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Abstract  

Soil bacterial and fungal communities change dramatically over seasons and across 

multiple climate and environmental gradients. Little work has tested if the impact of these 

gradients on soil communities depends on the season in which they are measured, or whether 

seasonal community dynamics differ predictably across gradients. Given close links between 

microbial community variation and microbial function, more knowledge of community changes 

across these gradients in a single season and across the growing season could allow for a better 

understanding of microbial function at the landscape scale. We used amplicon sequencing to 

determine how the diversity and structure of soil bacterial and fungal communities respond to 

broad differences in environment, including historical precipitation, land use, and soil depth. We 

examined communities in spring and fall separately, then assessed whether community change 

across seasons depended on these same factors. We found that within-season variation in bacterial 

and fungal communities responded similarly to precipitation, land use, and depth. In spring and 

fall, these factors had similar impacts on bacterial and fungal communities, with depth explaining 

the majority of variation in diversity and community structure. Strong shifts in diversity and 

community structure across seasons were observed only at the 0-5 cm depth, and differed solely 

based on annual precipitation (not land use). While soil depth plays an important role in structuring 

microbial communities in both seasons, our results indicate that across seasons, only microbial 

communities at the soil’s surface are sensitive to climate differences. Key edaphic variables that 

change with soil depth and precipitation (i.e., soil moisture, pH, and organic carbon content) may 

simultaneously predict landscape-scale community variation within and across seasons. As 

patterns of microbial function in individual seasons and across seasons may respond differently to 

environmental gradients, future work determining if community structure and function are equally 
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linked across environmental gradients and seasons will be key to assessments of functional 

redundancy, and to better predict change in ecosystem function. 
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1 Introduction  

Soil bacterial and fungal communities often shift dramatically in structure and diversity 

from season to season. These dynamics are influenced by many environmental factors that also 

shift with season, including precipitation, temperature, plant community composition and biomass, 

and edaphic properties, including soil moisture and nutrient availability (Bardgett et al., 1999; 

Habekost et al., 2008; Shigyo et al., 2019). Combined, these factors generate seasonal changes in 

microbial communities that can be as great as shifts across vast spatial distances (i.e., ~4000 km; 

Averill et al., 2019; Lauber et al., 2013), but are generally consistent within a given season from 

year to year (Cruz-Martínez et al., 2009). The scale of these differences suggests that the season 

in which communities are measured matters greatly to assessments of microbial response to 

environmental change, as any community shifts must be gauged against their underlying seasonal 

dynamics. Although rarely explicitly addressed, this variation is often avoided by methods that try 

to consistently sample at the same time of year (e.g., peak biomass). This means our current 

understanding of how bacterial and fungal communities change in response to environmental 

perturbations is often viewed through a static, rather than seasonal lens. 

 While microbial communities shift seasonally, little work has explored whether the 

magnitudes of these shifts differ along climate gradients. Because bacterial and fungal community 

response to current environmental perturbations is often contingent on historical conditions 

(Hawkes and Keitt, 2015), it is likely that magnitudes of seasonal community change are reflective 

of a community’s historical climate. Among the many climate factors, including temperature, we 

choose to focus specifically on precipitation. Multiple studies have shown that historical 

precipitation plays a significant role in structuring bacterial and fungal communities (Averill et al., 

2016; Hawkes et al., 2017, 2011; Waring and Hawkes, 2018). Resilience to precipitation changes 
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may also depend on historical conditions; communities from sites with historically more variable 

climates tend to be more resistant to fluctuations in precipitation than communities from 

historically stable climates (Evans and Wallenstein, 2012). As such, in addition to structuring 

bacterial and fungal communities within a single season, it is possible that historical precipitation 

influences magnitudes of seasonal community shifts, especially those driven by seasonal rainfall 

fluctuations.  

Historical land use may also drive environmental shifts that alter magnitudes of seasonal 

community change. When measured at a single time point, land use history often drives significant 

microbial community variation (Bissett et al., 2011; Brinkmann et al., 2019; Jangid et al., 2011; 

Turley et al., n.d.; Xiang et al., 2014), with agricultural (or heavily-modified) lands usually 

harboring soil microbial communities that are distinct from those in native systems. This variation 

is often linked to differences in plant root abundance (Broeckling et al., 2008), soil structure (Smith 

et al., 2014), and nutrient availability (Xiang et al., 2014) among land use types. Because 

environmental variables like these vary predictably with broad land use categories (e.g., 

agricultural vs undisturbed), different land use types provide a general framework to broadly test 

hypotheses about the impacts of these variables on seasonal microbial community change. For 

example, rooting depth and abundance differ with land use history (Billings et al., 2019). These 

differences could drive microbial community variation among land uses by changing the 

availability of root habitats and root exudates. Given seasonal plant growth and changes in the 

quantity and timing of root exudates with seasonal changes in aboveground conditions (Canarini 

et al., 2019), seasonal community shifts might be greatest in native systems, where more roots are 

present. Similarly, seasonal management practices like fertilization create differences in mineral 

nutrient availability among land uses that vary throughout the year (Ge et al., 2009). Strong 
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competitive interactions in microbial communities when and where nutrients are less readily 

available (e.g., native systems) could generate greater community fluctuations compared to soils 

with high mineral nutrient content (e.g., agricultural systems).  

The effects of precipitation and land use on seasonal community changes may differ as one 

moves from shallow to deep soils. Specifically, rainfall influences vertical water fluxes (Kurc and 

Small, 2007; Weiler and Naef, 2003), and specific land uses like conventional agriculture change 

soil structure and nutrient availability (Veenstra and Lee Burras, 2015) in ways that may have 

varying effects on communities at different soil depths. In combination with strong shifts in 

microbial communities across soil depths (Feng et al., 2019; Jumpponen et al., 2010; Will et al., 

2010), the effects of historical precipitation and land use could generate communities that are 

unique to precipitation and land use throughout the profile. It is likely that the effects of these 

factors will be most pronounced in communities at the soil’s surface. Here, microbial communities 

are more exposed and sensitive to seasonal environmental perturbations (Griffiths et al., 2003). As 

such, surficial communities are likely to experience greater magnitudes of seasonal change than 

communities in deep soil across gradients of both precipitation and land use. As microbial 

community variation is closely linked with microbial function (Philippot et al., 2013; Strickland 

et al., 2009), more concise knowledge of community variation across overlaid climate (i.e., 

precipitation) and environmental (i.e., land use and soil depth) gradients, both within a single 

season and across the growing season, could allow for a better understanding of microbial function 

at the landscape scale. 

To determine landscape-scale variation in soil microbial communities, both within and 

across seasons, we first assessed how historical precipitation, land use, and soil depth shape 

communities immediately before and after the growing season. We determined how these factors 
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impact the diversity and community structure of both bacteria and fungi. After assessing within-

season community variation, we examined the extent to which magnitudes of seasonal community 

shifts depend on precipitation, land use, and soil depth. We aimed to use these broad climate and 

environmental categories to predict the fundamental variables most strongly contributing to 

microbial community variation within and across seasons. To do so, we collected replicate soil 

samples in spring and fall 2018 throughout the state of Kansas. These samples are representative 

of a strong annual precipitation gradient, three distinct land uses (native prairies, restored prairies, 

and agricultural fields), and five depth increments to 150 cm (Figure 1). With these soils, we used 

amplicon sequencing (Illumina MiSeq) to characterize bacterial (16S) and fungal (ITS2) 

communities, and assess their static and seasonal responses to our climate and environmental 

categories.  

In both spring and fall, we predicted that historical precipitation, land use, and soil depth 

would all contribute to variation in bacterial and fungal communities. Specifically, we 

hypothesized that changes in edaphic properties throughout the soil profile would create 

differences in microbial communities that were greatest between surficial and deep soils. In 

comparing communities across the precipitation gradient, we predicted that communities from the 

historically driest and wettest regions would be most distinct. Land use would also shape bacterial 

and fungal communities, with those in agricultural and native systems being most dissimilar. When 

comparing magnitudes of seasonal change, we predicted that seasonal community changes would 

be more muted in dry than in wet regions. Additionally, because bacteria are more sensitive to 

drought and desiccation than fungi (Barnard et al., 2013; de Vries et al., 2018), bacterial 

communities may experience greater magnitudes of seasonal change than fungi overall. We had 

competing hypotheses for seasonal differences with land use. In native prairies, competitive 
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interactions among microbes where there are greater roots and fewer available nutrients may drive 

larger seasonal changes than in croplands. However, the seasonal nature of annual agriculture (e.g. 

tillage, planting, harvest) may also produce more dramatic seasonal shifts in communities 

compared to restored or undisturbed grasslands (Lauber et al., 2013). Lastly, because soil depth 

can determine the exposure of microbial communities to precipitation and land use effects, we 

predicted that depth would likely play a key role in shaping seasonal community shifts related to 

precipitation and land use.  
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2 Materials and Methods 

2.1 Site selection and experimental design 

We chose to conduct our study in the state of Kansas because it is a landscape-scale ‘lab’ 

for studies on variations in precipitation and land use history. Kansas is characterized by a 

precipitation gradient that ranges from 350 mm per year in the West to 1162 mm per year in the 

East (Figure 1A). The state is also comprised of a patchwork of land uses, including remnant, 

unplowed tall- and mixed grass prairies, active crop lands, and abandoned agricultural fields, some 

of which are now active restorations. We took advantage of Kansas’s precipitation gradient and 

these variable land use histories to assess how they and soil depth impact magnitudes of seasonal 

change in bacterial and fungal communities. We selected regions whose historical precipitation 

regime represents relatively dry (West, 533 mm/y), intermediate (Central, 865 mm/y), and wet 

(East, 1045 mm/y) amounts of annual precipitation (Figure 1A). While the timing of seasonal 

rainfall events differs among these regions, precipitation is greater in the spring than in the fall in 

all three (Figure S1). In each region, we located sites at research facilities representing three land 

use histories: a remnant native grassland, a post-agricultural restoration, and an active agricultural 

field (Figure 1B). Because relatively little land in Kansas represents remnant grassland, these land 

use histories are pseudoreplicated within precipitation region; to maintain consistency with 

availability of remnant prairie, we sampled from only one replicate of each land use type in each 

precipitation region. While broad, these three land use categories encapsulate expected variation 

in land management and crops, as well as in soil property variables and root abundance. For 

example, all three restorations (West, Central, and East), were seeded with native forbs and 

grasses, but vary in management (e.g., mowing, burning) and in restoration age. Likewise, while 

all sampled agricultural fields are regularly tilled and planted with cover crops, they are rarely 
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planted at the same time and with the same crops, including the year we sampled. Information 

about individual site location, land use history, annual precipitation, soil type, and plant 

community at time of sampling is located in Table 1. At each site, we established four plots to 

sample soils. 
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Figure 1. Complete sampling design. (A) Kansas’s location in the United States, and the state’s normal annual 
precipitation from 1981-2010. Lighter and darker colors represent lower and higher amounts of annual precipitation, 
respectively. Yearly precipitation estimates in mm are indicated along the bottom of the map. Stars represent sites 
selected for sampling. (B) In each precipitation region, we sampled from a native prairie, a restored prairie, and an 
agricultural field. (C) We sampled from 4 plots in each land use history. Native and restored plots were arranged 
quadratically, and agricultural plots were arranged linearly. (D) In each plot, 3 replicate soil cores were taken to a 
maximum depth of 150 cm, and divided into 0-5 cm, 5-15 cm, 15-30 cm, 30-75 cm, and 75+ cm increments. The 3 
replicates from each plot were combined to create 1 single sample per plot. Figure adapted from Wikipedia Commons, 

the Kansas Office of the State Climatologist, and the USDA-NRCS. 
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Table 1. Names, climatic regions, land use histories, exact locations, and environmental characteristics of all sampled 

sites. 

Location name 
Precipitation 

region 
Land use history Latitude, longitude 

Annual 

precipitation 

(mm/y) 

Soil type 
Plant 

community 

       

Hays 
Experimental 

Range 
West 

Native prairie 38.84°N, 99.30°W 

533 Harney 

Mixed grass 
prairie Restored prairie 38.84°N, 99.32°W 

Agricultural field 38.84°N, 99.31°W Wheat 

       

Konza Long Term 
Ecological 

Research Station Central 

Native prairie 39.11°N, 96.61°W 

865 
Dwight-

Irwin, Chase, 
Kennebec 

Tallgrass prairie 
Restored prairie 39.10°N, 96.60°W 

 Agricultural field 39.10°N, 96.60°W Maize 

       

Welda Prairie 

East 

Native prairie 38.18°N, 95.27°W 

1045 
Ople-

Kenoma 

Tallgrass prairie 
Restored prairie 38.18°N, 95.27°W 

KSU East Central 
Experimental 

Field 
Agricultural field 38.54°N, 95.25°W Maize 

 

 

2.2 Soil sampling and processing 

In each plot, we sampled soils at multiple depths using a Giddings probe (Giddings 

Machine Company, Windsor, CO, USA). Individual plots had adjacent subplots for spring (June 

2018) and fall (September 2018) sampling (Figure 1C). At both time points, cores were taken to a 

maximum depth of 150 cm, and then divided into five depth increments: 0-5 cm; 5-15 cm; 15-30 

cm; 30-75 cm; and 75+ cm (Figure 1D). Maximum depth sampled was limited by equipment and 

rock layers at some sites. For example, deep soils in West sites allowed sampling to 150 cm, while 

Central and East sites were limited to 120 cm. In all downstream analyses, we consider these 75-

120 cm and 75-150 cm soils to be part of a single depth increment, 75+ cm. Additionally, at the 

East native prairie site, a rock layer in the fall subplot prohibited sampling past 75 cm. At each 

sampling time, three soil cores (4 cm diameter) from each subplot were collected, then split by 

depth increment and pooled. For both spring and fall, this produced four pooled replicate samples 

for each depth, from each land use history, in each precipitation region. All soil samples were 
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transported on ice to the nearest university, stored overnight at 4°C, then thoroughly homogenized 

and subsampled. We subsampled 25 g of soil for community sequencing, and stored these at -80°C 

until further processing.  

 

2.3 Generation and processing of 16S and ITS amplicon sequencing libraries 

Immediately prior to DNA extraction, we homogenized our 25 g molecular soil sample and 

subsampled 5 g of soil to ensure our DNA extraction was representative of the broader soil 

community (Kang and Mills, 2006; Song et al., 2015).  Given the many different sample types and 

soils we collected, we tested multiple different protocols and kits to optimize DNA extraction for 

all samples. In this, we trialed ~14 different protocols on 0-5 cm and 75+ cm samples that had 

random combinations of annual precipitation and land use treatments. We selected the extraction 

methodology that allowed us to get as high a DNA concentration as possible, out of as many 

sample types as possible. Ultimately, we extracted total genomic DNA from 0.25 g of soil and 

from 1 blank (molecular-grade water) control per season using the DNeasy PowerSoil Pro Kit 

(Qiagen, Germantown, MD, USA), following the manufacturer’s protocol. Extract quality and 

DNA concentration were assessed using the Qubit 2.0 Flourometer (Thermo Fisher Scientific, 

Waltham, MA, USA) High-Sensitivity dsDNA assay.  

Despite our DNA extraction optimization, soil clay content was still too high in many 

samples to extract a workable quantity of DNA. This was especially the case in soils at the 30-75 

cm depth and in soils deeper than 75 cm. Of the 356 total samples extracted, 17 (6 spring and 11 

fall) had DNA concentrations less than 0.5 ng/mL. However, because prior efforts have indicated 

that some of these failed extractions could still produce useful sequencing libraries, we prepared 

libraries for all DNA extracts following the protocols detailed below, regardless of whether the 



11 
 

extraction “failed.” To sequence as many samples as possible without diluting our final library 

pool, we excluded samples that had a lower final DNA concentration than the blank control 

extraction at the amplicon purification step immediately prior to pooling. Further information on 

samples excluded from the final 16S and ITS pools is located in Table 2.  

2.3.1 16S amplicon libraries 

To generate bacterial community data, we amplified the V4 region of the 16S small subunit 

ribosomal gene using the Earth Microbiome Project (Thompson et al., 2017) primers combined 

with Illumina adaptor sequences. Our forward primer included the Illumina (Illumina, Inc., San 

Diego, CA, USA) i5 overhang adapter sequence (5’- 

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’) attached to primer 515F-Y (5’-

GTGYCAGCMGCCGCGGTAA-3’; Parada et al., 2016), and our reverse primer included the 

Illumina i7 overhang adapter sequence (5’-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3’) attached to primer 806R (5’-

GGACTACNVGGGTWTCTAAT-3’; Apprill et al., 2015). Each 16S PCR reaction was prepared 

using 1X Q5 (New England Biolabs, Ipswich, MA, USA) reaction buffer, 1X Q5 GC enhancer, 

0.02 U/µl High Fidelity (HF) Q5 polymerase, 2 mM dNTPs, 2 µM each forward and reverse 

primer, 1 µl DNA, and molecular-grade water to 25 µl. PCR amplifications consisted of a 30 s 

denaturation at 98°C; 25 cycles of 10 s at 98°C, 30 s at 57°C, and 30 s at 72°C; and a final 

elongation for 2 min at 72°C. 16S amplicons were then purified using the NucleoMag PCR prep 

kit (Macherey-Nagel Gmbh & Co., Düren, Germany). Illumina Nextera indices were ligated to 

the purified amplicons in a second PCR reaction consisting of 1X Q5 reaction buffer, 1X Q5 GC 

enhancer, 0.02 U/µl Q5 HF polymerase, 0.3 mM dNTPs, 3 µl of each Nextera XT v2 index, 1 µl 

PCR product, and molecular-grade water to 50 µl. These amplifications consisted of a 30 s 
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denaturation at 98°C; 8 cycles of 10 s at 98°C, 30 s at 55°C, and 30 s at 72°C; and a 5 min final 

elongation at 72°C. Amplicons were purified a second time using the NucleoMag PCR prep kit, 

and then pooled in equimolar concentrations in two groups that corresponded to samples taken in 

spring and fall seasons. We chose to pool and sequence samples when they were first available 

because we did not have enough Nextera index combinations to sequence all samples in a single 

pool. At the library pooling step, four and three samples were excluded from the spring and fall 

pools, respectively, because their final DNA concentrations were lower than the blank negative 

control (Table 2). Both pooled libraries were sequenced at the University of Kansas Genomic 

Sequencing Core (Lawrence, KS, USA) using Illumina 2x300 bp MiSeq v2 chemistry, resulting 

in 71,148 ± 20,223 and 86,905 ± 55,127 (mean ± sd) high-quality reads per sample in the spring 

and fall pools.  

All 16S sequences were processed in QIIME2.10 (Bolyen et al., 2019). Demultiplexed 

sequences from fall and spring sequencing runs were denoised using the QIIME2 implementation 

of DADA2 (Callahan et al., 2016), and grouped into ASVs (amplicon sequence variants). We then 

combined outputs from both runs, and created a phylogenetic tree using the QIIME2 

implementation of MAFFT fasttree (Price et al., 2010). Taxonomy was assigned to all ASVs by 

alignment to the SILVA database (Quast et al., 2013) using DADA2 in R version 3.6.2 (R Core 

Team, 2019). We conservatively removed all samples containing less than 1000 reads from the 

data set, as well as all non-reproducible ASVs (i.e., those that were observed less than 20 times 

and in under 5 samples). After sequence processing and quality filtering, our 16S data set 

comprised a total of 7836 ASVs in 165 spring and 169 fall samples (see Table 2). 
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2.3.2 ITS2 amplicon libraries 

To generate fungal community data, we amplified the ITS2 region between the 5.8S and 

the 28S ribosomal genes. Our forward primer consisted of the Illumina i5 overhang adapter 

sequence attached to primer ITS7 (5’- GTGARTCATCGAATCTTTG-3’, Ihrmark et al., 2012), 

and our reverse primer consisted of the Illumina i7 overhang adapter sequence attached to primer 

ITS4 (5’- TCCTCCGCTTATTGATATGC -3’, White et al., 1990). Each ITS2 PCR reaction was 

prepared using 1X Q5 reaction buffer, 1X Q5 GC enhancer, 0.02 U/µl Q5 HF polymerase, 2 mM 

dNTPs, 2 µM each forward and reverse primer, 1 µl DNA, and molecular-grade water to 40 µl. 

From this point on, our ITS protocol is identical to our 16S protocol: We amplified ITS amplicons 

using the same thermocycling conditions, purified ITS amplicons using the NucleoMag PCR prep 

kit, and ligated Nextera indices using the reaction mix and thermocycling conditions described 

above. These PCR products were purified using the NucleoMag PCR prep kit once more, and 

pooled in equimolar concentrations in two groups that correspond to samples taken in the spring 

and fall. The spring pool excluded 6 and the fall pool excluded 7 samples with a final DNA 

concentration lower than the negative control (Table 2). Both pools were sequenced at the Kansas 

State University Genomic Sequencing Core (Manhattan, KS, USA) with Illumina 2x300 bp MiSeq 

v2 sequencing, resulting in 77,779 ± 19,124 and 86,365 ± 30,201 (mean ± sd) high-quality reads 

per sample in the spring and fall pools.  

Like 16S sequences, all ITS2 reads were processed using QIIME2. Sequences from spring 

and fall sequencing runs were demultiplexed, denoised using the QIIME2 implementation of 

DADA2, and then combined. We grouped sequences into open reference OTUs (operational 

taxonomic units) at 97% sequence similarity using the UNITE database (Nilsson et al., 2019), and 

assigned taxonomy to all OTUs by alignment to UNITE using DADA2 in R. As with the 16S 
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amplicon libraries, all non-reproducible OTUs and all samples containing less than 1000 reads 

were omitted from the data set. After sequence processing and quality filtering, our final ITS2 data 

set included 1925 OTUs across 168 spring and 166 fall samples (see Table 2). 

Table 2. Number of samples from each treatment excluded at various steps in the library generation and sequence 
processing pipeline, as well as total number of samples with high-quality data included in statistical analyses. 

Treatments that have less than 4 replicates are highlighted in darker colors in the rightmost columns. 

Region 
Land 

use 

Soil 

depth 

(cm) 

Number of 

replicates 

sampled 

Number of replicates 

excluded at library 

pooling 

Number of replicates 

excluded at quality 

filtering 

Total number of 

replicates included in 

final data set 

   Spring Fall Spring Fall Spring Fall Spring Fall 

     16S ITS 16S ITS 16S ITS 16S ITS 16S ITS 16S ITS 

West Ag 0-5 4 4         4 4 4 4 

West Ag 5-15 4 4         4 4 4 4 

West Ag 15-30 4 4         4 4 4 4 

West Ag 30-75 4 4    1     4 4 4 3 

West Ag 75+ 4 4 1 2 1 3 1    2 2 2 1 

West Restored 0-5 4 4         4 4 4 4 

West Restored 5-15 4 4         4 4 4 4 

West Restored 15-30 4 4         4 4 4 4 

West Restored 30-75 4 4         4 4 4 4 

West Restored 75+ 4 4 1   1     3 4 4 3 

West Native 0-5 4 4         4 4 4 4 

West Native 5-15 4 4         4 4 4 4 

West Native 15-30 4 4         4 4 4 4 

West Native 30-75 4 4         4 4 4 4 

West Native 75+ 4 4  1     1  4 3 3 4 

Central Ag 0-5 4 4     1 1   3 3 4 4 

Central Ag 5-15 4 4         4 4 4 4 

Central Ag 15-30 4 4         4 4 4 4 

Central Ag 30-75 4 4     1    3 4 4 4 

Central Ag 75+ 4 4  1 2  1    3 3 2 4 

Central Restored 0-5 4 4         4 4 4 4 

Central Restored 5-15 4 4      1   4 3 4 4 

Central Restored 15-30 4 4      1   4 3 4 4 

Central Restored 30-75 4 4         4 4 4 4 

Central Restored 75+ 4 4        2 4 4 4 2 

Central Native 0-5 4 4         4 4 4 4 

Central Native 5-15 3 4         3 3 4 4 

Central Native 15-30 4 4         4 4 4 4 

Central Native 30-75 4 4         4 4 4 4 

Central Native 75+ 4 4  1       4 3 4 4 

East Ag 0-5 4 4         4 4 4 4 

East Ag 5-15 4 4         4 4 4 4 

East Ag 15-30 4 4        1 4 4 4 3 

East Ag 30-75 4 4      1   4 3 4 4 

East Ag 75+ 4 4 1   1     3 4 4 3 

East Restored 0-5 4 4         4 4 4 4 

East Restored 5-15 4 4         4 4 4 4 

East Restored 15-30 4 4         4 4 4 4 

East Restored 30-75 4 4     1    4 4 4 4 

East Restored 75+ 4 4 1    1  1  3 4 3 4 

East Native 0-5 4 4         4 4 4 4 

East Native 5-15 4 4         4 4 4 4 

East Native 15-30 4 4       1  4 4 3 4 

East Native 30-75 4 4    1     4 4 4 3 

East Native 75+ 3 0  1   2    1 2 0 0 
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2.4 Statistical analyses 

Unless noted, all analyses were performed using the package phyloseq (McMurdie and 

Holmes, 2013) through R (R Core Team, 2019), and were identical for bacteria and fungi. When 

applicable and as indicated below, we used Holm-Bonferroni and Tukey corrections to adjust P-

values for multiple comparisons. In all cases, we assessed statistical significance at α=0.05.   

We estimated alpha diversity by calculating Faith’s PD for all bacterial samples using the 

R package btools (Battaglia, 2020), and the inverse of the Simpson Diversity Index (i.e., Inverse 

Simpson) for all fungal samples using phyloseq. We chose to use different measures of diversity 

for bacteria and fungi to account for differences between ASVs and OTUs; as ASVs represent 

sequence variants that differ by as much as one nucleotide, phylogenetic diversity measures like 

Faith’s PD are needed to account for any sequences that may represent different strains of the same 

species (see Caruso et al., 2019). For statistical analyses of diversity, we used raw (unnormalized) 

ASV and OTU counts. Because analyses of community structure assume homoscedasticity and 

can be influenced by unequal variances (e.g., ordination), we normalized our ASV and OTU counts 

using log2 transformations for these analyses.  

2.4.1 Defining within-season patterns of diversity and community structure 

In defining patterns of diversity and community structure in individual seasons, we 

accounted for sequencing run biases by conducting separate analyses on our bacterial and fungal 

data sets by season, such that we had a total of four data sets: spring bacteria, fall bacteria, spring 

fungi, and fall fungi. We performed unconstrained PCoA on Bray-Curtis dissimilarities generated 

from log2-normalized ASV or OTU counts. Axes explaining the first cumulative ~50% of 

variation within each PCoA were extracted and used as response variables in generalized linear 
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mixed models (GLMMs), along with the alpha diversity metrics described above. Outputs from 

models run on the first three axes of variation in each PCoA were used to assess statistical 

significance of variation in community structure; if a given factor had a statistically significant 

effect on any of the first three axes, we considered that factor to have significant impacts on 

community variation. Outputs from models run on all extracted axes were used to calculate the 

amount of community variation explained by the model’s fixed predictors (within the first 50% of 

observed variation in the PCoA). We used this methodology to better account for variation 

associated with pseudoreplication of land use histories and spatial autocorrelation of our soil cores. 

Because traditional statistical methods of analyzing shifts in microbial community structure (e.g., 

PERMANOVA) are not able to properly account for variation associated with random effects, 

running analyses on individual PCoA axes allowed us to utilize univariate linear modeling methods 

that better control for random variation when assessing shifts in soil communities. 

We fit all GLMMs using the R package lme4 (Bates et al., 2015). Each model included the 

fixed predictors ‘soil depth,’ ‘land use,’ ‘region’ (i.e., location along precipitation gradient),  ‘depth 

x land use,’ and ‘depth x region,’ as well as the random predictors ‘region x land use’ and ‘region 

x land use x plot.’ These random predictors were included to account for pseudoreplication of land 

use types and for spatial autocorrelation of soil cores, respectively. To account for variation in 

sequencing depth, we included usable read count (i.e., read count at the conclusion of sequence 

processing and quality filtering) as a covariate in models applied to alpha diversity metrics only 

(see Glassman and Martiny, 2018). We assessed statistical significance of our fixed predictors 

using Type III ANOVAs with Satterthwaite’s approximation of denominator degrees of freedom 

(lmerTest; Kuznetsova et al., 2017) and Holm-Bonferroni P value corrections, then investigated 
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any significant differences with post-hoc pairwise comparisons and Tukey P value adjustments 

using emmeans (Lenth et al., 2020). 

To determine the percent variation in community structure explained by each fixed 

predictor in our models (within the first ~50% of observed variation in each PCoA), we first 

multiplied the variation explained by the nth axis, the variation explained by the nth axis’s GLMM 

(calculated using the package MuMIn; Bartoń, 2020), and the variation explained by each fixed 

predictor within that model. We then summed this value (i.e., the variation explained by a given 

predictor in the nth axis) across all extracted axes. For example, to calculate the total amount of 

variation explained by the fixed predictor ‘depth’ in nine PCoA axes, we multiplied the variation 

explained by each axis with the variation explained by the GLMM run on each axis. We multiplied 

this value by the variation explained by depth in each ANOVA to get the total amount of 

community variation depth explained in each axis. We then summed these values across all nine 

axes to calculate the total amount of community variation explained by depth.  

2.4.2 Comparing magnitudes of seasonal community change 

We used the same data sets described above to evaluate differential magnitudes of seasonal 

change. While we expect sequencing run bias between spring and fall samples because they were 

sequenced in different groups, we do not expect that this bias differs among sample types. For 

instance, it is unlikely that biases between spring and fall agricultural samples are different from 

biases between spring and fall native samples. As such, although analyses directly comparing 

spring and fall communities could be distorted by sequencing run, it is possible to compare 

magnitudes of seasonal diversity and community structure change among sample treatments. We 

relied on this assumption to determine the precipitation regions, and land use histories, and soil 

depths where magnitudes of seasonal diversity and community structure shifts were greatest. 
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To assess magnitudes of seasonal diversity change, we subtracted fall diversity measures 

and usable read counts from spring. In doing so, we omitted 20 bacterial and 22 fungal sample 

pairs, mostly from the 30-75 cm and 75+ cm depth increments, that lacked high-quality data in 

either spring or fall (see Table 2). Because removing so many sample pairs resulted in a loss of 

statistical power and an inability to effectively test statistical significance associated with our 

deeper soil depths, we ran the GLMM described above on differences between spring and fall 

diversity metrics from the 0-5 cm, 5-15 cm, and 15-30 cm depth increments only. We assessed 

statistical significance of fixed predictors using Type III ANOVA, and investigated significant 

differences with post-hoc pairwise comparisons and Tukey P value adjustments. 

To assess magnitudes of seasonal shifts in community structure, we calculated the distance 

between spring-fall pairs of Bray-Curtis dissimilarities. Because we once again had to remove 20 

bacterial and 22 fungal sample pairs, mostly from the 30-75 cm and 75+ cm depth increments, we 

included only 0-5 cm, 5-15 cm, and 15-30 cm depths in these analyses as well. We ran the GLMM 

on distances between spring and fall samples in the top three depth increments only. We assessed 

statistical significance of fixed predictors using Type III ANOVA, and investigated significant 

differences with post-hoc pairwise comparisons and Tukey P value adjustments.  
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3 Results 

3.1 Factors driving within-season diversity differ between bacteria and fungi 

To determine the degree to which microbial diversity is influenced by precipitation, land 

use, and soil depth in individual seasons, we ran GLMMs on bacterial Faith’s PD and fungal 

Inverse Simpson diversity measures. In all cases, usable read count had a significant effect on 

diversity (Table 3), explaining 39.7% and 53.3% of the total variation in spring and fall bacterial 

diversity, and 3.2% and 3.7% of the total variation in spring and fall fungal diversity, respectively.  

After accounting for this sampling effect, bacterial phylogenetic diversity was explained 

by depth in both seasons (spring F4,112=12.38, P=2.2e-8; fall F4,113=8.76, P=3.4e-6). Depth 

explained 12.2% of the total variation in diversity in the spring and 14.2% of the total variation in 

the fall, but phylogenetic diversity did not show relationships to precipitation, land use, or any 

combination of these fixed factors (Table 3). Bacterial phylogenetic diversity followed identical 

trends across both seasons. Diversity was greatest at 5-15 cm depth increment and lowest at depths 

deeper than 75 cm. (Figure 2A; Table S1).  

Fungal diversity was similarly explained by soil depth (spring F4,142=10.73, P=1.2e-7; fall 

F4,141=4.44, P=0.002; Table 3), with depth explaining 16.0% of the total variation in fungal Inverse 

Simpson in the spring, and 8.0% in the fall. Diversity in both seasons was highest and most variable 

at the deepest soil depths (Figure 2B; Table S2). In contrast to bacterial phylogenetic diversity, 

historical precipitation also shaped fungal diversity, as evidenced by a significant effect of region 

(spring F4,142=10.73, P=1.2e-7; fall F4,141=4.44, P=0.002) and the interaction depth x region 

(spring F4,112=12.38, P=2.2e-8; fall F4,113=8.76, P=3.4e-6; Table 3). Region and depth x region 

explained 5.9% and 7.0% of the total variation in diversity in the spring, and 8.3% and 11.0% in 

the fall, respectively. In both seasons, diversity across the precipitation gradient was most similar 
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between 0 and 30 cm, and began to diverge at deeper depths, with West, 75+ cm soils having the 

highest diversity overall, and Central, 75+ cm soils having the lowest (Figure 2C, 2D; Table S2). 

 

 

Figure 2. Microbial diversity throughout the soil profile. In each panel, the x-axis represents diversity and the y-axis 
represents soil depth, with deeper depths being plotted towards the bottom of the axis. Points along the y-axis represent 
the maximum depth sampled in each depth increment. For instance, because soils in the 75+ cm increment were 
sampled to a maximum depth of 150 cm, points at 150 cm represent the 75+ cm increment. Points and error bars 
represent means and standard error, respectively. The top two panels depict shifts in (A) bacterial Faith’s PD and (B) 

fungal Inverse Simpson across seasons, with colors in both panels representing spring and fall. The bottom two panels 
separate changes in fungal Inverse Simpson in (C) the spring and (D) the fall across precipitation regions. Colors in 
both (C) and (D) are representative of West, Central, and East precipitation regions. 

 

 

A B

C D
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Table 3. Model R2 and P values from ANOVAs applied to LMMs run on diversity measurements. 

 Bacteria (Faith’s PD) Fungi (Inverse Simpson) 

 Spring Fall Spring Fall 

     

Model R2 0.733 0.859 0.381 0.379 

     

Usable read count 
F1,129=161.95 

P<2.2e-16 *** 

F1,42=151.68 

P=1.5e-15 *** 

F1,142=8.48 

P=0.0042 ** 

F1,141=8.29 

P=0.0046 ** 
     

Soil depth 
F4,112=12.38 

P=2.2e-8 *** 

F4,112=8.76 

P=3.9e-6 *** 

F4,142=10.73 

P=1.25e-7 *** 

F4,141=4.44 

P=0.0021 ** 

     

Region 
F2,4=1.32 
P=0.36 

F2,4=0.28 
P=0.79 

F2,142=7.93 

P=0.0005 *** 

F2,141=9.23 

P=0.0002 *** 
     

Depth x region 
F8,112=1.77 
P=0.09  

F8,112=0.89 
P=0.53 

F8,142=2.34 

P=0.021 * 

F8,141=3.05 

P=0.0034 ** 

     

Land use history 
F2,4=3.32 
P=0.14 

F2,4=3.79 
P=0.12 

F2,142=2.68 
P=0.072 

F2,141=0.066 
P=0.94 

     

Depth x land use 
F8,112=1.50 
P=0.16 

F8,112=1.10 
P=0.37 

F8,142=1.36 
P=0.22 

F8,141=1.92 
P=0.061 

 

 

3.2 Bacterial and fungal communities are structured by similar factors across seasons 

To determine how microbial communities are structured across the precipitation gradient, 

land use histories, and soil depths, we applied GLMMs to axes representing the first ~50% of 

community variation in PCoAs representing spring and fall bacteria, and spring and fall fungi. We 

used the GLMMs run on the first three axes of each PCoA to predict statistical significance of our 

fixed predictors. We then used the GLMMs run on all extracted axes to assess the total amount of 

community variation explained by our model’s fixed predictors.  

Of our five fixed predictors, land use was the only factor that did not significantly 

contribute to variation in spring bacterial communities. The first three PCoA axes explained 

14.2%, 9.9%, and 8.0% of the variation in spring bacterial communities, and all three were 

predicted by soil depth and the interaction depth x region. The first axis was also predicted by 
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region, and the second by the interaction depth x land use (Figure 3A; Table 4). Within the first 

nine PCoA axes (explaining the first 52.1% of bacterial community variation), soil depth predicted 

21.5% of total bacterial community variation, the interaction depth x region interaction explained 

10.7%, the interaction depth x land use explained 2.6%, and region explained 1.5% (Figure 3A; 

Table S3).  

Bacterial communities in the fall were structured similarly to those in the spring. Of our 

five fixed predictors, both region and land use did not contribute to variation in fall bacterial 

communities. The first three PCoA axes explained 11.4%, 9.6%, and 7.5% of fall bacterial 

community variation, and were all predicted by soil depth and by the interaction depth x region. 

The second and third axes were also predicted by the depth x land use interaction (Figure 3B; 

Table 4). Within the first ten PCoA axes (explaining the first 51.1% of community variation), soil 

depth explained 18.1% of the total bacterial community variation in the fall, the interaction depth 

x region explained 8.7%, and the interaction depth x land use explained 3.4% (Figure 3B; Table 

S4). 

 

 

 

 

 

 

 

 



23 
 

Table 4. Model R2 values and Holm-Bonferroni corrected P values from ANOVAs applied to LMMs run on the first 

3 axes of variation in spring and fall bacterial PCoAs. 

 Spring Fall 

 PCo1 PCo2 PCo3 PCo1 PCo2 PCo3 

       

Model R2 0.933 0.919 0.824 0.876 0.904 0.848 

       

Soil depth 
F4,112=12.38 

P=1.5e-45 *** 

F4,112=8.76 

P=1.3e-58 *** 

F4,112=12.38 

P=1.0e-25 *** 

F4,142=10.73 

P=1.1e-40 *** 

F4,141=4.44 

P=4.8e-40 *** 

F4,112=12.38 

P=1.1e-26 *** 

       

Region 
F2,4=1.32 

P=0.049 * 

F2,4=0.28 
P=0.053 

F2,4=1.32 
P=0.67 

F2,142=7.93 
P=0.47 

F2,141=9.23 
P=0.55 

F2,4=1.32 
P=0.74 

       

Depth x region 
F8,112=1.77 

P=1.0e-24 *** 

F8,112=0.89 

P=0.0034 ** 

F8,112=0.89 

P=4.6e-28 *** 

F8,142=2.34 

P=3.1e-13 *** 

F8,141=3.05 

P=0.0021 ** 

F8,112=0.89 

P=1.1e-17 *** 

       

Land use history 
F2,4=3.32 
P=1.0 

F2,4=3.79 
P=1.0 

F2,4=1.32 
P=1.0 

F2,142=2.68 
P=1.0 

F2,141=0.066 
P=1.0 

F2,4=1.32 
P=1.0 

       

Depth x land use 
F8,112=1.50 
P=0.060 

F8,112=1.10 

P=0.0001 *** 

F8,112=0.89 
P=0.059 

F8,142=1.36 
P=0.31 

F8,141=1.92 

P=0.041 * 

F8,112=0.89 

P=3.6e-12 *** 

 

The fixed predictors that contributed to bacterial community variation were similar to those 

that contributed to fungal community variation. For instance, bacterial and fungal communities 

were explained by the same fixed predictors in the spring, expect that region did not explain 

variation in fungal communities. The first three spring fungal PCoA axes explained 14.0%, 12.5%, 

and 10.4% of the total community variation. All three of these axes were predicted by soil depth 

and by the depth x region interaction. The third axis was also predicted by the interaction depth x 

land use (Figure 3C; Table 5). Compared to bacterial communities, these fixed predictors 

explained less total variation in fungal communities. Within the first six spring fungi PCoA axes 

(explaining the first 50.4% of spring fungal community variation), soil depth explained 13.9% of 

the total fungal community variation, the interaction depth x region explained 7.5%, and the 

interaction depth x land use explained 5.3% (Figure 3C; Table S5).  

Fall fungal communities were explained by fixed predictors similar to those in the spring. 

The first three fall fungal PCoA axes explained 15.0%, 11.3%, and 7.0% of the total community 

variation, and all three axes were predicted by soil depth and the depth x land use interaction. The 
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second and third axes were also predicted by the interaction depth x region (Figure 3D; Table 5). 

Within the first 8 PCoA axes (explaining 51.1% of fall fungal community variation), soil depth 

explained 21.8% of total fall fungal community variation, the interaction depth x land use 

explained 4.8%, and the interaction depth x region explained 3.6% (Figure 3D; Table S6). 

 

Table 5. Model R2 values and Holm-Bonferroni corrected P values from ANOVAs applied to LMMs run on the first 

3 axes of variation in spring and fall fungal PCoAs. 

 Spring Fall 

 PCo1 PCo2 PCo3 PCo1 PCo2 PCo3 

       

Model R2 0.739 0.860 0.773 0.894 0.921 0.913 

       

Soil depth 
F4,112=12.38 

P=2.5e-6 *** 

F4,112=8.76 

P=9.7e-16 *** 

F4,112=8.76 

P=3.1e-38 *** 

F4,142=10.73 

P=1.0e-44 *** 

F4,141=4.44 

P=1.3e-31 ** 

F4,112=8.76 

P=1.3e-42 *** 

       

Region 
F2,4=1.32 
P=0.76 

F2,4=0.28 
P=0.48 

F2,4=0.28 
P=1.0 

F2,142=7.93 
P=1.0 

F2,141=9.23 
P=0.23 

F2,4=0.28 
P=0.69 

       

Depth x region 
F8,112=1.77 

P=4.3e-7 *** 

F8,112=0.89 

P=1.6e-7 *** 

F8,112=1.50 

P=0.0004 *** 

F8,142=2.34 
P=0.17 

F8,141=3.05 

P=4.3e-8 *** 

F8,112=1.50 

P=3.7e-8 *** 

       

Land use history 
F2,4=3.32 
P=0.95 

F2,4=3.79 
P=0.20 

F2,4=0.28 
P=1.0 

F2,142=2.68 
P=0.35 

F2,141=0.066 
P=1.0 

F2,4=0.28 
P=0.59 

       

Depth x land use 
F8,112=1.50 
P=0.061 

F8,112=1.10 

P=1.5e-8 *** 

F8,112=1.50 
P=0.061 

F8,142=1.36 

P=4.3e-13 *** 

F8,141=1.92 

P=0.0004 *** 

F8,112=1.50 

P=1.6e-15 *** 

 



25 
 

 

Figure 3. PCoA of (A) spring bacteria, (B) fall bacteria, (C) spring fungi, and (D) fall fungi. In all panels, PCo1 axes 
are plotted on the x-axis, and PCo2 axes are plotted on the y-axis. Light colors indicate surficial soil depths, while 
dark colors indicate deeper depths. Shapes are representative of land use history, and colors are representative of 
annual precipitation. Because PCoA axis direction is arbitrary, the y-axis in (D) is reversed to maintain consistency 

with panel (C).  

 

3.3 Magnitudes of seasonal diversity change are negligible for bacteria and fungi 

We assessed magnitudes of seasonal diversity change by running GLMMs on the 

differences between spring and fall measures of diversity (i.e., Faith’s PD and Inverse Simpson) 

from the top three depth increments only. Difference in usable read count had a significant effect 

on magnitudes of seasonal changes in bacterial phylogenetic diversity, explaining 69.9% of the 

total variation in bacterial diversity shifts. However, read count did not influence measures of 

seasonal change in fungal diversity (Table 6).  

A B

C D



26 
 

After accounting for this sampling effect, seasonal changes in bacterial diversity were 

predicted by soil depth (F2,61=4.01, P=0.023), but no other fixed predictors. Bacterial phylogenetic 

diversity increased more from spring to fall in the 0-5 cm than at 15-30 cm (t62=-2.64, P=0.028; 

Table S7), with diversity change at 5-15 cm being intermediate. While significant, the effect of 

soil depth explained only 3.0% of the total variation in seasonal changes in phylogenetic diversity. 

Seasonal shifts in fungal Inverse Simpson were not explained by any fixed predictors (Table 6).  

 

Table 6. Model R2 and P values from ANOVAs applied to GLMMs run on magnitudes of seasonal diversity 

change. 

 
Seasonal change 

in Faith’s PD 

Seasonal change in 

Inverse Simpson 

   

Model R2 0.858 0.066 

   

Usable read count F1,13=185.10 

P=6.2e-9 *** 

F1,88=0.0018 
P=0.97 

   

Soil depth F2,61=4.01 

P=0.023 * 

F2,88=0.45 
P=0.64 

   

Region F2,4=1.17 
P=0.40 

F2,88=0.040 
P=0.96 

   

Depth x region F4,61=2.29 
P=0.069 

F4,88=0.20 
P=0.94 

   

Land use history F2,4=0.0087 
P=0.99 

F2,88=0.72 
P=0.49 

   

Depth x land use F4,61=2.37 
P=0.062 

F4,88=0.95 
P=0.44 

 

 

3.4 Seasonal shifts in bacterial and fungal community structure differ with depth and precipitation 

region 

We assessed magnitudes of seasonal change in bacterial and fungal community structure 

by calculating the distance between spring and fall Bray-Curtis dissimilarities, such that greater 
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distances represent larger magnitudes of seasonal change in community structure. Similar to 

analyses of seasonal diversity change, we ran GLMMs on distances from only the 0-5 cm, 5-15 

cm, and 15-30 cm depth increments.  

Magnitudes of seasonal shifts in bacterial community structure were predicted by soil depth 

(F2,61=38.58, P=1.4e-11; Table 7), with depth explaining 33.0% of the total variation in community 

structure shifts. As with diversity, distances between spring and fall community structure were 

greatest at the 0-5 cm depth increment (Figure 5A; Table S8). These distances were also shaped 

by the interaction depth x region (F4,62=4.12, P=0.0051; Table 7), which explained 7.1% of the 

total variation in seasonal shifts in bacterial community structure. Magnitudes of seasonal change 

among precipitation regions were most distinct at the top of the soil profile, and became more 

similar with increasing soil depth (Figure 5B; Table S8).  

Seasonal changes in fungal community structure were predicted by region (F2,4=9.05, 

P=0.032; Table 7), with historic annual precipitation explaining 12.6% of the total variation in 

fungal community structure shifts. Distances between spring and fall communities were greater in 

East and West regions than in the Central region (Figure 5C; Table S9). Like bacterial 

communities, seasonal change in fungal community structure was also shaped by the interaction 

depth x region (F4,59=6.55, P=0.0002; Table 7), which explained 18.2% of the total variation in 

seasonal fungal community shifts. Seasonal shifts in fungal communities were most distinct 

between Central and West regions at the top of the soil profile, and became more variable with 

increasing soil depth (Figure 5D; Table S8). 
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Figure 4. Magnitudes of seasonal change in bacterial and fungal community structure. The top two panels depict 
magnitudes of seasonal shifts in bacterial community structure with (A) soil depth and (B) the interaction soil depth x 
precipitation region. The bottom two panels depict shifts in fungal community structure with (C) precipitation region 
and (D) the interaction soil depth x precipitation region. In (A), (B), and (D), the x-axis represents distance between 
spring and fall Bray-Curtis dissimilarity indices, and the y-axis represents soil depth, with points along this axis 
representing the maximum depth sampled in each depth increment. In (C), the x-axis represents precipitation region, 
and the y-axis represents distance between spring and fall communities. Colors in both (B), (C), and (D) are 

representative of West, Central, and East precipitation regions. 
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Table 7. Model R2 and P values from ANOVAs applied to GLMMs run on magnitudes of seasonal shifts in 

community structure. 

 

Distance between spring 

and fall bacterial 

communities 

Distance between spring 

and fall fungal 

communities 

   

Model R2 0.752 0.582 

   

Soil depth 
F2,61=38.56 

P=1.4e-11 *** 

F2,60=3.08 
P=0.053  

   

Region F2,4=2.93 
P=0.16 

F2,4=9.05 

P=0.032 * 
   

Depth x region F4,62=4.12 

P=0.0051 ** 

F4,59=6.55 

P=0.0002 *** 
   

Land use history F2,4=0.049 
P=0.95 

F2,4=0.67 
P=0.57 

   

Depth x land use F4,61=1.88 
P=0.13 

F4,59=1.24 
P=0.30 
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4 Discussion 

In this study, we assessed how within-season variation in microbial community diversity 

and structure, as well as how seasonal shifts in these measures, vary along gradients of climate 

(represented by precipitation), land use history, and soil depth. We found that within-season 

variation in bacterial and fungal communities responded similarly to gradients of annual 

precipitation, land use, and soil depth, with depth explaining the majority of variation in diversity 

and community structure overall. Additionally, while seasonal shifts in diversity were only 

observed in bacterial communities at the 0-5 cm depth, seasonal community structure changes in 

bacterial and fungal communities at this depth largely depended on annual precipitation. Overall, 

this indicates that while soil depth plays a large role in describing within-season community 

variation, precipitation most strongly influences how communities change over seasons, especially 

in the upper layers of the soil. 

 

4.1 Factors influencing within-season variation in diversity and community structure 

As mentioned, soil depth explained the majority of diversity and community structure 

variation in bacterial and fungal communities. In particular, fungal diversity was most variable at 

deeper soil depths. Our findings align with multiple studies on microbial community variation 

throughout the soil profile (Eilers et al., 2012; Fierer et al., 2003; Hao et al., 2020; Jumpponen et 

al., 2010; Will et al., 2010). Soil structure, pH, nutrient availability, and root abundance shift 

rapidly with depth (Eilers et al., 2012; Jobbágy and Jackson, 2001; White and Kirkegaard, 2010), 

and exert strong influences on bacterial and fungal communities (Broeckling et al., 2008; Fierer 

and Jackson, 2006; Glassman et al., 2017). As such, microbial community variation may mirror 

the steep environmental gradients present in the soil profile. Bulk density and soil carbon content 
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may be especially important drivers of depth-related community variation, as both of these soil 

properties have been shown to explain significant portions of depth-related community variation 

in multiple environments (Eilers et al., 2012; Fierer et al., 2003; Hao et al., 2020). We note that 

deep soils can be challenging to sample, and that extracting high-quality DNA from these samples 

can be problematic. Combined, these challenges limit our ability to asses microbial community 

variation with depth. While we accounted for these missing data from deep soils statistically 

(replication and read counts), more high-quality data from the deeper soils of the Central Plains is 

needed to better confirm these general patterns. 

Precipitation also explained variation in soil communities throughout the soil profile. 

However, the degree to which precipitation influenced microbial community diversity and 

structure differed between bacteria and fungi. Precipitation played a stronger role in shaping fungal 

than bacterial diversity. With regards to community structure, precipitation had significant effects 

on both bacteria and fungi throughout the soil profile, though our findings demonstrate that 

precipitation effects were more pronounced for bacterial than fungal communities. Precipitation 

explained about twice as much variation in bacterial than in fungal communities, a finding that 

was consistent in both spring and fall. In both communities, approximately one-third more 

variation was explained by precipitation in the spring than the fall. This is likely because our spring 

sampling occurred when precipitation differences among West and East/Central regions were most 

distinct (see Figure S1). Our findings of precipitation-driven variation in both community diversity 

and structure reflect our current understanding of how bacterial and fungal life histories shape their 

response to precipitation. Bacteria rely more on soil water availability as a habitat and in dispersal 

(Barnard et al., 2013), which makes them more sensitive to precipitation differences. In contrast, 

apical growth in fungal hyphae allows them to spread across dry gaps in soil particles and better 
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resist changes in soil moisture (Bapiri et al., 2010). As such, while both kingdoms respond to 

changes in precipitation (Hawkes et al., 2011; Waring and Hawkes, 2018), bacterial community 

structure, but not necessarily diversity (Angel et al., 2010; Bachar et al., 2010; Wang et al., 2015), 

may respond more than fungal communities (de Vries et al., 2018).  

Land use history played a minor, albeit significant role in shaping both bacterial and fungal 

community structure throughout the soil profile. It did not, however, shape the diversity of either 

kingdom. This indicates that land use drives some community turnover, but not necessarily 

diversity changes, in bacterial and fungal communities. Microbial community shifts as a result of 

land use history are well-supported across multiple ecosystem types (Osburn et al., 2019; 

Steenwerth et al., 2002; Xiang et al., 2014). While significant, land use played a small role in 

shaping communities compared to the effects of precipitation and depth. In both seasons, land use 

contributed to only ~3% of the differences in bacterial and ~5% in fungal community structure. 

Given the close relationships between microbial communities and the many soil properties 

associated with land use history (Xiang et al., 2014), we expected the amount of community 

variation explained by land use to be higher overall. As our experimental design required averaging 

community variation with land use over variation associated with annual precipitation, this might 

indicate that variables most closely associated with precipitation, like soil moisture and pH 

(Slessarev et al., 2016), contribute more to community variation than variables that differ with land 

use. This could be especially true in Kansas, where rich Mollisols provide an abundance of soil 

nutrients, regardless of land use history (Hatfield et al., 2017). The absence of this limiting factor 

could mean that the competitive interactions for resources that play a role in community change 

(Litchman et al., 2015) are somewhat lessened.  
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Though it is possible that the mechanisms detailed above contribute to our observed 

patterns of community variation, it is very likely that pseudoreplication of land use types played 

an equal or greater role in driving these patterns. Though we accounted for this variation 

statistically, it remains a significant barrier to accurately delimiting the relative influences of 

precipitation, land use history, and soil depth on microbial communities at the landscape scale. 

Though unavoidable in this study, sacrificial pseudoreplication can increase chances of detecting 

false negatives (Hurlbert, 1984). Given land use’s well-established role in shaping soil bacterial 

and fungal communities, this phenomenon is likely present in our study. As such, our sampling 

design may be limiting our ability to realize land use’s true impacts on communities, and historical 

land use likely has a greater impact on microbial communities than what we were able to detect. 

 

4.2 Comparing magnitudes of seasonal community change 

Contrary to our predictions, only soil depth and precipitation shaped magnitudes of 

bacterial and fungal community change across the growing season. While precipitation explained 

seasonal changes in bacterial and fungal community structure throughout the soil profile, these 

changes were most pronounced at the 0-5 cm depth. This comes despite strong seasonal changes 

in root growth and exudates throughout the profile (Canarini et al., 2019; Williams and Vries, 

2020), and is likely due to soil’s ability to insulate subsurface communities from environmental 

perturbations like seasonal changes in precipitation. This finding is supported by other work in 

grasslands showing that bacteria and fungi at the soil’s surface shift more over seasons than 

communities at deeper depths (Griffiths et al., 2003). The idea that surficial communities are most 

exposed and sensitive to environmental perturbations extends across the literature. With a wide 

variety of disturbance types, including land modification (Hartmann et al., 2009) and prescribed 
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fire (Semenova‐Nelsen et al., 2019), surficial bacterial and fungal communities are more 

impacted than those deeper within the soil profile. 

While land use shaped bacterial and fungal community structure in individual seasons, it 

did not impact differences across seasons with either community. We hypothesized that cropping 

and fertilization would create greater seasonal change in communities in agricultural systems. 

Alternatively, we also hypothesized that competitive interactions with greater roots and fewer 

mineral nutrients would drive larger seasonal changes in native systems. Neither hypothesis was 

correct: communities in native, restored, and agricultural systems showed, on average, similar 

changes in diversity and community structure over the growing season. This finding might be 

derived from the timing of our sampling. Sampling in June and September did not allow us to 

detect community variation prior to planting and fertilization, or after harvest; June sampling 

occurred several months after fertilizer application and planting, and September sampling occurred 

before crops were harvested. Both of these anthropogenic influences shape seasonal community 

variation in agricultural systems, with comparatively little community change occurring 

independently of these disturbances (Hamel et al., 2006; Shi et al., 2013). In light of this, our 

findings make sense, and indicate that more frequent and expanded sampling across the year might 

detect the seasonal community variation with land use found in other studies. 

These findings should be interpreted with caution, as the statistical methods we used to 

determine magnitudes of community change across seasons are fairly conservative. It is possible 

that differences in seasonal community shifts found at the 0-5 cm depth are greater in reality than 

revealed by our methods. Likewise, it is also possible that magnitudes of seasonal community 

shifts do diverge at other points in the soil profile, as well as with land use history. In combination 

with pseudoreplication of land use types, this limits our ability to make more comprehensive 
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conclusions on soil bacterial and fungal community change across seasons. Though our methods 

were able to describe some seasonal changes in soil microbial communities, analyses including 

data generated with minimizing sequencing run bias in mind (i.e., spreading samples from different 

time points across different sequencing runs), as well as data from additional seasons like summer, 

are needed to more accurately and precisely determine the environmental conditions governing 

seasonal change in microbial communities.  

 

4.3 Considerations for future research  

Our work highlights the importance of soil depth when assessing soil microbial response 

to climate, environmental gradients, and disturbance, whether at a single time or across seasons. 

Because bacterial and fungal communities varied most distinctly with soil depth, homogenizing 

whole soil cores, especially those deeper than 5 cm, likely masks relevant community variation. 

For example, in studies assessing impacts of environmental disturbance on microbial communities 

(e.g., McKenna et al., 2020), homogenizing whole cores could lessen the ability to detect the 

effects of that disturbance. This could be particularly true if that disturbance is predicted to impact 

only communities in the top layers of the soil. While sampling deep into the soil profile is not 

always necessary (or possible), dividing soil cores into depth increments or soil horizons is already 

recognized by soil scientists as critical. Doing so to assess soil microbial communities could 

preserve community variation with depth that is relevant to correctly assessing the strength of 

environmental changes.  

 

 



36 
 

4.4 Role of broad categories to describe fundamental variables shaping microbial communities 

at the landscape scale 

Overall, our findings indicate that within-season community variation is shaped primarily 

by soil depth, with precipitation and land use history playing a lesser role. We also found that 

seasonal community change is described primarily by average annual precipitation within the top 

5 cm of soil. Given these findings, we might hypothesize that community variation, both within a 

single season and across a growing season, is shaped most strongly by variables that correlate with 

differences in depth and annual precipitation. As highlighted above, these variables might include 

bulk density, soil moisture, pH, and organic carbon content. Future work includes assessing how 

bacterial and fungal diversity and community structure differ with these variables, along with 

measures of multiple other plant and soil properties across these gradients. 

Although our broad environmental categories were useful in describing general patterns of 

bacterial and fungal community variation, they are derived from an anthropogenic perspective. As 

such, they do not allow us to make specific predictions about how variation in microbial 

community diversity and structure relate to community function. Variation in both fungal and 

bacterial communities correlate more strongly with variation in specific soil properties than with 

broad land use and climate categories (Bachelot et al., 2016; Delgado‐Baquerizo et al., 2016; 

Xiang et al., 2014), with relatively fine-scale variation in these properties explaining more than 

50% of community variation at the continental scale (Averill et al., 2019; Fierer and Jackson, 

2006). As such, using broad categories for assessments of community variation could inhibit 

detection of biologically relevant variation in communities, especially at large spatial scales. 

Microbial communities interact with their environment at a microscale, where their ability to 

interface with variations in nutrient availability, pH, soil moisture, and multiple other soil 



37 
 

properties may more closely determine their ability to perform ecosystem functions than broad 

environmental categories. As such, assessments of bacterial and fungal community variation 

would benefit from utilizing gradients of soil properties to relate microbial communities in the 

context of the ecosystem services they provide. To understand where seasonal changes in diversity 

and community structure matter most, we should look to their associated impacts on potential 

changes in microbial function. Because microbial communities are intimately linked with 

ecosystem function (Philippot et al., 2013; Strickland et al., 2009), both small and large magnitudes 

of community change could have implications for microbial function at the ecosystem scale and 

subsequently, the ecosystem services upon which we rely.  
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6 Supplementary Information 

6.1 Supplementary Tables and Figures 

 

 

Supplementary Figure 1. Monthly average precipitation for each sampled region. Months are represented along the 
x-axis, and monthly precipitation in mm is represented along the y-axis. Colors represent West, Central, and East 

precipitation regions. Months in which samples were taken are highlighted in orange. 
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Supplementary Table 1 Post-hoc pairwise comparisons with Tukey-corrected P values for within-season bacterial 

diversity, measured using Faith’s PD. 

 Spring Fall 

Contrast Estimate 
Standard 

error 
P value Estimate 

Standard 

error 
P value 

5-15 — 15-30 1.836 0.677 
t111=2.711 
P=0.0587 

0.995 0.757 
t111=1.314 
P=0.683 

5-15 — 0-5 -0.713 0.675 
t110=-1.056 
P=0.8283 

1.676 0.761 
t113=2.204 
P=0.1859 

5-15 — 30-75 2.948 0.688 
t112=4.282 

P=0.0004 *** 
1.939 0.755 

t111=2.567 
P=0.0836 

5-15 — 75+ 3.479 0.757 
t115=4.595 

P=0.0001 *** 
4.887 0.852 

t113=5.733 

P<0.0001 *** 

15-30 — 0-5 -2.549 0.705 
t112=-3.614 

P=0.0041 ** 
0.681 0.780 

t115=0.874 
P=0.9060 

15-30 — 30-75 1.112 0.671 
t111=1.658 
P=0.4644 

0.944 0.756 
t110=1.248 
P=0.7231 

15-30 — 75+ 1.643 0.774 
t116=2.122 
P=0.2176 

3.892 0.856 
t113=4.547 

P=0.0001 *** 

0-5 — 30-75 3.661 0.715 
t113=5.118 

P<0.0001 *** 
0.263 0.785 

t116=0.335 
P=0.9973 

0-5 — 75+ 4.192 0.756 
t113=5.546 

P<0.0001 *** 
3.211 0.870 

t116=3.691 

P=0.0031 ** 

30-75 — 75+ 0.531 0.784 
t117=0.677 
P=0.9611 

2.948 0.855 
t113=3.447 

P=0.0070 ** 

 

 

 

Supplementary Table 2 Post-hoc pairwise comparisons with Tukey-corrected P values for fungal diversity, 

measured using Inverse Simpson. 

 Spring Fall 

Contrast Estimate 
Standard 

error 
P value Estimate 

Standard 

error 
P value 

Soil depth       

5-15 — 15-30 0.955 5.62 
t142=0.170 
P=0.9998 

4.785 4.08 
t141=1.173 
P=0.7669 

5-15 — 0-5 -2.777 5.59 
t142=-0.497 
P=0.9876 

-6.222 3.99 
t141=-1.559 
P=0.5260 

5-15 — 30-75 -14.357 5.59 
t142=-2.568 
P=0.0820 

0.896 4.14 
t141=0.217 
P=0.9995 

5-15 — 75+ -32.040 6.01 
t142=-5.330 

P<0.0001 *** 
-12.343 4.89 

t141=-2.526 
P=0.0906 

15-30 — 0-5 -3.732 5.57 
t142=-0.670 
P=0.9626 

-11.007 4.07 
t141=-2.707 
P=0.0579 

15-30 — 30-75 -15.312 5.56 
t142=-2.752 
P=0.0516 

-3.889 4.06 
t141=-0.959 
P=0.0579 

15-30 — 75+ -32.996 5.88 
t142=-5.608 

P<0.0001 *** 
-17.128 4.64 

t141=-3.694 

P=0.0029 ** 

0-5 — 30-75 -11.580 5.54 
t142=-2.090 
P=0.2303 

7.118 4.12 
t141=1.726 
P=0.4215 

0-5 — 75+ -29.263 5.96 
t142=-4.911 

P<0.0001 *** 
-6.120 4.86 

t141=-1.259 
P=0.7163 

30-75 — 75+ -17.684 5.95 
t142=-2.974 

P=0.0281 * 
-13.239 4.68 

t141=-2.827 

P=0.0422 * 
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Region       

East — West 11.64 4.39 
t142=2.649 

P=0.0243 * 
4.64 3.51 

t141=1.320 
P=0.3862 

East — Central 17.18 4.42 
t142=3.891 

P=0.0004 *** 
13.78 3.33 

t141=4.138 

P=0.0002 *** 

West — Central -17.684 4.44 
t142=1.248 
P=0.4272 

9.14 3.24 
t141=2.818 

P=0.0152 * 

Depth x region       
         *Significant contrasts only. W=West, C=Central, E=East    

E 5-15 — E 30-75 -38.274 9.70 
t142=-3.945 

P=0.0102 * 
— — — 

E 5-15 — E 75+ -48.412 10.01 
t142=-4.837 

P=0.0003 *** 
-36.787 9.03 

t141=-4.074 

P=0.0065 ** 

E 5-15 — W 75+ -37.355 10.27 
t142=-3.638 

P=0.0283 * 
— — — 

E 15-30 — E 30-75 -37.664 9.79 
t142=-3.848 

P=0.0143 * 
— — — 

E 15-30 — E 75+ -47.801 10.08 
t142=-4.742 

P=0.0005 *** 
-41.082 8.81 

t141=-4.661 

P=0.0007 *** 

E 15-30 — W 75+ -36.744 10.29 
t142=-3.572 

P=0.0349 * 
— — — 

E 0-5 — E 75+ -39.737 10.00 
t142=-3.972 

P=0.0093 ** 
— — — 

E 30-75 — E 75+ — — — -33.555 8.72 
t141=-3.850 

P=0.0142 * 

E 30-75 — W 5-15 38.085 9.67 
t142=3.937 

P=0.0105 * 
— — — 

E 30-75 — W 15-30 36.747 9.69 
t142=23.793 

P=0.0171 * 
— — — 

E 30-75 — W 0-5 42.197 9.67 
t142=4.363 

P=0.0022 ** 
— — — 

E 30-75 — W 30-75 35.638 9.68 
t142=3.682 

P=0.0246 * 
— — — 

E 30-75 — C 5-15 38.630 10.14 
t142=3.809 

P=0.0162 * 
— — — 

E 30-75 — C 15-30 43.444 9.89 
t142=4.391 

P=0.0020 ** 
— — — 

E 30-75 — C 0-5 34.862 9.90 
t142=3.523 

P=0.0405 * 
— — — 

E 30-75 — C 30-75 36.281 9.72 
t142=3.732 

P=0.0209 * 
— — — 

E 75+ — W 5-15 48.223 10.00 
t142=4.822 

P=0.0003 *** 
35.491 9.04 

t141=3.926 

P=0.0109 * 

E 75+ — W 15-30 46.885 10.00 
t142=4.689 

P=0.0006 *** 
38.126 8.86 

t141=4.303 

P=0.0028 ** 

E 75+ — W 0-5 52.335 9.99 
t142=5.237 

P=0.0001 *** 
33.264 8.98 

t141=3.706 

P=0.0228 * 

E 75+ — W 30-75 45.776 10.01 
t142=4.575 

P=0.0010 ** 
— — — 

E 75+ — C 5-15 48.768 10.45 
t142=4.666 

P=0.0007 *** 
37.793 8.86 

t141=4.268 

P=0.0032 ** 

E 75+ — C 15-30 53.582 10.21 
t142=5.250 

P=0.0001 *** 
45.217 8.59 

t141=5.265 

P=0.0001 *** 

E 75+ — C 0-5 45.000 10.22 
t142=4.405 

P=0.0019 ** 
— — — 

E 75+ — C 30-75 46.419 10.02 
t142=4.631 

P=0.0008 *** 
49.272 8.73 

t141=5.646 

P<0.0001 *** 

E 75+ — C 75+ 38.224 10.68 
t142=3.580 

P=0.0339 * 
46.797 9.13 

t141=5.127 

P=0.0001 *** 

W 5-15 — W 75+ -37.166 10.32 
t142=-3.601 

P=0.0319 * 
— — — 
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W 15-30 — W 75+ -35.828 10.27 
t142=-3.488 

P=0.0449 * 
— — — 

W 0-5 — W 75+ -41.278 10.30 
t142=-4.008 

P=0.0082 ** 
— — — 

W 75+ — C 5-15 37.711 10.76 
t142=3.504 

P=0.0428 * 
— — — 

W 75+ — C 30-75 42.525 10.50 
t142=4.050 

P=0.0071 ** 
— — — 

 
 
 
Supplementary Table 3. Calculations for total amounts of variation in bacterial community structure in the spring. 

Axis 

Variation 

explained by 

axis 

GLMM 

mR2 Model variation explained by fixed predictors 
Community variation explained by fixed predictors by 

axis 

 Axis relative 
eigenvalue 

 ANOVA SS/SStotal Axis eig * GLMM R2 * ANOVA SS/SStotal 

Depth Region Depth x 

region 

Land 

use 

Depth x 

land use 

Depth Region Depth x 

region 

Land 

use 

Depth x 

land use 

1 0.1419 0.8279 0.7086 0.0488 0.2197 0.0021 0.0208 0.0832 0.0057 0.0258 0.0002 0.0024 

2 0.0992 0.8698 0.9134 0.0309 0.0214 0.0026 0.0317 0.0788 0.0027 0.0018 0.0002 0.0027 

3 0.0801 0.7223 0.4071 0.0140 0.5410 0.0009 0.0369 0.0236 0.0008 0.0313 0.0001 0.0021 

4 0.0524 0.5985 0.5954 0.0288 0.2285 0.0259 0.1214 0.0187 0.0009 0.0072 0.0008 0.0038 

5 0.0346 0.7338 0.0674 0.1513 0.7179 0.0085 0.0549 0.0017 0.0038 0.0182 0.0002 0.0014 

6 0.0333 0.2200 0.0854 0.0696 0.3170 0.0175 0.5105 0.0006 0.0005 0.0023 0.0001 0.0037 

7 0.0293 0.5888 0.0784 0.0176 0.8636 0.0016 0.0387 0.0014 0.0003 0.0149 0.0000 0.0007 

8 0.0280 0.6343 0.3404 0.0012 0.2226 0.0361 0.3997 0.0060 0.0000 0.0040 0.0006 0.0071 

9 0.0219 0.2280 0.2710 0.0273 0.2964 0.0110 0.3943 0.0014 0.0001 0.0015 0.0001 0.0020 
 
 Sum: 0.2153 0.0149 0.1070 0.0024 0.0260 

Total community variation explained by fixed predictors 

 
 
 
 
 
 
Supplementary Table 4. Calculations for total amounts of variation in bacterial community structure in the fall. 

Axis 

Variation 

explained by 

axis 

GLMM 

mR2 Model variation explained by fixed predictors 
Community variation explained by fixed predictors by 

axis 

 Axis relative 
eigenvalue 

 ANOVA SS/SStotal Axis eig * GLMM R2 * ANOVA SS/SStotal 

Depth Region Depth x 

region 

Land 

use 

Depth x 

land use 

Depth Region Depth x 

region 

Land 

use 

Depth x 

land use 

1 0.1135 0.7345 0.7888 0.0219 0.1704 0.0002 0.0187 0.0658 0.0018 0.0142 0.0000 0.0016 

2 0.0959 0.6874 0.8874 0.0209 0.0492 0.0073 0.0353 0.0585 0.0014 0.0032 0.0005 0.0023 

3 0.0748 0.6682 0.4707 0.0160 0.3071 0.0062 0.2000 0.0235 0.0008 0.0153 0.0003 0.0100 

4 0.0601 0.6237 0.5533 0.0181 0.2728 0.0159 0.1399 0.0207 0.0007 0.0102 0.0006 0.0052 

5 0.0377 0.5402 0.1029 0.0135 0.7208 0.0001 0.1628 0.0021 0.0002 0.0147 0.0000 0.0033 

6 0.0342 0.3013 0.2468 0.0080 0.6781 0.0078 0.0594 0.0025 0.0001 0.0070 0.0001 0.0006 

7 0.0297 0.4935 0.2930 0.0077 0.3465 0.0030 0.3498 0.0043 0.0001 0.0051 0.0000 0.0051 

8 0.0253 0.7206 0.0566 0.0241 0.8039 0.0076 0.1078 0.0010 0.0004 0.0146 0.0001 0.0020 

9 0.0205 0.2014 0.1616 0.0778 0.1548 0.0006 0.3997 0.0007 0.0003 0.0006 0.0000 0.0025 

10 0.0196 0.2378 0.3572 0.0021 0.3549 0.0107 0.3943 0.0017 0.0000 0.0017 0.0000 0.0013 

 
 Sum: 0.1808 0.0059 0.0867 0.0017 0.0339 

Total community variation explained by fixed predictors 
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Supplementary Table 5. Calculations for total amounts of variation in fungal community structure in the spring. 

Axis 

Variation 

explained by 

axis 

GLMM 

mR2 Model variation explained by fixed predictors Community variation explained by fixed predictors by axis 

 Axis relative 
eigenvalue 

 ANOVA SS/SStotal Axis eig * GLMM R2 * ANOVA SS/SStotal 

Depth Region Depth x 

region 

Land 

use 

Depth x 

land use 

Depth Region Depth x 

region 

Land 

use 

Depth x 

land use 

1 0.1402 0.4970 0.3085 0.0420 0.4531 0.0422 0.1542 0.0215 0.0029 0.0316 0.0029 0.0107 

2 0.1254 0.7103 0.4088 0.0384 0.2275 0.0689 0.2563 0.0364 0.0034 0.0203 0.0061 0.0228 

3 0.1035 0.7232 0.8887 0.0006 0.0664 0.0074 0.0369 0.0665 0.0000 0.0050 0.0006 0.0028 

4 0.0773 0.5472 0.2752 0.0365 0.3084 0.0031 0.3768 0.0101 0.0013 0.0114 0.0001 0.0139 

5 0.0350 0.1565 0.3158 0.0002 0.2667 0.0037 0.4136 0.0017 0.0000 0.0015 0.0000 0.0023 

6 0.0329 0.2949 0.2648 0.0522 0.5781 0.0005 0.1045 0.0026 0.0005 0.0056 0.0000 0.0010 
 
 Sum: 0.1389 0.0082 0.0752 0.0098 0.0535 

Total community variation explained by fixed predictors 

 

 

Supplementary Table 6. Calculations for total amounts of variation in fungal community structure in the fall. 

Axis 

Variation 

explained by 

axis 

GLMM 

mR2 Model variation explained by fixed predictors Community variation explained by fixed predictors by axis 

 Axis relative 
eigenvalue 

 ANOVA SS/SStotal Axis eig * GLMM R2 * ANOVA SS/SStotal 

Depth Region Depth x 

region 

Land 

use 

Depth x 

land use 

Depth Region Depth x 

region 

Land 

use 

Depth x 

land use 

1 0.1497 0.7309 0.7946 0.0032 0.0186 0.0232 0.1605 0.0869 0.0003 0.0020 0.0025 0.176 

2 0.1130 0.7368 0.7248 0.0440 0.1485 0.0036 0.0791 0.0603 0.0037 0.0124 0.0003 0.0066 

3 0.0697 0.7608 0.7276 0.0095 0.0832 0.0119 0.1679 0.0386 0.0005 0.0044 0.0006 0.0089 

4 0.0509 0.5781 0.7282 0.0518 0.1441 0.0042 0.0718 0.0214 0.0015 0.0042 0.0001 0.0021 

5 0.0389 0.4050 0.3801 0.0179 0.1436 0.0051 0.4533 0.0060 0.0003 0.0023 0.0001 0.0071 

6 0.0339 0.2459 0.0896 0.0079 0.5581 0.0035 0.3408 0.0007 0.0001 0.0047 0.0000 0.0028 

7 0.0276 0.3375 0.4052 0.0344 0.2158 0.0433 0.3014 0.0038 0.0003 0.0020 0.0004 0.0028 

8 0.0268 0.1862 0.0704 0.0013 0.8185 0.0020 0.1078 0.0004 0.0000 0.0041 0.0000 0.0005 

 
 SUM: 0.2181 0.0067 0.0361 0.0041 0.0485 

Total community variation explained by fixed predictors 

 

 

Supplementary Table 7. Post-hoc pairwise comparisons with Tukey-corrected P values for magnitudes of seasonal 

change in bacterial diversity, measured using the difference between spring and fall Faith’s PD. 

Contrast Estimate 
Standard 

error 
P value 

15-30 — 5-15 -0.278 0.680 
t61=-0.408 
P=0.912 

15-30 — 0-5 -1.796 0.681 
t62=-2.635 

P=0.0282 * 

5-15 — 0-5 -1.518 0.684 
t62=-2.22 
P=0.0757 

 

 

 



48 
 

Supplementary Table 8. Post-hoc pairwise comparisons with Tukey-corrected P values for magnitudes of seasonal 
change in bacterial community structure, measured using distances between spring and fall Bray-Curtis dissimilarity 

indices. 

Contrast Estimate 
Standard 

error 
P value 

Soil depth    

5-15 — 15-30 0.0138 0.0217 
t62=0.1639 
P=0.7993 

5-15 — 0-5 -0.1572 0.0216 
t61=-7.265 

P<0.0001 *** 

15-30 — 0-5 -0.1711 0.0216 
t61=-7.902 

P<0.0001 *** 

Depth x region    
         *Significant contrasts only. W=West, C=Central, E=East 

W 5-15 — W 0-5 -0.24833 0.0369 
t62=-6.736 

P<0.0001 *** 

C 5-15 — W 0-5 -0.41744 0.0879 
t5=-4.751 

P=0.0487 * 

E 15-30 — E 0-5 -0.14023 0.0378 
t61=-3.713 

P=0.0124 * 

W 15-30 — W 0-5 -0.28075 0.0371 
t62=-7.572 

P<0.0001 *** 

 

 

Supplementary Table 9. Post-hoc pairwise comparisons with Tukey-corrected P values for magnitudes of seasonal 
change in fungal community structure, measured using distances between spring and fall Bray-Curtis dissimilarity 

indices. 

Contrast Estimate 
Standard 

error 
P value 

Region    

East — West 0.0219 0.0336 
t4=0.654 
P=0.8005 

East — Central 0.1342 0.0338 
t4=3.969 

P=0.0343 * 

West — Central 0.1122 0.0337 
t4=3.33 
P=0.0608 

Depth x region    
         *Significant contrasts only. W=West, C=Central, E=East 

E 5-15 — C 15-30 0.21129 0.0436 
t11=4.846 

P=0.010 * 

E 15-30 — C 15-30 0.2066 0.0444 
t12=4.655 

P=0.0117 * 

W 15-30 — W 0-5 -0.13139 0.0329 
t57=-3.993 

P=0.0055 ** 

C 15-30 — E 0-5 -0.24114 0.0436 
t11=-5.53 

P=0.0037 ** 

W 0-5 — C 0-5 0.1935 0.0436 
t11=4.438 

P=0.0185 * 
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6.2 Bioinformatics pipelines 

6.2.1 Bacteria 

##### sequence processing in QIIME ------------------------ 
### import spring bacteria -------------------------------------- 
#!/bin/bash 
#SBATCH --job-name=bact_imp  #Job name 
#SBATCH --partition=sixhour   #Partition Name (required) 
#SBATCH --ntasks=16     #processors 
#SBATCH --mem=350GB 
#SBATCH --time=05:59:00   #Time limit 
#SBATCH --export=NONE 
#SBATCH --output bact_imp2.log 
   
module load qiime2 
cd /home/p799h475/work/EPSCoR_bact_sp18/PH-EPSCOR-SB 
   
qiime tools import \ 
--type 'SampleData[PairedEndSequencesWithQuality]' \ 
--input-path /home/p799h475/work/EPSCoR_bact_sp18/PH-EPSCOR-SB \ 
--input-format CasavaOneEightSingleLanePerSampleDirFmt \ 
--output-path demux-paired-end.qza 
 
### import fall bacteria ----------------------------------------- 
#!/bin/bash 
#SBATCH --job-name=bact_imp  #Job name 
#SBATCH --partition=sixhour   #Partition Name (required) 
#SBATCH --ntasks=16     #processors 
#SBATCH --mem=350GB 
#SBATCH --time=05:59:00   #Time limit 
#SBATCH --export=NONE 
#SBATCH --output bact_imp.log 
   
module load qiime2/2019.7 
cd /home/p799h475/work/EPSCoR_bact_sp18/PH-EPSCOR-SB 
   
qiime tools import \ 
--type 'SampleData[PairedEndSequencesWithQuality]' \ 
--input-path /home/p799h475/work/EPSCoR_bact_fall18/PH-MAPS-Bacteria-F18-Sikes \ 
--input-format CasavaOneEightSingleLanePerSampleDirFmt \ 
--output-path demux-paired-end.qza 
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### dada2 denoise ------------------------------------------------ 
# spring ------------------------------------------------------------- 
#!/bin/bash 
#SBATCH --job-name=bact_denoise  #Job name 
#SBATCH --partition=sixhour   #Partition Name (required) 
#SBATCH --ntasks=40     #processors 
#SBATCH --mem=50GB 
#SBATCH --time=05:59:00   #Time limit 
#SBATCH --export=NONE 
#SBATCH --output bact_denoise.log 
   
module load qiime2 
cd /home/p799h475/EPSCoR/EPSCoR_bact_sp18/PH-EPSCOR-SB 
   
qiime dada2 denoise-paired \ 
--i-demultiplexed-seqs demux-paired-end.qza \ 
--p-trim-left-f 13  \ 
--p-trim-left-r 13 \ 
--p-trunc-len-f 270 \ 
--p-trunc-len-r 220 \ 
--o-table /home/p799h475/EPSCoR/EPSCoR_bact_sp18/working/table2.qza \ 
--o-representative-sequences /home/p799h475/EPSCoR/EPSCoR_bact_sp18/working/rep-seqs2.qza \ 
--o-denoising-stats /home/p799h475/EPSCoR/EPSCoR_bact_sp18/working/denoising-stats2.qza \ 
--p-n-threads 40 
 
# fall --------------------------------------------------------------- 
#!/bin/bash 
#SBATCH --job-name=bact_denoise  #Job name 
#SBATCH --partition=sixhour   #Partition Name (required) 
#SBATCH --ntasks=40     #processors 
#SBATCH --mem=50GB 
#SBATCH --time=05:59:00   #Time limit 
#SBATCH --export=NONE 
#SBATCH --output bact_denoise.log 
   
module load qiime2 
cd /home/p799h475/work/EPSCoR_bact_fall18/working 
   
qiime dada2 denoise-paired \ 
--i-demultiplexed-seqs demux-paired-end.qza \ 
--p-trim-left-f 13 \ 
--p-trim-left-r 13 \ 
--p-trunc-len-f 270 \ 
--p-trunc-len-r 220 \ 
--o-table table.qza \ 
--o-representative-sequences rep-seqs.qza \ 
--o-denoising-stats denoising-stats.qza \ 
--p-n-threads 40 
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### merge spring and fall runs (tables and rep seqs) -------- 
qiime feature-table merge-seqs \ 
--i-data rep-seqs_new.qza \ 
--i-data rep-seqs2_sp.qza \ 
--o-merged-data rep-seqs_merged3.qza 
   
qiime feature-table merge \ 
--i-tables id-filtered-table_bact_sp2.qza \ 
--i-tables table_new.qza \ 
--p-overlap-method sum \ 
--o-merged-table table_bact_merged3.qza 
 
### create phylogenetic tree ------------------------------------- 
#!/bin/bash 
#SBATCH --job-name=bact_tree  #Job name 
#SBATCH --partition=sixhour   #Partition Name (required) 
#SBATCH --ntasks=16     #processors 
#SBATCH --mem=350GB 
#SBATCH --time=05:59:00   #Time limit 
#SBATCH --export=NONE 
#SBATCH --output bact_tree.log 
   
module load qiime2/2019.7 
cd /home/p799h475/work/EPSCoR_bact 
   
qiime phylogeny align-to-tree-mafft-fasttree \ 
--i-sequences rep-seqs_merged3.qza \ 
--o-alignment aligned-rep-seqs.qza \ 
--o-masked-alignment masked-aligned-rep-seqs.qza \ 
--o-tree unrooted-tree.qza \ 
--o-rooted-tree rooted-tree.qza 
 
### output sequences, table, tree for phyloseq ---------------- 
qiime tools export \ 
--input-path rep-seqs_merged3.qza \ 
--output-path exported 
 
qiime tools export \ 
--input-path rooted-tree.qza \ 
--output-path exported 
 
qiime tools export \ 
--input-path table_bact_merged3.qza \ 
--output-path exported 
 
biom convert \ 
-i feature-table.biom \ 
-o bact_merged_table2.txt \ 
--to-tsv 
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##### input to R ------------------------------------------------- 
library(genefilter) 
library(phyloseq) 
library(dada2) 
library(Biostrings) 
library(dplyr) 
library(btools) 
 
### import ASVs ------------------------------------------------ 
ASVs <- read.delim("bacteria_inputs_outputs/FINAL/bact_merged_table2.txt", header = TRUE,  

row.names = 1, check.names = FALSE) 
ASVs <- otu_table(ASVs, taxa_are_rows = TRUE) 
 
### import rep seqs ------------------------------------------------ 
repseqs <- readDNAStringSet("bacteria_inputs_outputs/bact_merged_sequences2.fasta") 
repseqs <- getSequences(repseqs) 
 
### assign taxonomy ---------------------------------------- 
taxa_bact <- assignTaxonomy(repseqs, silva_path, multithread = TRUE) 
taxa_bact <- tax_table(taxa_bact) 
 
### read in metadata --------------------------------------- 
bact_metadata <- read.csv("bacteria_inputs_outputs/FINAL/EPSCoR_bact_merge_map.csv", header =  

TRUE, row.names = 1) 
bact_metadata <- sample_data(bact_metadata) 
 
### read in rooted tree -------------------------------------- 
bact_rooted <- read_tree('bacteria_inputs_outputs/rooted_tree.nwk') 
 
### make phyloseq object ----------------------------------- 
bact_phylo <- phyloseq(ASVs, bact_metadata, taxa_bact, bact_rooted) 
 
### additional quality filtering ----------------------------- 
# filtering out eukaryotes ------------------------------------ 
phylo_noeuk <- subset_taxa(bact_phylo, Kingdom %in% c('Archaea', 'Bacteria')) 
 
# filtering out bad ASVs ----------------------------------- 
threshold <- kOverA(k=5, A=20) 
phylo_thersholded <- filter_taxa(phylo_noeuk, threshold, prune = TRUE) 
 
# filtering out failed samples ------------------------------- 
sum_phylo_thershold <- sample_sums(phylo_thersholded) 
phylo_thresholded_highcover <- subset_samples(phylo_thersholded, sample_sums(phylo_thersholded) >  

1000) 
 
### calculate faith’s pd ------------------------------------- 
# spring ------------------------------------------------------- 
phylo_thresholded_alpha_sp <- subset_samples(phylo_thresholded_highcover, Season=='Spring') 
sample_data(phylo_thresholded_alpha_sp)$UsableReads <- sample_sums(phylo_thresholded_alpha_sp) 
sample_data(phylo_thresholded_alpha_sp)$Faith <- estimate_pd(phylo_thresholded_alpha_sp) 
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# fall ---------------------------------------------------------- 
phylo_thresholded_alpha_fa <- subset_samples(phylo_thresholded_highcover, Season=='Fall') 
sample_data(phylo_thresholded_alpha_fa)$UsableReads <- sample_sums(phylo_thresholded_alpha_fa) 
sample_data(phylo_thresholded_alpha_fa)$Faith <- estimate_pd(phylo_thresholded_alpha_fa) 
 
 
 

6.2.2 Fungi 

##### sequence processing in QIIME ---------------------- 
### import spring fungi ---------------------------------------- 
#!/bin/bash 
#SBATCH --job-name=fun_imp  #Job name 
#SBATCH --partition=sixhour   #Partition Name (required) 
#SBATCH --ntasks=16     #processors 
#SBATCH --mem=350GB 
#SBATCH --time=05:59:00    #Time limit 
#SBATCH --export=NONE 
#SBATCH --output fun_imp.log 
   
module load qiime2 
cd /home/p799h475/work/EPSCoR_fun_sp18/ 
 
qiime tools import \ 
 --type 'SampleData[PairedEndSequencesWithQuality]' \ 
 --input-path manifest_filepath \ 
 --output-path paired-end-demux.qza \ 
 --source-format PairedEndFastqManifestPhred33 
 
### import fall fungi -------------------------------------------- 
#!/bin/bash 
#SBATCH --job-name=Q2.imp   #Job name 
#SBATCH --partition=sixhour   #Partition Name (required) 
#SBATCH --ntasks=16     #processors 
#SBATCH --mem=350GB 
#SBATCH --time=05:59:00    #Time limit 
#SBATCH --export=NONE 
#SBATCH --output Q2.imp.log 
   
module load qiime2   
cd EPSCoR 
  
qiime tools import \ 
--type 'SampleData[PairedEndSequencesWithQuality]' \ 
--input-path fungi_fall18_rawdata/ \ 
--input-format CasavaOneEightSingleLanePerSampleDirFmt \ 
--output-path demux-paired-end.qza 
 
 
 
 



54 
 

### dada2 denoise ----------------------------------------------- 
# spring ----------------------------------------------------------- 
#!/bin/bash 
#SBATCH --job-name=denoise   #Job name 
#SBATCH --partition=sixhour   #Partition Name (required) 
#SBATCH --ntasks=40     #processors 
#SBATCH --mem=50GB 
#SBATCH --time=05:59:00    #Time limit 
#SBATCH --export=NONE 
#SBATCH --output fun_denoise.log 
   
module load qiime2 
cd /home/p799h475/work/EPSCoR_fun_sp18 
   
qiime dada2 denoise-paired \ 
--i-demultiplexed-seqs paired-end-demux.qza \ 
--p-trim-left-f 13 \ 
--p-trim-left-r 13 \ 
--p-trunc-len-f 275 \ 
--p-trunc-len-r 220 \ 
--o-table table2.qza \ 
--o-representative-sequences rep-seqs2.qza \ 
--o-denoising-stats denoising-stats2.qza \ 
--p-n-threads 40 
 
# fall -------------------------------------------------------------- 
#!/bin/bash 
#SBATCH --job-name=denoise   #Job name 
#SBATCH --partition=sixhour   #Partition Name (required) 
#SBATCH --ntasks=40     #processors 
#SBATCH --mem=50GB 
#SBATCH --time=05:59:00    #Time limit 
#SBATCH --export=NONE 
#SBATCH --output denoise.log 
   
module load qiime2 
cd /home/p799h475/EPSCoR/EPSCoR_fun_fall18/fungi_fall18_15mar2020 
   
qiime dada2 denoise-paired \ 
--i-demultiplexed-seqs demux-paired-end.qza \ 
--p-trim-left-f 13 \ 
--p-trim-left-r 13 \ 
--p-trunc-len-f 275 \ 
--p-trunc-len-r 220 \ 
--o-table table.qza \ 
--o-representative-sequences rep-seqs.qza \ 
--o-denoising-stats denoising-stats.qza \ 
--p-n-threads 40 
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# merge spring and fall runs (tables and rep seqs) ---------- 
qiime feature-table merge \ 
--i-tables fun_sp18_merge2/table2.qza \ 
--i-tables fun_fall18_merge2/table.qza \ 
--p-overlap-method sum \ 
--o-merged-table table_fungi_merged2.qza 
 
qiime feature-table merge-seqs \ 
--i-data fun_sp18_merge2/rep-seqs2.qza \ 
--i-data fun_fall18_merge2/rep-seqs.qza \ 
--o-merged-data rep-seqs_fungi_merged2.qza 
 
### creating OTUs ----------------------------------------------- 
# clean UNITE sequences --------------------------------------- 
awk '/^>/ {print($0)}; /^[^>]/ {print(toupper($0))}' sh_refs_qiime_ver8_97_04.02.2020_dev.fasta | tr -d ' ' 
> sh_refs_qiime_ver8_97_04.02.2020_dev_uppercase.fasta 
 
# import to QIIME --------------------------------------------- 
qiime tools import \ 
  --type 'FeatureData[Sequence]' \ 
  --input-path sh_refs_qiime_ver8_97_04.02.2020_dev_uppercase.fasta \ 
  --output-path 97_refs_otus_dev.qza 
 
# create 97% OTUs ------------------------------------------- 
#!/bin/bash 
#SBATCH --job-name=or_cluster              #Job name 
#SBATCH --partition=sixhour                   #Partition Name (required) 
#SBATCH --ntasks=40                             #processors 
#SBATCH --mem=50GB 
#SBATCH --time=05:59:00                      #Time limit 
#SBATCH --export=NONE 
#SBATCH --output or_cluster_sp18.log 
 
module load qiime2 
cd /home/p799h475/work 
 
qiime vsearch cluster-features-open-reference \ 
--i-table EPSCoR_fun_merge/table_fungi_merged2.qza \ 
--i-sequences EPSCoR_fun_merge/rep-seqs_fungi_merged2.qza \ 
--i-reference-sequences UNITE/developerUNITE/97_refs_otus_dev.qza \ 
--p-perc-identity 0.97 \ 
--o-clustered-table EPSCoR_fun_merge/table_fungi_merged_or_97dev.qza \ 
--o-clustered-sequences EPSCoR_fun_merge/rep-seqs_fungi_merged_or_97dev.qza \ 
--o-new-reference-sequences EPSCoR_fun_merge/new-ref-seqs_fungi_merged_97dev.qza 
 
### output clustered sequences, table for phyloseq -------- 
qiime tools export \ 
--input-path table_fungi_merged_or_97dev.qza \ 
--output-path exported 
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biom convert \ 
-i exported/feature-table.biom \ 
-o exported/OTUtable_fungi_merged.txt \ 
--to-tsv 
 
qiime tools export \ 
--input-path rep-seqs_fungi_merged_or_97dev.qza \ 
--output-path exported 
 
##### input to R ------------------------------------------------- 
library(genefilter) 
library(phyloseq) 
library(dada2) 
library(Biostrings) 
library(dplyr) 
 
### import OTUs ----------------------------------------------- 
OTUs <- read.delim("fungi_inputs_outputs/table_fungi_merged_orOTU_97dev_edit.txt", header =  

TRUE, row.names = 1, check.names = FALSE) 
OTUs <- otu_table(OTUs, taxa_are_rows = TRUE) 
 
### import rep seqs ---------------------------------------- 
f_repseqs <- readDNAStringSet("fungi_inputs_outputs/repseqs_fungi_merged_97dev.fasta") 
f_repseqs <- getSequences(f_repseqs) 
 
### assign taxonomy --------------------------------------- 
taxa_fungi <- assignTaxonomy(f_repseqs, unite_path, multithread = TRUE) 
taxa_fungi_table <- tax_table(taxa_fungi_mat) 
 
### turn into phyloseq object ------------------------------ 
taxa_fungi_table <- tax_table(taxa_fungi_mat) 
 
### read in metadata --------------------------------------- 
fungi_metadata <- read.csv("fungi_inputs_outputs/fungi_metadata_merged.csv", header = TRUE,  

row.names = 1) 
fungi_metadata <- sample_data(fungi_metadata) 
 
### make phyloseq object -------------------------------- 
fungi_phylo <- phyloseq(OTUs, fungi_metadata, taxa_fungi_table) 
 
### additional quality filtering -------------------------- 
# filtering out everything that is not fungi -------------- 
fungi_only_phylo <- subset_taxa(fungi_phylo, Kingdom %in% 'k__Fungi') 
 
# filtering out bad OTUs ---------------------------------- 
threshold <- kOverA(k=5, A=20) 
fungi_phylo_thersholded <- filter_taxa(fungi_only_phylo, threshold, prune = TRUE) 
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# filtering out failed samples ---------------------------- 
sum_fungi_phylo_thershold <- sample_sums(fungi_phylo_thersholded) 
fungi_phylo_thresholded_highcover <- subset_samples(fungi_phylo_thersholded,  

sample_sums(fungi_phylo_thersholded) > 1000) 
 
### calculate inverse simpson ----------------------------- 
# spring ------------------------------------------------------- 
f_thresholded_alpha_sp <- subset_samples(fungi_phylo_thersholded, Season=='Spring') 
sample_data(f_thresholded_alpha_sp)$UsableReads <- sample_sums(f_thresholded_alpha_sp) 
sample_data(f_thresholded_alpha_sp)$InvSimp <- estimate_richness(f_thresholded_alpha_sp, 
             measures = 'InvSimpson')$InvSimp 
# fall ---------------------------------------------------------- 
f_thresholded_alpha_fa <- subset_samples(fungi_phylo_thersholded, Season=='Fall') 
sample_data(f_thresholded_alpha_fa)$UsableReads <- sample_sums(f_thresholded_alpha_fa) 
sample_data(f_thresholded_alpha_fa)$InvSimp <- estimate_richness(f_thresholded_alpha_fa, 
              measures = 'InvSimpson')$InvSimp 


