

surveillance and detection of novel species 

3.1 Introduction 

Mosquitoes, which are responsible for 725,000 deaths per year globally (Gates 2014), are 

one of the most prominent insect disease vector groups (Juliano and Lounibos 2005). Two genera 

of particular concern to public health are Aedes and Anopheles (Lounibos and Kramer 2016, 

Tabbabi and Daaboub 2018), both because of the diseases they carry and because of their ability 

to travel and adapt to new environments. For instance, Anopheles gambiae, a vector of the malaria-

causing parasite Plasmodium native to Africa, was discovered breeding in both Brazil and Greece 

in 1930 (Barber and Rice 1935, Shannon 1942). Similarly, Aedes species, vectors of zoonotic 

arbovirus diseases like yellow fever (Couto-Lima et al. 2017), Zika (Diagne et al. 2015), 

chikungunya (Vega-Rúa et al. 2014), and dengue (Lambrechts et al. 2010), have become 

established on several continents, leading to outbreaks of Zika in Brazil (Bogoch et al. 2016), 

chikungunya in Europe (Van Bortel et al. 2014), and dengue in Europe and the Americas (Adalja 

et al. 2012, Akiner et al. 2016).  

 As many people around the world are increasingly at risk of infection with these diseases, 

direct surveillance of mosquito populations is needed to provide appropriate and timely measures 

of containing and preventing the spread of mosquito-borne diseases. Studying mosquito wingbeats 

and their species- and gender-specific sounds is one of the most efficient ways of monitoring these 

populations. Though researchers have found success in focusing on acoustic approaches (Moore 

and Miller 2002, Li et al. 2005, Ouyang et al. 2015, Fanioudakis et al. 2018, Jansson et al. 2019), 

these methods are difficult to implement in the areas most affected by mosquito-borne diseases: a 

lack of financial resources often prohibits people in these areas from obtaining the expensive 
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equipment and expertise needed to monitor mosquito populations effectively. Therefore, methods 

that utilize inexpensive and accessible equipment, and that rely on the participation of citizen 

scientists, are much more likely to be successful surveillance systems.  

Here, we explore a practical solution that uses smartphones for the acoustic monitoring of 

local mosquito species in Kansas, in the central United States. We focus specifically on 

smartphones because of their popularity and because of their utility: there are over three billion 

smartphone users worldwide (Statista; https://www.statista.com/statistics/330695/number-of-

smartphone-users-worldwide/), their built-in microphones are sensitive enough to be used for 

recording mosquito wingbeats, and their ability to collect recording metadata makes public health 

surveillance easy. We collected live mosquitoes, and recorded their wingbeats using smartphone 

microphones. Then, we applied a transfer-learning technique with Inception v3 (Szegedy et al. 

2016), a robust, deep-learning-based model, to spectrograms (images representing simple acoustic 

features) generated from the wingbeat recordings to identify individuals at species level. Lastly, 

we challenged our model by introducing recordings of two potential invasive species, Ae. aegypti 

and An. gambiae, to our classification tasks. 

 

3.2 Materials and Methods 

3.2.1 Data collection and processing 

During the 2018 and 2019 Kansas mosquito seasons (May to October), we collected 

recordings of 13 local mosquito species from 14 sites across Douglas County, Kansas. Seven of 

these sites were located in parkland areas, five in residential areas, one in a woodland area, and 

one in a wetland. In addition, we collected recordings of two potential invasive species, Anopheles 

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
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gambiae and Aedes aegypti, from a captive population in Accra, Ghana, and a disturbed forested 

area in Xalapa, Mexico, respectively.  

 We designed our mosquito recording methodology as practically as possible, such that any 

citizen scientist can successfully repeat the experiment. In doing so, we chose collecting and 

recording equipment that are inexpensive and easily accessible in any department store or from 

online suppliers. These items included thin-walled Ziploc bags, a standard fine mesh net for insects 

and butterflies, a small vial, dry ice to attract specific species, and a regular smartphone. For our 

project, smartphones included a Samsung Galaxy S6 SM-G920I and an iPhone SE model A1723. 

To record mosquito wingbeats, we caught each live individual using the fine mesh net, 

taking precautions to avoid any physical damage to the mosquito’s body. We used this method in 

place of other, more common methods (e.g., aspirators, vacuum-based devices) because those 

devices can damage the mosquito’s wings or legs in ways that can introduce errors to our audio 

reference library. After catching an individual mosquito, we transferred it from the net to a Ziploc 

bag (where we eventually recorded its wingbeats) by first transferring it to a vial. To get the 

mosquito inside the vial, we gripped the base of the netting tightly, and held the vial against the 

net. Then, we slowly released the net, and flipped the vial and net together such that the vial came 

on top of the net and allowed the mosquito to fly into the vial. To transfer the mosquito from the 

vial to the Ziploc bag, we placed the vial into the Ziploc bag, holding the bag above the vial such 

that the mosquito could fly upward into the bag. Once the mosquito was inside the vial, we slowly 

removed the vial out and carefully zipped the bag to avoid any damage to the mosquito. We then 

carefully inflated the bag to provide enough space for the mosquito to fly and to avoid damaging 

the individual while transporting it from the collection site. To record their wingbeats, we took the 

mosquitoes to a quiet place (with no outside noise), and recorded using the default settings of each 
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smartphone’s built-in microphone while mosquitos flew inside the inflated bags. We held the built-

in microphone directly against the Ziploc bag, and recorded for 3-5 minutes. All recordings were 

generated in MPEG 4 Audio (M4A) format, an extension for audio files encoded with advance 

audio coding (AAC).  

In total, we collected 358 individuals and 389 recordings, which resulted in ~1400 minutes 

of mosquito sounds. In addition to recordings, we catalogued secondary information associated 

with each mosquito. This information included collector’s name, recording filename, date and 

time, type of attraction, country, city, location, habitat, number of recordings per individual, 

geographic coordinates, smartphone model, and species and gender (as identified by the 

entomologist member of our team).  

We processed all recordings by first removing all recordings of male individuals: we 

focused specifically on females since male mosquitoes do not feed on blood and thus cannot 

transmit diseases; males have different wing beat characteristics (Simões et al. 2016, 

Mukundarajan et al. 2017, Lapshin and Vorontsov 2019), and were much less frequent in our 

collections than females. Then, we used the free, cross-platform audio editor, Ocenaudio 

(https://www.ocenaudio.com) to clip one-second segments of mosquito wingbeats. These 

segments were selected manually, and saved as 32-bit, single-channel WAV files (44.1 kHz 

sampling rate). We filtered out all segments that contained human noise, or that were silent (i.e., 

the mosquitos were not flying). In doing so, we retained as many high-quality, one-second 

wingbeat sounds as possible for each species. 

We used R packages warbleR (Araya‐Salas and Smith‐Vidaurre 2017) and Seewave (Sueur 

et al. 2008) to generate spectrograms of the best-quality, one-second segments across a 

standardized range of frequencies, 0.1–1.1 kHz; all collected mosquito wingbeats fall within this 

https://www.ocenaudio.com/
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range (Figure 1). To generate spectrograms, we chose a fast-Fourier transformation (FFT) of 512 

points, with 90% overlap between two successive windows. We saved all spectrograms as Portable 

Network Graphics (PNGs). We then visually checked all spectrograms to select 20 best-quality 

wingbeat spectrograms per species, i.e., we removed all spectrograms that indicated strong 

background or microphone noise. This reduced the number of species from 15 to 6: 4 local, and 2 

invasive. 

 

3.2.2 Classification tasks and model architecture 

We designed four classification tasks to test performance of TensorFlow Inception v3 

(Abadi et al. 2016, Szegedy et al. 2016) in identifying mosquito species, using recordings of their 

wingbeats. Inception v3 is a convolutional neural network (CNN) with 48 layers, implemented in 

TensorFlow (Abadi et al. 2016), and pre-trained on >1M images from the ImageNet database 

(Russakovsky et al. 2015). This model provides a transfer-learning technique, a shortcut for 

achieving high-performance classification using CNN models (Szegedy et al. 2016). In this way, 

we are able to re-train the final layer of Inception v3 on our training dataset, benefit from the 

experience already gained by this model, and avoid expensive computational processing to train a 

CNN from scratch (Qiu et al. 2017). To train the model, we modified two parameters: (1) number 

of training steps, and (2) validation percentage. We explored different numbers of training steps 

and compared results to find an optimum balance between computing time and classification 

efficiency. Given our limited number of images per species (n=20), we used a validation parameter 

of 20% in all classification tasks except for Task 4, in which we chose 10%. In all tasks, we used 

a leave-one-out cross validation technique (Molinaro et al. 2005) to evaluate model performance, 

as in our previous work (Khalighifar et al. 2019, Khalighifar et al. 2020b). 
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Figure 1. Examples of spectrogram images used for identification of mosquito species based on their wingbeats 

recorded by smartphones. Each spectrogram has the same time duration (one second), and frequency limits (0.1-1.1 

kHz). 
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The four classification tasks we explored are as follows: 

Task 1. Applying TensorFlow to identify local mosquito species in Kansas: We applied 

TensorFlow to wingbeat recordings from four of the most common local species in Kansas to test 

the model’s performance in species identification. We selected the best 20 spectrograms per 

species (80 in total) for this classification task. 

Task 2. Challenging TensorFlow with recordings associated with species not present 

in the reference library: We trained TensorFlow on all spectrograms associated with local 

species (i.e., the 80 images in the reference library from Task 1). Then, we applied the model to a 

test dataset containing spectrograms of our two potential invasive species, An. gambiae and Ae. 

aegypti, to address how TensorFlow performs when it encounters species that do not exist in the 

reference library. To set up this task, we selected the best 20 spectrograms for each of the 

potential invasive species, resulting in test data set containing 40 images. 

 Task 3. Applying TensorFlow to wingbeat recordings of all six species: We added 

recordings associated with two potential invasive species (i.e., those form Task 2) to the reference 

library of Task 1, to test TensorFlow’s performance in distinguishing the potential invasive species 

from the local species. As such, the reference library for this classification task contained 120 

images (again, 20 spectrograms per species).  

 Task 4. Applying TensorFlow to recording collected by different smartphones: As we 

used two different smartphone brands/models to record mosquito sounds, we used this final 

classification task to address (1) if TensorFlow is able to differentiate recordings collected by 

different phones, and (2) if so, whether smartphone model impacts the accuracy of our species 

identification process. Here, we created an image reference library consisting of 100 randomly-

selected spectrograms per smartphone model (200 images in total). 
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3.3 Results 

To develop a robust and accessible mosquito identification system, we generated 

smartphone recordings of 13 local and 2 potentially invasive species. We applied two rounds of 

cleaning to our dataset: first, manually clipping the best-quality, one-second segments of female 

mosquito sounds, and then manually selecting the 20 best-quality spectrogram images per species. 

This resulted in a total of 6 mosquito species, 4 local and 2 potential invasive, that had sample 

sizes sufficient to be used in four classification tasks designed to challenge TensorFlow’s ability 

to identify mosquitoes at species level using wingbeat sounds. The details of results associated 

with each classification task are as follows: 

 

Figure 2. Confusion matrix for four local species in Douglas County, Kansas, using a leave-one-out cross-validation 

technique. Green colors represent correct identifications, and orange misidentifications. All values of zero are removed 

for ease of visualization. 

  

Task 1. We applied TensorFlow to recordings associated with four local species (20 

spectrograms per species), setting 2500 for training steps and 20% for validation. The model 

calibration for this and all following tasks were based on trials using different numbers of training 

steps, considering both correct identification rates and processing times to find optima for training 

TensorFlow (Khalighifar et al. 2019). We created a confusion matrix to depict TensorFlow’s 
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performance in this task (Figure 2). The overall correct identification rate was 86.3%, and two 

species, Aedes trivittatus and Psorophora ciliata, were identified at a rate of 95.0%. Aedes 

albopictus, with a rate of 75.0%, had the lowest correct identification rate. 

Task 2. TensorFlow provides two pieces of information associated with each image: 

suggested species names and certainty rate. Certainty rate can be a factor with which to evaluate 

classifier performance on test images, particularly as regards novel species not represented in the 

reference library (Khalighifar et al. 2020b). We trained TensorFlow on images associated with 

local species, once again using 2500 training steps and 20% validation, and then applied it to test 

images associated with two potential invasive species, Ae. aegypti and An. gambiae. Since these 

two species were not present in the reference library, it was impossible for TensorFlow to identify 

them correctly. However, TensorFlow was consistent in classifying test images: the model 

identified all Ae. aegypti’s images as Ae. albopictus, and all An. gambiae’s images as Ae. trivittatus 

(Figure 3). The overall certainty rate for these two species was 93.2% (95.6% for Ae. aegypti and 

90.7% for An. gambiae), meaning that TensorFlow showed a high confidence in misidentifying 

the two novel species. 

 

 

Figure 3. Confusion matrix resulting from challenging TensorFlow with potential invasive species unknown to the 

reference library. Columns represent species in the reference library, rows are potential invasive species. Red numbers 

show the high certainty rates generated by TensorFlow. The far-right column is the average certainty rate for species 

identifications. 
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Based on previous experience with frog calls (Khalighifar et al. 2020b), we would expect 

lower certainty rates in Task 2: species not in the reference library should have much lower 

certainty rates than those already present in the library. We did not see this pattern. However, we 

did see this kind of pattern with misidentifications in Task 1, where the overall certainty rate for 

misidentifications, 61.8%, was significantly lower than the certainty rate of correctly identified 

images, 88.8% (Mann-Whitney U=78.0, P=1.30e-05; Python 3.8.2). In Task 1, we achieved 

overall certainty rates of 90.9% and 89.1% for correctly identified images associated with Ae. 

trivittatus and Ae. albopictus, respectively. These numbers are approximately close to certainty 

rates associated with An. gambiae (90.7%) and Ae. aegypti (95.6%) in this task, which were 

misidentified as Ae. trivittatus and Ae. albopictus, respectively. 

 Task 3. Here, we added images associated with Ae. aegypti and An. gambiae to the 

reference library to test TensorFlow’s performance ability to discriminate two potentially 

invasive species against local species in a model with 4000 training steps and 20% validation. 

We created a confusion matrix to show correct identification rates associated with each species 

(Figure 4). The overall correct identification rate was 85.0%. We achieved correct identification 

of 95% or above for three species. Most notable among these three, An. gambiae was identified 

with 100% correct identification rate. Ae. albopictus and Ae. aegypti were the most challenging 

species to TensorFlow, and showed the lowest identification rates: 70% of images (14 out of 20) 

were identified correctly. All six misidentified images associated with Ae. aegypti were classified 

as Ae. albopictus. 

 Task 4. We created an image reference library consisting of 100 randomly-selected 

spectrograms per smartphone model (200 images in total). We chose 1500 training steps and 10% 

validation to test TensorFlow’s performance in distinguishing recordings collected by different 
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phones. The overall correct identification rate was 94.5%: images associated with the Samsung 

model had a 97% correct identification rate, and images associated with the iPhone model had a 

92% correct identification rate. 

 

Figure 4. Confusion matrix for all species combined (4 local species and 2 potential invasive) using a leave-one-out 

cross-validation technique. Green colors represent correct identifications, and orange misidentifications. All values of 

zero are removed for ease of visualization 

 

Task 4. We created an image reference library consisting of 100 randomly-selected 

spectrograms per smartphone model (200 images in total). We chose 1500 training steps and 10% 

validation to test TensorFlow’s performance in distinguishing recordings collected by different 

phones. The overall correct identification rate was 94.5%: images associated with the Samsung 

model had a 97% correct identification rate, and images associated with the iPhone model had a 

92% correct identification rate.  

To determine if smartphone model introduced bias to our analyses, we also measured the 

percent of images per species collected by each smartphone (Table 1). All recordings associated 

with An. gambiae and Ae. aegypti were collected using the iPhone. Although all images associated 
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with An. gambiae were identified as Ae. trivittatus in Task 2, only 40% of Ae. trivittatus recordings 

were collected by the iPhone. Even though Task 2 and 3 showed that Ae. aegypti and Ae. albopictus 

were challenging to TensorFlow, 25% of Ae. albopictus recordings were collected using the 

Samsung. Additionally, among the six misidentifications associated with Ae. albopictus class, 

three recordings were collected with the iPhone. We collected 85% of P. ciliata recordings with 

the Samsung and the remaining 15% with the iPhone. Despite the majority of P. ciliata recordings 

being taken with the same phone model, the only misidentification associated with this species 

was collected with the Samsung. To this end, although TensorFlow was able to distinguish 

spectrograms associated with different smartphone models, we believe differences between 

models did not introduce any bias to our analyses because no systematic misidentifications related 

to either model was detected. 

Table 1. Number of spectrograms obtained from recordings collected by different smartphones per species. 

 
Total number of images per 

smartphone 

Total number of 

misidentifications per 

smartphone 

Species name iPhone Samsung iPhone Samsung 

Ae. aegypti 20 - 6 - 

Ae. albopictus 15 5 3 3 

Ae. trivittatus 8 12 - 1 

An. gambiae 20 - - - 

An. quadrimaculatus - 20 - 4 

P. ciliata 3 17 - 1 

 

3.4 Discussion 

In this project, we proposed a practical and inexpensive, citizen-science-based approach 

for improving surveillance of mosquito populations. We used smartphones to record mosquito 
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wingbeats, and then applied state-of-the-art deep-learning techniques to identify recordings at 

species level. In this proof-of-concept exploration, we show that only 20 spectrograms per species 

can achieve an 85.0% overall correct identification rate for six species, with three of those species 

being correctly identified at a rate of 95.0% or above. Though our sample size is relatively small, 

these identification rates are markedly higher than those achieved by previous studies using 

expensive devices to record wingbeats (Moore and Miller 2002, Li et al. 2005, Ouyang et al. 2015, 

Jansson et al. 2019). Though adding more species to our reference library and increasing per-

species sample size would allow us to utilize more robust model evaluation techniques (i.e., k-fold 

cross-validation) and increase the overall accuracy of our model, we believe that these results 

demonstrate that our approach has promise as a citizen-science-implemented mosquito 

surveillance system.  

 However, though TensorFlow was able to give the ‘best possible guess’ for Ae. aegypti 

and An. gambiae in Task 2, the high certainty rates associated with these identifications indicates 

that TensorFlow was unable to flag recordings associated with novel species. The fact that these 

novel species were not present in the reference library means that it was impossible for TensorFlow 

to identify them correctly. However, results of our previous work led to us to expect significantly 

lower certainty rates for images associated with species absent from our reference library. In our 

previous studies, TensorFlow was able to flag species new to the reference library (Khalighifar et 

al. 2020b) and mislabeled species already present in the reference library (Khalighifar et al. 2020a) 

with lower certainty rates for images associated with those species. Though Ae. aegypti and Ae. 

albopictus spectrograms, as well as An. gambiae and Ae. trivittatus spectrograms, are very similar 

to each other (Figure 1), we believe that significantly increasing the sample size of each of these 
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species would introduce more information about wingbeat pattern that would allow TensorFlow 

to differentiate between them. 

 In Task 4, TensorFlow was able to differentiate between Samsung and iPhone recordings 

with a 94.5% overall correct identification rate. We believe TensorFlow was able to distinguish 

between Samsung and iPhone recordings because of systematic noises generated by the Samsung; 

although many smartphones now contain advanced, built-in microphones, they cannot generate 

the same, high-quality recordings produced with high-end recording equipment. Differences 

between smartphones, however, did not appear to introduce any bias to the identification process. 

This finding is echoed in Mukundarajan et al. (2017), who also showed that differences between 

cell phone models do not impact the identification process. As such, we believe that adding 

wingbeat recordings from multiple smartphone models to our reference library would add the 

smartphone recording variation necessary to an accurate, future citizen-science-based 

identification system. 

 In conclusion, we believe our proof-of-concept shows high potential for the combination 

of robust deep-learning techniques and smartphone recording technology to monitor mosquito 

populations. Our method is practical and easy-to-learn, such that any citizen scientist with access 

to a smartphone and inexpensive collecting equipment would be able to contribute to this kind of 

surveillance system. Significant challenges exist as regards detection of novel species, and their 

characterization as novel, but we are optimistic that these problems may be resolved with much-

increased sample sizes. As climate change continues to alter the distribution of mosquito 

populations throughout the Americas (Reiter 2001), our work provides a simple and efficient 

monitoring method for offsetting the enormous public health costs of mosquito-borne diseases 

(Suaya et al. 2007). 
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CONCLUSION AND FUTURE DIRECTIONS 

The set of comprehensive analyses presented here represents a new application of deep-

learning techniques to investigations of biological research questions. In developing these models, 

we provide researchers with examples and illustrations of the potential utility of a high-end 

technological tool that can be used to address questions on multiple aspects of biodiversity and 

ecology. While these research questions include a variety of topics under computational biology, 

biodiversity science, ecology, and biogeography, our models focus most specifically around 

rigorous species identification and detecting novel biodiversity. In this “conclusions” chapter, I 

explore at least briefly a set of future directions and research challenges to which these novel tools 

can be applied. 

Although research focus on cryptic species has grown impressively over the past two 

decades, such species remain one of the most significant challenges in systematic biology 

(Bickford et al. 2007). Taxonomic impediments do not allow easy testing of hypotheses about 

crypticity. For instance, under current taxonomic methods, it is difficult to test whether cryptic 

species are more common in particular habitats, latitudes, or taxonomic groups. As demonstrated 

in Chapters 1 and 2, automated species identification platforms can provide a robust foundation 

for addressing these questions, given the CNNs’ ability to use overall signal to identify species. 

For example, in addition to discriminating the Chagas disease vectors with the highest prevalence 

in Mexico and Brazil at the species level, TensorFlow was able to discriminate species belonging 

to the Triatoma dimidiata complex, a set of cryptic lineages previously impossible to identify 

morphologically (Cruz et al. 2020) and generally identified only via DNA barcoding approaches. 

In our work, these three lineages were identified with a correct overall identification rate of ~86%. 

Another example is with vocally cryptic species, frogs—until recently, three species in our 



72 

 

analyses (Platymantis banahao, P. luzonensis, and P. rabori) were considered to be part of P. 

guentheri (Brown et al. 2015b). TensorFlow, however, was able to discriminate all four of these 

taxa with a correct overall identification rate of 96.3%, as well as differentiate between species 

with similar call properties and close, pairwise phylogenetic relationships with >95% overall 

correct identification rate (e.g., P. indeprensus and P. mimulus, P. levigatus and P. insulatus). In 

these examples, the high accuracy of CNNs in differentiating cryptic species makes automated 

species identification systems a powerful tool to answer questions about morphologically and 

genetically similar species, and to address more broad questions regarding crypticity. 

Detecting undescribed species or the presence of novel, invasive species represent other 

challenges for researchers. As with cryptic species, taxonomic impediments and the need for 

experts to assess images, recordings, and specimens manually dramatically slows identification of 

new species. Similar obstacles exist for monitoring invasive species: researchers must survey for 

species of interest, and then track their spread manually. As explored in Chapters 2 and 3, 

automated identification systems also have the potential to increase the speed and accuracy of new 

species discovery and invasive species detection. For instance, TensorFlow was able to detect frog 

mate calls new to the reference library by flagging novel spectrograms with a markedly lower 

certainty rate, and was able to distinguish An. gambiae and Ae. aegypti from all local mosquito 

species with 85% overall correct identification rate (although the certainty rates were not lower as 

in the Platymantis example). A greater ability to track novel species would allow researchers to 

ask more informed questions about the ecology of places where significant portions of the 

biodiversity are unknown, and allow them to learn more about invasive species’ distributions that 

could help mitigate the economic and ecological costs of establishment. 
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Additional future steps for full development of these platforms that I plan to explore can 

be distilled down to four general types of research questions. The first deals with practical 

applications of these models, such as long-term, large-scale monitoring of target species and 

monitoring individuals in species’ populations based on specific characteristics that can be 

observed in each individual; for example, color patterns in Espadarana prosoblepon (Basto-

Riascos et al. 2017), and unique stripe patterns in Equus grevyi (Zero et al. 2013). With a large-

scale, monitoring cyberinfrastructure in place, it is also possible to test synthetic hypotheses 

regarding species’ range shifts in the face of global change (Williams and Blois 2018, Mortelliti 

et al. 2019), or biotic homogenization and associated reductions in beta-diversity as a consequence 

of ecosystem disturbance (Beauvais et al. 2016, Price et al. 2020). Deep-learning models could 

also be used to answer behavioral biology questions. For instance, these models can help to 

understand better the signals used by species showing Batesian mimicry (e.g., Limenitis archippus 

mimicking Danaus plexippus; Ritland and Brower 2000) or needing to recognize relatives as part 

of systems purportedly driven by kin selection (e.g., Aphelocoma ultramarine; Brown 1972). 

Lastly, biological research questions could explore how TensorFlow and other CNN models are 

able to perceive the patterns distinguishing cryptic forms, and as a consequence illuminate the 

signals that do exist and may be used by the individuals of those populations for recognition.  

In summary, automated species identification systems like those I have explored in this 

dissertation offer an efficient and highly accurate method to improve current biodiversity 

monitoring routines. In allowing researchers to ask more specific questions about complex 

ecological processes and in encouraging participation of citizen scientists, these platforms not only 

further broad-scale biodiversity research endeavors, but also may be a vehicle by which to bring 

biodiversity science to members of the broader community. As such, these systems have high 
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potential to revolutionize ways that scientists are able to approach grand challenge questions in 

biodiversity conservation, ecology, evolution, and public health. 
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