A STUDY OF VARIATION IN THE BRYOZOAN FISTULIPORA DECORA (MOORE AND DUDLEY) FROM THE BEIL LIMESTONE MEMBER OF THE LECOMPTON LIMESTONE OF KANSAS

by

Jack Dwayne Farmer A.B., Chico State College, 1969

Submitted to the Department of Geology and the Faculty of the Graduate School of The University of Kansas in partial fulfillment of the requirements for the degree of Master of Science.

Redacted Signature

Instructor in charge

Redacted Signature

For the department

Abstract

An increasing number of bryozoan systematists are recognizing the need for a more quantitative treatment of variation in taxonomic studies of Bryozoa. The principal objective of this study was to isolate, as far as possible, the relative contributions of inter- and intracolony variation to the total variation of a population. Failure of the assumption of homogeneity of variances, for the data as a whole, precluded use of a nested analysis of variance model. This assumption was met by subsets of the data for several localities, and single classification anovas were applied in those instances.

Analysis of between locality differences by the Kruskal-Wallis anova analog revealed highly significant differences between localities. A nested anova (for which the assumptions had not been met) was performed for comparison, and resulted in nonsignificant values for between locality differences. This emphasized the hazard of using anova where assumptions are not met.

Analysis of within locality variance revealed highly significant differences between colonies. Significant intercolony variation within a locality can reasonably be attributed to a high degree of genetic diversity as the broad environment within the small area of the collecting site was seemingly relatively uniform. Partitioning of the total variance by single classification anova revealed that the greatest proportion of within locality variation is explained by differences within one colony. This is attributed to differences in the microenvironment affecting individuals within a single colony. Comparison of coefficients of intra- and intercolony variation, as suggested by Oliver (1968), was not appropriate in this study due

to the significant overlap of 95% confidence limits for most cases. The independence of characters used in this study (as a measure of the degree of redundancy of information they provided) was evaluated by calculating a matrix of Pearson product-moment correlation coefficients. At least two independent characters could be recognized.

Acknowledgements

Abstract

The writer accords primary recognition to Dr. A.J. Rowell who has been instrumental in the conception and implementation of the problem; his assistance in the editing of the original manuscript and in the preparation of figures and plates is also gratefully acknowledged. I am indebted to Drs. C. Teichert and M.E. Bickford for their editorial suggestions and to Dr. R.L. Kaesler and Mr. K.C. Lohmann for their assistance with various aspects of the computing. The author is grateful to Sudi Einsohn for her help in the preparation of photographs for Plate l. The writer expresses his appreciation to his wife, Sharon, for her constant encouragement and assistance in the typing of the manuscript.

Computations were carried out at the Computation Center of the University of Kansas utilizing programs made available by Drs. R.R. Sokal and F.J. Rohlf, State University of New York at Stony Brook. Computer time was donated by the Department of Systematics and Ecology, University of Kansas (Project \#2916).

Table of Contents

Page

Abstract i
Acknowledgements ii

1. Introduction 1
1.1 General Statement
1.2 Sources of Variation in Bryozoa 2
1.2.1 Genetic Variation
1.2.2 Extragenetic Variation
1.2.2.1. Ontogeny 3
1.2.2.2. Astogeny1.2.2.3. Polymorphism4
1.2.2.4. Environment
1.3 Previous Work 6
2. Materials and Methods 14
2.1 Choice of Species and Geological Horizon
2.2 Statistical Models 15
2.2.1. Nested anova
2.2.2. Single Classification anova 18
2.3 Assumptions of the Analysis of Variance 19
2.4 Sampling Plan 21
2.5 Collecting 22
2.6 Measurements 25
2.7 Choice of Characters 29
3. Results and Discussion 33
3.1 Tests of the Assumptions of Analysis of Variance.
3.2 Homogeneity of Sampled Population 38
3.2.1. Dice Diagrams
3.2.2. Principal Components Analysis 45
3.3 Between locality Variance 52
3.4 Within-Locality Analysis of Variance. 54
3.5 The Significance of Differences Between Colonies 56 Within a Locality
3.6 Partitioning of Variance at Localities 57
3.7 Coefficient of Variation
3.7.1. Limitations 62
3.8 Correlations Between Characters 65
4. Conclusions 70
References 74
Plate 1. 78
Appendix 1 - List of Localities 79
Appendix 3 - Basic Statistics for each Colony 80
Appendix 2 - Measurements for all Characters Pocket

INTRODUCTION

General Statement

The need for a quantitative approach to the description and differentiation of bryozoan taxa has become evident in recent years. The recognition, by an increasing number of workers, of the importance of intracolony variation in the systematics and evolution of Bryozoa has shown the need to restudy and evaluate the classification of many bryozoan species and genera (Boardman and Cheetham, 1969). Most systematic descriptions of Bryozoa have treated variation superficially, or not at all. However, as pointed out by Oliver (1968, p. 25-26), those studies that have dealt with intracolony variation in bryozoans have indicated that it is extensive.

Intercolony variation in colonial organisms is a function of the interaction of genetic variation, environmentally induced variation, and variations in the astogeny, ontogeny, and polymorphism of individuals. Variation between metazoan colonies is thus comparable to variation between solitary animals (Oliver, 1968, p. 31-32). The individuals of a metazoan colony are assumed to be genetically identical. Intracolony variation must, therefore, arise from factors not strictly genetic in origin. This unique situation provides the opportunity to detect the effects of small scale environmental differences, not normally assessable in solitary forms, unless they are parthenogenetic or monozygotic siblings.

Bryozoan colonies are particularly well suited for quantitative description and statistical analysis because of the large number of individuals typically present in a single colony together with the presence of well defined characters that may be readily measured or counted.

Sources of Variation in Bryozoa

GENETIC VARIATION: The problem of isolating the genetically controlled aspects of variation in Bryozoa is simplified by the colonial nature of their growth. Each bryozoan colony (zoarium) is a clone consisting of an association of daughter individuals that have originated from a single sexually produced larva (ancestrula) by asexual budding. This is the basis for the assumption that all individuals within a colony represent a single genotype. This is not to say that variations in genotype within a colony are not possible by random mutation. Increasing evidence suggests that mitotic division within clones can provide the opportunity for genetic change through extrachromosomal inheritance (Oliver, 1968, p. 17). However, it is generally accepted that random somatic variations are of low frequency and of probably negligible phenotypic expression (Oliver, 1968, p. 17; Boardman and Cheetham, 1969, p. 208). Thus, for all practical purposes the individuals of a clone can be considered genetically identical. EXTRAGENETIC VARIATION: The occurrence of phenetic variation within a colony can, therefore, be assumed to represent the effects of factors that are not under direct genetic control. It has been suggested (Boardman, 1968, p. 180) that such factors be termed extragenetic, perhaps a somewhat misleading term. As recently suggested by Boardman, Cheetham, and Cook (1970, p. 298), use of this term should not imply that intracolony variation is completely independent of genetic effects. It is assumed that all phenetic variation falls within the possible range of expression of the colony genotype. It is the interaction of genetic and nongenetic factors that gives rise to variations in phenotypic expression. Therefore,
it would seem that all intracolony variation is indirectly genetically based.

Four extragenetic factors responsible for phenotypic variation within a single colony are recognized (Boardman, Cheetham, and Cook, 1970, p. 299-308): (1) ontogeny of the zooids (individuals of a colony); (2) astogeny of the colony; (3) polymorphism; and (4) environment.

Ontogeny: Differences that arise during growth of an individual are termed ontogenetic.

Astogeny: Astogeny is the course of post larvel development of a colony and thus reflects the age of the colony. Astogenetic changes are the observable differences among zooids that have arisen in a sequence of generations away from the ancestrula (founding individual).

In a simple model, colony growth in Bryozoa is characterized by at least two major stages of post larvel development that can be distinguished on the basis of morphology, budding habit, and position of a generation of zooids relative to the ancestrula (Boardman, 1968, p. 179). The first stage is termed the zone of astogenetic change and consists primarily of individuals of the more proximal regions of the colony. Generations of zooids within this zone of change show more or less continuous variation in morphology and budding pattern distaliy away from the ancestrula. This zone is characterized by a high rate of increase in the number of individuals in each succeeding generation. However, relatively few generations are involved, and thus a small total number of individuals. In order to avoid confusion with the youthful stage of ontogeny, the term neanic (Gr. neanikós, youthful) has been used in bryozoans to describe this stage of
astogeny (e.g., Ryland, 1970, p. 56). It is debatable whether this term is useful as it has been employed for several decades to describe the youthful stage of ontogeny of solitary animals.

The zone of astogenetic change is followed by a zone of astogenetic repetition in which individuals of each succeeding generation of zooids are characterized by the endless repetition of morphologies and budding patterns. This stage is characterized by a lower rate of increase relative to the preceeding zone of change. Despite the lower rate of increase in the number of new individuals, many generations are involved, and thus a large total number of individuals. Bryozoan zooids of this stage are termed éphebic (Gr. éphebos, a young man) in order to avoid confusion with the mature stage of ontogenetic development (Ryland, 1970, p. 56).

Polymorphism: In contrast to the continuous types of variation which characterize ontogenetic and astogenetic changes, polymorphic variations are discontinuous in nature. Polymorphic differences in zooids are, in theory, functional modifications of zooidal morphology which are generally expressed by the presence or absence of some distinctive structural feature.

Environment: Phenetic variation in a metazoan colony is the expression of the interaction of the colony genotype and environmental factors influencing individuals of the colony. Therefore, differences in environment during the growth of a colony or at specific locations on the colony at a given time, can be expected to produce variations in the phenotypic expression of individuals in the colony. The contributions of polymorphism, astogeny, and ontogeny to intracolony variation can be removed from consideration by dealing with individuals
in similar states of these three extragenetic factors (Boardman, Cheetham, and Cook, 1970, p. 308). Therefore, if we consider individuals in the same ontogenetic, astogenetic, and polymorphic circumstances within one colony, morphologic variability can be attributed to environmental differences.

Although it is recognized that the environment at a particular point at one instant of time is a complex function of many variables involving numerous interaction effects, it is convenient for the present discussion to consider environmental factors on two levels.
"Gross" environmental factors are defined as average values for the physical parameters characterizing the total environment over a restricted area. Thus, almost by definition, the gross environment is regarded as having been constant for one bedding plane at one locality. Differences in gross environment are expected to occur between localities and these contribute to differences in the average intercolony variation among localities.

Considered in detail, the environment is not constant, even across one colony. Thus, a lower level of variation in "microenvironmental" factors is recognized. Boardman, Cheetham, and Cook (1970, p. 304-306) summarized the "microenvironmental" factors that may account for morphologic variation within colonies. They include: differences in the availability of nutrients; crowding produced by differential growth of individual zooids or by the competitive growth of other organisms; effect of parasites; differential turbulence; irregularities in substrate; differential sediment accumulation; differences in light intensity and duration; salinity; and temperature. Thus, comparison of colonies originating in

Abstract

different "gross" environments is expected to include components of variation due to both "gross" and "microenvironmental" factors, in addition to the components contributed by differences in genotype.

The principal objective of this investigation was to isolate, as far as possible, the contributions of each of these sources to the total variation. In addition, it was hoped that the study would provide information on the relative variability of characters and the extent to which they are correlated with one another.

Previous Work

Prior to 1960 , published studies of Paleozoic Bryozoa tended to follow a qualitative, often typological approach to classification. Taxonomic descriptions were essentially verbal and pictorial in nature; variation within taxa, although it must have been observed, rarely received discussion and was never quantified.

However, during the past decade, the significance of variation has been recognized by many bryozoan systematists, and the need for more detailed documentation of it accepted. Since 1960, the study of Paleozoic Bryozoa has been characterized by a trend toward progressively more sophisticated statistical techniques. Anstey and Perry (1970) have presented a comprehensive review of work involving use of these techniques, and this is summarized in Table l. Only a few highlights of that review are presented here.

Prior to 1963, most authors represented variability in taxonomic characters graphically. Scatter diagrams provided information concerning variation in paired characters and histograms revealed the actual form of data distributions. These types of representation of

TABLE 1
Summary of Previous Work Involving Statistical Treatment of Variation in Paleozoic Bryozoa (Based on Anstey and Perry, 1970)

Year of Publication	Statistical Treatment of Variation		
	Descriptive	Analytical	Author(s)
Pre-1960	--	--	--
1960	Scatter diagrams		Boardman
1960	Histograms		Utgaard \& Perry
1962	11		Perry
1963	Means, Standard Deviation		Perry \& Horowitz
1964	"		Cuffey \mathcal{E} Perry
1964	"		Utgaard E Perry
1965	"		Malone E Perry
1965	"		Brown
1965a., b.	"		TavenerSmith
1966	"	t-test	TavenerSmith
1966	Means, Standard Deviations, Coefficients of Variation	Correlation Coefficients	Boardman E Utgaard
1967	"	t-tests	Cuffey
1967	Scatter Diagrams	Correlation Coefficients	Kodsi
1967	Means, Standard Deviations		Bork E Perry
1968a., b.	"	F-max. test, Anova, Mann-Whitney U-test	"
1968	"	t-tests, Correlation Coefficients, Coef. of Determination, Kolmogorov-Smirnov test, Wilcoxen SignedRanks test	Horowitz

Year of Publication	Statistical Treatment of Variation 1969	Descriptive		
Means, Standard Deviations	Analytical	F-max test, Anova, Kruskal- Wallis test, Kolmogorov- Smirnov test		Anstey E
:---				

data displayed the inherent variability in morphologic characters upon which taxonomic classification had been based and provided the necessary impetus for a more quantitative statistical approach.

Where data can be shown to be distributed approximately normally, two parameters, the mean and variance, completely describe the form of the distribution; graphical representations, although they may have some heuristic value, are strictly unnecessary under such circumstances. Perry and Horowitz (1963) were the first to summarize their data in this manner. They presented means and standard deviations of data for unpaired characters of several species of the cyclostome genera Fistulipora, Eridopora, Meekopora, Prismopora, and Tabulipora. Since that time, the use of these simple univariate descriptive statistics has almost become standard procedure in systematic studies of Bryozoa (See Table 1).

In 1966, three well established statistical tools were utilized for the first time in studies of Bryozoa. Several authors presented coefficients of variation and correlation coefficients in which comparisons of the intrinsic variability within taxa, and the covariation of paired characters were made. In the same year, a simple parametric statistical test, the "t" test, was first employed (Tavener-Smith, 1966).

It is indeed unfortunate that this simple parametric test was not used earlier in the study of Paleozoic Bryozoa. Its application greatly enhances the validity of taxonomic interpretations by providing a quantitative method of determining significant differences between colony means for a given character, at a given probability level.

By way of example, one may consider the data published by Perry and Horowitz (1963) for three species of the genus Fistulipora. These have been reanalyzed (Table 2) and t values computed for all possible pairs of the 6 species-locality combinations studied. The results of the analysis are presented in the form of a matrix of calculated t-values in Table 2. The level of the significance of differences between means is indicated in each matrix cell by asterisks.

The value of such an approach is evident. Not only does it indicate, for a given character, colonies that differ significantly from one another, but perhaps more importantly, it draws attention to situations in which features are not significantly different. As Perry and Horowitz noted, Fistulipora perdensa from the Golconda and Glen Dean Limestones (Middle Chester) cannot be differentiated from one another on the basis of interzooecial distance. Similarly, although not mentioned by the authors, it is apparent from Table 2 that F. excelens and F. perdensa from the Glen Dean formation do not differ significantly in zooecial diameter. They can, however, be differentiated on the basis of interzooecial distance.

Cuffey (1967) has provided the most detailed statistical description of a single bryozoan species to date. Through the use of two sample t-tests and coefficients of variation, he was able to reveal the extensive nature of variation within the species Tabulipora carbonaria from the Wreford Megacyclothem (Permian) of Kansas. Based upon a study of 22 characters from some 600 specimens, he concluded (p. 61) that due to the extreme nature of intracolonial variability, reliable estimates of population parameters of a single species cannot be achieved through study of a single zoarium. Substantial

TABLE 2--Matrices of t-values calculated for all possible specieslocality comparisons for two characters, zooecial diameter and interzooecial distance. Original data are after Perry and Horowitz (1963). Abbreviations used are:

$$
\begin{aligned}
\mathrm{Fe} & =\text { Fistulipora excelens } \\
\mathrm{Fp} & =\underline{F} \cdot \text { perdensa } \\
\mathrm{FC} & =\underline{F} \cdot \text { confinis } \\
G D & =\text { Glen Dean Limestone } \\
\mathrm{GLC} & =\text { Golconda Limestone }
\end{aligned}
$$

TABLE 2
t-Test
Zooecial Diameter

	$\mathrm{Fe} / \mathrm{GD}$	$\mathrm{Fp} / \mathrm{GD}$	Fc/GD	Fe/GLC	Fp/GLC	Fc/GLC
$\mathrm{Fe} / \mathrm{GD}$	0					
Fp/GD	$\begin{aligned} & 0.0 \\ & \mathrm{~ns} \end{aligned}$	0				
$\mathrm{Fc} / \mathrm{GD}$	13.185	12.599	0			
$\mathrm{Fe} / \mathrm{GLC}$	$\begin{aligned} & 2.666 \\ & \%: 6 \end{aligned}$	$\begin{aligned} & 2.738 \\ & : \% \end{aligned}$	$\underset{*: x:}{15.578}$	0		
Fp/GLC	$\begin{aligned} & 7.250 \\ & * * *: \end{aligned}$	7.135	18.868	$\begin{aligned} & 4.906 \\ & \%: \% \end{aligned}$	0	
Fc/GLC	$\begin{aligned} & 5.263 \\ & *: \%:: \end{aligned}$	$\begin{aligned} & 5.369 \\ & \therefore \%: \% \end{aligned}$	$\begin{aligned} & 7.692 \\ & : \%: \% \end{aligned}$	8.317	12.078	0
$\begin{gathered} \text { t-Test } \\ \text { Interzooecial Distance } \end{gathered}$						
	$\mathrm{Fe} / \mathrm{GD}$	$\mathrm{Fp} / \mathrm{GD}$	Fc/GD	$\mathrm{Fe} / \mathrm{GLC}$	Fp/GLC	Fc/GLC
$\mathrm{Fe} / \mathrm{GD}$	0					
Fp/GD	$\begin{aligned} & 6.346 \\ & \times *: \% \end{aligned}$	0				
Fc/GD	13.749	$\begin{aligned} & 6.741 \\ & : \times: \% \end{aligned}$	0			
Fe/GLC	$\begin{aligned} & 1.928 \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 7.641 \\ & * * * \end{aligned}$	$\begin{aligned} & 14.241 \\ & : \%: \% \end{aligned}$	0		
Fp/GLC	$\begin{aligned} & 6.350 \\ & : *: \% \end{aligned}$	$\begin{aligned} & 0.000 \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 6.763 \\ & : \times: x \end{aligned}$	$\begin{aligned} & 7.677 \\ & *: \%: \end{aligned}$	0	
Fc/GLC	$\underset{*: \% *}{10.826}$	$\begin{aligned} & 4.458 \\ & : 3: 6 \end{aligned}$	$\begin{aligned} & 2.319 \\ & * \end{aligned}$	11.888	$\begin{aligned} & 4.505 \\ & : *: \end{aligned}$	0

```
**: = .001
* = . .05
ns = not significant at }\boldsymbol{\alpha}=.0
```

risks are involved in making statements about a population based upon a single colony, and even when characters known to exhibit low coefficients of variation are relied upon, the results are of questionable taxonomic value.

The maximum F-ratio has been used by several authors (Bork and Perry, 1967; Anstey and Perry, 1969; Horowitz, 1968) to test for the homogeneity of two sample variances. The F distribution was also utilized by Horowitz (1968) who made a significant advance in the application of statistical techniques to bryozoan studies by using a hierarchial analysis of variance (anova) model which enabled him to test the equality of several colony means simultaneously. Such anova models are very powerful statistical tools but, as discussed subsequently, they have distinct limitations if their underlying assumptions are not met.

Nonparametric, distribution free tests have recently been employed in the study of Bryozoa (Bork and Perry, 1968). These tests have the advantage of not requiring the assumptions inherent in parametric tests, but if the assumptions are met, they are less powerful than their parametric equivalents.

Multivariate statistical methods have not previously been applied to studies of Paleozoic Bryozoa, although Cheetham (1968) has utilized them in his investigation of the Tertiary cheilostome Metrarabdotos. To judge from his work and the present study, it seems probable that such methods will be more widely used now that the computational burden is greatly reduced by the ready availability of high speed computers.

MATERIALS AND METHODS
 Choice of Species and Geological Horizon

Fistulipora decora, originally described as Cyclotrypa decora by Moore and Dudley (1944) was chosen for this study for two reasons. Individual zooecia rapidly attain a stable adult form and the possibility of inadvertently including measurements of ontogenetically immature individuals is greatly reduced. In addition, the relative abundance of F . decora as noted by Perkins, Perry, and Hattin (1962, p. 10), provided for a reasonable number of colonies from each locality.

Typically, the zoarial form of F . decora is described (Perkins, Perry, and Hattin, 1962, p. 9) as "...hemispherical, having upper surface mildly to moderately convex, and displaying concave, less commonly planar, concentrically wrinkled base; rarely zoarium attached to brachiopod valves...Monticules nearly flush with surface or moderately elevated..displaying lunaria directed toward monticular center." This rather characteristic external morphology (See Plate 1) simplified identification of the species in the field and, combined with its relative abundance, made collecting less difficult.

The stratigraphy of the Beil Limestone Member of the Lecompton Limestone (Virgilian) is known through the work of Brown (1958). A faunal listing and detailed description and paleoecological interpretation of the Beil member for selected localities was provided by Perkins, Perry, and Hattin (1962, p. 2-8). Faunal elements of a typical Beil assemblage and paleoenvironmental implications were discussed by Moore (1966, p. 315-318; Suppl. Fig. 1-7, p. 373-379).

NESTED ANOVA: One of the principal objectives of this study is to ascertain how the variation observed in Fistulipora decora is distributed and to attempt to identify the biological and geological causes of this variation. In statistical terminology, we wish to partition the variance: to determine how much of the total variation is associated with intracolony variation for a given character, how much is attributable to intercolony differences at a single locality, and finally, the amount of variation that may be ascribed to differences between localities.

The nature of the questions posed immediately suggests that analysis of variance is an appropriate technique. Specifically, a mixed model, two-level nested anova is potentially capable of providing the maximum amount of desired information, given that a suitably structured sampling plan is utilized.

According to this model, each variate can be decomposed into the following sources of variation (Sokal and Rohlf, 1969, p. 256):

$$
Y_{i j k}=\mu+\alpha_{i}+B_{i j}+\varepsilon_{i j k}
$$

where $Y_{i j k}$ is the kth observation of the jth subgroup of the ith group, μ is the parametric mean of the entire population of interest, α is the variation among groups induced by a fixed treatment effect (the between localities effect in our model), $B_{i j}$ is the random contribution to the variation among subgroups within groups (the within localities effect in our model), and $\varepsilon_{i j k}$ is the "error" arising from random variation among items within subgroups (the within colony variation of the present case).

According to this model, the deviation of a single variate from the parametric mean of the population, μ, can be accounted for by three additive sources of variation. Basically, these components of variation form a heirarchy in which α_{i} represents the highest level. In a mixed model (Sokal and Rohlf, l969, p. 254) this highest level is Model I in which variation between groups arises from fixed treatment effects. Each subordinate level of classification partitions components of variation that arise from random effects among subgroups within groups ($B_{i j}$) or among items within subgroups ($\mathcal{E}_{i j k}$, the "error" variance). Subordinate levels, because they are influenced by strictly random effects, are always Model II in a nested anova.

The relationship of the statistical model to the biological situation is apparent. It is assumed that all phenotypic variability must fall within the limits of expression of the population genotype. For a given phenetic character, displacements from the parametric mean (μ) of the population can be accounted for by basically three sources whose additive effects result in the observed value of an individual variate. At the highest level, $\boldsymbol{\alpha}_{i}$ is a measure of the displacement of the mean for a particular locality from the grand mean of the population, μ. It contributes to variation at the highest level in the model, and corresponds to the variance component between localities. Several geological and biological factors may contribute to this potential source of variation. If the sampled localities are widely separated, it is possible that during life, the biological populations at these localities were isolated, to greater or lesser degree, from one another. If that were the case, random genetic mutations and recombinations could occur at one locality independently of events at
another. In this manner, differences in the average genetic composition of biological populations at different localities could arise. Differences in the average genetic composition could also be produced by having collected samples that are not of the same geological age. If the samples are not contemporaneous, then evolutionary changes in genetic composition through time could produce differences in the mean genetic composition of the sampled biological populations from different localities. The samples used in this study are of approximately the same age but a priori, one cannot eliminate the possible contribution of this source to variation at the highest level in the nested anova model. Moreover, the localities might differ in what has been termed their "gross" environment. At one locality the animals may have lived in relatively shallow water, subjected to higher mean temperatures and greater temperature fluctuations. At a second locality, deeper water conditions may have existed, giving rise to lower mean temperatures and greater thermal stability. These effects, acting both independently or as an interaction, may contribute to variation between locality means for any given character.

At the next level in a nested anova model, displacements from the average at any particular locality occur due to the effects of smaller genetic variations between colonies at the same locality (B_{ij}). These genetic variations are those typically found within any population. Indeed it is unlikely that any two colonies will be genetically identical. It is noteworthy that the $B_{i j}$ component of variation is not entirely genetically based, being a composite of variation arising from genetic dissimilarities, plus variations induced by differences in genotype-environment interaction. It is
unfortunate that the restrictions imposed by fossil material will not permit the isolation of this interaction term. It is obvious that one cannot study genetic-environmental interactions when dealing with fossil populations, as it is impossible to isolate or recognize genetically pure strains.

At the lowest level in the hierarchic anova model, the variance component symbolized by $\varepsilon_{i j k}$ is a measure of the deviation for a particular character of a given individual zooecium from the mean value of the colony to which it belongs. This contributes to the "within colony" component of variation and is attributed to differences in the "microenvironment" in which an individual zooid lived.

SINGLE CLASSIFICATION ANOVA: In situations where a two-level nested anova model is not appropriate, due to sample design or failure of assumptions at the highest level, it may be possible to utilize the more simplified single-classification anova (Sokal and Rohlf, 1969, p. 198). For a Model II situation, the single classification anova model can be expressed by the equation:

$$
Y_{i j}=\mu+A_{i}+\varepsilon_{i j},
$$

where $Y_{i j}$ is the j th observation of the i th group, μ is the parametric grand mean of the statistical population of interest, A_{i} is the random contribution to the variance arising from differences between groups (the within colony component, equivalent to $B_{i j}$ of the previous model), and $\varepsilon_{i j}$, as before, is the random contribution due to the deviation of the j th individual from its expected value $\left(\mu+A_{i}\right)$.

For the biological situation, the structure of the single classification, Model II anova, permits the partitioning of a single variate into components of intercolony and intracolony variation.

However, in order to be able to equate intercolony variation to strictly genetic differences requires a sampling design in which the colonies can be assumed to have been influenced by the same "gross" environment. If this is not the case, then the A_{i} component will contain, in addition to genetic variation, variation induced by different "gross" environments. That is, they will contain elements of both α_{i} and $B_{i j}$ of the previous nested model.

Assumptions of the Analysis of Variance

The analysis of variance requires that certain assumptions be met before strictly valid conclusions can be drawn. Briefly, the assumptions for anova are (Sokal and Rohlf, 1969, p. 367-380): (1) that the error variance, $\varepsilon_{i j k}$, be a normally distributed, independent variable, (2) that the variance components be homoscedastic (homogeneous), and (3) that the relationship between components be additive. In addition, an underlying assumption of all anovas is that all groups representing subordinate levels of classification be chosen randomly.

With the exception of randomness, all of the above assumptions can be tested, and the significance of departures from the ideal evaluated. Unfortunately, randomness of sample selection is not directly testable and, therefore, must be built into the sampling design in order to avoid the introduction of bias. Lack of randomness may often be reflected in lack of independence of samples or in the heterogeneity of variances (Sokal and Rohlf, 1969, p. 368). The independence of items can be evaluated through the use of a simple runs test (Sokal and Rohlf, 1969, p. 624-629).

Fortunately, as pointed out by Sokal and Rohlf (1969, p. 377), the consequences of non-normality on the F-test in anova are serious only for highly skewed distributions. The nature and degree of departures from normality can be evaluated in several ways. Commonly used methods include the calculation of g_{1} and g_{2}, the Kolmogorov-Smirnov test for goodness of fit, and various graphical techniques.

The effect of moderate departures from homoscedasticity of variances is not too serious for the overall F-test of significance where large degrees of freedom are involved (Sokal and Rohlf, 1969, p. 376). However, at small degrees of freedom, the consequences can be quite serious. Therefore, it should be emphasized that when anova techniques are utilized, departures from homoscedasticity must be evaluated and reported. The most commonly used method for testing this assumption for more than two samples is Bartlett's test of the homogeneity of variances. However, as pointed out by Sokal and Rohlf. (1969, p. 375), this test is particularly sensitive to departures from normality and should only be used for normally-distributed data. An approximate test commonly used in the comparison of two variances is the maximum F-ratio test.

For two-way or higher order anova without replication, the assumption of additivity of variance components must be tested. However, for the models utilized here, additivity is inherent in the structure of the models, and need not be of concern.

In cases where the assumptions of normality and homogeneity of variances are not met, it may be possible to transform the data to a new scale for which the assumptions do hold. If this approach fails, nonparametric tests may be utilized, as they are not dependent on the
form of the distribution. These techniques are concerned only with differences in location of ranked data, and consequently do not depend upon specific statistical parameters. A commonly used nonparametric analog of a single classification analysis of variance is the Kruskal-Wallis test (Sokal and Rohlf, 1969, p. 388). An alternative method, that may be employed when the variances are heterogeneous, is due to Snedecor (1956). It is an approximate test of the equality of means and is discussed in detail by Sokal and Rohlf (1969, p. 376).

In order to achieve complete rigor in the extension of statistical inferences derived from a sampled population to the target population, the latter must be completely available for sampling at random (Krumbein and Graybill, 1965, p. 150). For most geological situations, the target population is only rarely the available population and the achievement of a totally randomized sampling design is generally precluded. This introduces a "fixed" or nonrandom effect (Krumbein and Graybill, 1965, pp. 197-198) at the highest level in a hierarchic anova model which invalidates the extension of statistical inferences to the target population on a strict probability basis.

Random sampling of the target population Fistulipora decora was not possible in that the choice of localities was determined by the availability of suitable exposures. Therefore, in the strict sense, statistical conclusions are valid only for the available population defined as all well preserved specimens of Fistulipora decora exposed on selected bedding planes at selected localities. As all specimens
observed at these selected levels and localities were collected, it follows that the available population is identical to the collected population.

It is understood that the available population comprises only a very small part of the target population. However, since there is no a priori reason for believing that the available population of Fistulipora decora should differ significantly from the target population, it becomes possible to extend the conclusions derived from the available population to the target population by substantive geological argument (Krumbein and Graybill, 1965, p. 199).

Collecting

Collecting from the Beil Limestone Member was done from four widely separated localities in a manner consistent with the chosen statistical model, a two-level, mixed model anova. The locations of the exposures of Beil Limestone sampled are indicated on the index map in Figure 1. The four localities are referred to in subsequent discussions as Stull Road, Grover Station, Lake Dabinawa, and the Kansas Turnpike. The details for each locality are provided in Appendix 1. At each locality, specimens were collected in situ from a single bedding surface, in order to avoid the inadvertent collection of materials foreign to the chosen horizon. Specimens embedded in matrix and with zoarial growth surfaces oriented upward, were assumed to be in situ.

As much material as was feasible, within the bounds of reasonable expenditure of time and money, was collected from each locality. Much of the material collected at each locality was not usable due to poor

Figure l--Map of northeastern Kansas showing the approximate locations of the Beil Limestone exposures sampled.

- LD Collection localities

(3) Towns

In this and all subsequent tables and figures the following abbreviations are used:

$$
\begin{aligned}
& \text { ST }=\text { Stull Road locality } \\
& \text { GS }=\text { Grover Station locality } \\
& \text { LD }=\text { Lake Dabinawa locality } \\
& K T=\text { Kansas Turnpike locality }
\end{aligned}
$$

Abstract

preservation, mainly a consequence of dolomitization or secondary recrystallization of calcite. Of the available specimens, five colonies were chosen randomly from each locality, using a random number table (Sokal and Rohlf, 1969, pp. 153-156). One of the four localities sampled (Kansas turnpike) failed to provide the desired number of usable specimens, and in this particular instance only four colonies were analyzed. Figure 2 shows the relative positions of the analyzed specimens as they were collected from a selected bedding plane at each locality.

Measurements

The acetate peel technique outlined by Boardman and Utgaard (1964) was used in this study to avoid the formidable task of preparing large numbers of thin sections. It was desirable to evaluate the significance of distortion introduced during the process of removing an acetate replica from a specimen. Measurements of an arbitrarily chosen colony dimension were made directly from a specimen and compared to measurements of the same dimension taken from an acetate peel. Statistical analysis of the data using a simple t-test (Table 3) revealed no significant differences between the two sample means at the $\alpha=.001$ level of significance.

Measurements were made from the acetate peels by projecting character images at a known scale through a standard petrographic microscope onto a sheet of white tracing paper. Characters were measured directly from the projected image using a pair of Helios calipers (J and S Precision Scientific Measuring Instrument Company, Brooklyn, New York), graduated to $1 / 20$ of a millimeter. Measurements

Figure 2-- Large scale maps of each collecting locality showing relative positions of the randomly chosen colonies used in the study. Scale for each map is indicated in meters.

TABLE 3

t-test for significance of distortion of peel technique

were recorded to the nearest .001 mm although estimates of precision of the measurements reveal reproducibility to the nearest .01 mm .

Twenty five measurements for each character for each colony were taken along randomly chosen traverses utilizing a calibrated mechanical stage and a random number table. Traverse coordinates were chosen from a random number table, recorded, and each value set on the appropriate scale of the calibrated stage. Next, traverses were carried out and as many measurements as possible were made. If, after completing a traverse, more measurements were needed, a new set of traverse coordinates were chosen in an identical manner, and the process repeated until the required number of measurements were obtained. Traverses were consistently carried out in the same direction in order to avoid the possible introduction of bias by making arbitrary choices during the data gathering process.

Choice of Characters

Due to the relatively simple structural morphology of fistuliporoid bryozoans, only a modest number of phenetic characters are available for study. This investigation is based upon five characters, illustrated diagrammatically in Figure 3.

In tangential sections, zooecial diameters (ZD) in millimeters were determined as the minimum distance between zooecial walls. Generally only a few zooecia in the central portion of each section showed circular cross sections. It is obvious (Fig. 4) that for elliptical cross sections (those most commonly available) the "true" zooecial diameter must correspond to the minor axis of the ellipse, if the zooecium is essentially cylindrical.

Figure 3

Diagramatic representation of a fistuliporoid bryozoan showing the five characters utilized in the study. For tangential sections they include: zooecial diameter (ZD), interzooecial distance for nearest neighbor zooecia (IZD), and counts of the number of vesicles between nearest neighbor zooecia (VCT). For longitudinal sections they include: diaphragm counts per millimeter ($D C / M M$), and the number of complete vesicles in circle of radius .25 mm (VC/.25).

Figure 4
Diagram showing how the cross sectional form of a cylindrical zooecium is controlled by the obliquity between the plane and the zooecial axis. a_{i} is the minor axis of the ellipse, b_{i} is its major axis.

The interzooecial distance, IZD, is the distance between nearest neighbor zooecia in millimeters, as measured in tangential section. Related to this character is the number of vesicles (VCT) between nearest neighbor zooecia, also measured in tangential section. In longitudinal section, two characters were measured:--the number of diaphragms (DC/MM) in a distance of one millimeter, and the number of complete vesicles enclosed in a circle of radius .25 millimeters (VC/.25).

RESULTS AND DISCUSSION

Twenty-five measurements were obtained for each of five characters from a total of nineteen colonies representing four localities. These data are presented in Appendix 2.

Tests of the Assumptions of Analysis of Variance

In order to apply analysis of variance techniques, it is necessary to first test the data for the assumptions of anova. Seemingly, this has rarely been done in previous studies. However, as emphasized earlier, failure to test for these assumptions, or to recognize the limitations imposed when they are not met, can have serious effects on the final outcome of the analysis. Under such circumstances probability levels are unknown and evaluation of the validity of conclusions so based is not possible.

To carry out these tests, some basic descriptive statistics are needed for the data from each colony. These are presented in Appendix 3. The required computations for this, and all subsequent data processing, were carried out utilizing the Honeywell-GE 635 computer facilities at the University of Kansas. Two statistical computer program packages were employed in this study, the "Biometry" programs (Sokal and Rohlf, 1969) and the NT-SYS package (available from the University of Kansas Computation Center). The latter is primarily for multivariate statistics and was developed by Rohlf and his associates.

The Kolmogorov-Smirnov (Dmax test) for goodness of fit was used to test the data for normality. The results of this test are presented
in matrix form in Table 4. With few exceptions, the distribution of the data for $Z D, I Z D, V C / .25$, and $D C / M M$ does not differ significantly from a normal distribution at $\alpha=.01$. Only one character, VCT, (the number of vesicles between nearest neighbor zooecia) deviates consistently from normality. Values for this character are all significant at the $\alpha=.01$ probability level. This is not surprising due to the small number of classes involved (counts ranged from 0 to 2), and the relatively low frequencies in classes 0 and 2 for most samples.

The second assumption inherent in analysis of variance, the homogeneity of the within colony variances, was investigated using Bartlett's test. This test was run at two levels. In order to utilize a nested anova, it is necessary that the variances of all colonies be homoscedastic. This required equality of variances does not exist; Table 5 shows that the variances are markedly heteroscedastic for the four characters studied (VCT was not tested as it had failed the test for normality). Data were transformed to $\log _{10}$ in an attempt to solve the problem of inhomogeneity. However, Bartlett's test on the transformed data still indicated significant heterogeneity. Consequently, it is not possible to perform a nested anova in any meaningful fashion with the raw data.

Although it is not justifiable to run an anova on the full data set, it is possible that some subsets of the data are homoscedastic. Only one form of subset is of either biological or geological interest, the subsets of data from each locality. Bartlett's test was run at this second level, the test being applied separately for each locality and each of the four characters. In 9 of the 16 subsets of the raw

TABLE 4

IZD
Locality

	lity				
	ST		GS	LD	KT
	1	. 087 ns	. 093 ns	. 085 ns	. 080 ns
	2	.119 ns	.118 ns	.119 ns	. 149 ns
Colony	3	. 091 ns	.179 ns	.168 ns	.166 ns
	4	. 102 ns	.148 ns	. 227 ns	.143 ns
	5	. 085 ns	.126 ns	. 089 ns	--

		VCT ality			
		ST	GS	LD	KT
	1	. $960 \% \%$. $539 \% \%$. $415 \% \%$. 506% \%
	2	. 385% \%	. 494% \%	. 539% \%	. 494% \%
Colony	3	. $404 \% \%$. $425 \% \%$. $448 \% \%$. 494% \%
	4	. $356 \% \%$. 459% \%	. $348 \% \%$. 460 \%*
	5	. $448 \% \%$. $499 \% \%$. $488 \% \%$	--

		$\begin{gathered} \text { VC/ } 25 \\ \text { Locality } \end{gathered}$			KT
		ST	GS	LD	
	1	. 155 ns	.191 ns	.194 ns	. 214
	2	.146 ns	.183 ns	.160 ns	. 155
Colony	3	.148 ns	.179 ns	.165 ns	. 204
	4	.166 ns	.190 ns	. 229 ns	. 200
	5	. 144 ns	. 148 ns	.191 ns	--

		$\begin{gathered} \text { DC/MM } \\ \text { Locality } \end{gathered}$			
		ST	GS	LD	KT
	1	.221 ns	.200 ns	.248 ns	. 178 ns
	2	.221 ns	. 201 ns	.230 ns	.155 ns
Colony	3	. 392\%:*	. 209 ns	. 240 ns	.269 ns
	4	. 288**	.156 ns	.154 ns	.220 ns
	5	. 350%	. 244 ns	. 248 ns	--

TABLE 4 (Continued)

In this and all subsequent tables and figures the following abbreviations are used:

Characters

```
        ZD = zooecial diameter
    IZD = interzooecial distance for nearest neighbor zooecia
    VCT = number of vesicles between nearest neighbor zooecia
VC/.25 = number of complete vesicles contained in circle
        of radius . }25\textrm{mm}\mathrm{ .
    DC/MM = number of diaphragms in distance of one millimeter
```

TABLE 5

Values for Bartlett's Test for the Homogeneity of Variances, Between Localities

ZD: *: : *
IZD: ****

DC/MM: : **:
VC/.25: ***
$* * *, \quad \alpha=.005$

TABLE 6

Matrix of Values Calculated For Bartlett's Test for Homogeneity of Variances Within Localities

	Stull	Grover Station	Lake Dabinawa	Turnpike
ZD- $\begin{gathered}\text { Zooecial } \\ \text { Diameter }\end{gathered}$	ns.	****	****	****
$\begin{array}{r} \text { IZD-Inter- } \\ \text { Zooecial } \\ \text { Distance } \end{array}$	****	ns.	ns.	ns.
$\text { DC/MM- } \begin{aligned} & \text { Diaphragm } \\ & \text { Counts/mm } \end{aligned}$	\%\%**	****	ns .	ns.
$\begin{aligned} & \text { VC/. } 25 \text {-Vesicle } \\ & \text { Counts/. } 25 \end{aligned}$	ns.	ns.	****	ns.

data the variances were homoscedastic (Table 6). Transformation of the within-locality data to $\log _{10}$ provided two additional subsets which met the assumption of homoscedasticity. In these nine cases, it is justifiable to perform a parametric single classification anova.

Homogeneity of the Sampled Population

DICE DIAGRAMS: Dice diagrams were plotted for the four characters (Figures 5, 6, 7 and 8) which were normally distributed. These diagrams show in graphic form the basic statistics for each colony given in Appendix 3. They depict the relative locations of colony means and their 95% confidence limits. In addition, they show the broader 95% confidence limits for data of each colony and the extent to which colonies overlap in any character. They also provide a visual estimate of the population variance; it is proportional to the square of half the length of the line representing the 95% confidence limits for the population. (This line is of length $t_{(n-1) .95}{ }^{s}$ either side of the mean; as $n=25$ in all cases, this reduces to ± 2.064 s). For data not distributed normally, the mean as a measure of central tendency is no longer informative. Similarly, confidence limits are not an appropriate measure of dispersion because they are based on the t distribution. In such circumstances, central tendency is best expressed by the median or mode. Nonnormal, meristic data are best represented graphically as a bar diagram. The data for VCT are presented in this manner in Figure 9. It is worth noting that the modal class for VCT is invariably 1 for all colonies. This is also reflected in consistently positive g_{2} values, indicative of

Homogeneity of the Sampled Population

DICE DIAGRAMS: Dice diagrams were plotted for the four characters (Figures 5, 6, 7 and 8) which were normally distributed. These diagrams show in graphic form the basic statistics for each colony given in Appendix 3.

Figure 5
Dice diagrams for zooecial diameter for each colony, dimensions in mm. Black square is location of mean, black bar is 95% confidence limit of mean, broken bar 95% confidence limit of character for colony.

Figure 6
Dice diagrams for interzooecial distance for each colony. Dimensions in mm. Black square is location of mean, black bar is 95% confidence limit of mean, broken bar 95% confidence limit of character for colony.

Figure 7
Dice diagrams for the number of diaphragms in a one millimeter distance. Black square is location of mean, black bar is 95% confidence limit of mean, broken bar 95% confidence limit of character for colony.

Figure 8
Dice diagrams for the number of complete vesicles in a circle of radius .25 mm ., as measured in longitudinal section. Black square is location of mean, black bar is 95% confidence limit of mean, broken bar 95% confidence limit of character for colony.

Figure 9
Bar diagrams of frequency distribution of the number of vesicles between nearest neighbor zooecia (VCT).
leptokurtic distributions (See Appendix 3). It is also apparent (Fig. 9) that there exists no consistent pattern of skewness for the VCT data; this is reflected in positive and negative values of g_{1}, in almost equal proportions (Appendix 3).

For all colonies and characters, the Dice diagrams reveal an obvious overlap of 95% confidence intervals for the populations. However, colony variances, as reflected in the width of the confidence intervals are often quite variable, even within a single locality. When examined in detail, two colonies in particular (the fourth from Lake Dabinawa, and the third from the Kansas Turnpike) appear to deviate consistently from the group norm, not only in the location of their means, but to a lesser extent, in the magnitude of their variances for at least two characters ($Z D$ and $V C / .25$). This suggests the possibility that these two colonies in particular may belong to a different population.

PRINCIPAL COMPONENTS ANALYSIS: The above tentative hypothesis is based primarily on two characters; in order to obtain a better impression of the phenetic relationships among all the colonies one needs information based on a simultaneous consideration of all the characters that have been employed. Several techniques are available for this purpose. One of the most elegant, first used by Rohlf (1968) in taxonomic work, involves computing R mode principal components (Seal, 1964) and projecting the OTUs (Operational Taxonomic Units, colonies in this case) into the new character space defined by the first three principal components. This technique has been used in paleontological work by Kaesler (1970) and Rowell (1970), both of whom provide more detailed accounts of the method. The resulting
projections provide the best three dimensional representation of the n dimensional phenetic relationships. Reducing the dimensionality of the data inevitably introduces some distortion; this is often modest and its extent is always known. Moreover the distortion is not uniformly distributed; the small phenetic distances are more heavily distorted, but the larger ones, giving the overall view of phenetic relationships, suffer least.

Two principal components analyses were run. In the first, both the five characters and the variances of the four normally distributed ones (ZD, IZD, VC/. 25 and $D C / M M$) were all treated as characters (Fig. 10). In the second (Fig. ll), only the five measured characters were utilized. The amount of distortion in the models is given in Table 7. As may be seen, it is relatively small. Although the two models do not give identical results [indeed it was not expected that they would, for the variances (the 4 extra characters in Figure 10) were not heavily correlated with their associated means] their gross form is similar. The correlation coefficient between the distances between all pairs of colonies in the 9 and 5 space was 0.874 , while the same coefficient between distances in the first three components space of both models was 0.861 .

When Figures 10 and 11 are inspected, the two colonies which initially seemed anomalous, the third colony for the turnpike locality (0403 in Figures 10 and 11) and the fourth colony from Lake Dabinawa (0304), no longer appear so. Neither lies close to the centroid of the colonies in the projections, but subjectively, there appears no good reason to claim that they are not part of the population. It is apparent from the figures, that intuitive confidence in this statement

Figure 10 -- Projection of colony mean values into first 3 principal component space based on 9 characters. First two digits of colony number refer to locality, the last two, the number of the colony at the locality. $01=$ Stull, $02=$ Grover Station, $03=$ Lake Dabinawa, $04=$ Kansas Turnpike.


```
Figure ll -- Projection of colony mean values into first 3 principal
    component space based on 5 characters. First two
    digits of colony number refer to locality, the last
    two, the number of the colony at the locality. 0l =
    Stull, 02 = Grover Station, 03 = Lake Dabinawa, 04 =
    Kansas Turnpike.
```


TABLE 7

Number of characters	\% Variance explained by first 3 principal components.	Correlation between distances of all possible pairs of OTUs in n space and 3 principal component space
9	78.86	0.973
5	93.91	0.993

would be enhanced by having data for more than nineteen colonies. Such data would be expected to close the discontinuities between the more peripheral colonies of the projections.

Between Locality Variance

At this point, we can summarize the present situation with regard to the assumptions of anova. The assumption of normality is, with few exceptions, met by the data for the characters $Z D, I Z D, D C / M M$, and VC/. 25 (Table 4). However, in every character these data failed to meet the assumption of homoscedasticity at the highest level, for all the colonies in the study.

The use of a two-level nested anova model is, thus, precluded. In a number of cases, the assumption of homoscedasticity was met at the next lower level, within localities (Table 6). For these data it is appropriate to partition the variance components within localities by a single classification anova model.

Although it was not possible to partition the variance using a two-level nested anova, the significance of variation between localities was tested using the Kruskal-Wallis nonparametric anova analog. The results are presented in Table 8. For purposes of comparison only, a nested anova was carried out for the four normally distributed characters and the results are presented in Table 9. Comparison of these two tables reveals the serious limitations imposed on the parametric analysis of variance test by deviations from homoscedasticity. At the highest level in this nested anova (Table 9), between locality effects are seemingly nonsignificant in all cases at the $\alpha=.05$ probability level. However, for the

Results for the Nonparametric Kruskal-Wallis Test, Between Localities

Character	Kruskal-Wallis
ZD	$* * *$
IZD	$* *: \%$
VCT	ns
VC/. 25	$* * *:$
DC	$* * *:$

$(\% * *, \alpha=.005)$

TABLE 9

F-ratio for each character				
Source of Variation		IZD	DC/MM	VC/ $/ 25$
Among Localities	0.6276 ns	0.8588 ns	0.4312 ns	1.3164 ns
Within Localities	43.2857***	$11.0138 \% \% \%$	16.3007***:	15.0016****

nonparametric Kruskal-Wallis anova, which is even less powerful than the parametric equivalent in detecting significant differences, the between locality effects are highly significant at $\alpha=.005$. This example should re-emphasize the importance of testing the assumptions of anova; failure to meet them may give rise to spurious F-values and subsequent gross misinterpretations.

It follows from the results of the Kruskal-Wallis analysis of variance (Table 8, that highly significant differences exist between localities. As discussed previously (p. 16), several sources of variation may contribute to this between locality effect, including genetic differences between local populations, differences in the "gross" environment of localities, and the interaction of the two. Unfortunately, it is not possible to make probabilistic statements concerning the relative importance of each of these factors.

Within-Locality Analysis of Variance

Analysis of variance within localities was accomplished using single classification anova (where appropriate) and the Kruskal-Wallis nonparametric anova analog. In addition, a modified version of the Snedecor approximate test for the equality of means when variances are heterogeneous (Sokal and Rohlf, 1969, p. 376) was employed to test for the significance of differences between colony means within localities. The results of these three tests are presented in Table 10. Examination and comparison of results for the three methods consistently reveals highly significant differences between colonies at each locality.

TABLE 10

Comparison of Results for Parametric and Nonparametric Tests Between Colonies, Within Localities

Character	Locality	Anova	Kruskal-Wallis	Snedecor
ZD	Stull	$\approx: \% \%$	*i\% \%	* \times :\%
	Grov. St.	na	****	$\dot{*} \% * *$
	L. Dabin.	na	$* * * *$	\% $\%$: \%
	K. Turnp.	na	****	*:**
IZD	Locality	Anova	Kruskal-Wallis	Snedecor
	Stull	na	****	$x: \% \%$
	Grov. Sta.	****	**:*	***\%
	L. Dabin.	$x: 6 \%$	$\dot{*} * *$	$\because \% * *$
	K. Turnp.	****	****	\% $\%$ \%
DC/MM	Locality	Anova	Kruskal-Wallis	Snedecor
	Stull	$\mathrm{na}[\% \% \%$]	*:**	**:*
	Grov. Sta.	na	****	$x: \%$ \%
	L. Dabin.	****	****	*: $\%$ \%
	K. Turnp.	****	****	****
VC/ . 25	Locality	Anova	Kruskal-Wallis	Snedecor
	Stull	****	\%:**	*:**:
	Grov. St.	*: $\%$:	**:*	****
	L. Dabin.	na [$\%$: $\%$: $]$	****	\% $: 8: \%$
	K. Turnp.	*:\% $\%$	**:*	$2: * *$
```***, < = . 001 na - test not applicable [***:] - Brackets enclose results for Log}10Y\mathrm{ transformed data```				

As elaborated upon earlier, variations between colonies at a single locality are ultimately genetically based, arising in part from actual differences in colony genotype, but including an indeterminate component of variation due to genotype-environment interaction.

The Significance of Differences Between Colonies Within a Locality

In order to better understand the distribution of intercolony variation within localities it was useful to apply an a posteriori test of means to determine if most of the observed variation could be related consistently to deviations of a single colony or subset of colonies. In other words, are the tests showing differences between colony means within a locality significant because one or two colonies at each locality consistently differ from the remainder in all characters, or are the significant differences more uniformly distributed? The Student-Newman-Keuls (SNK) a posteriori multiple range test (Sokal and Rohlf, 1969, p. 239) was used to compare means within those localities which met the assumptions for analysis of variance.

The results for this test are presented diagrammatically in Figures 5-8. Colony means (numbered 1 through 5) are arrayed by magnitude for each locality and sets of means not significantly different are underlined. The SNK method is applied in "stepwise" manner (Sokal and Rohlf, 1969, p. 239), by testing differences among sets of means only if they are contained within a larger significant set. Thus, means contained within any nonsignificant range are themselves not significantly different from each other and need not be tested.

Detailed examination of the SNK results in Figures $5-8$ reveals that the highly significant differences among means are not attributable to a single colony or subset of colonies in any regular manner. The observed differences are therefore attributed to a high genetic diversity within localities, as expressed phenotypically.

## Partitioning of Variance at Localities

Variance components partitioned by single classification anova within localities have been expressed as a percent of the total within locality variance in Table ll. The results reveal that a substantial proportion of the total variance is contributed by intracolony variation, and with one exception (for $\log _{10} Y$ transformed data for the number of diaphragms per mm ) the within colony component of variation exceeds the between colony variance. It is accepted that intracolony variation arises from differences in the microenvironment affecting the individuals of a colony. Therefore, it follows that microenvironmental factors generally contribute a greater proportion to the total within locality variance than genetically-based, intercolony variation.

Coefficient of Variation

USE: Although it is not possible to partition the within locality variance for those cases where the assumptions of analysis of variance are violated, it is possible to obtain information about the intrinsic variability of the data through comparison of coefficients of variation. Oliver (1968) offered an interesting approach to the

TABLE 11
Partitioning of Variance Components By Single Classification Anova

\[\)|  Values are expressed as a percentage of the  |
| ---: |
|  total within locality variance.  |

\]

Zooecial Diameter (2D)

	Inter-Zooecial Distance (IZD)			
	Stull	Grover Station	Lake Dabinawa	Kansas Turnpike
Between	na	17.47	41.46	25.82
Within	na	82.53	58.53	74.18

Diaphragm Counts Per Millimeter (DC/MM)
Stull Grover Station Lake Dabinawa Kansas Turnpike

Between	$[50.43]:$	na	28.36	35.30
Within	$[49.57] *$	na	71.64	64.70


	Vesicle-Counts Per Area (VC/.25)			
	Stull	Grover Station	Lake Dabinawa	Kansas Turnpike
Between	31.82	29.54	$[42.41] *$	45.78
Within	68.18	70.46	$[57.59] *$	54.22

*Values given in brackets are for $\log _{10} Y$ transformed data.
na - anova not applicable due to failure of assumptions.

TABLE 12
Intra- and Intercolony Coefficients of Variation
All Characters and Localities

Locality	Charac	$\begin{aligned} & \mathrm{ZD} \\ & \mathrm{cV} \end{aligned}$		Charac	$\begin{array}{r} \text { IZD } \\ \text { CV } \end{array}$	
	Intracolony	Intercolony	$\begin{aligned} & \text { Oliver's } \\ & \text { Class } \end{aligned}$	Intracolony	Intercolony	Oliver's Class
Stull	7.79	5.58	II	26.94	20.00	II
	7.31			23.78		
	9.98			38.02		
	9.55			55.22		
	10.90			33.03.		
Grover						
Station	7.29	6.31	II	22.90	17.77	II
	11.61			45.94		
	7.92			39.16		
	6.64			42.20		
	5.74			30.59		
Lake						
Dabinaw่a	10.93	20.48	I	37.18	38.15	
	6.29			25.38		
	7.93			59.37		
	15.98			105.94		
	13.91			34.70		
Kansas						
Turnpike	6.55	13.76	I	21.10	21.13	II
	6.85			47.59		
	13.98			34.88		
	7.21			37.87		

## TABLE 12 (Continued)



## TABLE 12 (Continued)

Locality		Character: $\quad$ VCT	
	Intracolony	Intercolony	Oliver's Class
Stull	0.00	6.27	II
	47.35		
	45.67		
	52.92		
	39.26		
Grover Station	19.23	6.63	II
	30.10		
	36.58		
	37.04		
	20.83		
Lake Dabinawa	41.67	26.16	II
	19.23		
	51.03		
	83.33		
	34.02		
Kansas Turnpike	32.26	11.31	II
	30.10		
	30.10		
	28.87		

study of the distribution of variation within and between colonies of several species of Devonian rugose corals by comparing intra- and intercolony coefficients of variation. He classified the observed variation into two types--Class I, in which intercolony variation exceeded intracolony, and Class II, in which the intercolony variation was exceeded by intracolony. Class I variation was attributed to a narrow range of phenotypic expression due either to strict genetic control or to uniform ecological influences. Class II variation was related to less restrictive genetic control over phenotypic expression or to fluctuations in the environment.

Inter- and intracolony coefficients of variation have been computed for all colonies within each locality. The results are presented in Table 12.

LIMITATIONS: Prior to making generalizations about the distribution of variation for the data, it was desirable to ascertain if the observed differences between intra- and intercolony coefficients of variation were indeed significant.

The standard error for the coefficient of variation of normally distributed data is given by the equation (Sokal $\varepsilon$ Rohlf, 1969, p. 137).

$$
S_{c v}=\frac{C V}{\sqrt{2 n}} \sqrt{1+2\left(\frac{C V}{100}\right)^{2}}
$$

From this equation, it is apparent that for a given sample size ' $n$ ', the standard error increases as the coefficient of variation increases; for small values of the latter

$$
\mathrm{s}_{\mathrm{cv}} \approx \frac{\mathrm{cv}}{\sqrt{2 \mathrm{n}}}
$$

Standard errors and $95 \%$ confidence limits were calculated for the coefficients of variation of one of the characters, zooecial diameter (ZD). Upon examination of the results (see Table 13 ), it is apparent that typically the $95 \%$ confidence limits of the intercolony coefficient of variation overlap with those of the intracolony for all colonies at each locality. Although the observed CV value is the best estimate for the population, we have no guarantee that is is the true value. Confidence intervals for a given Coefficient of Variation imply that there is a probability of .95 that the true value for the population lies within the computed range. For data with high coefficients of variation, confidence limits are broad, making the resolution of small differences impossible. Even for data exhibiting relatively low coefficients of variation (as in the case of ZD ; see Tables 12 and 13), where confidence limits are shorter, there is typically overlap of the $95 \%$ limits of the inter- and intracolony coefficients of variation. Oliver's approach, although initially attractive has some recognizable limitations. Unless the inter- and intracolony coefficients of variation are tested against each other and shown to be significantly different, it is not possible to say whether a given colony belongs to his type I or type II class. Unless such tests are made, it is premature to erect hypotheses concerning the amount of genetic control or the uniformity, or otherwise, of ecological influences at a particular locality. It is apparent from Table 13 , that unless the differences between the intracolony coefficients of variation based on 25 observations and the intercolony coefficient calculated from 4 or 5 colonies are relatively large, they will not be shown to be significantly different from one another.

Intra- and Intercolony Coefficients of Variation and 95\% Confidence Limits for Zooecial Diameter

Locality	Intracolony	$L_{1}$	$\mathrm{L}_{2}$	Intercolony	$L_{1}$	$L_{2}$
Stull	7.79	9.95	5.63	5.58	9.04	2.12
	7.31	9.37	5.25			
	9.98	12.75	7.21			
	9.55	12.20	6.90			
	10.90	13.92	7.88			
Grover Station	7.29	9.31	5.27	6.31	10.22	2.40
	11.61	14.83	8.39			
	7.92	10.12	5.73			
	6.64	8.48	4.80			
	5.74	7.33	4.15			
Lake Dabinawa	10.93	13.96	7.90	20.48	33.18	7.79
	6.29	8.03	4.55			
	7.93	10.13	5.73			
	15.98	20.41	11.55			
	13.91	17.77	10.05			
Kansas Turnpike	6.55	8.37	4.73	13.76	22.29	5.23
	6.85	8.75	4.95			
	13.98	17.86	10.12			
	7.21	9.21	5.21			

Results such as those shown in Table 12 must be handled with caution; they are the best estimates of inter- and intracolony coefficients of variation, but differences between the two may be more apparent than real.

## Correlations Between Characters

In preceding discussions, characters have been treated as though they were independent variables. However, it can be argued on geometrical grounds that some characters (for example IZD and VCT) must be correlated to some degree. Particularly for studies limited to only a few characters, it is desirable to reduce the amount of redundancy (in the form of highly-correlated characters) to a minimum in order to obtain a maximum amount of meaningful information. With this in mind, a matrix of Pearson product-moment correlation coefficients (r) for all possible pairs of character means and variances was calculated (Table 14). It should be pointed out that the variance for VCT (number of vesicles between nearest neighbor zooecia) was not used in the matrix because of the pronounced deviation of the data from normality. In this circumstance, the variance is a poor measure of dispersion. For convenience of interpretation, a simplified version of the correlation matrix, showing only the significant $r$ values ( $\alpha=$ .05), is presented in Table 15.

Two characters stand out in displaying a high degree of independence from the other variables. Correlation coefficients for $D C / M M$ (diaphragms/ mm ) and $\mathrm{VC} / .25$ (vesicle counts per unit area) are not significantly correlated with any of the other four principal characters. This is useful information in that it emphasized the relatively high

TABLE 14

Matrix of Correlation Coefficients between Character Means and Variances

	ZD	VAR/ZD	IZD	VAR/IZD	VCT	VC/ . 25	VAR/VC/. 25	DC/MM	VAR/DC/MM
ZD	1.00								
VAR/ZD	. 51	1.00							
IZD	-. 55	-. 46	1.00						
VAR/IZD	-. 12	. 33	. 02	1.00					
VCT	-. 63	-. 59	. 81	. 05	1.00				
VC/ $/ 25$	-. 42	-. 77	. 30	-. 36	. 42	1.00			
VAR/VC/. 25	-. 64	-. 50	. 36	-. 00	. 55	. 59	1.00		
DC/MM	. 40	-. 07	-. 27	-. 47	-. 13	. 14	. 01	1.00	
VAR/DC/MM	. 33	-. 06	-. 29	. 03	-. 10	. 25	. 27	. 55	1.0

## TABLE 15

Simplified Matrix of Significant Correlation Coefficients between Character Means and Variances

	2D	VAR/ZD	IZD	VAR/IZD	VCT	vc/. 25	VAR/VC/. 25	DC/MM	VAR/DC/MM
2D	1.00								
VAR/ZD	. 51	1.00							
IZD	-. 55	-. 46	1.00						
VAR/IZD	--	--	--	1.00					
VCT	-. 63	-. 59	. 81	--	1.00				
vc/ .25	--	-. 77	--	--	--	1.00			
VAR/VC/. 25	-. 64	-. 50	--	--	. 55	. 59	1.00		
DC/MM	--	--	--	-. 47	--	--	--	1.00	
VAR/DC/MM	--	--	--	--	--	--	--	. 55	1.0

information content of these two characters, independent of the others. Both of these characters are count data, rather easily obtained, and for this study, normally distributed.

For the significant correlations (Table 15), it is interesting to draw attention to the negative correlations of ZD (zooecial diameter) with IZD (interzooecial distance) and VCT (vesicles between nearest neighbors). Biologically, these correlations are not entirely unexpected. As zooecial diameter increases, crowding occurs with a decrease in the interzooecial distance, also reflected by a decrease in number of vesicles between zooecia. The high positive correlation between IZD and VCT ( $r=.811$ ) seemingly reflects some uniformity in the size of vesicles, although this is not apparent through cursory observation. The relatively high negative correlation (-.77) of VC/. 25 and the variance of $Z D$ is also notable. This can seemingly be interpreted as a decrease in the average vesicle size as the variance of zooecial diameters increases. Perhaps related to this is the positive correlation between VCT and the variance of VC/.25, interpreted as an increase in the number of vesicles between zooecia with an increased variation in the size of the vesicles. A clear cut biological explanation for these correlations is not apparent, but they may possibly reflect the influence of monticular areas on those characters.

Although most characters are correlated to some extent with one another, the fact that no $r$ value is 1.0 indicates that varying degrees of independence exist; thus, varying amounts of information are obtainable from all characters. However, in evaluating the usefulness of a particular character it is important to consider not
only the degree of independence, but also the nature of the data obtained. The data obtained for VCT, as discussed earlier, could not be handled well statistically due to the lack of normality of the data and the limited number of size classes. This, coupled with the fact that it has a moderately high correlation with 2 D (-.633) and IZD (.81l) makes it a relatively undesirable character. It is clear that the potential information content of IZD is much greater because it is a continuous variable; moreover it can be more effectively handled statistically.

## Conclusions

Through a statistical study of variation in the bryozoan species Fistulipora decora, it has been possible to reach the following conclusions: l) In this study (as in most previous statistical studies of Paleozoic Bryozoa) data were found to be normally distributed for the majority of the characters utilized, thus fulfilling one fundamental assumption of parametric anova. However, when all the colonies were considered together, variances were not homogeneous. It is not yet known how widespread deviation from homoscedasticity is among Bryozoa; seemingly, with the exception of Anstey and Perry (1969), this assumption has not been tested by previous investigators. Failure to meet this second assumption inherent in analysis of variance may have serious effects, as was emphasized by comparison of the results obtained for a nested anova and the Kruskal-Wallis nonparametric test. Results for the nested anova indicated no significant differences between localities for all characters tested. However, the Kruskal-Wallis test, although less powerful than an anova, consistently indicated highly significant locality differences $(\boldsymbol{\alpha}=.005)$ for all characters tested. It is apparent that in cases where the underlying assumptions are not met, interpretations based on analysis of variances can be grossly misleading. 2) Failure of the assumption of homoscedasticity of variances at the highest level in the nested anova model could not be related to abnormal variances of a single colony or subset of colonies. Although Dice diagrams of colony means and confidence limits gave the visual impression that at least two colonies might differ significantly
enough from the rest to be considered as representing a different population, simultaneous treatment of all character means and variances by multivariate principal components analysis failed to show justification for this hypothesis. This result was also corroborated by an SNK a posteriori multiple range test of colony means. 3) Failure of the assumption of homogeneity of variances at the highest level in the nested anova model precluded parametric analysis of variance between localities. However, nonparametric Kruskal-Wallis tests at this level revealed highly significant differences between localities for all characters. Basically, three sources of variation can account for these differences; they are: genetic differences between localities, differences in "gross" environmental factors, and the interaction of the two. However, it is not possible to isolate these components, nor to assess their relative importance. 4) Partitioning of variance components within localities by single classification anova was appropriate for $l l$ cases in which the assumption of homoscedasticity was met at this lower level. Results of the analyses revealed significant differences ( $\alpha=.001$ ) between colonies within localities in all cases. Additional analysis of within locality data was accomplished using both the Kruskal-Wallis nonparametric test and the Snedecor test for the equality of means when variances are heterogenous. Results for these tests are consistent with those of the single classification anova in revealing highly significant differences between colonies. This is interpreted as most probably reflecting a high genetic diversity within localities, as expressed phenotypically, since the "gross" environment within the limited area of the collecting locality was seemingly relatively
uniform (as suggested by field evidence). The intercolony and intracolony components of variation, expressed as a percentage of the total variance, revealed that the intracolony component accounts for a larger proportion of the total within locality variation in all but one case. This is interpreted as reflecting a strong influence of microenvironmental factors on the phenetic expression of individual zooids, within a single colony.
5) Comparison of coefficients of intra- and intercolony variation in the manner proposed by Oliver (1968) was attempted in order to understand the distribution of within locality variation for data which could not be appropriately handled by single classification anova. However, $95 \%$ confidence limits computed for the least variable character, zooecial diameter (ZD), showed significant overlap for the majority of cases. It is concluded that this approach, although interesting, can have serious limitations; unless differences between intra- and intercolony coefficients are large, it may be impossible to distinguish Oliver's two classes of variation. Although the computed coefficients are best estimates for the population and provide us with a measure of inherent variability, apparent differences between them may not be real.
6) A matrix of correlation coefficients for character means and variances was computed to determine the degree of correlation between the characters used. It is desirable, particularly for studies based on only a few characters, to minimize redundancy in the form of heavily correlated characters by utilizing characters that contain a maximum amount of information. The results revealed that two characters, diaphragm counts per millimeter and the number of vesicles per unit
area, both measured in longitudinal section, are not significantly correlated with the other characters measured. Zooecial diameter, interzooecial distance between nearest neighbor zooecia and the number of vesicles between nearest neighbor zooecia, all measured in tangential section, were found to be significantly correlated with one another. It was concluded that VCT, being heavily correlated with IZD ( $\mathrm{r}=.81$ ) and difficult to handle statistically, could be eliminated with little loss of information.

In conclusion, this study has shown the need for more broadly based taxonomic studies of bryozoan populations. The available population of Fistulipora decora is characterized by extensive and significant variation between individuals within a colony, between colonies at one locality, and between localities. Phenetically, the group is quite flexible, responding readily to differences in environment and genetic makeup. This may be typical of most bryozoan taxa. In future studies, the maximum amount of information will be obtained only through utilization of a logical sampling plan, where possible, and the application of appropriate statistical techniques, both to describe the variation and to assess its significance.

## REFERENCES

Anstey, R.L. and T.G. Perry, 1969, Redescription of cotypes of Peronopora vera Ulrich, a Cincinnatian (Late Ordovician) ectoproct species: Jour. Paleontology, v. 43, p. 245-251, pls. 31-32.
and $\qquad$ , 1970, Biometric procedures in taxonomic studies of Paleozoic bryozoans: Jour. Paleontology, v. 44, no. 2, p. 383-398.

Boardman, R.S., 1960, Trepostomatous Bryozoa of the Hamilton Group of New York State: U.S. Geol. Survey, Prof. Paper 340, 87 p., 22 pls.
, 1968, Colony development and convergent evolution of budding pattern in "rhombotrypid" Bryozoa: in Proc. First Internat. Bryozoology Conference, Milan, Italy: Atti Soc. Ital. Sci. Nat. e Museo Civ. St. Nat., Milano, v. 108, p. 179-184.
and A.H. Cheetham, 1969, Skeletal growth, intracolony variation, and evolution in Bryozoa: A Review: Jour. Paleontology, v. 43, no. 2, p. 205-233, pls. 27-30.
, $\qquad$ and P.L. Cook, 1970, Intracolony variation and the genus concept in Bryozoa: in Proc. North Amer. Paleont. Convention, pt. C, p. 294-320.
and J. Utgaard, 1964, Modifications of study methods for Paleozoic Bryozoa: Jour. Paleontology, v. 38, p. 768-770.
and $\qquad$ , 1966, A revision of the Ordovician bryozoan genera Monticulipora, Peronopora, Heterotrypa, and Dekayia: Jour. Paleontology, v. 40, p. 1082-1108, pls. 133-142.

Bork, K.B. and T.G. Perry, 1967, 1968a, b, Bryozoa (Ectoprota) of Champlainian age (Middle Ordovician) from northwestern Illinois and adjacent parts of Iowa and Wisconsin. Parts I, II, III: Jour. Paleontology, v. 4l, p. 1365-1392, pls. 173-177; v. 42, p. 337-355, pls. 44-48; v. 42, p. 1042-1065, pls. 133-138.

Brown, G.D., Jr., 1965, Trepostomatous Bryozoa from the Logana and Jessamine Limestones (Middle Ordovician) of the Kentucky Bluegrass region: Jour. Paleontology, v. 39, p. 974-1006, pls. 1ll-118.

Brown, W.G., 1958, Stratigraphy of the Beil Limestone, Virgilian of eastern Kansas: M.S. thesis, Univ. of Kansas, 189 p.

Cheetham, A.H., 1968, Morphology and systematics of the bryozoan genus Metrarabdotos: Smithsonian Misc. Coll., v. 153, no. 1, 121 p., 18 pls.

Cuffey, R.J., 1967, Bryozoan Tabulipora carbonaria in Wreford Megacylothem (Lower Permian) of Kansas: Univ. Kansas Paleont. Contr., Bryozoa, art. 1,96 p., 9 pls.
and T.G. Perry, 1964, Redescription of syntypes of bryozoan species Rhombotrypa quadrata (Rominger): Univ. Michigan Mus. Paleont. Contrib., v. 19, p. 37-45, pls. 1, 2.

Horowitz, A.S., 1968, The ectoproct (bryozoan) genus Actinotrypa Ulrich: Jour. Paleontology, v. 42, no. 2, p. 356-373, pls. 49-52.

Kaesler, R.L., 1970, Numerical taxonomy in paleontology: classification, ordination and reconstruction of phylogenies: in Proc. North Amer. Paleont. Convention, pt. B, p. 84-100.

Kodsi, M.G., 1967, Die Fauna der Bankes des Auering (Oberkarbon; Karnische Alpen, Österreich). 1. Teil: Fenestella Lonsdale 1839: Sonderdruck aus Carinthia II, Mitteilungen des Naturwissenschaftlichen vereines für Kärnten, 77. bzw 157. Jahrgang, Klagenfurt, p. 59-81, 3 pls.

Krumbein, W.C. and F.A. Graybill, 1965, An introduction to statistical models in geology: New York, McGraw-Hill Book Company, 475 p.

Malone, P.G. and T.G. Perry, 1965, Fenestellid bryozoans from oncolites in Sappington Sandstone of southwestern Montana: Jour. Paleontology, v. 39, p. 4l-44, pl. 14.

Moore, R.C., 1966, Paleoecological aspects of Kansas Pennsylvanian and Permian cyclothems: in Symposium on Cyclic Sedimentation, D.F. Merriam, Ed., Kansas Geol. Survey Bull. 169, 1964, v. 1, p. 287-380.
and R.M. Dudley, 1944, Cheilotrypid bryozoans from Pennsylvanian and Permian rocks of the midcontinent region: Kansas Geol. Survey, Bull. 52, pt. 6, p. 229-408, pls. 1-48.

- Oliver, W.A., Jr., 1968, Some aspects of colony development in corals: Jour. Paleontology, v. 42, no. 5, p. 16-34.

Perkins, R.D., T.G. Perry and D.E. Hattin, 1962, Some bryozoans from the Beil Limestone Member of the Lecompton Limestone (Virgilian) of Kansas: Kansas Geol. Survey Bull. 157, pt. 5, 20 p., 5 pls.

Perry, T.G., 1962, Spechts Ferry (Middle Ordovician) bryozoan fauna from Illinois, Wisconsin, and Iowa: Illinois State Geol. Survey, Circ. 326, 36 p., 7 pls.
and A.H. Horowitz, 1963, Bryozoans from the Glen Dean Limestone (Middle Chester) of southern Indiana and Kentucky: Indiana Geol. Survey Bull. 26, 51 p., 9 pls.

Rohlf, F.J., l968, Stereograms in numerical taxonomy: Systematic Zoology, v. 17, p. 246-255.
and R.R. Sokal, 1969, Statistical Tables: W.H. Freeman and Co., San Francisco, 253 p.

Rowell, A.J., 1970, The contribution of numerical taxonomy to the genus concept: in Proc. North Amer. Paleont. Convention, pt. C, p. 264-293.

Ryland, J.S., 1970, Bryozoans: London, Hutchinson and Co., Ltd., 175 p.

Seal, H., 1964, Multivariate Statistical Analysis for Biologists: Wiley, New York, 477 p.

Snedecor, G.W., 1956, Statistical Methods: 5th ed. Iowa State College Press, Ames. 534 p.

Sokal, R.R. and F.J. Rohlf, 1969, Biometry: The principles and practice of statistics in biological research: San Francisco, W.H. Freeman and Co., 776 p.

Tavener-Smith, R., 1965a, A revision of Retepora nodulosa Phillips, 1836: Geol. Magazine, v. 102, no. 2, p. 135-142, l pl. , 1965b, A new fenestrate bryozoan from the Lower Carboniferous of County Fermanagh: Palaeontology, v. 8, p. 478491, pl. 66.
, 1966, The micrometric formula and the classification of fenestrate cryptostomes: Palaeontology, v. 9, p. 413-425.

Utgaard, John and T.G. Perry, 1960, Fenestrate bryozoans from the Glen Dean Limestone (Middle Chester) of southern Indiana: Indiana Geol. Survey, Bull. 19, 32 p., 6 pls.
Explanation of Plate 1
Fistulipora decora (Moore and Dudley), 1944
Figures 1 and 2. KU 71997. Zoarium encrusting the brachial valve of a specimen of Meekella. Specimen collected from Grover Station. (Magnification, X l.4).
Figure 3. KU 71998. Enlarged view of zoarial surface showing the conspicuous development of moderately elevated lunaria and monticules. Specimen collected from Kansas Turnpike. (Magnification, X 2).
Figures 4a and 4b. KU 71999. Stereographic view of anirregularly-encrusting form showing well-developedmonticules. Specimen collected from the KansasTurnpike. (Magnification, X l).
Figures 5 and 6. KU 72000. Colony exhibiting the character-istic hemispherical form with moderately convexupper surface (Figure 6) and concave, concentricallywrinkled base (Figure 5). Specimen collected fromStull Road (Magnification, X l).


## Appendix 1 <br> List of Localities

1. Stull Road: NE $1 / 4$, NE $1 / 4$, NW $1 / 4$, NW $1 / 4$, sec. $36, T .12 S .$, R. l7E.; upper contact of highest limestone bench exposed on south side of Highway 40, about 1.25 miles west of Stull, Douglas County (Clinton 7.5' Quadrangle).
2. Grover Station: $\operatorname{SE} 1 / 4$, $\mathrm{SE} 1 / 4, \mathrm{NE} 1 / 4, \mathrm{NE} 1 / 4$, sec. $35, \mathrm{~T} .11 \mathrm{~S} .$, R. 17E; floor of small quarry on north side of road near Santa Fe Railroad, approximately 1.25 miles west of Grover Station, Douglas County (Perry 7.5' Quadrangle).
3. Lake Dabinawa: $N W 1 / 4$, NW $1 / 4$, NW $1 / 4$, NE $1 / 4$, sec. $31, T .10 \mathrm{~S}$. , R. 20E; bed in a small gully on northeast side of lake, southeast of junction of main (E-W) road and private ( $N-S$ ) road, Jefferson County (McLouth 7.5' Quadrangle).
4. Kansas Turnpike: SE $1 / 4, \operatorname{SE} 1 / 4$, NE $1 / 4, \mathrm{NE} 1 / 4$, sec. 24 , T. 12S., R. 18E; zone about 2 to 3 feet above second prominent limestone bed on north side of turnpike about 100 feet west of overpass, Douglas County (Lawrence East 7.5' Quadrangle).

## APPENDIX 2

DISCISSION K MEASUREMENTS FOR NUMERICAL CHARACTERS
ARE EXPRESSED IN THE ORIGINAL CALIPER UNITS. CONVERSION OF VAUUES TO NUMLMEIEAS IS ACCONOLISHEN
BY THE FOLLONING *
$Y$ (MM.) $=Y$ (CAL•UNITS) / 4.93
FIRST EIGHT COLUMNS ARE FOR SPECIMEN IDENTIFICATION. EIRST NUMOER IDENTIEIFS LOCALITY ACOOROING TO TEE CODEK
$01=$ STULL ROAD
$02=$ GROVER STATIOA
$03=$ LAKE DABINAWA
$04=$ KANSAS TURNPIKE
SECOND NUMBER IDENTIFIES THE COLONY YITHIN A GIVEN LOCALITY. IHIRD NUMBER IS THE MUBDER OF CHARSCTER VEDSMREMEVIS FOR THE COLONY.
EXAPPLE: FOR CHAPACTER 2D. 010325 IS WIFRPRETED AS THF THIRD COLONY FROM THE STULL ROAD LOCALITY, THE SAMPLE EOR THAT CHARACIER BEING GASED ON 25 MEASUREMENTS.

## MEASUREMENTS OF ZOOECIAL DIAMETER <br> IN TANGENTIAL SFCTION LIDI:

STULI ROAD
$0101251.5061 .7351 .6471 .561 .1 .562 .1 .462 .1 .240 .1 .751 \quad 1.551 .1 .4501 .756 .1 .540$ 1.6351 .5821 .5661 .7451 .5991 .4401 .5861 .7231 .6351 .8151 .6411 .6581 .640
0102251.7161 .8661 .5651 .5701 .4871 .5401 .6601 .6681 .7311 .6361 .5601 .756 $1.5471 .7291 .7391 .6331 .758 \quad 1.5301 .7661 .7451 .780 .1 .6881 .618 \quad 2.066 \quad 1.576 \ldots$
010325.1 .4671 .6451 .6561 .6101 .381 .1 .253 .1 .4641 .4801 .4051 .5191 .5481 .470 1.4751 .5801 .9451 .6951 .6001 .4741 .5501 .7991 .6101 .3391 .5031 .5151 .841
0104251.9881 .9101 .8561 .6011 .4831 .7341 .3091 .8191 .7751 .6502 .0821 .485 1.8231 .750 .1 .7571 .7501 .5601 .5921 .7521 .5131 .4941 .5251 .6341 .4711 .672
010525.1 .4661 .5261 .684 .1 .7411 .4891 .4761 .5901 .5131 .5061 .7651 .4991 .309 $\begin{array}{llllllllllllllllllllll}1.288 & 1.222 & 1.356 & 1.761 & 1.436 & 1.331 & 1.555 & 1.733 & 1.441 & 1.496 & 1.596 & 1.274 & 1.251\end{array}$

## GROVER STATION

```
 020125 1.758 1.544 1.574 1.905 2.068 1.897 1.754 1.588 1.646 1.530 1.845 1.584
1.696.1.786 1.750.1.715 1.674.1.700_1.570.1.550.1.710.1.744 1.651.1.728 1.691._
```

020225.1 .7142 .143 .2 .0101 .8041 .7821 .5241 .6821 .8051 .5901 .518 .1 .725 .1 .720 1.9842 .3942 .1051 .7131 .6311 .8621 .8811 .6351 .7381 .5912 .0521 .8451 .799
0203251.9301 .6891 .7091 .8311 .5941 .9161 .8251 .9072 .0111 .9082 .0712 .149

 $\begin{array}{lllllllllllllllllllllll}1.898 & 1.735 & 1.642 & 1.574 & 1.847 & 1.787 & 2.019 & 1.815 & 1.789 & 1.747 & 1.770 & 1.694 & 1.569\end{array}$
0205251.7001 .4481 .5541 .6561 .5391 .5681 .6041 .5491 .6141 .7061 .5821 .716 1.4731 .561 .1 .4121 .4971 .7081 .6711 .7131 .741 .1 .5211 .5251 .6191 .571 .1 .654
0301251.7871 .4421 .4911 .5851 .6581 .5301 .3461 .3251 .1491 .271 .1 .548 .1 .436 1.6141 .5041 .5041 .7161 .6331 .5091 .4631 .4011 .5101 .2121 .2101 .3671 .589

```
030225 1.338 1.369 1.431 1.535 1.434 1.479 1.552 1.423 1.446 1.529 1.534 1.462
```



```
030325 1. 554 1.886 2.007 2. 106 2.520.2.185 1.994 2.040_2.059 1.845 2.070 2. 2 124
1.916 1.899 2.200 2.341 2.058 1.884 1.902 1.937 1.985 1.860 2.114 2.069 1.921
 030425 1.723 2.042 2.393 2.683 2.065 1.892 1.650 1.954 1.670 1.803 2.565 2.518
2.478 2. 377 2.251 1. 207 2.007 2.147 2.091.1.8101.664 1.647 1.724 1.852 1.675
0305251.485 1.065 1. 251 1.088 1.0631.2111 1.2151.4231.393 1.561.1.1601.410
1.426 1. 286 1.457 1.214 1.286 1.758 1.416 1.129 1.077 1.039 1.272 1.4211.193
```


## KANSAS TURNPIKE

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|l|}{} \\
\hline & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \\
\hline & \multicolumn{6}{|l|}{} \\
\hline & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & \\
\hline
\end{tabular}
```

 0.7960 .6420 .3660 .3850 .7970 .6090 .6710 .6810 .5550 .4910 .8390 .6590 .759
$0102250.7650 .6170 .6040 .689 \quad 0.8270 .6550 .6640 .7800 .9000 .91111 .18710 .526$

 $\begin{array}{llllllllllllllllllllllll}0.484 & 1.411 & 0.854 & 0.555 & 0.783 & 0.746 & 1.413 & 1.145 & 1.419 & 0.636 & 1.044 & 0.930 & 1.145\end{array}$
$0104250.000 \quad 0.7611 .0840 .4480 .3810 .3750 .7340 .7550 .0000 .000 \quad 0.3410 .789$ $0.8160 .4450 .4730 .6210 .7050 .6221 .0270 .8400 .8280 .548 .0 .843 \quad 0.405 \quad 0.115$
 1.0111 .1100 .8921 .3720 .9100 .6360 .8710 .6590 .5850 .0000 .9741 .0111 .126

## GROVER STATION

0201250.7580 .7531 .1761 .0260 .7601 .1390 .9030 .9090 .9910 .4860 .8740 .789 $\begin{array}{lllllllllllllllllllllllllllll}0.910 & 0.814 & 0.914 & 0.765 & 0.879 & 0.554 & 0.705 & 1.070 & 0.735 & 0.605 & 0.550 & 0.725 & 0.528\end{array}$
$0202250.1610 .000 \quad 0.706 \quad 0.837 \quad 0.442 \quad 0.3240 .355^{2} 0.084 \quad 0.681 \quad 0.580 \quad 0.571 \quad 0.536$ $0.5880 .4360 .6810 .8141 .0740 .580 \quad 0.4340 .6890 .6160 .3910 .0000 .5230 .600$

| 020325 | 0.644 | 0.639 | 0.630 | 0.251 | 0.510 | 0.716 | 0.377 | 0.550 | 0.304 | 0.555 | 0.505 | 0.597 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{lllllllllllllllllllll}0.000 & 0.674 & 0.616 & 0.424 & 0.556 & 0.000 & 0.774 & 0.957 & 0.676 & 0.749 & 0.546 & 0.693 & 0.544\end{array}$

$\begin{array}{llllllllllllllllllll}020425 & 0.000 & 0.861 & 0.828 & 1.126 & 1.511 & 0.577 & 0.634 & 0.745 & 0.288 & 0.710 & 0.585 & 0.792\end{array}$ 0.6090 .4600 .5170 .8090 .9250 .7820 .7910 .7850 .6440 .3050 .5560 .7420 .480
$0205250.7360 .5810 .5290 .8560 .7690 .6630 .7900 .8150 .7950 .640 \quad 0.951 \quad 0.789$ $\begin{array}{llllllllllllllllllll}0.826 & 0.793 & 0.714 & 0.844 & 1.019 & 0.289 & 0.626 & 0.520 & 0.000 & 0.529 & 0.809 & 0.727 & 0.881\end{array}$

LAKF DABLNAWA

$0301250.7021 .075 \quad 0.5260 .371 .1 .1420 .0000 .910 .0 .596 \quad 0.026 \quad 0.535 \quad 0.170 \quad 0.920$ 0.7240 .8420 .6151 .3110 .6910 .8411 .0451 .0290 .59810 .9270 .5761 .0570 .738

 $0.4550 .5050 .4240 .000 \quad 0.5000 .4570 .8200 .000 \quad 0.4100 .6000 .7050 .4360 .521$
$0304250.3150 .2660 .0000 .6240 .0000 .0000 .000 \quad 0.1320 .5790 .330 \quad 0.000 \quad 0.000$

$030525 \quad 0.9371 .021 \quad 0.795 \quad 0.558 \quad 0.973 \quad 0.310 \quad 0.905 \quad 0.750 \quad 0.146 \quad 0.544 \quad 0.742 .0 .597$ $1.0301 .0290 .751 \quad 0.4431 .071 \quad 1.350 \quad 0.6650 .5350 .8960 .5650 .8570 .8940 .859$

KANSAS TURNPIKE
$0401250.6270 .970 \quad 0.785 \quad 0.7110 .8040 .920 \quad 0.6210 .710 \quad 0.8131 .019 \quad 0.7260 .835$ $0.8320 .8940 .4800 .410 .0 .9300 .6290 .6320 .610 \quad 0.915 \quad 0.691 \quad 0.7011 .025 \quad 0.739$
 $0.1510 .5110 .0000 .4640 .3860 .440 \quad 0.4230 .470 \quad 0.5040 .6740 .8560 .0000 .457$
0403250.6340 .6710 .7680 .8260 .7400 .7190 .0000 .9350 .8510 .6970 .6310 .900 $\begin{array}{llllllllllllllllllllllllll}0.698 & 0.599 & 0.564 & 0.786 & 0.771 & 0.796 & 0.594 & 0.586 & 0.543 & 0.000 & 0.485 & 0.730 & 0.586\end{array}$
 $\begin{array}{lllllllllllllllll}0.281 & 0.623 & 0.429 & 0.409 & 0.000 & 0.746 & 0.811 & 0.355 & 0.350 & 0.847 & 0.805 & 0.580 & 0.686\end{array}$

IN A DISTANCE OF ONE MILlimeter
IN LONGITUDINAL SECTION (DC/MVi)






## GROVER STATION

| 020125 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



020425	0	1	1	2	2	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
020525	1	1	1																				
1	1																						


$030225$	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
11																							
030425	1	1	0	1	0	0	0	1	1	1	0	0	1	1	0	0	1	0	1	1	1	1	1
01																							
111																							

KANSAS TURNPIKE

| 040125 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



| 0 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 040325 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

 1 I

## Appendix 3

## Basic Statistics for Each Colony

## Zooecial Diameter (ZD)

3ASIS STATISTICS - OIOI


STATISTIC STAVD.ERRIR GYYFIDEVGE IIMITS (75, 30, 9 ER (:ENT)

MEAN	1.71196	$0.1032 \%$	1.51433	1.77934
MEDIAN	1.7500	0.14096	j. 565	1.83444



STATISTIC SIAYDERROR GJUFIDEVCE LIMLIS (95:30, DER (EENT)

MEAN MEDIAN	1.7111 .6 1.70010	$\begin{array}{r}10.02405 \\ 0.3 \\ \hline\end{array}$	1.55977 1.63557	$\begin{array}{r} 1.76255 \\ -76441 \\ \hline \end{array}$
VARIANSE	0.0 .1556			
SIARS, DEV,	0.12413			
COEFF. VAR	7.289\%?	1:93631	5.15641	9.42403
61	0.29018	0.46368	(1.051.31	1.8 .9 .902
G2	1.5226 .6	0:90172	-0.24535	3.20039



STATISTIC STAVD.ERROR STNELDEVCE LIMIIS.

(35.70, 2 C (ENT)				
MEAN	1. 895 , 2	0.03005	1.33142	1. .95827
MFDIAN	1.90\%00	0.13706	1.92913	1.08457
VARIANCE	0.0645			
STAND.DEV.	0.15023			
COEFF. VAR	7.9\%238	1.92\%40	5.30993	10.24183
$G 1$	0.07061	1. 4536	-1, 52?	$0,2658{ }^{\circ}$
$\mathrm{c}_{2} 2$	-0.651.34	0.90172	-2.41977	1.11 .633
$K-S$ DMAX	11.10074			
$3 A^{51}=S^{T} A^{T}$ STICS - 0204				
$N=25$	© CLASSES TRANSFORA		1: $25 \%=0$	
	STATIST:C	STAYDFERER	O9ッFIDEVCEL LMLTS	
			(75;90, DER CFNT)	
MEANMEDIAN	$\begin{aligned} & 1.77052 \\ & 1.78010 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.02351 \\ & 0.02046 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.72239 \\ 1.7331 \\ \hline \end{array}$	$\begin{array}{r} \text { 1. } 81895 \\ 1.84969 \end{array}$
VARIANSE	0.013 id			
STAND, DEV.	f: $1=751$		4.59 .615	
COEFF. VAR	6.63809	0.94238		$8.58124$
G1	-0.080. 8	$0: 45368$		1.386021.3
G2	-0.38171	0.90172	-?.1.4944	
K-S DMAX	0.16572			

3AS1: STATJST:CS - 0205
$N=25$ CIASSES TRANSFORMATION COJF = 0

STATISTI: SIAVD.EZROR Z2MEIDEYCE_LIMITS ( 85.10 DER CENT $)$

MEAN MEDIAN	1.59938 1.61460	0.01840	1   1	1.63778 1.6150
variance	C.01645			
STAND. DEV,	0.09200			
COEFF. VAR	5.75010	3.81590	4.15937	7.43105
G1	-0.20994	9. 45368	-1.17875	0.63905
G2	-6.840:5	0.90172	-7.5167!	0.91854
K-S DMAX	0.06183			
3ASILSTAT, STICS - 0301				
$N=25$	6 CLA	TRARSFORM	1:39) $=$	

STATISTIC STAMIDEPROR ZTVFIDEYCE LIMITS ( 35.30, DER (,$E N T$ )


3ASI~STATISTICS - 0303



G2	0.20236	0.00172	-1.50537	1.97008
$K-S$ DMAX	$0.1 \pm 3.32$			


$N=$	STATISTIS	SIAYD.EFROR	2.antinevee LIMIIS	
			(75, ?0, 2 EK (FNT)	
MEAN. MEDIAN	$\begin{aligned} & 1.96400 \\ & 1.934: 0 \\ & \hline \end{aligned}$	$10.925 \% ?$ 0.15223	1.71992   36750	2.01698 2.00043
VARIAN:E STAND. DEV.	$\begin{aligned} & 0.01653 \\ & 0.16853 \end{aligned}$			
COEFF, VAR	6.54763	0.92 .955	4.53154	R.4625?
G1	0.751 .92	0.45368	-11, 15770	1. 6 大02?
$\begin{aligned} & \text { G2 } \\ & K-S \text { DMAX } \end{aligned}$	$\begin{aligned} & 1.112 \div 7 \\ & 0.112: 4 \end{aligned}$	0.90172	-11.555? 5	'. 88019
$3 A^{5} 12 S T A^{T} S^{S T} 1 C S-0402$				
$N=$	0 CiL	ES TRANSFORM	CODE =	
SIATISTIC		SIAVD'ERRSR	~2NELDEXEE LIMITS (75.00, DER CENT)	
MEAN   MEDIAN	1.59200 1.58710	0.02131 0 0	$\begin{array}{r} 1.54737 \\ 1.52068 \\ \hline \end{array}$	$\begin{aligned} & 1.63693 \\ & 1 \\ & \hline \end{aligned}$
VARIANCE 0.051 .119   STAND.DEV. $0.109: 6$				
$\begin{aligned} & \text { COEFF. VAR } \\ & \text { GI } \end{aligned}$	$\begin{aligned} & 6.85043 \\ & 0.51 .34 \end{aligned}$	$\begin{aligned} & 0 . c 7373 \\ & 0 .<5360 \\ & \hline \end{aligned}$	$\begin{array}{r} 4.39536 \\ -19557 \\ \hline \end{array}$	$\begin{aligned} & 8.85550 \\ & 1.42243 \end{aligned}$
$\begin{aligned} & G 2 \\ & K-S \quad D 11 A X \end{aligned}$	$\begin{aligned} & 0.04199 \\ & 0.09450 \\ & \hline \end{aligned}$	0.00172	-1.72574	1.80972
$3 A^{5} I=S T A T I S T 1 C S-0403$				
$N=2$	U CLASSES TRANSFOR		CODE $=$	
	STATISTIC	SIAUN.ERPSR	Q ワuE, MEVEELUMIIS	
MEAN	2.02076	0.05651	1.77434	2.13718
MEDIAN	1.9261:0	0.070 .33	$1.7300 ?$	2.071 .19
VARIANSE 0.07S45				
STAND.DEV.	0.28257		$\begin{array}{r} 9.53077 \\ -\quad .29539 \\ \hline \end{array}$	
COEFF. VAr	13.96302	2.11595		18.13603
G1	0.61391	9):45358		1.52211
52	-0.502.5	$0 \because 0017$ ?	-2. 32979	1. 20548
$K-S$ DMAX	0.151 .3			


$N=$	3ASIJSTATISTICS - 0404			
	STATIST!C	STAUD.EZROR	- 3 1-175	1.1M1TS
			(73.90,	(CENT)
MEAN	1.549810	6. 92.35	1.50375	1.59585
MEDIAN	1.579i0	$0.1280:$	1.53!?9	1.63671


VARIANSE	0.01219			
SIAND.DEV.	$0.1 \pm 176$			
COEFF. VAR	7.21143	1. 1125	5.07959	9.32328
S1	-1, 03931	11.15368	-3, in731	-0.18291
G2	2.47672	0.60172	4.7 7 ¢5?	4.24444
K-S nindx	(i. $096 \% 5$			

## Interzooecial Distance (IZD)

$N=2 \equiv \quad 0$ C:LASSES TRal:SFGRMATICN GJIE $=0$

	STATISTIC	SLATD. TEPRS	$=2 \text { 2UGIDENEE-LINIIS }$		
MEAN	0.616174	0.113319	$\because .34795$	0.6844 ?	
MEDIAN	0.64930	0.14150	$\because 35630$	0.72770	
variance STAND DEV	$0.02755$				
COEFF. Var	20.94294	407736	$\begin{aligned} & 16.54254 \\ & -1.20130 \\ & \hline \end{aligned}$	$\begin{array}{r} 35.34145 \\ 0.52382 \end{array}$	
G 1	-0.385\%0	0.49365			
52	-0.89356	0.90172	-:.55129	0,87416	
$\mathrm{K}-\mathrm{S}$ OMAX	0.03603				
3ASI: STATISTICS - 0102					
$N=2$	a Classes transfurma		$1: 305=0$		
staristic		STAVR F2par.	OYFIDEVSE LIMLIS		
			(55, 30, DER C.ENT)		
MEAN   MEDJAN	$\begin{aligned} & 0.77952 \\ & 6.76506 \end{aligned}$	$\begin{aligned} & 0.836644 \\ & 1.14572 \end{aligned}$	$\begin{array}{rr} 59594 & 0.84600 \\ 0.57010 & 0.85960 \end{array}$		
UARIANEE	1.033:6 - -				
STAND. DEV.	n. 18300				
COEFF. VAR	23.77636	3.144718	1.9.4455j 31.0811.8		
61	0.893 .2	0.45358	-1.91558... 1. 73242		
62	0.39029	$0.4017 \%$	-1.37744 2.15802		
$x-5$ DiAx	0.11053			- .-.7.....	
3ASIE STALIET:CS - 0103					
$N=25$	0 CLASSES TRASSFRMA		173\% $=0$		
	STAIISTIC	STA D 6 PRTR	$\begin{aligned} & \text { OVIFJPYEE LIMITS } \\ & (75,90, D E R \text { CENT } \end{aligned}$		
MEAN		0.f671?	$\begin{aligned} & 11.74439 \\ & 1.71871 \\ & \hline \end{aligned}$	$\begin{array}{r} 1.07090 \\ 1.06529 \end{array}$	
YEDIAN	0.842000 .845				
variance	0.11 .262				
STAND.DEV.	0.33559				
COEFF. VAR	32.02139	6:10507	25.44435   -1.3208   1.23182	50.59783	
GI	-0.17989	C. 45368		11. 1291 ?	
62	c. $535 \%$	$1.901 \% 2$	-1.231.7?	2.30363	
K-S DMAX	$0.091: 9$				


（75．30，＝ER CENJT）				
MEAN	0.561 .12	0.05197	0.473 .5	0.68873
MEDIAN	0.622100	0.1976 .7	$\cdots$ C．49071．	0.78140
VARIANEE	0.04010			
STAND．DEV．	$0 \cdot 311984$			
COEFF．VAR	55.21854	9.90815	34．3n615	75．6297？
61.	－C． 43630	0.45348	$-1.31530$	0， 17270
G2	－0．54466	0.90172	－2．31233	1． $2230 \%$
$\mathrm{K}-\mathrm{S}$ DMSX 0，1024h				
3ASIS STATISTICS－ 0105				
STATISTIC		STAYD．EZREP		
			（75．20．30（ENT）	
MEAN   MEDIAN	$\begin{aligned} & 0.87050 \\ & 0.89200 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.5810 \\ & 0.17209 \end{aligned}$	\＃1．75949	$\begin{aligned} & 0.49424 \\ & 1.041999 \end{aligned}$
VARIANSE	1.08438			
STAND．DEV．	0． 20048		2\％．40631 13．64397	
COEFF．VAR	33.02514	5.15472		
61	－0．76：1．5	0.153 .68	$-1.47325$	0.18495
G2	2.6141 .1	$0.9017 ?$	（1．34639	4.30164
K－S OHAX	0.08545			－－－－－
$3 S^{5}=S T_{A}{ }^{1} S_{1} S T_{1} S^{S}-0201$				
$N=250$ CLASSES		TRANSFORMATION COSE $=0$		
STALISTIC		STAVD.ERRER	$\begin{aligned} & \text { 2UEIDENEE-1JMITS } \\ & (75 ; 90,2=R \text { CENT) } \end{aligned}$	
MEAN	0.81276	10．037a？	$\begin{aligned} & 11.73697 \\ & 1.59273 \\ & \hline . \end{aligned}$	$\begin{array}{r} 0.88043 \\ 0.86510 \\ \hline \end{array}$
MEDIAN	0.78000	9，14465		
VARIANEE	0.03463			
STAND．DEV．	1.18610		$15.38575$	$\begin{array}{r} 29.9 n 914 \\ 1.011600 \\ \hline \end{array}$
COEFF．VAR	C2．89745	3.40373 0.5368		
G2	－0．47478	（1：90172	－2．24230	1．，29795
K－S DMAX	©．093？ 2			

$N=25$ O LILASSES IRA1.SFIRMATION VJOE = 0

STATISTIC STAND.ERRIR $\quad$ JYEIDEVCE IIMITS (75.J0, DER (ENT)

$\begin{aligned} & \text { MEAN } \\ & \text { MEDIAN } \end{aligned}$	$\begin{aligned} & 0.552: 5 \\ & 0.501100 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.01890 \\ & 0.16128 \\ & \hline \end{aligned}$	11.43243 1.45375	$\begin{aligned} & 0.63280 \\ & 0.70624 \end{aligned}$
VARIANSE	$0.059 \% 7$			
STAND.DEV.	0.21448			
COEFF. VAR	$45.941 .45$		29.70052	
$61$	-0.4.102.	0.15368	-1.340?	ก.46874
G?	0.88000	0.90172	-0.33113	2.6543 ?
$K-S ~ D M A X ~$	0.11853			

BASICSTAIISTICS - ORO3


$N=25$ (i CLASSES TRANSFORMATION rO? $=0$

## STATISTIC STAYDILZROR GUEIDEVGE-IIMITS

 (75.30, د三R (:ENT)| MEAN MEDIAN | $\begin{aligned} & 0.69980 \\ & 0.769110 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.14281 \\ & 0.15355 \end{aligned}$ | $\begin{array}{r} 1.51152 \\ 0.55943 \\ \hline \end{array}$ | $\begin{aligned} & 0.78798 \\ & 0.8795 ? \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| variainse STAND.DEV. | $\begin{aligned} & 0.04541 \\ & 0.61413 \end{aligned}$ |  |  |  |
| COEFF. VAR | 30.58481 | 4.71261 | 29.37633 | 40.29280 |
| 61 | $-1.605412$ | 10.15368 | - 2.37412 | - 0.7564 ? |
| G2 | 3.94745 | 9.9017 ? | ?.17072 | 5.71518 |
| $\underline{x}-5$ MMAX | 0.12645 |  |  |  |

3ASI2 STATISTICS - 0301 $N=25$ CLASSES TRANSFGRMATION CJJS $=0$
 (75.30, 2 ミR 1:ENT)

MEAN	0.775114	0.105763	0.55933	0.89375
MEDIAN	11.8268110	01107222	0.57722	0,97.478
VARIANSE	0.08312			
STALS. DEv.	11.288 .3			
coeff. Var	37.176 n 6	5.93994	21.74039	40.41295
61	-0.794.3	0.45368	$-1.7 n 313$	0.11483


62				
$K-5$ DMAY	1.41853	0.70172	-0.35720	$3.1 \% 625$

3ASLIT STATISTICS - 0302
$N=2 \overline{3}$ "CLASSES TRALSFGRMATION ! JJE $=0$

STATISTIC STAUID.ERROR ZJNEDENCELIMITS
(75.90.JER (:ENT)

$\begin{aligned} & \text { MEAN } \\ & \text { MEDIAN } \end{aligned}$	$\begin{aligned} & 0.69156 \\ & 0.70000 \end{aligned}$	$\begin{array}{r} 0.113590 \\ 0.114399 \\ \hline \end{array}$	$\begin{aligned} & 0.51575 \\ & 0.5 n 939 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.76386 \\ & 0.79061 \\ & \hline \end{aligned}$
varianje	0.03079			
STAND. DEV.	0.17549			
COEFF. VA?	25.37508	3. 41265	17.521.9?	33.22913
81	-1).85020	0.4536.8	-1.7592?	II, 3.86079
G2	$\begin{array}{r} 204300 \\ 0.11 .895 \end{array}$	0.40172	0.32533	3.86079


	STAIISTIC	STAMD．1：ZROR	23MFIDE	ICE LIMITS
MEAN MEDIAV	0.42268 0.4550	0.103019 0.15290		0.57607 0 58450
variainje	0.06293			
STAND．UEV．	0．25095			
COEFF，VAR	$59.3 \% 90$	10.95374	36.7965081 .05720	
01	－0．4． 47.38	0.29358		
G2	－0．19619	0.90172	－1．75392 1．571．53	
K－S DMAX	0.16819			
3ASİ STATISTICS－ 0304				
$\mathrm{N}=25$	0 Classes transform		こつコミ	0
	STATISTIC	STAVD．t：RgnR	STMFIDEVCE LIMITS	
			（75．30，${ }^{\text {ER }}$ IEENT）	
MEAN MEDIAN	$\begin{aligned} & 9.27952 \\ & 0.266150 \end{aligned}$	$\begin{aligned} & 0.15923 \\ & 10 \end{aligned} 17423$	9．15752	$\begin{aligned} & 0.40152 \\ & 0.41891 \end{aligned}$
VARIANEE	0.08769			
STAND．DEV．	11.296 .13			
COEFF．VAR	105．945．114	26.195774	51.341378161 .53577	
G1	$0.735 n 2$	0.15368	－11）-2.17379	1.64462
G2	－1）．412！2	0.90172		1.35571
K－S DMAX	0.22740			
3ASI：STATISTICS－0305				
$N=2$	U CLASSES TRAIISFOR		1．305＝ 0	
STATISTIC		STAVD．IERROR	$\frac{\text { SJYFIDEVEE I. IMITS }}{(25,30,3 E R ~ G E N T)}$	
MEAN	$0.769 \% 0$	$0: 95337$	j．557？？	0.87919
MEDIAN	0.796110	0：05691	0.65817	0.93383


VARIANEE STAND.DEV.	$\begin{array}{r} 007125 \\ 0.26693 \\ \hline \end{array}$			
COEFF．VAR	34.79208	5：45687	23.44073	45.96443
G1	－0．286：5	0.15368	－1．19515	n． 62286
G2	0.38532	0.90172	－1．38241	2.15305



(75:90,コER CENT)

MEAN	0.58968	0.94466	1. 49757	0.68169
MEDIAN	0.6 6300	0. 05593	1. 20.757	0.73831
VARIANこE	0.04987			
STAND. DEV.	0.28331			
COEFF. YAR	37.87043	5.175.4?	25.3:5595	$50.38580$
G1	$-0.80571$	9.45358	-1.7117?	$\text { i1. } 10 \leqslant 20$
62	0.43883	0.90172	-1.33897	2. 20656
K-S DMAX	0.14336			

Diaphragm Counts per Millimeter
(DC/MM)
$N=25$ CLASSES TRALSFORMAT！OM ROJJE $\quad 0$

	STATISTIS	STAUD．KマRПR	33y： 7 HYSELIMITS	
			（95：JO，כER CENT）	
MEAN	6.13090	0.23324	5.52953 6.60047   5.32793 6.60217	
MEDIAN	6.00000	0.29232		
VARIANこE	1.36000			
STAND．DEV．	1.96619			
COEFF．VAR	19．0．5540	2.79098	13．30．373	24.80481
G1	0.03156	0.15368	－0．31714	－1．0n056
G2	－0．50279	0.90172	－2． 2705 ？	1.26494
K－S DMAX	0.22098			
BASIL STATISTICS－ 0102				
$N=25$	0 CLASSES TRANSFGRMA		¢＝ 0	
STATISTIC		STAVD，IRR：IR	二TVEIDENSE LIMITS	
			（75．90，こ三R CENT）	
$\begin{aligned} & \text { MEAN } \\ & \text { MEDIAN } \end{aligned}$	4.76000 5.013000	0.15573 0.1954	4.4 .3910 4.39731	$\begin{aligned} & 5.08090 \\ & 3.40219 \end{aligned}$
VARIANCE   STAND．DEV	0.60667			
	0.77839			
CUEFF．VAR	16.36320	2.37526	1：．47013	21.9502 .3
fil	－0．11226	0．4．536．5	$-1.23125$	11.19675
62	－0．25037	0．001．7？	－2．0181．0	1． 51736
K－S DMAX	0.22111			

3ASIV STANSTICS - 0103
$\mathrm{N}=25 \quad 0$ CLASSES TRAMSFRRMATIONCDJF $=-\quad 0$

$N=25$ O CLASSES TRALSFORMATION LJDE $=0$

(75.70, د̈R OENT)


## STATISTIC STAVDERBOR OYYIDEVOE IGMITS

 ( 35.90, DER EENT)| MEAN | 5.040110 | 0.15790 | 4.71472 | 5.36523 |
| :---: | :---: | :---: | :---: | :---: |
| MEDIAN | 5.060 .10 | ก. 19790 | 4.30235 | 5.40767 |
| VARIANCE | 9.62333 |  |  |  |
| STAND.DEV. | 0.78951 |  |  |  |
| COEFF. VA? | 15.66497 | 2. 25907 | 111.70059 | 20.35926 |
| G1 | -0.07333 | 0.45368 | - 9 - 2133 | 0.83567 |
| G 2 | -1.35091 | $0.9017 \%$ | -3.11854 | D. 41.682 |
| K-S DMAX | $0.200 \% 0$ |  |  |  |


$\qquad$

G2	-0.70677	0.90172	-2.33420	1.00126
$K-S$ OMAX	0.20071			



	STALISTIC	STAND.	$\begin{aligned} & \text { دy:IDEyEE LIMIIS } \\ & (75 ; 30, \partial E R \text { CENT } \end{aligned}$	
MEAN	4.28010	1). 24376	3.76917	1.791 .83
MEDIAN	5.001079	1). 31160	4.35852	5.61143
VARIANSE	1.543:3			
STAND.DEV.	1.24231			
COEFF. VAR	$29.0 \% 593$	$1.4372^{7}$	19.30515	. 16670
G1	$0.126: 3$	0.15368	-i. 79772	9
G2	$-0.641113$	0.00112	$-2.40875$	1.1?669
$K-S$ DMAX	0.20857			


$\qquad$

VARIANJE	0.60637			
STAND, DEV.	0. 815511			
CDEFF. VAR	18.556\%4	2.71318	12.75759 -1920.5	$\begin{array}{r} 24.14590 \\ 100885 \\ \hline \end{array}$
G1	0.04981	$0.1535 \pi$	- - ${ }^{-9.94134}$	
G2	$-0.274 .21$	$0.0017 \%$	-\%. 34174	1.49352
K-S DMAX	0.24790			

$N=2 \bar{j}$ i CLASSES TR:HISFORMATIJN CJDE $=0$

	STAIISTIC	SIAVIL. 5 RT0R	$\text { ( } 75.90, \text { OER C.ENT) }$		
$\begin{aligned} & \text { MEAN } \\ & M E D I A N \end{aligned}$	$\begin{aligned} & 5.2 .0010 \\ & 5.000610 \\ & \hline \end{aligned}$	0.14168 0.13133	4.74195 4.57695	$\begin{aligned} & 5,53895 \\ & 5.37354 \end{aligned}$	
VARIANEE	0.52333				
STAND.DEV. $\quad 0.72342$					
CDEFF, VAR	$13.8!560$	1. 63928	¢.70775	17.90301.	
$\begin{aligned} & G 1 \\ & G^{2} \\ & k-S \cdot \max \end{aligned}$	- 0 - 465.50		-1-3-4-440	-11.50.361	
	-0.90772	$0.9017 ?$	-?.57545	0.86001	
	0.22996				
3ASIV STATISTICS - 0303					
$N=23$	0 Cla	ES TRANSFORM	1.205 =		
SIATISTIC		SLANDILZROR	OTY5IDEUCE LIMIT.S		
			(75.30, 2 ER CEHT)		
MEDIAN	$\begin{aligned} & 5.16010 \\ & 5.01060 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.21354 \\ & 0.3 \% \\ & \hline \end{aligned}$	4.4835	$\begin{aligned} & 5,50090 \\ & 5.5513 ? \end{aligned}$	
VARIANSE	1.14010				
	$1.067 \% 1$				
COEFF. VAR	20.69201	3.14901	14.41 .195	26.07017	
G1	-0.12038	0.15362		- 0.7880	
G2	$0 \cdot \frac{1}{2} 280$	0.901:2.	-1. 54672	1.88853	
ZASLESTATISTICS - 0304					
$N=2$	U CLASS:S TRilis		CJDE $=0$		
	STAIISTIC		- JVEIDEVEF LIMITS		
			(75.90, 2 ER CFINT)		
MEAN$M E D I A N$		$0 \therefore 1970$	$\begin{array}{r} 4.50742 \\ 4.3377 \\ \hline \end{array}$	$\begin{aligned} & 5.41258 \\ & 5.56721 \end{aligned}$	
	$5.00010$	$0.27535$			
VARIANSE	1.20657				
STAND.DEV.	1.09848			28.90791	
COEFF. VAR	22.14685	3.052007	9.5.39330		
61	-0.325:	0: 05368	- . 23139	0.98361	
62	-0.65012	0.90172	-2.41345	1.11700	
$K-S$ DMAX	0.15452				

## (95.10.2ジ (EENT)



STAYISTIC SIAVDIERROR SDNEIDEVEE_LIMITS (75.90, ${ }^{2}$ ER (:FNT)

MEAN MEDIAN	$\begin{aligned} & 4.92010 \\ & 5.0 n 000 \\ & \hline \end{aligned}$	0.23301	$\begin{aligned} & 4.46050 \\ & 4.45623 \end{aligned}$	$\begin{array}{r} 5.37940 \\ 5.57577 \\ \hline \end{array}$
VARIANSE	$1.243 \% 3$			
STAND. DEV.	1.11505			
COEFF. VAR $\mathrm{Cut}_{\mathrm{G}}$	$\begin{aligned} & 22.60359 \\ & -1.22268 \end{aligned}$	$3.357 \%$ 0.46364	$\begin{array}{r}15.73071 \\ -1.13179 \\ \hline\end{array}$	$\begin{array}{r} 29.59697 \\ 1.68603 \\ \hline \end{array}$
G2 K-S DMAX	$\begin{array}{r} -1.829619 \\ 0.15534 \\ \hline \end{array}$	0.90172	-2.59\%42	0.93804


$N=25$	0 l:LASSES TRANS		(3)5:	
	STATISTIC	STAVD.FRROP	$\begin{aligned} & \because 2 N 51 D E Y C F-L I M L T S \\ & (\exists 5,30,3=R \text { CENT } \end{aligned}$	
$\begin{aligned} & \text { MEAN } \\ & \text { MEDIAN } \end{aligned}$	$\begin{aligned} & 4.520110 \\ & 5.000110 \\ & \hline \end{aligned}$	0.14283 0.1794	4.22577 4.63975	4.81423 5.36875
VARIANEE   STAND.DEV	0.51060 0.71414			
COEFF. VAR	1.5.7996?	$2.2395 \%$	11.0n2?5	20.51599
G1	-0.44885	0.45368	-1.35735	0.40015
$\mathrm{G}^{2}$	0.04665	$0.001 \%$	-1. 179198	1.81433
K-S DMAX	C. 26925			

3ASI: STATISTICS — 0404

$N=25$	0 CLASSES	S TRANSFOKMATION C.325 = 0		
	STATISTIC	STAVD , S 2R:R		
MEAN	5.00000	4.1.5330	4. 65359	5.33610
MEDIAN	5.0.00r0	0:204.66	1. 57833	5.5.4\%161
VARIANOE	0.66667			
SIAND. DEV.	ก.8.1650			
COEFF. VAR	16.32953	$2 \therefore 3015$	11.44735	21. 21251
Col	-0.49022	0. 45350	$-1.01822$	0.40978
$\begin{aligned} & 62 \\ & K-S \quad D M A X \end{aligned}$	$\begin{array}{r} -0.04298 \\ 0.22010 \\ \hline \end{array}$	0.9217\%	-L.31C71	1.72474

The Number of Complete Vesicles per Unit Area (VC/.25)

	STATISTIC STAVDFPRUR		 		
MEAN	7.88000	0.51035	6.327455.69934	$\begin{array}{r} 8.93255 \\ -31.916 \end{array}$	
MEDIAN	7.000.01	0.4027			
VARIANEE	6.57667 - 61.1016				
STAND. DEV.	$2.554 \% 3$				
COEFF. VAR	32.42048	5.:14390	2:.73075 42.81091		
G1	1) 6666t	0.65368	-1. 21235	1.57565	
G2	-0.07169	$0.9017 \%$	-1.93852	1.69664	
$K=S$ DMAX	0.15475				
3ASIESTATISTICS - O1O2					
$N=\quad 25$	n LLASSES TRAPISFOR		(.9)5 $=0$		
	STATISTIC	Vn. FRRCE	-TVFIDEVCFIIMITS		
			(95.90, 2 ER CENT)		
$\begin{aligned} & \text { MEAN } \\ & M E D I A N \end{aligned}$	$\begin{aligned} & 7.12010 \\ & 1.00000 \end{aligned}$	$\begin{aligned} & 6.44467 \\ & 5,55731 \end{aligned}$	$\dot{r} .20375$ 6.03602   1.5535 6.14805		
VARIANSE	4.94333				
STANO.DEV.	$2 \cdot 22356$				
COEFF. VAR	31.22698	4.8276?	$\begin{array}{rrr}2 J .29297 & 41.17182 \\ -9.9293 & 1.38802\end{array}$		
G1	$0.479: 3$	Disister			
$G 2$	0.43309	0.90172	-1.3314 $2.2019 \%$		
$K-5$ OM:AX	$0.1461,3$				
$N=25$ ULL		TRALSFOF	1.307 $=$		
	STATISTIC	YI) FEFROR			
MEAN	4. 100000	0.30000	3.38290	4.61800	
MEDIAN	4.00000	0.37599	3.22545	4.71454	
VARIANSE	2.25010				
STAND.DEV.	1.50000		25.13597 49.86603		
COEFF. VAR	-7.51000	6.1029\%			
G1	$-0.161 .3$	$0 . \leq 5368$	$-1.970 .93$	0.74797	


G2	-0.56059	$0.0017 ?$	-2.32311	1.20734
K-S OMAX	0.14751			



STATISTIC STAVLIRZRRR SNOEIDEVSE UMITS (75.20.DER (:ENT)

$\begin{aligned} & \text { MEAN } \\ & \text { MEDIAN } \end{aligned}$	6.20000 6.00000	00.31093	5,5505?	$\begin{aligned} & 6.64 n 4 R \\ & 6.80271 \\ & \hline \end{aligned}$
VARIANJE	2.41667			
STAND. OEV.	1.55456			
COEFF. VAR	25.07360	3.76297	1\% 37332	32. R2. ${ }^{\text {d }}$
91	0.28023	0.15358	- 01.51753	1.19833
G2	-0.21964	0.20172	-3.37657	1.55889



VARIANDE STAND.DEV.	$\begin{aligned} & 4.42333 \\ & 2.1133 .7 \end{aligned}$			
COEFF. VAR	47.30874	8.09315	311.75854	63.97884
61.	0.55853	0.05338	$-5,35012$	1.16759
G2	-0.42554	0.001 .72	-2.19327	1.34219
K-S DMAX	0.98286			
$3 S^{3} 5=S T A T I S T 1 C S-0203$				
$N=2$	0 CLASSES TRAMSFTR		1: $1 ; 305$	

SIATISTIC STAVD.EBRER SUELDEVEE IIMITS ( 75,30, DER (:FNT)

MEAN MEDIAN	$5.64000$ $6.610000$	$\begin{aligned} & 0.330 \in ? \\ & 0.43043 \end{aligned}$	$4 \cdot 91713$	$6.30227$ $6.20523$
VARIANEE	3.07333			
STAMD. DEV.	1.95359			
CDEFF. VAR	31.08300	4.80179	21.1 .9151	40.97489
6.1	0.553 .34	0. 15368	-0. $2.25 \% 5$	1.46.34
G2	0.835 .1	0.9017?	-0.73252	2.60284
K-S DMAX	0.178 .5			
$3 A T_{1} \sim S T A T S T 1 C S-0204$				
$N=25$	0 CL	TRANSFORMATION: CIJDE $=$		


	STATISIIC	SIAVN. Fizar		
MEAN	7.320110	0.50570	0.27825	8.36174
MEDIAN	7.00000	0.63379	5.59433	8. 30562
VARIANSE	6,393:3			
STANT. DEV,	2.523850			
COEFF. VA?	34.54241	5543675	23.31270	45.74211
G. 1	0.733 n 8	0.45368	-0.1753?	1.64269
G2	-0.300\%5	0.40172	-?.06318	1.46698
$\mathrm{K}-\mathrm{S} 0 \mathrm{M} 4 \mathrm{x}$	0.19035			


(75.70.2ЕR CENT)

MEAN MEDIAV	6.60000 7.01090	0.45547 $0.533: 8$	$\begin{aligned} & 5.54112 \\ & \because, 72924 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.55880 \\ & 8.20176 \end{aligned}$
VAR!ANJ5	5.41667 -			
STAND. DEV.	2 30737			
COEFF. VAR	$35.263 \% 3$	5.57270	23.73315$i 19.1514$	46.743001.07815
Q1	$1.067: 4$	0.15363		
G2	3.31417	10.90172	$\frac{1}{1} \cdot \frac{151514}{51045}$	5.78180
$x-5$ Hidx	11.19374			
3ASI二 STATISTICS - 0302				
$N=2$	0 CLASSES	S TRANSFORMATION CJJE = 0		
	STATISTIC	STAVD.F?ROR	- TY IDEVAE WIMITS	
			( $75.30,2 \mathrm{ER} \mathrm{( } \mathrm{PFNT)}$	
$\begin{aligned} & \text { YEAN } \\ & \text { YEDIAN } \end{aligned}$	$\begin{array}{r} 6.04070 \\ 6.019070 \end{array}$	$0.41020$	$\begin{aligned} & 5.17479 \\ & 4.24134 \end{aligned}$	$\begin{aligned} & 6.88502 \\ & 1.05006 \end{aligned}$
VARIANSE	4.211657			
STAN:C.DEV.	2.05112			
COEFF. VA?	33.95722	5.32732	22.78274	44.93150
G1	$0.067 \leqslant 3$	10.46368	- 0.31133	0.9766 .3
G2	-0.14247	0:9017?	-1.71!17	1.62529
K-S DMAX	0.15977			


$N=\frac{3 A S T}{25}$ STAIISTICS－ 0303				
$N=25$	Ú Ci．ASSこS TRAN		0	
	STAIISTIC STAVD，ERRIS		こコYE1DEVこE G．MITS （75．90．3ER CENT）	
MEAN MEDIAN	$\begin{aligned} & 3.84010 \\ & 4.000110 \end{aligned}$	9.34967 0.438 .4	3.11757 3.97733	4.56031 4.90277
VARIANJE STAND．DEV．	$\begin{array}{r} 3.05657 \\ 1.74833 \\ \hline \end{array}$			
COEFF．VAR G1	45.52949 0.51933	7.153813 0.15368	29.75375 -7.1878	61．311524
$\begin{aligned} & G 2 \\ & K-S \quad D M A X \end{aligned}$	$\begin{aligned} & 0.12597 \\ & 0.164 .55 \end{aligned}$	$9.7017 \%$	-1.54 ． 55	1.89274
3ASII STATISTICS－0304				
$N=25$	0 CLASSES TRA！${ }^{\text {OSFSR }}$		C．J．$=$	0
	STATISTIT．	STAUD:EZROR	OJVIDEVCE LIMITS （75．30，دER ELENT）	
$\begin{aligned} & \text { MEAN } \\ & \text { MEDISA } \end{aligned}$	$\begin{aligned} & 2.48000 \\ & 2.04000 \\ & \hline \end{aligned}$	$\begin{array}{r} 9.17436 \\ 19185 ? \end{array}$	$\begin{aligned} & 2.10033 \\ & 1.51335 \end{aligned}$	$\begin{aligned} & 2.83917 \\ & 2.45015 \end{aligned}$
VARIANSE STAND．DEV．	$\begin{aligned} & 0.76000 \\ & 0.87173 \end{aligned}$			
$\begin{aligned} & \text { COEFF. VAR } \\ & \text { GJ. } \end{aligned}$	$\begin{array}{r} 35.15241 \\ 0.06623 \end{array}$	$\begin{aligned} & 5.55172 \\ & 0.45318 \\ & \hline \end{aligned}$	$\begin{array}{r} 23.71577 \\ -19.3772 \\ \hline \end{array}$	$\begin{array}{r} 46.58875 \\ 0.97538 \end{array}$
$\begin{aligned} & G 2 \\ & K-S \quad O M A X \end{aligned}$	$\begin{array}{r} -0.48709 \\ 0.2 \% 9.15 \\ \hline \end{array}$	0.701 .72	-2.2543 ？	1． 29054
3ASLE STA＇ISTICS－ 0305				


$N=\quad 25$	0 CLASSES	TRANSFORMATION CJJE＝		0
	STATISTIC	SIMVD，ERRC：	OTVIDEVOE ILMLTS	
			（75．30，כER CENT）	
MEAN MEDIAN	$\begin{aligned} & 4.44090 \\ & 4.00010 \end{aligned}$	$\begin{array}{r} 0.51696 \\ 9.64752 \\ \hline \end{array}$	$\begin{array}{r} 3.37557 \\ 2.55610 \\ \hline \end{array}$	$\begin{aligned} & 5.50431 \\ & 5.33390 \\ & \hline \end{aligned}$
VARIANSE STAND．DEV．	$\begin{aligned} & 6.57333 \\ & 2.58328 \\ & \hline \end{aligned}$			
$\begin{aligned} & \text { COEFF. VAR } \\ & \text { G1 } \end{aligned}$	$\begin{array}{r} 58.18237 \\ 0.96537 \end{array}$	$\begin{array}{r} 10.65550 \\ 0.45368 \end{array}$	$\begin{array}{r} 36.23155 \\ 0.25537 \end{array}$	$\begin{array}{r} 80.13229 \\ 1.8 \geq 432 \end{array}$
$\begin{aligned} & \mathrm{G} 2 \\ & k-S \operatorname{DMAX} \end{aligned}$	$\begin{array}{r} -0.02172 \\ 0.19138 \\ \hline \end{array}$	0.90172	－1．7994	1.74501



SIATISIIC STANDGFRROR OMNEIDEVEE_LIMITS (75.30, دЕR CENT)

MEAN	6.48000	0.42864	5.59790	7.36300
MEDIAN	6.00000	(1) $537: 2$	4 4 2333	2.116 .2
VARIANEE	4.59333			
STAND.DEV.	2.14321			
COEFF. VAR	33.07417	5.15377	22.43651	43.71153
C1	0.60952	0. 15368	-1.20949	1.51853
G2	0.50162	0.40172	-1.25511	2.26935
K-S DMAX	0.15508			

$N=\frac{3 A S I=S T A T I S T I C S}{25}-\frac{0403}{0}$ CLASSES TRAHSFCRMATIONTJDE $=0$

STAIISTIC STAVD.HRRER STVFIOFVOF JNITS (75.20, 3ER CENT)

MEAN	2.72000	0.24166	2.22219	3.21782
MEDIAN	3.00000	0.30237	2.37539	3.623 .2
VARIANEE	1.46000			
STAND.DEV.	1.20830			
COEFF. VAR	44.42296	7.41925	20.13732	59.70661
G1	0.28193	0.45368	-0.52715	1.19095


$G 2$	-0.78692	0.90172	-2.55454	0.98081
$K-S$ OMAX	0.20437			


$N=23$	i CLASSES	S TRANSFOR	CJJE =	
	STATISTIC	STAVD.ERRUR	$\begin{aligned} & \text { 2UEIDENEE LIMITS } \\ & (75.90,2 E R \text { CENT } \end{aligned}$	
$\begin{aligned} & \text { MEAN } \\ & \text { MEDIAN } \end{aligned}$	$\begin{aligned} & 5.08000 \\ & 5.00000 \end{aligned}$	$\begin{aligned} & 0.32519 \\ & 0.105 E 1 \end{aligned}$	$\begin{aligned} & 4.47375 \\ & 4.15234 \end{aligned}$	$\begin{aligned} & 5.75195 \\ & 5.84216 \end{aligned}$
VARIANOE STAND, DEV.	$\begin{aligned} & 2.66000 \\ & 1.63095 \\ & \hline \end{aligned}$			
COEFF. VAR G1	$\begin{array}{r} 32.10553 \\ 0.04371 \\ \hline \end{array}$	$\begin{aligned} & 4.93647 \\ & 0.45368 \end{aligned}$	$\begin{aligned} & 21.33321 \\ & -0.36030 \\ & \hline \end{aligned}$	$\begin{array}{r} 42.37745 \\ 0.95791 \\ \hline \end{array}$
$\begin{aligned} & \text { G2 } \\ & K-S \text { DMAX } \end{aligned}$	$\begin{aligned} & 1.12418 \\ & 0.20044 \end{aligned}$	0.90172	-0.54355	2.89191

## Number of Vesicles between Nearest Neighbor Zooecia (VCT)




MEAN	0.920110	1．05538	0．3ワラ72	1．03408
MED IAN	1.00300	0.059 .40	i． 3 5793	$1.1029 \%$
VARIANEE	3． 07567			
STAND．DEV．	1． 27539			


COEFF, VAR G1	$\begin{array}{r} 30.09545 \\ -3.29753 \\ \hline \end{array}$	$\begin{array}{r} 4.62578 \\ -45358 \\ \hline \end{array}$	$\begin{array}{r} 20.55735 \\ -4.27653 \\ \hline \end{array}$	$\begin{array}{r} 37.62556 \\ -2.38852 \end{array}$
$\begin{aligned} & G 2 \\ & K-S \quad n M A X \end{aligned}$	$\begin{aligned} & 9.54083 \\ & 0.493 .8 \end{aligned}$	0.90172	7．373！0	1．1． 40856

$$
\text { BASI二 STAT,STICS - } 0203
$$

$N=230$ OLASSES TRAHSFIRMATION CJJE＝ 0

	STATISTIC	STAUD F3RCR		
MEAN   MEDIAN	$\begin{array}{r} 0.96000 \\ 1.00300 \\ \hline \end{array}$	$\begin{aligned} & 0.07024 \\ & 0.038: 3 \\ & \hline \end{aligned}$	$\begin{array}{r} 11.39531 \\ 1131355 \end{array}$	$\begin{array}{r} 1.10459 \\ \text { 1. } 18131 \end{array}$
VARIANSE	0.12333			
STMND．DEV．	9．35119			
COEFF．VAR	35.58213	5.82434	？ 1.53277	43.58129
$\mathrm{S}_{1}$	－8．6735	2． 153.28	$-1.241 .55$	1．236．45
$\begin{aligned} & G 2 \\ & K-S \quad n M A X \end{aligned}$	$\begin{aligned} & 6.67335 \\ & 3.42534 \end{aligned}$	$0.9011 ?$	4.71122	3.44663
$3 A^{\circ} \mathrm{S}$ STATISTICS		0204		
$N=$	0 Classes iRansfor		$\because リ ワ=0$	
STAIISTIC		SIAVD．ERRILR	$\begin{aligned} & \text { Z ONFIDEVEE INMITS } \\ & (75.90,2 E R \text { CENT } \end{aligned}$	
$\begin{aligned} & \text { MEAN } \\ & \text { MEDIAN } \end{aligned}$	$\begin{array}{r} 1.080 .10 \\ 1.00190 \\ \hline \end{array}$	3.180110 1.1006	0.71520 0.72345	$\begin{aligned} & 1.24489 \\ & 1.20654 \\ & \hline \end{aligned}$
$\begin{array}{ll} \text { VARIGNSE } & 0.16090 \\ \text { STAND.DEV. } & 0.40150 \end{array}$				
COEFF：VAR	37．037：3	5.91283	24．35651	44．21746
G1	0.75418	0． 19368	－？．16433	1.66308
G2	$3.924 \% 8$	0.90172	2.15795	5．69251．
$K-S$ DMAX	0.45925			

3＾SL二SIATISTICS－OROS
$N=25 \quad 0$ C゙LASSES TRAMSFORMATION CJJE $=0$

SIATISIIC SIAYD．ETRIR ZJUELDEVGELIMITS （75．20，دミR CENT）

$\begin{aligned} & \text { MEAN } \\ & \text { MED IA! } \end{aligned}$	$\begin{aligned} & 0.96000 \\ & 1.00000 \end{aligned}$	0.040110 0.63013	0.37750 11.30673	$\begin{aligned} & 1.04240 \\ & 1.10327 \end{aligned}$
VARIANSE	0.104030			
STAND．DEV．	0.20010			
COEFF．VAR	2.11 .83333	3.97149	14.57675	27.16061.
G1	$-5.00009$	0.453 Ca	－ 5.9 .95970	－4．09100
G？	25.00000	0.90172	2．3．23227	26，70773
$\mathrm{k}-\mathrm{S}$ nilit	0.49 .925			

3ASI：STATISTICS－ 0301
$N=25 \quad 0$ ILASSES TRANSFJRMATION CJDF＝ 0

STATISIIC STAVD．EFRIGR SJVFIDEVCE LIMITS （75．30，DER CENT）

MEAN	$\frac{1}{1} 20000$	0.10018	9.70410	1． 406170
MEDIAN	1.00030	0.12533	1.174142	1.25813
VARIANSE	0.25000			
STAND．$n=v$ ．	0.50080			
COEFF，VAR	41.606157	6.83948	27.57733	55.75601
G1	0， 43.478	0.45368	－ 11.1742 ？	1． $3<379$
G2	0.49112	0.90172	－1．27751	2.25785
K－S DMAX	0.415 .12			
3ASI－STiTISTITS－ 0302				
$N=25$	0 CL	TRANSFOR	cojes $=$	0


	statistie	STAVD EFRCR	$\begin{aligned} & \text { ت2YEIDENCE LIMITS } \\ & (95.30 .=E R \text { CENT } \end{aligned}$	
MEAN	1.04090	0.04000	1.75750	1.12240
MEDIAN	1.09002	0.25013	0.30573	1.10327
variance	0.04800			
SIAND．DEV．	0.70010			
CDEFF．VAR	1． 5.23077	2.81843	13.42431	25.03673
G1	5.00000	0.45368	4.35170	5.00900
G2	25．000：10	0.90172	23． 23227	26.76773
K－S DMAX	0．53025			



STATISTIC SLAND ERROR OTVEIDEVEE LIMIIS
(75:90, ${ }^{2}$ ミR CENT)

	STETISTIC	SLAVII EPROR		
			(75.30, ${ }^{\text {ER }}$ CEVT)	
MEAM	1.20900	0.031 .65	1.03130	1.36820
MEDIAN	1.00090	0:10253	0.78920	1.21080
VARIANEE	0.16667			
STAND-DEV.	$0.465 \% 5$			
COEFF. VAP	34.02069	5.33915	23.32294	45.101 .934
61	1,59749	0. 1534.8	$\bigcirc .58949$	2.50650
G2	0.59289	0.90172	-1.17434	2.36061
$k-S$ DMAX	0.48790			


$N=$	0 OLASSES	TRAMSFSRMATION CJJE $=0$		
	STATISTIS	SIAND.EERSR	SUE1DEVCE LIMITS	
MEAN	1.10000	0.07483	1.00534	1.31 .416
MEDISN		0.119319	1.20530	1.10320
VARIANE	c. 14000			
STAND. DEV.	0. 37417			
COEFF. VAR	32.25567	5.11383	21. 72717	42.53415
61	1.97541	0.4 .5358	1.28511	2.888491
G2	2.00093	0.59172	0.29323	
K-S DMax	0.50554			
$N=\frac{345}{25}$	STATISTICS - 0402			
	0 Classes transforma		coje $=0$	
	STATISTIC	STAVD ERROR	OYV:IDEVEELIMITS	
			(95.20, ${ }^{\text {ER }}$ (EENT)	
MEAN   MEDIAN	$0.92010$	$0.05538$ $0.05040$	$0.3 n 5 ? 2$	$\begin{aligned} & 1.03408 \\ & 1.1007 \end{aligned}$
VARIANCE	$\begin{aligned} & 0.07567 \\ & 0.27509 \end{aligned}$			
COEFF. VAR	30.09646	1.62578	20.56735	39.62 .556
01	-3.29753	0.45363	-4.205537.37310	$\frac{-2}{11.39852}$
G?	9.64093	0.901 .72		
K-S DHAX	0.493:3		1.3731.	
	34SI- STATISTICS - 0403			
$N=25$	0 CLASSES	TRAMSFORMATION COJE =	c)je $=0$	
	STATISTIC	STAVD. ER2FR	SJYFIJEVDELMLTS	
			(75.30, $\triangle$ ER CENT)	
MEAN	0.92000	0.05538	0.30572	1.03403
MEDIAN	1.00000	0.05940	0.35793	1.14297
VARIANE	0.07667 0.27689			
STAND.DEV.	0.27689			
COEFF. VAR	$\begin{array}{r} 30.09645 \\ -39753 \end{array}$	$\begin{aligned} & 4.62578 \\ & 045358 \end{aligned}$	$20 \cdot 56735$	$\begin{aligned} & 39.62555 \\ & \hline 0.2850 \end{aligned}$
G2	9.64083	0.90172	7.37310	11.40856
K-S DMAX	0.49363			


$3 A 5 I 2$ STALISTICS - 0404				
$N=25$	0 CL	S TRANSFORMATION COJE $=0$		
	STATISTIC	STAVD. FZR:JR	SJMFIDEVCE LIMITS	
			( $75.30,3 \approx R$ CENT)	
MEAN MEDIAN	1.00010 1.00070	0.95774 0.17236		1.11893
VARIANSE	0.08333			
STAND. DEV.	0.288 ¢3			
COEFF. VAR	25.86731	4.40959	19.79377	37.95126
G1	9.	1. 45358	-1.29873	3.901931
G2 ${ }_{\text {K-S }}$	12,00070	$0.9017 ?$	111.232? 7	13.76773

