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ABSTRACT 

Anthropogenic climate change is impacting biodiversity at all scales. Detailed spatio-

temporal information about geographic distributions of species will be critical to mitigating the 

ramifications of these impacts. The field of distributional ecology seeks to define and explain 

spatial and temporal variation in species’ distributions. Correlative ecological niche modelling 

(e.g., ecological niche modeling, species distributional modeling), which aims to characterize 

species’ ecological niches in environmental space, is a popular tool used to address questions 

regarding species’ distributions in geographic space. These approaches are powerful, capable of 

rendering conservation planning more understandable and accessible to diverse stakeholders; as 

such, they are increasingly incorporated into natural resources management and conservation 

planning. The traditional modelling framework uses primary biodiversity data in a time-averaged 

approach wherein covariate data for a relevant time period are averaged and treated as static to 

estimate a species’ niche in environmental space and project that the estimation onto the 

geographic landscape. However, these methods impose limitations on model output quality for 

highly mobile, behaviorally complex, and more ephemeral species. Improved methods can 

enhance understanding of macroscale factors driving distributional dynamics of these species to 

provide crucial information that will fill important knowledge gaps necessary to project and 

explore future distributional potential. 

Here, I present a suite of studies aimed at optimizing the current correlative niche modeling 

frameworks to enhance performance for highly mobile species, emphasizing improvements using 

open source data and platforms. Focusing on pelagic seabirds, which often behave as generalists 

at the species level yet exhibit high degrees of intra-specific variation in behavior, my dissertation 

consists of three distinct components. Chapter 1 establishes a baseline of model performance under 
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a seasonal, time-averaged modeling approach for the Wandering Albatross (Diomedea exulans). 

Chapter 2 introduces modifications to the data preparation process so as to incorporate the 

temporal dimension into the traditional niche modeling framework, using the Wood Thrush 

(Hylocichla mustelina) as a case study. Finally, Chapter 3 applies the improved data preparation 

workflow introduced in Chapter 2 to the study species for which baseline models were developed 

in Chapter 1—Diomedea exulans. Improved correlative niche models will be able to inform 

species-level management and policy development more effectively for highly mobile and/or 

migratory species, as well as disease vectors of public health interest.  
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INTRODUCTION 

Anthropogenic climate change will affect global biodiversity at all scales, from individual 

organisms to entire ecosystems. Indeed, as climatic variables are primary drivers of species’ 

geographic distributions (Guisan & Zimmermann 2000; Pearson & Dawson 2003), the impacts of 

climate change on biodiversity are already well-documented (Peñuelas et al. 2013; Pecl et al. 

2017), including species’ range shifts (Hughes 2000; Parmesan & Yohe 2003; Bellard et al. 2012), 

alteration of migration timing and routes (Lemoine & Böhning‐Gaese 2003; Robinson et al. 2009; 

Møller. et al. 2010; Knudsen et al. 2011), changes in phenology (Hughes 2000; Root et al. 2003; 

Edwards & Richardson 2004; Thackeray et al. 2010; Bellard et al. 2012; Cook et al. 2012), and 

accelerated rates of extinction (Thomas et al. 2004). The ability to develop dynamic and adaptive 

management strategies will be critical to managing and protecting our biological diversity in the 

wake of such rapid global change.  

The field of distributional ecology aims to understand the drivers of species’ distributions 

across environmental and geographic landscapes through time. Correlative niche modelling, 

termed species distribution modelling (SDM) or ecological niche modelling (ENM), are at the 

heart of these distributional analyses. These methods characterize a species’ ecological niche in 

environmental space, which can be used to address questions regarding potential distributions on 

the geographic landscape (Peterson 2006). These models correlate primary species occurrence data 

with select climatic and environmental covariates relevant to the species in question. Although 

simplistic compared to mechanistic models (Peterson, Papeş & Soberón 2015), correlative models 

can incorporate relevant ecological information via geographic comparisons, and can reveal how 

these parameters are linked (Barve et al. 2014). Their explicit linkage of geographic and 

environmental spaces can help render conservation planning more understandable and accessible 
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to a variety of stakeholders (Grecian et al. 2012). As such, they are liberally incorporated in a 

broad range of applications including assessment of species’ future distributional, and invasive, 

potential under global climate change scenarios (Pacifici et al. 2015; Searcy & Shaffer 2016) for 

application in biodiversity conservation planning (Rodríguez  et al. 2007; Franklin 2013; Eaton et 

al. 2018) and improving understanding of vectors of zoonotic disease (Peterson 2006; Peterson 

2014), and investigating more broad-scale phylogeographic questions (Alvarado‐Serrano & 

Knowles 2014). 

As with all models, correlative approaches are limited by the quality and treatment of input 

data (Heikkinen, Marmion & Luoto 2012). In distributional ecology contexts, the traditional niche 

modeling framework uses primary species point-observation data in a time-averaged model 

calibration and testing approach wherein environmental (explanatory) covariates are averaged and 

treated as static across a relevant period of time (the researcher-designated study period). Although 

time-averaged modeling has proven quite valuable for exploring the distributional ecology of 

populations and species that are relatively static, the traditional niche modeling framework has had 

limited success estimating distributions of species that do not have fixed distributions such as 

ephemeral insect disease vectors (Peterson et al. 2005; Brandão‐Filho et al. 2011) and highly 

mobile species such as pelagic seabirds at macroscales. 

Seabirds are broadly recognized as ecological indicators of marine health (Piatt et al. 2007; 

Grecian et al. 2012; McGowan et al. 2013; Tancell et al. 2013), and yet while they comprise only 

~3.5% of all bird species they are among the most threatened groups globally with approximately 

one third of the 359 seabird species listed as threatened and nearly half of all breeding populations 

in decline (Croxall et al. 2012; Lewison et al. 2012; Dias et al. 2019). Survival of these species 

relies on maintained health, and dynamic management, of marine ecosystems; but, seabird data 
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tends to be incomplete at the species level. Pelagic seabirds are particularly difficult to study 

comprehensively in terms of ecology and distribution. Many are classified as ecological generalists 

overall, yet maintain individual- or group-level specializations (Ceia et al. 2012; Grecian et al. 

2012). Further, they have a complex behavioral biology, exhibiting distinct behavior states (e.g., 

foraging, resting) spatiotemporally and within classes (age, sex, natal colony, breeding status; 

Phillips et al. 2005; Ceia et al. 2012). In view of their complex behavioral biology, high individual 

variability, complex habitat partitioning and movement strategies, and colonial nesting habits, 

available occurrence data are often limited to individual populations within a species 

(Weimerskirch, Åkesson & Pinaud 2006) and biased towards breeding or fledging individuals 

(Phillips et al. 2005; Weimerskirch, Åkesson & Pinaud 2006; Ceia et al. 2012; Grecian et al. 2012; 

Catry et al. 2013). This bias has left major gaps in knowledge of at-sea distributions of non-

breeding taxa, which must be filled to facilitate development of dynamic conservation planning 

and prioritization of pelagic marine habitats (Weimerskirch et al. 2003; Taylor et al. 2011; Grecian 

et al. 2012; Lascelles et al. 2012). 

Correlative niche modeling offers a method by which the complexities of the distributional 

dynamics of pelagic seabirds can be explored at the species level. Researchers have used these 

methods to address specific aspects of seabird distributional ecology such as habitat suitability 

(Ceia et al. 2012; Oppel et al. 2012; Catry et al. 2013; Louzao et al. 2013; McGowan et al. 2013; 

Scales et al. 2016), identification of hotspots in the present (Grecian et al. 2012) and past (Louzao 

et al. 2013), and selection of potential conservation sites (Tancell et al. 2013). Nearly all of these 

applications, however, utilize correlative niche modeling methods in a movement ecology context, 

utilizing tracking data from individuals within specific populations rather than for the species as a 

whole. Incorporation of the temporal dimension in movement ecology studies assessing the 
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movements of individuals within a population is standard protocol (Dodge et al. 2013), however 

this is not yet standardized in the species level analyses of distributional ecology. 

Here, I present a suite of correlational niche modeling studies, the sum of which build upon 

the traditional modeling framework to incorporate the temporal dimension and produce dynamic 

niche predictions with an eye towards improving their utility for highly mobile species such as 

pelagic seabirds. The first chapter works within the typical distributional ecology framework to 

establish a baseline of model performance for three algorithms in a seasonal, time-averaged 

approach. In addition to providing a baseline of model performance, the analysis provides direction 

for methodological improvements focusing on input data preparation using the nomadic 

Wandering Albatross (Diomedea exulans Linnaeus, 1758). The second chapter introduces a series 

of modifications to the data preparation process of the canonical correlative niche modeling 

framework to incorporate the temporal dimension. The analysis serves as a proof-of-concept of 

the modified framework, providing a side-by-side comparison of model predictions produced 

through the implementation of traditional time-averaged niche modeling and the modified 

temporally-explicit modeling approach. For this I use the Wood Thrush (Hylocichla mustelina, 

Gmelin 1789), a seasonal migrant for which distributional knowledge is functionally complete and 

open-access point observation data are abundant, a critical consideration for use in developing and 

testing methodological improvements. Finally, the third chapter explores the utility of the 

modified, temporally-explicit modeling framework with the less predictable nomadic species D. 

exulans. Each chapter addresses a distinct facet of stepwise model development—baseline, proof-

of-concept, application—to improve the predictive capacity of current correlative modeling 

methodologies for highly mobile species, thereby increasing the overall utility of these methods 

for applied outcomes. All three chapters were developed using strictly open access data and 
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programs, and relevant scripts made openly available, to ensure equitable access to all 

practitioners. 
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CHAPTER 1. Biologically-informed ecological niche models for highly mobile species: Non-

breeding Wandering Albatross (Diomedea exulans) distributions in the southern 

oceans  

 

Citation: Ingenloff, Kate. 2017. Biologically-informed ecological niche models for highly mobile 

species: non-breeding Wandering Albatrosses (Diomedea exulans) distributions in the 

southern oceans. European Journal of Ecology 86(10):2611–2622. DOI: 10.1515/eje-

2017-0006. 
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ABSTRACT 

Background: Although pelagic seabirds are broadly recognized as indicators of the health of 

marine systems, numerous gaps exist in knowledge of their at-sea distributions at the species level. 

These gaps have profound negative impacts on the robustness of marine conservation policies. 

Correlative modelling techniques have provided some information, but few studies have explored 

model development for non-breeding pelagic seabirds. Here, I present a first phase in developing 

robust niche models for highly mobile species as a baseline for further development. 

 

Methodology: Using observational data from a 12-year time period, 217 unique model 

parameterizations across three correlative modeling algorithms (boosted regression trees, Maxent, 

and minimum volume ellipsoids) were tested in a time-averaged approach for their ability to 

recreate the at-sea distribution of non-breeding Wandering Albatrosses (Diomedea exulans) to 

provide a baseline for further development.  

 

Principle Findings/Results: Overall, minimum volume ellipsoids outperformed both boosted 

regression trees and Maxent. However, while the latter two algorithms generally overfit the data, 

minimum volume ellipsoids tended to underfit the data.  

 

Conclusions: The results of this exercise suggest a necessary evolution in how correlative 

modeling for highly mobile species like pelagic seabirds should be approached. These insights are 

crucial for understanding seabird-environment interactions at macroscales, which can facilitate 

ability to address population declines and inform effective marine conservation policy in the wake 

of rapid global change. 



 
8 

KEY WORDS 

Boosted regression trees; digital accessible knowledge; distribution modeling; Maxent; minimum 

volume ellipsoids; pelagic seabird distribution 

 

  



 
9 

INTRODUCTION 

Impacts of global change are increasingly evident, and long-term changes in marine 

systems are likely to be quite profound (Doney et al. 2012). In spite of these changes, spatial 

planning and conservation implementation in marine systems are lagging compared to terrestrial 

regimes (Croxall et al. 2012; Game et al. 2009; Lewison et al. 2012). Of particular concern are 

pelagic zones, which currently lack adequate protection compared to other marine ecoregions. 

Seabirds and other marine predators can serve as proxies to help identify potential marine 

conservation sites (Lascelles et al. 2012; Piatt et al. 2007). 

The strong spatio-temporal heterogeneity inherent in marine systems (Hyrenbach et al. 

2000; Weimerskirch et al. 2005) is mirrored in the movements and behavior of pelagic seabird 

species tracking marine resources. Many pelagic seabird species appear to behave as generalists 

overall, while maintaining individual- or group-level specializations (Ceia et al. 2012). In view of 

their complex behavioral biology (Catry et al. 2013; Grecian et al. 2012), such as high individual 

variability (Phillips et al. 2005), complex habitat partitioning and movement strategies (Phillips et 

al. 2005; Weimerskirch et al. 2006), and colonial nesting habits, available data for many of these 

species are highly biased towards breeding individuals. This information bias has left gaps in 

knowledge about at-sea distributions of non-breeding individuals (Grecian et al. 2012; Lascelles 

et al. 2012; Taylor et al. 2011; Weimerskirch et al. 2003).  

Correlative niche modelling approaches, termed species distribution modeling (SDM) or 

ecological niche modelling (ENM), have the potential to fill knowledge gaps regarding species’ 

distributions (Lewison et al. 2012; Mateo et al. 2013; Rodríguez  et al. 2007), aid in conservation 

planning (Peterson 2006; Rodríguez  et al. 2007), assess conservation-human conflicts (Rodríguez  

et al. 2007), and provide insight into impacts of climate change on species’ distributions (Peterson 
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2006). Ongoing conservation concerns regarding pelagic seabirds make them an important focus 

group in such studies. To date, however, nearly all applications of these approaches to pelagic 

seabirds have focused on individual populations rather than species as a whole, and few have 

explored algorithm function for seabirds outside the breeding season (Oppel et al. 2012; Ramos et 

al. 2015; Thiebot et al. 2011; Wakefield et al. 2011). 

Wandering Albatrosses (Diomedea exulans Linnaeus, 1758) are biennial breeders (Milot 

et al. 2008; Prince et al. 1992) with multiple life stages (juvenile, immature, non-breeding adult, 

breeding adult) marked by distinct behaviors (Ceia et al. 2012; Phillips et al. 2005). Classified as 

Vulnerable (IUCN 2016), they are protected under the Agreement on the Conservation of 

Albatrosses and Petrels (ACAP) and are among the best-studied pelagic seabirds (ACAP 2009). 

Because occurrence data for this species are relatively rich, gaps in knowledge of their natural 

history are less drastic than in other pelagic species. This is a critical consideration for application 

to developing and testing methodological improvements. Studies have already noted impacts of 

global climate change on D. exulans and other pelagic marine species (Weimerskirch et al. 2003; 

Weimerskirch et al. 2012).  

The aim of this study is to identify hemisphere-scale environmental associations of the 

geographic distribution of non-breeding Diomedea exulans, and work towards addressing the 

challenge of modeling these associations in highly mobile species. I present results of a first phase 

of correlational ecological niche modeling using traditional modeling techniques based on three 

algorithms and multiple parameterizations; I assessed each models’ ability to anticipate seasonal 

environmental preferences of non-breeding D. exulans. This initial exploration focused on issues 

of algorithm selection and parameterization in time-averaged correlative modeling. 
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MATERIALS AND METHODS 

Input Data. Models were calibrated using digitally accessible knowledge (DAK; Sousa-

Baena et al. 2014) in the form of Diomedea exulans primary occurrence data and remotely-sensed 

environmental data for December 2000–November 2012. As temporal averaging of models may 

generalize spatial distributions and environmental associations (Peterson et al. 2005), the year was 

divided into thirds (‘seasons’) for this study (Table 1) based loosely on breeding biology, and 

designed to respond to possible shifts in foraging behavior by breeding adults: I = December–

March (egg laying/incubation), G = April–July (brood guard/chick rearing), and P = August–

November (fledging). The study area was restricted to -20˚S to -60˚S latitude, as this latitudinal 

range comfortably encompasses the generalized distributional extent of D. exulans (BirdLife 

International and NatureServe 2015a), reduces concern for significant gaps in environmental data 

coverage—particularly in seasonal, high-latitude regions—and constrains the extent to which 

implemented modeling algorithms must extrapolate.  

 

Table 1. Delineation of seasons for time-averaged correlative models, associated breeding stage, and 

the number of Diomedea exulans occurrence data used in model calibration (Calibration), model 

calibration testing (Calibration testing), and testing after model transfer (Projection testing). 

   D. exulans observation data 

Seasons Period Breeding stage Calibration 
Calibration 

testing 

Projection 

testing 
Total 

I  December – March egg laying/incubation 553 239 269 1061 

G  April – July brood guard/chick rearing 281 121 185 587 

P  August – November fledging 140 60 130 330 

 

 

To characterize the sampling process that produced the data (Anderson 2003), observation- 

and specimen-based occurrence data for all members of the order Procellariiformes were obtained 

from the Global Biodiversity Information Facility (GBIF; accessed 5/26/2015, 
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doi:10.15468/dl.fquf8g; Appendix S1). Diomedea exulans observation data were separated from 

the greater dataset and divided by season (see above), cleaned of duplicates, gridded to the spatial 

resolution and extent of the environmental data, and rarefied to one point per pixel to reduce spatial 

bias (Kramer-Schadt et al. 2013; Phillips et al. 2009). As no information about sex or breeding 

status was associated with the occurrence data, distinguishing non-breeding from breeding 

individuals was impossible. However, because these analyses aimed to assess capacity for 

estimating non-breeding distributions, occurrence data south of 50˚S latitude were excluded from 

analyses (Weimerskirch et al. 2006; Weimerskirch et al. 1985). Of an initial 7903 D. exulans 

records, 1982 were available for use in modeling after cleaning; 136,947 records of the Order were 

used to characterize spatial sampling bias (see below). 

Seven environmental layers were used to summarize the complex environmental landscape 

of the high-latitude marine systems under analysis. Dynamic data included four monthly variables 

of global MODIS Terra L3 SMI data at 4.6 km spatial resolution downloaded from the NASA 

OceanColor Web (Table S1.2; NASA 2014). Daytime and nighttime sea surface temperatures 

(SST) were used to average uneven heating/cooling of the ocean surface. Chlorophyll-a 

(Hyrenbach et al. 2007; Wakefield et al. 2009) and chromophoric dissolved organic matter (Coble 

2007; Nelson & Siegel 2013; Urtizberea et al. 2013) were incorporated as proxies for ocean 

productivity. Imagery were converted from native HDF to ASCII grids, projected to WGS 84 using 

the Marine Geospatial Ecology Tools (MGET) ArcGIS toolbox (Roberts et al. 2010), and 

‘NoData’ values in raster layers filled using a temporal filter followed by a spatial filter in R v 

3.2.2 (R Development Core Team 2009). Next, environmental data layers were stacked by season, 

and the mean, maximum, minimum, and range of values were calculated for each variable. The 

resulting 16 time-averaged rasters were subjected to principle component analyses (PCA) to 
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reduce collinearity. The first five principle 

components (PCs) from each PCA per season 

were used in analyses; in all three seasons, the 

first PC explained ≥ 95% of variation (Table 

S1.3). Geophysical (static) data included 

bathymetry—ETOPO1 global relief data 

(Amante 2009)—and a derivative bathymetric 

slope layer. All seven environmental layers 

were standardized to 0.2083° resolution and 

projected in geographic coordinates (WGS 84). 

Additional information regarding input data is 

available in Appendix S1. 

 

Model Calibration. The biotic-abiotic-mobility 

(BAM) framework is a useful heuristic for 

developing strategies for model calibration 

(Soberón & Peterson 2005). The calibration 

region should match the mobility area (= the 

area that has been accessible to the species over 

relevant periods of time; Barve et al. 2011). 

Figure 1. Model calibration regions for seasons 
I (December–March), P (August–November), 
and G (April–July). Base layers: ETOPO1 
global relief data (Amante 2009) and Global 
Administrative Areas global shapefile 
(http://www.gadm.org). 
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Mobility is not a major distributional constraint for D. exulans (Milot et al. 2008; Saupe et al. 

2012; Soberón & Peterson 2005). As such, calibration regions were delineated as marine areas 

within a 500 km buffer around known occurrences in a particular season (Fig. 1; Barve et al. 2011; 

Saupe et al. 2012). To permit rigorous model evaluation, 30% of occurrence records were selected 

randomly and set aside for model evaluation. Models were calibrated using the remaining 70% of 

occurrence records. 

A total of 217 model calibrations was tested for each of the three time-averaged seasons 

across three correlative niche modeling algorithms, yielding 651 models following the “no silver 

bullet” ideas of Qiao et al. (2015), in which many candidate approaches and algorithms are tested 

to identify the best-performing method for a particular situation. Two presence-only algorithms—

Maxent (Phillips et al. 2006; Phillips et al. 2004) and minimum volume ellipsoids (MVE)—and 

one presence-absence algorithm—boosted regression trees (BRT; Elith et al. 2008)—were selected 

for testing.  

Presence-only algorithms. Maxent version 3.3.3k (Phillips et al. 2006; Phillips et al. 2004) 

was calibrated under different settings for three parameters: prevalence, regularization multiplier, 

and bias layer. Initial sensitivity analyses using the jackknife procedure within Maxent identified 

an ideal combination of environmental variables for model calibration (bathymetry, PCs 1–4). All 

models were run using 100 bootstrapped replicates, 30% random test percentage, and 1000 

maximum iterations; all other settings remained at ‘default’.  

Prevalence was tested over a range of 0.3–0.9 at intervals of 0.1. Prevalence has no impact 

on raw output scores in Maxent, but does affect the ‘logistic’ output (Elith et al. 2011; Merow et 

al. 2013); Elith et al. (2011) and Merow et al. (2013) provide in-depth discussion on the impact of 

prevalence on model performance. The regularization multiplier (RM) impacts model fit by 
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loosening or tightening the constraints of a model around the training data (Elith et al. 2011; 

Shcheglovitova & Anderson 2013). RM was tested at three levels: 1 (default), 1.5, and 2. Bias 

layers are incorporated into Maxent to account for sampling bias in the data and reflect relative 

sampling effort (Kramer-Schadt et al. 2013; Phillips et al. 2009). Two sets of bias layers derived 

from the procellarid occurrence data set aside during data cleaning and matching the grid system 

of the environmental grids were tested. Procellariiform observations per pixel were summed to 

produce the “raw” bias layer. To develop a more refined layer for comparison, the raw bias layer 

was subjected to a Log2 transformation and kernel smoother to scale the value distribution more 

evenly (Table S1.4).  

Minimum volume ellipsoids (MVEs) were calibrated for two sets of parameters: variable 

inclusion and threshold. MVEs calculate environmental distance using Mahalanobis distances 

based on a minimum volume ellipsoid drawn around the training (calibration) data. The simplicity 

of MVEs means few parameters. Six levels of variable inclusion (Runs; Table S1.5) and three 

thresholds (T; 0.9, 0.95, 0.99) were analyzed using R v 3.2.2 (R Development Core Team 2009). 

The threshold designates the central percentage of training data to be used in calculating the MVE, 

such that a higher threshold (e.g., 0.99) indicates greater confidence in the input data used for 

training compared to a lower threshold value (0.95 or 0.9). Scripts were modified from code 

provided by J. Soberόn (pers. comm.), and are available in the Supplementary Materials (Appendix 

S3). As MVEs calculate relative environmental distance, model predictions were inverted and re-

scaled (0–1) to render them comparable to the other algorithms. 

Presence-absence algorithm. Boosted regression trees (BRTs) were calibrated under 

various settings of four parameters: pseudo-absence, tree complexity, learning rate, and bag 

fraction. Two levels of pseudo-absences (PA) were tested after Barbet-Massin et al. (2012; Table 
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S1.6): the first (PA–1) was set at 1500 randomly selected absences; the second (PA–2) was two 

times the total number of model calibration training points. Tree complexity (TC), which controls 

the maximum level of interactions permitted in model fitting, was tested over a range of 1–5, 

wherein TC = 1 indicates no variable interactions and TC = 5 permits interactions between ≤ 5 

variables. Four learning rates (LR) were tested: 0.01, 0.005, 0.0025, and 0.001. Learning rate 

determines the relative contribution of each tree as the model grows, such that a slower learning 

rate tends to smooth effects of stochastic processes and reduces between-model variance. Bag 

fraction (BF) controls stochasticity by designating the random subset used for model calibration 

and testing; a smaller bag fraction is likely to lead to an increase in the chance of fitting of unusual 

variables. Four levels of BF were tested: 0.5, 0.6, 0.7, and 0.75. More in-depth explanations of 

BRTs are provided by Elith et al. (2008). Models were run to a minimum of 1000 trees using all 

seven environmental variables in R v 3.2.2 (R Development Core Team 2009) following scripts 

from Elith et al. (2008).  

 

Model evaluation. Significance was evaluated for all model calibration and model transfer 

scenarios. In light of issues highlighted by Peterson et al. (2008) and Lobo et al. (2008), typical 

receiver operating characteristic (ROC) routines implemented within Maxent were not used. 

Instead, models were evaluated external to the Maxent package using the partial ROC (pROC) 

metric, for which the critical value is AUCratio = 1.0. pROC scores were calculated using the 

randomly selected 30% test data set aside prior to model calibration (see above), and occurrence 

data from the broader projection region to provide two levels of testing. pROC scores were 

calculated in R v 3.2.2 (R Development Core Team 2009) at an omission threshold of E = 5% over 

2000 iterations using code provided by L. Osorio (pers. comm.). Significance was determined by 
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direct count of numbers of replicate analyses in which AUCratio ≤ 1. Although AUC ratios are 

difficult to compare among very different calibration areas or modeling contexts, they can be used 

to assess within-algorithm, within-season performance (e.g., to evaluate the best performing model 

calibration for an individual algorithm). 

Final model performance was assessed using two metrics to permit comparison of models 

across algorithms. The first metric was omission rate. Omission rates (percent of test data predicted 

as ‘absent’) were calculated using the Diomedea exulans observation data set aside and an 80% 

threshold (e.g., E = 20%). As a second measure of performance, BirdLife International’s important 

bird area (IBA) polygons for the Southern Hemisphere (BirdLife International and NatureServe 

2016) were overlaid on the best model for each algorithm and season to evaluate visually the ability 

of each model to anticipate areas of known importance to D. exulans. A query of BirdLife 

International’s marine e-atlas (BirdLife International and NatureServe 2015b) facilitated  

generation of a subset of 130 of the original 1275 polygons identified specifically as valuable to 

non-breeding D. exulans and classified as proposed or confirmed IBA areas. It is critical to note 

that these designations are based on limited data (e.g., a handful of tracking datasets) and do not 

necessarily encompass all areas of importance to non-breeding D. exulans. They do, however, 

provide a simple, qualitative view of model performance, thus their use in model evaluation here 

is considered secondary and supplemental to calculated omission rates. 
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RESULTS 

Significance Testing. All 651 

model calibration scenarios were 

significant (p < 0.05). In model transfer, 

only 52.7% (343 of 651) of models (across 

all combinations of algorithms, parameter 

settings, and environmental datasets) 

performed statistically significantly better 

than random. All 54 MVE models 

(18/season) were significant. Of the 480 

BRT models (160/season), 36.3% (58) 

were significant in season I, 93.8% (150) 

in season G,  and 11.9% (19) models in 

season P. And, of the 117 Maxent models 

(39/season), 94.9% (37) were significant 

in season G and 64.1% (25) in season P. 

None of the Maxent models transferred in 

season I were significant. Results from the 

top-performing model for season I are 

presented for comparison. 

 

Overall Model Performance. MVEs outperformed both Maxent and BRTs in all three 

seasons for both model evaluation metrics (Figure 2). MVEs thresholded at 0.9 and run = 3 (all 

Figure 2. Model performance for best performing 
models by algorithm and season (I: December–
March, G: April–July, and P: August–November): 
omission rates for model calibration and transfer, 
and percentage of total IBA area predicted.  
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variables included except bathymetry and bathymetry slope) yielded the best models in seasons I 

(December–March) and G (August–November), and MVEs thresholded at 0.9 and run = 1 (all 

variables included) in season P (April–July). Model projections following an 80% threshold for 

the top models produced by each algorithm are presented in figures 3 (season G) and 4 (seasons I 

and P). To provide a more detailed view of model predictions relative to occurrence data and IBAs, 

three particularly well-sampled focus regions are shown: the waters surrounding New Zealand and 

Australia (Figs S2.1 – S2.3), the vicinity of the sub-Antarctic Islands off South America (Fig. 

S2.4), and the vicinity of the sub-Antarctic Islands near southern Africa (Fig. S2.5). The top five 

model projections for each algorithm are summarized by season in Table S2.1. 

Model Calibration. In model calibration, MVE had the lowest omission rates in seasons G 

(16.5%) and P (0%). Maxent had the lowest omission rate in season I (24.7%). 

Model Transfer. Though overall model performance declined in model transfer, MVE 

models maintained the lowest omission rates across all three seasons, with omission rate never 

exceeding 35% (Figure 2); its greatest drop in performance was in season P in which the omission 

rate jumped to 24.6% during model transfer. BRT and Maxent suffered the most drastic increases 

in omission. Omission rates for BRT and Maxent peaked at 95.4% and 93.8% respectively in 

season P. The greatest loss in performance occurred in season G for BRT where omission rose by 

64.1% (from 28.9% in model calibration to 93.0% in model transfer), and in season P for Maxent 

where omission rates rose by 67.1% (from 26.7% in model calibration to 93.8% in model transfer). 

MVEs successfully predicted no less than 69.5% of IBA area in all three seasons (Figure 2). 

Maxent and BRT models, on the other hand, never predicted greater than 32.9% of IBA area. 
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Parameterizing Algorithms. Boosted 

Regression Trees. In all, 46.7% (224) of the 480 

BRT models (160/season) were significant in 

model transfer. PA, TC, and LR parameter 

selections all impacted evaluation statistics. BRT 

tended to overfit in model transfer (Figs 3a, 4a-b). 

Models parameterized for PA–2 and TC ≤ 2 

performed best in seasons I and P, whereas models 

parameterized at PA–1 and TC ≥ 3 excelled in G 

(Table S2.1). Higher-performance was also 

associated with a faster LR (0.01) in I, a moderate 

LR (0.005–0.0025) in G, and a slower LR (≤ 

0.0025) in P.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Season G (August–November) model 
projections following an 80% threshold for the top 
models produced by (a) BRT (PA-2, tree complexity 
= 5, learning rate = 0.0025, bag fraction = 0.5), (b) 
Maxent (Log2 bias layer, prevalence = 0.7, 
regularization multiplier = 2), and (c) MVE (threshold 
= 0.9, run = 3). Base layer: Global Administrative 
Areas global shapefile (http://www.gadm.org).  
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Figure 4. Season I (December–March) model projections following an 80% threshold for 
the top models produced by (a) BRT (PA-2, tree complexity = 1, learning rate = 0.01, bag 
fraction = 0.5), (c) Maxent (not significant; no bias layer, prevalence = 0.3, regularization 
multiplier = 2), and (e) MVE (threshold = 0.9, run = 3); and, season P (April–July) model 
projections following an 80% threshold for the top models produced by (b) BRT (PA-2, tree 
complexity = 1, learning rate = 0.05, bag fraction = 0.6), (d) Maxent (no bias layer, prevalence 
= 0.9, regularization multiplier = 1), and (f) MVE (threshold = 0.9, run = 1). Base layer: 
Global Administrative Areas global shapefile (http://www.gadm.org). 

 

 

 

Maxent. In all, 53.0% (62) of 117 models (39/season) parameterized in Maxent were 

significant after model transfer. BRT tended to overfit in model transfer (Figs 3b, 4c-d). Bias and 

RM played the biggest role in model performance. The top models were calibrated with the Log2 

bias layer and RM ≥ 1.5 (G), and the raw bias layer (P; Table S2.1). None of the season I model 

projections were significant. 

Minimum Volume Ellipsoids. All 54 models (18/season) calibrated using MVEs were 

statistically significant in model projection. MVE predictions were generally underfit (i.e., overly 

general) (Figs 3c, 4e-f). Top models incorporated more moderate numbers (2–4) of environmental 

variables (2 ≤ Run ≤ 4) for season G, and more variables (Run ≥ 2) in seasons I and P. 

 

DISCUSSION 

Correlative modeling offers a method by which the complexities of distributional dynamics 

of pelagic seabirds can be explored at the species level. Researchers have used these methods to 

address specific aspects of seabird distributional ecology such as habitat suitability (Catry et al. 

2013; Ceia et al. 2012; Louzao et al. 2013; McGowan et al. 2013; Oppel et al. 2012; Scales et al. 

2016), identification of hotspots in the present e and past (Louzao et al. 2013), selection of potential 

conservation areas, and potential climate change impacts (Krüger 2017). But, many of the more 

recent applications use ensemble modeling (Krüger 2017; Scales et al. 2016) or incorporate seabird 
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movement data (Clay 2016; Quillfeldt 2017) which, while increasing in quantity and availability, 

is nowhere near as prevalent or accessible as point observation data. 

The purpose of this exercise was to develop a baseline of model performance across a suite 

of parameterizations with an eye towards a step-wise approach to improving correlative niche 

modeling techniques for pelagic and other highly mobile species. Although just under half of all 

models tested performed significantly better than random, predictive performance was adequate 

only for MVEs (low omission rates, high percentage of IBA areas predicted). Indeed, MVE models 

consistently indicated the greatest potential for capturing the complexity of Diomedea exulans 

distributional ecology with all calibrations significant in model calibration and model transfer. The 

best performing BRT and Maxent calibrations either had omission rates > 50% or predicted < 35% 

of the total area covered by BirdLife International’s Marine IBAs (BirdLife International and 

NatureServe 2016) of known importance to D. exulans.  

Though methods such as BRT and Maxent have a history of higher predictive performance 

(Elith et al. 2006; Phillips et al. 2009) the results presented here suggest that these more complex 

algorithms may not be ideal for summarizing the complexity of highly pelagic species. 

Parameterizations for both BRT and Maxent tended to overfit models: although Maxent exhibited 

a more moderate fit and higher predictive performance overall, Maxent models were still not 

necessarily ‘good’ at anticipating test occurrence data. Overall performance declined substantially 

during model transfer (i.e., extrapolation to the full study region) for both BRT and Maxent. 

Performance for the two complex algorithms was particularly poor in seasons I and P though 

Maxent improved slightly in season G. This less-than-stellar overall performance likely results 

from the combination of the spatial exclusion of data (i.e., method of determining breeding vs non-
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breeding data), sampling bias within the observation data, and inability to discern breeding from 

non-breeding individuals (i.e., lack of biological information in the observation data).  

My results highlight one of the major roadblocks for correlational niche-modeling 

methodologies: the loss of detail in signals because of over-generalization. Correlative modelling 

characterizes a species’ use of environmental space to create a model that can then be used to 

address questions regarding the species’ distribution in geographic space (Barve et al. 2011). 

Recent studies have shown that no single ‘best’ algorithm or parameter setting for SDM or ENM 

applications exists or is likely to exist (Merow et al. 2013; Qiao et al. 2015; Saupe et al. 2012; 

Shcheglovitova & Anderson 2013), and the results of this study are in close agreement. Therefore, 

algorithm selection and parameterization should be an iterative, hypothesis- or question-driven 

process. Myriad factors affect performance of correlational models, including the limitations of 

the specific algorithms, input data quality, appropriateness of selected explanatory (environmental) 

variables, spatial resolution (Bellier et al. 2010; Hyrenbach et al. 2007; Wakefield et al. 2009; 

Weimerskirch et al. 2005), and study region extent (Barbet-Massin et al. 2012; Barve et al. 2011; 

Hyrenbach et al. 2007). As a result of this complexity, a key point is that averaging environmental 

data across each of the three seasons limits the detail available in the modelling outputs (Peterson 

et al. 2005; Scales et al. 2016). 

The most obvious limitation encountered in this preliminary study of model assessment for 

pelagic bird distributions is the quality of the occurrence data, lack of absence data (Elith et al. 

2011), sampling bias inherent in opportunistically collected data (Elith et al. 2011; Grecian et al. 

2012; Phillips et al. 2009; Weimerskirch et al. 2006), and lack of relevant additional biological 

information (i.e., sex, age, or breeding status; Grecian et al. 2012). These factors—lack of 
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biological information and bias—necessarily influence calibration region designation, ultimately 

impacting overall model performance.  

 
Figure 5.  Diomedea exulans occurrence data 
overlaid with Southern Ocean front lines 
(STF – subtropical front; SAF – sub-
Antarctic front; PF – polar front; sACCF – 
southern Antarctic Circumpolar Current; 
sbACCF – southern boundary Antarctic 
Circumpolar Current). Note the distinct 
spatial bias in observation data, particularly in 
the lack of data on the high seas. 
 

 

Bias is a significant concern in 

assessing biodiversity patterns at macro-

scales (Beck et al. 2014), and these biases 

are amplified when data are derived in bulk 

from portals such as GBIF (Beck et al. 

2013; Beck et al. 2014; Graham et al. 2004; Yesson et al. 2007). Diomedea exulans point 

occurrence data used here are strongly biased towards the Argentine Basin, the Tasman Sea, south 

Pacific Ocean south of Tasmania, the Campbell Plateau and Chatham Rise around Australia and 

New Zealand, and areas directly adjacent to breeding colonies (Figure 5); occurrence data are 

minimal for the high seas in the South Pacific Ocean east of the Pacific Rise, east of the Atlantic 

Ridge in the South Atlantic Ocean, south of South Africa around Agulhas Basin and Plateau, and 

the Crozet Basin and the Southeast Indian Ridge in the Indian Ocean. This uneven sampling leads 

to gaps in documentation of the species’ response to some environmental conditions, limiting 

model generality (Owens et al. 2013). 
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A final concern associated with DAK is taxonomic uncertainty (Graham et al. 2004). Great 

albatross taxonomy has undergone multiple revisions, only recently ‘stabilizing’ with four species 

in the Diomedea exulans complex (Burg & Croxall 2004; Chambers et al. 2009; Nunn et al. 1996; 

Rains et al. 2011). Morphological similarities between species and significant overlap of non-

breeding individuals within the complex which make differentiation of species at-sea quite 

difficult (Onley & Scofield 2007). Lack of cohesive taxonomic resolution only further increases 

the potential for homogenization of species ecology, an important factor often not discussed which 

reduce the confidence and accuracy of correlative models. 

Despite the intriguing result in which MVEs outperformed more complex algorithms, 

deriving ecological conclusions from low- or even moderate-performing models such as those that 

I have presented herein is premature. Rather, this study provides a baseline for development of 

better and more predictive models that will eventually be capable of accounting for the complex 

behaviors of such species. Further, it serves as a reminder that correlative niche modeling 

approaches are sensitive to a large suite of factors, and are impacted inherently by the study 

question itself. In light of the limitations of readily available seabird data (e.g., strong spatio-

temporal biases, no information on sex and age of the individuals involved), development of such 

a baseline of algorithm behavior is necessary for successful for evaluating the efficacy of more 

complex data treatment strategies. 

Improved correlative modeling approaches, building on the baseline presented herein, can 

significantly enhance understanding of macroscale factors driving distributional dynamics of 

species, including pelagic seabirds and other highly mobile species, and provide crucial 

information to fill important information gaps necessary to project and explore the future 

distributional potential (Catry et al. 2013; Louzao et al. 2011). These insights, in combination with 



 
27 

increasing knowledge of species' natural history and ecology, can inform conservation planners, 

and offer information vital to the research priorities identified by Lewison et al. (2012) including 

identification and mapping of movement corridors and foraging areas to understand impacts of 

global change on the distributions of pelagic seabirds and other highly mobile species.  
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ABSTRACT  

Background: Detailed spatio-temporal information about geographic distributions of species is 

critical for biodiversity analyses in conservation and planning. Traditional correlative modeling 

approaches use species observational data in model calibration and testing in a time-averaged 

framework. This method averages environmental values through time to yield a single 

environmental value for each site. Although valuable for exploring distributions of species at a 

broad level, this averaging is one of myriad factors impacting model quality and reliability.  

 

Methods: We sought to optimize correlative niche model performance by incorporating time-

specificity into the existing modeling framework. We modified the existing framework to account 

for temporal dynamics in species’ distributions to produce more robust, temporally-explicit 

models. Using the Wood Thrush (Hylostichla mustelina) as our study species, we introduce a 

method of (1) deriving a temporally-explicit pseudo-absence dataset using kernel density estimates 

to replicate relative sampling of sites through time, and (2) incorporating temporally-explicit 

covariates in model calibration. 

 

Results: By accounting for location, and month and year of primary data collection, the time-

specific models successfully yielded dynamic predictions reflecting known distributional shifts in 

Hylocichla mustelina’s annual movement pattern. 

 

Broader Impacts: The modified data preparation steps that we present incorporate temporal 

dimensions into traditional correlational modeling approaches improving predictive capacity and 

overall utility of these models for highly mobile, short-lived, or behaviorally complex species. 
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With the ability to estimate species’ niches in greater detail, time-specific models will be able to 

address specific concerns of species-level management and policy development for highly mobile 

and/or migratory species, as well as disease vectors of public health interest. 

 

KEY WORDS 

Distributional ecology, bias cloud, dynamic niche modeling, migratory species, temporally explicit 

bias correction, Wood Thrush 
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INTRODUCTION 

Understanding species’ geographic distributions is critical for managing biodiversity. 

Correlative distributional modeling (a.k.a., species distributional modeling, ecological niche 

modeling) is a popular tool used for characterizing species’ ecological niches in environmental 

space and projecting them into geographic dimensions (Peterson 2006). By relating primary 

biodiversity data to biologically relevant environmental covariates to provide spatially explicit 

predictions of climatic suitability, such models can inform about where survey data are limited or 

where knowledge gaps may impede development of more detailed models. These simple but 

powerful tools render geographic dimensions of biodiversity more understandable and accessible 

to diverse stakeholders and have been liberally incorporated into a broad range of research 

questions relevant to biodiversity and conservation (Rodríguez  et al. 2007; Franklin 2013; Eaton 

et al. 2018), invasive species (Ingenloff et al. 2017), climate change (Beck 2013; Pacifici et al. 

2015; Searcy & Shaffer 2016), phylogeography (Alvarado‐Serrano & Knowles 2014), and human 

health (Peterson 2006; Rodríguez  et al. 2007; Peterson 2014).  

A notable limitation of current niche modeling methodologies is the temporal averaging of 

covariate data such that each unique geographic coordinate pair is assigned a single environmental 

value for the full study period. This averaging reduces predictive capacity for species that are 

highly mobile, behaviorally complex, or with a lifetime or life stages that are short with respect to 

the temporal span of environmental changes; although, using higher resolution weather data in 

place of long-term climate data has been shown to mitigate some of these impacts (Bateman, 

VanDerWal & Johnson 2012; Feldmeier et al. 2018). Traditional approaches use covariates that 

are averaged temporally, effectively treating covariates as static values for the breadth of the study 

period. The result is a single, static view of predicted suitability for the study species, which has 
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been the topic of discussion in light of species that switch among multiple niches between seasons 

(Martínez-Meyer, Peterson & Navarro-Sigüenza 2004). These approaches can result in over-

generalization of estimates of ecological niches (Peterson et al. 2005; Barve et al. 2014; Ingenloff 

2017), particularly for migratory or behaviorally complex organisms (Peterson et al. 2005; 

Ingenloff 2017). Modeling mobile species presents a particularly challenging situation because, to 

be meaningful, predictive models must capture both a seasonally dynamic landscape and 

associated species movements, which traditional methods are unable to account for (Elith, Kearney 

& Phillips 2010). In light of anthropogenic climate change and other human impacts, garnering an 

understanding of species’ distributional dynamics through time, rather than a simple snapshot of 

overall potential geographic distribution, is critical. 

Unlike the field of movement ecology where the pairing of covariate data contemporal to 

species observational data has been the standard for some time (Dodge et al. 2013), few correlative 

modeling studies in distributional ecology have incorporated time-specificity. Most studies applied 

a “seasonal” modeling approach—modeling of a single facet of a species’ life history (e.g. 

breeding or wintering) using time-averaged approaches (Laube, Graham & Böhning-Gaese 2015; 

Skov et al. 2016; Soriano‐Redondo et al. 2019). Fink et al. (2010) introduced spatiotemporal 

exploratory models (STEM) wherein an ensemble or mixture model is created from a suite of 

seasonally- or behaviorally-restricted distributional models to encompass the breadth of the study 

species’ life history. Seasonal approaches, however, may be subject to reduced predictive capacity 

resulting from the need for user-designated subsetting of observational data and because it still 

involves considerable temporal averaging of environmental variation. Williams, Willemoes and 

Thorup (2017) explored a “full year” modeling framework that evaluated each month averaged 

across years to characterize accurately seasonal movements of cuckoos. Other researchers 
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overcame issues of over-generalization owing to time averaging with more unique approaches: 

e.g., Barve et al. (2014) combined detailed physiological measurements with temporally specific 

summaries of weather and climate to understand geographic distributions of Spanish moss. 

However, incorporation of mechanistic approaches within correlative modeling frameworks is 

constrained by an overwhelming lack of detailed physiological data for the vast majority of species 

(Peterson, Papeş & Soberón 2015). More recently, two studies incorporated time without excessive 

temporal-averaging or incorporation of mechanistic methods: Welch, Pressey and Reside (2018) 

produced monthly distributional models for seven shark species over 10-years, yielding a dynamic 

view of monthly projected distributions for the study period; and, Abrahms et al. (2019) used a 

multi-model ensemble approach to predict daily habitat suitability for blue whales. Still, explicit 

methodologies broadly accessible to the greater community of distributional ecology practitioners 

remain lacking. 

Here, we introduce several modifications to the input data preparation process for 

traditional niche modeling frameworks that incorporate temporal dimensions and produce dynamic 

niche predictions. We use a well-sampled migratory species, the Wood Thrush (Hylocichla 

mustelina Gmelin, 1789), to demonstrate three modifications to the data preparation process: 

generation of a weighted time-specific pseudo-absence dataset, wherein covariate data are 

assigned to each occurrence corresponding to the place and time of collection, and spatiotemporal 

rarefication of presence and pseudo-absence data (Fig. 1). These modifications account for spatial 

and temporal survey bias in openly accessible primary occurrence data and alleviate the problem 

of over-generalization in niche characterization resulting from temporal averaging of covariates. 

We provide a comparison of this time-explicit method with the traditional time-averaged approach 
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and assess the ability of each to predict climatic suitability for the species across North and Central 

America. 

 

MATERIALS AND METHODS 

To maximize reproducibility, we obtained all data from open-access sources and ran all 

processes using the open-source statistical analysis program R v3.5.2 (R Development Core Team 

2009). All supplementary information (doi.org/10.6084/m9.figshare.8160290.v2) and relevant R 

scripts (https://doi.org/10.6084/m9.figshare.8160227.v1) are freely available. Figure 1 illustrates 

the modified data preparation workflow described here relative to traditional time-averaged 

approaches (Supp. Fig. 1)  

 

doi.org/10.6084/m9.figshare.8160290.v2
https://doi.org/10.6084/m9.figshare.8160227.v1
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Figure 1. Modified input data preparation workflow for temporally-explicit correlative modeling. 
Blue dashed circles denote changes from the traditional methods. 
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Study Species.—We selected the long-distance migrant Wood thrush (Hylocichla 

mustelina) because distributional knowledge is effectively complete and data are abundant. Each 

year, H. mustelina travels between discrete breeding and wintering ranges. Breeding occurs during 

late spring and summer (mid-May into August) in the eastern United States and southeastern 

Canada in deciduous and mixed forests (Collar 2005; BirdLife International 2017). Early autumn, 

they begin a staggered migration from breeding to wintering grounds in southern Mexico and 

Central America, with more northerly populations migrating beginning in mid-August and more 

southerly populations delaying migration until late September and early October (Collar 2005; 

BirdLife International 2017). H. mustelina remains on the wintering grounds until late March–

April. Vagrants have been recorded in the Caribbean, northern South America, western United 

States, and western Europe (Collar 2005).  

 

Input Data 

Occurrence data.—We downloaded two sets of primary occurrence data from the Global 

Biodiversity Information Facility (GBIF). The first was that of our study species, Hylocichla 

mustelina (GBIF 26 March 2018). The second, the reference group used to characterize the 

sampling process that produced the data (Anderson 2003), included the entire family Turdidae 

(GBIF 24-26 March 2018). We constrained both searches to records obtained via human 

observation between 1980–2018 with no known spatial issues for all of continental North and 

Central America. Initial data calls returned 532,633 H. mustelina records from 19 institutions and 

4,848,853 Turdidae records from 47 institutions.  

Data were subjected to a sequence of quality control checks including visual inspections to 

detect obvious outliers/inaccuracies (e.g., wrong hemisphere, long-distance vagrants), and removal 
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of records with imprecise (e.g., no decimal places) or missing geographic coordinates. Records 

collected after 2015 were removed owing to temporal limits of covariate data (see below). We 

delineated a model calibration region (accessible area for the species) based on the known natural 

history of H. mustelina, in which we identified the range of the core population including breeding 

and wintering locations, and a ~750 km buffer to account for their high-mobility, but excluding 

known areas of vagrancy (Supp Fig. 2; Barve et al. 2011). This reduced data available to 433,648 

H. mustelina and 3,011,848 Turdidae records. We intended to run analyses using all data (1980–

2015); however, generating the time-specific pseudo-absence dataset (see below) was so 

cumbersome computationally that we stopped analyses after March 2010. This reduced our data 

to 134,293 H. mustelina and 828,267 Turdidae records. We set aside 2014–2015 H. mustelina data 

(149,340 records) for use as an additional model evaluation dataset. 

Pseudo-absence data.—Derivation of a pseudo-absence dataset from a reference group 

sampled in the same manner as the study species (Anderson 2003) is a common practice for 

correlative models requiring presence-absence data when true absence data are unavailable 

(Kramer-Schadt et al. 2013). Sampling bias, however, is a universal characteristic of primary 

biodiversity data (Kadmon, Farber & Danin 2004), and can be a significant problem in correlative 

modeling (Phillips et al. 2009; Anderson et al. 2016). While pseudo-absence data cannot correct 

for biases inherent in a presence dataset, they can assure that background data used in model 

calibration reflect sampling biases in presence data. 

To incorporate time, we generated a “bias cloud”: a time-specific pseudo-absence dataset 

reflective of sampling intensity through time for the duration of the study period (see dynamic 

pseudo-absence dataset in the Supplementary Information). To this end, we first divided the study 

period into discrete time steps; we chose an intermediate temporal resolution (monthly), but we 
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note that this could be applied to any temporal resolution for which the occurrence and covariate 

data both are available. For each time step, we subset reference group occurrence data (including 

the study species) sampled during that time step and generated a kernel density estimate (KDE) 

using the ‘npudensbw’ and ‘npudens’ functions in the ‘np’ package (Hayfield & Racine 2008). 

Kernel density bandwidth specifications were calculated using an Epanechonikov kernel, a least-

squares cross-validation bandwidth selection method, and an adaptive-nearest neighbor 

continuous-variable as a balance between producing detailed KDEs and computational feasibility. 

We then applied a 95% threshold (excluding the lowest 5%) to the resulting KDE and took a 

weighted sample wherein the KDE value of each pixel functioned as the weight. The number of 

points extracted was proportional to the number of reference group observations in that time step 

relative to the overall dataset (see Supplementary Information for additional detail). The collective 

sampling from all time steps yielded a pseudo-absence dataset reflective of spatial and temporal 

sampling patterns within the reference group data. 

Despite our intention of producing a pseudo-absence dataset through 2015, the process was 

halted at March 2010 as sampling through time increased drastically resulting in dramatically 

increased processing time for heavily sampled time steps (reaching nearly a week on a powerful 

lab desktop; Supp. Figs. 3 and 4). The pseudo-absence dataset for the amended study period 

(January 1980 – March 2010) totaled 241,958 pseudo-absences for the 363 time steps, 

approximately double the number of presence points. Although no H. mustelina observation data 

existed for 13 months during the study period (Supp. Table 1), the process produced pseudo-

absence data for all time steps because reference group observations existed in all time steps—

these mismatches between occurrence data and pseudo-absence data function in effect as absence 

information in model calibration.  
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Time-averaged and time-specific datasets.—To address sampling bias further, we rarefied 

H. mustelina data and pseudo-absences to a single point per pixel relative to the spatial resolution 

of the covariate data (Phillips et al. 2009; Kramer-Schadt et al. 2013). To create the time-averaged 

datasets, we spatially rarified the original data to a single point per pixel. For time-specific datasets, 

we rarified the original data spatially and temporally to one point per pixel per time step. The 

rarefication process reduced data to 34,004 (1980–2010) and 36,436 (2014–2015) H. mustelina 

records and 205,837 pseudo-absences for time-averaged analyses, and 76,119 (1980–2010) and 

61,479 (2014–2015) H. mustelina records and 241,958 pseudo-absences for time-specific 

analyses. We ensured that temporal information (e.g., month and year) remained associated with 

all data for use in model evaluation. 

Covariate data.—For simplicity, we used three monthly covariates from TerraClimate—

precipitation, and minimum and maximum temperature—as these data cover a broad temporal 

range (1958–2015) available at monthly resolution (Abatzoglou et al. 2018). Data were cropped 

to the study region (Supp. Fig. 2) and left at their native 4.6 km resolution. Covariate data were 

available through 2015 only, limiting the overall study period to 1980–2015. We extracted 

covariate data to all rarefied time-specific occurrence and pseudo-absence records described above 

such that each point was associated with the climatic information specific to the place and point 

in time (month) of observation.  

For time-averaged analyses, we derived a dataset of six summary layers that included mean 

and range for each of the three covariates for January 1980 – March 2010. Summary data were 

extracted to each occurrence and pseudo-absence record in the rarefied time-averaged datasets. 

We created a second set of summary covariates for 2014–2015 and extracted these data to the 

rarefied 2014–2015 time-averaged H. mustelina data.  
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After removing two records with no covariate values because they fell marginally on the 

climate data grid, we randomly divided each of the 1980–2010 datasets 50-50 for use in model 

calibration/selection and evaluation (Supp. Table 2). The 2014–2015 H. mustelina data were set 

aside for final model evaluation. 

 

Correlational Niche Modeling 

Following Qiao, Soberón and Peterson (2015), we explored a suite of model calibration 

scenarios for three commonly used presence-absence algorithms—generalized linear models 

(GLM), generalized additive models (GAM), and boosted regression trees (BRT)—to identify the 

parameterization yielding the best time-averaged and time-specific model for each algorithm. For 

each algorithm, we explored a suite of parameter settings, such that we generated large numbers 

of candidate models, and then selected a final model among them using criteria of predictive ability 

and simplicity. 

Model calibration.—We calibrated GLMs with both main effects and pairwise interactions 

via an exhaustive search using the ‘glmulti’ function (Calcagno 2013). We used the ‘gam’ function 

(Wood 2011) to calibrate GAMs, assessing four smoothers (cubic splines, thin plate splines, P 

splines, and adaptive splines), two smoother basis dimensions (default, k = 25), two smoothing 

parameters (default, restricted maximum likelihood), and covariate interactions ranging from no 

interaction to full interactions. We visually assessed covariate responses for GLM and GAM 

calibrations using the ‘response.plot2’ function (Thuiller et al. 2016). Finally, we calibrated BRTs 

using the ‘gbm.step’ function (Hijmans et al. 2017), evaluating four levels of learning rate (default, 

0.005, 0.0025, 0.001), two bag fraction levels (default, 0.6), and tree complexity from 0 up to three 

(time-specific) and four (time-averaged). 
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Model selection.—We used algorithm-appropriate metrics to select the best time-averaged 

and time-specific calibration (parameter settings) for each algorithm. We used the Akaike 

Information Criterion (AIC) for within-algorithm model selection of GLMs and GAMs (Warren 

& Seifert 2011). However, as AIC is inappropriate for tree-based algorithms, we used training and 

test data mean squares estimates (MSE) and test data omission rate for BRTs. MSE values were 

calculated using the ‘MSE’ function (Signorell et al. 2019). Potential discrepancies involved in 

comparing AIC to cross validation results were not a concern because we were not using these 

statistics for cross-algorithm comparisons. 

Model transfer.—The six models selected (three time-averaged and three time-specific) 

were transferred across the study region for both study periods (1980–2010 and 2014–2015). 

Time-specific models were projected to each time step for both evaluation periods. Time-averaged 

models were projected to both sets of time-averaged covariate data. We thresholded model outputs 

to the minimum presence training value adjusted to permit 1% omission error (E = 1%) to allow 

for some error in the data (Pearson et al. 2007). To allow comparisons with time-specific outputs, 

we plotted time-averaged test data for each time step onto static model outputs. The resulting 

monthly projections were then aggregated into image sequences in graphics interchange format 

(GIF) to produce dynamic visualizations of predicted climatic suitability through time using R 

packages ‘magick’ and ‘gifski’ (Ooms 2018a; Ooms 2018b). 

Model evaluation.—We evaluated thresholded model projections using the temporally 

corresponding evaluation datasets. Specifically, we looked at model omission rates (how well test 

data were predicted by the model) and proportion of the study region predicted suitable. Because 

H. mustelina exhibits a predictable movement pattern between distinct breeding and wintering 

sites during the year, we also sought to assess model performance within these broader periods. 
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Thus, for assessment purposes only, we designated three “seasons” based on behavior: breeding 

(June–August), wintering (October–April), and migratory (May and September). 

 

RESULTS 

The model selection process yielded six models for evaluation: three time-averaged and 

three time-specific (details in Supplementary Information; Supp. Tables 3–4). Figure 2 provides a 

snapshot of time-specific model results for all three algorithms; time-averaged model results are 

presented in Figure 3. GIFs providing a side-by-side comparison of the thresholded time-averaged 

and time-specific model projections for each algorithm for the 1980–2010 primary study period 

and 2014–2015 supplemental evaluation period are available in the Supplementary Information 

(doi.org/10.6084/m9.figshare.8160290.v2). 

 

Time-specific models 

All three time-specific models adequately predicted both the area of the core Hylocichla mustelina 

population and beyond to include areas of known vagrancy. On average, they predicted greater 

proportions of the study area climatically suitable for both evaluation periods than time-averaged 

models (Supp. Table 5). GAM and GLM models had the lowest overall mean omission rates during 

the 1980–2010 study period (GAM 0.036; GLM 0.036; BRT 0.210; Supp. Table 6); however, 

overall omission rate for 2014–2015 was roughly equivalent for all three algorithms, with all three 

models performing well during model transfer (BRT 0.026, GAM 0.027, GLM 0.025). 

 

 

 

 

doi.org/10.6084/m9.figshare.8160290.v2
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Figure 2. Snapshot of thresholded (E=1%) time-specific BRT (left column), GAM (center column), 
and GLM (right column) projections for three individual times steps from 1980 (January, top row; 
April, center row; August, bottom row). Green regions indicate areas predicted climatically suitable; 
tan denotes areas predicted unsuitable; black triangles denote Hylocichla mustelina test data.  

 

Variability in model performance (omission rate) was greatest during the wintering months 

for GAM and GLM (1980–2010), and for all three 2014–2015 projections (Supp. Figs. 5–7, Supp. 
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Table 7). Mean monthly area predicted suitable was most restricted during the wintering period 

for the GAM (12.4–41.8%) and GLM (14.6–46.4%) models, and greatest during the breeding 

period (GAM 80.1–81.5%; GLM 89.7–91.6%) for the primary study period (Supp. Figs. 8–10, 

Supp. Table 8). This same trend was evident in all three 2014–2015 time-specific model 

projections. The 1980–2010 BRT model had noticeably elevated omission rates during April 

(0.591) and May (0.401), coinciding with a tendency towards underpredicting the northernmost 

distributional extent of H. mustelina. While all three time-specific models failed to predict the full 

northern extent of the species, the area predicted suitable by the BRT model was particularly low 

(April – 19.7%; May – 30.0%) relative to the GAM (April – 30.5%; May – 56.7%) and GLM 

(April – 36.3%; May – 60.7%) models.  

 

Time-averaged models 

All three time-averaged models fit the core distribution of Hylocichla mustelina, but failed to 

predict into areas of known vagrancy, and tended to underpredict during wintering months, with 

patchy areas of predicted suitability in Central America and southeastern Mexico (Fig. 3). Model 

projections into 2014–2015 predicted more area climatically suitable (BRT 36.9%, GAM 42.3%, 

GLM 46.3%) than for 1980–2010 (BRT 32.8%, GAM 36.6%, GLM 39.3%; Supp. Figs. 8–10, 

Supp. Table 5). Overall omission rates were effectively the same for GAM (1980–2010: 0.029; 

2014–2015: 0.020) and GLM (1980–2010: 0.030; 2014–2015: 0.020) models, and slightly 

elevated in the BRT model (1980–2010: 0.037; 2014–2015: 0.039; Supp. Figs. 5–7, Supp. Table 

6). Model variability was greatest during the winter for both time periods, with area predicted 

suitable patchier in Central America and southeastern Mexico. Omission rates ranged 0.092–0.159 

(BRT), 0.074–0.178 (GAM), and 0.087–0.283 (GLM) during 1980–2010 and 0.087–0.177 (BRT), 
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0.049–0.158 (GAM), and 0.045–0.157 (GLM) during 2014–2015. Model variability was lowest 

for all three models during the breeding season (0.025–0.326 for BRT, 0.018–0.044 for GAM, and 

0.008–0.026 for GLM) for 1980–2010, as well as for GAM (0.007–0.023) and GLM (0.008–0.023) 

in 2014–2015. 

 
Figure 3. Thresholded (E=1%) time-averaged 1980–2010 BRT (left), GAM (center), and GLM (right) 
model projections. Green regions indicate areas predicted climatically suitable; tan denotes areas 
predicted unsuitable; black triangles denote Hylocichla mustelina test data. 

 

DISCUSSION 

All three time-specific models successfully yielded dynamic (monthly) predictions 

reflecting known distributional shifts in Hylocichla mustelina’s annual cycle (Collar 2005; 

BirdLife International 2017). On average, the majority of the study region (> 75%) was predicted 

climatically suitable during the breeding season (June – August) and included areas of known 

vagrancy in the central United States; a moderate proportion of the study region (60–75%) was 

predicted suitable during migration (May, September); and areas of bioclimatic suitability during 

the wintering period (November – April) were restricted to the southeastern United States, eastern 

Mexico, and Central America. In contrast, the time-averaged models predicted 32–39% (1980–

2010) and 37–46% (2014–2015) of the study region (including the eastern United States, 
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southeastern Canada, and Central America) climatically suitable, successfully capturing the 

geographic breadth of H. mustelina’s core population; but the static view of predicted climatic 

suitability failed to reflect the dynamic nature of H. mustelina’s annual distribution. Both time-

averaged and time-specific models exhibited increased model variability (elevated omission rates) 

during the wintering period potentially as a reflection of strong temporal bias in the primary 

observation data (Supp. Fig. 4), and omission rates were notably elevated in April and May (1980–

2010) for time-specific BRT and GLM models. 

Temporally-explicit approaches to correlative niche modeling methods have been at the 

core of movement ecology analyses for some time (Gschweng et al. 2012), and yet the 

distributional ecology community has yet to adopt a similar approach. Indeed, despite long-

standing understanding that traditional (time-averaged) correlative modeling approaches lead to 

over-generalization of climatic niches (Peterson et al. 2005; Barve et al. 2014; Ingenloff 2017), 

efforts to incorporate time-specificity into the modeling framework have a fairly punctuated 

history. Seasonal modeling has been the gold star method for some time (Laube, Graham & 

Böhning-Gaese 2015; Skov et al. 2016; Soriano‐Redondo et al. 2019). However, because these 

methods subset data, resulting models often provide a less than comprehensive overview of the 

study species’ full niche. Methods introduced to account for these gaps include the STEM 

approach (stacking of seasonally time-averaged models; Fink et al. 2010), and full modeling 

framework (assessing time-averaged monthly intervals; Williams, Willemoes & Thorup 2017). 

Despite the well-documented need for a temporally-inclusive approach to modeling that avoids 

time-averaging across study periods (Peterson et al. 2005), techniques didn’t appear in the 

literature until 2018 (Welch, Pressey & Reside 2018; Abrahms et al. 2019). Our contribution 

establishes (and makes more broadly accessible) a set of temporally-explicit input data preparation 
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techniques that improves the overall utility of the traditional correlative niche modeling framework 

for non-sedentary species. We note that this approach can be applied at many temporal resolutions, 

depending on the questions being asked and the data availability: centuries for species responding 

to broad, historical climate shifts (e.g., in the Pleistocene); years for long-lived species that respond 

to environmental changes very generally (e.g., El Niño events); months for behaviorally complex 

species or seasonal migrants; or even days for short-lived species (e.g., mosquitoes). 

The workflow presented here builds upon the traditional modeling framework to improve 

ability to characterize species’ niches for any situation in which a species’ distribution may 

respond to changing environmental conditions, and considers the full range of a species’ 

distributional dynamics relative to climatic suitability in a single modeling endeavor. It also 

incorporates the full suite of available observational data without subjective subsetting of data or 

running multiple series of model calibrations to capture bioclimatic suitability of a species for 

individual time steps (Peterson et al. 2005). Further, where the traditional framework requires 

averaging of environmental covariates across large timeframes (long-term climate means), 

rendering some climatic covariates useless (e.g., variables with large variances), time-specific 

modeling readily allows for the incorporation of higher resolution weather and remotely sensed 

covariates which have already shown improved performance in time-averaged modeling 

applications (Bateman, VanDerWal & Johnson 2012; Feldmeier et al. 2018). Finally, derivation 

of a time-specific pseudo-absence dataset, or “bias cloud”, provides a dataset reflective of both 

spatial and temporal facets of relative sampling effort. These improvements can provide a 

significant advantage over previous methods, such as for application to conservation or 

management of highly mobile species, assessments of species with short lifespans and 
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spatiotemporally variable populations (e.g., mosquito populations), and species responding to 

large-scale climate variation. 

 As with any modeling effort, several limitations are associated with time-explicit modeling 

First, the derivation of temporally-explicit pseudo-absence datasets can be computationally 

demanding. This limitation ultimately resulted in our abridging the study period from 2015 to 

2010, although relatively few species will have such enormous quantities of distributional data 

available. Further, this approach still results in some degree of temporal averaging due to the 

limitations of available primary species observation data and relevant covariate data. This issue 

can be alleviated with improved data precision and quality perhaps from high resolution weather 

and remotely sensed data. Finally, these methods are not necessary or appropriate for all species 

or modeling applications. Rather, we recommend application (a) for species where traditional 

methods either fail to capture underlying distributional dynamics or (b) when the questions 

underpinning the modeling require more insight into a species’ distribution through time. Indeed, 

both algorithm selection and parameterization, and the decision to engage in time-averaged, 

seasonal, or time-specific modeling should be approached as an iterative, hypothesis- or question-

driven process. In spite of these limitations, this approach provides a critical template for capturing 

the distributional dynamics of highly mobile or behaviorally complex species. 

Future research should assess the utility of these methods for niche-tracking species that 

move in geographic space in concert with changing bioclimatic conditions (Tingley et al. 2009) 

versus niche-shifting species (Nakazawa et al. 2004), particularly as regards the need for separate 

models in cases in which qualitatively distinct niches are used in different parts of the year 

(Batalden, Oberhauser & Peterson 2007). These methods could be adapted into a hypothesis testing 

framework easily, similar to tests developed by Warren, Glor and Turelli (2008). Further 
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application has potential to elucidate drivers of movement patterns and improve our understanding 

of migratory connectivity, a critical component of effective conservation plans for mobile species 

(Runge et al. 2014). 

Sample size.—Correlational distribution modeling methods assume systematic sampling 

of the full model calibration region, but this rarely happens in practice. In time-averaged 

approaches, small sample sizes are associated with increased model variability and decreased 

model accuracy (Stockwell & Peterson 2002; Wisz et al. 2008). We purposely chose a study 

species for which available data were plenty and completely representative of the species’ realized 

niche, but availability of such robust datasets are limited to relatively few taxonomic groups. 

Indeed, correlative modeling is often used to help fill gaps where distributional knowledge is 

limited and sampling incomplete, and small sample sizes often correspond to species of increased 

conservation concern (Gaubert, Papeş & Peterson 2006). Further, data available for mobile species 

are often biased towards particular seasons or behaviors, as seen in our H. mustelina example 

where the overwhelming majority of available data were collected in the United States during 

breeding or migration (Supp. Fig. 4). By associating sample data with spatially and temporally 

relevant covariate data, a time-specific approach could maximize limited data through increased 

retention during the data cleaning process (e.g., data with duplicate locality but different time of 

collection) to decrease overall model variability. These issues of information content and retention 

warrant further exploration. 

Temporal sampling bias.—Spatial and temporal biases are inherent in open-access primary 

occurrence data. Myriad studies illustrate strong links between spatial bias in primary species 

observation data and environmental bias in resulting distributional models (Phillips et al. 2009; 

Beck et al. 2014), but few assess impacts of temporal bias. Environmental bias may be introduced 
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into models as a result of uneven sampling in geographic space, and it stands to reason that we 

also risk inserting bias into models where strong biases exist in the temporal capture of data. 

Further research should treat the relationship between temporal bias and model accuracy. See 

supplementary information for further discussion.  

Our ability to gain improved insight into the spatiotemporal dynamics of species 

distributions via temporally-explicit approaches can positively impact analyses in biodiversity 

management and conservation, as well as in public health. Consideration for the complexity 

involved with conserving migratory species is a relatively recent addition to conservation planning, 

and can be critical in ensuring that species which engage in long-distance movement patterns are 

protected adequately (Fink et al. 2010; Runge et al. 2014; Runge et al. 2016; Jetz et al. 2019). In 

particular, such approaches may be useful in identifying marine areas of conservation interest (Nur 

et al. 2011; Skov et al. 2016) or in other dynamic management applications such as establishing 

or evaluating marine time-area closures (Lascelles et al. 2014; Abrahms et al. 2019). Similarly, 

the ability to produce time-specific distributional models can also help inform decision-making 

and control measures for current and emerging zoonotic and vector-borne diseases when 

populations of species respond to environmental changes (Clements & Pfeiffer 2009; Giles et al. 

2014; Ramsey et al. 2015; Parra-Henao et al. 2016). 

 

ACKNOWLEDGEMENTS 

We are grateful for all the open access data providers sharing their data. We would also like to 

thank the KU ENM Group for insightful discussions, and Christopher Hensz and Marlon Cobos 

for help with programming hiccups. We thank two reviewers for thoughtful critiques of the original 

manuscript. 



 
56 

AUTHOR CONTRIBUTIONS 

KI and ATP conceived the ideas and designed methodology. KI led analyses and writing of the 

manuscript. Both authors contributed critically to the drafts and gave final approval for publication. 

  



 
57 

REFERENCES 

Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A. & Hegewisch, K.C. (2018) Terraclimate, a high-

resolution global dataset of monthly climate and climatic water balance from 1958–2015. 

Scientific Data, 5, 170191. 

Abrahms, B., Welch, H., Brodie, S., Jacox, M.G., Becker, E.A., Bograd, S.J., Irvine, L.M., 

Palacios, D.M., Mate, B.R. & Hazen, E.L. (2019) Dynamic ensemble models to predict 

distributions and anthropogenic risk exposure for highly mobile species. Diversity and 

Distributions, 25, 1182–1193. 

Alvarado‐Serrano, D.F. & Knowles, L.L. (2014) Ecological niche models in phylogeographic 

studies: applications, advances and precautions. Molecular Ecology Resources, 14, 233–

248. 

Anderson, R.P. (2003) Real vs. artefactual absences in species distributions: tests for Oryzomys 

albigularis (Rodentia:Muridae) in Venezuela. Journal of Biogeography, 30, 591–605. 

Anderson, R.P., Araújo, M.B., Guisan, A., Lobo, J.M., Martínez-Meyer, E., Peterson, A.T. & 

Soberón, J. (2016) Are species occurrence data in global online repositories fit for 

modeling species distributions? The case of the Global Biodiversity Information Facility 

(GBIF). Final Report of the Task Group on GBIF Data Fitness for Use in Distribution 

Modelling. Global Biodiversity Information Facility (GBIF). 

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., 

Soberόn, J. & Villalobos, F. (2011) The crucial role of the accessible area in ecological 

niche modeling and species distribution modeling. Ecological Modelling, 222, 1810–1819. 

Barve, N., Martin, C., Brunsell, N.A. & Peterson, A.T. (2014) The role of physiological optima in 

shaping the geographic distribution of Spanish moss. Global Ecology and Biogeography, 

23, 633–645. 

Batalden, R.V., Oberhauser, K.S. & Peterson, A.T. (2007) Ecological niches in sequential 

generations of eastern North American monarch butterflies: the ecology of migration and 

likely climate change implications. Environmental Entomology, 36, 1365–1373. 

Bateman, B.L., VanDerWal, J. & Johnson, C.N. (2012) Nice weather for bettongs: using weather 

events, not climate means, in species distribution models. Ecography, 35, 306–314. 

Beck, J. (2013) Predicting climate change effects on agriculture from ecological niche modeling: 

Who profits, who loses? Climatic Change, 116, 177–189. 

Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. (2014) Spatial bias in the GBIF database and 

its effect on modeling species' geographic distributions. Ecological Informatics, 19, 10–

15. 

BirdLife International (2017) Hylocichla mustelina (amended version of 2016 assessment). The 

IUCN Red List of Threatened Species 2017: e.T22708670A111170926. 

Calcagno, V. (2013) glmulti: Model selection and multimodel inference made easy. R package 

version 1.0.7. 

Clements, A.C.A. & Pfeiffer, D.U. (2009) Emerging viral zoonoses: frameworks for spatial and 

spatiotemporal risk assessment and resource planning. Veterinary Journal, 182, 21–30. 

Collar, N.J. (2005) Family Turdidae (thrushes). Handbook of the Birds of the World (eds J. del 

Hoyo, A. Elliott & D.A. Christie), pp. 514–807. Lynx Edicions, Barcelona. 

Dodge, S., Bohrer, G., Weinzierl, R., Davidson, S.C., Kays, R., Douglas, D., Cruz, S., Jiawei Han, 

Brandes, D. & Wikelski, M. (2013) The environmental-data automated track annotation 



 
58 

(Env-DATA) system: linking animal tracks with environmental data. Movement Ecology, 

1, 3. 

Eaton, S., Ellis, C., Genney, D., Thompson, R., Yahr, R. & Haydon, D.T. (2018) Adding small 

species to the big picture: species distribution modelling in an age of landscape scale 

conservation. Biological Conservation, 217, 251–258. 

Elith, J., Kearney, M. & Phillips, S. (2010) The art of modelling range-shifting species. Methods 

in Ecology and Evolution, 1, 330–342. 

Feldmeier, S., Schefczyk, L., Hochkirch, A., Lötters, S., Pfeifer, M.A., Heinemann, G. & Veith, 

M. (2018) Climate versus weather extremes: temporal predictor resolution matters for 

future rather than current regional species distribution models. Diversity and Distributions, 

24, 1047–1060. 

Fink, D., Hochachka, W.M., Zuckerberg, B., Winkler, D.W., Shaby, B., Munson, M.A., Hooker, 

G., Riedewald, M., Sheldon, D. & Kelling, S. (2010) Spatiotemporal exploratory models 

for broad-scale survey data. Ecological Applications, 20, 2131–2147. 

Franklin, J. (2013) Species distribution models in conservation biogeography: developments and 

challenges. Diversity and Distributions, 19, 1217–1223. 

Gaubert, P., Papeş, M. & Peterson, A.T. (2006) Natural history collections and the conservation 

of poorly known taxa: ecological niche modeling in central African rainforest genets 

(Genetta spp.). Biological Conservation, 130, 106–117. 

GBIF (24–26 March 2018) Data from: Global Biodiversity Information Facility Occurrence 

Download-"Turdidae". DOI: http://dx.doi.org/10.15468/dl.usjwfr, 

http://dx.doi.org/10.15468/dl.mzlu54,  http://dx.doi.org/10.15468/dl.7tyi73, 

http://dx.doi.org/10.15468/dl.wbehpg, http://dx.doi.org/10.15468/dl.ewipqa, 

http://dx.doi.org/10.15468/dl.tdz842, http://dx.doi.org/10.15468/dl.3klver, 

http://dx.doi.org/10.15468/dl.jwmwmw.  

GBIF (26 March 2018) Data from: Global Biodiversity Information Facility Occurrence Download 

- "Hylocichla mustelina". DOI: http://dx.doi.org/10.15468/dl.hdg0e2. 

Giles, J.R., Peterson, A.T., Busch, J.D., Olafson, P.U., Scoles, G.A., Davey, R.B., Pound, J.M., 

Kammlah, D.M., Lohmeyer, K.H. & Wagner, D.M. (2014) Invasive potential of cattle 

fever ticks in the southern United States. Parasites & Vectors, 7, 189. 

Gschweng, M., Kalko, E.K.V., Berthold, P., Fiedler, W. & Fahr, J. (2012) Multi-temporal 

distribution modelling with satellite tracking data: predicting responses of a long-distance 

migrant to changing environmental conditions. Journal of Applied Ecology, 49, 803–813. 

Hayfield, T. & Racine, J.S. (2008) Nonparametric econometrics: The np package. Journal of 

Statistical Software, 27, 1–32. 

Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. (2017) dismo: species distribution modeling. 

R package version 1.1-4. https://cran.r-project.org/web/packages/dismo/index.html. 

Ingenloff, K. (2017) Biologically informed ecological niche models for an example pelagic, highly 

mobile species. European Journal of Ecology, 3, 55–75. 

Ingenloff, K., Hensz, C.M., Anamza, T., Barve, V., Campbell, L.P., Cooper, J.C., Komp, E., 

Jiménez, L., Olson, K.V., Osorio-Olvera, L., Owens, H.L., Peterson, A., T, Samy, A., 

Simões, M. & Soberón, J. (2017) Predictable invasion dynamics in North American 

populations of the Eurasian collared dove Streptopelia decaocto. Proceedings of the Royal 

Society B, 284, 11–57. 



 
59 

Jetz, W., McGeoch, M.A., Guralnick, R., Ferrier, S., Beck, J., Costello, M.J., Fernandez, M., 

Geller10, G.N., Keil, P., Merow, C. & Meyer, C. (2019) Essential biodiversity variables 

for mapping and monitoring species populations. Nature Ecology & Evolution, 3, 539–551. 

Kadmon, R., Farber, O. & Danin, A. (2004) Effect of roadside bias on the accuracy of predictive 

maps produced by bioclimatic models. Ecological Applications, 14, 401–413. 

Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schroder, B., Lindenborn, J., Reinfelder, V., 

Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, 

J., Macdonald, D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R., 

Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C., 

Belant, J.L., Hofer, H. & Wilting, A. (2013) The importance of correcting for sampling 

bias in MaxEnt species distribution models. Diversity and Distributions, 19, 1366–1379. 

Lascelles, B., Di Sciara, G.N., Agardy, T., Cuttelod, A., Eckert, S., Glowka, L., Hoyt, E., 

Llewellyn, F., Louzao, M., Ridoux, V. & Tetley, M.J. (2014) Migratory marine species: 

their status, threats and conservation management needs. Aquatic Conservation: Marine 

and Freshwater Ecosystems, 24, 111–127. 

Laube, I., Graham, C.H. & Böhning-Gaese, K. (2015) Niche availability in space and time: 

migration in Sylvia warblers. J. Biogeogr, 42, 1896–1906. 

Martínez-Meyer, E., Peterson, A.T. & Navarro-Sigüenza, A.G. (2004) Evolution of seasonal 

ecological niches in the Passerina buntings (Aves: Cardinalidae). Proceedings of the Royal 

Society B, 271, 1151–1157. 

Nakazawa, Y., Peterson, A.T., Martínez-Meyer, E. & Navarro-Sigüenza, A.G. (2004) Seasonal 

niches of Nearctic-Neotropical migratory birds: implications for the evolution of 

migration. Auk, 121, 610–618. 

Nur, N., Jahncke, J., Herzog, M.P., Howar, J., Hyrenbach, K.D., Zamon, J.E., Ainley, D.G., Wiens, 

J.A., Morgan, K., Ballance, L.T. & Stralberg, D. (2011) Where the wild things are: 

predicting hotspots of seabird aggregations in the California Current system. Ecological 

Applications, 21, 2241–2257. 

Ooms, J. (2018a) gifski: highest quality GIF encoder. R package version 0.8.6. https://CRAN.R-

project.org/package=gifski. 

Ooms, J. (2018b) magick: advanced graphics and image-processing in R. R package version 2.0. 

https://CRAN.R-project.org/package=magick. 

Pacifici, M., Foden, W.B., Visconti, P., Watson, J.E., Butchart, S.H., Kovacs, K.M., Scheffers, 

B.R., Hole, D.G., Martin, T.G., Akcakaya, H.R. & Corlett, R.T. (2015) Assessing species 

vulnerability to climate change. Nature Climate Change, 5, 215. 

Parra-Henao, G., Quirós-Gómez, O., Jaramillo-O, N. & Cardona, Á.S. (2016) Environmental 

determinants of the distribution of Chagas disease vector Triatoma dimidiata in Colombia. 

American Journal of Tropical Medicine and Hygiene, 94, 767–774. 

Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007) Predicting species 

distributions from small numbers of occurrence records: a test case using cryptic geckos in 

Madagascar. Journal of Biogeography, 34, 102–117. 

Peterson, A.T. (2006) Uses and requirements of ecological niche models and related distribution 

models. Biodiversity Informatics, 3, 59–72. 

Peterson, A.T. (2014) Mapping disease transmission risk. Johns Hopkins University Press, 

Baltimore. 



 
60 

Peterson, A.T., Martínez-Campos, C., Nakazawa, Y. & Martínez-Meyer, E. (2005) Time-specific 

ecological niche modeling predicts spatial dynamics of vector insects and human dengue 

cases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 99, 647–655. 

Peterson, A.T., Papeş, M. & Soberón, J. (2015) Mechanistic and correlative models of ecological 

niches. European Journal of Ecology, 1, 28–38. 

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) 

Sample selection bias and presence-only distribution models: implications for background 

and pseudo-absence data. Ecological Applications, 19, 181–197. 

Qiao, H.J., Soberón, J. & Peterson, A.T. (2015) No silver bullets in correlative ecological niche 

modelling: insights from testing among many potential algorithms for niche estimation. 

Methods in Ecology and Evolution, 6, 1126–1136. 

R Development Core Team (2009) R: A language and environment for statistical computing. R 

Foundation for Statistical Computing: http://www.r-project.org. 

Ramsey, J.M., Peterson, A.T., Carmona-Castro, O., Moo-Llanes, D.A., Nakazawa, Y., Butrick, 

M., Tun-Ku, E., la Cruz-Félix, K.D. & Ibarra-Cerdeña, C.N. (2015) Atlas of Mexican 

Triatominae (Reduviidae: Hemiptera) and vector transmission of Chagas disease. 

Memórias do Instituto Oswaldo Cruz, 110, 339–352. 

Rodríguez , J.P., Brotons, L., Bustamante, J. & Seoane, J. (2007) The application of predictive 

modelling of species distribution to biodiversity conservation. Diversity and Distributions, 

13, 243–251. 

Runge, C.A., Martin, T.G., Possingham, H.P., Willis, S.G. & Fuller, R.A. (2014) Conserving 

mobile species. Frontiers in Ecology and the Environment, 12, 395–401. 

Runge, C.A., Tulloch, A.I.T., Possingham, H.P., Tulloch, V.J.D. & Fuller, R.A. (2016) 

Incorporating dynamic distributions into spatial prioritization. Diversity and Distributions, 

22, 332–343. 

Searcy, C.A. & Shaffer, H.B. (2016) Do ecological niche models accurately identify climatic 

determinants of species ranges? American Naturalist, 187, 423–435. 

Signorell, A., Aho, K., Alfons, A., Anderegg, N., Aragon, T., Arppe, A., Baddeley, A., Barton, K., 

Bolker, B., Borchers, H.W., Caeiro, F., Champely, S., Chessel, D., Chhay, L., Cummins, 

C., Dewey, M., Doran, H.C., Dray, S., Dupont, C., Eddelbuettel, D., Enos, J., Ekstrom, C., 

Elff, M., Erguler, K., Farebrother, R.W., John Fox, R.F., Friendly, M., Galili, T., Gamer, 

M., Gastwirth, J.L., Gel, Y.R., Gross, J., Grothendieck, G., Jr, F.E.H., Heiberger, R., 

Hoehle, M., Hoffmann, C.W., Hojsgaard, S., Hothorn, T., Hui, M.H.W.W., Hurd, P., 

Hyndman, R.J., Iglesias, P.J.V., Jackson, C., Kohl, M., Korpela, M., Kuhn, M., Labes, D., 

Lang, D.T., Leisch, F., Lemon, J., Li, D., Maechler, M., Magnusson, A., Malter, D., 

Marsaglia, G., Marsaglia, J., Matei, A., Meyer, D., Miao, W., Millo, G., Min, Y., Mitchell, 

D., Naepflin, M., Navarro, D., Nilsson, H., Nordhausen, K., Ogle, D., Ooi, H., Parsons, N., 

Pavoine, S., Plate, T., Rapold, R., Revelle, W., Rinker, T., Ripley, B.D., Rodriguez, C., 

Russell, N., Sabbe, N., Venkatraman E. Seshan, Greg Snow, M.S., Soetaert, K., Stahel, 

W.A., Stephenson, A., Stevenson, M., Templ, M., Therneau, T., Tille, Y., Trapletti, A., 

Ulrich, J., Ushey, K., VanDerWal, J., Venables, B., Verzani, J., Warnes, G.R., Wellek, S., 

Wickham, H., Wilcox, R.R., Wolf, P., Wollschlaeger, D., Yee, T. & Zeileis, A. (2019) 

DescTools: tools for descriptive statistics. R package version 0.99.27. 

Skov, H., Heinänen, S., Thaxter, C.B., Williams, A.E., Lohier, S. & Banks, A.N. (2016) Real-time 

species distribution models for conservation and management of natural resources in 

marine environments. Marine Ecology Progress Series, 542, 221–234. 



 
61 

Soriano‐Redondo, A., Jones‐Todd, C.M., Bearhop, S., Hilton, G.M., Lock, L., Stanbury, A., 

Votier, S.C. & Illian., J.B. (2019) Understanding species distribution in dynamic 

populations: a new approach using spatio‐temporal point process models. Ecography, 42, 

1092–1102. 

Stockwell, D.R. & Peterson, A.T. (2002) Effects of sample size on accuracy of species distribution 

models. Ecological Modelling, 148, 1–13. 

Thuiller, W., Georges, D., Engler, R. & Breiner, F. (2016) biomod2: ensemble platform for species 

distribution modeling. R package version 3.3-7. https://CRAN.R-

project.org/package=biomod2. 

Tingley, M.W., Monahan, W.B., Beissinger, S.R. & Moritz, C. (2009) Birds track their Grinnellian 

niche through a century of climate change. Proceedings of the National Academy of 

Sciences, USA, 106, 19637–19643. 

Warren, D.L., Glor, R.E. & Turelli, M. (2008) Environmental niche equivalency versus 

conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883. 

Warren, D.L. & Seifert, S.N. (2011) Ecological niche modeling in Maxent: the importance of 

model complexity and the performance of model selection criteria. Ecological 

Applications, 21, 335–342. 

Welch, H., Pressey, R.L. & Reside, A.E. (2018) Using temporally explicit habitat suitability 

models to assess threats to mobile species and evaluate the effectiveness of marine 

protected areas. Journal for Nature Conservation, 41, 106–115. 

Williams, H.M., Willemoes, M. & Thorup, K. (2017) A temporally explicit species distribution 

model for a long distance avian migrant, the common cuckoo. Journal of Avian Biology, 

48, 1624–1636. 

Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A. & Group, N.P.S.D.W. 

(2008) Effects of sample size on the performance of species distribution models. Diversity 

and Distributions, 14, 763–773. 

Wood, S.N. (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation 

of semiparametric generalized linear models. Journal of the Royal Statistical Society (B), 

73, 3–36. 
 

  



 
62 

CHAPTER 3. Assessing the utility of time-specific correlative ecological niche framework to 

produce dynamic distributional predictions for the nomadic Wandering Albatross 

(Diomedea exulans) 
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ABSTRACT 

 

Background. Correlative ecological niche modeling is a commonly utilized method of estimating 

a species’ ecological niche on the geographic landscape. Traditional time-averaged approaches 

tend to fail for migratory species and other less predictable, highly mobile species. Recent work 

incorporated temporal dimensions into the traditional niche modeling framework through a series 

of modifications to the input data preparation workflow. The initial proof-of-concept indicated that 

this modified workflow is able to predict more accurately the ecological niches of mobile species. 

This contribution assesses the utility of the modified time-specific niche modeling framework with 

a less predictable species. 

 

Methods. Using open access primary biodiversity point observation data, we applied time-specific 

correlative niche modeling framework to a nomadic seabird species, the Wandering Albatross 

(Diomedea exulans). I compared traditional time-averaged modeling to the temporally-explicit 

approach alongside two methods of addressing sampling bias in open access species observation 

data. 

 

Results. These modeling results provide further support for the improved utility of temporally-

inclusive modeling framework for species with seasonally unstable geographic distributions. 
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INTRODUCTION 

Correlative ecological niche modeling, broadly applied in the fields of movement ecology 

and distributional ecology, provides a statistical method of quantifying a species’ niche and its 

footprint in geographic space. Applications range from modeling habitat suitability (e.g., Ceia et 

al. 2012; Scales et al. 2016), to estimating species’ invasive potential (e.g., Ingenloff et al. 2017), 

to exploring more broad-scale phylogeographic questions (e.g., Alvarado-Serrano & Knowles 

2014). In typical correlative modeling frameworks, environmental covariates are averaged across 

the study period such that each geographic location has only a single environmental value. 

However, this time-averaging of covariates can result in over-generalization of environmental 

variation (Peterson et al. 2005), decreasing reliability for highly mobile (Ingenloff 2017) and more 

ephemeral species. 

Movement ecology studies assessing movements of individuals using tracking (movement) 

data incorporate the temporal dimension as standard protocol (Dodge et al. 2013); this step, 

however, is not common in species-level analyses in distributional ecology where the input data 

are point observation data derived from human or machine observations, or data associated with 

museum specimens (Andrew & Fox 2020; Ingenloff & Peterson 2021). Distributional ecologists 

have explored diverse methods to address issues in modeling highly mobile organisms at the 

species level, including spatiotemporal exploratory models (stacking of seasonally time-averaged 

models; Fink et al. 2010), incorporation of mechanistic models (Kearney et al. 2010; Barve et al. 

2014), and a full-year modeling framework that evaluated series of monthly models averaged 

across the full study period (Williams, Willemoes & Thorup 2017). However, seasonal correlative 

niche modeling approaches—modeling a particular season or behavior state time-averaged over 

the full breadth of the study period—persist as the most commonly utilized approach (Laube, 
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Graham & Böhning-Gaese 2015; Soriano-Redondo et al. 2019). More recently, a few studies have 

made explicit efforts to incorporate the temporal dimension into species-level modeling to produce 

dynamic niche predictions (Welch, Pressey & Reside 2018; Abrahms et al. 2019; Andrew & Fox 

2020; Ingenloff & Peterson 2021).  

Ingenloff and Peterson (2021) introduced a modification to the data preparation process of 

traditional correlational modeling frameworks to incorporate the temporal dimension of species-

level distributional dynamics. That study assessed impacts of these methodological improvements 

on a single well-studied, seasonal migratory bird (Wood Thrush, Hylocichla mustelina). However, 

migration is only one of four major classifications of large-scale species movement patterns. Of 

the four, migration and intergenerational relays (“regular migration over multiple generations”) 

tend to be more predictable, whereas nomadism (wandering movements commonly under 

conditions of high inter-annual resource variability) and irruption (occasional long-distance 

movement by typically sedentary species) consist of more erratic, less predictable movement 

patterns (Runge et al. 2014). Increased unpredictability in movement patterns inherently increases 

the difficulty of developing effective conservation strategies for these species. Ingenloff (2017) 

established a series of seasonal, time-averaged baseline correlative niche models for the nomadic 

Wandering Albatross (Diomedea exulans, Linnaeus 1758). These baseline models provide an ideal 

starting point for which to evaluate the utility of the time-specific modeling framework of 

Ingenloff and Peterson (2021).  

This study seeks to assess the utility of time-specific correlative niche modeling 

frameworks for the nomadic Diomedea exulans, using open-access primary occurrence data from 

the Global Biodiversity Information Facility (GBIF). We provide comparisons between traditional 
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time-averaged approaches to modeling and the time-averaged seasonal modeling of Ingenloff 

(2017) with the dynamic niche predictions resulting from the modified framework.  

 

MATERIALS & METHODS  

To maximize the reproducibility of analyses in this study, all analyses were run using open-

access data and open-source tools in R v3.6.2 (R Development Core Team 2009). Relevant, 

generalized R scripts (modified from Ingenloff & Peterson 2021) are available at: 

https://github.com/kingenloff/dynamicENM. We used the same study period (February 2000 – 

December 2013 study period) and study region (-20˚S to -60˚S latitude) as Ingenloff (2017; 

Supplemental Figure 1) to facilitate direct comparisons. 

 

STUDY SPECIES 

The study species is a nomadic, Subantarctic, circumpolar, pelagic seabird. Long-lived and 

slow to mature, Diomedea exulans breeds biennially in large colonies on five Subantarctic island 

groups (South Georgia, Prince Edward Islands, Crozet Islands, Kerguelen Islands, and Macquarie 

Island) and exhibit high natal and breeding philopatry (i.e., they return to the colony where they 

hatched throughout their lifetime to breed; Prince et al. 1992; Jouventin & Dobson 2002; Milot, 

Weimerskirch & Bernatchez 2008). Their spatial distributions at any moment are a function of sex 

(Phillips et al. 2011; Åkesson & Weimerskirch 2014; Pereira et al. 2018), age (Åkesson & 

Weimerskirch 2005; Weimerskirch, Åkesson & Pinaud 2006; Weimerskirch et al. 2014; Froy et 

al. 2015), colony of origin (Wakefield et al. 2011), breeding phase (Phillips et al. 2005; Mackley 

et al. 2010; Rains, Weimerskirch & Burg 2011; Weimerskirch et al. 2014), and foraging strategy 

(Forslund & Pärt 1995). Traditional correlative niche modeling techniques fail to capture the 

https://github.com/kingenloff/dynamicENM
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complexity of these factors, producing overly generalized models (Ingenloff 2017) due in part to 

the fact that this information (e.g., age, sex, breeding phase) is largely unavailable for species’ 

point observation data (Camphuysen et al. 2012) which are collected opportunistically either as 

observational data (e.g., from research or fishing vessels or through citizen science initiatives) or 

from specimen records in museums or natural history collections (Camphuysen et al. 2012; 

Grecian et al. 2012; Meyer et al. 2016). Often, point observation data consist of no more than the 

species identification with a date/time and location of observation, thus lacking much biologically 

relevant information (Grecian et al. 2012). Further confounding species-level modeling efforts is 

the issue of accurate at-sea identification of D. exulans from the three other “great” albatross 

species in the Wandering Albatross complex—the Amsterdam Albatross (D. amsterdamensis, 

Joux, Jouventin, Mougin, Stahl & Weimerskirch 1983), Antipodean Albatross (D. antipodensis, 

Robertson & Warham 1992), and Tristan Albatross (D. dabbenena Matthews, 1929)—which are 

visually similar and with whom D. exulans have significant range overlap (Burg & Croxall 2004; 

Schodde et al. 2017). The at-sea distribution of D. antipodensis falls entirely within that of D. 

exulans; those of D. amsterdamensis and D. dabbenena are mostly within that of D. exulans 

(Supplemental Figure 2). 

 

INPUT DATA 

Primary Occurrence data.—A GBIF query for all available Diomedeidae (G.R. Gray 

1840) occurrence data between 2000 and 2013 returned 122,058 occurrences, including 18,001 

Diomedea exulans observations (GBIF 31 December 2018). Data were curated to remove 

occurrences with obvious inaccuracies (e.g., inconsistencies in species names, occurrences with 

imprecise or completely lacking coordinates), or occurrences lacking adequate temporal 
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information (e.g., sampling date), limited to include only those records collected during February 

2000 – December 2013 and clipped to the study region. This reduced the data to 17,731 D. exulans 

and 102,845 Diomedeidae occurrences. 

Pseudo-absence data.—Because true absence data are not available for D. exulans, we 

used the 102,845 cleaned Diomedeidae occurrences as a reference group from which to generate 

a temporally explicit pseudo-absence dataset, or bias cloud, to characterize the sampling bias that 

produced the study species’ data (Anderson 2003) following the methods of Ingenloff and Peterson 

(2021). The temporal resolution of the pseudo-absence dataset was limited to monthly time steps 

matching the temporal resolution of the environmental covariate data. The pseudo-absence dataset 

for the February 2000 – December 2013 study period, totaling 167 time steps (months), included 

26,685 pseudo-absences (~1.5x D. exulans occurrences). 

Rarefication and subsetting of data.—We explored two levels of rarefication to address 

sampling bias in both the D. exulans observation data and the pseudo-absence data. Initially, we 

rarefied D. exulans occurrence data and pseudo-absences spatially only. Spatial rarefication 

reduced data to a single point per pixel (time-averaged data) and a single point per pixel per time 

step (time-specific data) relative to the spatial resolution of the environmental covariate data 

(Phillips et al. 2009; Kramer-Schadt et al. 2013). The spatial rarefication process produced a time-

averaged dataset consisting of 3078 D. exulans occurrences and 11328 pseudo-absences, and a 

time-specific dataset with 3791 D. exulans occurrences and 9867 pseudo-absences (Table 1). 
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Table 1. Total Diomedea exulans occurrence data and pseudo-absence data available for time-averaged 
and time-specific spatially rarefied (SR) and spatially rarefied and thinned (STR) analyses. 

  Raw, cleaned data Model calibration Model evaluation 
 

 SR STR SR STR SR STR 

Time-averaged D. exulans 3078 2128 2315 1609 763 519 

 Pseudo-absences 11328 8326 8488 6326 2840 2100 

Time-specific D. exulans 3791 3196 2822 2364 969 832 

 Pseudo-absences 9867 7289 7397 5445 2470 1844 

 

We thinned the spatially rarefied datasets as a means of assessing a second level of data 

thinning on model quality. During this, D. exulans occurrences were thinned such that, for each 

time step ti, if the number of study species occurrences in ti were greater than three times the mean 

number of presences per each time step (relative to the overall dataset), the presences in ti were 

subsampled to three times the overall mean value. Pseudo-absences were thinned such that if the 

number of pseudo-absences in ti was greater than double the mean number of pseudo-absences for 

each time step relative to the overall dataset, the pseudo-absences in ti were subsampled to double 

the mean number of points (Supplemental Figures 3–4). This further reduced spatially rarefied 

datasets to 2128 D. exulans and 8426 pseudo-absence time-averaged spatially rarefied and thinned 

data points, and 3196 D. exulans and 7289 pseudo-absence time-specific spatially rarefied and 

thinned data points (Table 1). 

We then randomly subset data such that 70% were set retained for model calibration and 

the remaining 30% set aside for model evaluation (Table 1). The spatially rarefied time-averaged 

model calibration data included 2315 D. exulans occurrence points and 8488 pseudo-absences and 

reserved 763 D. exulans and 2840 pseudo-absences for model evaluation. And, the time-specific 

model calibration dataset retained 2822 D. exulans occurrence points and 7397 pseudo-absences 

and set aside 969 D. exulans points and 2470 pseudo-absences for model evaluation. The spatial 

rarefication and thinning process further reduced time-averaged data to 2128 D. exulans 
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observations and 8326 pseudo-absences, and time-specific data to 3196 D. exulans observations 

and 7289 pseudo-absences. 

Temporal information (e.g., month and year) were retained for all data through both 

rarefication processes. In the entire study period, four months held no D. exulans data for use in 

model calibration and 15 held no D. exulans data for model evaluation. 

Covariate data.—We selected covariate data to summarize the complex environmental 

landscape of the high-latitude marine system under analysis, and allow for side-by-side 

comparison between time-averaged and dynamic approaches, and comparison with seasonal 

modeling results from Ingenloff (2017). Specifically, we used three dynamic covariates and one 

static covariate. Dynamic data included sea surface temperature (SST), and Chlorophyll-a (CHL; 

Hyrenbach et al. 2007; Wakefield, Phillips & Matthiopoulos 2009) and chromophoric dissolved 

organic matter (CDOM; Coble 2007; Nelson & Siegel 2013; Urtizberea et al. 2013), which were 

included as proxies of ocean productivity, downloaded from the NASA OceanColor Web at 

monthly temporal resolution for the February 2000 – December 2013 study period (NASA 2014). 

ETOPO1 global relief bathymetric data served as the static covariate (Amante & Eakins 2009). 

All covariate data were clipped to the study region and standardized to the native resolution of 

dynamic data (4.6 km). Unlike Ingenloff (2017), we used raw covariate data rather than generating 

principal components. 

We extracted covariate data to all time-specific spatially rarefied and spatially rarefied and 

thinned D. exulans occurrence and pseudo-absences such that each point was associated with the 

environmental information specific to a point in space and time of observation. For time-averaged 

analyses, we derived a covariate dataset that included the mean and range for each of the three 

dynamic covariates over the duration of the February 2000 – December 2013 study period. This 
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step yielded six summary covariate layers for use in analyses in conjunction with the static 

bathymetry layer. Data from the six derived covariate layers and bathymetry data, corresponding 

to the time-averaged spatially rarefied and spatially rarefied and thinned D. exulans and pseudo-

absence data were extracted for analyses.  

 

CORRELATIONAL NICHE MODELING 

Model calibration selection.—We explored a suite of calibration scenarios for three 

common modeling algorithms—generalized linear models (GLMs), generalized additive models 

(GAMs), and boosted regression trees (BRTs)—to identify the best model implementation for 

time-averaged and time-specific models (Qiao, Soberón & Peterson 2015). For each algorithm and 

modeling scenario (time-averaged spatially rarefied, time-averaged spatially rarefied and thinned, 

time-specific spatially rarefied, time-specific spatially rarefied and thinned), we explored a suite 

of parameter settings, wherein we generated a large suite of models, and then selected a final model 

among them using criteria of predictive ability and simplicity (see below).  

We calibrated GLMs with both main effects and pairwise interactions using the ‘glmulti’ 

function in the glmulti package (Calcagno 2013). GAMs were calibrated using the ‘gam’ function 

in the mgcv package (Wood 2011). GAM calibrations assessed an array of smoothers (cubic 

splines, thin plate splines, P splines, and adaptive splines), two basis dimensions for the smoothers 

(default, k = 25), two smoothing parameters (default, restricted maximum likelihood), and 

covariate interactions (ranging from no interaction to full interaction). We assessed covariate 

responses visually for GLM and GAM calibrations using the ‘response.plot2’ function in the 

biomod2 package (Thuiller et al. 2016), and we used the Akaike information criterion (AIC) for 

within-algorithm model selection of GLM and GAM models (Warren & Seifert 2011). We 
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calibrated BRTs using the ‘gbm.step’ function in the dismo package (Hijmans et al. 2017), and  

evaluated a suite of settings for learning rate (default, 0.005, 0.0025, 0.001), bag fraction (default, 

0.6, 0.7), and tree complexity (interaction depth; time-averaged: 1, 2, 3, 4, 5; time-specific: 1, 2, 

3, 4). AIC is not an appropriate evaluation metric for tree-based algorithms so we used training 

and test data mean squares estimates (MSE) and D. exulans test data omission rate to evaluate 

BRTs. MSE values were calculated using the ‘MSE’ function in the DescTools package (Signorell 

et al. 2019). 

Calibration of all three algorithms for both temporal and rarefication scenarios assessed the 

impact of weighting D. exulans occurrences greater than pseudo-absence data versus equal 

weighting of D. exulans presences and pseudo-absences (see Supplemental Information for more 

detail). Range sea surface temperature was dropped from time-averaged model calibrations owing 

to high correlation with range chlorophyll (r2 = 1.00; Supplemental Table 4, Supplemental Figures 

5–8).  

Model transfer.—The model selection process yielded three final models—one for each 

algorithm—for each temporal and rarefication modeling scenario: time-averaged spatially 

rarefied, time-averaged spatially rarefied and thinned, time-specific spatially rarefied, time specific 

spatially rarefied and thinned. We thresholded each of the selected models to minimum training 

presence adjusted to allow 5% omission error (E = 5%) to allow for some error in the occurrence 

data (Pearson et al. 2007) and transferred them to each step in the temporally corresponding 

covariate dataset. 

Consensus models.—We generated a median consensus model using the corresponding 

thresholded final models for each unique temporal and rarefication scenario. This process 

produced four binary median consensus models. To facilitate visual assessment (i.e., a reality 
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check) of each model’s ability to predict known areas of importance to D. exulans, we overlaid  on 

each consensus model D. exulans range extent (BirdLife International and NatureServe 2015), 

important bird areas (IBAs) relevant to the broader Wandering Albatross complex as indicated by 

the Marine IBA E-atlas (Supplemental Figure 1; BirdLife International 2016; BirdLife 

International and NatureServe 2020), and the major Southern Ocean fronts, including the 

Subtropical Front (STF), Subantaractic Front (SAF), and Polar Front (PF; Orsi & Harris 2008). 

Time-specific spatially rarefied and spatially rarefied and thinned consensus projections were 

appended and aggregated into an image sequence in graphics interchange format (GIF) to produce 

a dynamic visualization of predicted climatic suitability through time using R packages ‘magick’ 

and ‘gifski’  (Ooms 2018b; Ooms 2018a). 

Model evaluation.—We evaluated the four consensus using omission rate—percent of test 

data incorrectly predicted ‘absent’ by the model—as a key measure of model predictive 

performance, and partial receiver operating characteristic (pROC) as a measure of statistical 

significance. Model evaluation was conducted using custom functions. Partial ROC scores were 

calculated using a modification of the kuenm_proc() function (Cobos et al. 2019) with 500 

bootstrapped replicates for time-averaged models, and 500 bootstrapped replicates for per time 

step for time-specific models.  

 

RESULTS 

The model selection process yielded 12 finals models (see Supplementary Tables 5–8 for 

model details) for use in generating the four consensus models. Weighting D. exulans presence 

data produced higher performing GLMs and GAMs but did not have any significant impact on 

BRTs for either time-averaged or time-specific models. The model calibration process dropped 
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sea surface temperature range from final time-averaged models owing to a high correlation with 

chlorophyll range (r2 = 1.0). Chlorophyll range was dropped during the calibration process for 

both time-averaged GAMs owing to lack of significant effect in model build. All four covariates 

were retained in model calibration of time-specific models. See Supplemental Figures 9–11 for 

snapshots of final time-averaged models, and Supplemental Figures 12–14 for snapshots of final 

time-specific models. Dynamic visualizations of time-specific model predictions by algorithm are 

available at doi.org/10.6084/m9.figshare.12612431.v1. 
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Figure 1. Time-averaged spatially 
rarefied (SR; top) and spatially rarefied 
and thinned (STR; bottom) consensus 
model predictions overlaid with 
Diomedea exulans range (dashed line; 
BirdLife International and NatureServe 
2015), relevant marine IBAs (black 
polygons; BirdLife International 2016), 
and D. exulans test data (red points), and 
Subtropical (STF), Subantarctic (SAF) 
and Polar Fronts (PF; Orsi & Harris 
2008). 

 

Time-averaged models.—As 

expected, both time-averaged 

consensus models performed quite 

poorly, with neither model 

performing statistically better than 

random (Figure 1, Supplemental 

Table 9). The spatially rarefied 

consensus model omitted 273 of 761 

(35.88%) D. exulans test occurrences 

(mean pROC = 1.12, p-value = 0.8); 

the spatially rarefied and thinned 

consensus omitted 108 of 517 

(20.89%) D. exulans test data (mean 

pROC score = 0.995, pROC p-value = 

0.67). Temporal rarefication of model 

calibration data relaxed model fit such that broader areas of the study region were predicted as 

bioclimatically suitable in the spatially rarefied and thinned consensus model than in the spatially 
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rarefied only model. The spatially rarefied consensus model predicted much of D. exulans’ known 

distributional range as unsuitable, with the majority of areas predicted as suitable restricted 

predominantly to within the Subantarctic and Polar Fronts. Both consensus models predicted as 

unsuitable the colder Antarctic waters in the vicinity of the Antarctic Circumpolar Current and 

much of the eastern parts of the Argentine Basin. 

Time-specific models.—Statistically, both time-specific consensus models performed 

better than random expectations (Supplemental Tables 10–11). A dynamic view of time-specific 

consensus models is available at doi.org/10.6084/m9.figshare.12612239.v1; a snapshot of the 

consensus models are provided in Figure 2. Overall, the spatially rarefied consensus model omitted 

only 24 of 969 (2.47%) test data points, and the spatially rarefied and thinned consensus model 

omitted 45 of 832 (5.41%) test data points.  

For the 152 months for which D. exulans test data were available, monthly omission rates 

ranged 0–50.% for the spatially rarefied consensus model and 0–69.23% for spatially rarefied and 

thinned consensus model where OR = 0 for 137 months for the spatially rarefied model and 134 

months for the spatially rarefied and thinned model. The monthly mean pROC score for the 

spatially rarefied consensus model ranged 0.82–1.23, with only 11 months with a pROC p-value 

> 0.0001. The monthly mean pROC score for the spatially rarefied and thinned consensus mode 

ranged 0.74–1.18, with p-value = 0 for 134 months. 

In the spatially rarefied model, only a single point was omitted for ten of the 15 months for 

which OR > 0.0001.In the spatially rarefied and thinned model, only a single test point was omitted 

in each of 11 of 18 months for which OR > 0. The maximum number of D. exulans test data 

omitted in any individual timestep for both the spatially rarefied and s spatially rarefied and thinned 

time-specific consensus models was in June 2000, with the five of 13 D. exulans test occurrences 
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omitted by the spatially rarefied model, and nine of 13 occurrences omitted by the spatially rarefied 

and thinned model (Figure 2). This lowest performance also coincided with the month with the 

highest omission rate for the spatially rarefied and thinned model (OR = 69.23%), and the second 

highest omission rate for the spatially rarefied model (OR = 38.46%). The month with the highest 

omission rate (OR = 50%) for the spatially rarefied model was February 2000, with one of the only 

two total D. exulans test points omitted.  
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Figure 2. Snapshot of time-specific spatially rarefied (SR; left) and spatially rarefied and thinned 
(STR; right) consensus model predictions overlaid with Diomedea exulans range (dashed line; 
BirdLife International and NatureServe 2015), marine IBAs (black polygons; BirdLife 
International 2016), and D. exulans test data (red points), and the Subtropical Front (STF), the 
Subantarctic Front (SAF), and Polar Front (PF; CTOH 2019). 
 
 
 

DISCUSSION 

The results of this modeling exercise are not unexpected given the conceptual advantages 

of time-specific ecological niche modeling. On the other hand, both time-averaged consensus 

models performed poorly and showed high rates of omission. Both time-specific consensus models 

performed well statistically, with low rates of omission even without incorporating an 

environmental covariate known to constraining the distribution of this species in model calibration 

(wind; Pennycuick 1982). This study illustrates the potential for the modified time-specific 

correlational niche modeling framework to capture the breadth and dynamic nature of traditionally 

less predictable species’ niches in greater detail and with more robust predictions. 

Both time-averaged models performed poorly despite producing strikingly different 

results. Interestingly, the temporal rarefication of D. exulans occurrence data and pseudo-absence 

data resulted in a more relaxed model fit than the spatially rarefied model, predicting the vast 

majority of study region as environmentally suitable, including lower latitudes north of known 

areas of suitability. Compared to both time-specific consensus models, and to the seasonal 

modeling of Ingenloff (2017), the time-averaged spatially rarefied and thinned consensus model 

seriously over-predicted suitability of the study area. The areas predicted unsuitable and which 

included the greatest levels of omitted Diomedea euxlans data—areas of the subtropical waters of 

the Argentine Basin and colder Antarctic waters of the Antarctic Circumpolar Current—were the 

same for both time-averaged models. These results are not altogether surprising given that these 



 
80 

areas represent the relative edges of environmental suitability in D. exulans range relative to the 

suite of environmental covariates incorporated in the model and the fact that across the species as 

a whole, the breadth of environments exploited by D. exulans is quite broad. After fledging, 

juveniles often disperse from their natal colonies to warmer waters along the subtropical front 

(Weimerskirch et al. 2014) while more mature adults are more restricted to the Subantarctic region, 

which is characterized by stronger winds (Weimerskirch et al. 2012; Weimerskirch et al. 2014). 

During breeding, females tend to favor lower latitudes along the more northern extent of the 

Subantarctic front (Jaeger et al. 2009), while breeding males tend to gravitate towards the cold 

Antarctic waters in the more southerly reaches of the species’ range (Weimerskirch et al. 2014). 

An important point is that while breeding populations are broadly disjunct, non-breeding 

populations overlap significantly (Rains, Weimerskirch & Burg 2011). 

Even without additional biologically relevant information accompanying the D. exulans 

primary observation data (e.g., sex, breeding status, colony of origin), both time-specific consensus 

models performed well statistically with low overall omission rates. The spatially rarefied and 

thinned consensus model did have a greater omission rate than the spatially rarefied model (5.4% 

rather than 2.5%). Both models struggled to some degree in predicting in areas representing 

environmental extremes of the D. exulans range at the species level relative to the covariate data 

used in model calibration, including in the vicinity of the Antarctic Circumpolar Current (ACC) 

and the Argentine Basin. As with the time-averaged models, these areas account for the greatest 

proportion of D. exulans test data omitted. Other areas of environmental extremes, notably edges 

of ocean troughs (e.g., the South Shetland Trough), and around oceanic plateaus (specifically the 

Campbell Plateau and Naturaliste Plateau) correlated with smaller proportions of test data omitted. 

The failure of our models to predict fully into these areas is a reflection of the strong spatial and 
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temporal sampling bias inherent in the occurrence data, the relatively coarse temporal resolution 

applied in modeling, and the limitations on environmental covariate data available for use at 

coarser temporal resolutions.  

Although the modified, temporally-explicit niche modeling framework retains more data 

for use in analyses, and allows for incorporation of finer resolution covariate data, it does raise 

some concern for data with very high sampling bias. This study only explored two methods of 

addressing what can only be described as extreme sampling bias. Spatial rarefication—reduction 

of point data to a single point per pixel—is already common practice in distributional ecology 

studies. The additional thinning step we explored, however, was a simple random process applied 

to each time step with arbitrary limits to the maximum number of presences and pseudo-absences 

regarded as acceptable. The resulting spatially rarefied and spatially rarefied and thinned data did 

have the same environmental ranges for the six time-averaged covariates (Supplemental Figure 

15) and four time-specific covariates (Figure 3); however, because the thinning process randomly 

selected data for removal, unique covariate combinations were inevitably removed from model 

calibration. It is possible that this loss of covariate representation led to the higher omission rate 

in the spatially rarefied and thinned time-specific model relative to the spatially rarefied model. 

As such, future work should explore methods of subsampling such that representation of 

environmental breadth is retained. 
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Figure 3. Covariate space for spatially rarefied (black) and spatially rarefied and thinned (blue) time-
specific Diomedea exulans observation data. Visible black points denote unique covariate combinations 
lost during temporal rarefication. 

 

Second, the distinct lack of biologically relevant contextual information associated with 

the primary occurrence data is problematic for behaviorally complex species such as pelagic 

seabirds (Ingenloff 2017). Species-level distributional ecology studies typically utilize primary 

point occurrence data—lists of localities at which individuals of a population/species are known 
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to have occurrence. These data may have been collected opportunistically, through coordinated at-

sea surveys, or derived from data associated with specimens (Grecian et al. 2012), and typically 

consist of no more than species identification, date, and locality. For behaviorally complex species, 

this absence of contextual information impacts model calibration considerably. In the case of D. 

exulans, individual distribution is a function of sex, age, reproductive phase, and colony of origin, 

and the range of the species as whole extends from cold Antarctic waters to warm subtropical 

waters (Weimerskirch et al. 2014). Here, high sampling during a few time periods result in the 

capture only a portion of D. exulans’ life history to any satisfactory extent. Until an accessible 

method of deriving these data is developed, statistical models built on open-access primary 

biodiversity point data will be at the mercy of these biases.  

 

CONCLUSIONS 

This study aimed to assess the utility of the modified, temporally-explicit correlative niche 

modeling framework with the challenge of a nomadic pelagic seabird. The dynamic niche 

predictions resulting from the time-specific modeling easily outperformed traditional, time-

averaged approach and the seasonal modeling of Ingenloff (2017). Modeling limitations included 

high spatio-temporal sampling bias and lack of biologically relevant information with open-access 

point observation data. The results presented here strongly suggest that the modified framework 

of Ingenloff and Peterson (2021) does seem to overcome effectively the limitations of traditional, 

time-averaged modeling approaches for less predictable migratory species.  
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CONCLUSION  

The body of research presented here iteratively assesses and builds upon the traditional 

distributional ecology framework to incorporate the temporal dimension and more accurately 

characterize the environmental niche for highly mobile, behaviorally complex, and ephemeral taxa 

at the species level. Seasonal time-averaged modeling of Diomedea exulans in Chapter 1 

established a baseline of model performance and highlighted two major challenges for current 

species’ level modeling approaches: (1) the loss of complexity and detail resulting from over-

generalization of covariate data in traditional time-averaged niche modeling methods, and (2) the 

lack of relevant biological information associated with open-access primary species occurrence 

data. Based on these insights, Chapter 2 proposed a series of improvements for the input data 

preparation process of the canonical niche modeling framework to incorporate the temporal 

dimension into model calibration, significantly reducing the over-generalization of explanatory 

covariates, and producing dynamic niche predictions. Initial success when applied to the well-

studied seasonal migrant Hylocichla mustelina suggested the potential value for less predictable 

migratory species and ephemeral species. Finally, Chapter 3 assessed the utility of the temporally 

explicit correlative niche modeling framework of Chapter 2 with D. exulans. The results indicate 

that by addressing only one of the two major challenges highlighted in the first chapter, that of 

environmental over-generalization resulting from time-averaging, we can indeed produce reliable 

species level distributional models for highly mobile taxa such as pelagic seabirds at the species 

level. The development of a step-wise methodology that works for highly mobile species will 

facilitate the development of more biologically informed strategies for a whole suite of taxa that 

might otherwise be neglected as a result of data deficiency. 
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The collective suite of analyses presented here provide an accessible framework for 

incorporating the temporal dimension into species level predictive models. All research was 

conducted using open access data and programs to ensure maximum transferability and 

accessibility to the broader research and resource planning and management communities. And, 

although this particular body of work focuses on pelagic seabirds in the southern oceans, this 

modified methodological framework is readily transferrable across taxonomic groups, providing 

researchers and natural resource managers with a framework by which to produce more robust, 

biologically-informed models that are more appropriate for informing the development of 

spatially-explicit management plans applicable to multiple species and responsive to global 

change. Further, these techniques have the potential to play a role in public health applications, 

particularly as regards monitoring of climate sensitive arthropod disease vectors, such as 

mosquitoes.  
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APPENDIX 1: Supplementary Information – Biologically-informed ecological niche models for 

highly mobile species: non-breeding Wandering Albatrosses (Diomedea exulans) 

distributions in the southern oceans 

 

Supplementary Information 

Ingenloff, Kate. 2017. Biologically-informed ecological niche models for highly mobile species: 

non-breeding Wandering Albatrosses (Diomedea exulans) distributions in the southern oceans. 

European Journal of Ecology 86(10):2611–2622. DOI: 10.1515/eje-2017-0006. 

 

Author: Kate Ingenloff (ORCid: 0000-0001-5942-9053) 

 

Supplementary Materials 

Appendix S1 Additional model calibration and parameterization information. 

Appendix S2 Additional tables and figures. 

Appendix S3 R code for running minimum volume ellipsoids as niche models.  

  

https://doi.org/10.1515/eje-2017-0006
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APPENDIX S1 Data Preparation and Model Calibration 

 

Input Data - Occurrence Data  

Data Acquisition. Occurrence data for all members of the order Procellariiformes were 

obtained from the Global Biodiversity Information Facility (GBIF; accessed 5/26/2015, 

doi:10.15468/dl.fquf8g). GBIF search was restricted to observation data for all error-free 

procellariiform records within the study period of December 2000–November 2011 between -20˚ 

and -70˚ latitude requested 26 May 2015. The search returned 144,850 observations of 105 species 

from 28 genera and 4 families (Diomedeidae, Procellariidae, Hydrobatidae, Pelecanoididae) 

species from 31 collections/institutions. Occurrence data were derived from human and machine 

observations, and preserved specimens.  

  



 
99 

Table S1.1. GBIF procellariiform occurrence data contributors. 

GBIF Institution Code Institution 

AADC Australia Antarctic Data Centre 

ABBBS Bird Banding Records, Australian Antarctic Territory & Heard Island 

AM Australian Museum 

AMNH American Museum of Natural History 

ANWC Australian National Wildlife Collection 

Anymals.org Anymals.org; Anymals+Plants Mobile Application 

APN-AR Administración de Parques Nacionales, Argentina 

BAS British Antarctic Survey 

BGBM Botanical Garden and Botanical Museum Berlin-Dahlem 

Birds Australia, Birdata BirdLife Australia, BirdLife International 

CAML Census of Antarctic marine Life 

CLO Cornell Laboratory of Ornithology 

CTALA_LB Ministerio del Medio Ambiente de Chile 

CUML Cornel University Macaulay Library 

Eremaea Pty Ltd Eremaea eBird 

iNaturalist iNaturalist.org 

Individual Sightings Individual sightings 

IRSNB Institut Royal des Sciences Naturelles de Belgique 

naturgucker Natur Gucker 

NMR Natuurhistorisch Museum 

NMV National Museum Victoria 

OBIS-SEAMAP 
Ocean Biogeographic Information System: 

Spatial Ecological Analysis of Megavertebrate Populations 

SAMA South Australia Museum 

SA Fauna South Australia Department of Environment & Natural Resources 

TMAG Tasmanian Museum & Art Gallery 

UCT-ADU University of Cape Town Animal Demography Unit 

USNM Smithsonian Institution Natural History Museum 

UWBM University of Washington Burke Museum 

QM Queensland Museum, Australia 

QVMAG Queen Victoria Museum & Art Gallery 

ZMA Zoological Museum Amsterdam, University of Amsterdam 
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Input Data - Environmental Data 

Four MODIS Terra L3 standard mapped image (SMI) environmental datasets at 4.6 km 

spatial resolution were downloaded from the NASA OceanColor Web (Table S1.2; NASA 2014). 

Imagery were converted from native HDFs to ASCII grids and reprojected to WGS 84 using the 

Marine Geospatial Ecology Tools (MGET) ArcGIS toolbox extension (Roberts et al 2010). 

‘NoData’ values were filled using a temporal filter followed by a spatial filter. The mean, 

maximum, minimum, and range of values were calculated by season for each variable; the resulting 

time-averaged rasters were then incorporated into a series of principle component analyses (PCA). 

 

Table S1.2. MODIS Terra raster data accessed from NASA’s OceanColor Web. 

Variable  Unit Date accessed 

Sea Surface Temperature (SST) 11 μm 18 Feb 2015 

Nightly Sea Surface Temperature (NSST) 11 μm 14 Feb 2015 

Chromophoric Dissolved Organic Matter Index (CDOM)  8 Feb 2015 

Chlorophyll-a Concentration (CHL) mg/m3 16 Feb 2015 

 

 

 

PCAs: PCAs were run were run to reduce dimensionality and collinearity. The first five 

principle components (PCs) per season were used in analyses; in all three seasons, the first PC 

explained ≥ 95% of variation (Table S1.3). The final PCs selected for use in analyses were 

resampled from 0.041667 to 0.20833 for analyses.    
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Table S1.3. PCA Loadings for the first five components of each set utilized in analyses by season. 

Season Variable PC1 PC2 PC3 PC4 PC5 

I CDOM_max 0.034 -0.235 0.636 0.217 -0.005 

CDOM_range 0.041 -0.238 0.621 0.218 0.009 

CHL_max 0.012 -0.677 -0.246 -0.011 -0.008 

CHL_range 0.011 -0.648 -0.246 -0.010 -0.009 

NSST_max -0.418 -0.039 0.096 -0.268 -0.201 

NSST_mean -0.412 -0.015 0.020 0.014 -0.059 

NSST_min -0.405 0.013 -0.085 0.309 0.340 

NSST_range -0.013 -0.052 0.182 -0.576 -0.541 

SST_max -0.410 -0.039 0.092 -0.245 0.285 

SST_mean -0.406 -0.015 0.026 0.016 -0.061 

SST_min -0.393 0.019 -0.067 0.274 -0.317 

SST_range -0.017 -0.058 0.158 -0.520 0.602 

Cumulative Proportion 96.69 98.30 99.10 99.83 99.93 

G CDOM_max 0.053 -0.602 -0.335 0.003 0.008 

CDOM_range 0.056 -0.638 -0.334 0.010 0.006 

CHL_max 0.002 -0.068 0.109 -0.715 -0.013 

CHL_range 0.001 -0.059 0.099 -0.677 -0.018 

NSST_max -0.428 -0.168 0.225 0.051 -0.309 

NSST_mean -0.411 -0.016 -0.061 -0.005 -0.054 

NSST_min -0.394 0.112 -0.282 -0.063 0.250 

NSST_range -0.034 -0.280 0.507 0.114 -0.559 

SST_max -0.420 -0.144 0.222 0.039 0.368 

SST_mean -0.402 0.002 -0.055 -0.006 -0.043 

SST_min -0.383 0.117 -0.268 -0.044 -0.216 

SST_range -0.036 -0.261 0.490 0.084 0.585 

Cumulative Proportion 96.15 98.32 99.23 99.81 99.92 

P CDOM_max 0.0680 -0.5201 0.4385 -0.1618 0.0130 

CDOM_range 0.0751 -0.5295 0.4426 -0.1546 0.0038 

CHL_max 0.0084 -0.4177 -0.5581 -0.1779 -0.0147 

CHL_range 0.0078 -0.3955 -0.5410 -0.1803 -0.0236 

NSST_max -0.4173 -0.1304 0.0061 0.2663 -0.2843 

NSST_mean -0.4081 -0.0322 0.0374 -0.0378 -0.0660 

NSST_min -0.4033 0.0682 0.0268 -0.3055 0.2590 

NSST_range -0.0140 -0.1986 -0.0208 0.5718 -0.5432 

SST_max -0.4108 -0.1214 -0.0081 0.2468 0.3756 

SST_mean -0.4020 -0.0313 0.0360 -0.0287 -0.0676 

SST_min -0.3942 0.0677 0.0392 -0.2645 -0.2218 

SST_range -0.0166 -0.1891 -0.0472 0.5113 0.5974 

Cumulative Proportion 95.84 97.79 99.04 99.81 99.92 
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Model Calibration 

 

Table S1.4. Cell value ranges for raw and Log2 kernel smoothed seasonal bias layers tested in Maxent 
model calibrations. 

Season 
Bias layer 

Raw Log2 Smoothed 

I 0:1604 0:114.0237 

G 0:469 0:39.2755 

P 0:1070 0:84.2523 
 

 

 

Table S1.5. MVE model calibration parameterizations. 
Parameter Parameter Range 

Threshold (T) 0.90 

0.95 

0.99 

 

Variables Included (Run) Bathymetry, Bathymetry Slope, PC 1-5 

Bathymetry, PC 1-5 

Bathymetry, Bathymetry Slope, PC 1-4 

Bathymetry, PC 1-4 

Bathymetry, PC 1-3 

Bathymetry, PC 1-2 

Run 1 

Run 2 

Run 3 

Run 4 

Run 5 

Run 6 

 

 

 

Table S1.6. Pseudo-absence levels used in boosted regression tree calibrations. The first level, PA-1, 
was standardized at 1500 randomly selected points in the calibration region; PA-2 values were 
calculated at double the total Diomedea exulans observation data available for use in model calibration 
and testing. 

Season PA-1 PA-2 

I 1500 1106 

G 1500 562 

P 1500 280 
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APPENDIX S2 Results 

Table S2.1. Model transfer summary statistics–mean pROC score and the overall significance–for the 
top five model parameterizations from each algorithm by season. 
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Figure S2.1. Season I projections for each algorithm: (a) BRT, (b) Maxent, and (c) MVE overlaid with 

Diomedea exulans IBAs in waters around Australia and New Zealand. Base layer: Global Administrative 

Areas global shapefile (http://www.gadm.org). 
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Figure S2.2. Season G projections for each algorithm: (a) BRT, (b) Maxent, and (c) MVE overlaid 

with Diomedea exulans IBAs in waters around Australia and New Zealand. Base layer: Global 

Administrative Areas global shapefile (http://www.gadm.org). 
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Figure S2.3. Season P projections for each algorithm: (a) BRT, (b) Maxent, and (c) MVE overlaid 

with Diomedea exulans IBAs in waters around Australia and New Zealand. Base layer: Global 

Administrative Areas global shapefile (http://www.gadm.org). 
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Figure S2.4. Binary model predictions for Diomedea exulans in the waters east of southern South 

America for (a,d,g) season I, (b,e,h) season G, and (c,f,i) season P for (a–c) BRT, (d–f) Maxent, and 

(g–i ) MVE. Base layer: Global Administrative Areas global shapefile (http://www.gadm.org). 
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Figure S2.5. Diomedea exulans IBAs in marine regions southeast of southern Africa for (a,d,g) for 

season I, (b,e,h) season G, and (c,f,i) season P by algorithm: (a-c) BRT (d-f) Maxent (g-i) MVE. Base 

layer: Global Administrative Areas global shapefile (http://www.gadm.org). 
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APPENDIX S3 R Scripts 

 

# --------------------Fitting Minimum Volume Ellipsoids as Niche Models---------------------- 

# Original code provided by Jorge Soberón, August 2015 

## Minimum Volume Ellipsoids (MVE) can be used as niche models, mostly when one is 

interested in fitting a niche not too constrained by the details of the observed data. To do this, 

we must (1) calculate ellipsoids, and (2) calculate, for all pixels in a region of interest, the 

environmental distance of each pixel to a centroid of the ellipse. 

## Ellipsoids can be calculated in many dimensions, and are characterized by a centroid and by a 

matrix (symmetric) that describes the directions of the axes and their lengths. 

 

# load required libraries 
library(raster) 
library(sp) 
library(rgdal) 
library(maptools) 
library(MASS) 
library(foreign) 

 

# Define the Mahalanobis function that calculates the distance from a point (‘p’) to an ellipse of 

centroid (‘m’) and matrix (‘s’). The parameters then are: p, the test point, m, the centroid of the 

ellipse (of a distribution), and s, which is the INVERSE of the covariance matrix of the ellipse. 
maja = function(p, m, s)((p - m)%*%s%*%t(p - m))^0.5; 

 

# --------------- DATA PREPARATION --------------- 

# Set working directory 
setwd("<path to chosen working directory>"); 

 

# load environmental rasters (ASCII format) 
EnvArchives <- list.files(path = "<path to environmental variables>", pattern = "*.asc$", 
full.names = F); 
EnvArchives; 

 

# Rasterize and name each environmental variable to be used in analyses 
V1 = raster(EnvArchives[1]); 
V2 = raster(EnvArchives[2]); 
V3 = raster(EnvArchives[3]); 
V4 = raster(EnvArchives[4]); 
V5 = raster(EnvArchives[5]); 
…<and so forth>…  

 

# Stack the environmental layers 
layers = stack(V1, V2, V3, V4, V5, …); 
layers; 

 



 
112 

# Read in the .csv file containing the 'training points" (species occurrence data to be used in 

model calibration) and check formatting. The .csv should contain 3 columns: species ID, 

longitude, and latitude. 
refined = read.csv("<path to occurrence data file>.csv", header = T); 
head(refined); 

 

# Index by species ID. This is only necessary if there are point observation data for multiple 

species in the .csv.  
i1 = which(refined[, 1] == "<speciesID>"); 
i2 = which(refined[, 1] == "<speciesID>"); 
… 

 

# Convert to matrix 
refined = as.matrix(refined[, 2:3]); 

 

# Extract the values of the environmental variables (using the raster stack) to the observation 

points. NOTE: specifying ‘i#’ here is not necessary if the occurrence data file only includes 

one species. 
vars = extract(layers, refined[i1, 2:3]);  
crds_vrs = cbind(refined, vars); 

 

# check that the new matrix contains SpeciesID, longitude, latitude, and extracted environmental 

data for each point 
head(crds_vrs); 

 

# --------------- CALCULATING MVEs --------------- 

# Define the function to calculate the number of points to be included in MVE calculation. 

NOTE: “nD” designates the species (i.e., ‘i1’) and ‘level’ designates the model threshold. 
NDquantil = function(nD, level) return(round(nD * level/1)) 

 

# Specify the species, assign a threshold, and calculate the number of points to include in 

analyses. In the code below, the threshold is 0.95, or E = 5%. What you’re doing here 

calculating the number of occurrence points for species ‘il’ excluding the most extreme 5%, 

which will then be used to generate the minimum volume ellipsoids to be used in model 

calibration. 

# only one species in occurrence dataset  
n1 = NDquantil(refined, 0.95); 
n1; 

 

# for occurrence datasets with multiple species, run a count for each species  
n1 = NDquantil(length(i1), 0.95); 
n1; 
… 

 

# Generate ellipsoids. Ellipsoids are represented by a (1) centroid and (2) matrix of covariance. 

NOTE: The values of the highlighted column range below will depend on the number of 
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environmental variables to be extracted. The range below (4:8) indicate that ellipsoids are 

being generated based on 5 variables. 

### only one species in occurrence dataset  
mve1 = cov.mve(crds_vrs[i1, 4:8], quantile.used = n1); 

 

#### for occurrence datasets with multiple species, run a count for each species 
mve1 = cov.mve(crds_vrs[i1, 4:8], quantile.used = n1); 
… 

 

# Create a matrix of the covariances 
mu1 = matrix(mve1$center, nrow=1); 

 

# Take the inverse of the covariances 
invs1 = solve(s1); 

 

# --------------- MODEL CALIBRATION --------------- 

# To proceed with model calibration, you must first generate a regular grid (a.k.a., “fishnet”) of 

the training/calibration region. QGIS is highly recommended for this process because it is (a) 

non-proprietary (read, open-source), and (b) a lot more efficient in this process than the 

competing ESRI product.  

## NOTE: The grid must be set to match the spatial resolution of the environmental data; be sure 

to add XY coordinates to labels. The resulting .dbf will be used to then apply the 

defined ellipsoids to every point in raster. 

 

# ---- Creating the regular grid in QGIS (v 2.8.2 Wien):  

# [1] Load one of the environmental rasters that will be used in analyses  

# [2] Navigate to: Vector → Research Tools → Vector Grid 

# [3] Set the “Grid extent” to match the environmental raster 

# [4] Check “Align extents and resolution to selected raster layer” 

# [5] Select “Update extents from layer” 

# [6] Check “Output grid as polygons” 

# [7] Assign a name to and pathway to the output shapefile 

# [8] Press “OK”  … processing does take a few minutes with processing time increasing as 

resolution and geographic area increase. 

 

# Read in regular grid .dbf file for the calibration region  
randT = read.dbf("<path to regular grid of calibration region>.dbf"); 
head(randT); # check that the grid read in properly (e.g., the longitude and latitude are there) 

 

# Extract environmental data from the raster stack to the calibration region grid. NOTE: there 

will be A LOT will be NAs. 
vrsT = extract(layers, randT[, 2:3]); 
head(vrsT); # check that everything read in and extracted properly 

 

# For shits and giggles, you can calculate the percentage of NAs… 
vrsTsna = na.omit(vrsT); 
pNA = dim(vrsTsna) / TotalNumberPixelsInGrid; 
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pNA; 

 

# Create the matrix that will contain the distance of environment to centroid. The matrix size will 

be [Total number of pixels in grid x 1]. 
dT1 = matrix(0, ncol = 1, nrow = TotalNumberPixelsInGrid); 

 

# Calculate environmental distance of each ellipsoid from the centroid  
for(i in 1:TotalNumberPixelsInGrid)dT1[i, 1] = maja(vrsT[i, ], mu1, invs1); 

 

# Check that it worked. The resulting table should have the following: longitude, latitude, one 

column for each environmental variable, and a column for dT1. 
Mcalib = cbind(randT, vrsT, dT1); 
head(Mcalib);  

 

# You’re more than halfway through your application of MVEs to ENM approaches! Save model 

calibration in .csv to the path or your choosing then continue on to the final step of the 

process—model projection. 
write.csv(Mcalib, "<YourAwesomeMVEmodelCalibrationFilenameHere.csv>"); 

 

 

# --------------- MODEL PROJECTION --------------- 

# Again, a regularized grid is necessary to apply the defined ellipsoids to every point in the 

projection region.  

### If the model projection region is geographically different from the model calibration region, 

create a regularized grid of the full projection region at the spatial resolution of the 

environmental data (remember to add XY coordinates to labels).  

### If the model projection region is geographically the same as the model calibration region 

(e.g., if model projection is to different time periods only), you can use the same grid 

generated for model calibration. 

 

# Read in the regular grid 
randT_fullproj = read.dbf("<path to regular grid of projection area>.dbf"); 

 

# Extract environmental data from the raster stack to the calibration region grid. NOTE: there 

will be A LOT will be NAs. 
vrsT_fullreg = extract(layers, randT_fullproj[, 2:3]); 
head(vrsT_fullreg); # check that everything read in and extracted properly 

 

# For shits and giggles, let’s calculate the percentage of NAs again. 
vrsTsna_full = na.omit(vrsT_fullreg); 
pNA_full = dim(vrsTsna_full) / TotalNumberPixelsInGrid; 
pNA_full; 

 

# Create the matrix that will contain the distance of environment to centroid. The matrix size will 

be equivalent to the dimension of ‘randT_fullproj’ (e.g., TotalNumberPixelsInGrid x 1). 
dT_full = matrix(0, ncol = 1, nrow = TotalNumberPixelsInGrid); 
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# Calculate environmental distance of each ellipsoid from the centroid 
for(i in 1:TotalNumberPixelsInGrid)dT_full[i, 1] = maja(vrsT_fullreg[i, ], mu1, invs1); 

 

# Check that it worked. The resulting table should have the following: longitude, latitude, one 

column for each environmental variable, and a column that is dT_full. 
modProj = cbind(randT_fullproj, vrsT_fullreg, dT_full); 
head(modProj); 

 

# Congratulations! You’ve now completed your application of MVEs to ENM approaches. Save 

full projection as .csv to the pathway of your choosing! 
write.csv(modProj, "<YourAwesomeMVEmodelProjectionFilenameHere>.csv"); 

  



 
116 

APPENDIX 2: Supplementary Information – Incorporating time into the traditional correlational 

distributional modeling framework: a proof-of-concept using the Wood Thrush 

(Hylocichla mustelina) 

 

Supplementary Information 

Ingenloff, K. and A.T. Peterson. 2020. Incorporating time into the traditional correlational distributional 

modeling framework: a proof-of-concept using the Wood Thrush (Hylocichla mustelina). 

 

Authors: Kate Ingenloff (ORCid: 0000-0001-5942-9053) & A. Townsend Peterson (ORCid: 0000-

0003-0243-2379)  
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METHODOLOGY 

 

 

Supplementary Figure 1. Generalized methodological flowchart of the data preparation process 

in traditional time-averaged correlative modeling approaches.  
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Supplementary Figure 2. Model calibration region (shaded gray, blue outline) overlaid with 

Hylocichla mustelina model calibration (left) and model evaluation (right) occurrences for January 1980 

– March 2010. Country outline: Global Administrative Areas version 3.5 (GADM; 

https://gadm.org/). Projection: North America Lambert Conformal Conic. 
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Pseudo-absence dataset 

Determining the number of pseudo-absences: To determine the total number of pseudo-absences 

generated for a given time stepi, we first calculate the “weight” of the time step (the number of 

reference group occurrence records in time stepi divided by the number of study species occurrence 

records in time stepi). The calculated ‘weight’ for the time step is then multiplied by the total 

number of pseudo-absences desired for the full study period and rounded up to the nearest whole 

number. 

 
R pseudo-code: 

 

Weight = # reference group occurrences / # study species occurrences 

  

# PAs [time stepi] = ceiling(weight * total # of desired pseudo-absence dataset) 

 

 

For example, time step363 (March 2010) had 11,866 Turdidae occurrences and 211 H. mustelina 

occurrences. Thus, the ‘weight’ to be used in calculated the number pseudo-absences to be sampled 

for time step363 was 0.00393977. Because we sought to generate a pseudo-absence dataset 

approximately double the H. mustelina presence dataset, the total number of pseudo-absences 

created equaled the weight for time step 363 (0.00393977) multiplied by the total number of 

desired pseudo-absences (867,296) and rounded up to the nearest whole number, or 3,417. 

Weight  

[time step363]  

= 11,866 / 211 

= 0.00393977 

  

# PAs  

[time step363] 

= 0.00393977 * 867,296 

= ceiling(3,416.94676) 

= 3,417 
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Supplementary Figure 3. Total annual Hylocichla mustelina (top) and Turdidae (bottom) observations 

1980–2015 within the study area. Color blocks denote the January 1980 – March 2010 study period 

(tan) and supplemental 2014–2015 model evaluation period (blue). 
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Supplementary Figure 4. Total monthly Hylocichla mustelina (top) and Turdidae (bottom) 

observations (1980–2010) within the study area. Color blocks denote season relative to H. mustelina 

behavior: breeding (yellow), migration (orange), and wintering/non-breeding (blue). 
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Supplementary Table 1. Time steps (months) with no Hylocichla mustelina observation data in the 

core population, and in the rarefied time-averaged and time-specific model evaluation datasets 

during the 1980–2010 study period. 

  Model evaluation data 

Month Core population Time-averaged Time-specific 

January  ’80, ’82, ’85, ’89, ’90 ’81–’82, ’85, ’89  

February ’80, ’82, ’84 ’80–’84, ’87–’88, ’90, ’94 ’80–’82,’84–’85 

March ’84 ’83–’84, ’86, ’88, 2000 ’84, ’88 

October  ’83, ’92, ’95  

November ’81, ’84, ’86, ’88 ’81–’91, ’93–’94, ’98 ’80–’82, ’84, ’86, ’89–’88 

December ’81–’82, ’85, ’89, ’94 ’80–’85, ’89, ’90, ’92–’94, 2001 ’81–’83, ’85, ’87, ’89, ’91–’92, 

’94 

 

 

 

 

 

Supplementary Table 2. Total number of records in the final time-averaged and time-specific 

Hylocichla mustelina and pseudo-absence datasets for the January 1980 – March 2010 study period 

and the 2014–2015 supplemental model evaluation period. 

  Time-averaged Time-specific 

 Evaluation period Presences Pseudo-absences Presences Pseudo-absences 

Calibration 1980–2010 16,983 102,918 38,011 120,979 

Evaluation 1980–2010 16,980 102,918 38,017 120,979 

 2014–2015 36,436 – 61,479 – 
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RESULTS 

 

Supplementary Details: Final model calibration results 

The model selection process yielded six final models (three time-averaged and three time-

specific). Selected time-averaged models excluded minimum temperature range owing to high 

correlation with other covariates. The selected BRT model was calibrated at default bag fraction, 

default learning rate, tree complexity of four, and excluded mean minimum temperature. The 

GAM model was calibrated with a smoother basis dimension (k) of 25 using the default smoothing 

parameter estimation method and no covariate interaction. The GLM model was calibrated with 

pairwise interactions. Selected time-specific models were calibrated with all three time-specific 

covariates (precipitation, minimum temperature, maximum temperature). The BRT model was 

calibrated with default bag fraction, default learning rate, and a tree complexity of three. The GAM 

model was calibrated with a default basis dimension for the smoother, default smoothing parameter 

estimation method, and full covariate interactions. See the supplementary tables 3 and 4 for explicit 

time-averaged and time-specific parameter settings for each of the six models. 
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Supplementary Table 3. Time-averaged model calibration settings for the selected model for each 

of the three algorithms calibrated. 
T

im
e-

A
v

er
ag

ed
 

GLM m2 <- glm(Presence ~ 1 + meanPPT + meanTMIN + meanTMAX + rangePPT + rangeTMAX,  

                   family = binomial,  data = p.train);  

summary(m2); # AIC 77811 

# Deviance Residuals:  

#     Min       1Q        Median       3Q      Max   

# -2.4563  -0.5435  -0.3088  -0.1691   7.6034   

 

# Coefficients: 

#                        Estimate         Std. Error  z value      Pr(>|z|)     

# (Intercept)     -3.0904348  0.1367030  -22.61   <2e-16 *** 

#  meanPPT      0.0585929    0.0007026   83.39   <2e-16 *** 

#  meanTMIN   0.4954462    0.0088365   56.07   <2e-16 *** 

#  meanTMAX  -0.2490662   0.0068807  -36.20   <2e-16 *** 

#  rangePPT      -0.0198802   0.0002183  -91.08   <2e-16 *** 

#  rangeTMAX   0.0957327   0.0026304   36.39   <2e-16 *** 

 

# Null deviance: 97823  on 119900  degrees of freedom 

# Residual deviance: 77799  on 119895  degrees of freedom 

 

var.m2 <- (1 - (m2$deviance / m2$null.deviance)) * 100; 

var.m2; # total variation explained by the model: 20.46986% 

 

GAM model <- gam(Presence ~ 1 + s(meanPPT, k=25) + s(meanTMIN, k=25) + s(meanTMAX, k=25) 

+         

                        s(rangePPT, k=25) + s(rangeTMAX, k=25),  

                        family = binomial, data = p.train, select = TRUE); 

 

summary(model); 

# R-sq.(adj) =  0.358   Deviance explained = 41.2% 

# -ML =  29010  Scale est. = 1         n = 119901 

 

BRT model <- gbm.step(data = p.train, gbm.x = c(5:8),  gbm.y = 1,  

                                  family = "bernoulli",  tree.complexity = 4); # bf default 

 

Training MSE;   # 0.283373                   

Test MSE;    # 0.284127                   

Test OR;     # 99.99% (MTP)      94.89% (E=5%)       89.9% (E=10%) 

 

summary(model) 

#                                var                  rel.inf 

# meanTMAX    meanTMAX      42.91145 

# meanPPT        meanPPT          32.06410 

# rangeTMAX    rangeTMAX      13.61995 

# rangePPT        rangePPT          11.40451 
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Supplementary Table 4. Time-specific model calibration settings for the selected model for each of 

the three algorithms calibrated. 
T

im
e-

S
p

ec
if

ic
 

GLM model <- glm(Presence ~ 1 + ppt + tmin + tmin:ppt + tmax:ppt + tmax:tmin,  

                family = "binomial", data = p.train); 

summary(model);  

# Deviance Residuals:  

#    Min         1Q         Median       3Q          Max   

# -2.2953  -0.7595    -0.2016    0.0000    3.9889   

 

# Coefficients: 

#                         Estimate       Std. Error     z value         Pr(>|z|)     

# (Intercept)   -5.075e+00    4.322e-02    -117.43      <2e-16 *** 

#  ppt               -7.278e-03     6.565e-04    -11.09        <2e-16 *** 

#  tmin             1.127e+00      9.106e-03     123.72     <2e-16 *** 

#  ppt:tmin      -1.780e-03    4.125e-05     -43.15       <2e-16 *** 

#  ppt:tmax     1.249e-03      4.072e-05      30.66       <2e-16 *** 

#  tmin:tmax   -2.910e-02     2.567e-04    -113.37     <2e-16 *** 

#  --- 

#  Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

#(Dispersion parameter for binomial family taken to be 1) 

 

# Null deviance: 174894  on 158989  degrees of freedom 

# Residual deviance: 128248  on 158984  degrees of freedom 

# AIC: 128260 

 

#Number of Fisher Scoring iterations: 8 

 

# calculate variance explained by the model 

model2 <- (1 - (model$deviance / model$null.deviance)) * 100; 

model2; # total variation explained by the model: 26.67086 

 

GAM model <- gam(Presence ~ 1 + s(ppt, k=25) + s(tmin, k=25) + s(tmax, k=25),  

              family = binomial, data = p.train, select = T); # 

 

summary(model);  

# R-sq.(adj) =  0.268   Deviance explained = 28.9% 

# UBRE = -0.2177  Scale est. = 1         n = 158990 

AIC(model); # 124378.3 

 

BRT model <- gbm.step(data = p.train,  

                 gbm.x = c(5:7), gbm.y = 1,  

                 family = "bernoulli", tree.complexity = 3, bag.fraction = 0.5); 

 

Training MSE;    # 0.318984971903624 

Testing MSE;      # 0.322308923380982 

Test OR;              # 99.99%  (MTP)   94.76% (E=5%)     89.54% (E=10%) 

 

summary(model); 

#              var       rel.inf 

# tmin   tmin    59.18960 

# tmax  tmax    27.18494 

# ppt      ppt      13.62546 
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Supplementary Table 5. Percentage of model calibration area predicted suitable for time-averaged 

and time-specific models for the January 1980 – March 2010 primary study period and the 2014–

2015 supplemental evaluation period. 

 Model Evaluation period Minimum Maximum Median Average 

T
im

e-
av

er
ag

ed
 

BRT 1980–2010 – – – 32.8% 

 2014–2015 – – – 36.9% 

GAM 1980–2010 – – – 36.6% 

 2014–2015 – – – 42.3% 

GLM 1980–2010 – – – 39.3% 

 2014–2015 – – – 46.4% 

T
im

e-
sp

ec
if

ic
 

BRT 1980–2010 7.8% 92.5% 34.1% 45.2% 

 2014–2015 7.1% 88.8% 39.9% 46.5% 

GAM 1980–2010 8.5% 89.9% 34.4% 43.6% 

 2014–2015 7.9% 91.8% 42.1% 48.7% 

GLM 1980–2010 10.0% 97.3% 40.0% 50.1% 

 2014–2015 9.1% 94.1% 45.7% 51.2% 

 

 

 

Supplementary Table 6. Mean omission rates for time-averaged and time-specific models for the 

January 1980 – March 2010 primary study period and the 2014–2015 supplemental evaluation period. 

 Model Evaluation Period Mean Omission Rate 

T
im

e-
A

v
er

ag
ed

 

BRT 1980–2010 0. 037 

 2014–2015 0.039  

GAM 1980–2010 0.029  

 2014–2015 0.020  

GLM 1980–2010 0.030  

 2014–2015 0.020  

T
im

e-
S

p
ec

if
ic

 

BRT 1980–2010 0.210  

 2014–2015 0.026  

GAM 1980–2010 0.036  

 2014–2015 0.027  

GLM 1980–2010 0.036  

 2014–2015 0.025  

 

 

  



 
127 

Supplementary Figure 5. Monthly 

omission rates for time-averaged (top) 

and time-specific (bottom) BRT model. 

Red boxplots indicate 1980–2010 and 

blue indicate 2014–2015. Color blocks 

denote season relative to Hylocichla 

mustelina behavior: breeding (yellow), 

migration (orange), and wintering 

(blue). 
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Supplemental Figure 6. Monthly 
omission rates for time-averaged (top) 
and time-specific (bottom) GAM 
models. Red boxplots indicate 1980–
2010 and blue indicate 2014–2015. 
Color blocks denote season relative to 
Hylocichla mustelina behavior: breeding 
(yellow), migration (orange), and 
wintering (blue). 
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Supplementary Figure 7. Monthly 
omission rates for time-averaged (top) 
and time-specific (bottom) GLM 
model. Red boxplots indicate 1980–
2010 and blue indicate 2014–2015. 
Color blocks denote season relative to 
Hylocichla mustelina behavior: breeding 
(yellow), migration (orange), and 
wintering (blue). 
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Supplementary Table 7. Seasonal mean monthly omission rate ranges and means for time-averaged 

and time-specific models for the January 1980 – March 2010 primary study period and the 2014–2015 

supplemental evaluation period. Seasonal averages are presented in parentheses below range values. 

 Model  Breeding 

(June–August) 

Migratory 

(May, September) 

Wintering 

(October–April) 

T
im

e-
av

er
ag

ed
 

BRT 1980–2010 0.025–0.068 

(0.042) 

0.048–0.067 

(0.057) 

0.092–0.184 

(0.154) 

 2014–2015 0.028–0.055 

(0.033) 

0.028–0.039 

(0.041) 

0.087–0.176 

(0.111) 

GAM 1980–2010 0.018–0.044 

(0.027) 

0.034–0.053 

(0.043) 

0.074–0.178 

(0.130) 

 2014–2015 0.007–0.023 

(0.014) 

0.012–0.025 

(0.019) 

0.049–0.158 

(0.122) 

GLM 1980–2010 0.008–0.026 

(0.015) 

0.029–0.052 

(0.041) 

0.087–0.283 

(0.184) 

 2014–2015 0.008–0.023 

(0.014) 

0.013–0.021 

(0.017) 

0.045–0.157 

(0.110) 

T
im

e-
sp

ec
if

ic
 

BRT 1980–2010 0.026–0.0047 

(0.036) 

0.086–0.401 

(0.244) 

0.025–0.591 

(0.189) 

 2014–2015 0.010–0.029 

(0.020) 

0.018–0.030 

(0.024) 

0.054–0.142 

(0.092) 

GAM 1980–2010 0.021–0.042 

(0.033) 

0.034–0.060 

(0.047) 

0.047–0.185 

(0.123) 

 2014–2015 0.011–0.030 

(0.020) 

0.018–0.029 

(0.023) 

0.080–0.137 

(0.101) 

GLM 1980–2010 0.010–0.036 

(0.024) 

0.033–0.060 

(0.046) 

0.032–0.179 

(0.120) 

 2014–2015 0.010–0.028 

(0.018) 

0.018–0.031 

(0.025) 

0.035–0.133 

(0.087) 
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Supplementary Figure 8. Proportion of the study area predicted climatically suitable by GLM 

models by month. Black points indicate proportion of area predicted suitable for each month for the 

1980–2010 study period and red diamonds represent proportion of area predicted suitable for the 

2014–2015 model evaluation period for the time-specific model. Dashed lines denote proportion of 

area predicted suitable for the time-averaged model (blue, 1980–2010; red, 2014–2015). Color blocks 

denote season relative to Hylocichla mustelina behavior: breeding (yellow), migration (orange), and 

wintering (blue). 
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Supplementary Figure 9. Proportion of the study area predicted climatically suitable by BRT 

model by month. Black points indicate proportion of area predicted suitable for each month for the 

1980–2010 study period and red diamonds represent proportion of area predicted suitable for the 

2014–2015 model evaluation period for the time-specific model. Dashed lines denote proportion of 

area predicted suitable for the time-averaged model (blue, 1980–2010; red, 2014–2015). Color blocks 

denote season relative to Hylocichla mustelina behavior: breeding (yellow), migration (orange), and 

wintering (blue). 
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Supplemental Figure 10. Proportion of the study area predicted climatically suitable by GAM 

models. Black points indicate proportion of area predicted suitable for each month for the 1980–2010 

study period and red diamonds represent proportion of area predicted suitable for the 2014–2015 

model evaluation period for the time-specific model. Dashed lines denote proportion of area predicted 

suitable for time-averaged model (blue, 1980–2010; red, 2014–2015). Color blocks denote season 

relative to Hylocichla mustelina behavior: breeding (yellow), migration (orange), and wintering (blue).  
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Supplementary Table 8. Range of average monthly percentage of study region predicted suitable by 

season and time-specific algorithm for the January 1980 – March 2010 primary study period and the 

2014–2015 supplemental evaluation period. Seasonal averages are presented in parentheses below 

range values. 

Model Evaluation 

period 

Breeding 

(June–August) 

Migratory 

(May, September) 

Wintering 

(October–April) 

BRT 1980–2010 56.0–94.0% 

(91.2%) 

30.0–85.1% 

(75.1%) 

12.5–80.2% 

(27.2%) 

 2014–2015 82.2–87.3% 

(84.2%) 

57.5–79.7% 

(68.6%) 

10.2–48.6% 

(23.9%) 

GAM 1980–2010 80.1–81.5% 

(81.0%) 

56.7–70.6% 

(63.7%) 

12.4–41.8% 

(22.2%) 

 2014–2015 86.1–90.0% 

(87.9%)  

60.5–82.4% 

(71.5%) 

10.7–50.9% 

(25.4%) 

GLM 1980–2010 89.7–91.6% 

(90.8%) 

60.7–89.6% 

(75.2%) 

14.6–46.4% 

(25.8%) 

 2014–2015 89.7–92.3% 

(91.2%) 

61.8–88.5% 

(75.1%) 

11.6–52.3% 

(27.2%) 
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DISCUSSION 

Discussion Point – Sample bias (continued) 

For example, our H. mustelina occurrence data are ‘complete’ in that ample data are 

available representing the full geographic distribution of the species. However, there is a strong 

month-to-month bias in sampling intensity towards migration and breeding periods such that only 

18,181 (13.5 %) of the 134,293 H. mustelina records available for the 1980–2010 study period 

were collected during what we loosely categorized as the wintering period (Supp. Fig. 3). Indeed, 

47.9% of data (58,395 records) were collected during May alone, a 138-fold increase compared to 

data available for the month with the least total records (November, 422 records). Our spatial 

filtering process to one point per pixel (time-averaged) or one point per pixel per time step (time-

specific) alleviates some of the spatial bias inherited from the original dataset (Dormann 2007; 

Phillips et al. 2009). This process also offsets some temporal bias by 1) reducing the data such that 

the time-specific data had a 131-fold difference between the lowest-sampled month (November, 

99 records) and the highest-sampled month (May, 12,970 records), and 2) the time-averaged 

dataset had a 93-fold difference between the cumulative observations in the lowest-sampled month 

(November, 306 records) and the highest-sampled month (May, 28,601 records). However, the 

filtering process did not significantly impact the seasonal disparity in sampling intensity with only 

13–15% of data in the final time-averaged and time-specific datasets from wintering period. This 

disparity illustrates the need for further research on accounting for temporal bias to ensure model 

accuracy. 
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APPENDIX 3: Supplementary Information – Assessing the utility of time-specific correlative 

ecological niche framework to produce dynamic distributional predictions for the 

nomadic Wandering Albatross (Diomedea exulans) 

 

Authors: Kate Ingenloff (ORCid: 0000-0001-5942-9053) & A. Townsend Peterson (ORCid: 0000-

0003-0243-2379)  
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Input Data 

 

 

Supplemental Figure 1. Study region overlaid with  Diomedea exulans range (black outline; BirdLife 

International and NatureServe 2015), marine IBAs relevant to wandering albatross complex (BirdLife 

International and NatureServe 2020), and averaged location of the Southern Ocean front lines (yellow 

lines: STF – subtropical front; SAF – sub-Antarctic front; PF – polar front; sACCF – southern 

Antarctic Circumpolar Current; sbACCF – southern boundary Antarctic Circumpolar Current; Orsi 

& Harris 2008). 
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Supplemental Figure 2. At-sea distributions (light blue) and marine important bird areas (IBAs; 

confirmed IBAs denoted by red polygons, proposed IBAs denoted by orange polygons, and candidate 

IBAs represented by yellow polygons) for each of the four species in the Wandering Albatross 

complex: Diomedea amsterdamensis (top left), D. antipodensis (top right), D. dabbenena (bottom left), and 

D. exulans (bottom right). Maps are screenshots obtained from the Birdlife International Marine IBA 

e-Atlas (BirdLife International and NatureServe 2020). 
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Supplemental Figure 3. Diomedea exulans observations by month for raw, cleaned (black), spatially 

rarefied (red), and spatially rarefied and thinned (blue) time-averaged data. 
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Supplemental Figure 4. Diomedea exulans observations by month for raw, cleaned (black), spatially 

rarefied (red), and spatially rarefied and thinned (blue) time-specific data. 
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Covariate Correlations 

 

Covariate correlations were calculated for time-averaged and time-specific data using 

‘GGally’ (Schloerke et al. 2018).  We considered covariate correlations > 0.75 as overly high and 

were flagged for closer assessment during model calibration. High covariate correlations are 

noted below. 

 

 

Supplemental Table 4. High covariate correlations (r2 > 0.75) for spatially rarefied (SR) and spatially 

rarefied and thinned (STR) time-averaged and time-specific datasets. 

Dataset High Correlations 

Time-Averaged SR rangeCHL:meanSST: r2 = 0.802 

rangeCHL:rangeSST: r2 = 1.000 

rangeCHL:meanCHL: r2 = 0.800 

rangeSST:meanSST: r2 = 0.800 

 STR rangeCHL:rangeSST: r2 = 1.000 

rangeCHL:meanCHL: r2 = 0.820 

Time-Specific SR  

 STR  
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Supplemental Figure 5. 

Covariate correlation matrices 

for spatially rarefied time-

averaged (a) Diomedea exulans 

and pseudo-absence data, (b) 

Diomedea exulans data, and (c) 

pseudo-absence data. 
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Supplemental Figure 6. 

Covariate correlation matrices 

for spatially rarefied and thinned 

time-averaged (a) Diomedea 

exulans and pseudo-absence 

data, (b) Diomedea exulans data, 

and (c) pseudo-absence data. 
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Supplemental Figure 7. 

Covariate correlation 

matrices for spatially rarefied 

time-specific (a) Diomedea 

exulans and pseudo-absence 

data, (b) Diomedea exulans 

data, and (c) pseudo-absence 

data. 
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Supplemental Figure 8. 

Covariate correlation matrices 

for spatially rarefied and 

thinned time-specific (a) 

Diomedea exulans and pseudo-

absence data, (b) Diomedea 

exulans data, and (c) pseudo-

absence data. 
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Model Calibrations 

 

 

Weighting input data 

 

Weight scenario #1 weighted study species presence data greater than pseudo-absence data using 

the following R script:  

 
w1 <- c(rep(1, nrow(modCal.Pres)), rep(nrow(modCal.Pres)/nrow(modCal.PAs), nrow(modCal.PAs))); 

 

Weight scenario #2 weighted study species presence data and pseudo-absence data equally using 

the following R script:  

 
w2 <- rep(1, nrow(modCal.Pres) + nrow(modCal.PAs)); 
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Supplemental Table 5. Time-averaged spatially rarefied final model calibration settings for each 

algorithm. 
GLM model <- ta.pair.w1; 

model <- glm(formula = Presence ~ 1 + BATHY + meanCDOM + rangeCDOM + meanCHL:BATHY 

+ meanCDOM:BATHY + meanCDOM:meanCHL + meanSST:BATHY + 

meanSST:meanCHL + meanSST:meanCDOM + rangeCDOM:BATHY + 

rangeCDOM:meanCHL + rangeCDOM:meanCDOM + rangeCDOM:meanSST,  

                        family = binomial,  data = mcal, weights = w1) 

 

summary(model); 

Deviance Residuals:  

   Min             1Q         Median          3Q            Max   

 -1.9888    -0.3724     -0.2662     -0.1123       4.1274   

 

Coefficients: 

Variable Estimate Std. Error z value Pr(>|z|) 

(Intercept) -5.687e+00  7.198e-01  -7.901 2.76e-15 *** 

BATHY 5.383e-04 1.466e-04 3.672 0.000241 *** 

meanCDOM 4.164e+00 4.417e-01 9.428 < 2e-16 *** 

rangeCDOM 2.052e-01   9.712e-02 2.113   0.034603 *   

BATHY:meanCHL -6.061e-04   1.098e-04 -5.519 3.42e-08 *** 

BATHY:meanCDOM       6.411e-04  6.984e-05  9.179  < 2e-16 *** 

meanCDOM:meanCHL    -3.137e+00 2.090e-01 -15.009 < 2e-16 *** 

BATHY:meanSST       -4.513e-05   4.097e-06 -11.015  < 2e-16 *** 

meanCHL:meanSST 1.685e-01   2.155e-02 7.820 5.28e-15 *** 

meanCDOM:meanSST 8.712e-02   1.316e-02 6.621 3.56e-11 *** 

BATHY:rangeCDOM     -1.168e-04   1.635e-05 -7.142 9.22e-13 *** 

rangeCDOM:meanCHL    4.611e-01  5.177e-02  8.906 < 2e-16 *** 

meanCDOM:rangeCDOM -1.648e-01   4.381e-02   -3.761 0.000169 *** 

rangeCDOM:meanSST   -4.332e-02 4.298e-03  -10.078  < 2e-16 *** 

#  Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

(Dispersion parameter for binomial family taken to be 1)  

 

Null deviance: 5336.6  on 10802  degrees of freedom 

Residual deviance: 4222.0  on 10789  degrees of freedom 

AIC: 2244.9 

 

Number of Fisher Scoring iterations: 6 

 

library(caret); 

varImp(model); 

Variable Overall 

meanCDOM:meanCHL 15.009195 

BATHY:meanSST  11.014661 

rangeCDOM:meanSST  10.078478 

meanCDOM 9. 428055 

BATHY:meanCDOM  9.178814 

rangeCDOM:meanCHL  8.905823 

meanCHL:meanSST    7.820008 

BATHY:rangeCDOM 7.141671 

meanCDOM:meanSST  6.621357 

BATHY:meanCHL  5.518632 

meanCDOM:rangeCDOM   3.761074 

BATHY 3.671939 

rangeCDOM 2.112976 

 

 

GAM model <- m1.25k.w1;  

model <- gam(Presence ~ 1 + s(BATHY, k = 25) + s(meanCHL, k = 25)+ s(meanCDOM, k = 25) 

                 + s(rangeCDOM, k = 25) + s(meanSST, k = 25),  
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                 family = binomial, data = mcal, select = TRUE, weights = w1); 

 

AIC(model); #  1500.991 

 

summary(model); 

 Parametric coefficients: 

                         Estimate     Std. Error      z value             Pr(>|z|)     

 (Intercept)    -1.83679      0.06488        -28.31            <2e-16 *** 

 

 Approximate significance of smooth terms: 

 edf Ref.df Chi.sq p-value 

BATHY 15.709 24 180.563 < 2e-16 *** 

meanCHL 15.024 24 273.360 < 2e-16 *** 

meanCDOM 7.353 24 25.719 0.00015 *** 

rangeCDOM 2.671 24 6.683 0.04203 * 

meanSST 22.030 24 491.997 < 2e-16 *** 

#  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1# 

 

R-sq.(adj) =   0.44   Deviance explained = 38.4% 

UBRE = -0.68409  Scale est. = 1         n = 10803 

 

Variable response plot using ‘response.plot2()’ function (Biomod package) 

 
 

BRT model <- m.bf06.tc5.w2; 

model <- gbm.step(data = mcal, gbm.x = c(7:12), gbm.y = 1, family = "bernoulli",  

                          tree.complexity = 5, bag.fraction = 0.6, site.weights = w2);  

 

# model evaluation via custom function 

Threshold Threshold 

Value 

Training 

Presences 

Predicted 

Test 

Presences 

Predicted 

Trainin

g 

OR 

Test 

OR 

Training 

MSE 

Test 

MSE 

MPT 0.029464444685                2314 747 99.96% 97.90% 0.146639     0.275099 

MPT + E=5% 0.238379168344    2199 600 94.99& 78.64%   

MPT + 

E=10% 

0.336609387138    2083 546 89.98% 71.56%   
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Variable Importance 

summary(model); 

Variable Relative Influence 

meanSST 40.556030 

BATHY 20.376001 

meanCHL 19.414372 

meanCDOM 8.381100 

rangeCHL 6.965380 

rangeCDOM 4.307115 
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Supplemental Table 6. Time-averaged spatially rarefied and thinned final model calibration settings 

for each algorithm. 
GLM model <- ts.pair.w1.2; 

model <- glm(Presence ~ 1 + BATHY + meanCHL + meanCDOM + meanSST + rangeCHL + 

meanCDOM:BATHY + meanCDOM:meanCHL + rangeCHL:meanCDOM +  

rangeCHL:meanSST,  

family = binomial, data = mcal, weights = w1); 

 

summary(model); 

 Deviance Residuals:  

      Min             1Q          Median         3Q            Max   

  -1.8426     -0.3432       -0.2554    -0.1946       3.6426   

 

# Coefficients:   

Variable Estimate Std. Error z value Pr(>|z|) 

(Intercept) -5.967e+00  4.556e-01 -13.098 < 2e-16 *** 

BATHY -4.433e-04 1.459e-04 -3.039 0.00237 ** 

meanCHL 5.504e+00  7.432e-01 7.406 1.30e-13 *** 

meanCDOM 2.714e+00  2.299e-01 11.805 < 2e-16 *** 

meanSST 6.790e-02  9.761e-03 6.956 3.49e-12 *** 

rangeCHL -2.606e-01 6.572e-02 -3.965 7.34e-05 *** 

BATHY:meanCDOM 3.966e-04 7.479e-05 5.303 1.14e-07 *** 

meanCHL:meanCDOM -2.852e+00 2.922e-01 -9.760 < 2e-16 *** 

meanCDOM:rangeCHL 7.407e-02 2.634e-02 2.813 0.00491 ** 

meanSST:rangeCHL 5.467e-03 2.281e-03 2.397 0.01654* 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

Null deviance: 3594.3  on 7934  degrees of freedom 

Residual deviance: 2948.1  on 7925  degrees of freedom 

AIC: 1596.3 

 

Number of Fisher Scoring iterations: 6 

 

varImp(model); # variable importance derived using ‘caret’ package) 

Variable Overall 

meanCDOM 11.804547 

meanCHL:meanCDOM 9.759516 

meanCHL  7.405665 

meanSST 6.956424 

BATHY:meanCDOM 5.303439 

rangeCHL  3.964867 

BATHY 3.038891 

meanCDOM:rangeCHL 2.812589 

meanSST:rangeCHL 2.396820 

 

 

GAM model <- m1.25k.w1; 

model <- gam(Presence ~ 1 + s(BATHY, k = 25) + s(meanCHL, k = 25)+ s(meanCDOM, k = 25) 

                 + s(rangeCDOM, k = 25) + s(meanSST, k = 25),  

                 family = binomial, data = mcal, select = TRUE, 

                 weights = w1); 

 

AIC(model); # 1099.472 

 

summary(model); 

Parametric coefficients: 

                               Estimate      Std. Error      z value         Pr(>|z|)     

 (Intercept)          -1.96591        0.08294        -23.7          <2e-16 *** 
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Approximate significance of smooth terms: 

 edf Ref.df Chi.sq p-value 

BATHY 13.490 24 139.522 < 2e-16 *** 

meanCHL 15.810 24 182.591 < 2e-16 *** 

meanCDOM 5.220 24 27.42 5.9e-06 *** 

rangeCDOM 2.367 24 3.603   0.179     

meanSST 21.633 24 319.800 < 2e-16 *** 

  Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

 

R-sq.(adj) =  0.429   Deviance explained = 38.2% 

UBRE = -0.70494  Scale est. = 1         n = 7935 

 

 variable response plot using ‘response.plot2()’ function 

 

 
 

BRT model <- m.lr005.tc5.w2; 

model <- gbm.step(data = mcal, gbm.x = c(7:12), gbm.y = 1,  

family = "bernoulli", tree.complexity = 5, learning.rate = 0.005, site.weights = w2);  

 

 

m.lr005.tc5.or.w2; # model evaluation via custom function 

Threshold Threshold 

Value 

Training 

Presences 

Predicted 

Test 

Presences 

Predicted 

Trainin

g 

OR 

Test 

OR 

Training 

MSE 

Test 

MSE 

MPT 0.03140610267 1608 510 99.94% 98.27% 0.169634 0.304359 

MPT + E=5% 0.20169896205 1529 406 95.03% 78.23%   

MPT + 

E=10% 

0.29559917425 1448 374 89.99% 72.06%   

 

 

Variable Importance 

summary(model); 

Variable Relative Influence 

meanSST 39.691589 
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BATHY 23.449343 

meanCHL 21.117736 

meanCDOM 6.999985 

rangeCHL 5.515859 

rangeCDOM 3.225488 
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Supplemental Table 7. Time-specific spatially rarefied final model calibration settings for each 

algorithm. 
GLM model <- ts.pair.w1.3; 

model <- glm(Presence ~ 1 + BATHY + CDOM:CHL + SST:CDOM + BATHY:SST,  

      family = binomial, data = mcal, weights = w1);  

  

summary(model); 

Deviance Residuals:  

    Min            1Q         Median        3Q            Max   

 -1.9471  -0.4543     -0.3739    0.8709      4.3458   

 

 Coefficients:   

Variable Estimate Std. Error z value Pr(>|z|) 

(Intercept) -1.039e-01 5.981e-02 -1.737 0.0823 . 

BATHY 3.373e-04 2.673e-05 12.621 < 2e-16 *** 

CDOM:CHL -1.520e-01 1.901e-02 -7.997 1.28e-15 *** 

CDOM:SST 2.115e-02 1.830e-03 11.555 < 2e-16 *** 

BATHY:SST 4.320e-06 2.042e-06 2.116 0.0344 * 

 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 (Dispersion parameter for binomial family taken to be 1) 

 

Null deviance: 7259.6  on 10218  degrees of freedom 

Residual deviance: 6415.3  on 10214  degrees of freedom 

AIC: 3728.8 

 

Number of Fisher Scoring iterations: 5 

 

 

varImp(model); # variable importance derived using the ‘caret’ package 

Variable Overall 

BATHY 12.620922 

CDOM:SST 11.555263 

CDOM:CHL 7.996611 

BATHY:SST 2.115645 

 

 

 
  

 

 

GAM model <- tsFull.1.25k.w1; 

model <- gam(Presence ~ 1 + s(CHL, k=25) + s(CDOM, k = 25) + s(SST, k=25) + s(BATHY, k=25),  
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                       family = binomial , data = mcal, select = TRUE, weights = w1); 

AIC(model); # 2911.078 

 

summary(model); 

Parametric coefficients: 

                       Estimate   Std. Error     z value    Pr(>|z|)     

 (Intercept)   -1.46502    0.07003     -20.92     <2e-16 *** 

 

 Approximate significance of smooth terms: 

 edf Ref.df Chi.sq p-value 

s(CHL)     20.766   24 333.12 < 2e-16 *** 

s(CDOM) 6.664   24 67.22 4.23e-14 *** 

S(SST) 23.492      24 411.71 < 2e-16 *** 

S(BATHY) 20.331   24 453.76   < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.324   Deviance explained = 26.5% 

UBRE = -0.46391  Scale est. = 1         n = 10219 

 

BRT model <- m.bf07.tc4.w2; 

model <- gbm.step(data = mcal, gbm.x = c(7:10),  

                          gbm.y = 1, family = "bernoulli", tree.complexity = 4, bag.fraction = 0.7, 

                          site.weights = w2); # lr default 

 

# model evaluation via custom function 

Threshold Threshold 

Value 

Training 

Presences 

Predicted 

Test 

Presences 

Predicted 

Training 

OR 

Test 

OR 

Training 

MSE 

Test 

MSE 

MPT 0.01609685196                2821 967 99.96% 99.79% 0.198065 0.251652 

MPT + E=5% 0.18039890121 2681 861 95%  88.85%   

MPT + E=10% 0.24789905927 2540 794 90.01%  81.94%   

 

Variable Importance 

summary(model); 

Variable Relative Influence 

BATHY 41.657 

SST 33.599 

CHL 15.604 

CDOM 9.140 
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Supplemental Table 8. Time-specific spatially rarefied and thinned final model calibration settings 

for each algorithm. 
GLM model <- ts.pair.w1.2; 

model <- glm(Presence ~ 1 + SST + BATHY + CDOM:CHL + SST:CDOM +  

        BATHY:CHL + BATHY:CDOM + BATHY:SST, family = binomial, data = mcal,  

        weights = w1); 

 

Deviance Residuals:  

  Min       1Q   Median       3Q      Max   

-2.2351  -0.5002  -0.3798   0.8347   3.4838   

   

# Coefficients:   

Variable Estimate Std. Error z value Pr(>|z|) 

(Intercept) -5.641e-01 1.004e-01 -5.617 1.94e-08 *** 

SST 4.198e-02 1.108e-02 3.789 0.000152 *** 

BATHY 2.433e-04 4.141e-05 5.875 4.23e-09 *** 

CDOM:CHL -1.010e-01 1.945e-02 -5.192 2.08e-07 *** 

SST:CDOM 2.120e-02 3.030e-03 6.996 2.64e-12 *** 

BATHY:CHL -8.916e-05 4.014e-05 -2.221 0.026345 * 

BATHY:CDOM 3.110e-05 1.253e-05 0.013065 * 0.013065 * 

SST:BATHY 7.203e-06   3.000e-06    2.401   0.016333 *   

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for binomial family taken to be 1) 

 

Null deviance: 6183.8  on 7808  degrees of freedom 

Residual deviance: 5296.2  on 7801  degrees of freedom 

AIC: 2993.4 

 

Number of Fisher Scoring iterations: 5 

 

Relative Variable Importance 

varImp(model); # library(caret) 

Variable Overall 

SST:CDOM 6.995575 

BATHY 5.874933 

CDOM:CHL 5.192034 

SST 3.788529 

BATHY:CDOM 2.481998 

SST:BATHY 2.401386 

BATHY:CHL 2.221090 
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GAM model <- tsFull.1.25k.w1; 

model <- gam(Presence ~ 1 + s(CHL, k=25) + s(CDOM, k = 25) + s(SST, k=25) + s(BATHY, k=25),  

                       family = binomial , data = mcal, select = TRUE, weights = w1); 

AIC(model); # 2423.718 

 

summary(model); 

Parametric coefficients: 

                             Estimate      Std. Error       z value          Pr(>|z|)     

(Intercept)         -1.27331        0.05174        -24.61           <2e-16 *** 

  --- 

 Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Approximate significance of smooth terms: 

 edf Ref.df Chi.sq p-value 

s(CHL)     19.88 24 252.94 < 2e-16 *** 

s(CDOM) 12.30 24 52.83 4.93e-08 *** 

S(SST) 13.46 24 364.91  < 2e-16 *** 

S(BATHY) 20.14 24 403.23  < 2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

R-sq.(adj) =  0.336   Deviance explained = 28.1% 

UBRE = -0.41329  Scale est. = 1         n = 7809 

 

# variable response plot using ‘response.plot2()’ function 
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BRT model <- m.tc4.w2; 

model <- gbm.step(data = mcal, gbm.x = c(7:10),  

                     gbm.y = 1, family = "bernoulli",  

                     tree.complexity = 4, 

                     site.weights = w2); # default bf & lr 

 

 

m.tc4.or.w2; # model evaluation via custom function 

Threshold Threshold 

Value 

Training 

Presences 

Predicted 

Test 

Presences 

Predicted 

Training 

OR 

Test 

OR 

Training 

MSE 

Test 

MSE 

MPT 0.02627560590 2363 829   99.96% 99.64% 0.174213 0.222612 

MPT + E=5% 0.18911294435 2246 759 95.01% 91.23%   

MPT + 

E=10% 

0.29298187128 2128 689 90.02% 82.81%   

 

Variable Influence 

summary(model); 

Variable Relative Influence 

BATHY 41.865590 

SST 35.750944 

CHL 15.580212 

CDOM 6.803255 
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160 

Supplemental Figure 9. Time-

averaged spatially rarefied (SR; top) 

and spatially rarefied and thinned 

(STR; bottom) final GLM model 

predictions overlaid with Diomedea 

exulans range (dashed line; BirdLife 

International and NatureServe 

2015), relevant marine IBAs (black 

polygons; BirdLife International 

2016), and D. exulans test data (red 

points), and Subtropical (STF), 

Subantarctic (SAF) and Polar Fronts 

(PF; Orsi & Harris 2008). 
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Supplemental Figure 10. Snapshot 

of time-averaged spatially rarefied 

(SR; top) and spatially rarefied and 

thinned (STR; bottom) final GAM 

model predictions overlaid with 

Diomedea exulans range (dashed line; 

BirdLife International and 

NatureServe 2015), relevant marine 

IBAs (black polygons; BirdLife 

International 2016), and D. exulans 

test data (red points), and Subtropical 

(STF), Subantarctic (SAF) and Polar 

Fronts (PF; Orsi & Harris 2008). 
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Supplemental Figure 11. Snapshot 

of time-averaged spatially rarefied 

(SR; top) and spatially rarefied and 

thinned (STR; bottom) final BRT 

model predictions overlaid with 

Diomedea exulans range (dashed line; 

BirdLife International and 

NatureServe 2015), relevant marine 

IBAs (black polygons; BirdLife 

International 2016), and D. exulans 

test data (red points), and 

Subtropical (STF), Subantarctic 

(SAF) and Polar Fronts (PF; Orsi & 

Harris 2008). 
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Supplemental Figure 12. Snapshot of time-specific spatially rarefied (SR; left) and spatially rarefied 

and thinned (STR; right) final GLM model predictions overlaid with Diomedea exulans range (dashed 

line; BirdLife International and NatureServe 2015), relevant marine IBAs (black polygons; BirdLife 

International 2016), and D. exulans test data (red points), and Subtropical (STF), Subantarctic (SAF) 

and Polar Fronts (PF; Orsi & Harris 2008). See dynamic prediction at 

doi.org/10.6084/m9.figshare.12612431.v1. 
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Supplemental Figure 13. Snapshot of time-specific spatially rarefied (SR; left) and spatially rarefied 

and thinned (STR; right) final GAM model predictions overlaid with Diomedea exulans range (dashed 

line; BirdLife International and NatureServe 2015), relevant marine IBAs (black polygons; BirdLife 

International 2016), and D. exulans test data (red points), and Subtropical (STF), Subantarctic (SAF) 

and Polar Fronts (PF; Orsi & Harris 2008). See dynamic prediction at 

doi.org/10.6084/m9.figshare.12612431.v1. 
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Supplemental Figure 14. Snapshot of time-specific spatially rarefied (SR; left) and spatially rarefied 

and thinned (STR; right) final BRT model predictions overlaid with Diomedea exulans range (dashed 

line; BirdLife International and NatureServe 2015), relevant marine IBAs (black polygons; BirdLife 

International 2016), and D. exulans test data (red points), and Subtropical (STF), Subantarctic (SAF) 

and Polar Fronts (PF; Orsi & Harris 2008). See dynamic prediction at 

doi.org/10.6084/m9.figshare.12612431.v1. 
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Supplemental Table 9. Performance statistics for spatially rarefied (SR) and spatially rarefied and 

thinned (STR) time-averaged consensus models. 

 SR STR 

# D. exulans occurrences 761 517 

# D. exulans occurrences: predicted present 488 409 

# D. exulans occurrences: predicted absent 273 108 

# D. exulans occurrences: NA 0 0 

Omission Rate (OR) 
0.3588 

(35.88%) 

0.2089 

(20.89%) 

Mean pROC value 1.1161 0.9954 

pROC pValue 0.8 0.672 

 

 

 

 

Supplemental Table 10. Summary of performance statistics for spatially rarefied (SR) and spatially 

rarefied and thinned (STR) time-specific consensus models. 

 SR STR 

# D. exulans occurrences 969 832 

# D. exulans occurrences: predicted present 945 787 

# D. exulans occurrences: predicted absent 24 45 

Omission rate: range 0–0.5 0–0.6923 

Mean pROC range 0.8161–1.2248 0.7406–1.1785 

pROC pValue range 0–0.762 0–1 
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Supplemental Table 11. Performance statistics for each time step for spatially rarefied (SR; blue) and 

spatially rarefied and thinned (STR; green) time-specific consensus models. Non-significant time steps 

are highlighted in peach; time steps for which no Diomedea exulans test data were present are gray. 

Time 

SR STR 

N 

Obs 

N obs 

present 

N obs 

absent 
OR 

mean 

pROC 

pROC 

pVal 

N 

Obs 

N obs 

present 

N obs 

absent 
OR 

mean 

pROC 

pROC 

pVal 

200002 17 17 0 0.000 1.1045 0.0000 17 17 0 0.000 1.1040 0.0000 

200003 3 3 0 0.000 1.1041 0.0000 3 3 0 0.000 1.1028 0.0000 

200004 5 5 0 0.000 1.1239 0.0000 5 5 0 0.000 1.1172 0.0000 

200005 19 18 1 0.053 1.1241 0.0060 19 18 1 0.053 1.1037 0.0040 

200006 13 8 5 0.385 0.9533 0.5680 13 4 9 0.692 0.7406 1.0000 

200007 14 14 0 0.000 1.1608 0.0000 14 11 3 0.214 1.0099 0.3820 

200008 1 1 0 0.000 1.1376 0.0000 1 1 0 0.000 1.1321 0.0000 

200009 1 1 0 0.000 1.1388 0.0000 1 1 0 0.000 1.1366 0.0000 

200010 25 25 0 0.000 1.1696 0.0000 21 20 1 0.048 1.1362 0.0020 

200011 22 22 0 0.000 1.1717 0.0000 21 21 0 0.000 1.1643 0.0000 

200012 4 4 0 0.000 1.1329 0.0000 4 4 0 0.000 1.1245 0.0000 

200101 9 9 0 0.000 1.0955 0.0000 9 9 0 0.000 1.0900 0.0000 

200102 19 18 1 0.053 1.0568 0.0460 19 18 1 0.053 1.0557 0.0320 

200103 12 12 0 0.000 1.0837 0.0000 12 12 0 0.000 1.0913 0.0000 

200104 0 NA NA NA NA NA 0 NA NA NA NA NA 

200105 0 NA NA NA NA NA 0 NA NA NA NA NA 

200106 0 NA NA NA NA NA 0 NA NA NA NA NA 

200107 2 2 0 0.000 1.176 0.000 2 2 0 0.000 1.147 0.000 

200108 1 1 0 0.000 1.125 0.000 1 1 0 0.000 1.136 0.000 

200109 8 8 0 0.000 1.123 0.000 8 8 0 0.000 1.139 0.000 

200110 4 4 0 0.000 1.157 0.000 4 4 0 0.000 1.159 0.000 

200111 3 3 0 0.000 1.179 0.000 3 3 0 0.000 1.168 0.000 

200112 3 3 0 0.000 1.147 0.000 3 3 0 0.000 1.135 0.000 

200201 17 17 0 0.000 1.100 0.000 17 16 1 0.059 1.065 0.022 

200202 2 1 1 0.500 0.816 0.762 2 2 0 0.000 1.095 0.000 

200203 13 13 0 0.000 1.116 0.000 13 12 1 0.077 1.068 0.136 

200204 2 2 0 0.000 1.166 0.000 2 2 0 0.000 1.143 0.000 

200205 2 2 0 0.000 1.199 0.000 2 2 0 0.000 1.164 0.000 

200206 1 1 0 0.000 1.225 0.000 1 1 0 0.000 1.170 0.000 

200207 27 25 2 0.074 1.160 0.000 21 13 8 0.381 0.941 0.750 

200208 38 37 1 0.026 1.147 0.000 21 17 4 0.190 1.037 0.320 

200209 84 81 3 0.036 1.151 0.000 21 16 5 0.238 1.023 0.260 

200210 27 25 2 0.074 1.139 0.000 21 19 2 0.095 1.110 0.012 

200211 1 1 0 0.000 1.174 0.000 1 1 0 0.000 1.161 0.000 

200212 2 2 0 0.000 1.143 0.000 2 2 0 0.000 1.129 0.000 

200301 7 7 0 0.000 1.104 0.000 7 7 0 0.000 1.093 0.000 
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200302 2 2 0 0.000 1.096 0.000 2 2 0 0.000 1.086 0.000 

200303 14 14 0 0.000 1.107 0.000 14 14 0 0.000 1.097 0.000 

200304 0 NA NA NA NA NA 0 NA NA NA NA NA 

200305 1 1 0 0.000 1.167 0.000 1 1 0 0.000 1.136 0.000 

200306 1 1 0 0.000 1.190 0.000 1 1 0 0.000 1.143 0.000 

200307 0 NA NA NA NA NA 0 NA NA NA NA NA 

200308 2 2 0 0.000 1.126 0.000 2 2 0 0.000 1.133 0.000 

200309 0 NA NA NA NA NA 0 NA NA NA NA NA 

200310 1 1 0 0.000 1.153 0.000 1 1 0 0.000 1.154 0.000 

200311 0 NA NA NA NA NA 0 NA NA NA NA NA 

200312 37 37 0 0.000 1.152 0.000 21 21 0 0.000 1.133 0.000 

200401 44 44 0 0.000 1.123 0.000 21 21 0 0.000 1.104 0.000 

200402 7 6 1 0.143 1.031 0.148 7 7 0 0.000 1.097 0.000 

200403 8 7 1 0.125 1.053 0.174 8 7 1 0.125 1.048 0.160 

200404 1 1 0 0.000 1.155 0.000 1 1 0 0.000 1.138 0.000 

200405 1 1 0 0.000 1.194 0.000 1 1 0 0.000 1.159 0.000 

200406 0 NA NA NA NA NA 0 NA NA NA NA NA 

200407 0 NA NA NA NA NA 0 NA NA NA NA NA 

200408 4 4 0 0.000 1.155 0.000 4 4 0 0.000 1.145 0.000 

200409 1 1 0 0.000 1.158 0.000 1 1 0 0.000 1.148 0.000 

200410 2 2 0 0.000 1.181 0.000 2 2 0 0.000 1.167 0.000 

200411 2 2 0 0.000 1.180 0.000 2 2 0 0.000 1.164 0.000 

200412 4 4 0 0.000 1.137 0.000 4 4 0 0.000 1.125 0.000 

200501 15 15 0 0.000 1.104 0.000 15 15 0 0.000 1.095 0.000 

200502 6 6 0 0.000 1.097 0.000 6 6 0 0.000 1.091 0.000 

200503 4 3 1 0.250 0.962 0.608 4 4 0 0.000 1.105 0.000 

200504 1 1 0 0.000 1.130 0.000 1 1 0 0.000 1.127 0.000 

200505 2 2 0 0.000 1.173 0.000 2 2 0 0.000 1.148 0.000 

200506 8 8 0 0.000 1.206 0.000 8 8 0 0.000 1.159 0.000 

200507 0 NA NA NA NA NA 0 NA NA NA NA NA 

200508 3 3 0 0.000 1.168 0.000 3 3 0 0.000 1.153 0.000 

200509 4 4 0 0.000 1.166 0.000 4 4 0 0.000 1.156 0.000 

200510 1 1 0 0.000 1.189 0.000 1 1 0 0.000 1.174 0.000 

200511 2 2 0 0.000 1.189 0.000 2 2 0 0.000 1.170 0.000 

200512 12 12 0 0.000 1.135 0.000 12 12 0 0.000 1.120 0.000 

200601 3 3 0 0.000 1.092 0.000 3 3 0 0.000 1.085 0.000 

200602 5 5 0 0.000 1.089 0.000 5 5 0 0.000 1.084 0.000 

200603 7 7 0 0.000 1.106 0.000 7 6 1 0.143 1.019 0.560 

200604 2 2 0 0.000 1.138 0.000 2 2 0 0.000 1.126 0.000 

200605 1 1 0 0.000 1.175 0.000 1 1 0 0.000 1.147 0.000 

200606 1 1 0 0.000 1.200 0.000 1 1 0 0.000 1.156 0.000 
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200607 1 1 0 0.000 1.187 0.000 1 1 0 0.000 1.150 0.000 

200608 2 2 0 0.000 1.157 0.000 2 2 0 0.000 1.144 0.000 

200609 1 1 0 0.000 1.162 0.000 1 1 0 0.000 1.153 0.000 

200610 4 4 0 0.000 1.180 0.000 4 4 0 0.000 1.169 0.000 

200611 4 4 0 0.000 1.175 0.000 4 4 0 0.000 1.164 0.000 

200612 2 2 0 0.000 1.129 0.000 2 2 0 0.000 1.120 0.000 

200701 9 8 1 0.111 1.026 0.194 9 8 1 0.111 1.029 0.182 

200702 3 3 0 0.000 1.087 0.000 3 2 1 0.333 0.917 0.686 

200703 4 4 0 0.000 1.099 0.000 4 4 0 0.000 1.103 0.000 

200704 2 2 0 0.000 1.127 0.000 2 2 0 0.000 1.123 0.000 

200705 2 2 0 0.000 1.169 0.000 2 2 0 0.000 1.147 0.000 

200706 3 3 0 0.000 1.197 0.000 3 3 0 0.000 1.152 0.000 

200707 2 2 0 0.000 1.182 0.000 2 2 0 0.000 1.149 0.000 

200708 3 3 0 0.000 1.154 0.000 3 3 0 0.000 1.152 0.000 

200709 5 5 0 0.000 1.156 0.000 5 5 0 0.000 1.152 0.000 

200710 5 5 0 0.000 1.174 0.000 5 5 0 0.000 1.164 0.000 

200711 7 7 0 0.000 1.180 0.000 7 7 0 0.000 1.167 0.000 

200712 7 7 0 0.000 1.146 0.000 7 7 0 0.000 1.132 0.000 

200801 7 7 0 0.000 1.102 0.000 7 7 0 0.000 1.097 0.000 

200802 3 3 0 0.000 1.089 0.000 3 3 0 0.000 1.091 0.000 

200803 1 1 0 0.000 1.098 0.000 1 1 0 0.000 1.104 0.000 

200804 0 NA NA NA NA NA 0 NA NA NA NA NA 

200805 1 1 0 0.000 1.138 0.000 1 1 0 0.000 1.130 0.000 

200806 2 2 0 0.000 1.170 0.000 2 2 0 0.000 1.133 0.000 

200807 3 3 0 0.000 1.172 0.000 3 3 0 0.000 1.146 0.000 

200808 1 1 0 0.000 1.148 0.000 1 1 0 0.000 1.150 0.000 

200809 4 4 0 0.000 1.162 0.000 4 4 0 0.000 1.155 0.000 

200810 9 9 0 0.000 1.184 0.000 9 9 0 0.000 1.166 0.000 

200811 4 4 0 0.000 1.176 0.000 4 4 0 0.000 1.157 0.000 

200812 3 3 0 0.000 1.144 0.000 3 3 0 0.000 1.123 0.000 

200901 21 19 2 0.095 1.070 0.056 20 17 3 0.150 1.023 0.328 

200902 1 1 0 0.000 1.105 0.000 1 1 0 0.000 1.091 0.000 

200903 6 6 0 0.000 1.094 0.000 6 6 0 0.000 1.094 0.000 

200904 1 1 0 0.000 1.098 0.000 1 1 0 0.000 1.110 0.000 

200905 3 3 0 0.000 1.141 0.000 3 3 0 0.000 1.126 0.000 

200906 0 NA NA NA NA NA 0 NA NA NA NA NA 

200907 6 6 0 0.000 1.183 0.000 6 6 0 0.000 1.152 0.000 

200908 1 1 0 0.000 1.155 0.000 1 1 0 0.000 1.152 0.000 

200909 4 4 0 0.000 1.161 0.000 4 4 0 0.000 1.162 0.000 

200910 4 4 0 0.000 1.174 0.000 4 4 0 0.000 1.175 0.000 

200911 4 4 0 0.000 1.163 0.000 4 4 0 0.000 1.156 0.000 
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200912 4 4 0 0.000 1.136 0.000 4 4 0 0.000 1.120 0.000 

201001 11 11 0 0.000 1.097 0.000 11 10 1 0.091 1.038 0.174 

201002 8 8 0 0.000 1.100 0.000 8 8 0 0.000 1.093 0.000 

201003 4 4 0 0.000 1.113 0.000 4 4 0 0.000 1.112 0.000 

201004 3 2 1 0.333 0.940 0.714 3 2 1 0.333 0.944 0.688 

201005 1 1 0 0.000 1.163 0.000 1 1 0 0.000 1.150 0.000 

201006 1 1 0 0.000 1.199 0.000 1 1 0 0.000 1.154 0.000 

201007 1 1 0 0.000 1.196 0.000 1 1 0 0.000 1.160 0.000 

201008 2 2 0 0.000 1.172 0.000 2 2 0 0.000 1.160 0.000 

201009 2 2 0 0.000 1.177 0.000 2 2 0 0.000 1.170 0.000 

201010 6 6 0 0.000 1.190 0.000 6 6 0 0.000 1.178 0.000 

201011 3 3 0 0.000 1.186 0.000 3 3 0 0.000 1.167 0.000 

201012 1 1 0 0.000 1.149 0.000 1 1 0 0.000 1.130 0.000 

201101 4 4 0 0.000 1.105 0.000 4 4 0 0.000 1.093 0.000 

201102 3 3 0 0.000 1.105 0.000 3 3 0 0.000 1.094 0.000 

201103 2 2 0 0.000 1.123 0.000 2 2 0 0.000 1.115 0.000 

201104 4 4 0 0.000 1.137 0.000 4 4 0 0.000 1.132 0.000 

201105 1 1 0 0.000 1.172 0.000 1 1 0 0.000 1.151 0.000 

201106 2 2 0 0.000 1.210 0.000 2 2 0 0.000 1.164 0.000 

201107 1 1 0 0.000 1.192 0.000 1 1 0 0.000 1.154 0.000 

201108 0 NA NA NA NA NA 0 NA NA NA NA NA 

201109 0 NA NA NA NA NA 0 NA NA NA NA NA 

201110 1 1 0 0.000 1.171 0.000 1 1 0 0.000 1.168 0.000 

201111 6 6 0 0.000 1.174 0.000 6 6 0 0.000 1.166 0.000 

201112 7 7 0 0.000 1.152 0.000 7 7 0 0.000 1.136 0.000 

201201 13 13 0 0.000 1.125 0.000 13 13 0 0.000 1.109 0.000 

201202 3 3 0 0.000 1.119 0.000 3 3 0 0.000 1.104 0.000 

201203 4 4 0 0.000 1.124 0.000 4 4 0 0.000 1.118 0.000 

201204 5 5 0 0.000 1.137 0.000 5 5 0 0.000 1.133 0.000 

201205 1 1 0 0.000 1.172 0.000 1 1 0 0.000 1.148 0.000 

201206 2 2 0 0.000 1.199 0.000 2 2 0 0.000 1.153 0.000 

201207 1 1 0 0.000 1.185 0.000 1 1 0 0.000 1.150 0.000 

201208 1 1 0 0.000 1.160 0.000 1 1 0 0.000 1.146 0.000 

201209 2 2 0 0.000 1.166 0.000 2 2 0 0.000 1.155 0.000 

201210 10 10 0 0.000 1.181 0.000 10 10 0 0.000 1.172 0.000 

201211 4 4 0 0.000 1.169 0.000 4 4 0 0.000 1.158 0.000 

201212 8 8 0 0.000 1.140 0.000 8 8 0 0.000 1.124 0.000 

201301 6 6 0 0.000 1.111 0.000 6 6 0 0.000 1.102 0.000 

201302 3 3 0 0.000 1.095 0.000 3 3 0 0.000 1.101 0.000 

201303 7 6 1 0.143 1.024 0.530 7 7 0 0.000 1.111 0.000 

201304 0 NA NA NA NA NA 0 NA NA NA NA NA 
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201305 4 4 0 0.000 1.162 0.000 4 4 0 0.000 1.144 0.000 

201306 2 2 0 0.000 1.197 0.000 2 2 0 0.000 1.151 0.000 

201307 9 9 0 0.000 1.187 0.000 9 9 0 0.000 1.153 0.000 

201308 4 4 0 0.000 1.153 0.000 4 4 0 0.000 1.146 0.000 

201309 4 4 0 0.000 1.151 0.000 4 4 0 0.000 1.150 0.000 

201310 3 3 0 0.000 1.162 0.000 3 3 0 0.000 1.162 0.000 

201311 14 14 0 0.000 1.154 0.000 14 14 0 0.000 1.155 0.000 

201312 9 9 0 0.000 1.124 0.000 9 9 0 0.000 1.121 0.000 
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Supplemental Figure 15. Covariate space for spatially rarefied (black) and spatially rarefied and 

thinned (blue) time-averaged Diomedea exulans observation data. Visible black points denote unique 

covariate combinations lost during temporal rarefication.  
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