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Abstract

In this dissertation, we study some problems related to the stochastic partial differential

equations, branching particle systems and rough path analysis.

In Chapter 1, we provide a brief introduction and background of the topics considered

in this dissertation.

In Charter 2, a branching particle system in a random environment has been studied.

Under the Mytnik-Sturm branching mechanism, we prove that the scaling limit of this

particle system exists. This limit has a Lebesgue density that is a weak solution to a

stochastic partial equation. We also investigate the Hölder continuity of this limit, and

prove it is 1/2− ε in time and 1− ε in space.

In Chapter 3, a theory of nonlinear rough paths is developed. Following the idea of

Lyons and Gubinelli, we define a nonlinear integral of rough functions. Then we study

a rough differential differential equation, and obtain the local and global existence and

uniqueness of this solution under suitable sufficient conditions. As an application,

we consider the transport equation with rough vector field and observe the classical

solution formula does not satisfy the rough equation. Indeed, it is the solution to the

transport equation with compensators.

In Chapter 4, we study the parabolic Anderson model of Skorokhod type with very

rough noise in time. By using the Feynman-Kac formula for moments, we obtain the

upper and lower bounds for moments of the solution.
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Chapter 1

Introduction

This dissertation concerns with several topics in branching particle systems, stochastic partial dif-

ferential equations and nonlinear rough paths analysis. It consists of three research articles, which

are listed as follows,

1. Hölder continuity of the solutions to a class of SPDE’s arising from branching particle systems

in a random environment, with Yahozhong Hu and David Nualart, Electron. J. Probab., 24, no.

105, (2019), 1 - 52. [48]

2. On nonlinear rough paths, with David Nualart, ALEA, 17, (2020), 545 – 587, [73]

3. Intermittency for the Parabolic Anderson model of Skorohod type driven by a rough noise, with

Nicholas Ma and David Nualart, Electron. Commun. Probab., 25, no. 48, (2020), 1 - 10. [67]

In paper 1, we study a branching particle system in a random environment, observe that after

an appropriate scaling, the limit of the empirical measures of the system exists as a measure-valued

process. This limit has a Lebesgue density that is a weak solution to a stochastic partial differential

equation. Then, by using the techniques of Malliavin calculus, we find that the solution is jointly

Hölder continuous with exponents 1/2− ε in time and 1− ε in space.

In paper 2, we develop a theory of nonlinear rough paths following the ideas of Lyons and

Gubinelli. By a stability analysis, we obtain suitable sufficient conditions for the local and global

existences and uniqueness of the solution to the Kunita-type equation Yt = ξ +
´ t

0 W (ds,Ys). Finally

we apply this theory to the transport equation with rough vector fields.

In paper 3, a Skorohod type parabolic Anderson model with rough noise in time is studied.
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By using the Feynman-Kac formula for the moments of the solution, we find the upper and lower

bounds for the moments.

In the rest of this chapter, we introduce the background and main results of each topic studied

in the present dissertation in details.

1.1 Branching particle systems in a random environment

The study of branching particle systems started from 1960s, since the pioneer work of Jiřina [51]

and Watanabe [82]. It has been found that the limits of empirical measures of branching parti-

cle systems are measure-valued Markov processes. Then, it was investigated that measure-valued

Markov processes are highly connected to stochastic evolution equations by Dawson [20]. The the-

ory of branching particle systems is a combination of spatial motion of particles and a continuous

branching phenomenons. Additionally, it is closely related to a class of semilinear partial dif-

ferential equations. We refer the readers to the monographs of Dawson [21, 22], Dynkin [28, 29],

Etheridge [30], Le Gall [59], Li [62] and Perkins [74] for a detailed account of those developments.

In the last century corner, Wang [80, 81] and Skoulakis & Adler [75] introduced a random

environment applying to the system, where the motion of each particle is governed by a random

environment. On the other hand, Mytnik [70] considered a branching model that a random environ-

ment affects the branching rate of the particles with small perturbation, and Sturm [78] modified

Mytnik’s model such that the branching is a rather rare event and totally depending on the envi-

ronment. In Chapter 2, we study a branching particle system, in which the particle motion follows

Wang’s model, while the branching obeys Mytnik-Sturm’s mechanism.

Consider a d-dimensional branching particle system in a random environment. For any integer

n≥ 1, the branching events happen at time k
n , k = 1,2, . . . . The dynamics of each particle, labeled

by a multi-index α , is described by the stochastic differential equation (SDE):

dxα,n
t = dBα

t +

ˆ
Rd

h(y− xα,n
t )W (dt,dy), (1.1.1)

2



where h is a d×d matrix-valued function on Rd , whose entries hi j ∈ L2(Rd), Bα are d-dimensional

independent Brownian motions, and W is a d-dimensional space-time white Gaussian random field

on R+×Rd independent of the family {Bα}. The random field W can be regarded as the random

environment for the particle system. The existence and uniqueness of the Feller process xα,n that

solves the SDE (1.1.1) will be proved in Section 2.1.

At any branching time each particle dies and it randomly generates offspring. The new particles

are born at the death position of their parents, and inherit the branching-dynamics mechanism. As

we already stated before, the branching mechanism follows the one introduced by Mytnik [70],

and studied further by Sturm [78]. Let Xn = {Xn
t , t ≥ 0} denote the empirical measure of the

particle system. One of the main results of this work is to prove that the empirical measure-valued

processes converge weakly to a process X = {Xt , t ≥ 0}, such that for almost every t ≥ 0, Xt has

a density ut(x) almost surely. By using the techniques of Malliavin calculus, we also establish the

almost surely joint Hölder continuity of u with exponent 1
2 − ε in time and 1− ε in space for any

ε > 0.

To compare our results with the classical ones. Let us recall briefly some existing work in

the literature. The one-dimensional model was initially introduced and studied by Wang [80, 81].

In these papers, he proved that under the classical Dawson-Watanabe branching mechanism, the

empirical measure Xn converges weakly to a process X = {Xt , t ≥ 0}, which is the unique solution

to a martingale problem.

For the above one dimensional model, Dawson et al. [25] proved that for almost every t > 0, the

limit measure-value process X has a density ut(x) a.s. and u is the weak solution to the following

stochastic partial differential equation (SPDE):

ut(x) =µ(x)+
ˆ t

0

1
2
(1+‖h‖2

2)∆us(x)ds−
ˆ t

0

ˆ
R

∇x[h(y− x)us(x)]W (ds,dy)

+

ˆ t

0

√
us(x)

V (ds,dx)
dx

, (1.1.2)

where ‖h‖2 is the L2-norm of h, and V is a space-time white Gaussian random field on R+×R
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independent of W .

Suppose further that h is in the Sobolev space H2
2 (R) and the initial measure has a density

µ ∈ H1
2 (R). Then Li et al. [63] proved that ut(x) is almost surely jointly Hölder continuous. By

using the techniques of Malliavin calculus, Hu et al. [44] improved their result to obtain the sharp

Hölder continuity: they improved the Hölder exponents to be 1
4 − ε in time and 1

2 − ε in space, for

any ε > 0.

In Chapter 2, we are interested in higher dimensions (d > 1). However in this case, the super

Brownian motion (a special case when h= 0) does not have a density (c.f. Corollary 2.4 of Dawson

& Hochberg [23]). Thus in higher dimensional case we have to abandon the classical Dawson-

Watanabe branching mechanism and adopt the Mytnik-Sturm one. As a consequence, the difficult

term
√

us(x) in the SPDE (1.1.2) becomes us(x) (see equation (2.2.1) in Section 2.2 for the exact

form of the equation).

We follow the approach introduced in Hu et al. [44] to study the Hölder continuity of the

conditional density of a particle motion using Malliavin calculus. However, because of the multi-

dimensional setting considered here, new difficulties arise. On one hand, the integration by parts

formulas require higher order Malliavin derivatives which make computations more complex. To

lower the order of Malliavin differentiability in our framework, we use the combination of Riesz

transform and Malliavin calculus, previously studied in depth by Bally & Caramellino [5] (see

Appendix 2.7 for the density formula that we are using). Another difficulty is the fact that in the

one-dimensional case considered in Hu et al. [44], the Malliavin derivative can be expressed ex-

plicitly and this type of formula for the Malliavin derivative is no longer available here. We have

to use another approach to obtain appropriate sharp estimates. More details are given in Appendix

2.7.

Chapter 2 is organized as follows. In Section 2.1 we shall briefly describe the branching mech-

anism used in Chapter 2. In Section 2.2 we state the main results obtained in this chapter. These

include three theorems. The first one (Theorem 2.2.3) is about the existence and uniqueness of a

(linear) stochastic partial differential equation (equation (2.2.1)), which is proved (Theorem 2.2.2)
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to be satisfied by the density of the limiting empirical measure process Xn of the particle system

(see (2.1.12)). The core result of this chapter is Theorem 2.2.4 which intends to give sharp Hölder

continuity of the solution ut(x) to (2.2.1).

Section 2.3 presents the proofs for Theorems 2.2.2 and 2.2.3. The proof of Theorem 2.2.4

is the objective of the remaining sections. Firstly, in Section 2.4, we focus on the one-particle

motion with no branching. By using the techniques from Malliavin calculus, we obtain a Gaussian

type estimates for the transition probability density of the particle motion conditional on W . This

estimate plays a crucial role in the proof of Theorem 2.2.4. In Section 2.5, we derive a conditional

convolution representation of the weak solution to the SPDE (2.2.1), which is used to establish the

Hölder continuity. In Section 2.6, we show that the solution u to (2.2.1) is Hölder continuous.

Lastly, the martingale problem (2.3.4) - (2.3.5) is introduced in Section 2.3 to prove Theorems

2.2.2 and 2.2.3. The well-posedness of the martingale problem can be proved under the assumption

that the initial measure has a bounded density. We conjecture that it also holds for an arbitrary finite

initial measure. We will not pursue this in this chapter (see Remark 2.3.12 (ii)).

1.2 Nonlinear rough paths

Nonlinear integrals in the sense of Young have been studied in recent years (c.f. Catellier &

Gubinelli [13], Chouk & Gubinelli [17, 16] and Hu & Lê [42]). In these papers, the authors

consider the following nonlinear integral

Is,t =

ˆ t

s
W (dr,Yr), (1.2.1)

where W is a function on [0,T ]×Rd with values in Rd , that is τ-Hölder continuous in time and

λ -Hölder continuous in space, and Y : [0,T ]→ Rd is γ-Hölder continuous. Under the assumption

τ +λγ > 1, the nonlinear integral (1.2.1) is well-defined in the sense of Young [86]. That is, Is,t

5



is the limit of the following linear approximations as |π| → 0

n

∑
k=1

Wtk−1,tk(Ytk−1) :=
n

∑
k=1

[
W (tk,Ytk−1)−W (tk−1,Ytk−1)

]
,

where π = (s = t0 < t1 < · · ·< tn = t) is a partition of the interval [s, t] and |π| := max1≤k≤n |tk−

tk−1|. As an example, one can define a pathwise nonlinear integral of the form (1.2.1), where W is

a fractional Brownian sheet with Hurst parameters H0 ∈ (1
2 ,1) in time and H1 = · · · = Hd = H in

space, such that H0 +
1
2H > 1, and Y is a d-dimensional standard Brownian motion. By applying

this theory of nonlinear Young’s integrals, Hu & Lê [42] studied the following transport equation

with distributional vector field (see also [13, 34]):

∂

∂ t
u(t,x)+Du(t,x)

∂

∂ t
W (t,x) = 0, (1.2.2)

where D denotes the spatial derivative operator. The existence and uniqueness of the solution to

(1.2.2) with C 1+λ0
loc (Rd;R)-valued initial condition were proved in [42] assuming that (1+λ0)τ >

1. They also provided a formula for the solution:

u(t,x) = h(Zt(x)), (1.2.3)

where h is the initial condition, Zt is the inverse of Yt , and Y is the solution to the following

nonlinear differential equation:

Yt(x) = x+
ˆ t

0
W (ds,Ys(x)). (1.2.4)

On the other hand, applying the theory of nonlinear integrals to the stochastic heat equation, Hu

and Lê also gave a pathwise proof of the Feynman-Kac formula, which provides an alternative

method to study this topic (c.f. [43, 47] for a probabilistic approach).

The purpose of Chapter 3 is to extend the theory of nonlinear integrals to the case when the

6



functions W and Y are rougher, that is τ +λγ < 1. In this situation, Young’s approach fails. The

following example, inspired by the lecture notes from Zanco (see Example 3.6 of Zanco [87]),

provides a non-standard nonlinear rough path behavior in R. For any n ∈N, t ∈ [0,T ] and x,y ∈R,

we define

F(x,y) = exy, X (n)
t =

1
n

cos(2πn2t) and Y (n)
t =

1
n

sin(2πn2t).

Then F(X (n)
t ,y) converges to 1 and Y (n)

t converges to 0 uniformly on compact sets as n→ ∞. On

the other hand, however, the following integral

ˆ 1

0
F(dX (n)

t ,Y (n)
t ) =− 1

4

ˆ 4π

0
exp
( 1

2n2 sin(n2s)
)

ds→−π,

by dominated convergence theorem, as n→ ∞.

In the linear situation, a useful tool to deal with the integration of rough functions is the theory

of rough paths. This theory has been developed from the pioneering work of Lyons since the early

nineties (c.f. Lyons [64, 65]) to study d-dimensional dynamical systems of the form

dYt = f (Yt)dXt , t ∈ [0,T ],

where the driven signal Xt is α-Hölder continuous and α ∈ (0, 1
2 ]. The main idea of the rough path

analysis is as follows. Let p = b 1
α
c, and let T (p) be a p-step truncated tensor algebra given by the

expression

T (p) := R⊕ (Rd)⊕ (Rd)⊗2⊕·· ·⊕ (Rd)⊗p.

The rough path associated to X is a lifting of X to a T (p)-valued function on [0,T ]2, denoted by

S(p)(X), in such a way that when X is piecewise differentiable, the function

S(p)
s,t = (1,X1

s,t ,X
2
s,t , . . . ,X

p
s,t),

7



and each component X i
s,t is the ith iterated integral of X on the time interval [s, t]⊂ [0,T ]. Suppose

that f is a smooth function, then the integral of f (X) against X on [s, t] can be approximated by

ˆ t

s
f (Xr)dXr ≈ f (Xs)X1

s,t + f ′(Xs)X2
s,t + · · ·+ f (p−1)(Xs)X

p
s,t , (1.2.5)

with an error of order O(|t− s|(p+1)α). Because (p+1)α > 1, the error term vanishes in the limit,

which explains the choice p = b 1
α
c. This allows us to define the integral by passing the limit as

|π| → 0 of the following expression

n

∑
k=1

p

∑
i=0

f (i−1)(Xtk−1)X
i
tk−1,tk ,

where π = (s = t1 < · · ·< tn = t).

Suppose that α ∈ (1
3 ,

1
2 ]. Gubinelli (see [37]) generalized the integration of “1-forms”, which

means the integrand is a function f (Xt) of the driving signal, to a class of rough functions called

“controlled rough paths”. A controlled rough path (by X), is a function Y : [0,T ]→ Rd whose

increment on an interval [s, t] can be written in the following way: Ys,t =Y ′s Xs,t +RY
s,t , for some Rd⊗

Rd-valued α-Hölder continuous function Y ′ and some Rd-valued 2α-Hölder continuous function

RY . In this case, the approximation of the integral is the following

ˆ t

s
YrdXr ≈ YsX1

s,t +Y ′s X2
s,t .

For a more detailed account on this topic, we refer the readers to the books of Friz & Hairer [36]

and Lyons & Qian [66]. An alternative approach to deal with the integration of “non-1-forms”

based on fractional calculus was developed in [6, 45].

In Chapter 3, we will extend the nonlinear Young’s integral to the rough case by using Gu-

binelli’s approach, and assuming a Hölder regularity of order α ∈ (1
3 ,

1
2 ]. Chapter 3 is organized

in the following way. In Section 3.1 we give brief review of the preliminaries about (linear) rough

paths. In Section 3.2 we introduce a nonlinear variant of rough paths. By definition a nonlinear

8



rough path is a pair (W,W) such that W (t,x) is a function of two variables, (t,x) ∈ [0,T ]×V ,

where V is Banach space. The component Ws,t(x,y) should be interpreted as the integral

Ws,t(x,y) =
ˆ t

s
DW (dr,y)Wr,s(x),

for any 0 ≤ s ≤ t ≤ T , where DW (r,y) denotes the Fréchet derivative of W with respect to the

spatial argument y. We also assume that (W,W) satisfies certain properties, including α-Hölder

continuity and a version of Chen’s relation. Then, a nonlinear rough integral can be approximated

in the following way: ˆ t

s
W (dr,Yr)≈Ws,t(Y )+Ws,t(Ẏs,Ys),

where Ẏ is the Gubinelli derivative of Y in the context of nonlinear rough paths. We prove that the

nonlinear rough integral is a nonlinear controlled rough path and we establish some properties of

nonlinear rough integrals.

In Section 3.3, we consider the following rough differential equation (RDE):

Yt = ξ +

ˆ t

0
W (dr,Yr), (1.2.6)

where (W,W) is an α-Hölder nonlinear rough path. Local and global existence and uniqueness

of the solution to the RDE (1.2.6) are proved in this section. We also obtain some estimates

for the solution to this equation. This type of RDEs was previously studied by Bailleul and his

collaborators (c.f. [2, 3, 4]) under some boundedness assumption of W . Here, we study this

equation via a different approach, and improve their results removing boundedness conditions.

Another approach to equation (1.2.6) was introduced by Brault & Lejay [8, 9, 10]. In these

papers, the authors introduced the almost flow φs,t(x). In comparison with our setting, φs,t(x) is

equivalent to Ws,t(x)+Ws,t(x,x)+ x . Then without the analysis of the rough integrals, a solution

to equation (1.2.6) can be constructed as the limit of the following iterations over partitions π =

9



(0 = t0 < t1 < · · ·< tn = t)

φtn−1,tn ◦ · · · ◦φt1,t0(ξ ), as |π| → 0.

In Section 3.4, we study nonlinear rough paths as function space-valued linear rough paths.

Then, we prove that under some assumptions, these two approaches are equivalent. Despite this,

we still prefer to keep the analysis in Sections 3.2 and 3.3. Firstly, the approach to define nonlinear

rough paths in Section 3.2 is more intuitive than the latter method based on abstract spaces. Addi-

tionally, in order to interpret nonlinear rough paths as function space-valued linear rough paths, a

stronger assumption is required, namely, the existence of the integral Ws,t =
´ t

s Ws,r⊗dWr, whereas,

in Sections 3.2 and 3.3, we only need to define the integral Ws,t(x,y) =
´ t

s DW (dr,y)Wr,s(y).

Section 3.5 contains some applications of nonlinear rough paths. In Section 3.5.1, we provide

a generalized Itô-type formula for (nonlinear) controlled rough paths. In Section 3.5.2 we analyze

the gradient flow of the following equation with spatial parameter,

Yt(x) = x+
ˆ t

0
W (dr,Yr(x)),

where x ∈ Rd and W : [0,T ]×Rd → Rd is a nonlinear rough path. We will prove that under some

assumptions, Yt(x) is differentiable in x. In addition for every (t,x) ∈ [0,T ]×Rd , the gradient

DYt(x) is an invertible matrix. Thus, for any fixed t ∈ [0,T ], by the Inverse Function Theorem

in Rd , there exists Zt : Rd → Rd such that Zt(Yt(x)) = Yt(Zt(x)) = x for all x ∈ Rd . Assume that

h ∈ C 4
loc(R

d;R). Because the structure of W here is rougher than in Young’s case, it turns out

that h(Zt(x)) does not satisfies the transport equation (1.2.2). In Section 3.5.3 we will prove that

h(Zt(x)) is indeed the solution to the following transport equation with compensators

∂

∂ t
u(t,x)+Du(t,x)

∂W (t,x)
∂ t

=
1
2

Du(t,x)
∂⟪DW (x),W (x)⟫0,t

∂ t

+
1
2

Du(t,x)
∂⟪W (x),DW (x)⟫0,t

∂ t
+

1
2

D2u(t,x)
∂ 〈W (x)〉0,t

∂ t
. (1.2.7)
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Furthermore, the solution is unique in the space C α,3
loc ([0,T ]×Rd;R). A similar transport equation

with rough vector field was also studied by Catellier in [12].

Finally, we finish Chapter 3 by providing some examples for nonlinear rough paths and trans-

port equations with compensators in Section 3.6.

1.3 Parabolic Anderson model of Skorohod type

The parabolic Anderson model is a special case of the random Schrödinger equation. The study of

this equation dates back to the late 1950s when Anderson published his ground break paper [1]. In

this paper, Anderson predicted a phenomenon, which is now called the Anderson localization, that

the absence of diffusion happens in a lattice system in a random medium. Because its connections

to other fields in mathematics like branching processes in a random environment, large deviations

and stochastic partial differential equations, as well as numerous applications to physical theories

(c.f. Carmona & Molchanov [11], Hairer [38], Havlin & ben Avraham [39], Zel’dovich et al. [89,

90]), the parabolic Anderson model became a popular topic among probabilistic and mathematical

physicists in recent decades. We refer the readers to the books of Kirsch [54] and König [55] for a

detailed survey of this model.

In Chapter 4, we consider the following parabolic Anderson model of Skorohod type

∂

∂ t
u(t,x) =

1
2

∆u(t,x)+u(t,x)� ∂

∂ t
W (t,x), (1.3.1)

where � denotes the Wick product. The noise W = {W (t,x),(t,x) ∈ R+×Rd} is a Gaussian

random field, that is a fractional Brownian motion of Hurst parameter H ∈ (0, 1
2) in time, and has

a correlation in space given by a function Q, namely,

E[W (t,x)W (s,y)] =
1
2
(
t2H + s2H−|t− s|2H)Q(x,y),

for all s, t ∈ R+ and x,y ∈ Rd .
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A similar equation in the Stratonovich sense, where the Wick product in (1.3.1) is replaced by

the ordinary product, has been studied by Hu et al. [43] and Chen et al. [14]. In these papers,

it has been proved that under suitable sufficient hypotheses on the correlation function Q, the

Stratonovich type equation with bounded initial condition has a unique solution, which admits a

Feynman-Kac representation. Additionally, by using the Feynman-Kac formula for the moments

of the solution, the authors in [14] studied the intermittency phenomenon for the solution. Under

certain assumptions on Q, the inequality holds for some α,β ∈ (0,1),

Cx exp
(

Cn
2−β

1−β t
2H+β

1−β

)
≤ E

[
u(t,x)n]≤Cx exp

(
Cn

2−α

1−α t
2H+α

1−α

)

for all t ≥ 1, x ∈ Rd and n≥ 1, where C and C are positive constants depending on d,H,α,‖u0‖∞

and Cx,Cx > 0 depend on d,H,α,‖u0‖∞ and x.

In Chapter 4, we will study the intermittency for the Skorohod equation (1.3.1). The upper

bounds for the moments of the solution can be easily obtained. This is due to the fact that the

solution to the Skorohod equation is bounded by the solution to the equation of Stratonovich type.

For the same reason, to get lower bounds is more involved. By using the Feynman-Kac formula

for the moments, we see that in comparison with the Stratonovich case, the exponent in our case

contains an additional negative term. This increases the difficulty to estimate lower bounds for the

moments. To settle this difficulty, we pin the Brownian motion Bt at the middle point t/2, and

observe that conditional on Bt/2 = r, Bs is a Brownian bridge before time t/2, and an independent

Brownian motion after t/2. Then, we estimate the probability of the event that the supremum and

the Hölder norm of the Brownian bridge (motion) are bounded above and below by appropriate

constants. This allows us to find a lower bound for the moments of the solution.

Chapter 4 is organized as follows. In Section 4.1, we give a brief introduction on the Malliavin

calculus and present the precise definition of the solution to equation (1.3.1). In Section 4.2,

following the idea of Hu et al. [43], we prove that equation (1.3.1) has a unique solution and give

the Feynman-Kac formula and the chaos expansion of the solution. Then, we provide the upper

12



bounds for the moments. Finally, the lower bounds for the moments are proved in Section 4.3.
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Chapter 2

Branching particle systems and related stochastic partial

differential equations

In this chpater, we consider a d-dimensional branching particle system in a random environment.

Suppose that the initial measures converge weakly to a measure with bounded density. Under

the Mytnik-Sturm branching mechanism, we prove that the corresponding empirical measure Xn
t

converges weakly in the Skorohod space D([0,T ];MF(Rd)) and the limit has a density ut(x), where

MF(Rd) is the space of finite measures on Rd . We also derive a stochastic partial differential

equation ut(x) satisfies. By using the techniques of Malliavin calculus, we prove that ut(x) is

jointly Hölder continuous in time with exponent 1
2 − ε and in space with exponent 1− ε for any

ε > 0.

2.1 Branching particle systems

We split this section into two parts. In Section 2.1.1, we consider a finite branching-free particle

system, and prove the existence and uniqueness of this system. In Section 2.1.2, we give a brief

induction to the Mytnik-Sturm branching mechanism.

2.1.1 Finite branching-free particle systems

In this section, we will show the existence and uniqueness of the finite branching-free particle

system that is determined by (1.1.1). The one-dimensional analogue is given by Lemma 1.3 of

Wang [80].
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Fix a time interval [0,T ]. Let W = {W (t,x),(t,x) ∈ [0,T ]×Rd} be a d-dimensional space-

time white Gaussian random field. For any positive integer n, let {Bi}i∈{1,...,n} be a family of

independent d-dimensional Brownian motions that is independent of W . Consider an n-particle

system, where the motion of each particle is described by the following stochastic differential

equation in a random environment W :

dxi
t = dBi

t +

ˆ
Rd

h(y− xi
t)W (dt,dy), (2.1.1)

with initial condition xi
0 ∈Rd for all i = 1, . . .n. In the case n = 1, we omit all upper indexes in the

equation (2.1.1) without confusion.

The following hypothesis for h will be used throughout this chapter:

Hypothesis (H0). h = (hi j)1≤i, j≤d ∈ H3(Rd;Rd⊗Rd). That is, the entries hi j of h belongs to the

Sobolev space H3(Rd).

For k = 0,1,2,3, denote by ‖ · ‖k,2 the Sobolev norm on Hk(Rd;Rd⊗Rd), that is

‖h‖2
k,2 :=

d

∑
i, j=1
‖hi j‖2

k,2 =
d

∑
i, j=1

(ˆ
Rd
|hi j(x)|2dx

) 1
2

+
d

∑
i, j=1

k

∑
l=1

d

∑
i1,...,il=1

(ˆ
Rd

∣∣∣ ∂ l

∂x1 · · ·∂xl
hi j(x)

∣∣∣2dx
) 1

2
.

Let ρ : Rd → Rd⊗Rd be given by

ρ(x) =
ˆ
Rd

h(z− x)h∗(z)dz, (2.1.2)

where h∗ = (h ji)1≤i, j≤d denotes the transpose of h. Then, for any 1 ≤ i, j ≤ d, and x ∈ Rd , by

Cauchy-Schwarz’s inequality, we have

|ρ i j(x)| ≤
d

∑
k=1
‖hik‖2‖hk j‖2.
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We denote by ‖ ·‖2 the Hilbert Schmidt norm for matrices. Then, by Cauchy-Schwarz’s inequality

again, we have

‖ρ‖∞ := sup
x∈Rd
‖ρ(x)‖2 = sup

x∈Rd

( d

∑
i, j=1
|ρ i j(x)|2

) 1
2

≤
( d

∑
i, j=1

∣∣∣ d

∑
k=1
‖hik‖2‖hk j‖2

∣∣∣2) 1
2

≤
( d

∑
i,k=1
‖hik‖2

2

d

∑
j,k=1
‖hk j‖2

2

) 1
2 ≤ ‖h‖2

2 ≤ ‖h‖2
3,2.

Similarly, we can show that the first, second, and third partial derivatives of ρ are bounded in Rd .

We make use of the following notations:

‖ρ‖k,∞ := sup
x∈R

( d

∑
i, j=1

d

∑
i1,...,ik=1

∣∣∣ ∂ k

∂xi1 · · ·∂xik
ρ

i j(x)
∣∣∣2) 1

2
,

for k = 1,2,3. Now let us study the SDE’s (2.1.1). These equations are not coupled and we solve

them for each i separately. For this reason in the next theorem, which provides the existence and

uniqueness of the equation (for each fixed i), we suppress the superscript index i.

Theorem 2.1.1. Assume the Hypothesis (H0). Then, there exists a d-dimensional stochastic pro-

cess x = {xt ,0≤ t ≤ T} that is the unique strong solution to the SDE (2.1.1) (for each fixed i) with

initial condition x0 = x ∈ Rd .

Proof. We prove this theorem by Picard iteration. Let

x(0)t = Bt +

ˆ t

0

ˆ
Rd

h(y− x)W (ds,dy),

and let

x(m)
t = Bt +

ˆ t

0

ˆ
Rd

h(y− x(m−1)
s )W (ds,dy)

for all m ≥ 1. Denote by d(m)
t = x(m)

t − x(m−1)
t for all t ∈ [0,T ]. Then d(m)

t satisfies the following
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equation

d(m)
t =

ˆ t

0

ˆ
Rd

[
h(y− x(m)

s )−h(y− x(m−1)
s )

]
W (ds,dy). (2.1.3)

An application of the Itô isometry yields that

‖d(m)
t ‖2

2 =
∥∥∥ˆ t

0

ˆ
Rd

[
h(y− x(m)

s )−h(y− x(m−1)
s )

]
W (ds,dy)

∥∥∥2

2

=E
ˆ t

0

ˆ
Rd

∥∥h(y− x(m)
s )−h(y− x(m−1)

s )
∥∥2

2dyds

=2‖h‖2
2t−2

d

∑
i, j=1

ˆ t

0
ρ

i j(d(m−1)
s )ds

=2
d

∑
i, j=1

ˆ t

0

[
ρ

i j(d(m−1)
s )−ρ

i j(0)
]

ds , (2.1.4)

since ∑
d
i, j=1 ρ i j(0) = ‖h‖2

2. Noticing that ρ i j has bounded first partial derivatives, we have

‖d(m)
t ‖2

2 ≤C
ˆ t

0
‖d(m−1)

s ‖2
2ds,

for some constant C independent of m. On the other hand, we can show that

‖x(0)t − x‖2
2 =
∥∥∥Bt +

ˆ t

0

ˆ
Rd

h(y− x)W (ds,dy)− x
∥∥∥2

2

≤t + t‖h‖2
2 +‖x‖2.

By iteration, we can conclude that

‖d(m)
t ‖ ≤

1
(m+1)!

(1+‖h‖2
2)t

m+1 +
1

m!
‖x‖2tm, (2.1.5)

which is summable in m. In other words, for any t ∈ [0,T ], the sequence x(m)
t is convergent in

L2(Ω). Denote by xt the limit of this sequence.

We claim that x = {xt ,0≤ t ≤ T} is a strong solution to (2.1.1) (recall we suppress the super-

17



script). It suffices to show that as m→ ∞,

ˆ t

0

ˆ
Rd

h(y− x(m)
s )W (ds,dy)→

ˆ t

0

ˆ
Rd

h(y− xs)W (ds,dy)

in L2(Ω) for all t ∈ [0,T ]. We can easily check this convergence by arguments similar to those in

(2.1.3) - (2.1.5).

Suppose that there are two solutions x and x̃ to the SDE (2.1.1). Let d = x− x̃. Again, by a

similar argument as in (2.1.3) - (2.1.5), we have the following inequality

‖dt‖2
2 ≤C

ˆ t

0
‖ds‖2

2ds.

Notice that

‖dt‖2
2 ≤ 2‖xt‖2

2 +2‖x̃t‖2
2 ≤ 4(t + t‖h‖2

2)< ∞.

An application of Gronwall’s inequality yields ‖dt‖2
2 ≡ 0.

While equations (2.1.1) can be solved separately for each fixed i the solutions x1, . . . ,xn are not

independent since they all of them depend on the common random environment W . It is easy to

see that (x1, . . . ,xn) is an nd-dimensional Feller process governed by the generator

A(n) f (y1, . . . ,yn) =
1
2
(∆(n)+B(n)) f (y1, . . . ,yn), (2.1.6)

where ∆(n) is the Laplace operator in Rnd ,

B(n) f (y1, . . . ,yn) =
n

∑
k1,k2=1

d

∑
i, j=1

ρ
i j(yk1− yk2)

∂ 2 f

∂yi
k1

∂y j
k2
(y1, . . . ,yn)

, (2.1.7)

and yk = (y1
k , . . . ,y

d
k ) ∈ Rd for all k = 1, . . . ,n. This is similar to (1.19) of Wang [80] for the one-

dimensional case.
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2.1.2 The Mytnik-Sturm branching mechanism

In this section, we briefly construct the branching particle system. For further study of this branch-

ing mechanism, we refer the readers to papers of Mytnik and Sturm [70, 78]).

We start this section by introducing some notation. For any integer k≥ 0, we denote by Ck
b(R

d)

the space of k times continuously differentiable functions on Rd which are bounded together with

their derivatives up to the order k. Also, Hk(Rd) is the Sobolev space of square integrable functions

on Rd which have square integrable derivatives up to the order k. For any differentiable function φ

on Rd , we make use of the notation ∂i1···imφ(x) = ∂ m

∂xi1 ···∂xim
φ(x).

We write MF(Rd) for the space of finite measures on Rd . We denote by

D([0,T ],MF(Rd)) the Skorohod space of càdlàg functions on time interval [0,T ], taking values

in MF(Rd), and equipped with the weak topology. For any φ ∈Cb(Rd) and µ ∈MF(Rd), we write

〈µ,φ〉= µ(φ) :=
ˆ
Rd

φ(x)µ(dx). (2.1.8)

Let I := {α = (α0,α1, . . . ,αN),α0 ∈ {1,2,3 . . .},αi ∈ {1,2}, for 1≤ i≤N} be a set of multi-

indexes. In our model I is the index set of all possible particles. In other words, initially there

are a finite number of particles and each particle generates at most 2 offspring. For any particle

α = (α0,α1, . . . ,αN) ∈ I , let α − 1 = (α0 . . . ,αN−1),α − 2 = (α0, . . . ,αN−2), . . . ,α −N = (α0)

be the ancestors of α . Then, |α|= N is the number of the ancestors of the particle α . It is easy to

see that the ancestors of any particle α are uniquely determined.

Fix a time interval [0,T ]. Let (Ω,F ,P) be a complete probability space, on which {Bα
t , t ∈

[0,T ]}α∈I are independent d-dimensional standard Brownian motions, and W is a d-dimensional

space-time white Gaussian random field on [0,T ]×Rd independent of the family {Bα}.

Let xt = x(x0,Bα ,r, t), where 0≤ r ≤ t ≤ T , be the unique solution to the following SDE:

xt = x0 +Bα
t −Bα

r +

ˆ t

r

ˆ
Rd

h(y− xs)W (ds,dy), (2.1.9)
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where x0 ∈ Rd , r ∈ [0, t) and h is a d × d matrix-valued function. We assume that h satisfies

Hypothesis (H0).

For any t ∈ [0,T ], let tn =
bntc

n be the last branching time before t. For any α = (α0,α1, . . . ,αN),

if ntn = bntc ≤N, let αt = (α0, . . . ,αbntc) be the ancestor of α at time t. Suppose that each particle,

which starts from the death place of its parent, moves in Rd following the motion described by the

SDE (2.1.9) during its lifetime. Then, the path of any particle α and all its ancestors, denoted by

xα,n
t , is given by

xα,n
t = xαt ,n

t =


x
(

xn
α0
,B(α0),0, t

)
, 0≤ t < 1

n ,

x
(
xαt−1,n

t−n
,Bαt , tn, t

)
, 1

n ≤ t < N+1
n ,

∂ , otherwise.

Here xn
α0
∈ Rd is the initial position of particle (α0), xαt−1,n

t−n
:= lims↑tn xαt−1,n

s , and ∂ denotes the

“cemetery”-state, that can be understood as a point at infinity.

Let ξ = {ξ (x),x ∈ Rd} be a real-valued random field on Rd with covariance

E
(
ξ (x)ξ (y)

)
= κ(x,y), (2.1.10)

for all x,y ∈ Rd . Assume that ξ satisfies the following conditions:

Hypothesis (H1). (i) ξ is a symmetric random field, that is P(ξ (x)> z) = P(ξ (x)<−z) for all

x ∈ Rd and z ∈ R.

(ii) sup
x∈Rd

E
(
|ξ (x)|p

)
< ∞ for some p > 2.

(iii) κ is continuous and bounded on Rd×Rd .

For any n≥ 1, the random field ξ is used to define the offspring distribution after a scaling 1√
n .

In order to make the offspring distribution a probability measure, we introduce the truncation of
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the random field ξ , denoted by ξ n, as follows:

ξ
n(x) =



√
n, if ξ (x)>

√
n,

−
√

n, if ξ (x)<−
√

n,

ξ (x), otherwise.

(2.1.11)

The correlation function of the truncated random field is then given by

κn(x,y) = E
(
ξ

n(x)ξ n(y)
)
.

Let (ξ n
i )i≥0 be independent copies of ξ n. Denote by ξ

n+
i and ξ

n−
i the positive and negative part

of ξ n
i respectively. Let Nα,n ∈ {0,1,2} be the offspring number of the particle α at the branching

time |α|+1
n . Assume that {Nα,n, |α| = i} are conditionally independent given ξ n

i and the position

of α at its branching time, with a distribution given by

P
(

Nα,n = 2|ξ n
i ,x

α,n
i+1

n
−

)
=

1√
n

ξ
n+
i

(
xα,n

i+1
n
−

)
,

P
(

Nα,n = 0|ξ n
i ,x

α,n
i+1

n
−

)
=

1√
n

ξ
n−
i

(
xα,n

i+1
n
−

)
,

P
(

Nα,n = 1|ξ n
i ,x

α,n
i+1

n
−

)
= 1− 1√

n
|ξ n

i |
(

xα,n
i+1

n
−

)
.

For any particle α = (α0, . . . ,αN), α is called to be alive at time t, denoted by α ∼n t, if the

following conditions are satisfied:

(i) There are exactly N branching before or at t: bntc= N.

(ii) α has an unbroken ancestors line: αN−i+1 ≤ Nα−i,n, for all i = 1,2, . . . ,N.

[Introduction of Nα,n allows the particle α produce one more generation, namely, produce new

particle (α,Nα,n). However, (α,0) is considered no longer alive and will not produce offspring

any more.] For any n, denote by Xn = {Xn
t , t ∈ [0,T ]} the empirical measure-valued process of the
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particle system. Then, Xn is a discrete measure-valued process, given by

Xn
t =

1
n ∑

α∼nt
δxα,n

t
, (2.1.12)

where δx is the Dirac measure at x ∈Rd , and the sum is among all alive particles at time t ∈ [0,T ].

Then, for any φ ∈C2
b(R

d), with the notation (2.1.8), we have

Xn
t (φ) =

ˆ
Rd

φ(x)Xn
t (dx) =

1
n ∑

α∼n
φ(xα,n

t ).

2.2 Main results

Let (Ω,F ,{Ft}t∈[0,T ],P) be a complete filtered probability space that satisfies the usual conditions.

Suppose that W is a d-dimensional space-time white Gaussian random field on [0,T ]×Rd , and V

is a one-dimensional Gaussian random field on [0,T ]×Rd independent of W , that is time white

and spatially colored with correlation κ defined in (2.1.10):

E
(
V (t,x)V (s,y)

)
= (t ∧ s)κ(x,y),

for all s, t ∈ [0,T ] and x,y∈Rd . Assume that {W (t,x),x∈Rd}, {V (t,x),x∈Rd} are Ft-measurable

for all t ∈ [0,T ], and {W (t,x)−W (s,x),x ∈Rd}, {V (t,x)−V (s,x),x ∈Rd} are independent of Fs

for all 0≤ s < t ≤ T .

Denote by A∗ the adjoint of A, where A = A(1) is the generator defined in (2.1.6). Consider the

following SPDE:

ut(x) =µ(x)+
ˆ t

0
A∗us(x)ds−

d

∑
i, j=1

ˆ t

0

ˆ
Rd

∂

∂xi

[
hi j(y− x)us(x)

]
W j(ds,dy)

+

ˆ t

0
us(x)

V (ds,dx)
dx

. (2.2.1)

Definition 2.2.1. Let u = {ut(x), t ∈ [0,T ],x ∈ Rd} be a random field. Then,
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(i) u is said to be a strong solution to the SPDE (2.2.1), if u is jointly measurable on [0,T ]×

Rd ×Ω, adapted to {Ft}t∈[0,T ] and for any φ ∈ C2
b(R

d), the following equation holds for

every t ∈ [0,T ]:

ˆ
Rd

φ(x)ut(x)dx =
ˆ
Rd

φ(x)µ(x)dx+
ˆ t

0

ˆ
Rd

Aφ(x)us(x)dxds

+

ˆ t

0

ˆ
Rd

[ˆ
Rd

∇φ(x)∗h(y− x)us(x)dx
]
W (ds,dy)

+

ˆ t

0

ˆ
Rd

φ(x)us(x)V (ds,dx), a.s. (2.2.2)

where the last two stochastic integrals are Walsh’s integral (c.f. Walsh [79]).

The solution to (2.2.1) is said to be pathwise unique, if whenever u and ũ are two solutions

to (2.2.1), then there exists a set G ∈F with probability one, such that ut(ω) = ũt(ω) for all

t ∈ [0,T ] and ω ∈ G.

(ii) u is said to be a weak solution to the SPDE (2.2.1), if there exists a filtered probability space,

on which W and V are independent random fields that satisfy the above properties, such that

u is a strong solution with this probability space.

Let Xn = {Xn
t ,0 ≤ t ≤ T} be defined by (2.1.12). In order to show the convergence of Xn in

D([0,T ];MF(Rd)), we make use of the following hypothesis on the initial measures Xn
0 :

Hypothesis (H2). (i) sup
n≥1
|X (n)

0 (1)|< ∞.

(ii) Xn
0 ⇒ X0 in MF(Rd) as n→ ∞.

(iii) X0 has a bounded density µ .

In Section 2.3 we prove the following two theorems.

Theorem 2.2.2. Let Xn be defined in (2.1.12). Then, under hypotheses(H1) and (H2), we have the

following results:

(i) Xn⇒ X in D([0,T ],MF(Rd)) as n→ ∞.
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(ii) The limit X = {Xt , t ∈ [0,T ]} is a continuous MF(Rd)-valued process. In addition, for almost

all ω ∈Ω and every t ∈ [0,T ], as a finite measure on Rd , Xt(ω) has a density ut(x,ω).

(iii) u = {ut(x), t ∈ [0,T ],x∈Rd} is a weak solution to the SPDE (2.2.1) in the sense of Definition

2.2.1.

Theorem 2.2.3. Assume the Hypotheses (H1) and (H2) (iii). The SPDE (2.2.1) has a jointly

continuous strong solution, which is pathwise unique in the space of jointly continuous solutions

in the sense of Definition 2.2.1.

The last main result in this chapter is the following theorem concerning the Hölder continuity

of the solution to the SPDE (2.2.1).

Theorem 2.2.4. Let u = {ut(x), t ∈ [0,T ],x ∈ Rd} be the strong solution to the SPDE (2.2.1) in

the sense of Definition 2.2.1. Then, for any β1,β2 ∈ (0,1) and p > 1, there exists a constant C that

depends on T , d, h, p, β1, and β2, such that for all x,y ∈ Rd and 0 < s < t ≤ T

‖ut(x)−us(y)‖2p ≤Cs−
1
2
(
|x− y|β1 + |t− s|

1
2 β2
)
.

Hence by Kolmogorov’s criteria, ut(x) is almost surely jointly Hölder continuous on (0,T ]×Rd ,

with exponent β1 ∈ (0,1) in space and β2 ∈ (0, 1
2) in time.

2.3 Proof of Theorems 2.2.2 and 2.2.3

We prove Theorems 2.2.2 and 2.2.3 in the following steps:

(i) In Section 2.3.1, we show that {Xn}n≥1 is a tight sequence in D([0,T ];MF(Rd)), and the

limit of any convergent subsequence in law solves a martingale problem.

(ii) In Section 2.3.2, we show that any solution to the martingale problem has a density almost

surely.
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(iii) In Section 2.3.3, we show the equivalence between martingale problem (c.f. (2.3.4) - (2.3.5)

below) and the SPDE (2.2.1). Finally, we prove Theorems 2.2.2 and 2.2.3.

2.3.1 Tightness and martingale problem

Recall the empirical measure-valued process Xn = {Xn
t , t ∈ [0,T ]} given by (2.1.12). Let A = A(1)

be the generator of one particle motion defined in (2.1.6). For any φ ∈ C2
b(R

d), similar to the

equality (49) of Sturm [78], we can decompose Xn
t as follows:

Xn
t (φ) = Xn

0 (φ)+Zn
t (φ)+Mb,n

t (φ)+Bn
t (φ)+Un

t (φ), (2.3.1)

where

Zn
t (φ) =

ˆ t

0
Xn

u (Aφ)du,

Mb,n
t (φ) = Mb,n

tn (φ) =
1
n ∑

sn<tn
∑

α∼nsn

φ
(
xα,n

sn+
1
n

)
(Nα,n−1),

Bn
t (φ) =

1
n

(
∑

sn<tn
∑

α∼nsn

ˆ sn+
1
n

sn

∇φ(xα,n
u )∗dBα

u + ∑
α∼nt

ˆ t

tn
∇φ(xα,n

u )∗dBα
u

)
,

and

Un
t (φ) =

1
n

(
∑

sn<tn
∑

α∼nsn

ˆ sn+
1
n

sn

ˆ
Rd

∇φ(xα,n
u )∗h(y− xα,n

u )W (du,dy)

+ ∑
α∼nt

ˆ t

tn

ˆ
Rd

∇φ(xα,n
u )∗h(y− xα,n

u )W (du,dy)
)
.
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Notice that

E ∑
α∼nsn

ˆ sn+
1
n

sn

ˆ
Rd

∣∣∣∇φ(xα,n
u )∗h(y− xα,n

u )
∣∣∣2dydu

≤ ∑
|α|=bsnc

E
ˆ sn+

1
n

sn

ˆ
Rd

∣∣∣∇φ(xα,n
u )∗h(y− xα,n

u )
∣∣∣dydu

≤2nT n−1N0‖φ‖1,∞‖h‖2 < ∞,

where N0 denotes the number of initial particles, that is a finite integer. Therefore, by the stochastic

Fubini theorem (c.f. Lemma 4.1 on page 116 of Ikeda & Watanabe [49]), we can write:

Un
t (φ) =

ˆ t

0

ˆ
Rd

(ˆ
Rd

∇φ(x)∗h(y− x)Xu(dx)
)

W (du,dy).

As in Sturm [78], consider the natural filtration, generated by the process Xn

F n
t = σ

(
{xα,n,Nα,n∣∣|α|< bntc}∪{xα,n

s ,s≤ t, |α|= bntc}
)
,

and a discrete filtration at branching times

F̃ n
tn = σ

(
F n

tn ∪{x
α,n∣∣|α|= ntn}

)
= F n

(tn+n−1)−.

Then, Bn
t (φ) and Un

t (φ) are continuous F n
t -martingales, while Mb,n

t (φ) is a discrete F̃ n
tn-martingale.

Lemma 2.3.1. Assume Hypotheses (H0), (H1), (H2) (i) and (ii). Let p > 2 be given in Hypothesis

(H1). Then, for all φ ∈C2
b(R

d),

(i) E
(

sup
0≤t≤T

|Xn
t (φ)|p

)
, E
(

sup
0≤t≤T

|Mb,n
t (φ)|p

)
and E

(
sup

0≤t≤T
|Un

t (φ)|p
)

are bounded uniformly

in n≥ 1.

(ii) E
(

sup
0≤t≤T

|Bn
t (φ)|p

)
→ 0, as n→ ∞.
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Proof. (i) By the same argument as that for Lemma 3.1 of Sturm [78], we can show that

E
(

sup
0≤t≤T

|Mb,n
t (1)|p

)
≤C
ˆ T

0
E
(

sup
0≤s≤t

|Xn
s (1)|p

)
dt

where the constant C > 0 does not depend on n. Again similarly as Strum did for (58) of Sturm

[78], we can also deduce the following inequality

E
(

sup
0≤t≤T

|Xn
t (1)|p

)
≤C
(

1+E
(

sup
0≤t≤T

|Mb,n
tn (1)|p

))
≤C1 +C2

ˆ T

0
E
(

sup
0≤s≤t

|Xn
s (1)|p

)
dt,

where C1,C2 are constants independent of n. Notice that

sup
0≤t≤T

|Xn
t (1)| ≤ 2nT Nn

0
n
,

that is bounded for fixed n. Then, it follows from Gronwall’s inequality that the sequence

{
E
(

sup
0≤t≤T

|Xn
t (1)|p

)}
n≥1

is uniformly bounded in n.

The uniform boundedness of collections

E
(

sup
0≤t≤T

|Xn
t (φ)|p

)
and E

(
sup

0≤t≤T
|Mb,n

t (φ)|p
)

follows immediately.
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We estimate Un
t (φ) as follows:

〈Un(φ)〉t =
〈ˆ ·

0

ˆ
Rd

(ˆ
Rd

∇φ(x)∗h(y− x)Xn
u (dx)

)
W (du,dy)

〉
t

=
d

∑
j=1

ˆ t

0

ˆ
Rd

( d

∑
i=1

ˆ
Rd

∂iφ(x)hi j(y− x)Xn
u (dx)

)2
dydu

=

ˆ t

0

ˆ
Rd×Rd

∇φ(x)∗ρ(x− z)∇φ(z)Xn
u (dx)Xn

u (dz)du

≤‖ρ‖∞‖φ‖2
1,∞

ˆ T

0
|Xn

u (1)|
2 du. (2.3.2)

Thus by (2.3.2), Burkholder-Davis-Gundy’s and Jensen’s inequalities, we have

E
(

sup
0≤t≤T

|Un
t (φ)|

p
)
≤cpE

(
〈Un(φ)〉

p
2
T
)
≤ cp‖ρ‖

p
2
∞‖φ‖p

1,∞T
p
2−1E

(ˆ T

0
|Xn

u (1)|pdu
)

≤cp‖ρ‖
p
2
∞‖φ‖p

1,∞T
p
2 E
(

sup
0≤t≤T

|Xn
t (1)|

p
)
, (2.3.3)

that is also uniformly bounded in n.

(ii) Note that {Bα} are independent Brownian motions. Then, by Burkholder-Davis-Gundy’s

inequality, we have

E
(

sup
0≤t≤T

|Bn
t (φ)|2

)
≤ c2

n2

[
∑

sn<Tn

∑
α∼nsn

E
(ˆ sn+

1
n

sn

|∇φ(xα,n
u )|2du

)
+ ∑

α∼nt
E
(ˆ T

Tn

|∇φ(xα,n
u )|2du

)]
=

c2

n
E
(ˆ T

0

ˆ
Rd
|∇φ(x)|2Xu(dx)du

)
≤ c2

n
‖φ‖2

1,∞TE
(

sup
0≤t≤T

|Xn
t (1)|p

)
→ 0,

because E
(

sup
0≤t≤T

|Xn
t (1)|p

)
is uniformly bounded in n.

As a consequence of Lemma 2.3.1, the collection

{
sup

0≤t≤T
|Xn

t (φ)|2, sup
0≤t≤T

|Mb,n
t (φ)|2, sup

0≤t≤T
|Un

t (φ)|2
}

n≥1
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is uniformly integrable.

Definition 2.3.2. Let {Xα} be a collection of real-valued stochastic processes. A family of stochas-

tic processes {Xα} is said to be C-tight, if it is tight, and the limit of any subsequence is continuous.

Lemma 2.3.3. Assume Hypotheses (H0),(H1),(H2) (i) and (ii). For all φ ∈ C2
b(R

d), Mb,n(φ),

Zn(φ), and Xn(φ) and Un(φ) are C-tight sequences in D([0,T ],R).

Proof. By an argument to that used by Sturm in the proof of Lemma 3.6 in Sturm [78], we can

deduce the C-tightness of Mb,n(φ) and Zn(φ).

We prove the tightness of Xn
t (φ) by checking Aldous’s conditions (see Theorem 4.5.4 of Daw-

son [21]). By Chebyshev’s inequality, for any fixed t ∈ [0,T ], and N > 0, we have

P(|Xn
t (φ)|> N)≤ 1

N pE
(
|Xn

t (φ)|
p )≤ 1

N pE
(

sup
0≤t≤T

|Xn
t (φ)|

p
)
→ 0,

uniformly in n as N→ ∞ by Lemma 2.3.1 (i).

On the other hand, for any n ≥ 1, we extend Xn to the time interval [0,Tn +
1
n ] in such a way

that Xn performs the same diffusion/branching mechanism as before on [T,Tn +
1
n ]. Denote by

X̃n = {X̃n(t), t ∈ [0,Tn +
1
n ]} the extended process. Then, by Theorem 10.13 of Dynkin [27], we

know that X̃n is a strong Markov process on [0,Tn +
1
n ].

Let {τn}n≥1 be any collection of stopping times bounded by T and let {δn}n≥1 be any positive

sequence that decreases to 0, such that τn + δn ≤ T . Then, due to the uniform boundedness of

E
(

sup
0≤t≤T

|Xn
t (φ)|p

)
and the strong Markov property of X̃n, we have

P
(∣∣Xn

τn+δn
(φ)−Xn

τn
(φ)
∣∣> ε

)
= P

(∣∣X̃n
τn+δn

(φ)− X̃n
τn
(φ)
∣∣> ε

)
=P
(∣∣∣X̃n

δn
(φ)− X̃n

0 (φ)
∣∣∣> ε

)
≤ 1

ε pE
(∣∣∣X̃n

δn
(φ)− X̃n

0 (φ)
∣∣∣p )

≤δ

p
2

n

ε p cp‖ρ‖
p
2
∞‖φ‖p

∞

[
E
(

sup
0≤t≤T

|Xn
t (1)|

p
)
+E
(
|Xn

0 (1)|
p
)]
→ 0,

as n→ 0. Thus both of Aldous’s conditions are satisfied, and then it follows that Xn
t (φ) is tight in
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D([0,T ],R).

Recall the decomposition formula (2.3.1):

Xn
t (φ) = Xn

0 (φ)+Zn
t (φ)+Mb,n

t (φ)+Bn
t (φ)+Un

t (φ).

Notice that Xn(φ), Zn(φ), Mb,n(φ) are tight sequences as proved just above, Xn
0 (φ) converges

weakly by assumption, and Bn
t (φ) converges 0 in L2(Ω) uniformly for all t ∈ [0,T ] by Lemma

2.3.1 (ii). As a consequence, Un(φ) is tight in D([0,T ],R). In addition, by Proposition VI.3.26 of

Jacod & Shiryaev [50], every limit of a tight sequence of continuous process Un(φ) is continuous.

It follows that Un(φ) and Xn(φ) are C-tight sequences in D([0,T ];R).

Let S = S (Rd) be the Schwartz space on Rd , and let S ′ be the Schwartz dual space. Then,

we have the following lemma:

Lemma 2.3.4. Assume Hypotheses (H0), (H1) and (H2) (i), (ii). Then,

(i) {Xn}n≥1 is a C-tight sequence in D([0,T ];MF(Rd)).

(ii) {Bn}n≥1, {Mb,n}n≥1, and {Un}n≥1 are C-tight in D([0,T ];S ′).

Proof. Let R̂d = Rd ∪{∂} be the one point compactification of Rd . Then, by Theorem 4.6.1 of

Dawson [21] and Lemma 2.3.3, {Xn}n≥1 is a tight sequence in D([0,T ];MF(R̂d)).

On the other hand, by the same argument as in Lemma 3.9 of Sturm [78], we can show that any

limit of a weakly convergent subsequence Xnk in D([0,T ];MF(R̂d)) belongs to C([0,T ];MF(Rd)),

the space of continuous MF(Rd)-valued functions on [0,T ]. Therefore, {Xn}n≥1 is a C-tight se-

quence in D([0,T ];MF(Rd)).

To show the property (ii), notice that S ⊂ C2
b(R

d). Then, by Theorem 4.1 of Mitoma [69],

{Bn}n≥1, {Mb,n}n≥1, and {Un}n≥1 are C-tight in D([0,T ];S ′).

Proposition 2.3.5. Assume Hypotheses (H0), (H1),(H2) (i) and (ii). Let X be the limit of a weakly

convergent subsequence {Xnk}k≥1 in D([0,T ];MF(Rd)). Then, X is a solution to the following
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martingale problem: for any φ ∈C2
b(R

d), the process M(φ) = {Mt(φ) : 0≤ t ≤ T}, given by

Mt(φ) :=Xt(φ)−X0(φ)−
ˆ t

0
Xs(Aφ)ds, (2.3.4)

is a continuous and square integrable F X
t -adapted martingale with quadratic variation:

〈M(φ)〉t =
ˆ t

0

ˆ
Rd×Rd

∇φ(x)∗ρ(x− y)∇φ(y)Xs(dx)Xs(dy)ds

+

ˆ t

0

ˆ
Rd×Rd

κ(x,y)φ(x)φ(y)Xs(dx)Xs(dy)ds. (2.3.5)

Proof. Let {Xnk}k≥1 be a weakly convergent subsequence in D([0,T ];MF(Rd)). By taking fur-

ther subsequences, we can assume, in view of Lemma 2.3.4 (ii), that {Bnk}k≥1, {Mb,nk}k≥1, and

{Unk}k≥1 are weakly convergent subsequences in D([0,T ];S ′).

Then, by Skorohod’s representation theorem, there exists a probability space (Ω̃,F̃ , P̃), on

which (X̃nk ,M̃b,nk , B̃nk ,Ũnk) has the same joint distribution as (Xnk ,Mb,nk ,Bnk ,Unk) for all k ≥ 1,

and converge a.s. to (X̃ ,M̃b, B̃,Ũ) in the product space D([0,T ],MF(R̂d))×D([0,T ],S ′)3.

Then, for any φ ∈ S ′, (X̃nk(φ),M̃b,nk(φ), B̃nk(φ),Ũnk(φ)) converges a.s. in D([0,T ],R)4.

Since
{

sup
0≤t≤T

|Xn
t (φ)|2, sup

0≤t≤T
|Mb,n

t (φ)|2, sup
0≤t≤T

|Un
t (φ)|2

}
n≥1

is uniformly integrable, the conver-

gence is also in L2([0,T ]×Ω).

For any t ∈ [0,T ], let

M̃nk
t (φ) := X̃nk

t (φ)− X̃nk
0 (φ)−

ˆ t

0
X̃nk

s (Aφ)ds = M̃b,nk
t (φ)+ B̃nk

t (φ)+Ũnk
t (φ).

Then, it converges to a continuous and square integrable martingale M̃(φ) = M̃b(φ) + Ũ(φ) in

L2(Ω̃) with respect to its natural filtration.

The next step is to compute the quadratic variation of M̃(φ). Notice that W and {Bα} are

independent, then Un and Bn are orthogonal. As a consequence, Ũnk and B̃nk are also orthogonal.

On the other hand, M̃b,n(φ) is a pure jump martingale, while Ũnk(φ) and B̃nk(φ) are continuous

martingales. Due to Theorem 43 on page 353 of Dellacherie & Meyer [26], M̃b,n(φ), B̃nk(φ)
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and Ũnk(φ) are mutually orthogonal. By the same argument as in Lemma 2.3.1, we can show that

〈M̃b,nk(φ)+ B̃b,nk(φ)+Ũnk(φ)〉t = 〈M̃b,nk(φ)〉t +〈B̃b,nk(φ)〉t +〈Ũnk(φ)〉t are uniformly integrable.

Then, by Theorem II.4.5 of Perkins [74], we have

〈M̃b,nk(φ)+ B̃b,nk(φ)+Ũnk(φ)〉t = 〈M̃b,nk(φ)〉t + 〈B̃b,nk(φ)〉t + 〈Ũnk(φ)〉t

→ 〈M̃b(φ)〉t + 〈Ũ(φ)〉t = 〈M̃(φ)〉t

as k→ ∞ in D([0,T ],R) in probability.

On the other hand, by the same argument of Lemma 3.8 of Sturm [78], we have

〈M̃b(φ)〉t = lim
k→∞
〈M̃b,nk(φ)〉t =

ˆ t

0

ˆ
Rd×Rd

κ(x,y)φ(x)φ(y)X̃s(dx)X̃s(dy)ds, a.s.

For 〈Ũ(φ)〉t , by (2.3.2), since X̃nk(φ)→ X̃(φ) in L2([0,T ]×Ω), it follows that

lim
k→∞
〈Ũnk(φ)〉t = lim

k→∞

ˆ t

0

ˆ
Rd×Rd

∇φ(x)∗ρ(x− z)∇φ(z)X̃n
u (dx)X̃n

u (dz)du

=

ˆ t

0

ˆ
Rd×Rd

∇φ(x)∗ρ(x− z)∇φ(z)X̃u(dx)X̃u(dz)du.

As a consequence, M̃ = {M̃t , t ∈ [0,T ]}, where

M̃t(φ) = X̃t(φ)− X̃0(φ)−
ˆ t

0
X̃s(Aφ)ds = M̃b

t (φ)+ B̃t(φ)+Ũt(φ),

is a continuously square integrate martingale with the quadratic variation given by the expression

(2.3.5).

Finally, by the same argument as in Theorem II in Section 4.2 of Perkins [74], we can show

M̃(φ) is an F X̃ -adapted martingale.
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2.3.2 Absolute continuity

Assume Hypotheses (H0) and (H1). Let Xt be a solution to the martingale problem (2.3.4) - (2.3.5).

In this section, we show that for almost every t ∈ [0,T ], as an MF(Rd)-valued random variable, Xt

has a density almost surely.

For any n≥ 1, f ∈C2
b(R

nd), and µ ∈MF(Rd), we define

µ
⊗n( f ) :=

ˆ
Rd
· · ·
ˆ
Rd

f (x1, . . . ,xn)µ(dx1) · · ·µ(dxn).

We derive the moment formula E(X⊗n
t ( f )) of the process X . In the one-dimensional Dawson-

Watanabe branching case, Skoulakis & Adler [75] obtained the formula by computing the limit

of particle approximations. An alternative approach by Xiong [83] consists in differentiating a

conditional stochastic log-Laplace equation. In current chapter we use the techniques of moment

duality to derive the moment formula. It can be also formulated by computing the limit of particle

approximations.

For any integers n ≥ 2 and k ≤ n, we make use of the notation xk = (x1
k , . . . ,x

d
k ) ∈ Rd and

x = (x1, . . . ,xn) ∈Rnd . Let Φ
(n)
i j : C2

b(R
nd)→C2

b(R
nd), and F(n),G(n) : C2

b(R
nd)×MF(Rd)→R be

given by

(Φ
(n)
i j f )(x1, . . . ,xn) := κ(xi,x j) f (x1, . . . ,xn), i, j ∈ {1,2, . . . ,n},

F(n)( f ,µ) := µ
⊗n( f ),

and

G(n)( f ,µ) := µ
⊗n(A(n) f )+

1
2 ∑

1≤ i, j ≤ n

i 6= j

µ
⊗n(Φ

(n)
i j f ),

where κ ∈ C2
b(R

2d) is the correlation of the random field ξ given by (2.1.10), and A(n) is the

generator on n-particle motion defined in (2.1.6).

Lemma 2.3.6. Let Xt be a solution to the martingale problem (2.3.4) - (2.3.5). Then, for any n≥ 2
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and f ∈C2
b(R

nd), the following process

F(n)( f ,Xt)−
ˆ t

0
G(n)( f ,Xs)ds

is a martingale.

Proof. See Lemma 1.3.2 of Xiong [84].

Let {T (n)
t }t≥0 be the semigroup generated by A(n), that is, T (n)

t : C2
b(R

nd)→C2
b(R

nd), given by

T (n)
t f (x1, . . . ,xn) =

ˆ
Rnd

p(t,(x1, . . . ,xn),(y1, . . . ,yn)) f (y1, . . . ,yn)dy1 . . .dyn,

where p is the transition density of n-particle-motion.

Let {S(n)k }k≥1 be i.i.d. uniformly distributed random variables taking values in the set {Φi j,1≤

i, j ≤ n, i 6= j}. Let {τk}k≥1 be i.i.d exponential random variables independent of {S(n)k }k≥1, with

rate λn =
1
2n(n− 1). Let η0 ≡ 0, and η j = ∑

j
i=1 τi for all j ≥ 1. For any f ∈C2

b(R
nd), we define

a C2
b(R

nd)-valued random process Y (n) = {Y (n)
t ,0 ≤ t ≤ T} as follows: for any j ≥ 0 and t ∈

[η j,η j+1),

Y (n)
t := T (n)

t−η j
S(n)j T (n)

τ j · · ·S
(n)
2 T (n)

τ2 S(n)1 T (n)
τ1 f . (2.3.6)

Then, Y (n) is a Markov process with Y (n)
0 = f . It involves countable many i.i.d. jumps S(n)k , con-

trolled by i.i.d. exponential clocks τk. In between jumps, the process evolves deterministically by

the continuous semigroup T (n)
t . Notice that the exponential clock is memoryless, and the semi-

group T (n)
t is generated by a time homogeneous Markov process. Therefore, Y (n) is also time

homogeneous.

Lemma 2.3.7. For any n≥ 2 and f ∈C2
b(R

nd), let Y (n)
t be defined in (2.3.6). Then

E
(

sup
x∈Rnd

∣∣Y (n)
t (x)

∣∣)≤ ‖ f‖∞ exp(‖κ‖∞λnt) . (2.3.7)
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Proof. Since T (n)
t is the semigroup generated by a Markov process, for any t > 0 and f ∈C2

b(R
nd),

‖T (n)
t f‖∞ ≤ ‖ f‖∞. By definition of the jump operators {S(n)j } j≥1, it is easy to see that ‖S(n)j f‖∞ ≤

‖κ‖∞‖ f‖∞. Thus we have

E
(

sup
x∈Rnd

∣∣Y (n)
t (x)

∣∣)≤ ‖ f‖∞

∞

∑
j=0

[
‖κ‖ j

∞P(η j < t)
]
. (2.3.8)

Notice that η j is the sum of i.i.d. exponential random variables. Then, we have

P(η j < t) = 1− exp(−λnt)
j−1

∑
k=0

(λnt)k

k!
= exp(λn(t ′− t))

(λnt) j

j!
, (2.3.9)

for some t ′ ∈ (0, t). Therefore, (2.3.7) follows from (2.3.8) and (2.3.9).

Let H(n) : C2
b(R

nd)×MF(Rd)→ R be given by

H(n)( f ,µ) := G(n)( f ,µ)−λnF(n)( f ,µ).

Lemma 2.3.8. Let n≥ 2 and µ ∈MF(Rd). Then, the process

F(n)(Y (n)
t ,µ)−

ˆ t

0
H(n)(Y (n)

s ,µ)ds (2.3.10)

is a martingale.

Proof. Let µ(n) be any finite measure on Rnd . Then, we have

E
(
µ
(n)(Y (n)

t )
)
= E

(
µ
(n)(Y (n)

t )1{τ1>t}
)
+E
(
µ
(n)(Y (n)

t )1{η1≤t<η2}
)
+o(t). (2.3.11)

For the first term, we have

E
(
µ
(n)(Y (n)

t )1{τ1>t}
)
=µ

(n)(T (n)
t f )P(τ1 > t) = µ

(n)(T (n)
t f )exp(−λnt)). (2.3.12)
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For the second term, since τ1, τ2 are independent, then for any 0≤ s≤ t, we have

P(τ1 + τ2 > t,τ1 ≤ s) =
ˆ s

0

ˆ
∞

t−s1

λ
2
n exp(−λn(s1 + s2))ds2ds1 = λnse−λnt . (2.3.13)

Note that by Lemma 2.3.7, |Y (n)
· | is integrable on [0,T ]×Rnd ×Ω with respect to the product

measure dt×µ(n)(dx)×P(dω). Then, by (2.3.13), Fubini’s theorem, and the mean value theorem,

we have

E
(
µ
(n)(Y (n)

t )1{η1≤t<η2}
)

=
1
2 ∑

1≤ i, j ≤ n

i 6= j

ˆ t

0

ˆ
Rnd

(
T (n)

t−sΦ
(n)
i j T (n)

s f
)
(x)exp(−λnt)µ

(n)(dx)ds

=
t
2

exp(−λnt) ∑
1≤ i, j ≤ n

i 6= j

ˆ
Rnd

(
T (n)

t−t ′Φ
(n)
i j T (n)

t ′ f
)
(x)µ(n)(dx), (2.3.14)

for some t ′ ∈ (0, t). Combining (2.3.11), (2.3.12), and (2.3.14), we have

lim
t↓0

E
(
µ(n)(Y (n)

t )
)
−µ(n)( f )

t
= µ

(n)(A(n) f )+
1
2 ∑

1≤ i, j ≤ n

i 6= j

µ
(n)(

Φ
(n)
i j f − f

)
.

By Proposition 4.1.7 of Ethier & Kurtz [31], the following process:

µ
(n)(Y (n)

t )−
ˆ t

0

[
µ
(n)(A(n)Y (n)

s )+
1
2 ∑

1≤ i, j ≤ n

i 6= j

µ
(n)(Φ

(n)
i j Y (n)

s −Y (n)
s )
]
ds, (2.3.15)

is a martingale. Then, the lemma follows by choosing µ(n) = µ⊗n.

By Lemma 2.3.6, 2.3.8 and Corollary 3.2 of Dawson & Kurtz [24], we have the following
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moment equality:

E
(
X⊗n

t ( f )
)
= E

[
X⊗n

0 (Y (n)
t )exp

(ˆ t

0
λnds

)]
= exp

(1
2

n(n−1)t
)
E
(
X⊗n

0 (Y (n)
t )
)
. (2.3.16)

Lemma 2.3.9. Let n≥ 2, and let f ∈C2
b(R

nd).

(i) The following PDE

∂tvt(x) = A(n)vt(x)+
1
2 ∑

1≤ i, j ≤ n

i 6= j

κ(xi,x j)v(t,x), (2.3.17)

with initial value v0(x) = f (x), has a unique solution.

(ii) Let X = {Xt , t ∈ [0,T ]} be a solution to the martingale problem (2.3.4) - (2.3.5). Then,

E
(
X⊗n

t ( f )
)
= X⊗n

0 (vt). (2.3.18)

Proof. Firstly, we claim that the operator A(n) = 1
2(∆+B(n)) is uniformly parabolic in the sense of

Friedman (see Section 1.1 of Friedman [35]). Because ∆ is uniformly parabolic, then it suffices to

analyse the properties of B(n). For any k = 1, . . . ,n, i = 1, . . . ,d, and ξ i
k ∈ R, let ξk = (ξ 1

k , . . . ,ξ
d
k ).

Then, we have

n

∑
k1,k2=1

d

∑
i, j=1

ρ
i j(xk1− xk2)ξ

i
k1

ξ
j

k2
=

ˆ
Rd

∣∣∣∣ n

∑
k=1

h∗(z− xk)ξk

∣∣∣∣2dz≥ 0.

Thus B(n) is parabolic. On the other hand, by Jensen’s inequality, we have

n

∑
k1,k2=1

d

∑
i, j=1

ρ
i j(xk1− xk2)ξ

i
k1

ξ
j

k2
=

ˆ
Rd

∣∣∣∣ n

∑
k=1

h∗(z− xk)ξk

∣∣∣∣2dz≤ n‖ρ‖∞

n

∑
k=1
|ξk|2.

It follows that A(n) = 1
2(∆+B(n)) is uniformly parabolic.

Since h ∈ H3(Rd;Rd ⊗Rd), ρ(x− y) =
´
Rd h(z− x)h∗(z− y)dz has bounded derivatives up
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to order three, then by Theorem 1.12 and 1.16 of Friedman [35], the PDE (2.3.17) has a unique

solution.

In order to show (ii), let

ṽt(x) = E
(
Y (n)

t (x)
)
,

where Y (n) is defined by (2.3.6). By the same argument as we did in the proof of Lemma 2.3.7, we

can show that for any t ∈ [0,T ] and x ∈ Rnd

E
(

sup
x∈Rd

∣∣A(n)Y (n)
t (x)

∣∣)< ∞.

Then, by the dominated convergence theorem, we have

E
(
A(n)Y (n)

t (x)
)
= A(n)E(Y (n)

t (x)).

Let µ(n) be any finite measure on Rnd . Recall that the process defined by (2.3.15) is a martingale,

then the following equality follows from Fubini’s theorem:

µ
(n)(ṽt) =E

(
µ
(n)(Y (n)

t )
)
= µ

(n)( f )+
ˆ t

0

〈
µ
(n),E

(
A(n)Y (n)

s
)〉

ds

+
1
2 ∑

1≤ i, j ≤ n

i 6= j

ˆ t

0

〈
µ
(n), [k(·i, · j)−1]E(Y (n)

s )
〉
ds

=µ
(n)( f )+

ˆ t

0

〈
µ
(n),A(n)ṽs

〉
ds+

1
2 ∑

1≤ i, j ≤ n

i 6= j

ˆ t

0

〈
µ
(n), [k(·i, · j)−1]ṽs

〉
ds.

In other words,

〈
µ
(n), ṽt− f −

ˆ t

0

[
A(n)ṽs−

1
2 ∑

1≤ i, j ≤ n

i 6= j

(k(·i, · j)−1)ṽs

]
ds
〉
= 0,
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for all µ(n) ∈MF(Rnd). It follows that ṽ = {ṽt(x), t ∈ [0,T ],x ∈ Rd} solves the following PDE

∂t ṽt(x) = A(n)ṽt(x)+
1
2 ∑

1≤ i, j ≤ n

i 6= j

[κ(xi,x j)−1]ṽt(x), (2.3.19)

with the initial value ṽ0(x) = f (x). This solution is unique by the same argument as in part (i).

Observe that

vt(x) := ṽt(x)exp
(1

2
n(n−1)t

)
, (2.3.20)

solves the equation (2.3.17). Therefore, (2.3.18) follows from (2.3.20) and the moment duality

(2.3.16).

In Lemma 2.3.9, we derived the moment formula for E
(
X (n)

t ( f )
)

in the case when n ≥ 2. If

n = 1, the dual process only involves a deterministic evolution driven by the semigroup of one

particle motion, which makes things much simpler. We write the formula below and skip the

proof. Let p(t,x,y) be the transition density of the one particle motion, then for any φ ∈C2
b(R

d),

E(Xt(φ)) = X0(T
(1)

t φ) =

ˆ
Rd

ˆ
Rd

p(t,x,y)φ(y)dyX0(dx).

The existence of the density of Xt will be derived following Wang’s idea (see Theorem 2.1 of

Wang [80]). For any ε > 0, x ∈ Rd , let pε be the heat kernel on Rd , that is

pε(x) = (2πε)−
d
2 exp

(
− |x|

2

2ε

)
.

Lemma 2.3.10. Let X = {Xt , t ∈ [0,T ]} be a solution to the martingale problem (2.3.4) - (2.3.5).

Assume that the initial measure X0 ∈MF(Rd) has a bounded density µ . Then,

ˆ T

0

ˆ
Rd

E
(∣∣Xt(pε(x−·))

∣∣2)dxdt < ∞, (2.3.21)
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and

lim
ε1,ε2↓0

ˆ T

0

ˆ
Rd

E
(∣∣Xt(pε1(x−·))−Xt(pε2(x−·))

∣∣2)dxdt = 0. (2.3.22)

Proof. Let Γ(t,(y1,y2);r,(z1,z2)) be the fundamental solution to the PDE (2.3.17) when n = 2

(see Chapter 1 of Friedman [35] for a detailed account on existence and properties of fundamental

solutions to parabolic PDEs). We write y = (y1,y2) and z = (z1,z2) ∈R2d . Then, for f ∈C2
b(R

2d),

v(t,y) =
ˆ
R2d

Γ(t,y;0,z) f (z)dz,

is the unique solution to the PDE (2.3.17) with initial condition v0 = f . Thus by Lemma 2.3.9, we

have

E
[
Xt(pε1(x−·))Xt(pε2(x−·))

]
=

ˆ
R2d

ˆ
R2d

Γ(t,y;0,z)pε1(x− z1)pε2(x− z2)dzX⊗2
0 (dy). (2.3.23)

By the inequality (6.12) of Friedman [35] on page 24, we know that there exists CΓ,λ > 0, such

that for any 0≤ r < t ≤ T ,

|Γ(t,y;r;z)| ≤CΓ p t−r
λ

(y1− z1)p t−r
λ

(y2− z2). (2.3.24)

Therefore, by the semigroup property of heat kernels and Fubini’s theorem, we have

ˆ T

0

ˆ
Rd

E
[
Xt(pε1(x−·))Xt(pε2(x−·))

]
dxdt

=

ˆ T

0

ˆ
R2d

ˆ
R2d

Γ(t,y;0,z)pε1+ε2(z1− z2)dzX⊗2
0 (dy)dt (2.3.25)

From (2.3.24), (2.3.25) and the fact that X0 ∈ MF(Rd) has a bounded density µ , it follows that

(2.3.21) is true.
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Let M be the function on R2d , given by

M (z) =
ˆ T

0

ˆ
R2d

Γ(t,y;0,z)X⊗2
0 (dy)dt.

Notice that fix 0≤ r < t ≤ T , Γ(t,y;r,x) is uniformly continuous in the spatial argument (see (6.13)

of Friedman [35] on page 24). As a consequence M is continuous. Therefore, by (2.3.24) and the

continuity of M , the function N on Rd given by

N (x) :=
ˆ
Rd

M (z1,z1− x)dz1,

is integrable and continuous everywhere. It follows that

lim
ε1,ε2→0

ˆ t

0

ˆ
Rd

E
[
Xt(pε1(x−·))Xt(pε2(x−·))

]
dxdt

= lim
ε1,ε2→0

ˆ
R2d

M (z)pε1+ε2(z1− z2)dz

= lim
ε1,ε2→0

ˆ
Rd

N (y)pε1+ε2(y)dy

= N (0) =
ˆ T

0

ˆ
Rd

ˆ
R2d

Γ(t,y;0,(x,x))X⊗2
0 (dy)dxdt (2.3.26)

Therefore, (2.3.22) is a consequence of (2.3.26).

Proposition 2.3.11. Let X = {Xt , t ∈ [0,T ]} be a solution to the martingale problem (2.3.4) -

(2.3.5). Assume that the initial measure X0 ∈MF(Rd) has a bounded density µ . Then, for almost

every t ∈ (0,T ], Xt is absolutely continuous with respect to the Lebesgue measure almost surely.

Proof. As proved in Lemma 2.3.10, for any x∈Rd and εn ↓ 0, the sequence {Xt(px
εn
)}n≥1 is Cauchy

in L2(Ω×Rd × [0,T ]). Then, it converges to some square integrable random field. By the same

argument as in Theorem 2.1 of Wang [80], we can show that the limit random field is the density

of Xt almost surely.

Remark 2.3.12. (i) The assumption in Proposition 2.3.11, that the initial measure has a bounded

density, cannot be removed. Actually, if we choose X0 = δ0, the Dirac delta mass at 0, then
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´ T
0

´
Rd Γ(t,0;0,(x,x))dxdt behaves like

´ T
0 t−

d
2 dt, which is finite only if d = 1. This is another

difference from the one dimensional situation, in which case X0(1) < ∞ is enough to imply

the existence of the density (see Theorem 2.1 Wang [80] for the Dawson-Watanabe branching

model).

(ii) The method of duality is conventionally used to prove the well-posedness of martingale prob-

lems arisen from branching mechanisms. In the one-dimensional Dawson-Watanabe model,

Wang proved the well-posedness by solving a moment problem (see Section 4 of Wang [81]).

This requires a moment bound of the form ∑
∞
n=1 rnE(|Xt(1)|n)/n! < ∞ for some positive r.

However, this method does not work in our model and here is the explanation. In the next

section, we will prove that the density u is a solution to equation (2.2.1) and when h≡ 0, we

have that E(〈ut ,1〉n) behaves like c1ec2n1+ε

for some ε > 0 (c.f. Theorem 4.4 of Chen et al.

[15] and Theorem 4.3 of Hu et al. [41] for some sharp bounds of similar SPDE’s). There-

fore, the condition ∑
∞
n=1 rnE(|〈ut ,1〉|n)/n! < ∞ for some positive r cannot be satisfied in our

model. In the next section, we prove the well-posedness of the martingale problem (2.3.4)

- (2.3.5) by the Yamada-Watanabe argument assuming the existence of the density. Without

the existence of the density, we are currently not able to use the moment duality to show the

well-posedness of the martingale problem. We are not pursue this in the current chapter.

2.3.3 Proof of Theorems 2.2.2 and 2.2.3

The proof of Theorems 2.2.2 and 2.2.3 is based on the equivalence of the martingale problem

(2.3.4) - (2.3.5) and the SPDE (2.2.1).

The equivalence between martingale problems and SDE’s in finite dimensions was observed

in the 1970s (c.f. Stroock & Varadhan [77]). An alternative proof given by Kurtz [58] consists of

the “Markov mapping theorem”. In a recent paper, Biswas et al. [7] generalized this result to the

infinite dimensional cases with one noise following Kurtz’s idea. Here in the present chapter, we

establish a similar result with two noises by using the martingale representation theorem.
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Proposition 2.3.13. Let µ ∈Cb(Rd)∩L1(Rd) be a nonnegative function on Rd . Then, u = {ut , t ∈

[0,T ]} is the density of a solution of the martingale problem (2.3.4) - (2.3.5) with initial density µ ,

if and only if u is a weak solution to the SPDE (2.2.1).

Proof. If u is a weak solution to (2.2.1), then, as a consequence of Itô’s formula, u is the density of

a measure-valued process that solves the martingale problem (2.3.4) - (2.3.5). It suffices to show

the converse statement.

Let X = {Xt , t ∈ [0,T ]} be a solution to the martingale problem (2.3.4) - (2.3.5) with initial

density µ . Then, by Proposition 2.3.11, for almost every t ∈ [0,T ], Xt has a density almost surely.

We denote by ut the density of Xt .

Consider M = {Mt , t ∈ [0,T ]} defined by (2.3.4) as an S ′-martingale (see Definition 2.1.2 of

Kallianpur & Xiong [52]). Then, by Theorem 3.1.4 of Kallianpur & Xiong [52], there exists a

Hilbert space H ∗ ⊃ L2(Rd), such that M is an H ∗-valued martingale. Denote by H the dual

space of H ∗.

Let H1 = L2(Rd;Rd), and let H2 be the completion of S with the inner product

〈φ ,ϕ〉H2 :=
ˆ
Rd×Rd

κ(x,y)φ(x)ϕ(y)dxdy.

Consider the product space H = H1×H2. Then, H is a Hilbert space equipped with the inner

product 〈
(φ1,φ2),(ϕ1,ϕ2)

〉
H

:= 〈φ1,ϕ1〉H1 + 〈φ2,ϕ2〉H2 .

For any t ∈ [0,T ], let Ψt : H → H be given by Ψt(φ)(x,y) =
(
Ψ1

t (φ)(x),Ψ
2
t (φ)(y)

)
, where

Ψ
1
t (φ)(x) :=

ˆ
Rd

∇φ(y)∗h(x− y)ut(y)dy,

and

Ψ
2
t (φ)(x) := φ(x)ut(x).
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Then, for any φ ,ϕ ∈H , we have

〈M(φ),M(ϕ)〉t =
ˆ t

0
∇φ(x)∗ρ(x− y)∇ϕ(y)Xs(dx)Xs(dy)ds

+

ˆ t

0

ˆ
Rd×Rd

κ(x,y)φ(x)φ(y)Xs(dx)Xs(dy)ds

=

ˆ t

0
〈Φs(φ),Φs(ϕ)〉Hds,

Therefore, by the martingale representation theorem (c.f. Theorem 3.3.5 of Kallianpur & Xiong

[52]), there exists a H-cylindrical Brownian motion B= {Bt ,0≤ t ≤ T}, such that

Mt(φ) =

ˆ t

0

〈
Ψs(φ),dBs

〉
.

Let B1 = {B1
t (φ), t ∈ [0,T ],φ ∈ H1} and B2 = {B2

t (ϕ), t ∈ [0,T ],ϕ ∈ H2} be given by

B1
t (φ) =Bt(φ ,0) and B2

t (ϕ) =Bt(0,ϕ).

Then, B1 and B2 are H1- and H2-cylindrical Brownian motion respectively, and they are indepen-

dent. As a consequence, we have

Mt(φ) =

ˆ t

0

〈ˆ
Rd

∇φ(z)∗h(·− z)Xs(dz),dB1
s

〉
+

ˆ t

0

〈
φus,dB2

s
〉
. (2.3.27)

Let {e j} j≥1 be a complete orthonormal basis of H2. Then, by Theorem 3.2.5 of Kallianpur &

Xiong [52], V = {Vt , t ∈ [0,T ]}, defined by

Vt :=
∞

∑
j=1

B2
t (e j)e j,

is a S ′-valued Wiener process with covariance

E
[
Vs(φ)Vt(ϕ)

]
= s∧ t

ˆ
Rd×Rd

κ(x,y)φ(x)ϕ(y)dxdy,
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for any φ ,ϕ ∈S . Therefore, by (2.3.27) and the equivalence of stochastic integrals with respect

to Hilbert space valued Brownian motion and Walsh’s integrals (c.f. Proposition 2.6 of Dalang &

Sardanyons [18] for spatial homogeneous noises), u is a weak solution to the SPDE (2.2.1).

Proof of Theorems 2.2.2 and 2.2.3. By Propositions 2.3.5 and 2.3.13, the SPDE (2.2.1) has a weak

solution, that can be obtained by the branching particle approximation. We do not prove the con-

tinuity here, because later in Section 2.6, we will show that the solution is not only continuous,

but also Hölder continuous. The continuity of u yields an improved version of Proposition 2.3.11.

Namely, if Xt is a continuous measure-valued process (e.g. the limit of the particle approximation),

then it has a density for all t ∈ [0,T ] almost surely.

In the next step, we prove the pathwise uniqueness of equation (2.2.1). Assume that u and

ũ are two continuous strong solutions to (2.2.1) with initial condition µ . Let d = u− ũ. Then,

d = {dt(x), t ∈ [0,T ],x∈Rd} is a solution to (2.2.1), with initial condition µ ≡ 0, that is continuous

in two parameters. Thus d is also the density of a solution to the martingale problem (2.3.4) -

(2.3.5), with initial measure X0 ≡ 0.1 By the moment duality (2.3.16), for any φ ∈ C2
b(R

d), we

have

E〈dt ,φ〉2 = exp(t)E
(
X0(Y

(2)
t )
)
≡ 0,

where Y (2) is the dual process defined by (2.3.6) in the case n = 2. Since d is continuous in t, it

follows that u = ũ almost surely. Therefore, by the Yamada-Watanabe argument (c.f. Yamada &

Watanabe [85] and Kurtz [57]), we obtain the strong existence and weak uniqueness of equation

(2.2.1). This proves Theorem 2.2.3. Recall Propositions 2.3.5 and 2.3.13. The weak uniqueness of

equation (2.2.1) also implies that every limit of the convergent subsequence of {Xn}n≥1 constructed

in Section 2.3.1 is continuous (see Lemma 2.3.4) and unique in law. In other words, {Xn}n≥1 is

convergent in D([0,T ];MF) to a continuous MF(Rd)-valued process in law. The limit has a density

almost surely, that is a weak solution the SPDE (2.2.1).

1dt(x) may be negative for some (t,x)∈ [0,T ]×Rd . In this case dt is considered as the density of a signed measure
ν , where |ν |(1)≤ |ut(1)|+ |ũt(1)|< ∞ a.s.. The moment duality still holds.
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The following corollary is a direct result of Theorem 2.2.3 and Proposition 2.3.13.

Corollary 2.3.14. Assume Hypotheses (H0),(H1), and assume that X0 ∈ MF(Rd) has a bounded

density. Then, the martingale problem (2.3.4) - (2.3.5) is well-posed.

2.4 Moment estimates for one-particle motion

In this section, we focus on the one-particle motion without branching. By using the techniques of

Malliavin calculus, we will obtain moment estimates for the transition probability density of the

particle motion conditional on the environment W . A brief introduction and several theorems on

Malliavin calculus are stated in Appendix 2.7. For a detailed account on this topic, we refer the

readers to the book of Nualart [71].

Fix a time interval [0,T ]. Let B = {Bt ,0 ≤ t ≤ T} be a standard d-dimensional Brownian

motion and let W be a d-dimensional space-time white Gaussian random field on [0,T ]×Rd that

is independent of B. Assume that h ∈ H3(Rd;Rd ⊗Rd). For any 0 ≤ r < t ≤ T , we denote by

ξt = ξ
r,x
t , the path of one-particle motion, with initial position ξr = x. It satisfies the SDE:

ξt = x+Bt−Br +

ˆ t

r

ˆ
Rd

h(y−ξu)W (du,dy). (2.4.1)

We will apply the Malliavin calculus on ξt with respect to the Brownian motion B. Let H =

L2([0,T ];Rd) be the associated Hilbert space. By the Picard iteration scheme (c.f. Theorem 2.2.1

of Nualart [71]), we can prove that for any t ∈ (r,T ], ξt ∈ ∩p≥1D3,p(Rd). Particularly, Dξt satisfies

the following system of SDE’s:

D(k)
θ

ξ
i
t = δik−

d

∑
j1, j2=1

ˆ t

θ

ˆ
Rd

∂ j1hi j2(y−ξs)D
(k)
θ

ξ
j1

s W j2(ds,dy), 1≤ i,k ≤ d, (2.4.2)

for any θ ∈ [r, t], and D(k)
θ

ξ i
t = 0 for all θ > t.

In order to simplify the expressions, we rewrite the stochastic integrals in (2.4.2) as integrals

with respect to martingales. To this end, let M = {Mt ,r ≤ t ≤ T} be the d × d matrix-valued
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process given by

Mt =
d

∑
k=1

ˆ t

r

ˆ
Rd

gk(s,y)W k(ds,dy),

where gk : Ω× [r,T ]×Rd → Rd⊗Rd is given by

gi j
k (t,y) = ∂ih jk(y−ξt), 1≤ i, j,k ≤ d.

Notice that Mt is the sum of stochastic integrals, so it is a matrix-valued martingale. The quadratic

covariations of {Mi j}d
i, j=1 are bounded and deterministic:

〈
Mi1 j1,Mi2 j2

〉
t =

d

∑
k=1

ˆ t

r

ˆ
Rd

∂i1h j1k(y−ξs)∂i2h j2k(y−ξs)dyds (2.4.3)

= (t− r)
d

∑
k=1

ˆ
Rd

∂i1h j1k(y)∂i2h j2k(y)dy := Qi1, j1
i2, j2(t− r)≤ ‖h‖3,2(t− r).

Now the equation (2.4.2) can be rewritten as follows:

D(k)
θ

ξ
i
t = δik−

d

∑
j=1

ˆ t

θ

ˆ
Rd

D(k)
θ

ξ
j

s dM ji
s , 1≤ i,k ≤ d. (2.4.4)

Lemma 2.4.1. For any 0≤ r < t ≤ T , x ∈Rd , let γt = γξt be the Malliavin matrix of ξt = ξ
r,x
t , then

γt is nondegenerate almost surely.

Proof. We prove the lemma following Stroock’s idea (see Chapter 8 of Stroock [76]). Let λθ (t)

be the d×d symmetric random matrix given by

λ
i j
θ
(t) =

d

∑
k=1

D(k)
θ

ξ
i
t D(k)

θ
ξ

j
t .

Then, the Malliavin matrix of ξt is the integral of λθ (t):

γt =

ˆ t

r
λθ (t)dθ .
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By (2.4.2), (2.4.3) and Itô’s formula, we have

D(k)
θ

ξ
i
t D(k)

θ
ξ

j
t =δikδk j−

d

∑
k1=1

ˆ t

θ

D(k)
θ

ξ
i
sD(k)

θ
ξ

k1
s dMk1 j

s −
d

∑
k2=1

ˆ t

θ

D(k)
θ

ξ
j

s D(k)
θ

ξ
k2
s dMk2i

s

+
d

∑
k1,k2=1

Qk1, j
k2,i

ˆ t

θ

D(k)
θ

ξ
k1
s D(k)

θ
ξ

k2
s ds.

Therefore,

λθ (t) =I−
ˆ t

θ

λθ (s)dMs−
ˆ t

θ

dM∗s ·λθ (s)

+
d

∑
k=1

ˆ t

θ

ˆ
Rd

g∗k(s,y)λθ (s)gk(s,y)dyds. (2.4.5)

For any θ ∈ [r, t], we claim that λθ (t) is invertible almost surely, and its inverse βθ (t) satisfies the

following SDE:

βθ (t) =I +
ˆ t

θ

βθ (s)dM∗s +
ˆ t

θ

dMs ·βθ (s) (2.4.6)

+
d

∑
k=1

ˆ t

θ

ˆ
Rn

(
gk(s,y)2

βθ (s)+gk(s,y)βθ (s)g∗k(s,y)+βθ (s)g∗k(s,y)
2)dyds.

Indeed, by Itô’s formula, we have

d[λθ (t)βθ (t)] =−dM∗t · [λθ (t)βθ (t)]+ [λθ (t)βθ (t)]dM∗t (2.4.7)

+
d

∑
k=1

(ˆ
Rd

(
[λθ (t)βθ (t)]g∗k(t,y)

2−g∗k(t,y)[λθ (t)βθ (t)]g∗k(t,y)
)
dy
)

dt.

Note that λθ (t)βθ (t)≡ I solves the SDE (2.4.7) with initial value λθ (θ)βθ (θ) = I. Therefore, the

strong uniqueness of the linear SDE (2.4.7) implies that λ
−1
θ

(t) = βθ (t) almost surely.

Denote by ‖ · ‖2 the Hilbert-Schmidt norm of matrices. By Jensen’s inequality (see Lemma
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8.14 of Stroock [76]), the following inequality holds almost surely

∥∥γ
−1
t
∥∥

2 =

∥∥∥∥(ˆ t

r
λθ (t)dθ

)−1
∥∥∥∥

2
≤ 1

(t− r)2

∥∥∥ˆ t

r
βθ (t)dθ

∥∥∥
2
. (2.4.8)

It is easy to show that sup
θ∈[r,t]

∥∥‖βθ (t)‖2
∥∥

2p < ∞ for all p ≥ 1. Therefore, the right-hand side of

(2.4.8) is finite a.s., and thus γt is nondegenerate almost surely.

We denote by σt = γ
−1
t the inverse of the Malliavin matrix of ξt . In the following lemma, we

obtain some moment estimates for the derivatives of ξt and σt . Before estimates, we introduce the

following generalized Cauchy-Schwarz’s inequality.

Lemma 2.4.2. Let n1,n2 be nonnegative integers, u1 ∈ L2p(Ω;(H⊗n1)), and u2 ∈ L2p(Ω,(H⊗n2)),

then u1⊗u2 ∈ Lp(Ω;(H⊗(n1+n2))), and

∥∥‖u1⊗u2‖H⊗(n1+n2)

∥∥
p ≤

∥∥‖u1‖H⊗n1

∥∥
2p

∥∥‖u2‖H⊗n2

∥∥
2p. (2.4.9)

Proof. The lemma can be obtained by the classical Cauchy-Schwarz inequality.

Lemma 2.4.3. For any p≥ 1 and 0≤ r < t ≤ T , there exists a constant C > 0, that depends on T ,

d, ‖h‖3,2, p, such that

max
1≤i≤d

∥∥‖Dξ
i
t ‖H
∥∥

2p ≤C(t− r)
1
2 . (2.4.10)

max
1≤i, j≤d

∥∥∥σ
i j
t

∥∥∥
2p
≤C(t− r)−1, (2.4.11)

max
1≤i, j≤d

∥∥∥‖Dσ
i j
t ‖H

∥∥∥
2p
≤C, (2.4.12)

max
1≤i≤d

∥∥‖D2
ξ

i
t ‖H⊗2

∥∥
2p ≤C(t− r)

3
2 . (2.4.13)

max
1≤i, j≤d

∥∥∥‖D2
σ

i j
t ‖H⊗2

∥∥∥
2p
≤C(t− r)

1
2 , (2.4.14)

max
1≤i≤d

∥∥‖D3
ξ

i
t ‖H⊗3

∥∥
2p ≤C(t− r)2. (2.4.15)
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Proof of (2.4.10). By (2.4.3), (2.4.4), Jensen’s, Burkholder-Davis-Gundy’s, and Minkowski’s in-

equalities, we have

d

∑
i,k=1

∥∥D(k)
θ

ξ
i
t
∥∥2

2p ≤
d

∑
i,k=1

(
δik +

d

∑
j=1

∥∥∥ˆ t

θ

ˆ
Rd

D(k)
θ

ξ
j

s dM ji
s

∥∥∥
2p

)2

≤(d +1)
d

∑
i,k=1

(
δik +

d

∑
j=1

∥∥∥ˆ t

θ

ˆ
Rd

D(k)
θ

ξ
j

s dM ji
s

∥∥∥2

2p

)

≤d(d +1)+(d +1)cp

d

∑
i, j,k=1

Q ji
ji

∥∥∥ˆ t

θ

∣∣D(k)
θ

ξ
j

s
∣∣2ds

∥∥∥
p

≤d(d +1)+2cpd(d +1)‖h‖2
3,2

d

∑
j,k=1

ˆ t

θ

∥∥D(k)
θ

ξ
j

s
∥∥2

2pds. (2.4.16)

Thus by Gronwall’s lemma, we have

d

∑
i, j=1

∥∥D(k)
θ

ξ
j

t
∥∥2

2p ≤ d(d +1)exp
(
2cpd(d +1)‖h‖2

3,2T
)

:=C. (2.4.17)

Therefore, by (2.4.17) and Minkowski’s inequality, we have

∥∥‖Dξ
i
t ‖H
∥∥2

2p =

∥∥∥∥ d

∑
k=1

ˆ t

r
|D(k)

θ
ξ

i
t |2dθ

∥∥∥∥
p
≤

d

∑
k=1

ˆ t

r

∥∥D(k)
θ

ξ
i
t
∥∥2

2pdθ ≤C(t− r).

Proof of (2.4.11). In order to prove (2.4.11), we rewrite the SDE (2.4.6) in the following way:

β
i j
θ
(t) =δi j +

d

∑
k1=1

ˆ t

θ

β
ik1
θ

(s)dM jk1
s +

d

∑
k2=1

ˆ t

θ

β
k2 j
θ

(s)dMik2
s

+
d

∑
k1,k2=1

(
Qi,k1

k1,k2

ˆ t

θ

β
k2 j
θ

(s)ds
)
+

d

∑
k1,k2=1

(
Qi,k1

j,k2

ˆ t

θ

β
k1k2
θ

(s)ds
)

+
d

∑
k1,k2=1

(
Qk2,k1

j,k2

ˆ t

θ

β
ik1
θ

(s)ds
)
. (2.4.18)

Similarly as we did in step (i), by Burkholder-Davis-Gundy’s, and Minkowski’s inequalities, we

50



can show that the martingale terms satisfies the following inequality

∥∥∥ˆ t

θ

β
ik1
θ

(s)dM jk1
s

∥∥∥2

2p
≤ 2cp‖h‖2

3,2

ˆ t

θ

∥∥β
ik1
θ

(s)
∥∥2

2pds. (2.4.19)

For the drift terms, by Minkowski’s and Jensen’s inequality, we have

∥∥∥ˆ t

θ

β
k1k2
θ

(s)ds
∥∥∥2

2p
≤ (t−θ)

ˆ t

θ

∥∥∥β
k1k2
θ

(s)
∥∥∥2

2p
ds. (2.4.20)

Then, by (2.4.18) - (2.4.20), and Gronwall’s lemma, we have

d

∑
i, j=1

∥∥∥β
i j
θ
(t)
∥∥∥2

2p
≤C.

Thus by Minkowski’s and Jensen’s inequalities, we have

∥∥∥∥∥∥∥ˆ t

r
βθ (t)dθ

∥∥∥
2

∥∥∥∥
2p
≤ cd

d

∑
i, j=1

ˆ t

r

∥∥∥β
i j
θ
(t)
∥∥∥

2p
dθ ≤C(t− r). (2.4.21)

Therefore, (2.4.11) follows from (2.4.8), (2.4.21), Minkowski’s and Jensen’s inequalities.

Proof of (2.4.12). By integrating equation (2.4.5) on both sides with respect to θ , and applying the

stochastic Fubini theorem (c.f. Lemma 4.1 on page 116 of Ikeda & Watanabe [49]), we have

γt =

ˆ t

r
λθ (t)dθ =I(t− r)−

ˆ t

r
γsdMs−

ˆ t

r
dM∗s · γs (2.4.22)

+
d

∑
m=1

ˆ t

r

ˆ
Rd

g∗m(y,s)γsgm(y,s)dyds.
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Taking the Malliavin derivative on both sides of (2.4.22), we have the following SDE:

D(k)
θ

γ
i j
t =−

d

∑
k1=1

ˆ t

θ

D(k)
θ

γ
ik1
s dMk1 j

s −
d

∑
k1=1

ˆ t

θ

γ
ik1
s d

(
D(k)

θ
Mk1 j

s

)
−

d

∑
k2=1

ˆ t

θ

D(k)
θ

γ
k2 j
s dMk2i

s −
d

∑
k2=1

ˆ t

θ

γ
k2 j
s d

(
D(k)

θ
Mk2i

s

)
+

d

∑
k1,k2=1

(
Qk1,i

k2, j

ˆ t

θ

D(k)
θ

γ
k1k2
s ds

)
, (2.4.23)

where

D(k)
θ

Mi j
s =−

d

∑
i1,i2=1

ˆ s

θ

ˆ
Rd

∂i,i2h ji1 (y−ξr)D(k)
θ

ξ
i2
r W i1(dr,dy). (2.4.24)

For the first and the third term, by similar arguments as in (2.4.16), we can show that

∥∥∥ˆ t

θ

D(k)
θ

γ
ik1
s dMk1 j

s

∥∥∥2

2p
≤ cd,p‖h‖2

3,2

ˆ t

θ

∥∥D(k)
θ

γ
ik1
s
∥∥2

2pds. (2.4.25)

To estimate the second and the fourth term, notice that by (2.4.10), we have

max
1≤i, j≤d

∥∥∥γ
i j
t

∥∥∥
2p

= max
1≤i, j≤d

∥∥∥〈Dξ
i
t ,Dξ

j
t 〉H
∥∥∥

2p

≤ max
1≤i≤d

∥∥‖Dξ
i
t ‖H
∥∥

4p max
1≤ j≤d

∥∥∥‖Dξ
j

t ‖H

∥∥∥
4p
≤C(t− r). (2.4.26)

Therefore, by (2.4.17), (2.4.24), (2.4.26), Jensen’s, Burkholder-Davis-Gundy’s, Minkowski’s, and

Cauchy-Schwarz’s inequalities, we have

∥∥∥ˆ t

θ

γ
ik1
s d
(

D(k)
θ

Mk1 j
s

)∥∥∥2

2p
≤cd,p‖h‖2

3,2

d

∑
k2=1

ˆ t

θ

∥∥γ
ik1
s ‖2

4p‖D
(k)
θ

ξ
k2
s
∥∥2

4pds

≤C(t− r)3. (2.4.27)
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For the last term, by Minkowski’s and Jensen’s inequalities, we have

∥∥∥ˆ t

θ

D(k)
θ

γ
k1k2
s ds

∥∥∥2

2p
≤ (t−θ)

ˆ t

θ

∥∥D(k)
θ

γ
k1k2
s
∥∥2

2pds≤ T
ˆ t

θ

∥∥D(k)
θ

γ
k1k2
s
∥∥2

2pds. (2.4.28)

Combining (2.4.23) - (2.4.28), we obtain the following inequality

d

∑
i, j=1

∥∥D(k)
θ

γ
i j
t
∥∥2

2p ≤ c1

ˆ t

θ

d

∑
i, j=1

∥∥D(k)
θ

γ
i j
s
∥∥2

2pds+ c2(t− r)3, (2.4.29)

where c1,c2 depends on T , d, ‖h‖2
3,2, and p. Thus by Gronwall’s lemma, we have

d

∑
i, j=1

∥∥D(k)
θ

γ
i j
t
∥∥2

2p ≤C(t− r)3. (2.4.30)

It follows that

∥∥‖Dγ
i j
t ‖H

∥∥
2p ≤C(t− r)2 (2.4.31)

Notice that γtσt = I, a.s., as a consequence, D(γtσt) = DI ≡ 0. That implies

Dσ
i j
t =−

d

∑
i1,i2=1

σ
ii1
t Dγ

i1i2
t σ

i2 j
t . (2.4.32)

Then, (2.4.12) follows from (2.4.9), (2.4.11), (2.4.31) and (2.4.32).

Proof of (2.4.13). Fix 0 ≤ r < t ≤ T . For any θ1,θ2 ∈ [r, t], let θ = θ1∨θ2. Taking the Malliavin

derivative on both sides of (2.4.4), we have the following SDE:

D(k1,k2)
θ1,θ2

ξ
i
t =−

d

∑
j1=1

ˆ t

θ

D(k1,k2)
θ1,θ2

ξ
j1

s dM j1i
s

+
d

∑
j1, j2, j3=1

ˆ t

θ

ˆ
Rd

∂ j2, j3hi j1(y−ξs)D
(k1)
θ1

ξ
j2

s D(k2)
θ2

ξ
j3

s W j1(ds,dy). (2.4.33)
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Similarly as in (2.4.16), we can show the following inequalities

∥∥∥ˆ t

θ

D(k1,k2)
θ1,θ2

ξ
j1

s dM j1i
s

∥∥∥2

2p
≤ cd,p‖h‖2

3,2

ˆ t

θ

∥∥D(k1,k2)
θ1,θ2

ξ
j1

s
∥∥2

2pds, (2.4.34)

and

∥∥∥ˆ t

θ

ˆ
Rd

∂ j2, j3hi j1(y−ξs)D
(k1)
θ1

ξ
j2

s D(k2)
θ2

ξ
j3

s W j1(ds,dy)
∥∥∥2

2p

≤ cp‖h‖2
3,2

ˆ t

θ

∥∥D(k1)
θ1

ξ
j2

s
∥∥2

4p

∥∥D(k2)
θ2

ξ
j3

s
∥∥2

4pds≤C(t− r). (2.4.35)

Thus combining (2.4.33) - (2.4.35), we have

d

∑
i=1

∥∥D(k1,k2)
θ1,θ2

ξ
i
t
∥∥2

2p ≤c1

d

∑
i=1

ˆ t

θ

∥∥D(k1,k2)
θ1,θ2

ξ
i
s
∥∥2

2pds+ c2(t− r).

Then, it follows from Gronwall’s lemma that

d

∑
i=1

∥∥D(k1,k2)
θ1,θ2

ξ
i
t
∥∥2

2p ≤C(t− r). (2.4.36)

The inequality (2.4.13) is a consequence of (2.4.36), Jensen’s and Minkowski’s inequalities.

Proof of (2.4.14). For any θ1,θ2 ∈ [r, t] and θ = θ1∨θ2, by taking the Malliavin derivative on both
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sides of (2.4.23), we have

D(k1,k2)
θ1,θ2

γ
i j
t =−

d

∑
i1=1

(ˆ t

θ

D(k1,k2)
θ1,θ2

γ
ii1
s dMi1 j

s +

ˆ t

θ

D(k1)
θ2

γ
ii1
s d
(

D(k2)
θ1

Mi1 j
s

))
−

d

∑
i1=1

(ˆ t

θ

D(k2)
θ2

γ
ii1
s d
(

D(k1)
θ1

Mi1 j
s

)
+

ˆ t

θ

γ
ii1
s d
(

D(k1,k2)
θ1,θ2

Mi1 j
s

))
−

d

∑
i2=1

(ˆ t

θ

D(k1,k2)
θ1,θ2

γ
i2 j
s dMi2i

s +

ˆ t

θ

D(k1)
θ

γ
i2 j
s d

(
D(k2)Mi2i

s

))
−

d

∑
i2=1

(ˆ t

θ

D(k2)
θ1

γ
i2 j
s d

(
D(k1)

θ2
Mi2i

s

)
+

ˆ t

θ

γ
i2 j
s d

(
D(k1,k2)

θ1,θ2
Mi2i

s

))
+

d

∑
i1,i2=1

(
Qi1,i

i2, j

ˆ t

θ

D(k1,k2)
θ1,θ2

γ
i1i2
s ds

)
, (2.4.37)

where

D(k1,k2)
θ1,θ2

Mi j
s =−

d

∑
j1, j2, j3=1

ˆ s

θ

ˆ
Rd

∂i, j2, j3h j j1 (y−ξr)D(k1)
θ1

ξ
j2

r D(k2)
θ2

ξ
j3

r W j1(dr,dy)

+
d

∑
j1, j2=1

ˆ s

θ

ˆ
Rd

∂i, j2h j j1 (y−ξr)D(k1,k2)
θ1,θ2

ξ
j2

r W j1(dr,dy).

By (2.4.17), (2.4.26), (2.4.30), (2.4.36), Burkholder-Davis-Gundy’s, Minkowski’s and Hölder’s

inequalities, we have the following inequalities

∥∥∥ˆ t

θ

D(k1,k2)
θ1,θ2

γ
ii1
s dMi1 j

s

∥∥∥2

2p
≤ cd,p‖h‖2

3,2

ˆ t

θ

∥∥D(k1,k2)
θ1,θ2

γ
ii1
s
∥∥2

2pds, (2.4.38)

∥∥∥ˆ t

θ

D(k1)
θ2

γ
ii1
s d
(

D(k2)
θ1

Mi1 j
s

)∥∥∥2

2p
≤ cd,p‖h‖2

3,2

d

∑
i2=1

ˆ t

θ

∥∥∥D(k1)
θ2

γ
ii1
s D(k2)

θ2
ξ

i2
s

∥∥∥2

2p
ds

≤cd,p‖h‖2
3,2

d

∑
i2=1

ˆ t

θ

∥∥∥D(k1)
θ2

γ
ii1
s

∥∥∥2

4p

∥∥∥D(k2)
θ2

ξ
i2
s

∥∥∥2

4p
ds≤C(t− r)4, (2.4.39)
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and

∥∥∥ˆ t

θ

γ
ii1
t d
(

D(k1,k2)
θ1,θ2

Mi1 j
s

)∥∥∥2

2p

≤cd

( d

∑
j1, j2, j3=1

∥∥∥ˆ t

θ

ˆ
Rd

γ
ii1
s ∂i1, j2, j3h j j1 (y−ξr)D(k1)

θ1
ξ

j2
s D(k2)

θ2
ξ

j3
s W j1(ds,dy)

∥∥∥2

2p

+
d

∑
j1, j2=1

∥∥∥ˆ t

θ

ˆ
Rd

γ
ii1
s ∂i1, j2h j j1 (y−ξs)D(k1,k2)

θ1,θ2
ξ

j2
s W j1(ds,dy)

∥∥∥2

2p

)
:= cd (I1 + I2) .

We estimate I1, I2 as follows:

I1 ≤d‖h‖2
3,2

d

∑
j2, j3=1

ˆ t

θ

∥∥γ
ii1
s
∥∥2

6p

∥∥D(k1)
θ1

ξ
j2

s
∥∥2

6p

∥∥D(k2)
θ2

ξ
j3

s
∥∥2

6pds≤C(t− r)3,

and

I2 ≤ d‖h‖2
3,2

d

∑
j2=1

ˆ t

θ

∥∥γ
ii1
s
∥∥2

4p

∥∥D(k1,k2)
θ1,θ2

ξ
j2

s
∥∥2

4pds≤C(t− r)4 ≤CT (t− r)3.

Thus we have

∥∥∥ˆ t

θ

γ
ii1
t d
(

D(k1,k2)
θ1,θ2

Mi1 j
s

)∥∥∥2

2p
≤C(t− r)3. (2.4.40)

Therefore, combine (2.4.37) - (2.4.40), we have

d

∑
i, j=1

∥∥∥D(k1,k2)
θ1,θ2

γ
i j
t

∥∥∥2

2p
≤ c1(t− r)3 + c2

d

∑
i, j=1

ˆ t

θ

∥∥∥D(k1,k2)
θ1,θ2

γ
i j
s

∥∥∥2

2p
ds,

By Gronwall’s lemma, we have

d

∑
i, j=1

∥∥D(k1,k2)
θ1,θ2

γ
i j
t
∥∥2

2p ≤C(t− r)3, (2.4.41)
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which implies

∥∥∥‖D2
γ

i j
t ‖H⊗2

∥∥∥
2p
≤C(t− r)

5
2 .

By taking the second Malliavin derivative of γtσt ≡ I, we have

D2
σ

i j
t =−

d

∑
i1,i2=1

σ
ii1
t
(
D2

γ
i1i2
t σ

i2 j
t +Dγ

i1i2
t ⊗Dσ

i2 j
t +Dσ

i2 j
t ⊗Dγ

i1i2
t
)
. (2.4.42)

Then, (2.4.14) can be deduced by (2.4.9), (2.4.11), (2.4.12), (2.4.31) and (2.4.42).

Proof of (2.4.15). For any θ1,θ2,θ3 ∈ [r, t], let θ = θ1 ∨ θ2 ∨ θ3. Taking the Malliavin derivative

on both sides of (2.4.33), we have

D(k1,k2,k3)
θ1,θ2,θ3

ξ
i
t =

d

∑
j1, j2, j3=1

ˆ t

θ

ˆ
Rd

∂ j2, j3hi j1(y−ξs)D
(k1,k2)
θ1,θ2

ξ
j2

s D(k3)
θ3

ξ
j3

s W j1(ds,dy)

−
d

∑
j1, j2=1

ˆ t

θ

ˆ
Rd

∂ j2hi j1(y−ξs)D
(k1,k2,k3)
θ1,θ2,θ3

ξ
j2

s W j1(ds,dy)

−
d

∑
j1, j2, j3, j4=1

ˆ t

θ

ˆ
Rd

∂ j2, j3, j4hi j1(y−ξs)D
(k1)
θ1

ξ
j2

s D(k2)
θ2

ξ
j3

s D(k3)
θ3

ξ
j4

s W j1(ds,dy)

+
d

∑
j1, j2, j3=1

ˆ t

θ

ˆ
Rd

∂ j2, j3hi j1(y−ξs)D
(k1,k3)
θ1,θ3

ξ
j2

s D(k2)
θ2

ξ
j3

s W j1(ds,dy)

+
d

∑
j1, j2, j3=1

ˆ t

θ

ˆ
Rd

∂ j2, j3hi j1(y−ξs)D
(k1)
θ1

ξ
j2

s D(k2,k3)
θ2,θ3

ξ
j3

s W j1(ds,dy). (2.4.43)

By (2.4.17), (2.4.36), Burkholder-Davis-Gundy’s, Minkowski’s, and Hölder’s inequalities, we have

the following inequalities:

∥∥∥ˆ t

θ

ˆ
Rd

∂ j2, j3hi j1(y−ξs)D
(k1,k2)
θ1,θ2

ξ
j2

s D(k3)
θ3

ξ
j3

s W k1(ds,dy)
∥∥∥2

2p

≤cp‖h‖2
3,2

ˆ t

θ

∥∥D(k1,k2)
θ1,θ2

ξ
j2

s
∥∥2

4p

∥∥D(k3)
θ3

ξ
j3

s
∥∥2

4pds≤C(t− r)2, (2.4.44)
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∥∥∥ˆ t

θ

ˆ
Rd

∂ j2hi j1(y−ξs)D
(k1,k2,k3)
θ1,θ2,θ3

ξ
j2

s W j1(ds,dy)
∥∥∥2

2p

≤cp‖h‖2
3,2

ˆ t

θ

∥∥D(k1,k2,k3)
θ1,θ2,θ3

ξ
j2

s
∥∥2

2pds, (2.4.45)

and

∥∥∥ˆ t

θ

ˆ
Rd

∂ j2, j3, j4hi j1(y−ξs)D
(k1)
θ1

ξ
j2

s D(k2)
θ2

ξ
j3

s D(k3)
θ3

ξ
j3

s W j1(ds,dy)
∥∥∥2

2p

≤cp‖h‖2
3,2

ˆ t

θ

∥∥D(k1)
θ1

ξ
j2

s
∥∥2

6p

∥∥D(k2)
θ2

ξ
j3

s
∥∥2

6p

∥∥D(k3)
θ3

ξ
j3

s
∥∥2

6pds≤C(t− r). (2.4.46)

Thus combining (2.4.43) - (2.4.46), by Jensen’s inequality, we have

d

∑
i=1

∥∥D(k1,k2,k3)
θ1,θ2,θ3

ξ
i
t
∥∥2

2p ≤c1

d

∑
i=1

ˆ t

θ

∥∥D(k1,k2,k3)
θ1,θ2,θ3

ξ
i
t
∥∥2

2pds+ c2(t− r).

Then, the following inequality follows from Gronwall’s lemma

d

∑
i=1

∥∥D(k1,k2,k3)
θ1,θ2,θ3

ξ
i
t
∥∥2

2p ≤C(t− r). (2.4.47)

Therefore, (2.4.15) is a consequence of (2.4.47).

In the next lemma, we derive estimates for the moments of increments of the derivatives of ξt

and σt .

Lemma 2.4.4. For any p ≥ 1, 0 ≤ r < s < t ≤ T , and 1 ≤ i, j ≤ d, there exists a constant C > 0

depends on T , d, p, and ‖h‖3,2, such that

max
1≤i≤d

∥∥‖Dξ
i
t −Dξ

i
s‖H
∥∥

2p ≤C(t− s)
1
2 , (2.4.48)

max
1≤i, j≤d

∥∥∥σ
i j
t −σ

i j
s

∥∥∥
2p
≤C(t− r)−

1
2 (s− r)−1(t− s)

1
2 , (2.4.49)

max
1≤i, j≤d

∥∥∥‖Dσ
i j
t −Dσ

i j
s ‖H

∥∥∥
2p
≤C(t− r)−

1
2 (t− s)

1
2 , (2.4.50)

max
1≤i≤d

∥∥‖Dξ
i
t −D2

ξ
i
s‖H⊗2

∥∥
2p ≤C(t− r)(t− s)

1
2 . (2.4.51)
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Proof of (2.4.48). (i) By (2.4.4), we have

D(k)
θ

ξ
i
t −D(k)

θ
ξ

i
s = δik1[s,t](θ)−

d

∑
j=1

ˆ t

θ∨s
D(k)

θ
ξ

j
u dM ji

u .

Thus by (2.4.17), Burkholder-Davis-Gundy’s, Jensen’s, and Minkowski’s inequalities, we have

∥∥D(k)
θ

ξ
i
t −D(k)

θ
ξ

i
s
∥∥2

2p ≤C
[
δik1[s,t](θ)+(t− s)

]
.

Thus we can show (2.4.48) by Minkowski’s inequality:

∥∥‖Dξ
i
t −Dξ

i
s‖H
∥∥2

2p ≤
d

∑
k=1

ˆ t

r

∥∥D(k)
θ

ξ
i
t −D(k)

θ
ξ

i
s
∥∥2

2pdθ

≤
d

∑
k=1

C
(ˆ t

s
δikdθ +

ˆ t

r
(t− s)dθ

)
≤C(t− s).

Proof of (2.4.49). Note that σt −σs = σt (γs− γt)σs. Then, by (2.4.11) and Hölder’s inequality, it

suffices to estimate the moment of γt− γs. By (2.4.22), we have

γ
i j
t − γ

i j
s =δi j(t− s)−

d

∑
k1=1

ˆ t

s
γ

ik1
u dMk1 j

u −
d

∑
k2=1

ˆ t

s
γ

jk2
u dMk2i

u

+
d

∑
k1,k2=1

Qi,k1
k2, j

ˆ t

s
γ

k1k2
u du.

Then, by (2.4.26), Minkowski’s, Jensen’s, and Burkholder-Davis-Gundy’s inequalities, for all 1≤

i, j ≤ d, we have

∥∥γ
i j
t − γ

i j
s
∥∥2

2p ≤C
(
(t− s)2 +(t− r)2(t− s)+(t− r)2(t− s)2)

≤C(1+T )2(t− r)(t− s). (2.4.52)

Then, (2.4.49) is a consequence of (2.4.11) and (2.4.52).
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Proof of (2.4.50). By (2.4.23), we have the following equation:

D(k)
θ

γ
i j
t −D(k)

θ
γ

i j
s =−

d

∑
k1=1

ˆ t

θ∨s
D(k)

θ
γ

ik1
u dMk1 j

u −
d

∑
k1=1

ˆ t

θ∨s
γ

ik1
u d

(
D(k)

θ
Mk2 j

u

)
−

d

∑
k2=1

ˆ t

θ∨s
D(k)

θ
γ

k2 j
u dMk2i

u −
d

∑
k2=1

ˆ t

θ∨s
γ

k2 j
u d

(
D(k)

θ
Mk2i

u

)
+

d

∑
k1,k2=1

(
Qk1,i

k2, j

ˆ t

θ∨s
D(k)

θ
γ

k1k2
u du

)
.

Then, by (2.4.17), (2.4.26), and (2.4.30), Burkholder-Davis-Gundy’s, Jensen’s, Minkowski’s, and

Cauchy-Schwarz’s inequalities, we have

∥∥D(k)
θ

γ
i j
t −D(k)

θ
γ

i j
s
∥∥2

2p ≤ cd,p‖h‖2
3,2

[ d

∑
k1=1

ˆ t

θ∨s

∥∥D(k)
θ

γ
ik1
u
∥∥2

2pdu

+
d

∑
k2=1

ˆ t

θ∨s

∥∥γ
ik1
u
∥∥2

4p

∥∥D(k)
θ

ξ
k2
u
∥∥2

4pdu+(t− s)
ˆ t

θ∨s

∥∥D(k)
θ

γ
k1k2
u
∥∥2

2pdu
]

≤C(t− r)2(t− s).

This implies

∥∥∥‖Dγ
i j
t −Dγ

i j
s ‖H

∥∥∥
2p
≤C(t− r)

3
2 (t− s)

1
2 . (2.4.53)

By (2.4.32), we have

Dσ
i j
t −Dσ

i j
s =

d

∑
i1,i2=1

(
σ

ii1
t Dγ

i1i2
t σ

i2 j
t −σ

ii1
s Dγ

i1i2
s σ

i2 j
s

)
=

d

∑
i1,i2=1

σ
ii1
t

(
Dγ

i1i2
t −Dγ

i1i2
s

)
σ

i2 j
t +

d

∑
i1,i2=1

(
σ

ii1
t −σ

ii1
s

)
Dγ

i1i2
s σ

i2 j
t

+
d

∑
i1,i2=1

σ
ii1
s Dγ

i1i2
s

(
σ

i2 j
t −σ

i2 j
s

)
.

Thus (2.4.50) follows from (2.4.9), (2.4.11), (2.4.31), (2.4.49), and (2.4.53).
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Proof of (2.4.51). Let θ = θ1∨θ2, by (2.4.33), we have the following equation:

D(k1,k2)
θ1,θ2

ξ
i
t−D(k1,k2)

θ1,θ2
ξ

i
s =−

d

∑
j1, j2=1

ˆ t

θ∨s

ˆ
Rd

∂ j2hi j1(y−ξu)D
(k1,k2)
θ1,θ2

ξ
j2

u W j1(du,dy)

+
d

∑
j1, j2, j3=1

ˆ t

θ∨s

ˆ
Rd

∂ j2, j3hi j1(y−ξu)D
(k1)
θ1

ξ
j2

u D(k2)
θ2

ξ
j3

u W j1(du,dy).

As a consequence, by (2.4.17), (2.4.36), Burkholder-Davis-Gundy’s, Minkowski’s, and Cauchy-

Schwarz’s inequalities, we have

∥∥D(i, j)
θ1,θ2

ξ
k
t −D(i, j)

θ1,θ2
ξ

k
s
∥∥2

2p ≤cp

[ d

∑
j1=1
‖h‖2

3,2

ˆ t

θ∨s

∥∥D(i, j)
θ1,θ2

ξ
j1

u
∥∥2

2pdu

+
d

∑
j1, j2

‖h‖2
3,2

ˆ t

θ∨s

∥∥D(i)
θ1

ξ
j1

u
∥∥2

4p

∥∥D( j)
θ2

ξ
j2

u
∥∥2

4pdu
]

≤C(t− s) (2.4.54)

Therefore, we obtain (2.4.51) by integrating (2.4.54) and Minkowski’s inequality.

We define the following functionals of ξt

H(i)(ξt ,1) =−
d

∑
j=1

δ

(
σ

ji
t Dξ

j
t

)
, 1≤ i≤ d, (2.4.55)

and

H(i, j)(ξt ,1) =−
d

∑
k=1

σ
(
H(i)(ξt ,1)σ

k j
t Dξ

k
t
)
, 1≤ i, j ≤ d. (2.4.56)

A more detailed description of these functionals can be seen in Appendix 2.7. In the next lemma,

we establish moment estimates for the functionals H(i)(ξt ,1) and H(i, j)(ξt ,1).
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Lemma 2.4.5. Suppose that h ∈ H3(Rd;Rd⊗Rd), then the following inequalities are satisfied:

max
1≤i≤d

∥∥H(i)(ξt ,1)
∥∥

2p ≤C(t− r)−
1
2 , (2.4.57)

max
1≤i, j≤d

∥∥H(i, j)(ξt ,1)
∥∥

2p ≤C(t− r)−1. (2.4.58)

Proof. Due to Meyer’s inequality (c.f. Proposition 1.5.4 and 2.1.4 of Nualart [71]), it suffices to

estimate

∥∥∥‖σ ji
t Dξ

j
t ‖H

∥∥∥
2p
,
∥∥∥‖D(σ

ji
t Dξ

j
t

)
‖H⊗2

∥∥∥
2p
, and

∥∥∥‖D2
(

σ
ji

t Dξ
j

t

)
‖H⊗3

∥∥∥
2p
.

By (2.4.10) and Lemma 2.4.2 - 2.4.3, we have

∥∥∥‖σ ji
t Dξ

j
t ‖H

∥∥∥
2p
≤
∥∥∥σ

ji
t

∥∥∥
4p

∥∥∥‖Dξ
j

t ‖H

∥∥∥
4p
≤C(t− r)−

1
2 ,

∥∥∥‖D(σ
ji

t Dξ
j

t

)
‖H⊗2

∥∥∥
2p
≤
∥∥∥‖Dσ

ji
t ⊗Dξ

j
t ‖H⊗2

∥∥∥
2p
+
∥∥∥‖σ ji

t D2
ξ

j
t ‖H⊗2

∥∥∥
2p

≤
∥∥∥‖Dσ

ji
t ‖H

∥∥∥
4p

∥∥∥‖Dξ
j

t ‖H

∥∥∥
4p
+
∥∥∥σ

ji
t

∥∥∥
4p

∥∥∥‖D2
ξ

j
t ‖H⊗2

∥∥∥
4p

≤C(t− r)
1
2 ,

and

∥∥∥‖D2
(

σ
ji

t Dξ
j

t

)
‖H⊗3

∥∥∥
2p
≤
∥∥∥‖D2

σ
ji

t ⊗Dξ
j

t ‖H⊗2

∥∥∥
2p

+
∥∥∥‖Dσ

ji
t ⊗D2

ξ
j

t ‖H⊗2

∥∥∥
2p
+
∥∥∥‖σ ji

t D3
ξ

j
t ‖H⊗2

∥∥∥
2p

≤C(t− r)

The above inequalities hold for all 1≤ i, j ≤ d. Then, (2.4.57) and (2.4.58) follows.

The next lemma provides the moment estimate for the increment of H(i)(ξt ,1).
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Lemma 2.4.6. Suppose that h ∈ H3(Rd;Rd⊗Rd). Then,

max
1≤i≤d

∥∥H(i)(ξt ,1)−H(i)(ξs,1)
∥∥

2p ≤C(s− r)−
1
2 (t− r)−

1
2 (t− s)

1
2 . (2.4.59)

Proof. Notice that, by definition, we have

H(i)(ξt ,1)−H(i)(ξs,1) =−
d

∑
j=1

δ

(
σ

ji
t Dξ

j
t

)
+

d

∑
j=1

δ
(
σ

ji
s Dξ

j
s
)

=−
d

∑
j=1

δ

(
σ

ji
t Dξ

j
t −σ

ji
s Dξ

j
s

)
.

Thus by Meyer’s inequality again, it suffices to estimate

I1 :=
∥∥∥‖σ ji

t Dξ
j

t −σ
ji

s Dξ
j

s ‖H

∥∥∥
2p

and I2 :=
∥∥∥‖D(σ

ji
t Dξ

j
t −σ

ji
s Dξ

j
s

)
‖H⊗2

∥∥∥
2p
.

For I1, we have

I1 ≤
∥∥∥‖(σ

ji
t −σ

ji
s

)
Dξ

k
s ‖H

∥∥∥
2p
+
∥∥∥‖σ ji

t

(
Dξ

j
t −Dξ

j
s

)
‖H

∥∥∥
2p
.

Notice that by Lemmas 2.4.2 - 2.4.4, we can write

∥∥∥‖(σ
ji

t −σ
ji

s

)
Dξ

j
s ‖H

∥∥∥
2p
≤
∥∥∥σ

ji
t −σ

ji
s

∥∥∥
4p

∥∥‖Dξ
j

s ‖H
∥∥

4p

≤C(t− r)−
1
2 (s− r)−

1
2 (t− s)

1
2

and

∥∥∥‖σ ji
t

(
Dξ

j
t −Dξ

j
s

)
‖H

∥∥∥
2p
≤
∥∥∥σ

ji
t

∥∥∥
4p

∥∥∥‖Dξ
j

t −Dξ
j

s ‖H

∥∥∥
4p

≤C(t− r)−1(t− s)
1
2 ≤C(t− r)−

1
2 (s− r)−

1
2 (t− s)

1
2 .
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Thus combining the above inequalities, we have the following estimate for I1:

I1 ≤C(t− r)−
1
2 (s− r)−

1
2 (t− s)

1
2 . (2.4.60)

By Lemmas 2.4.2 - 2.4.4, we have the following estimate for I2:

I2 ≤
∥∥∥Dσ

ji
t ⊗Dξ

j
t −Dσ

ji
t ⊗Dξ

j
s

∥∥∥
2p,H⊗2

+
∥∥∥σ

ji
t D2

ξ
j

s −σ
ji

s D2
ξ

j
s

∥∥∥
2p,H⊗2

≤
∥∥∥‖Dσ

ji
t ‖H

∥∥∥
4p

∥∥∥‖(Dξ
j

t −Dξ
j

s

)
‖H

∥∥∥
4p
+
∥∥∥‖(Dσ

ji
t −Dσ

ji
s

)
‖H

∥∥∥
4p

∥∥‖Dξ
j

s ‖H
∥∥

4p

+
∥∥∥σ

ji
t

∥∥∥
4p

∥∥∥‖D2
ξ

j
t −D2

ξ
j

s ‖H⊗2

∥∥∥
4p
+
∥∥∥σ

ji
t −σ

ji
s

∥∥∥
4p

∥∥‖D2
ξ

j
s ‖H⊗2

∥∥
2p

≤C(t− s)
1
2 . (2.4.61)

Therefore, (2.4.59) follows from (2.4.60), (2.4.61) and Meyer’s inequality.

The next lemma shows that ξ is a d-dimensional Gaussian process in the whole probability

space. Notice that, however, conditionally on W , the process ξ is no longer Gaussian, because it is

the solution to a nonlinear SDE.

Lemma 2.4.7. The process ξ given by equation (2.4.1) is a d-dimensional Gaussian process, with

mean x and covariance matrix

Σs,t = (t ∧ s− r)(I +ρ(0)), (2.4.62)

where ρ(0) is defined in (2.1.2). Moreover, the probability density of ξt , denoted by pξt (y), is

bounded by a Gaussian density:

pξt (y)≤ (2π(t− r))−
d
2 exp

(
− k|x− y|2

t− r

)
, (2.4.63)
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where

k = [2(d‖h‖2
2,3 +1)]−1. (2.4.64)

Proof. Since B is a d-dimensional Brownian motion and W is a d-dimensional space-time white

Gaussian random field independent of B, then ξ = {ξt ,r ≤ t ≤ T} is a square integrable d-

dimensional martingale. The quadratic covariation of ξ is given by

〈ξ i,ξ j〉t =δi j(t− r)+
d

∑
k=1

ˆ t

r

ˆ
Rd

hik(ξs− y)h jk(ξs− y)dyds

=
(
δi j +ρ

i j(0)
)
(t− r). (2.4.65)

Note that ρ(0) is a symmetric nonnegative definite matrix. As a consequence, I +ρ(0) is strictly

positive definite, and thus nondegenerate. Therefore, we can find a nondegenerate matrix M, such

that M∗(I + ρ(0))M = I. Let η = Mξ , then η = {ηt , t ∈ [0,T ]} is a martingale with quadratic

covariation

〈η i,η j〉t = (t− r)
d

∑
k1,k2=1

Mik1M jk2〈ξ k1,ξ k2〉t = δi j(t− r).

By Levy’s martingale characterization, η is a d-dimensional Brownian motion. Then, ξ = M−1η

is a Gaussian process, with covariance matrix (2.4.62).

Since for any t > r, Σt := Σt,t = (t− r)(I +ρ(0)) is symmetric and positive definite, the prob-

ability density of the Gaussian random vector ξt is given by

pξt (y) =
1√

(2π)d|Σt |
exp
(
− 1

2
(y− x)∗Σ−1

t (y− x)
)
. (2.4.66)

Recall that ρ(0) is symmetric and nonnegative definite. Then it has eigenvalues λ1 ≥ λ2 ≥ ·· · ≥

λd ≥ 0. Let λ be the diagonal matrix with diagonal elements λ1, . . . ,λd . There is an orthogonal

65



matrix U , such that ρ(0) =U∗λU . Let k be defined in (2.4.64). It follows that

λ1 +1≤
d

∑
i, j=1
|ρ i j(0)|+1≤ ‖ρ‖∞ +1≤ d‖h‖2

3,2 +1 =
1
2k

.

Thus for any nonzero x ∈ Rd , we have

1
2

x∗Σ−1
t x− k

t− r
x∗x =

1
2

x∗
(

Σ
−1
t −

2k
t− r

I
)

x

=
1

2(t− r)
x∗U∗

(
(I +λ )−1−2kI

)
Ux≥ 0,

because (I +λ )−1−2kI is a nonnegative diagonal matrix. Thus for any x,y ∈ Rd , t > r, we have

exp
(
− 1

2
(y− x)∗Σ−1

t (y− x)
)
≤ exp

(
− k|x− y|2

t− r

)
, (2.4.67)

On the other hand, we have

|Σt |= |U∗ (I +λ )U(t− r)| ≥ (t− r)d. (2.4.68)

Therefore, we obtain (2.4.63) by plugging (2.4.67) - (2.4.68) into (2.4.66).

Denote by PW , EW , and ‖ ·‖Wp the probability, expectation and Lp-norm conditional on W . The

following two propositions are estimates for the conditional distribution of ξ .

Proposition 2.4.8. Fix 0 ≤ r < t ≤ T and recall that ξr = ξ
r,x
r = x. Let c > 0, choose ρ ∈

(0,c
√

t− r]. Then, for any p1, p2 ≥ 1 and y ∈ Rd , there exist C > 0, depending on p1, p2, c,

‖h‖2, and d, such that

∥∥∥PW (|ξt− y| ≤ ρ)
1
p1

∥∥∥
p2
≤C exp

(
− k|x− y|2

p(t− r)

)
, (2.4.69)

where k is defined in (2.4.64) and p = p1∨ p2.
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Proof. Let p = p1∨ p2. Then, by Jensen’s inequality, we have

∥∥∥PW (|ξt− y| ≤ ρ)
1
p1

∥∥∥
p2
=
∥∥∥∥∥1{ξt−y|≤ρ}

∥∥W
p1

∥∥∥
p2
≤
∥∥1{ξt−y|≤ρ}

∥∥
p
,

We consider two different cases.

(i) Suppose that 2ρ ≤ |x− y|. If |ξt− y| ≤ ρ ≤ c
√

t− r, then

|ξt− x| ≥ |x− y|− |ξt− y| ≥ |x− y|−ρ ≥ |x− y|
2

,

and equivalently {|ξt− y|< ρ} ⊂ {|ξt− x| ≥ |x−y|
2 }. Then, by Lemma 2.4.7, we have

∥∥∥PW (|ξt− y| ≤ ρ)
1
p1

∥∥∥
p2
=
∥∥∥1{|ξt−x|≥ |x−y|

2 }∩{|ξt−y|<ρ}

∥∥∥
p
≤C

[
Vdρ

d sup
|z−x|≥ |x−y|

2

pξt (z)
] 1

p

≤C
[
Vdcd(2π)−

d
2 exp

(
− k|x− y|2

t− r

)] 1
p

(2.4.70)

where Vd = π
d
2

Γ(1+ d
2 )

is the volume of the unit sphere in Rd .

(ii) On the other hand, suppose that 2ρ > |x− y|. Then |x− y| ≤ 2ρ ≤ 2c
√

t− r. Thus by

Lemma 2.4.7 again, we have

∥∥∥PW (|ξt− y| ≤ ρ)
1
p1

∥∥∥
p2
≤C
(
Vdρ

d(2π(t− r))−
d
2
) 1

p

≤C
(
Vdcd(2π)−

d
2
) 1

p exp
(4kc2

p
− 4kc2

p

)
≤C
(
Vdcd(2π)−

d
2
) 1

p e
4kc2

p exp
(
− k|x− y|2

p(t− r)

)
. (2.4.71)

Therefore, (2.4.69) follows from (2.4.70) - (2.4.71).

Denote by pW (r,x; t,y) the transition probability density of ξ conditional on W . In other words,

pW (r,x; t,y) is the conditional probability density of ξt = ξ
r,x
t . The existence of pW (r,x; t,y) is

guaranteed by Theorem 2.7.3. By applying Theorem 2.7.4, we can further obtain the following
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estimate:

Proposition 2.4.9. For any 0≤ r < t ≤ T , p≥ 1, and y ∈ Rd , there exist C > 0, depending on T ,

d, ‖h‖3,2, p, and q, such that

∥∥pW (r,x; t,y)
∥∥

2p ≤C exp
(
− k|x− y|2

6pd(t− r)

)
(t− r)−

d
2 , (2.4.72)

where k is defined in (2.4.64).

Proof. Choose p1 ∈ (d,3pd], let p2 = 2p1, and p3 =
p1 p2

p2−p1
= p2. Then, by (2.7.12) and Hölder’s

inequality, we have

∥∥∥pW
ξt
(y)
∥∥∥

2p
≤C max

1≤i≤d

{∥∥PW (|ξt− y|< 2ρ)
1
p2
∥∥

6p

∥∥∥(‖H(i)(ξt ,1)‖Wp1

)d−1
∥∥∥

6p

×
[ 1

ρ
+
∥∥‖H(i)(ξt ,1)‖Wp2

∥∥
6p

]}
, (2.4.73)

By Jensen’s inequality, we have for any 1≤ i≤ d

∥∥∥(∥∥H(i)(ξt ,1)
∥∥W

p1

)d−1
∥∥∥

6p
≤
∥∥H(i)(ξt ,1)

∥∥d−1
6p∨p1

≤
∥∥H(i)(ξt ,1)

∥∥d−1
6pd , (2.4.74)

and

∥∥∥∥∥H(i)(ξt ,1)
∥∥W

p2

∥∥∥
6p
≤
∥∥H(i)(ξt ,1)

∥∥
6pd . (2.4.75)

Let ρ =
√

t−r
4 . (2.4.72) is a consequence of (2.4.73) - (2.4.75), Lemma 2.4.5, and Proposition

2.4.8.
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2.5 A conditional convolution representation

In this section, we follow the idea of Li et al. (see Section 3 of [63]) to obtain a conditional

convolution formulation of the SPDE (2.2.1). Consider the following SPDE:

ut(x) =
ˆ
Rd

µ(z)pW (0,z; t,x)dz+
ˆ t

0

ˆ
Rd

pW (r,z; t,x)ur(z)V (dr,dz), (2.5.1)

where W and V are the same random fields as in (2.2.1), pW is the transition density of ξt given by

(2.4.1) conditional on W .

In order to define the stochastic integral on the right-hand side of (2.5.1), we introduce the

following filtrations. First, for any t ∈ [0,T ], we set

Ft := σ{W (s,x),(s,x) ∈ [0,T ]×Rd}∨σ{V (s,x),(s,x) ∈ [0, t]×Rd}. (2.5.2)

The stochastic integral in (2.5.1) is defined for all Ft-adapted processes. But later we will see

that the solution u, as a limit of Picard iteration, is in fact adapted to a smaller filtration defined as

follows: for any t ∈ [0,T ],

Gt := σ{W (s,x),(s,x) ∈ [0, t]×Rd}∨σ{V (s,x),(s,x) ∈ [0, t]×Rd}. (2.5.3)

Definition 2.5.1. A random field u = {ut(x), t ∈ [0,T ],x ∈Rd} is said to be a strong solution to the

SPDE (2.5.1), if the following properties are satisfied:

(i) u is Gt-adapted.

(ii) u is square integrable in the following sense:

E
(ˆ T

0

ˆ
Rd
|ut(x)|2dxdt

)
< ∞. (2.5.4)

(iii) The stochastic integral in (2.5.1) is defined as Walsh’s integral and the equality holds almost
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surely for all t ∈ [0,T ] and almost every x ∈ Rd .

Lemma 2.5.2. Assume that κ and µ are bounded. Then the SPDE (2.5.1) has a unique strong

solution (in the sense of Definition 2.5.1). Denote the solution by u = {ut(x),0 ≤ t ≤ T,x ∈ Rd}.

Then, for any p≥ 1, the following inequality holds:

sup
0≤t≤T

sup
x∈Rd
‖ut(x)‖2p < ∞. (2.5.5)

Proof. We prove the lemma by the Picard iteration. Let u0(t,x)≡ µ(x) and let

un(t,x) =
ˆ
Rd

µ(z)pW (0,z; t,x)dz+
ˆ t

0

ˆ
Rd

pW (r,z; t,x)un−1(r,z)V (dr,dz), (2.5.6)

for all n ≥ 1 and 0 ≤ t ≤ T . Since W and V are independent, then V is a martingale with respect

to the filtration {Ft}t∈[0,T ]. Notice that for any r ∈ [0,T ], Ft includes all the information of W ,

and pW depends only on W . Then, pW (r,z; t,x) is Fr-measurable, and by induction un−1(r,z) is

Fr-measurable for all [r, t]⊂ [0,T ] and x,z ∈ Rd . Thus the stochastic integral is well-defined, and

un is an Ft-adapted random field. In addition, we know that pW (r,z; t,x) is Gt-measurable, and

by induction we can assume that un−1(t) is Gt-measurable as well. Thus the stochastic integral in

(2.5.6) is Gt-measurable. Therefore, the limit of un(t,x) in L2(Ω), if exists, is also Gt-measurable.

Let dn(t,x) := un+1(t,x)−un(t,x). Then

dn(t,x) :=
ˆ t

0

ˆ
Rd

pW (r,z; t,x)dn−1(r,z)V (dr,dz).

For any p≥ 1, let

d∗n(t) :=
ˆ
Rd
‖dn(t,x)‖2

2pdx. (2.5.7)

We aim to prove the existence and convergence of {un}n≥1 in L2p(Ω;L2(Rd)) by showing that√
d∗n(t) is summable in n. Then, we will show that the limit is a solution to (2.5.1).
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By the definition of un(t), Burkholder-Davis-Gundy, Minkowski’s and Cauchy-Schwarz’s in-

equalities, we have

d∗n(t)≤cp‖κ‖∞

ˆ
Rd

ˆ t

0

(ˆ
Rd

∥∥pW (r,z; t,x)dn−1(r,z)
∥∥

2p dz
)2

drdx. (2.5.8)

By the Markov property, pW (r,z; t,x) depends only on {W (s,z)−W (r,z),s ∈ (r, t],z ∈ Rd}. On

the other hand, dn−1(r,z) depends on V and {W (s,z),s ∈ [0,r],z ∈ Rd}. Thus, pW (r,z; t,x) and

dn−1(r,z) are independent. That implies

E
(
|pW (r,z; t,x)dn−1(r,z)|2p)= E

(
|pW (r,z; t,x)|2p)E(|dn−1(r,z)|2p). (2.5.9)

Then, by (2.5.8), (2.5.9), Young’s convolution inequality, Fubini’s theorem and Proposition 2.4.9,

we have

d∗n(t)≤cp‖κ‖∞

ˆ t

0

ˆ
Rd×Rd

ˆ
Rd
‖pW (r,z1; t,x)‖2p‖pW (r,z2; t,x)‖2pdx

×‖dn−1(r,z1)‖2p‖dn−1(r,z2)‖2pdz1dz2dr

≤C
ˆ t

0
(t− r)−

d
2 exp

(
− k|z1− z2|2

12pd(t− r)

)
‖dn−1(r,z1)‖2p‖dn−1(r,z2)‖2pdz1dz2dr

≤C
ˆ t

0
d∗n−1(r)dr. (2.5.10)

where C > 0 depends on p, T , d, h, and ‖κ‖∞.

Thus by iteration, we have

d∗n(t)≤Cn
ˆ t

0

ˆ rn

0
· · ·
ˆ r2

0
d∗0(r1)dr1 · · ·drn, (2.5.11)
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To estimate d∗0 , we observe that

d∗0(t) =
ˆ
Rd

∥∥∥ˆ
Rd

(µ(z)−µ(x)) pW (0,z; t,x)dz

+

ˆ t

0

ˆ
Rd

pW (r,z; t,x)µ(z)V (dr,dz)
∥∥∥2

2p
dx

≤3
ˆ
Rd

∥∥∥ˆ
Rd

µ(z)pW (0,z; t,x)dz
∥∥∥2

2p
dx+3

ˆ
Rd

∥∥∥ˆ
Rd

µ(x)pW (0,z; t,x)dz
∥∥∥2

2p
dx

+3
ˆ
Rd

∥∥∥ˆ t

0

ˆ
Rd

pW (r,z; t,x)µ(z)V (dr,dz)
∥∥∥2

2p
dx. (2.5.12)

By an argument similar to the proof of (2.5.10), we can show that d∗0(t)<C. Therefore, we have

d∗n(t)≤C
ˆ t

0

ˆ rn

0
· · ·
ˆ r2

0
1dr1 . . .drn =C

tn

n!
. (2.5.13)

Notice that
√

dn(t) is summable in n and the corresponding series is bounded on [0,T]. Therefore,

for any fixed t ∈ [0,T ], {un(t, ·)}n≥0 is convergent in L2p(Ω;L2(Rd)). Denote by ut(x) the limit of

this sequence. We claim that u = {ut(x), t ∈ [0,T ],x ∈ Rd} is a strong solution to (2.5.1). Clearly

u satisfies (2.5.4) and is Gt-adapted. Therefore, it suffices to show that as n→ ∞,

ˆ t

0

ˆ
Rd

pW (r,z; t, ·)un(r,z)V (dr,dz)→
ˆ t

0

ˆ
Rd

pW (r,z; t, ·)u(r,z)V (dr,dz) (2.5.14)

in L2p(Ω) for all t ∈ [0,T ]. Actually, by Burkholder-Davis-Gundy’s, Minkowski’s, Young’s con-

volution inequalities, and the fact that {pW (r,z; t,x),x,z ∈ Rd} and {un(r,z)− u(r,z),z ∈ Rd} are

independent, we can write

∥∥∥ˆ t

0

ˆ
Rd

pW (r,z; t,x)(un(r,z)−u(r,z))V (dr,dz)
∥∥∥2

2p

≤C
ˆ t

0

ˆ
Rd
‖un(r,z)−u(r,z)‖2

2pdzdr,

This implies that (2.5.14) is true. As we discussed before, the limit u(t,x) is Gt-measurable, it

follows that u(t,x) is a strong solution to (2.5.1).

72



In order to show the uniqueness, we assume that v = {vt(x), t ∈ [0,T ],x∈Rd} is another strong

solution to (2.5.1). Let dt(x) = ut(x)− vt(x) for any t ∈ [0,T ] and x ∈ Rd . Then,

dt(x) =
ˆ t

0

ˆ
Rd

pW (r,z; t,x)dr(z)V (dr,dz).

By the Ito isometry, Minkowski’s and Young’s convolution inequalities and the fact that the fami-

lies {dr(x),x ∈ Rd} and {pW (r,z; t,x),x,z ∈ Rd} are independent, we have

ˆ
Rd
‖dt(x)‖2

2dx≤
ˆ t

0
sup
x∈Rd
‖dr(x)‖2

2

(ˆ
Rd

∥∥pW (r,z; t,x)
∥∥

2 dz
)2

dr

≤C
ˆ t

0

ˆ
Rd
‖dr(x)‖2

2dxdr. (2.5.15)

Notice that by definition,

ˆ
Rd
‖dt(x)‖2

2dx≤
ˆ
Rd

E|ut(x)|2dx+
ˆ
Rd

E|vt(x)|2dx < ∞

for almost every t ∈ [0,T ]. As a consequence of Gronwall’s lemma and the fact that d0 ≡ 0, the

inequality (2.5.15) implies d(t,x) ≡ 0, a.s for almost every (t,x) ∈ [0,T ]×Rd . It follows that the

solution to (2.5.1) in the sense of Definition 2.5.1 is unique.

In order to obtain the uniform boundedness (2.5.5), we need to estimate the following expres-

sion when applying the Picard iteration:

d̃∗n(t) := sup
x∈Rd
‖dn(t,x)‖2

2p,

instead of d∗n(t) defined in (2.5.7). By a similar argument as we did before, the following inequality

can be proved:

d̃∗n(t)≤C
T n

n!
,

where C > 0 is independent of n. Then, the inequality (2.5.5) follows immediately.
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Proposition 2.5.3. Assume that κ and µ are bounded. Let u = {ut(x),0 < t ≤ T,x ∈ Rd} be the

unique strong solution to (2.5.1) in the sense of Definition 2.5.1. Then, u is the strong solution to

(2.2.1) in the sense of Definition 2.2.1.

Proof. Let u = {ut(x), t ∈ [0,T ],x ∈ Rd} be the unique solution to the SPDE (2.5.1), and write

Z(dt,dx) = ut(x)V (dt,dx) for all t ∈ [0,T ] and x ∈Rd . Then, it suffices to show that u satisfies the

following equation:

〈ut ,φ〉=〈µ,φ〉+
ˆ t

0
〈us,Aφ〉ds+

ˆ t

0

ˆ
Rd
〈us,∇φ

∗h(y−·)〉W (ds,dy)

+

ˆ t

0

ˆ
Rd

φ(x)Z(ds,dx), (2.5.16)

for any φ ∈C2
b

(
Rd).

Denote by

EW
s,x(φ(ξt)) := E

(
φ(ξt)|W,ξs = x

)
=

ˆ
Rd

φ(z)pW (s,x; t,z)dz.

As u is the strong solution to (2.5.1), the following equations are satisfied

〈ut ,φ〉=
〈
µ,EW

0,·(φ(ξt))
〉
+

ˆ t

0

ˆ
Rd

EW
s,z(φ(ξt))Z(ds,dz),

ˆ t

0
〈us,Aφ〉ds =

ˆ t

0

〈
µ,EW

0,·(Aφ(ξs))
〉

ds+
ˆ t

0

ˆ s

0

ˆ
Rd

EW
r,z(Aφ(ξs))Z(dr,dz)ds,

and

ˆ t

0

ˆ
Rd
〈us,∇φ

∗h(y−·)〉W (ds,dy) =
ˆ t

0

ˆ
Rd

〈
µ,EW

0,·
(
∇φ(ξs)

∗h(y−ξs)
)〉

W (ds,dy)

+

ˆ t

0

ˆ
Rd

ˆ s

0

ˆ
Rd

EW
r,z
(
(∇φ(ξs)

∗h(y−ξs)
)
Z(dr,dz)W (ds,dy).

Notice that φ ∈ C2
b(R

d), h ∈ H3(Rd;Rd ⊗Rd), and ‖ut(x)‖2
2 is integrable on [0,T ]×Rd . These
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properties allow us to write

E
(ˆ T

0

ˆ
Rd
|∇φ(ξs)

∗h(y−ξs)|2dyds
)
≤ T‖φ‖1,∞‖h‖2

2 < ∞,

E
ˆ T

0

ˆ T

0

ˆ
Rd×Rd

|Aφ(ξs)||κ(z1,z2)ur(z1)ur(z2)|dz1dz2dsdr

≤‖φ‖2,∞‖κ‖∞

ˆ T

0

ˆ
Rd
‖ur(x)‖2

2dxdr < ∞,

and

E
(ˆ T

0

ˆ T

0

ˆ
Rd

ˆ
Rd×Rd

|∇φ(ξs)
∗h(y−ξs)|2|κ(z1,z2)ur(z1)ur(z2)|dydz1dz2dsdr

)
≤‖φ‖1,∞‖h‖2‖κ‖∞

ˆ T

0

ˆ
Rd
‖ur(x)‖2

2dxdr < ∞.

Thus by the stochastic Fubini theorem (c.f. Lemma 4.1 on page 116 of Ikeda & Watanabe [49]),

we have

〈ut ,φ〉−〈µ,φ〉−
ˆ t

0
〈us,Aφ〉ds−

ˆ t

0

ˆ
Rd
〈us,∇φ

∗h(y−·)〉W (ds,dy) (2.5.17)

=

〈
µ,EW

0,·

(
φ(ξt)−φ(ξ0)−

ˆ t

0
Aφ(ξs)ds−

ˆ t

0

ˆ
Rd

∇φ(ξs)
∗h(y−ξs)W (ds,dy)

)〉
+

ˆ t

0

ˆ
Rd

EW
s,z

(
φ(ξt)−

ˆ t

s
Aφ(ξr)dr−

ˆ t

s

ˆ
Rd

∇φ(ξr)
∗h(y−ξr)W (dr,dy)

)
Z(ds,dz).

The last stochastic integral in (2.5.17) is well-defined, because the integrand is Fs-adapted where

Fs is defined in (2.5.2). Notice that by Itô’s formula, we have

φ(ξ s,x
t ) =φ(x)+

ˆ t

s
Aφ(ξ s,x

r )dr+
ˆ r

s
∇φ(ξ s,x

r )∗dBr

+

ˆ t

s

ˆ
Rd

∇φ(ξ s,x
r )∗h(y−ξ

s,x
r )W (dr,dy). (2.5.18)

Then, (2.5.16) follows from (2.5.17) and (2.5.18).
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2.6 Proof of Theorem 2.2.4

In this section, we prove Theorem 2.2.4 by showing the the Hölder continuity of ut(x) in spatial

and time variables separately:

Proposition 2.6.1. Suppose that h ∈ H3
(
Rd), ‖κ‖∞ < ∞, and µ ∈ L1 (Rd) is bounded. Then, for

any 0 < s < t ≤ T , x,y ∈ Rd β ∈ (0,1) and p > 1, there exists a constant C depending on T , d,

‖h‖3,2, ‖µ‖∞, ‖κ‖∞, p, and β , such that the following inequalities are satisfied:

‖ut(y)−ut(x)‖2p ≤Ct−
1
2 (y− x)β , (2.6.1)

‖ut(x)−us(x)‖2p ≤Cs−
1
2 (t− s)

1
2 β . (2.6.2)

Then, Theorem 2.2.4 is simply a corollary of Proposition 2.6.1. In order to prove Proposi-

tion 2.6.1, we need the following Hölder continuity results for the conditional transition density

pW (r,z; t,x):

Lemma 2.6.2. Suppose that h ∈H3(Rd), 0≤ r < s < t ≤ T , x,y ∈Rd , and β ∈ (0,1). Then, there

exists C > 0, depending on T , d, ‖h‖3,2, p and β , such that the following inequalities are satisfied:

ˆ
Rd

∥∥pW (r,z; t,y)− pW (r,z; t,x)
∥∥

2p dz≤C(t− r)−
1
2 β |y− x|β , (2.6.3)

ˆ
Rd

∥∥pW (r,z; t,x)− pW (r,z;s,x)
∥∥

2p dz≤C(s− r)−
1
2 β (t− s)

1
2 β . (2.6.4)

Before showing the proof, let us firstly derive a variant of the density formula (2.7.11). It will

be used in the proof of (2.6.4). Choose φ ∈C2
b (R

n), such that 1B(0,1) ≤ φ ≤ 1B(0,4), and its first and

second partial derivatives are all bounded by 1. For any x ∈ Rd and ρ > 0, we set φ x
ρ := φ( ·−x

ρ
).

Assume that F satisfies all the properties in Theorem 2.7.3. Let Qn be the n-dimensional Poisson
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kernel (see (2.7.10)). Then, the density of F can be represented as follows:

pF(x) =
n

∑
i, j1, j2=1

E
[
∂ j1Qn(F− x)

〈
DF j1,DF j2

〉
H σ

j2iH(i)(F,φ
x
ρ(F))

]
=E
[〈

DQn(F− x),
m

∑
i, j2=1

H(i)(F,φ
x
ρ(F))σ j2iDF j2

〉
H

]
=

m

∑
i=1

E
[
Qn(F− x)

m

∑
j2=1

δ

[
H(i)(F,φ

x
ρ(F))σ j2iDF j2

]]
=−

m

∑
i=1

E
[
Qn(F− x)H(i,i)(F,φ

x
ρ(F))

]
. (2.6.5)

Let ξt = ξ
r,z
t be defined in (2.4.1).

Proof of (2.6.3). Choose p1 ∈ (d,3pd], let p2 = 2p1, and p3 =
p1 p2

p2−p1
= p2. Then, by (2.7.13) and

Hölder’s inequality, for any fixed z,x,y ∈ Rd and ρ > 0, we can show that

I(z) :=‖pW (r,z; t,x)− pW (r,z; t,y)‖2p

≤C|y− x|
∥∥∥PW (ξt− τ ≤ 4ρ)

1
p2

∥∥∥
6p

max
1≤i≤d

{∥∥∥(‖H(i)(ξt ;1)‖Wp2

)d−1
∥∥∥

6p

×
( 1

ρ2 +
2
ρ

∥∥‖H(i)(ξt ;1)‖
W
p2

∥∥
6p
+
∥∥‖H(i, j)(ξt ;1)‖Wp2

∥∥
6p

)}
,

where τ = cx+(1− c)y, for some c ∈ (0,1) that depends on z,x,y.

Let ρ =
√

t−r
8 . Similarly as proved in Proposition 2.4.9, we can show that

I(z)≤C|y− x|(t− r)−
d+1

2 exp
(
− k|τ− z|2

(6p∨ p2)(t− r)

)
≤C|y− x|(t− r)−

d+1
2 exp

(
− k|τ− z|2

6pd(t− r)

)
, (2.6.6)

where k is defined in (2.4.64) and C > 0 depends on T , d, p, and ‖h‖3,2.

Notice that even if we fix x,y ∈ Rd , τ is still a function of z that does not have an explicit

formulation. Thus it is not easy to calculate the integral of I directly. Without losing generality,

assume that x = 0, and y = (y1,0, . . . ,0), where y1 ≥ 0. Then τ = ((1− c)y1,0, . . . ,0), where
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c = c(z) ∈ (0,1). Let k̂ = k
6pd . For any z = (z1, . . . ,zd) ∈ Rd , we consider the following cases.

(a) If z1 ≤ 0, then

exp
(
− k|τ− z|2

6pd(t− r)

)
≤ exp

(
− k̂|z|2

t− r

)
. (2.6.7)

(b) If z1 ≥ y1, then

exp
(
− k|τ− z|2

6pd(t− r

)
≤ exp

(
− k̂|y− z|2

t− r

)
. (2.6.8)

(c) If 0 < z1 < y1, then

exp
(
− k|τ− z|2

6pd(t− r

)
≤ exp

(
− k̂|τ0− z|2

t− r

)
, (2.6.9)

where τ0 = (z1,0, . . . ,0).

Therefore, combining (2.6.6) - (2.6.9), we have

ˆ
Rd

I(z)dz≤C|y− x|(t− r)−
d+1

2 (I1 + I2 + I3) , (2.6.10)

where

I1 =

ˆ 0

−∞

dz1

ˆ
Rd−1

exp
(
− k̂|z|2

t− r

)
dzd . . .dz2,

I2 =

ˆ
∞

|y|
dz1

ˆ
Rd−1

exp
(
− k̂|y− z|2

t− r

)
dzd . . .dz2,

I3 =

ˆ |y|
0

dz1

ˆ
Rd−1

exp
(
− k̂|τ0− z|2

t− r

)
dzd . . .dz2.

By a changing of variables, it is easy to show that

I1 + I2 =

ˆ
Rd

exp
(
− k̂|z|2

t− r

)
dz = k̂−

d
2 (t− r)

d
2 . (2.6.11)
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For I3, we compute the integral as follows:

I3 =

ˆ |y|
0

dz1

ˆ
Rd−1

exp
(
−

k̂
(
z2

2 + . . .z2
d

)
t− r

)
dzd . . .dz2

=
(
2π k̂−1) d−1

2 (t− r)
d−1

2 |y|. (2.6.12)

Thus combining (2.6.10) - (2.6.12), we have

ˆ
Rd

I(z)dz≤C
[
(t− r)−

1
2 |y|+(t− r)−1|y|2

]
=C
[
(t− r)−

1
2 |y− x|+(t− r)−1|y− x|2

]
. (2.6.13)

It is easy to see that the inequality (2.6.13) holds for all x,y ∈ Rd .

On the other hand, by Proposition 2.4.9, we have

ˆ
Rd

I(z)dz≤
ˆ
Rd
‖pW (r,z; t,y)‖2p +‖pW (r,z; t,x)‖2pdz≤C. (2.6.14)

Therefore by (2.6.13) and (2.6.14), for any β1,β2 ∈ (0,1), we have

ˆ
Rd

I(z)dz≤C
[
(t− r)−

1
2 β1 |y− x|β1 +(t− r)−β2 |y− x|2β2

]
Then, (2.6.3) follows by choosing β = β1 = 2β2.

Proof of (2.6.4). Let ρ1 =
√

t− r and ρ2 =
√

s− r. By density formula (2.6.5), we have

∣∣pW (r,z; t,x)− pW (r,z;s,x)
∣∣

≤
d

∑
i=1

∣∣∣EW
{
[Qd(ξt− x)−Qd(ξs− x)]H(i,i)(ξs,φ

x
ρ2
(ξs))

}∣∣∣
+

d

∑
i=1

∣∣∣EW
{

Qd(ξt− x)
[
H(i,i)(ξt ,φ

x
ρ1
(ξt))−H(i,i)(ξs,φ

x
ρ2
(ξs))

]}∣∣∣
=I1 + I2. (2.6.15)
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Estimation for I1: Note that by the local property of δ (c.f. Proposition 1.3.15 of Nualart

[71]), H(i,i)(ξs,φ
x
ρ2
(ξs)) vanishes except if ξs ∈ B(x,4ρ2). Choose p1 ∈ (d,2pd]. Let p2 = 3p1 and

p3 =
3p1

3p1−2 . Then, 2
p2
+ 1

p3
= 1. Thus, by Hölder’s inequality, we have

‖I1‖2p ≤d
∥∥‖1B(x,4ρ2)(ξs)‖Wp2

∥∥
6p

∥∥‖Qd(ξt− x)−Qd(ξs− x)‖Wp3

∥∥
6p

× max
1≤i≤d

∥∥‖H(i,i)(ξs,φ
x
ρ2
(ξs))‖Wp2

∥∥
6p. (2.6.16)

By Proposition 2.4.8, and the fact that p2 = 3p1 ≤ 6pd, the first factor satisfies the following

inequality

∥∥‖1B(x,4ρ2)(ξs)‖Wp2

∥∥
6p =

∥∥PW (|ξs− x|< 4ρ2)
1
p2
∥∥

6p ≤C exp
(
− k|z− x|

6pd(s− r)

)
. (2.6.17)

By Lemmas 2.4.5 and 2.7.2, for all 1≤ i≤ d, the last factor can be estimated as follows:

∥∥‖H(i,i)(ξs,φ
x
ρ2
(ξs))‖Wp2

∥∥
6p ≤

1
ρ2

2
+

2
ρ2

∥∥‖H(i)(ξs,1)‖Wp2

∥∥
6p +

∥∥‖H(i,i)(ξs,1)‖Wp2

∥∥
6p

≤C(s− r)−1. (2.6.18)

We estimate the second factor by the mean value theorem. Let η1 = |ξt − x| and η2 = |ξs− x|.

Then, we can write

Qd(ξt− x)−Qd(ξs− x) =


A−1

2 (logη1− logη2) , if d = 2,

−A−1
d

[
η
−(d−2)
1 −η

−(d−2)
2

]
, if d ≥ 3.

Thus, by the mean value theorem, it follows that

|Qd(ξt− x)−Qd(ξs− x)|= cd|η1−η2|
|ζ η1 +(1−ζ )η2|d−1 ,

where cd is a constant coming from the Poisson kernel, and ζ ∈ (0,1) is a random number that
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depends on η1 and η2. Notice that f (x) = x−(d−1) is a convex function on (0,∞), and P(η1 > 0) =

P(η2 > 0) = 1, then we have

|ζ η1 +(1−ζ )η2|−(d−1) ≤ |ζ η1|−(d−1)+ |(1−ζ )η2|−(d−1), a.s.

Let q = p1
p1−1 , then 1

q +
1
p2

= 1
p3

. As a consequence of Hölder’s inequality, we have

∥∥‖Qd(ξt− x)−Qd(ξs− x)‖Wp3

∥∥
6p ≤ cd

∥∥∥∥∥∥∥ |η1−η2|
|ζ η1 +(1−ζ )η2|d−1

∥∥∥W

p3

∥∥∥∥
6p

(2.6.19)

≤C
∥∥‖η1−η2‖Wp2

∥∥
12p

∥∥∥∥∥∥|ζ η1 +(1−ζ )η2|−(d−1)
∥∥∥W

q

∥∥∥
12p

≤C‖η1−η2‖12pd

[∥∥∥∥∥ζ η
−(d−1)
1

∥∥W
q

∥∥∥
12p

+
∥∥∥∥∥(1−ζ )η

−(d−1)
2

∥∥W
q

∥∥∥
12p

]
≤C

∥∥ξt−ξs
∥∥

12pd

[∥∥∥∥∥|ξt− y|−(d−1)∥∥W
q

∥∥∥
12p

+
∥∥∥∥∥|ξs− y|−(d−1)∥∥W

q

∥∥∥
12p

]
.

The negative moments of ξt − y can be estimated by (2.4.57), Jensen’s inequality, and Lemma

2.7.6:

∥∥∥∥∥|ξt− x|−(d−1)∥∥W
q

∥∥∥
12p
≤C max

1≤i≤d

∥∥(‖Hi(ξt ,1)‖Wp1

)d−1∥∥
12p

≤C max
1≤i≤d

∥∥H(i)(ξt ,1)
∥∥d−1

12pd ≤C(t− r)−
d−1

2 . (2.6.20)

Then, by (2.6.19) - (2.6.20), we have

∥∥‖Qd(ξt− x)−Qd(ξs− x)‖Wp3

∥∥
6p ≤C(t− s)

1
2 (s− r)−

d−1
2 . (2.6.21)

Thus combining (2.6.16), (2.6.17), (2.6.18) and (2.6.21), we have

‖I1‖2p ≤C exp
(
− k|z− x|

6pd(s− r)

)
(s− r)−

d+1
2 (t− s)

1
2 .
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This implies

ˆ
Rd
‖I1‖2pdz≤C(s− r)−

1
2 (t− s)

1
2 . (2.6.22)

Estimates for I2: Recall that γt = (〈Dξ i,Dξ j〉H)d
i, j=1 = σ

−1
t . By computation analogue to

(2.6.5) going backward, we can show that

EW
[
Qd(ξt− x)

(
H(i,i)(ξt ,φ

x
ρ1
(ξt))−H(i,i)(ξs,φ

x
ρ2
(ξs))

)]
=−

d

∑
j1, j2=1

EW
[
∂ j2Qd(ξt− x)〈Dξ

j2
t ,Dξ

j1
t 〉HH(i)

(
ξt ,φ

x
ρ1
(ξt)
)

σ
j1i

t

]
+

d

∑
j1, j2=1

EW
[
∂ j2Qd(ξt− x)〈Dξ

j2
t ,Dξ

j1
s 〉HH(i)

(
ξs,φ

x
ρ2
(ξ r,z

s )
)

σ
j1i

s

]
=−EW

[
∂iQd(ξt− x)

(
H(i)

(
ξt ,φ

x
ρ1
(ξt)
)
−H(i)

(
ξs,φ

x
ρ2
(ξs)

))]
+

d

∑
j1, j2=1

EW
[
∂ j2Qd(ξt− x)〈Dξ

j2
t −Dξ

j2
s ,Dξ

j1
s 〉HH(i)

(
ξs,φ

x
ρ2
(ξs)

)
σ

j1i
s

]
:=J1 + J2. (2.6.23)

By Lemma 2.7.2, we have

∣∣∣H(i)

(
ξt ,φ

x
ρ1
(ξt)
)
−H(i)

(
ξs,φ

x
ρ2
(ξs)

)∣∣∣≤ ∣∣∣∂iφ
x
ρ1
(ξt)−∂iφ

x
ρ2
(ξs)

∣∣∣ (2.6.24)

+ |φ x
ρ2
(ξs)|

∣∣H(i)(ξt ,1)−H(i)(ξs,1)
∣∣+ ∣∣H(i)(ξt ,1)

∣∣ ∣∣∣φ x
ρ1
(ξt)−φ

x
ρ2
(ξs)

∣∣∣ .
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By the mean value theorem, for some random numbers c1,c2 ∈ (0,1), we have

∣∣∣φ x
ρ1
(ξt)−φ

x
ρ2
(ξs)

∣∣∣=∣∣1B(x,4ρ1)(ξt)∨1B(x,4ρ2)(ξs)
∣∣∣∣∣φ(ξt− x

ρ1

)
−φ

(
ξs− x

ρ2

)∣∣∣
=
∣∣1B(x,4ρ1)(ξt)∨1B(x,4ρ2)(ξs)

∣∣
×
∣∣∣∇φ

(
c1

ξt− x
ρ1

+(1− c1)
ξs− x

ρ2

)∗
·
(

ξt− x
ρ1
− ξs− x

ρ2

)∣∣∣
≤
∣∣1B(x,4ρ1)(ξt)∨1B(x,4ρ2)(ξs)

∣∣∣∣∣ξt− x
ρ1
− ξs− x

ρ2

∣∣∣, (2.6.25)

and

∣∣∣∂iφ
x
ρ1
(ξt)−∂iφ

x
ρ2
(ξs)

∣∣∣= ∣∣∣ρ−1
1 ∂iφ

(
ξt− x

ρ1

)
−ρ

−1
2 ∂iφ

(
ξs− x

ρ2

)∣∣∣ (2.6.26)

≤ 1
ρ1

∣∣∣∇∂iφ
(

c2
ξt− x

ρ1
+(1− c2)

ξs− x
ρ2

)∗
·
(

ξt− x
ρ1
− ξs− x

ρ2

)∣∣∣ (2.6.27)

+
∣∣∣∂iφ

x
ρ2
(ξs)

∣∣∣∣∣∣ 1
ρ1
− 1

ρ2

∣∣∣
≤ 1

ρ1

(
1B(x,4ρ1)(ξt)∨1B(x,4ρ2)(ξs)

)∣∣∣ξt− x
ρ1
− ξs− x

ρ2

∣∣∣+1B(x,4ρ2)(ξs)
∣∣∣ 1
ρ1
− 1

ρ2

∣∣∣.
Choose q ∈ (d,3pd], let p1 =

q
q−1 , p2 = 2q, p3 = 4q. Then,

1
p1

+
2
p2

=
1
p1

+
1
p2

+
2
p3

= 1.
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Then, by (2.6.24) - (2.6.26), and Hölder’s inequality, we have

‖J1‖2p ≤ρ
−1
1

∥∥‖∂iQd(ξt− x)‖Wp1

∥∥
6p

∥∥∥∥∥1B(x,4ρ1)(ξt)∨1B(x,4ρ2)(ξs)
∥∥W

p2

∥∥∥
6p

×
∥∥∥∥∥∥∥ξt− x

ρ1
− ξs− x

ρ2

∥∥∥W

p2

∥∥∥∥
6p

+
∥∥‖∂iQd(ξt− x)‖Wp1

∥∥
6p

∥∥∥∥∥1B(x,4ρ2)(ξs)
∥∥W

p2

∥∥∥
6p

∥∥‖ρ−1
1 −ρ

−1
2 ‖p2

∥∥
6p

+
∥∥‖∂iQd(ξt− x)‖Wp1

∥∥
6p

∥∥∥∥∥1B(x,4ρ2)(ξs)
∥∥W

p2

∥∥∥
6p

∥∥‖H(i)(ξt ,1)−H(i)(ξs,1)‖Wp2

∥∥
6p

+
∥∥‖∂iQd(ξt− x)‖Wp1

∥∥
6p

∥∥∥∥∥1B(x,4ρ1)(ξt)∨1B(x,4ρ2)(ξs)
∥∥W

p2

∥∥∥
6p

×
∥∥∥∥∥∥∥ξt− x

ρ1
− ξs− x

ρ2

∥∥∥W

p3

∥∥∥∥
12p

∥∥‖H(i)(ξt ,1)‖Wp3

∥∥
12p

:=L1 +L2 +L3 +L4. (2.6.28)

In order to estimate the moments of ξt−x
ρ1
− ξs−x

ρ2
, we rewrite this random vector in the following

way:
ξt− x

ρ1
− ξs− x

ρ2
=

ξt−ξs

ρ1
+(ξs− z)

( 1
ρ1
− 1

ρ2

)
+(z− x)

( 1
ρ1
− 1

ρ2

)
.

It follows that

∥∥∥ξt− x
ρ1
− ξs− x

ρ2

∥∥∥
12p∨p3

≤ (t− r)−
1
2
∥∥ξt−ξs

∥∥
12pd

+
(t− r)

1
2 − (s− r)

1
2

(t− r)
1
2 (s− r)

1
2

∥∥ξs− z
∥∥

12pd + |z− x|(t− r)
1
2 − (s− r)

1
2

(t− r)
1
2 (s− r)

1
2

.

According to Lemma 2.4.7, ξt − ξs and ξs− z are Gaussian random vectors with mean 0, and

covariance matrix (t− s)(I +ρ(0)) and (s− r)(I +ρ(0)) respectively. Therefore, we have

∥∥∥ξt− x
ρ1
− ξs− x

ρ2

∥∥∥
12pd
≤cp,d(t− r)−

1
2 (t− s)

1
2 + cp,d

(t− r)
1
2 − (s− r)

1
2

(t− r)
1
2 (s− r)

1
2

(s− r)
1
2

+ |z− x|(t− r)
1
2 − (s− r)

1
2

(t− r)
1
2 (s− r)

1
2

≤C
(
|z− x|(s− r)−

1
2 +1

)
(t− r)−

1
2 (t− s)

1
2 (2.6.29)
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Therefore, by (2.6.29), Proposition 2.4.8 and Lemma 2.7.6, we have

L1 +L4 ≤C(t− r)−
d
2

[
exp
(
− k|z− x|2

6pd(t− r)

)
+ exp

(
− k|z− x|2

6pd(s− r)

)]
×
(
1+ |z− x|(s− r)−

1
2
)
(t− s)

1
2 , (2.6.30)

and

L2 +L3 ≤C(t− r)−
d
2 exp

(
− k|z− x|2

6pd(s− r)

)
(s− r)−

1
2 (t− s)

1
2 . (2.6.31)

Plugging (2.6.30) and (2.6.31) into (2.6.28), we have

ˆ
Rd
‖J1‖2p dz≤C(s− r)−

1
2 (t− s)

1
2 . (2.6.32)

For J2, notice that, by definition,

〈Dξ
j2

t −Dξ
j2

s ,Dξ
j1

s 〉H =
d

∑
k=1

ˆ s

r

(
D(k)

θ
ξ

j2
t −D(k)

θ
ξ

j2
s
)
D(k)

θ
ξ

j1
s dθ .

By (2.4.2), we have

D(k)
θ

ξ
j2

t −D(k)
θ

ξ
j2

s = 1[s,t](θ)δ j2k−
d

∑
i=1

1[r,t](θ)
ˆ t

s
D(k)

θ
ξ

i
rdMi j2

r .

By a argument similar to the one used in the proof of Lemma 2.4.3, we can show that

∥∥1[r,s](θ)
(
D(k)

θ
ξ

j2
t −D(k)

θ
ξ

j2
s
)∥∥2

2p ≤C1[r,s](θ)(t− s).

85



Therefore, by Hölder’s and Minkowski’s inequalities, we have

∥∥∥〈Dξ
j2

t −Dξ
j2

s ,Dξ
j1

s 〉H
∥∥∥

2p
≤

d

∑
k=1

ˆ s

r

∥∥1[r,s](θ)
(
D(k)

θ
ξ

j2
t −D(k)

θ
ξ

j2
s
)∥∥

4p

∥∥D(k)
θ

ξ
j1

s
∥∥

4pdθ

≤C(s− r)(t− s)
1
2 . (2.6.33)

Choose q ∈ (d,3pd]. Let p1 = q
q−1 , p2 = 2q and p3 = 6q. Then 1

p1
+ 1

p2
+ 3

p3
= 1. Thus, by

(2.6.33), Hölder’s inequality, Lemmas 2.4.3, 2.4.5, 2.7.6, and Proposition 2.4.8, we have

‖J2‖2p ≤
d

∑
j1, j2=1

∥∥‖1B(x,4ρ2)(ξs)‖Wp2

∥∥
6p

∥∥‖∂ j2Qd(ξt− x)‖Wp1

∥∥
6p

×
∥∥‖〈Dξ

j2
t −Dξ

j2
s ,Dξ

j1
s 〉H‖Wp3

∥∥
18p

∥∥‖H(i)(ξs,φ
y
ρ2(ξs))‖Wp3

∥∥
18p

∥∥‖σ j1i
s ‖Wp3

∥∥
18p

≤C exp
(
− k|z− x|2

6pd(s− r)

)
(t− r)−

d−1
2 (t− s)

1
2 (s− r)−

1
2 .

As a consequence, we have

ˆ
Rd
‖J2‖2p dz≤C(t− s)

1
2 . (2.6.34)

Finally, combining (2.6.22), (2.6.32) and (2.6.34), we have

ˆ
Rd

∥∥pW (r,z; t,x)− pW (r,z;s,x)
∥∥

2p dz≤C(s− r)−
1
2 (t− s)

1
2 . (2.6.35)

On the other hand, by (2.4.72), we have

ˆ
Rd
‖I2‖2pdz≤

ˆ
Rd
‖pW (r,z; t,y)‖2p +‖pW (r,z;s,y)‖2p ≤C. (2.6.36)

Thus (2.6.4) follows from (2.6.35) and (2.6.36).

Proof of Proposition 2.6.1. By the convolution representation (2.5.1), Burkholder-Davis-Gundy’s,
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and Minkowski’s inequalities, we have

‖ut(y)−ut(x)‖2p ≤
∥∥∥ˆ

Rd
µ(z)

(
pW (0,z; t,y)− pW (0,z; t,x)

)
dz
∥∥∥

2p

+
∥∥∥ˆ t

0

ˆ
Rd

ur(z)
(

pW (r,z; t,y)− pW (r,z; t,x)
)

V (dz,dr)
∥∥∥

2p

≤ ‖µ‖
∞

ˆ
Rd

∥∥pW (0,z; t,y)− pW (0,z; t,x)
∥∥

2p dz

+‖κ‖
1
2
∞

(ˆ t

0

(ˆ
Rd

∥∥ur(z)
(

pW (r,z; t,y)− pW (r,z; t,x)
)∥∥

2p dz
)2

dr
) 1

2

:= I1 +‖κ‖
1
2
∞I2. (2.6.37)

Note that I1 can be estimated by Lemma 2.6.2. For I2, recall that u(r,z) is independent of pW (r,z; t,y)2.

Then, by Lemma 2.5.2 and 2.6.2, we have

I2 ≤
(ˆ t

0
sup
z∈Rd
‖ur(z)‖2

2p

(ˆ
Rd

∥∥pW (r,z; t,y)− pW (r,z; t,x)
∥∥

2p dz
)2

dr
) 1

2

≤C|y− x|β
(ˆ t

0
(t− r)−β dr

) 1
2 ≤ Ct

1−β

2√
1−β

|y− x|β . (2.6.38)

Therefore (2.6.1) follows from (2.6.3), (2.6.37) and (2.6.38).

The proof of (2.6.2) is quite similar. As in (2.6.37), we can show that

‖ut(x)−us(x)‖2p ≤ ‖µ‖∞

ˆ
Rd

∥∥pW (0,z; t,x)− pW (0,z;s,x)
∥∥

2p dz

+C‖κ‖
1
2
∞

[ˆ t

s
sup
z∈Rd
‖ur(z)‖2

2p

(ˆ
Rd

∥∥pW (r,z; t,x)
∥∥

2p dz
)2

dr
] 1

2

+C‖κ‖
1
2
∞

[ˆ s

0
sup
z∈Rd
‖ur(z)‖2

2p

(ˆ
Rd

∥∥(pW (r,z; t,x)− pW (r,z;s,x)
)∥∥

2p dz
)2

dr
] 1

2

.

Then, the estimate (2.6.2) follows from (2.6.4), Proposition 2.4.9 and Lemma 2.5.2.
2The same idea has been used in the proof of Lemma 2.5.2.
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2.7 Appendix: a brief introduction on Malliavin calculus

In this section, we present some preliminaries on the Malliavin calculus. We refer the readers to

book of Nualart [71] for a detailed account on this topic.

Fix a time interval [0,T ]. Let B = {B1
t , . . . ,B

d
t ,0≤ t ≤ T} be a standard d-dimensional Brow-

nian motion on [0,T ]. Denote by S the class of smooth random variables of the form

G = g(Bt1, . . . ,Btm) = g
(

B1
t1 , . . . ,B

d
t1, . . . ,B

1
tm, . . . ,B

d
tm

)
, (2.7.1)

where m is any positive integer, 0 ≤ t1 < · · · < tm ≤ T , and g : Rmd → R is a smooth function

that has all partial derivatives with at most polynomial growth. We make use of the notation

x =
(
xk

i
)

1≤i≤m,1≤k≤d for any element x ∈ Rmd . The basic Hilbert space associated with B is H =

L2 ([0,T ];Rd).
Definition 2.7.1. For any G∈S given by (2.7.1), the Malliavin derivative, is the H-valued random

variable DG given by

D(k)
θ

G =
m

∑
i=1

∂g
∂xk

i
(Bt1, . . . ,Btm)1[0,ti](θ), 1≤ k ≤ d, θ ∈ [0,T ].

In the same way, for any n ≥ 1, the iterated derivative DnG of a random variable of the form

(2.7.1) is a random variable with values in H⊗n = L2 ([0,T ]n;Rdn)
. For each p ≥ 1, the iterated

derivative Dn is a closable and unbounded operator on Lp(Ω) taking values in Lp(Ω;H⊗n). For any

n ≥ 1, p ≥ 1 and any Hilbert space V , we can introduce the Sobolev space Dn,p(V ) of V -valued

random variables as the closure of S with respect to the norm

‖G‖2
n,p,V =‖G‖2

Lp(Ω;V )+
n

∑
k=1
‖DkG‖2

Lp(Ω;H⊗k⊗V )

=
[
E
(
‖G‖p

V
)] 2

p +
n

∑
k=1

[
E
(
‖DkG‖p

H⊗k⊗V

)] 2
p .

By definition, the divergence operator δ is the adjoint operator of D in L2(Ω). More precisely, δ
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is an unbounded operator on L2 (Ω;H), taking values in L2(Ω). We denote by Dom(δ ) the domain

of δ . Then, for any u = (u1, . . . ,ud) ∈ Dom(δ ), δ (u) is characterized by the duality relationship:

for all for all G ∈ D1,2 = D1,2(R).

E(δ (u)G) = E(〈DG,u〉H) . (2.7.2)

Let F be an n-dimensional random vector, with components F i ∈D1,1,1≤ i≤ n. We associate

to F an n× n random symmetric nonnegative definite matrix, called the Malliavin matrix of F ,

denoted by γF . The entries of γF are defined by

γ
i j
F =

〈
DF i,DF j〉

H =
d

∑
k=1

ˆ T

0
D(k)

θ
F iD(k)

θ
F jdθ . (2.7.3)

Suppose that F ∈ ∩p≥1D2,p(Rn), and its Malliavin matrix γF is invertible. Denote by σF

the inverse of γF . Assume that σ
i j
F ∈ ∩p≥1D1,p for all 1 ≤ i, j ≤ n. Let G ∈ ∩p≥1D1,2. Then

Gσ
i j
F DFk ∈ Dom(δ ) for all 1≤ i, j,k ≤ n. Under the hypotheses, we define

H(i)(F,G) =−
n

∑
j=1

δ

(
Gσ

ji
F DF j

)
, 1≤ i≤ n. (2.7.4)

If furthermore H(i)(F,G) ∈ ∩p≥1D1,p for all 1≤ i≤ n, then we define

H(i, j)(F,G) = H( j)
(
F,H(i)(F,G)

)
, 1≤ i, j ≤ n. (2.7.5)

The following lemma is a Wiener functional version of Lemma 9 of Bally & Caramellino [5].

Lemma 2.7.2. Suppose that F ∈∩p≥1D2,p(Rn), (γ−1
F )i j = σ

i j
F ∈∩p≥1D2,p for all 1≤ i, j≤ n, and

φ ∈C1
b(R

n). Then, for any 1≤ i≤ n, we have

H(i) (F,φ(F)) =∂iφ(F)+φ(F)H(i)(F,1). (2.7.6)
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Suppose that F ∈ ∩p≥1D3,p(Rn) and φ ∈C2
b(R

n). Then, for any 1≤ i, j ≤ n, we have

H(i, j) (F,φ(F)) = ∂i jφ(F)+∂iφ(F)H( j)(F,1)

+∂ jφ(F)H(i)(F,1)+φ(F)H(i, j)(F,1). (2.7.7)

Proof. For any F ∈ ∩p≥1D2,p(Rn) and φ ∈ C1
b(R

n), it is easy to check that φ(F) ∈ ∩p≥1D1,p.

Then, H(i)(F,φ(F)) is well defined. For any G ∈ D1,2, by the duality of D and δ , we have

E
(
H(i) (F,φ(F))G

)
=−

n

∑
j=1

E
(

δ

(
φ(F)σ

ji
F DF j

)
G
)

=−
n

∑
j=1

E
(

φ(F)σ
ji

F
〈
DF j,DG

〉
H

)
. (2.7.8)

On the other hand, by the product rule for the operator D, we have

E
(
φ(F)H(i)(F,1)G

)
=−

m

∑
j=1

E
(〈

σ
ji

F DF j,D(φ(F)G)
〉

H

)
=−

m

∑
j=1

E
(

φ(F)σ
ji

F
〈
DF j,DG

〉
H

)
−

m

∑
j1, j2=1

E
(

G∂ j2φ(F)σ
j1i

F
〈
DF j1,DF j2

〉
H

)
.

Note that σF is the inverse of γF =
(
〈DF i,DF j〉H

)n
i, j=1, then

m

∑
j1, j2=1

E
(

G∂ j2φ(F)σ
j1i

F
〈
DF j1 ,DF j2

〉
H

)
= E(G∂iφ(F)) . (2.7.9)

Then, (2.7.6) follows from (2.7.8) - (2.7.9). The equality (2.7.7) can be proved similarly.

The next theorem is a density formula using the Riesz transformation. The formula was first

introduced by Malliavin and Thalmaier (see Theorem Section 2.3.23 of Malliavin & Thalmaier

[68]), then further studied by Bally & Caramellino [5].
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For any integer n≥ 2, let Qn be the n-dimensional Poisson kernel. That is,

Qn(x) =


A−1

2 log |x|, n = 1,

−A−1
n |x|2−n, n > 2,

(2.7.10)

where An is the area of the unit sphere in Rn. Then, ∂iQn(x) = cnxi |x|−n, where c2 = A−1
2 and

cn = (n
2 −1)A−1

n for n > 2.

The theorem below is the density formula for a class of differentiable random variables.

Theorem 2.7.3. (Proposition 10 of Bally & Caramellino [5]) Let F ∈ ∩p≥1D2,p(Rn). Assume that

(γ−1
F )i j = σ

i j
F ∈ ∩p≥1D1,p for all 1≤ i, j ≤ n. Then, the law of F has a density pF .

More precisely, for any x ∈ Rn and r > 0, let B(x,r) be the sphere on Rn centered at x with

radius r. Suppose that φ ∈ C1
b(R

d), such that 1B(0,1) ≤ φ ≤ 1B(0,2), and |∇φ | ≤ 1. Define φ x
ρ :=

φ( ·−x
ρ
) for any ρ > 0 and x ∈ Rn. Then,

pF(x) =
n

∑
i=1

E
(
∂iQn(F− x)H(i)(F,1)

)
=

n

∑
i=1

E
(
∂iQn(F− x)H(i)(F,φ

x
ρ(F))

)
=

n

∑
i=1

E
(
1B(x,2ρ)

(F)∂iQn(F− x)H(i)(F,φ
x
ρ(F))

)
. (2.7.11)

The next theorem provides the estimates for the density and its increment.

Theorem 2.7.4. Suppose that F satisfies the conditions in Theorem 2.7.3. Then, for any p2 > p1 >

n, let p3 =
p1 p2

p2−p1
, there exists a constant C that depends on p1, p2 and n, such that

pF(x)≤CP(|F− x|< 2ρ)
1
p3 max

1≤i≤n

[∥∥H(i)(F,1)
∥∥n−1

p1

( 1
ρ
+
∥∥H(i)(F,1)

∥∥
p2

)]
. (2.7.12)

If furthermore, F ∈ ∩p≥1D3,p(Rn), for any x1,x2 ∈ Rn, we can find y = cx1 +(1− c)x2 for some

c ∈ (0,1) that depends on x1, x2. Then, there exist a constant F the constant C that depends on p1,
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p2, and m, such that

|pF(x1)− pF(x2)| ≤C|x1− x2|P(|F− y|< 4ρ)
1
p3

× max
1≤i, j≤n

[∥∥H(i)(F,1)
∥∥n−1

p1

( 1
ρ2 +

2
ρ

∥∥H(i)(F,1)
∥∥

p2
+
∥∥H(i, j)(F,1)

∥∥
q2

)]
. (2.7.13)

Remark 2.7.5. The inequalities stated in Theorem 2.7.4 are an improved version of those estimates

by Bally and Caramillino (see Theorem 8 of Bally & Caramellino [5]). We refer to (see Lemma

7.3.2 of Nualart & Nualart [72]) for a related result. For the sake of completeness, we present

below a proof of Theorem 2.7.4. The proof follows the same idea as in Theorem 8 of Bally &

Caramellino [5]. The only difference occurs when choosing the radius of the ball in the estimate

for the Poisson kernel. If we optimize the radius, then the exponent of ‖H(i)(F,1)‖p is n−1, instead

of q1(n−1)
q1−n > n−1 in Bally & Caramellino [5].

In order to prove Theorem 2.7.4, we first give the estimate for the Poisson kernel:

Lemma 2.7.6. Suppose that F satisfy the conditions in Theorem 2.7.3. For any p > n, let q = p
p−1 .

Then, there exists a constant C > 0 depends on m and p, such that

sup
x∈Rn
‖∂iQn(F− x)‖q ≤ sup

x∈Rn

∥∥∥|F− x|−(n−1)
∥∥∥

q
≤C max

1≤i≤n

∥∥H(i)(F,1)
∥∥n−1

p . (2.7.14)

Proof. Assume that

‖pF‖∞ := sup
x∈Rd

pF(x)< ∞.

Denote by M = sup
1≤i≤n

‖H(i)(F,1)‖p. Then by Hölder’s inequality, for all x ∈ Rd , we have

pF(x) =
n

∑
i=1

E
(
∂iQn(F− x)H(i)(F,1)

)
≤

m

∑
i=1
‖∂iQn(F− x)‖q‖H(i)(F,1)‖p

≤n sup
x∈Rn

∥∥∥|F− x|−(n−1)
∥∥∥

q
M,
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which implies

‖pF‖∞ ≤ n sup
x∈Rn

∥∥∥|F− x|−(n−1)
∥∥∥

q
M. (2.7.15)

In order to estimate ‖|F− x|−(n−1)‖q, choose any ρ > 0. Then for all x ∈ Rn,

E(|F− x|−(n−1)q) =

ˆ
Rd
|y− x|−(n−1)q pF(y)dy

=

ˆ
|y−x|≤ρ

|y− x|−(n−1)q pF(y)dy+
ˆ
|y−x|>ρ

|y− x|−(n−1)q pF(y)dy

≤‖pF‖∞

ˆ
ρ

0
r−(n−1)qrn−1dr+ρ

−(n−1)q

=kn,q‖pF‖∞ρ
1−(n−1)(q−1)+ρ

−(n−1)q, (2.7.16)

where kn,q = [1− (n−1)(q−1)]−1. The last equality is due to the fact that 1− (n−1)(q−1)> 0.

Combining (2.7.15) and (2.7.16), we have

‖pF‖∞ ≤
[
nk

1
q
n,q‖pF‖

1
q
∞ρ

1−(n−1)(q−1)
q +ρ

−(n−1)
]
M. (2.7.17)

By optimizing the right-hand side of (2.7.17), we choose

ρ = ρ
∗ :=

[(n−1)q
n

] q
n‖pF‖

− 1
n

∞ .

Plugging ρ∗ into (2.7.17), we obtain

‖pF‖∞ ≤
(

nk
1
q
n,q

[(n−1)q
n

] 1−(n−1)(q−1)
n

+
[(n−1)qM

n

]− q(n−1)
n
)

M|pF‖
n−1

n
∞ .

Then, it follows that

‖pF‖∞ ≤CMn =C max
1≤i≤n

‖H(i)(F,1)‖n
p (2.7.18)
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where C is a constant that depends on p and n. Thus (2.7.14) follows from (2.7.17) and (2.7.18).

The result can be generalized to the case without the assumption ‖pF‖∞ < ∞ by the same

argument as in Theorem 5 of Bally & Caramellino [5].

Proof of Theorem 2.7.4. Choose p2 > p1 > n, let p3 =
p1 p2

p2−p1
and q = p1

p1−1 . Then 1
q +

1
p2
+ 1

p3
= 1.

Thus by density formula (2.7.11) and Hölder’s inequality, we have

pF(x)≤
n

∑
i=1
‖1B(x,2ρ)

(F)‖p3‖∂iQn(F− x)‖q‖H(i)(F,φ
x
ρ(F))‖p2. (2.7.19)

Then, (2.7.12) is a consequence of (2.7.19), Lemma 2.7.2 and 2.7.6. The inequality (2.7.13) can

be proved similarly.
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Chapter 3

Nonlinear rough paths

In this chapter, we develop the theory of nonlinear rough paths. Following the ideas of Lyons and

Gubinelli, we define the nonlinear rough integral
´ t

s W (dr,Yr), where W and Y are only α-Hölder

continuous in time with α ∈ (1
3 ,

1
2 ]. Also, we study the Kunita-type equation Yt = ξ +

´ t
0 W (dr,Ys),

obtaining the local and global existence and uniqueness of the solution under suitable sufficient

conditions. As an application, we study transport equations with rough vector fields and observe

that the classical solution formula for smooth and Young’s cases does not provide a solution to

the rough equation. Indeed this formula satisfies a transport equation with additional compensator

terms (see (1.2.7)).

3.1 Preliminaries

Fix a time interval [0,T ]. Assume that α ∈ (1
3 ,

1
2 ]. Let V and K be Banach spaces. We follow the

construction of Friz & Hairer [36, Chapters 2, 4] to introduce the basic framework of the theory of

(linear) rough paths.

Definition 3.1.1. (i) C α([0,T ];V ) is the space of functions on [0,T ] taking values in V such that

the following α-Hölder seminorm is finite

‖Φ‖α := sup
s 6=t∈[0,T ]

‖Φs,t‖V
|t− s|α

, (3.1.1)

where Φs,t := Φt−Φs.

(ii) C α
2 ([0,T ]2;K) is the space of functions on [0,T ]2 taking values in K and such that the fol-
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lowing α-Hölder seminorm is finite

‖Ψ‖α := sup
s 6=t∈[0,T ]

‖Ψs,t‖K

|t− s|α
. (3.1.2)

A V -valued rough path, introduced below, is defined as a pair of a rough function and a double

integral term.

Definition 3.1.2. The space of rough paths C α([0,T ];V ) is the collection of pairs X = (X ,X)

satisfying the following properties:

(i) X ∈ C α([0,T ];V ).

(ii) X∈C 2α
2 ([0,T ]2;V⊗V ), where V⊗V is the tensor product space equipped with the projective

norm.

(iii) (X ,X) satisfies Chen’s relation: for all (s,u, t) ∈ [0,T ]3,

Xs,t−Xs,u−Xu,t = Xs,u⊗Xu,t . (3.1.3)

Here X has to be interpreted as a version of the following double integral:

ˆ t

s
Xs,r⊗dXr =

ˆ t

s

ˆ r

s
dXu⊗dXr := Xs,t .

Let X ∈ C α([0,T ];V ). We define rough paths controlled by X as follows:

Definition 3.1.3 (Definition 4.6 of Friz & Hairer [36]). Let X ∈ C α([0,T ];V ). An element Y ∈

C α([0,T ];K) is said to be controlled by X, if there exist functions Y ′ ∈ C α([0,T ];L (V ;K)) and

RY ∈ C 2α
2 ([0,T ]2;K), such that

Ys,t = Y ′s (Xs,t)+RY
s,t
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for any s, t ∈ [0,T ]. Here L (V ;K) denotes the space of continuous linear operators from V to K

equipped with the operator norm. The function Y ′ is called the Gubinelli derivative of Y .

Denote by D2α
X (K) the space of such pairs (Y,Y ′). With an abuse of notations, we sometimes

write Y ∈D2α
X (K) instead of (Y,Y ′) ∈D2α

X (K).

Suppose that X ∈ C α([0,T ];V ) and (Y,Y ′) ∈ D2α
X (L (V ;K)). Then, the Gubinelli derivative

Y ′ takes values in L (V ;L (V ;K)), which can be identified with L (V ⊗V ;K). The next theorem

defines the (linear) rough integral.

Theorem 3.1.4 (Theorem 4.10 (a) of Friz & Hairer [36]). Let X= (X ,X)∈C α([0,T ];V ). Suppose

that (Y,Y ′) ∈D2α
X (L (V ;K)). Then the following “compensated Riemann-Stieltjes sum”

n

∑
k=1

Ξtk,tk−1 :=
n

∑
k=1

[
Ytk−1(Xtk−1,tk)+Y ′tk−1

(Xtk−1,tk)
]
, (3.1.4)

converges as |π|→ 0, where π = (s = t1 < t2 < · · ·< tn = t) and |π|=max1≤k≤n |tk−tk−1|. Denote

by Js,t(Ξ) the limit of (3.1.4). Then, Js,t(Ξ) is additive, that is Js,t(Ξ) = Js,u(Ξ)+Ju,t(Ξ)

for any 0≤ s < u < t ≤ T . Moreover, the following estimate is satisfied for all 0≤ s < t ≤ T ,

∥∥Js,t(Ξ)−Ξs,t
∥∥

K ≤ kα(‖X‖α‖RY‖2α +‖X‖2α‖Y ′‖α)|t− s|3α , (3.1.5)

where kα = (1−21−3α)−1. By definition, the rough integral of Y against X = (X ,X) is defined as

follows, for all 0≤ s < t ≤ T ,

ˆ t

s
YrdXr := Js,t(Ξ). (3.1.6)

Similarly we can define the rough integral
´ t

s Yr ⊗ dXr ∈ V1 ⊗V2 , for any X = (X ,X) ∈

C α([0,T ];V1) and (Y,Y ′)∈D2α
X (V2). Theorem 3.1.4 can be proved by using the following Sewing

Lemma. In this case, γ = 3α > 1 and kα comes from inequality (3.1.7) below. The Sewing Lemma

is cited from Lemma 2.1 of Feyel & De la Pradelle [33] (see also Gubinelli [37]). It will also be

used later in the theory of nonlinear rough paths.
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Lemma 3.1.5 (Sewing Lemma). Let β ∈ (0,1], and let Ξ ∈ C β

2 ([0,T ]2;K). Suppose there exist

C > 0 and γ > 1 such that the following inequality holds:

‖δΞ(s,u, t)‖K := ‖Ξs,t−Ξs,u−Ξu,t‖K ≤C|t− s|γ ,

for any 0 ≤ s ≤ u ≤ t ≤ T . Then there exists a unique (up to an additive constant) function

J (Ξ) ∈ C β ([0,T ];V ), such that the following inequality holds

‖Js,t(Ξ)−Ξs,t‖K = ‖Jt(Ξ)−Js(Ξ)−Ξs,t‖K ≤ (1−21−γ)−1C|t− s|γ . (3.1.7)

Moreover, Js,t(Ξ) can be represented as follows,

Js,t(Ξ) = lim
|π|→0

n

∑
k=1

Ξtk−1,tk , (3.1.8)

where π = (s = t0 < t1 < · · ·< tn = t) and the limit is independent of the choice of π .

The next proposition shows that the rough integral is controlled by X .

Proposition 3.1.6 (Theorem 4.10 (b) of Friz & Hairer [36]). Suppose that (X ,X) ∈ C α([0,T ];V )

and (Y,Y ′) ∈D2α
X (L (V ;K)). Let

Zt =

ˆ t

0
YrdXr.

Then, Z is an α-Hölder continuous function taking values in K. Moreover Z is controlled by X

with Y as a Gubinelli derivative.

In the next proposition, we define the integration of two controlled rough paths.

Proposition 3.1.7. Let V , K1 and K2 be Banach spaces. Suppose that X = (X ,X) ∈ C α([0,T ];V )

and (Y,Y ′) ∈D2α
X (K1).

(i) [Remark 4.11 of Friz & Hairer [36]] Suppose that (Z,Z′) ∈ D2α
X (K2). The following limit
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exists

lim
|π|→0

n

∑
k=1

[
Ztk−1⊗Ytk−1,tk +(Z′tk−1

⊗Y ′tk−1
)(Xtk−1,tk)

]
, (3.1.9)

where π = (s = t0 < t1 < · · ·< tn = t) and defines the integral
´ t

s Zr⊗dYr.

(ii) [Proposition 7.1 of Friz & Hairer [36]] Let Y : [0,T ]2→ K1⊗K1 be given by

Ys,t =

ˆ t

s
Yr⊗dYr−Ys⊗Ys,t , (3.1.10)

and the integral in (3.1.10) is defined by (3.1.9). Then, Y := (Y,Y) is a rough path. Suppose

that (Z, Z̃′) ∈D2α
Y (K2). Let Z′t = Z̃′tY

′
t for all t ∈ [0,T ]. Then, (Z,Z′) ∈D2α

X (K2). In addition,

the following equality holds

ˆ t

s
Zr⊗dYr =

ˆ t

s
Zr⊗dYr, (3.1.11)

where the integral on the left-hand side is in the sense of Theorem 3.1.4, and the integral on

the right -hand side is in the sense of (3.1.9).

Remark 3.1.8. Assume the conditions of Proposition 3.1.7 (i) where K2 = L (K1;K). Then,

ˆ t

s
ZrdYr := lim

|π|→0

n

∑
k=1

[
Ztk−1(Ytk−1,tk)+(Z′tk−1

Y ′tk−1
)Xtk−1,tk

]
, (3.1.12)

and

ˆ t

s
dZr(Yr) := lim

|π|→0

n

∑
k=1

[
Ztk−1,tk(Ytk−1)+(Z′tk−1

Y ′tk−1
)X∗tk−1,tk

]
, (3.1.13)

are well-defined, where π = (s = t0 < t1 < · · ·< tn = t), (Z′tY
′

t ) : V ⊗V → K is given by

(Z′tY
′

t )(x,y) = Z′t(x)
[
Y ′t (y)

]
.
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and ∗ denotes the transpose operator on the tensor product space V ⊗V , namely, (x⊗y)∗ = y⊗x.

Next, we define the “quadratic compensator” as follows (c.f. (2.7) of Keller & Zhang [53] for

an equivalent definition in finite dimensions). It will be used in Section 3.5.

Definition 3.1.9. Let X = (X ,X) ∈ C α([0,T ];V ). Suppose that (Y,Y ′) ∈ D2α
X (K1) and (Z,Z′) ∈

D2α
X (K2).

(i) The quadratic compensator 〈X〉 is a function on [0,T ]2 with values in V ⊗V given by

〈X〉s,t := Xs,t⊗Xs,t−2Xs,t . (3.1.14)

(ii) The quadratic compensator 〈Z,Y 〉 : [0,T ]2→ K2⊗K1 is given by

〈Z,Y 〉s,t := Zs,t⊗Ys,t−2
ˆ t

s
Zs,r⊗dYr. (3.1.15)

Remark 3.1.10. (i) Similar as the quadratic variation of Itô processes, the following equality

holds:

〈Y,Z〉s,t =
ˆ t

s
Y ′r ⊗Z′rd〈X〉r. (3.1.16)

(ii) Particularly, if K2 = L (K1;K), we write

⟪Z,Y⟫s,t := Zs,tYs,t−2
ˆ t

s
Zs,rdYr (3.1.17)

and

⟪Y,Z⟫s,t := Zs,tYs,t−2
ˆ t

s
dZr(Ys,r). (3.1.18)

(iii) It is easy to verify that 〈X〉 ∈ C 2α
2 ([0,T ];V ⊗V ). Similarly, 〈Y,Z〉, 〈Z,Y 〉, ⟪Y,Z⟫ and ⟪Z,Y⟫

are also 2α-Hölder continuous in corresponding spaces.
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Finally, we finish this section by introducing the following Taylor’s theorem (c.f. Theorem

4.C of Zeidler [88]) for Banach space valued functions. It will be used frequently in estimating

residuals.

Theorem 3.1.11 (Taylor’s Theorem). Let V and K be Banach spaces. Assume that the map φ : V →

K is C n in the sense of Fréchet differentiability. Then for any v,h ∈ V , the following generalized

Taylor formula holds

φ(v+h) = φ(v)+
n−1

∑
k=1

1
k!

Dk
φ(v)h⊗k +Rn,

where the residual Rn satisfies the following inequality

‖Rn‖K ≤
1
n!

sup
0≤τ≤1

‖Dk
φ(u+ τh)h⊗n‖K.

3.2 Nonlinear rough integrals

3.2.1 Definitions

Fix a time interval [0,T ]. Suppose that α ∈ (1
3 ,

1
2 ]. In this section, we aim to define the following

nonlinear integral: ˆ t

s
W (dr,Yr).

Here W is α-Hölder continuous in time, and differentiable in space, and Y is α-Hölder continuous.

The idea is as follows. Assume that Y is controlled by W , that is Ys,t = Ws,t(Ẏs)+O(|t − s|2α).

Then, we approximate the nonlinear integral by the following expression:

ˆ t

s
W (dr,Yr)≈

ˆ t

s
W (dr,Ys)+

ˆ t

s
DW (dr,Ys)Yr,s

≈
ˆ t

s
W (dr,Ys)+

ˆ t

s
DW (dr,Ys)Ws,r(Ẏs)

=Ws,t(Ys)+

ˆ t

s
DW (dr,y)Ws,r(x)

∣∣∣
(x,y)=(Ẏs,Ys)

,
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with the error of order O(|t− s|3α). This allows us to pass to the limit as |π| → 0 in the following

expression

n

∑
k=1

[
Wtk−1,tk(Ytk−1)+

ˆ tk

tk−1

DW (dr,y)Wtk−1,r(x)
∣∣∣
(x,y)=(Ẏtk−1 ,Ytk−1)

]
,

where π = (s = t0 < t1 < · · ·< tn = t). The limit is the desired nonlinear integral.

To this end, we need to introduce the following definitions. Let n be any nonnegative integer.

We denote by In the set of all multi-indexes βββ n of length n+1. That is, βββ n = (β0, . . . ,βn), where

β0, . . . ,βn are nonnegative real numbers. These multi-indexes will be used to characterize the

growth of a function and its spatial derivatives.

Definition 3.2.1. (i) C α,βββ n([0,T ]×V ;K) is the space of functions such that the following semi-

norm is finite:

‖Φ‖α,βββ n :=
n

∑
k=0

sup
s6=t∈[0,T ]

x∈V

‖DkΦs,t(x)‖Lk(V ;K)

|t− s|α(1+‖x‖V )βk
, (3.2.1)

where Dk is the k-th Fréchet derivative operator, and Lk(V ;K) is the corresponding space

of linear operators. That is, L0(V ;K) = K and Lk(V ;K) = L (V ;Lk−1(V ;K)) for all k =

1,2, . . . ,n.

(ii) C
α,βββ 1

n,βββ
2
n

2 ([0,T ]2×V 2;K) is the space of functions such that the following seminorm is finite:

‖Ψ‖α,βββ 1
n,βββ

2
n

:=
n

∑
k=0

sup
s 6=t∈[0,T ]

x=(x1,x2)∈V 2

‖DkΨs,t(x)‖Lk(V 2;K)

|t− s|α(1+‖x1‖V )β 1
k (1+‖x2‖V )β 2

k
, (3.2.2)

where Lk(V 2;K) are the corresponding linear spaces of derivatives and the product space

V 2 is treated as a Banach space equipped with the norm ‖x‖V 2 = ‖x1‖V +‖x2‖V .

For any positive integer m≤ n, we write βββ n−m= (β0, . . . ,βn−m). Then, by definition, it is easy

to verify that C α,βββ n([0,T ]×V ;K)⊂ C α,βββ n−m([0,T ]×V ;K). Let βββ n,β̃ββ n ∈In, we write βββ n ≤ β̃ββ n
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if βk ≤ β̃k for all k = 0, . . . ,n. Then, C α,βββ n([0,T ]×V ;K)⊂ C α,β̃ββ n([0,T ]×V ;K) if βββ n ≤ β̃ββ n. The

space C
α,βββ 1

n,βββ
2
n

2 ([0,T ]2×V 2;K) also has a similar property. Given a multi-index βββ n where n ≥ 1,

we make use of the following notations:

βββ
∗
n−1 = (β ∗0 , . . . ,β

∗
n−1) and βββ

∗∗
n−1 = (β ∗∗0 , . . . ,β ∗∗n−1), (3.2.3)

where β ∗k := max{β0, . . . ,βk} and β ∗∗k := max{β1, . . . ,βk+1} for all 0≤ k ≤ n−1.

Given multi-indexes βββ 2, βββ ∗1 and βββ ∗∗1 , let Φ∈C α,βββ 2([0,T ]×V ;K) and let Ψ∈C
α,βββ ∗1,βββ

∗∗
1

2 ([0,T ]2×

V 2;K). We make use of the following notations: RΦ : [0,T ]×V 2→ K and DΨ : [0,T ]2×V 4→ K

are given by

RΦ
t (x,y) := Φt(y)−Φt(x)−DΦt(x)(y− x), x,y ∈V (3.2.4)

and

DΨ
s,t(x,y) = Ψs,t(y)−Ψs,t(x), x,y ∈V 2. (3.2.5)

The following lemma provides the estimates for RΦ, DΨ and their derivatives. It will be used in

the proof of the stability of nonlinear rough integrals.

Lemma 3.2.2. Suppose that RΦ and DΨ are given as in (3.2.4) and (3.2.5), respectively. Then,

for any x,y ∈V , and x = (x1,x2),y = (y1,y2) ∈V 2, the following inequalities are satisfied:

‖RΦ
s,t(x,y)‖K ≤

1
2
‖Φ‖α,βββ 2

(1+‖x‖V +‖y‖V )β2‖y− x‖2
V |t− s|α , (3.2.6)

‖DΨ
s,t(x,y)‖K ≤‖Ψ‖α,βββ 1

1,βββ
2
1
(1+‖x1‖V +‖y1‖V )β 1

1 (1+‖x2‖V +‖y2‖V )β 2
1

×‖y−x‖V 2|t− s|α . (3.2.7)

If furthermore Φ∈C α,βββ 3([0,T ]×V ;K) and Ψ∈C
α,βββ 1

2,βββ
2
2

2 ([0,T ]2×V 2;K), then, for all z1,z2 ∈V 2,
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the following inequalities are satisfied:

‖DRΦ
s,t(x,y)(z1,z2)‖K ≤‖Φ‖α,βββ 3

(1+‖x‖V +‖y‖V )β2∨β3

×
[
‖y− x‖2

V‖z2‖V +‖y− x‖V‖z1− z2‖V
]
|t− s|α (3.2.8)

and

‖DDΨ
s,t(x,y)(z

1,z2)‖K ≤‖Ψ‖α,βββ 1
2,βββ

2
2
(1+‖x1‖V +‖y1‖V )β 1

1∨β 1
2 (1+‖x2‖V +‖y2‖V )β 2

1∨β 2
2

×
[
‖y−x‖V 2‖z2‖V 2 +‖z1− z2‖V 2

]
|t− s|α . (3.2.9)

Proof. Inequality (3.2.6) is a consequence of Taylor’s Theorem 3.1.11 and the linearity of D:

‖RΦ
s,t(x,y)‖K ≤

1
2

sup
0≤τ≤1

‖D2
Φs,t(τx+(1− τ)y)(y− x,y− x)‖K

≤1
2
‖Φ‖α,βββ 2

(1+‖x‖V +‖y‖V )β2‖y− x‖2
V |t− s|α .

For inequality (3.2.8), we assume that Φ ∈ C α,βββ 3([0,T ]×V ;K). Then, by differentiating RΦ
s,t

on the spatial argument, for any (x,y),(z1,z2) ∈V 2, we have

DRΦ
s,t(x,y)(z1,z2) =−DΦs,t(x)(z1)−D2

Φs,t(x)(z1,y− x)+DΦs,t(x)(z1)

+DΦs,t(y)(z2)−DΦs,t(x)(z2)

=DΦs,t(y)(z2)−DΦs,t(x)(z2)−D2
Φs,t(x)(z1,y− x)

=DΦs,t(y)(z2)−DΦs,t(x)(z2)−D2
Φs,t(x)(z2,y− x)

+D2
Φs,t(x)(z2− z1,y− x).
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By Taylor’s Theorem 3.1.11 again, we can deduce that

‖DΦs,t(y)(z2)−DΦs,t(x)(z2)−D2
Φs,t(x)(z2,y− x)‖K

≤1
2

sup
0≤τ≤1

‖D3
Φs,t(τx+(1− τ)y)(z2,y− x,y− x)‖K.

Thus inequality (3.2.8) is a consequence of above two inequalities. Inequalities (3.2.7) and (3.2.9)

can be proved similarly.

In the rest of this chapter, we focus on the case when K =V . A nonlinear rough path is defined

as follows.

Definition 3.2.3. Assume that n ≥ 1. An α-Hölder continuous nonlinear rough path W on the

space C α,βββ n([0,T ]×V ;V ) is defined as a pair (W,W) that satisfies the following properties:

(i) W ∈ C α,βββ n([0,T ]×V ;V ).

(ii) W ∈ C
2α,βββ ∗n−1,βββ

∗∗
n−1

2 ([0,T ]2×V 2;V ), where βββ ∗n−1 and βββ ∗∗n−1 are defined in (3.2.3).

(iii) (W,W) satisfies Chen’s relation:

Ws,t(x,y)−Ws,u(x,y)−Wu,t(x,y) = DWu,t(y)(Ws,u(x)), (3.2.10)

for all (x,y) ∈V 2 and s,u, t ∈ [0,T ].

The collection of such rough paths is denoted by C α,βββ n([0,T ]×V ;V ).

Remark 3.2.4. (i) In the smooth case, W can be interpreted as the following integral

ˆ t

s
DW (dr,y)(Ws,r(x)) =

ˆ t

s

∂

∂ r
DW (r,y)(Ws,r(x))dr =Ws,t(x,y).

This explains the choice of the multi-indexes βββ ∗n−1 and βββ ∗∗n−1 in point (ii) of Definition 3.2.3.

For example, assume that W is twice differentiable with growth index βββ 2. Then, one can
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bound the growth of Ws,t as follows

‖Ws,t(x,y)‖V⊗V

(1+‖x‖V )β0(1+‖y‖V )β1
≤ limsup
|π|→0

∑
n
k=1

∣∣ ∂

∂ r DW (tk−1,y)(Ws,tk−1(x))
∣∣|tk− tk−1|

(1+‖x‖V )β0(1+‖y‖V )β1

≤‖W‖2
1,βββ 2
|t− s|.

By taking the derivative of Ws,t , it can be deduced that the growth of DWs,t(x,y) is bounded

by β0∨β1 and β1∨β2 in x and y,respectively.

(ii) By definition, we can deduce that C α,βββ 1
n([0,T ]×V ;V )⊂ C α,βββ 2

n−m([0,T ]×V ;V ) for all m ∈

{0, . . . ,n} and βββ 1
n ≤ βββ 2

n.

(iii) Assume that W (t,x) =Wt(x) where Wt ∈L (V ;V ). Then the nonlinear rough path degener-

ates to the linear rough path. In this case, DWt(x) =Wt and thus

Ws,t(x,y) =
ˆ t

s
W (dr)(Ws,r(x)).

Let W = (W,W) ∈ C α,βββ n([0,T ]×V ;V ). We make use of the notation

‖W‖Cn := ‖W‖α,βββ n +‖W‖α,βββ ∗n−1,βββ
∗∗
n−1

. (3.2.11)

Notice that C α,βββ n([0,T ]×V ;V ) is not a linear space with the usual addition and scalar product.

Thus ‖·‖Cn is not a seminorm in the usual sense. We introduce the pseudometric on C α,βββ n([0,T ]×

V ;V ) given by

ρα,βββ n(W,W̃) = ‖W −W̃‖α,βββ n +‖W−W̃‖2α,βββ ∗n−1,βββ
∗∗
n−1

. (3.2.12)

Consider the following equivalent relation: W∼ W̃ if and only if there exists f ∈ C βββ n(V ;V ) such

that W (t,x)−W̃ (t,x) = f (x) for all (t,x)∈ [0,T ]×V . Then, ρα,βββ n is really a metric on the quotient

space C α,βββ n([0,T ]×V ;V )/∼.
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Let W ∈ C α,βββ n([0,T ]×V ;V ). Like in the linear case, we also define the space of nonlinear

rough paths controlled by W .

Definition 3.2.5. The space of basic nonlinear rough paths controlled by W, denoted by E 2α
W , is the

collection of pairs (Y,Ẏ )∈C α([0,T ];V )×C α([0,T ];V ) (see (3.1.1)) such that, for all s, t ∈ [0,T ],

Ys,t =Ws,t(Ẏs)+RY
s,t , (3.2.13)

where RY ∈ C 2α
2 ([0,T ]2;V ) (see (3.1.2)). The function Ẏ above is called the Gubinelli derivative

of Y with respect to W.

Remark 3.2.6. (i) In the linear case, the set of controlled rough paths is a linear space. How-

ever, in the nonlinear case, the set E 2α
W does not need to be a linear space with the usual

addition and scalar product, because it may be not closed under these operations.

(ii) Assume that V = R and W (t,x) = xWt , then the controlled rough path satisfies the following

equality

Ys,t = ẎsWs,t +RY
s,t ,

which coincides with the classical definition (see Definition 3.1.3) in the linear case.

(iii) With an abuse of notations, we sometimes write Y ∈ E 2α
W instead of (Y,Ẏ ) ∈ E 2α

W .

Suppose that W,W̃ ∈ C α,βββ n([0,T ]×V ;V ). Let (Y,Ẏ ) ∈ E 2α
W and (Ỹ , ˙̃Y ) ∈ E 2α

W̃
. A “distance"

between (Y,Ẏ ) and (Ỹ , ˙̃Y ) is defined as follows (c.f. Friz & Hairer [36, Section 4.4] for the linear

case):

d
α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)
= ‖Ẏ − ˙̃Y‖α +‖RY −RỸ‖2α . (3.2.14)

Notice that the definition of d
α,W,W̃ does not include the term ‖Y − Ỹ‖α . Indeed, this term can be

estimated in terms of d
α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)
as it is shown in the next lemma. On the other hand,

one will see in the next lemma, that ‖Y − Ỹ‖α depends also on ‖W − W̃‖α,βββ 1
without a factor
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T α . If we include ‖W −W̃‖α,βββ 1
in d

α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)
, the absence of this factor T α will cause

difficulties in the proof of the existence of solutions to RDEs in Section 3.3. For this reason, the

term ‖W −W̃‖α,βββ 1
is not included in d

α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)
, and it is treated independently.

Lemma 3.2.7. Let W,W̃ ∈ C α,βββ 1([0,T ]×V ;V ). Suppose that (Y,Ẏ ) ∈ E 2α
W and (Ỹ , ˙̃Y ) ∈ E 2α

W̃
.

Then the following estimate holds:

‖Y − Ỹ‖α ≤(1+‖Ẏ‖∞)
β0‖W −W̃‖α,βββ 1

(3.2.15)

+‖W̃‖α,βββ 1
(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)

β1‖Ẏ0− ˙̃Y 0‖V

+T α(1+‖W̃‖α,βββ 1
)(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)

β1d
α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)
.

Proof. Since Y and Ỹ are controlled by W and W̃ respectively, then we have

‖Ys,t− Ỹs,t‖V ≤
∥∥Ws,t(Ẏs)−W̃s,t(Ẏs)

∥∥
V +

∥∥W̃s,t(Ẏs)−W̃s,t(
˙̃Y s)
∥∥

V +
∥∥RY

s,t−RỸ
s,t
∥∥

V .

Notice that by Taylor’s Theorem 3.1.11,

∥∥W̃s,t(Ẏs)−W̃s,t(
˙̃Y s)
∥∥

V ≤ sup
1≤τ≤1

∥∥DW̃s,t(τẎs +(1− τ) ˙̃Y s)(Ẏs− ˙̃Y s)
∥∥

V

≤‖W̃‖α,βββ 1
(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)

β1‖Ẏs− ˙̃Y s‖V .

On the other hand, for any Y ∈ C α([0,T ];V ) we have

‖Ys‖V ≤ ‖Y0‖V +‖Ys−Y0‖V ≤ ‖Y0‖V +‖Y‖αsα .
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As a consequence, we can write

‖Ys,t− Ỹs,t‖V ≤‖W −W̃‖α,βββ 1
(1+‖Ẏ‖∞)

β0|t− s|α

+‖W̃‖α,βββ 1
(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)

β1
(
‖Ẏ0− ˙̃Y 0‖V + sα‖Ẏ − ˙̃Y‖α

)
|t− s|α

+
∥∥RY −RỸ∥∥

2α
|t− s|2α .

This proves inequality (3.2.15).

Applying Lemma 3.2.7, the supremum norm of Y − Ỹ can be estimated as follows:

‖Y − Ỹ‖∞ ≤‖Y0− Ỹ0‖V +T α‖Y − Ỹ‖α (3.2.16)

≤T α(1+‖Ẏ‖∞)
β0‖W −W̃‖α,βββ 3

+(1+T α)(1+‖W̃‖α,βββ 3
)(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)

β1
(
‖Y0− Ỹ0‖V +‖Ẏ0− ˙̃Y 0‖V

)
+T 2α(1+‖W̃‖α,βββ 3

)(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)
β1d

α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)
.

Both inequalities (3.2.15) and (3.2.16) represent how the difference between Y and Ỹ depends on

‖W −W̃‖α,β1 , ‖Ẏ0− ˙̃Y 0‖V and d
α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)
. As we stated before, the factors T α and T 2α

in each inequality are critical for the existence of the solution to equation (3.3.1) in Section 3.3.

Remark 3.2.8. d
α,W,W̃ defined in a subspace of C α([0,T ];V )×C α([0,T ];V ) is not a metric,

because the values of Y0,Ỹ0 or Ẏ0,
˙̃Y 0 may differ even if d

α,W,W̃ ((Y,Ẏ ),(Ỹ , ˙̃Y )) = 0. For any y =

(y1,y2) ∈V 2, let

E 2α
W,y =

{
(Y,Ẏ ) ∈ E 2α

W ,(Y0,Ẏ0) = (y1,y2)
}
.

Then dα,W = dα,W,W is really a metric on E 2α
W,y.

The next lemma shows that E 2α
W,y is complete under the metric dα,W .

Lemma 3.2.9. Suppose that W ∈ C α,βββ 1([0,T ]×V ;V ). Let y = (y1,y2) ∈V 2. Then (E 2α
W,y,dα,W ) is

a complete metric space.
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Proof. Suppose that {(Y n,Ẏ n)}n≥1 ⊂ E 2α
W,y is a Cauchy sequence under the metric dα,W . We

first show that {(Y n,Ẏ n,RY n
)}n≥1 converges to (Y,Ẏ ,RY ) in the product space C α([0,T ];V )×

C α([0,T ];V )×C 2α
2 ([0,T ]2;V ) equipped with the Hölder seminorms. Notice that C α([0,T ];V ) is

complete with respect to the norm

‖Y‖C α ([0,T ];V ) := ‖Y0‖V +‖Y‖α .

Thus there exists Ẏ ∈ C α([0,T ];V ), such that Ẏ n→ Ẏ as n→ ∞ pointwise and in C α([0,T ];V ).

Next, we will show the convergence of {RY n}n≥1. Fix (s, t) ∈ [0,T ]2. Then, for and n,m ≥ 1, we

have

‖RY n

s,t −RY m

s,t ‖V ≤ |t− s|2α‖RY n
−RY m

‖2α .

Therefore, {RY n

s,t }n≥1 is a Cauchy sequence in V , and thus has a limit denoted by RY
s,t . On the other

hand, we can show that

limsup
n→∞

sup
s 6=t∈[0,T ]

‖RY
s,t−RY n

s,t ‖V
|t− s|2α

≤ lim
n→∞

lim
m→∞

sup
s 6=t∈[0,T ]

‖RY m

s,t −RY n

s,t ‖V
|t− s|2α

= 0.

This implies that, as a sequence of functions, {RY n}n≥1 is also convergent in C 2α
2 ([0,T ]2;V ). To

prove the convergence of {Y n}n≥1, it suffices to show that {Y n}n≥1 is Cauchy in C α([0,T ];V ) with

the α-Hölder seminorm. Notice that for any n,m ≥ 1, Y n and Y m are both controlled by W , then,

as a consequence of Lemma 3.2.7, we have

‖Y n−Y m‖α ≤T α(1+‖W‖α,βββ 1
)(1+‖Ẏ n‖∞ +‖Ẏ m‖∞)

β1

×d
α,W,W̃

(
(Y n,Ẏ n),(Y m,Ẏ m)

)
. (3.2.17)

Observe that

sup
n≥1
‖Ẏ n‖∞ ≤ y2 +T α sup

n≥1
‖Ẏ n‖α =C < ∞.

Therefore, {Y n}n≥1 converges to a function Y in C α([0,T ];V ).
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Finally, notice that for any s, t ∈ [0,T ],

Ys,t = lim
n→∞

Y n
s,t = lim

n→∞

[
Ws,t(Ẏ n

s )+RY n

s,t
]
=Ws,t(Ẏs)+RY

s,t . (3.2.18)

Thus (Y,Ẏ ) ∈ E 2α
W,y with the remainder RY .

In the next theorem, we define the nonlinear rough integral of a basic controlled rough path

against a nonlinear rough path.

Theorem 3.2.10. Suppose that W = (W,W) ∈ C α,βββ 2([0,T ]×V ;V ). Let (Y,Ẏ ) ∈ E 2α
W . We define

Ξ ∈ C α
2 ([0,T ]2;V ) as follows:

Ξs,t =Ws,t(Ys)+Ws,t(Ẏs,Ys).

Then the following limit exists

Js,t(Ξ) := lim
|π|→0

n

∑
k=1

Ξtk−1,tk (3.2.19)

where π = (s = t0 < t1 < · · ·< tn = t). Moreover,

∥∥Js,t(Ξ)−Ξs,t
∥∥

V ≤C1|t− s|3α , (3.2.20)

where

C1 = kα‖W‖C2(1+2‖Ẏ‖∞)
β0∨β1(1+2‖Y‖∞)

β1∨β2
(
‖Y‖α +‖Y‖2

α +‖Ẏ‖α +‖RY‖2α

)
,1 (3.2.21)

and kα is defined in (3.1.5).
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Proof. For any 0≤ s≤ u≤ t ≤ T , we write

δΞs,u,t =Ξs,t−Ξs,u−Ξu,t (3.2.22)

=− [Wu,t(Yu)−Wu,t(Ys)]+ [Ws,t(Ẏs,Ys)−Ws,u(Ẏs,Ys)−Wu,t(Ẏu,Yu)].

According to Lemma 3.1.5, to prove (3.2.19) and (3.2.20), it suffices to show that ‖δΞs,u,t‖V is of

order O(|t− s|3α). Recall notations (3.2.4) and (3.2.5). Since Y is controlled by W , we can write

Wu,t(Yu)−Wu,t(Ys) = DWu,t(Ys)(Ys,u)+RW
u,t(Ys,Yu)

=DWu,t(Ys)(Ws,u(Ẏs))+DWu,t(Ys)(RY
s,u)+RW

u,t(Ys,Yu). (3.2.23)

On the other hand, by Chen’s relation (3.2.10), we have

Ws,t(Ẏs,Ys)−Ws,u(Ẏs,Ys)−Wu,t(Ẏu,Yu)

= DWu,t(Ys)(Ws,u(Ẏs))−DW
u,t
(
(Ẏs,Ys),(Ẏu,Yu)

)
. (3.2.24)

Notice that, by definition, W ∈ C
2α,βββ ∗1,βββ

∗∗
1

2 ([0,T ]2×V 2;V ) where βββ ∗1 = (β0,β0 ∨ β1) and βββ ∗∗1 =

(β1,β1 ∨ β2). Combining (3.2.22) - (3.2.24), with (3.2.6) and (3.2.7) and recalling (3.2.11), we

obtain the following inequality

‖δΞs,u,t‖V (3.2.25)

≤‖DWu,t(Ys)‖L1(V ;V )‖RY
s,u‖V +

1
2
‖W‖α,βββ 2

(1+2‖Y‖∞)
β2‖Y‖2

α |t− s|3α

+‖W‖2α,βββ ∗1,βββ
∗∗
1
(1+2‖Ẏ‖∞)

β ∗1 (1+2‖Y‖∞)
β ∗∗1 (‖Y‖α +‖Ẏ‖α)|t− s|3α

≤‖W‖C2(1+2‖Ẏ‖∞)
β0∨β1(1+2‖Y‖∞)

β1∨β2
(
‖Y‖α +‖Y‖2

α +‖Ẏ‖α +‖RY‖2α

)
|t− s|3α .

Thus we complete the proof by applying Lemma 3.1.5.

Notice that Js,t(Ξ) in Theorem 3.2.10 can be expressed as the limit of sums over a sequence
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of partitions πn as |πn| → 0. As a consequence of this fact, one can show that Js,t(Ξ) is additive.

Therefore, we can define the nonlinear integral of Y against W on any time interval [s, t] ⊂ [0,T ]

by Js,t(Ξ), that is

ˆ t

s
W (dr,Yr) := Js,t(Ξ). (3.2.26)

By definition, we can easily verify that Ξ in Theorem 3.2.10 is also α-Hölder continuous.

Recall that βββ ∗1 = (β0,β0∨β1) and βββ ∗∗1 = (β1,β1∨β2). Thus we have the following estimate,

‖Ξs,t‖V ≤‖Ws,t(Ys)‖V +‖Ws,t(Ẏs,Ys)‖V

≤‖W‖α,βββ 2
(1+‖Y‖∞)

β0|t− s|α

+‖W‖2α,βββ ∗1,βββ
∗∗
1
(1+‖Ẏ‖∞)

β0(1+‖Y‖∞)
β1 |t− s|2α . (3.2.27)

The following estimates follow from (3.2.20) and (3.2.27):

∥∥∥∥ˆ t

s
W (dr,Yr)

∥∥∥∥
V
≤‖Ξs,t‖V +‖Js,t(Ξ)−Ξs,t‖V

≤C2|t− s|α , (3.2.28)

where

C2 =C1T 2α +‖W‖α,βββ 2
(1+‖Y‖∞)

β0 +T α‖W‖2α,βββ ∗1,βββ
∗∗
1
(1+‖Ẏ‖∞)

β0(1+‖Y‖∞)
β1.

Remark 3.2.11. To define a nonlinear rough integral, the growth condition on (W,W) is not neces-

sary. In fact, let C α,2
loc ([0,T ]×V ;V ) be the collection of pairs (W,W) such that W : [0,T ]×V →V

is α-Hölder in time, and twice differentiable in space with locally bounded spatial derivatives, W :

[0,T ]2×V →V is 2α-Hölder continuous in time, and differentiable in space with locally bounded

spatial derivative, and Chen’s relation (3.2.10) holds. For any W = (W,W) ∈ C α,2
loc ([0,T ]×V ;V ),

and (Y,Ẏ )∈ E 2α
W , the expression (3.2.19) is still a well-defined nonlinear rough integral. However,
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the growth condition is really needed to consider the global existence of RDEs (see Section 3.3.2).

3.2.2 Properties of nonlinear rough integrals

In this section, we present some properties of nonlinear rough integrals. The next proposition

shows that the nonlinear rough integral is a basic nonlinear controlled rough path (see Proposition

3.1.6 for the linear result).

Proposition 3.2.12. Let W = (W,W) ∈ C α,βββ 2([0,T ]×V ;V ). Suppose that (Y,Ẏ ) ∈ E 2α
W . Let

Z : [0,T ]→V be the nonlinear rough integral of Y against W in the sense of (3.2.26):

Zt =

ˆ t

0
W (dr,Yr). (3.2.29)

Then, Z is controlled by W: (Z, Ż) = (Z,Y ) ∈ E 2α
W .

Proof. Let RZ
s,t := Zs,t−Ws,t(Ys). Then by (3.2.20), we can write

∥∥RZ
s,t
∥∥

V =
∥∥∥ˆ t

s
W (dr,Yr)−Ws,t(Ys)

∥∥∥
V

≤‖Js,t(Ξ)−Ξs,t‖V +‖Ws,t(Ẏs,Ys)‖V

≤C1|t− s|3α +‖W‖2α,βββ ∗2,βββ
∗∗
2
(1+‖Ẏ‖∞)

β0(1+‖Y‖∞)
β1|t− s|2α ,

where C1 is the constant appearing in (3.2.21). It follows that

‖RZ‖2α ≤kα‖W‖C (1+2‖Ẏ‖∞)
β0∨β1(1+2‖Y‖∞)

β1∨β2

×
[
1+T α

(
‖Y‖α +‖Y‖2

α +‖Ẏ‖α +‖RY‖2α

)]
. (3.2.30)

As a consequence, Z is controlled by W with the Gubinelli derivative Ż = Y .

In the next proposition, we consider the stability of nonlinear rough integrals.
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Proposition 3.2.13. Let W,W̃ ∈ C α,βββ 3([0,T ]×V ;V ). Suppose that (Y,Ẏ ) ∈ E 2α
W and (Ỹ , ˙̃Y ) ∈

E 2α

W̃
. Define

Zt =

ˆ t

0
W (dr,Yr) and Z̃t =

ˆ t

0
W̃ (dr,Ỹr).

Then (Z,Y ) ∈ E 2α
W and (Z̃,Ỹ ) ∈ E 2α

W̃
by Proposition 3.2.12. In addition, the following inequality

holds:

d
α,W,W̃

(
(Z,Y ),(Z̃,Ỹ )

)
≤C3ρα,βββ 3

(W,W̃)+C4
(
‖Y0− Ỹ0‖V +‖Ẏ0− ˙̃Y 0‖V

)
+C5d

α,W,W̃ ((Y,Ẏ ),(Ỹ , ˙̃Y )), (3.2.31)

where

C3 =2kα(1+T α)2(1+‖W̃‖C3)(1+2‖Y‖∞ +2‖Ỹ‖∞)
β ∗∗2 (1+2‖Ẏ‖∞ +2‖ ˙̃Y‖∞)

β ∗2 +β0∨β1

×
[
1+‖Y‖α +‖Ẏ‖α +‖Ỹ‖α +‖ ˙̃Y‖α +(‖Y‖α +‖Ỹ‖α)

2 +‖RY‖2α

]
,

C4 =5kα(1+T α)2(‖W̃‖C3 +‖W̃‖
2
C3
)(1+2‖Y‖∞ +2‖Ỹ‖∞)

β ∗∗2 (1+2‖Ẏ‖∞ +2‖ ˙̃Y‖∞)
β ∗2 +β1

×
[
1+‖Y‖α +‖Ẏ‖α +‖Ỹ‖α +‖ ˙̃Y‖α +(‖Y‖α +‖Ỹ‖α)

2 +‖RY‖2α

]
C5 =6kαT α(1+T α)(1+‖W̃‖C3)

2(1+2‖Y‖∞ +2‖Ỹ‖∞)
β ∗∗2 (1+2‖Ẏ‖∞ +2‖ ˙̃Y‖∞)

β ∗2 +β1

×
[
1+T α(‖Y‖α +‖Ẏ‖α +‖Ỹ‖α +‖ ˙̃Y‖α)+T 2α(‖Y‖α +‖Ỹ‖α)

2 +T 2α‖RY‖2α

]
,

β ∗2 = max{β0,β1,β2} and β ∗∗2 = max{β1,β2,β3}.

Proof. Due to Lemma 3.2.7, it suffices to estimate ‖RZ−RZ̃‖2α . Let Ξ and Ξ̃ be the approxima-

tions of Z and Z̃ respectively. That is,

Ξs,t =Ws,t(Ys)+Ws,t(Ẏs,Ys) and Ξ̃s,t = W̃s,t(Ỹs)+W̃s,t(
˙̃Y s,Ỹs).

Set ∆ = Ξ− Ξ̃. Then by Proposition 3.2.12, we know that

‖RZ
s,t−RZ̃

s,t‖V ≤ ‖Zs,t− Z̃s,t−∆s,t‖V +‖Ws,t(Ẏs,Ys)−W̃s,t(
˙̃Y s,Ỹs)‖V . (3.2.32)
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Due to the Sewing Lemma 3.1.5, to estimate the first term on the right-hand side of (3.2.32), it

suffices to estimate ‖δ∆‖V . Taking into account formulas (3.2.22) - (3.2.24), we can write

−δ∆s,u,t =
[
DWu,t(Ys)(RY

s,u)−DW̃u,t(Ỹs)(RỸ
s,u)
]
+
[
RW

u,t(Ys,Yu)−RW̃
u,t(Ỹs,Ỹu)

]
+
[
DW

u,t
(
(Ẏs,Ys),(Ẏu,Yu)

)
−DW̃

u,t
(
( ˙̃Y s,Ỹs),(

˙̃Y u,Ỹu)
)]

:=J1 + J2 + J3, (3.2.33)

where RW , RW̃ , DW and DW̃ are defined as in (3.2.4) and (3.2.5), respectively.

Estimates for J1: Triangular inequality implies that

‖J1‖V ≤
∥∥DWu,t(Ys)(RY

s,u)−DW̃u,t(Ys)(RY
s,u)
∥∥

V

+
∥∥DW̃u,t(Ys)(RY

s,u)−DW̃u,t(Ỹs)(RY
s,u)
∥∥

V

+
∥∥DW̃u,t(Ỹs)(RY

s,u)−DW̃u,t(Ỹs)(RỸ
s,u)
∥∥

V

≤‖W −W̃‖α,βββ 3
(1+‖Y‖∞)

β1‖RY‖2α |t− s|3α

+‖W̃‖α,βββ 3
(1+‖Y‖∞ +‖Ỹ‖∞)

β2‖Ys− Ỹs‖V‖RY‖2α |t− s|3α

+‖W̃‖α,βββ 3
(1+‖Ỹ‖∞)

β1‖RY −RỸ‖2α |t− s|3α . (3.2.34)

Plugging (3.2.16) into (3.2.34), we have

‖J1‖V ≤
{
(1+T α)(1+‖W̃‖α,βββ 3

)(1+‖Y‖∞ +‖Ỹ‖∞)
β1∨β2(1+‖Ẏ‖∞)

β0

×‖RY‖2α‖W −W̃‖α,βββ 3

+(1+T α)(‖W̃‖α,βββ 3
+‖W̃‖2

α,βββ 3
)(1+‖Y‖∞ +‖Ỹ‖∞)

β1∨β2

× (1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)
β1‖RY‖2α

(
‖Y0− Ỹ0‖V +‖Ẏ0− ˙̃Y 0‖V

)
+(‖W̃‖α,βββ 3

+‖W̃‖2
α,βββ 3

)(1+‖Y‖∞ +‖Ỹ‖∞)
β1∨β2(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)

β1

× (1+T 2α‖RY‖2α)dα,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)}
|t− s|3α . (3.2.35)
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Estimates for J2: In order to bound J2, we decompose J2 as follows

J2 =RW−W̃
u,t (Ys,Yu)+ [RW̃

u,t(Ys,Yu)−RW̃
u,t(Ỹs,Ỹu)] := J1

2 + J2
2 .

By (3.2.6), we can write

‖J1
2‖V ≤

1
2
(1+2‖Y‖∞)

β2‖Y‖2
α‖W −W̃‖α,βββ 3

|t− s|3α . (3.2.36)

Thus, using Taylor’s Theorem 3.1.11 and inequality (3.2.8), we have

‖J2
2‖V ≤ sup

τ∈[0,1]

∥∥DRW̃
u,t
(
τYs +(1− τ)Ỹs,τYu +(1− τ)Ỹu

)
(Ys− Ỹs,Yu− Ỹu)

∥∥
V

≤|t− s|α‖W̃‖α,βββ 3
(1+2‖Y‖∞ +2‖Ỹ‖∞)

β2∨β3

×
[
‖τYs,u +(1− τ)Ỹs,u‖2

V‖Yu− Ỹu‖V +‖τYs,u +(1− τ)Ỹs,u‖V‖(Y − Ỹ )s,u‖V
]

≤‖W̃‖α,βββ 3
(1+2‖Y‖∞ +2‖Ỹ‖∞)

β2∨β3

×
[
b(‖Y‖α +‖Ỹ‖α)

2‖Y − Ỹ‖∞ +(‖Y‖α +‖Ỹ‖α)‖Y − Ỹ‖α

]
|t− s|3α .

Applying (3.2.15) and (3.2.16), and putting together the terms with ‖W −W̃‖α,βββ 3
,
(
‖Y0− Ỹ0‖V +

‖Ẏ0− ˙̃Y 0‖V
)

and d
α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)
, respectively, we have

‖J2
2‖V ≤

[
F1×‖W −W̃‖α,βββ 3

+F2×
(
‖Y0− Ỹ0‖V +‖Ẏ0− ˙̃Y 0‖V

)
(3.2.37)

+F3×d
α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)]
|t− s|3α ,

where

F1 =‖W̃‖α,βββ 3
(1+2‖Y‖∞ +2‖Ỹ‖∞)

β2∨β3(1+‖Ẏ‖∞)
β0

×
(
(‖Y‖α +‖Ỹ‖α)+T α(‖Y‖α +‖Ỹ‖α)

2),
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F2 =(1+T α)(‖W̃‖α,βββ 3
+‖W̃‖2

α,βββ 3
)(1+2‖Y‖∞ +2‖Ỹ‖∞)

β2∨β3(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)
β1

×
(
(‖Y‖α +‖Ỹ‖α)+(‖Y‖α +‖Ỹ‖α)

2)
and

F3 =(‖W̃‖α,βββ 3
+‖W̃‖2

α,βββ 3
)(1+2‖Y‖∞ +2‖Ỹ‖∞)

β2∨β3(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)
β1

×
(
T α(‖Y‖α +‖Ỹ‖α)+T 2α(‖Y‖α +‖Ỹ‖α)

2).
Estimates for J3: Similarly, we decompose J3 as follows

J3 =DW−W̃
u,t

(
(Ẏs,Ys),(Ẏu,Yu)

)
+
[
DW̃

u,t
(
(Ẏs,Ys),(Ẏu,Yu)

)
−DW̃

u,t
(
( ˙̃Y s,Ỹs),(

˙̃Y u,Ỹu)
)]

:=J1
3 + J2

3 ,

The estimate for J1
3 can by obtained by inequality (3.2.7), that is

‖J1
3‖V ≤(1+2‖Ẏ‖∞)

β0∨β1(1+2‖Y‖∞)
β1∨β2(‖Ẏ‖α +‖Y‖α)

×‖W−W̃‖2α,βββ ∗2,βββ
∗∗
2
|t− s|3α . (3.2.38)

To bound J2
3 , we apply Taylor’s Theorem 3.1.11 and get

‖J2
3‖V ≤ sup

0≤τ≤1

∥∥DDW̃
u,t(ξξξ (τ))

(
Ẏs− ˙̃Y s,Ys− Ỹs,Ẏu− ˙̃Y u,Yu− Ỹu

)∥∥
V ,

where ξξξ (τ)= τ(Ẏs,Ys,Ẏu,Yu)+(1−τ)( ˙̃Y s,Ỹs,
˙̃Y u,Ỹu). Therefore, using inequalities (3.2.9), (3.2.15)
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and (3.2.16), we can show that

‖J2
3‖V ≤

[
(1+T α)‖W̃‖2α,βββ ∗2,βββ

∗∗
2
(1+2‖Y‖∞ +2‖Ỹ‖∞)

β ∗∗2 (1+2‖Ẏ‖∞ +2‖ ˙̃Y‖∞)
β ∗2 +β0

× (‖Y‖α +‖Ẏ‖α +‖Ỹ‖α +‖ ˙̃Y‖α)‖W −W̃‖α,βββ 3

+3(1+T α)(‖W̃‖C3 +‖W̃‖
2
C3
)(‖Y‖α +‖Ẏ‖α +‖Ỹ‖α +‖ ˙̃Y‖α)

× (1+2‖Y‖∞ +2‖Ỹ‖∞)
β ∗∗2 (1+2‖Ẏ‖∞ +2‖ ˙̃Y‖∞)

β ∗2 +β1

×
(
‖Y0− Ỹ0‖V +‖Ẏ0− ˙̃Y 0‖V

)
+2(1+T α)(‖W̃‖C3 +‖W̃‖

2
C3
)
(
1+T α(‖Y‖α +‖Ẏ‖α +‖Ỹ‖α +‖ ˙̃Y‖α)

)
× (1+2‖Y‖∞ +2‖Ỹ‖∞)

β ∗∗2 (1+2‖Ẏ‖∞ +2‖ ˙̃Y‖∞)
β ∗2 +β1

×d
α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)]
|t− s|3α . (3.2.39)

Therefore, combining (3.2.33) and (3.2.35) - (3.2.39), we have

‖δ∆s,u,t‖V

≤
{
(1+T α)(1+‖W̃‖C3)(1+2‖Y‖∞ +2‖Ỹ‖∞)

β ∗∗2 (1+2‖Ẏ‖∞ +2‖ ˙̃Y‖∞)
β ∗2 +β0

×
[
‖Y‖α +‖Ẏ‖α +‖Ỹ‖α +‖ ˙̃Y‖α +(‖Y‖α +‖Ỹ‖α)

2 +‖RY‖2α

]
ρα,βββ 3

(W,W̃)

+4(1+T α)(‖W̃‖C3 +‖W̃‖
2
C3
)(1+2‖Y‖∞ +2‖Ỹ‖∞)

β ∗∗2 (1+2‖Ẏ‖∞ +2‖ ˙̃Y‖∞)
β ∗2 +β1

×
[
‖Y‖α +‖Ẏ‖α +‖Ỹ‖α +‖ ˙̃Y‖α +(‖Y‖α +‖Ỹ‖α)

2 +‖RY‖2α

]
×
(
‖Y0− Ỹ0‖V +‖Ẏ0− ˙̃Y 0‖V

)
+4(1+T α)(‖W̃‖C3 +‖W̃‖

2
C3
)(1+2‖Y‖∞ +2‖Ỹ‖∞)

β ∗∗2 (1+2‖Ẏ‖∞ +2‖ ˙̃Y‖∞)
β ∗2 +β1

×
[
1+T α(‖Y‖α +‖Ẏ‖α +‖Ỹ‖α +‖ ˙̃Y‖α)+T 2α(‖Y‖α +‖Ỹ‖α)

2 +T 2α‖RY‖2α

]
×d

α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)}
|t− s|3α . (3.2.40)
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On the other hand, by (3.2.7) and (3.2.16), we can show that

‖Ws,t(Ẏs,Ys)−W̃s,t(
˙̃Y s,Ỹs)‖V =

∥∥(W−W̃)s,t(Ẏs,Ys)−DW̃
s,t
(
(Ẏs,Ys),(

˙̃Y s,Ỹs)
)∥∥

V

≤
{
(1+T α)(1+‖W̃‖C3)(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)

2β0∨β1(1+‖Y‖∞ +‖Ỹ‖∞)
β1∨β2

×ρα,βββ 3
(W,W̃)

+2(1+T α)(‖W̃‖C3 +‖W̃‖
2
C3
)(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)

β0∨β1+β1(1+‖Y‖∞ +‖Ỹ‖∞)
β1∨β2

×
(
‖Y0− Ỹ0‖V +‖Ẏ0− ˙̃Y 0‖V

)
+2T α(1+T α)(‖W̃‖C3 +‖W̃‖

2
C3
)(1+‖Ẏ‖∞ +‖ ˙̃Y‖∞)

β0∨β1+β1(1+‖Y‖∞ +‖Ỹ‖∞)
β1∨β2

×d
α,W,W̃

(
(Y,Ẏ ),(Ỹ , ˙̃Y )

)}
|t− s|2α . (3.2.41)

Recall inequality (3.2.32). Inequality (3.2.31) follows from (3.2.15), (3.2.40), (3.2.41) and the

Sewing Lemma. This completes the proof of the proposition.

3.3 Rough Differential Equations

Let α ∈ (1
3 ,

1
2 ], βββ 3 = (β0, . . . ,β3) where βk ≥ 0, k = 0, . . . ,3, and let W = (W,W) ∈ C α,βββ 3([0,T ]×

V ;V ). That is, W is α-Hölder in time, and three times differentiable in space with growth multi-

index βββ 3, W is 2α-Hölder in time and twice differentiable in space with growth multi-indexes

βββ ∗2 = (β0,β0∨β1,β0∨β1∨β2) and βββ ∗∗2 = (β1,β1∨β2,β1∨β2∨β3), and (W,W) satisfies Chen’s

relation (3.2.10). In this section, we study the following nonlinear RDE:

Yt = ξ +

ˆ t

0
W (dr,Yr). (3.3.1)

Definition 3.3.1. An α-Hölder continuous function Y is said to be a solution to (3.3.1), if (Y,Y ) ∈

E 2α

W,(ξ ,ξ )
, and equality (3.3.1) holds for all t ∈ [0,T ] where the integral on the right-hand side is a

nonlinear rough integral in the sense of Theorem 3.2.10.
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3.3.1 Local existence

In this section, we establish the (local) existence of a solution for equation (3.3.1) using Picard

iteration method. To this end, we introduce the following notation. Let Φ ∈ C α([0,T ];V ). For any

0≤ s < t ≤ T , we write

‖Φ‖α,[s,t] := sup
u6=v∈[s,t]

‖Φu,v‖V
|v−u|α

.

We also define dW,α,[s,t] in a similar way, where we recall Remark 3.2.8 for the definition of dW,α .

Theorem 3.3.2. For any ξ ∈ V , there exist a positive number h, such that the RDE (3.3.1) has a

solution Y on [0,h] with initial condition Y0 = ξ . In addition, the following inequality holds on

[0,h]:

‖Y‖α,[0,h] ≤ 52γ1+2kα(1+‖W‖C3)(1+‖ξ‖V )
γ1 , (3.3.2)

where γ1 = β0∨β1 +β1∨β2.

Proof. Choose h ∈ (0,1]. Let

(Y 0
t ,Ẏ

0
t ) := (ξ +W0,t(ξ ),ξ ), t ∈ [0,h].

Then (Y 0,Ẏ 0) ∈ E 2α

W,(ξ ,ξ )
with the remainder RY 0

s,t ≡ 0 for all (s, t) ∈ [0,h]2. Due to Proposition

3.2.12, for any n≥ 1, we can recursively define an element (Y n,Ẏ n) ∈ E 2α

W,(ξ ,ξ )
given by

Y n+1
t = ξ +

ˆ t

0
W (dr,Y n

t ), t ∈ [0,h].

By (3.2.30), the following inequality holds for all n≥ 1

‖RY n+1
‖2α,[0,h] ≤kα‖W‖C3(1+2‖ξ‖V )γ1

[
1+2hα

(
‖Y n‖α,[0,h]+‖Y n−1‖α,[0,h]

)]γ1 (3.3.3)

×
[
1+hα

(
‖Y n‖α,[0,h]+‖Y n‖2

α,[0,h]+‖Y
n−1‖α,[0,h]+‖RY n

‖2α,[0,h]
)]
.
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By iteration, we know that (Y n+1,Y n) ∈ E
2α,(ξ ,ξ )

W , which implies that

‖Y n+1‖α,[0,h] ≤ ‖W‖α,βββ 3
(1+‖ξ‖V +hα‖Y n‖α,[0,h])

β0 +hα‖RY n+1
‖2α,[0,h]. (3.3.4)

Choose h1 = [5γ1+2kα(1+ ‖W‖C3)(1+ 2‖ξ‖V )γ1]−
1
α . We claim that for any h ∈ [0,h1] ⊂ [0,1],

‖Y n‖α,[0,h] and ‖Rn‖2α,[0,h] are bounded uniformly in n. To prove this claim, for any h ∈ [0,h1], let

fh,gh : R+×R+→ R+ be given by

fh(x,y) = kα‖W‖C3(1+2‖ξ‖V )γ1(1+4hαy)γ1[1+hα(2y+ y2 + x)]

and

gh(x,y) = ‖W‖α,βββ 3
(1+‖ξ‖V +hαy)β0 +hαx.

Then it is easy to see that f and g are both increasing in each argument h, x and y. Let

x1 =
‖W‖C3

2(1+‖W‖C3)
h−2α

1 and y1 =
‖W‖C3

1+‖W‖C3

h−α

1 .

It follows that for any h ∈ [0,h1]⊂ [0,1], x ∈ [0,x1] and y ∈ [0,y1], the following inequalities hold

fh(x,y)≤ fh1(x1,y1)

=kα‖W‖C3(1+2‖ξ‖V )γ15γ1
(

1+
2‖W‖C3

1+‖W‖C3

+
‖W‖2

C3
h−α

(1+‖W‖C3)
2 +

‖W‖C3h−α

1
2(1+‖W‖C3)

)
≤kα‖W‖C3(1+2‖ξ‖V )γ15γ1+1h−α

1 =
‖W‖C3

5(1+‖W‖C3)
h−2α

1 ≤ x1

and

gh(x,y)≤ gh1(x1,y1)≤ 2‖W‖α,βββ 3
(1+‖ξ‖V )β0 +

‖W‖C3h−α

1
2(1+‖W‖C3)

≤ y1.
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From inequalities (3.3.3) and (3.3.4) we can show, by a recursive argument, that

max
n≥0
{‖Y n‖α,[0,h]} ≤ gh1(x1,y1) =5γ1+2kα‖W‖C3(1+2‖ξ‖V )γ1

≤52γ1+2kα‖W‖C3(1+‖ξ‖V )
γ1 (3.3.5)

and

max
n≥0
{‖RY n

‖2α,[0,h]} ≤ x1 =
52γ1+4

2
k2

α‖W‖C3(1+‖W‖C3)(1+2‖ξ‖V )2γ1

≤53γ1+4k2
α‖W‖C3(1+‖W‖C3)(1+‖ξ‖V )

2γ1, (3.3.6)

provided that ‖Y 0‖α,[0,h],‖Ẏ 0‖α,[0,h] ≤ y1 and ‖RY 0‖2α,[0,h] ≤ x1. Indeed, by definition, we know

that ‖Ẏ 0‖α,[0,h] = ‖RY 0‖2α,[0,h] = 0, and

‖Y 0‖α,[0,h] ≤ ‖W‖α,βββ 3
(1+‖ξ‖V )γ1 ≤ y1.

As a consequence, we conclude that ‖Y n‖α,[0,h] and ‖Rn‖2α,[0,h] are bounded uniformly in n for

h ∈ (0,h1]. This also yields that

max
n≥0
{‖Y n‖∞,[0,h]} ≤

‖W‖C3

1+‖W‖C3

+‖ξ‖V ≤ 1+‖ξ‖V . (3.3.7)

By (3.3.5), (3.3.7), Proposition 3.2.13 and the fact that 0 < h≤ h1 = [5γ1+2kα(1+‖W‖C3)(1+

2‖ξ‖V )γ1]−
1
α < 1, we get the following estimate

dα,W,[0,h]
(
(Y n+1,Y n),(Y n,Y n−1)

)
≤C5dα,W,[0,h]

(
(Y n,Y n−1),(Y n−1,Y n−2)

)
,
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where

C5 =6kαhα(1+hα)(1+‖W‖C3)
2(1+2‖Y n‖∞,[0,h]+2‖Y n−1‖∞,[0,h])

β ∗∗2

× (1+2‖Y n−1‖∞,[0,h]+2‖Y n−2‖∞,[0,h])
β ∗2 +β1

×
[
1+hα(2‖Y n−1‖α,[0,h]+‖Y n‖α,[0,h]+‖Y n−2‖α,[0,h])

+h2α(‖Y n−1‖α,[0,h]+‖Y n‖α,[0,h])
2 +h2α‖RY n

‖2α,[0,h]

]
≤120×5β ∗∗2 +β ∗2 +β1kα(1+‖W‖C3)

2(1+‖ξ‖V )β ∗∗2 +β ∗2 +β1hα .

Let γ2 = β ∗∗2 +β ∗2 +β1 = max{β0,β1,β2}+max{β1,β2,β3}+β1, and let C6 = 120×5γ2kα . Then,

we have

dα,W,[0,h]
(
(Y n+1,Y n),(Y n,Y n−1)

)
≤C6(1+‖W‖C3)

2(1+‖ξ‖V )γ2hαdα,W,[0,h]
(
(Y n,Y n−1),(Y n−1,Y n−2)

)
. (3.3.8)

Choose h2 = [2C6(1+‖W‖C3)
2(1+‖ξ‖V )γ2]−

1
α ≤ h1 ≤ 1, and let h ∈ (0,h2]. Then by (3.3.8), we

have the following inequality

dα,W
(
(Y n+1,Y n),(Y n,Y n−1)

)
≤ 1

2
dα,W

(
(Y n,Y n−1),(Y n−1,Y n−2)

)
.

This yields that
∞

∑
n=1

dα,W,[0,h]
(
(Y n+1,Y n),(Y n,Y n−1)

)
< ∞.

Due to Lemma 3.2.9, we can conclude that (Y n,Y n−1)→ (Y,Y ) ∈ E 2α

W,(ξ ,ξ )
as n→ ∞. By Lemma

3.2.7 and Proposition 3.2.13, we have for any 0≤ s≤ t ≤ h,

∥∥∥Y n+1
s,t −

ˆ t

s
W (dr,Yr)

∥∥∥
V
=
∥∥∥ˆ t

s
W (dr,Y n

r )−
ˆ t

s
W (dr,Yr)

∥∥∥
V

≤Cdα,W,[0,h]
(
(Y n,Y n−1),(Y,Y )

)
|t− s|α ,
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for some constant C > 0 uniformly in n. This implies that equation (3.3.1) holds for all t ∈ [0,h].

Finally, inequality (3.3.2) follows from (3.3.5) and the fact that (Y,Y ) is the limit of (Y n,Y n−1) in

E 2α

W,(ξ ,ξ )
.

3.3.2 Uniqueness and global existence

In this section, we prove the uniqueness of a solution for equation (3.3.1). We also present some

hypotheses that imply the global existence of a solution for this equation.

Theorem 3.3.3. For any time interval [0,T ] and initial value ξ ∈ V . There exists at most one

solution to equation (3.3.1).

Proof. Suppose that Y and Ỹ are two solutions to (3.3.1) with initial condition ξ on [0,T ]. By

Proposition 3.2.13, the following inequality holds on [0,h]⊂ [0,T ], assuming h≤ 1.

dα,W,[0,h]
(
(Y,Y ),(Ỹ ,Ỹ )

)
≤C5dα,W,[0,h]

(
(Y,Y ),(Ỹ ,Ỹ )

)
, (3.3.9)

where

C5 =12kαhα(1+‖W‖C3)
2(1+2‖Y‖∞ +2‖Ỹ‖∞)

β ∗∗2 (1+2‖Ẏ‖∞ +2‖ ˙̃Y‖∞)
β ∗2 +β1

×
[
1+(‖Y‖α +‖Ẏ‖α +‖Ỹ‖α +‖ ˙̃Y‖α)+(‖Y‖α +‖Ỹ‖α)

2 +‖RY‖2α

]
.

Choosing h small enough, (3.3.9) yields that Y ≡ Ỹ on [0,h]. Notice that the choice of h doesn’t

dependent on the initial value. Therefore, by iteration, we can extend the uniqueness to any time

interval [0,T ].

As stated in Section 3.1, the linear growth of the vector field cannot guarantee the global

existence of a RDE driven by a linear rough path. This is also true in the case of nonlinear

rough paths. In order to obtain the global existence, we introduce the following growth con-

dition of W . Let W = (W,W) ∈ C α,βββ 3([0,T ]×V ;V ), let γ1 = β0 ∨ β1 + β1 ∨ β2, and let γ2 =

max{β0,β1,β2}+max{β1,β2,β3}+β1.
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Hypothesis (H). γ2
α
− γ2 + γ1 ≤ 1.

A similar condition in the linear situation can be seen, e.g., in [6, 19, 60].

Theorem 3.3.4. Under Hypothesis (H), the RDE (3.3.1) has a solution on any time interval [0,T ].

By Theorem 3.3.3, this solution is unique.

Proof. Let ε1 = [2C6(1+ ‖W‖C3)
2(1+ ‖ξ‖V )γ2]−

1
α where C6 = 120× 5γ2kα is the constant ap-

pearing in (3.3.8). Then, by Theorem 3.3.2, the RDE has a solution Y (1) on [0,ε1] with initial

condition Y (1)
0 = ξ . We denote by ξ1 =Y (1)

ε1 the terminal value of Y . In order to extend the solution

to the entire interval [0,T ], we consider the following RDE

Yt = Ys +

ˆ t

s
W (dr,Yr)+

ˆ t

s
(dr,Yr). (3.3.10)

By Theorem 3.3.2 again, equation (3.3.10) has a solution Y (2) on [ε1,ε1 + ε2] with initial con-

dition Yε1 = ξ1, where ε2 = [2C6(1 + ‖W‖C3)
2(1 + ‖ξ1‖V )γ2]−

1
α . By iteration, we have a se-

quence {εn}n≥1 with values in (0,1), such that the equation (3.3.10) has a solution Y (n+1) on

[ηn,ηn+1] := [∑n
k=1 εk,∑

n+1
k=1 εn+1] with initial condition Y (n+1)

ηn = ξn := Y (n)
ηn and εn+1 = [2C6(1+

‖W‖C3)
2(1+‖ξn‖V )γ2 ]−

1
α . By (3.3.2) we have the following inequality

‖ξn+1‖V ≤ ‖Y (n+1)‖∞ ≤‖ξn‖V + ε
α
n+1‖Y (n+1)‖α ≤ ‖ξn‖V +

52γ1+2‖W‖C3

2C6(1+‖W‖C3)
2 (1+‖ξn‖V )γ1−γ2.

Recall the assumption γ2
α
−γ2+γ1 ≤ 1. By the mean value theorem for real valued functions, there

exist τ ∈ [0,1], such that

(1+‖ξn+1‖V )
γ2
α ≤

[
1+‖ξn‖V +

52γ1+2‖W‖C3

2C6(1+‖W‖C3)
2 (1+‖ξn‖V )γ1−γ2

] γ2
α

=(1+‖ξn‖V )
γ2
α +

[
52γ1+2(2C6)

−1(1+‖ξn‖V )γ1−γ2
]

× γ2

α

[
1+‖ξn‖V + τ52γ1+2(2C6)

−1(1+‖ξn‖V )γ1−γ2
] γ2

α
−1
. (3.3.11)
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By definition we know that γ1 ≤ γ2. This implies

[
1+‖ξn‖V + τ52γ1+2(2C6)

−1(1+‖ξn‖V )γ1−γ2
] γ2

α
−1

≤(1+‖ξn‖V )
γ2
α
−1×max

{
1,
[
1+52γ1+2(2C6)

−1] γ2
α
−1}

=
[
1+52γ1+2(2C6)

−1]0∨( γ2
α
−1)

(1+‖ξn‖V )
γ2
α
−1. (3.3.12)

As a consequence of inequalities (3.3.11) and (3.3.12) , under the assumption (H), we can write

(1+‖ξn+1‖V )
γ2
α ≤(1+‖ξn‖V )

γ2
α +

γ2

α

[
1+52γ1+2(2C6)

−1] γ2
α
∨1
(1+‖ξn‖V )γ1−γ2+

γ2
α
−1

≤(1+‖ξn‖V )
γ2
α +

γ2

α

[
1+52γ1+2(2C6)

−1] γ2
α
∨1
. (3.3.13)

It follows that

εn+1 ≥[2C6(1+‖W‖C3)
2]−

1
α

[
(1+‖ξn−1‖V )

γ2
α +

γ2

α

[
1+52γ1+2(2C6)

−1] γ2
α
∨1
]−1

(3.3.14)

=
[
ε
−1
n +

(
2C6(1+‖W‖C3)

2) 1
α

γ2

α

[
1+52γ1+2(2C6)

−1] γ2
α
∨1
]−1

:= (ε−1
n +K0)

−1.

Observe that the constant K0 is independent of n. Thus by iteration, the following inequality holds

∞

∑
n=1

εn ≥
∞

∑
n=0

1
ε
−1
1 +nK0

= ∞. (3.3.15)

In other words, we can extend the solution to any time interval [0,T ].

Assume that the derivatives of W are all bounded, that is βββ 3 = (β0,0,0,0). Then, Hypothesis

(H) is equivalent to β0≤α and it coincides with Besalú and Nualart’s condition for global existence

(see Theorem 4.1 of Besalu & Nualart [6]).
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3.3.3 Properties of the solutions

Assume Hypothesis (H). In this section, we prove some properties of the solution to the RDE

(3.3.1). The first proposition below provides an estimate for the Hölder norm of the solution to

(3.3.1). Before stating the proposition, we first prove the following lemma.

Lemma 3.3.5. Suppose that X ∈ C α([0,T ];V ). Let π = (0 = t0 < t1 < t2 < .. . , tn = T ) be a

partition. Then,

‖X‖α ≤ n1−α max
1≤k≤n

‖X‖α,[tk−tk−1] ≤ (T/|π|)1−α max
1≤k≤n

‖X‖α,[tk−tk−1].

Proof. For any 0 ≤ s < t ≤ T . There exists 0 ≤ k1 ≤ k2 ≤ n such that s ≤ k1 ≤ k2 ≤ t. Then by

Jensen’s inequality for convex function f (x) = |x| 1
α , we have

‖Xs,t‖V
|t− s|α

≤
‖Xs,tk1

‖V +‖Xtk1 ,tk1+1‖V + · · ·+‖Xtk2 ,t
‖V

|t− s|α

≤ max
1≤k≤n

‖X‖α,[tk−tk−1]×
|tk1− s|α + · · ·+ |t− tk2|α

|t− s|α

≤ max
1≤k≤n

‖X‖α,[tk−tk−1]×
n1−α |t− s|α

|t− s|α
.

The lemma is then proved.

Proposition 3.3.6. Assume Hypothesis (H). Let Y be the solution to the RDE (3.3.1) with initial

condition ξ ∈V . Then the following estimate holds:

‖Y‖α ≤ c‖W‖C3(1+‖ξ‖V )
γ1+

1−α

α
γ2e(

αγ1
γ2

+1−α)K0T (3.3.16)

for some c depending on α and βββ 3, where

K0 =
(
2C6(1+‖W‖C3)

2) 1
α

γ2

α

[
1+52γ1+2(2C6)

−1] γ2
α
∨1

and C6 = 120×5γ2kα are the same as in (3.3.14) and (3.3.8), respectively.
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Proof. Let ε1 = [2C6(1+ ‖W‖C3)
2(1+ ‖ξ‖V )γ2]−

1
α . Theorems 3.3.2 and 3.3.3 imply that there

exists a unique solution to (3.3.1) with initial condition Y0 = ξ on [0,ε1]. Denote the solution

by Y (1). Then, proceeding with a similar argument as in Theorem 3.3.4, we obtain a sequence

{Y (n+1)}n≥1, where Y (n+1) is the unique solution to RDE (3.3.10) on [ηn,ηn+1] = [∑n
k=1 εk,∑

n+1
k=1 εk]

with initial condition Y (n+1)
ηn := ξn = Y (n)

ηn and εn+1 = [2C6(1+ ‖W‖C3)
2(1+ ‖ξn‖V )γ2]−

1
α . By

inequalities (3.3.2), (3.3.13) and an iteration argument, we have the following estimate:

‖Y (n+1)‖α ≤52γ1+2kα‖W‖C3

{
(1+‖ξ‖V )

γ2
α +

(n+1)γ2

α

[
1+52γ1+2(2C6)

−1] γ2
α
∨1
}αγ1

γ2 . (3.3.17)

In order to obtain (3.3.16), we consider the following two cases. Firstly, if T ≤ ε1, then (3.3.16)

holds by taking n = 0 in (3.3.17). On the other hand, for any T > ε1, there exists a positive integer

N, such that ηN ≤ T ≤ ηN+1. Notice that by (3.3.15), we have

T ≥
N

∑
n=1

εn ≥
N

∑
n=1

(ε−1
1 +K0n)−1 ≥ 1

K0

(
log(ε−1

1 +K0N)− log(ε−1
1 )
)
.

Recall that ε1 = [2C6(1+‖W‖C3)
2(1+‖ξ‖V )γ2]−

1
α and

K0 =
(
2C6(1+‖W‖C3)

2) 1
α

γ2

α

[
1+52γ1+2(2C6)

−1] γ2
α
∨1
.

It follows that

N ≤ 1
K0

(
eK0T+log(ε−1

1 )− ε
−1
1
)
= K−1

0 (eK0T −1)[2C6(1+‖W‖C3)
2(1+‖ξ‖V )γ2 ]

1
α

=
α

γ2

[
1+52γ1+2(2C6)

−1]−( γ2
α
∨1)

(1+‖ξ‖V )
γ2
α (eK0T −1). (3.3.18)

Let Y be the solution to (3.3.1) on [0,T ] with initial condition ξ . Then, combining Lemma 3.3.5,

(3.3.17) and (3.3.18), we have

‖Y‖α ≤ N1−α max
1≤n≤N+1

‖Y (n)‖α ≤ c(1+‖ξ‖V )γ1+
1−α

α
γ2e(

αγ1
γ2

+1−α)K0T
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for some c depending on α and βββ 3. This completes the proof of the proposition.

The next proposition provides the dependency of the solution to (3.3.1) on the initial condition

under Hypothesis (H).

Proposition 3.3.7. Assume that W= (W,W) satisfies the conditions in Theorem 3.3.4. Let Y and Ỹ

be the solutions to the RDE (3.3.1) with initial conditions ξ and ξ̃ , respectively. Then the following

estimate holds

dα,W
(
(Y,Y ),(Ỹ ,Ỹ )

)
≤ cT (T 1−α ∨1)‖ξ − ξ̃‖V , (3.3.19)

where c is a constant depending on α , βββ 3, ‖W‖C3 , ξ and ξ̃ .

Proof. By Propositions 3.2.13 and 3.3.6, and the fact that Y and Ỹ are solutions to (3.3.1), we can

write for any h ∈ [0,1],

dα,W,[0,h]
(
(Y,Y ),(Ỹ ,Ỹ )

)
≤c1‖ξ − ξ̃‖V + c2hαdα,W,[0,h]((Y,Y ),(Ỹ ,Ỹ ))

]
, (3.3.20)

where c1,c2 are constants depending on ‖W‖C3 , α , βββ 3 and ξ , ξ̃ . Let ε = (2c1)
− 1

α ∧ (2c2)
− 1

α ∧1.

It follows that

dα,W,[0,ε]
(
(Y,Y ),(Ỹ ,Ỹ )

)
≤ 2c1‖ξ − ξ̃‖V (3.3.21)

on [0,ε]. By iteration, we have that for any n≥ 1,

dα,W,[nε,(n+1)ε]
(
(Y,Y ),(Ỹ ,Ỹ )

)
≤ 2c1‖Ynε − Ỹnε‖V ,
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and

‖Ynε − Ỹnε‖V ≤‖Y(n−1)ε − Ỹ(n−1)ε‖V + ε
α‖Y − Ỹ‖α,[(n−1)ε,nε]

≤‖Y(n−1)ε − Ỹ(n−1)ε‖V + ε
αdα,W,[(n−1)ε,nε]

(
(Y,Y ),(Ỹ ,Ỹ )

)
≤2‖Y(n−1)ε − Ỹ(n−1)ε‖V .

Thus we can write

dα,W,[nε,(n+1)ε]
(
(Y,Y ),(Ỹ ,Ỹ )

)
≤ 2n+1c1‖ξ − ξ̃‖V .

In order to obtain the global distance, we proceed as follows. If T ≤ ε , then (3.3.19) is a direct

consequence of (3.3.21). It suffices to consider the case when T > ε . Let N be the positive integer

such that Nε < T ≤ (N +1)ε . Due to Lemma 3.3.5, the following inequality holds

dα,W
(
(Y,Y ),(Ỹ ,Ỹ )

)
≤ (T/ε)1−α max

0≤n≤N

{
dα,W,[nε,(n+1)ε]

(
(Y,Y ),(Ỹ ,Ỹ )

)}
≤ cT T 1−α‖ξ − ξ̃‖V ,

for some c > 0 depending on α , βββ 3, ‖W‖C , ξ and ξ̃ . This completes the proof of the proposition.

Due to Propositions 3.3.6 and 3.3.7, we can deduce the following corollary.

Corollary 3.3.8. Assume Hypothesis (H). Write Y (ξ ) for the solution to the RDE (3.3.1) with

initial condition ξ ∈V . Let K be any positive constant. Then,

(i) ‖Y (ξ )‖α is uniformly bounded in the space {ξ ,‖ξ‖V ≤ K}.

(ii) The constant c in (3.3.19) is fixed in the space {(ξ , ξ̃ ),‖ξ‖V +‖ξ̃‖V ≤ K}.

Remark 3.3.9. As a consequence of Proposition 3.3.7, we have the following estimates

‖Y − Ỹ‖α ≤ cT (T 1−α ∨1)‖ξ − ξ̃‖V ,
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and

sup
t∈[0,T ]

‖Yt− Ỹt‖V ≤ [1+ cT (T ∨1)]‖ξ − ξ̃‖V .

for some constants c depending on α , βββ 3, ‖W‖C , ξ and ξ̃ .

3.4 A functional approach to nonlinear rough paths

Let V be a Banach space. In this section, we consider the nonlinear rough path defined in Section

3.2 as a C βββ n(V ;V )-valued linear rough path. We will show that the two approaches are equivalent

under some assumptions.

We start this section by defining the space C βββ n(V ;V ):

Definition 3.4.1. Let βββ n = (β0, . . . ,βn) be a multi-index, where βk ≥ 0 for all k ∈ {0,1, . . . ,n}. The

space C βββ n(V ;V ) is the collection of continuously differentiable functions on V with values in V ,

equipped with the norm:

‖φ‖βββ n =
n

∑
k=0

sup
x∈V

‖Dkφ(x)‖Lk(V ;V )

(1+‖x‖V )βk
< ∞.

It is easy to see that (C βββ n(V ;V ),‖ · ‖βββ n) is a Banach space. In the following lemma, we show

the equivalence of the spaces C α([0,T ];C βββ n(V ;V )) and C α,βββ n([0,T ]×V ;V ) defined in Definition

3.2.1.

Lemma 3.4.2. (i) Let Φ ∈ C α,βββ n([0,T ]×V ;V ) be defined by (3.2.1) with Φ0 ∈ C βββ n(V ;V ).

Then, Φ ∈ C α([0,T ];C βββ n(V ;V )).

(ii) Conversely, if Φ ∈ C α([0,T ];C βββ n(V ;V )), then Φ ∈ C α,βββ n([0,T ]×V ;V ).

Proof. (i) Fix t ∈ [0,T ]. We can show that

‖Φt‖βββ n ≤ ‖Φ0‖βββ n +‖Φ0,t‖α,βββ n ≤ ‖Φ0‖βββ n +T α‖Φ‖α,βββ n < ∞.
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Similarly for any 0≤ s≤ t ≤ T , we have

‖Φs,t‖βββ n ≤ ‖Φ‖α,βββ n|t− s|α .

It follows that as a C βββ n(V ;V )-valued function, ‖Φ‖α ≤ ‖Φ‖α,βββ n < ∞.

(ii) We estimate ‖Φ‖α,βββ n as follows:

‖Φ‖α,βββ n =
n

∑
k=0

sup
s 6=t∈[0,T ]

x∈V

‖DkΦs,t(x)‖V
|t− s|α(1+‖x‖V )βk

= sup
s 6=t∈[0,T ]

‖Φs,t‖βββ n

|t− s|α
≤ ‖Φ‖α .

As a consequence, Φ ∈ C α,βββ n([0,T ]×V ;V ).

Let n≥ 1, and let (W,W ) ∈ C α([0,T ];C βββ n(V ;V )) be a C βββ n(V ;V )-valued linear rough path in

the sense of Definition 3.1.2. Then, W ∈C 2α
2 ([0,T ]2;C βββ n(V ;V )⊗2). We define W : [0,T ]2×V 2→

V as follows:

Ws,t(x,y) := D (2)Ws,t(x,y), (3.4.1)

where D (2) : C βββ n(V ;V )⊗C βββ n(V ;V )→ C βββ ∗n−1,βββ
∗∗
n−1(V ×V ;V ) with the multi-indexes βββ ∗n−1 and

βββ ∗∗n−1 defined in (3.2.3), is given by

D (2)(φ 1,φ 2)(x,y) := Dφ
2(y)(φ 1(x)),

for all (φ 1,φ 2) ∈ C βββ n(V ;V )2 and (x,y) ∈V 2. One should notice that the operator D (2) can be ex-

tended continuously to the tensor product space C βββ n(V ;V )⊗C βββ n(V ;V ), and it is a linear operator

on this space. We can also define

D (1)(φ 1,φ 2)(x,y) := Dφ
1(x)(φ 2(x)) (3.4.2)

for all (φ 1,φ 2) ∈ C βββ n(V ;V )2, and continuously extend it to C βββ n(V ;V )⊗C βββ n(V ;V ). In the next
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proposition, we show that (W,W) ∈ C α,βββ n([0,T ]×V ;V ).

Proposition 3.4.3. Let W = (W,W ) ∈ C α([0,T ];C βββ n(V ;V )), and let W : [0,T ]2×V 2 → V be

given by (3.4.1). Then (W,W) ∈ C α,βββ n([0,T ]×V ;V ).

Proof. According to Lemma 3.4.2, we know that W ∈ C α,βββ n([0,T ]×V ;V ) and this implies that

W ∈ C
2α,βββ ∗n−1,βββ

∗∗
n−1

2 ([0,T ]2 ×V 2;V ). It suffices to verify Chen’s relation (3.2.10). Recall that

(W,W ) ∈ C α([0,T ];C βββ n(V ;V )) satisfies Chen’s relation (3.1.3), and the operator D (2) is linear

on C βββ n(V ;V )⊗C βββ n(V ;V ). It follows that

Ws,t(x,y)−Ws,u(x,y)−Wu,t(x,y) = D (2)(Ws,t−Ws,u−Wu,t)(x,y)

=D (2)(Ws,u⊗Wu,t)(x,y) = DWu,t(y)(Ws,u(x)).

As a consequence, (W,W) ∈ C α,βββ n([0,T ]×V ;V ).

Remark 3.4.4. Proposition 3.4.3 shows that W can be constructed from W . However, generally

we are not able to recover W from W satisfying Chen’s relation (3.2.10). In other words, the

nonlinear integral
´ t

0 W (dr,Yr) and the nonlinear RDE (3.3.1) can be studied using the approach

of Section 3.2 even if W does not exist.

Let W = (W,W ) ∈ C α([0,T ];C βββ n(V ;V )). In the theory of linear rough paths, under the as-

sumption that Y ∈D2α
W (L (C βββ n(V ;V );V )), the rough integral of Y against W is well-defined. The

nonlinear rough integral defined in Section 3.2 can be also interpreted as the linear rough integral.

In this case, the controlled rough path Y belongs to a proper subset of D2α
W (L (C βββ n(V ;V );V )),

that is equivalent to E 2α
W in the sense of Definition 3.2.5. To describe this subset, we introduce the

following special class of operators in L (C βββ n(V ;V );V ). For any x ∈V , let x̂ : C βββ n(V ;V )→V be

given by

x̂(φ) := φ(x). (3.4.3)

Then x̂ ∈L (C βββ n(V ;V );V ) with operator norm bounded by (1+‖x‖V )β0 . Let n ≥ 1 and let W ∈

134



C α([0,T ];C βββ n(V ;V )). We introduce the space of basic controlled rough paths of a C βββ n(V ;V )-

valued rough path as a subspace of D2α
W (L (C βββ n(V ;V );V )), where D2α

W (L (C βββ n(V ;V );V )) is

defined as in Definition 3.1.3. Here, the state space of W is C βββ n(V ;V ). Additionally, assume that

(Y ,Y ′)∈D2α
W (L (C βββ n(V ;V );V )). Then the state spaces of Y and Y ′ are L (C βββ n(V ;V );V ) and

L (C βββ n(V ;V );L (C βββ n(V ;V );V )), respectively.

Definition 3.4.5. A pair of functions (Y ,Y ′) ∈ D2α
W (L (C βββ n(V ;V );V )) is called a basic rough

path controlled by W, if there exists a pair of functions (Y,Ẏ ) ∈ C α(V ;V )×C α(V ;V ), such that

for all t ∈ [0,T ], Yt = Ŷt and for all (φ1,φ2) ∈ C βββ n(V ;V )2

Y ′t (φ1,φ2) = Ŷ ′t (φ1,φ2) := D (2)(φ1,φ2)(Ẏt ,Yt) = Dφ2(Yt)(φ1(Ẏt)). (3.4.4)

We write Ẽ 2α
W for the collection of such pairs.

The next proposition provides the equivalence between the spaces Ẽ 2α
W and E 2α

W .

Proposition 3.4.6. Let n ≥ 1 and let W ∈ C α([0,T ];C βββ n(V ;V )). Then by Lemma 3.4.2, W ∈

C α,βββ n([0,T ]×V ;V ) as well. In addition, the following properties hold:

(i) Let (Y,Ẏ )∈ E 2α
W in the sense of Definition 3.2.5. Then, (Ŷ ,Ŷ ′)∈ Ẽ 2α

W in the sense of Definition

3.4.5, where Ŷt and Ŷ ′t are given by (3.4.3) and (3.4.4) respectively, for all t ∈ [0,T ].

(ii) Conversely, let (Ŷ ,Ŷ ′) ∈ Ẽ 2α
W with associated pair (Y,Ẏ ) ∈ C α(V ;V )2. Then (Y,Ẏ ) ∈ E 2α

W .

Proof. (i) By assumption Y ∈ C α([0,T ];V ). It follows that

‖Ŷ‖α = sup
s 6=t∈[0,T ]

‖Ŷs,t‖L (C βββn(V ;V );V )

|t− s|α
= sup

s 6=t∈[0,T ]
sup

06=φ∈C βββn(V ;V )

‖φ(Yt)−φ(Ys)‖V
|t− s|α‖φ‖βββ n

≤(1+‖Y‖∞)
β1‖Y‖α .

This implies that Ŷ ∈ C α([0,T ];L (C βββ n(V ;V );V )). Similarly, since Ẏ ∈ C α([0,T ];V ), we can
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deduce the following inequality:

‖Ŷ ′‖α ≤ (1+‖Y‖∞)
β2(1+‖Ẏ‖∞)

β0‖Y‖α +(1+‖Y‖∞)
β1(1+‖Ẏ‖∞)

β1‖Ẏ‖α .

It suffices to estimate the reminder term. Recall that Ŷ ′ is defined as in (3.4.4). Then, for any

φ ∈ C βββ n(V ;V ), the remainder RŶ
s,t(φ) can be written as follows,

RŶ
s,t(φ) = φ(Yt)−φ(Ys)−Dφ(Ys)Ws,t(Ẏs).

Due to Taylor’s Theorem 3.1.11 and the fact that (Y,Ẏ ) ∈ E 2α
W , we have

‖RŶ
s,t(φ)‖V ≤‖Dφ(Ys)Ys,t−Dφ(Ys)Ws,t(Ẏs)‖V +

1
2

sup
0≤τ≤1

‖D2
φ(τYt +(1− τ)Ys)(Ys,tYs,t)‖V

=‖Dφ(Ys)[Ws,t(Ẏs)+RY
s,t ]−Dφ(Ys)Ws,t(Ẏs)‖V

+
1
2

sup
0≤τ≤1

‖D2
φ(τYt +(1− τ)Ys)(Ys,tYs,t)‖V

≤‖φ‖βββ n

[1
2
(1+‖Y‖∞)

β2‖Y‖2
α +(1+‖Y‖∞)

β1‖RY‖2α

]
|t− s|2α .

This implies RŶ ∈ C 2α
2 ([0,T ];L (C βββ n(V ;V );V )). As a consequence, we conclude that (Ŷ ,Ŷ ′) ∈

Ẽ 2α
W .

(ii) To prove the converse result, it suffices to show that RY ∈ C 2α
2 ([0,T ];V ), where

RY
s,t := Ys,t−Ws,t(Ẏs).

Let K be the closed convex hull of the set {Yt , t ∈ [0,T ]}, and let K̃ is a compact set in V whose

interior contains K. Choose a function φ : V → V that is infinitely differentiable and satisfies the

following properties:

a) φ(x) = x for all x ∈ K. That implies Dφ(x) = I and D2φ(x) = 0 for all x ∈ K, where I denotes

the identity operator in L (V ;V ).
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b) φ(x)≡ x0 ∈V for all x /∈ K̃.

c) φ and all its derivatives are bounded.

Then, it is easy to check that φ ∈ C βββ n(V ;V ) for any multi-index βββ n. In addition, we can show that

‖RY
s,t‖V = ‖φ(Yt)−φ(Ys)−Dφ(Ys)[Ws,t(φs)]‖V = ‖RŶ

s,t(φ)‖V ≤ ‖RŶ‖2α‖φ‖βn|t− s|2α .

In other words, RY ∈ C 2α([0,T ];V ), and thus (Y,Ẏ ) ∈ E 2α
W .

In the next theorem, we will show the equivalence of two rough integrals.

Theorem 3.4.7. Let W = (W,W ) ∈ C α([0,T ];C βββ 2(V ;V )). Due to Proposition 3.4.3, we can

construct (W,W) ∈ C α,βββ 2([0,T ]×V ;V ). Assume that (Ŷ ,Ŷ ′) ∈ Ẽ 2α
W with associated pair (Y,Ẏ ) ∈

E 2α
W by Proposition 3.4.6. Then, the following two rough integrals coincide,

ˆ t

s
W (dr,Yr) =

ˆ t

s
ŶrdWr, (3.4.5)

where the integral on the left-hand side is in the sense of (3.2.26), and the integral on the right-

hand side is in the sense of Theorem 3.1.4.

Proof. Let Ξs,t and Ξ̃s,t be the approximations of the integral on the left and right-hand side, re-

spectively. That is,

Ξs,t =Ws,t(Ys)+Ws,t(Ẏs,Ys) and Ξ̃s,t = ŶsWs,t + Ŷ ′s Ws,t .

Here Ŷ ′s acting on Ws,t is a continuous extension of formula (3.4.4) to the tensor product space

C βββ 2(V ;V )⊗2. By definition of W and (Ŷ ,Ŷ ′), we have

ŶsWs,t + Ŷ ′s Ws,t =Ws,t(Ys)−D (2)Ws,t(Ẏs,Ys) =Ws,t(Ys)+Ws,t(Ẏs,Ys).

This implies the equality (3.4.5).
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At the end of this section, we provide an alternative approach to study the nonlinear RDE

introduced in Section 3.3. Let W = (W,W ) ∈ C α([0,T ];C βββ 3(V ;V )). Then, the RDE (3.3.1) can

be also understood as the following equation:

Yt = ξ +

ˆ t

0
δ (Yr)dWr, (3.4.6)

where δ denotes the Dirac delta operator, that is δ : V →L (C βββ 3(V ;V );V ) is given by δ (x) = x̂.

A function Y ∈ C α([0,T ];V ) is said to be a solution to (3.4.6), if (Y,δ (Y )) ∈ D2α
W (V ) and the

equality holds. On the other hand, suppose that Y is a solution to (3.4.6). Then, (Ŷ ,Ŷ ′) ∈ Ẽ 2α
W

with associated pair (Y,Y ) ∈ E 2α
W . Therefore, Y is a solution to the equation (3.3.1) in the sense of

Definition 3.3.1.

On the other hand, notice that as an L (C βββ 3(V ;V );V )-valued operator, δ is three times dif-

ferentiable. More precisely, the derivatives of δ can be written as follows Dkδ (x)(φ) = Dkφ(x)

for k = 1,2,3. Thus ‖Dkδ (x)‖ ≤ (1+ ‖x‖V )βk for all k = 0,1,2,3. Then the (global) existence

and uniqueness of equation (3.3.1) can be derived by the theory of linear rough paths (c.f. Lejay

[60]). For other conditions that implies global existence, we refer the reader to the papers of Lejay

[60, 61]. We did not consider Lejay’s condition for global existence in Section 3.3, because we

doubt whether it is applicable in our setting. Under the basic assumptions in Section 3.3, there may

not exists W such that W= D (2)W . In this case, the result of linear rough path cannot be directly

applied without any changes.

3.5 Some applications of nonlinear rough paths

3.5.1 An Itô-type formula for controlled rough paths

In this section, we follow the idea of Section 3.4 to consider the nonlinear rough path as a C βββ n(V ;V )-

valued rough path. Then, we aim to generalize the Itô-type formula (3.12) in Hu & Lê [42] proved

in the nonlinear Young’s case.
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Theorem 3.5.1. Let W = (W,W ) ∈ C α([0,T ];C βββ 3(V ;V )). Assume that (Y,Y ′) ∈ D2α
W (V ) and

(Z,Z′) ∈D2α
W (L (V ;K)). Then, the following Itô-type formula holds

ˆ t

s
ZrdW (r,Yr) =

ˆ t

s
ZrW (dr,Yr)+

ˆ t

s
ZrDW (r,Yr)dYr

+
1
2

[ˆ t

s
ZrD2W (r,Yr)d〈Y 〉r +

ˆ t

s
Zrd⟪X ,Y⟫r +

ˆ t

s
Zrd⟪Y,X⟫r

]
, (3.5.1)

where

Xt :=
ˆ t

0
DW (dr,Yr) = lim

|π|→0

[
DWtk−1,tk(Ytk−1)+(D (2))2Y ′tk−1

Wtk−1,tk
]
, (3.5.2)

(D (2))2Y ′t (φ1,φ2) := D2
φ2(Y ′t φ1) ∈L (V ;V ).

The first three integrals in (3.5.1) are rough integrals in the sense of Proposition 3.1.7 (ii), while the

last three integrals on the second line are Young’s integral. In the above expressions, 〈Y 〉, ⟪X ,Y⟫
and ⟪Y,X⟫ are 2α-continuous functions defined in Definition 3.1.9 and Remark 3.1.10.

Formula (3.5.1) provides the total differential dW (t,Yt) of W (t,Yt), that means, heuristically,

dW (t,Yt) =
d
dtW (t,Yt)dt. Comparing with the classical Itô lemma, the function W in Theorem

3.5.1 is not differentiable, but only α-Hölder continuous in time. In this case, the assumption that

Y is controlled by W ensures that W (dt,Yt) is well-defined as the differential of the rough path

Gt =
´ t

0 W (dr,Yr) controlled by W .

In order to prove Theorem 3.5.1, we should make each integral in (3.5.1) to be well-defined.

The first lemma below shows that Ft =W (t,Yt) is controlled by W .

Lemma 3.5.2. Let W ∈ C α([0,T ];C βββ 2(V ;V )), and let (Y,Y ′) ∈ D2α
W (V ). Denote Ft = W (t,Yt).

Then, F ∈D2α
W (V ).

139



Proof. By Taylor’s Theorem 3.1.11 and the fact that (Y,Y ′) ∈D2α
W (V ), we get

Fs,t =Ft−Fs =Ws,t(Ys)+ [Ws,t(Yt)−Ws,t(Ys)]+Ws(Yt)−Ws(Ys)

=ŶsWs,t +DWs(Ys)[Y ′sWs,t +RY
s,t ]+O(‖Ys,t‖2

V |).

This yields that (F,F ′) ∈D2α
W (V ), where F ′ := Ŷ +DW (Y )Y ′ ∈L (C βββ 2;V ).

Suppose that W = (W,W ) ∈ C α([0,T ];C βββ 3(V ;V )). As a consequence of Lemma 3.5.2, the

integral
´ t

s ZrdW (r,Yr) =
´ t

s ZrdFr is well-defined as the integral of two controlled rough paths in

the sense of (3.1.12). Additionally, by Taylor’s Theorem 3.1.11, we can approximate this integral

in the following way:

ˆ t

s
ZrdW (r,Yr) = ZsFs,t +Z′sF

′
s Ws,t +O(|t− s|3α)

=ZsWs,t(Ys)+ZsDWs,t(Ys)Ys,t +ZsDWs(Ys)Ys,t +
1
2

ZsD2Ws(Ys)(Ys,t ,Ys,t)

+Z′sŶsWs,t +Z′sDW (s,Ys)Y ′s Ws,t +O(|t− s|3α), (3.5.3)

where

Z′sŶs(φ1,φ2) = Z′s(φ1)[φ2(Ys)],

and

Z′sDW (s,Ys)Y ′s (φ1,φ2) = Z′s(φ1)[DW (s,Ys)(Y ′s (φ2))],

for all (φ1,φ2) ∈ C βββ 3(V ;V )2.

The next lemma provides a generalized version of Theorem 3.2.10. The proof is similar and

we omit it.

Lemma 3.5.3. Let (W,W )∈C α([0,T ];C βββ 2(V ;V )), and let (Y,Y ′)∈D2α
W (V ). Then, the following
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limit exists and defines an additive function:

ˆ t

s
W (dr,Yr) := lim

|π|→0

n

∑
k=1

[
Wtk−1,tk(Ys)+Y ′tk−1

Ŷtk−1D
(2)Wtk−1,tk

]
,

where Y ′t ŶtD (2)(φ1,φ2) := Dφ2(Yt)[Y ′t (φ1)] for any (φ1,φ2) ∈ C βββ 2(V ;V ).

For all t ∈ [0,T ], let Gt :=
´ t

0 W (dr,Yr). Then, a similar argument as in Proposition 3.2.12 im-

plies that (G,Y ) ∈ E 2α
W or equivalently (G,Ŷ ) ∈D2α

W (V ). Therefore, the integral
´ t

s ZrW (dr,Yr) =´ t
s ZrdGr, defined as in (3.1.12), can be approximated in the following way,

ˆ t

s
ZrW (dr,Yr) =ZsGs,t +Z′sŶsWs,t +O(|t− s|3α)

=ZsWs,t(Ys)+ZsY ′sŶsD
(2)Ws,t +Z′sŶsWs,t +O(|t− s|3α). (3.5.4)

Assume that (W,W ) ∈ C α([0,T ];C βββ 3(V ;V )). Let Ht = ZtDW (t,Yt) ∈ L (V ;V ) for all t ∈

[0,T ]. By a similar argument as in Lemma 3.5.2, we can show that

Hs,t = Z′sWs,tDW (s,Ys)+ZsŶsDWs,t +ZsD2W (s,Ys)Y ′sWs,t +O(|t− s|2α).

In other words, H is controlled by W . This allows us to define
´ t

s ZrDW (r,Yr)dYr =
´ t

s HrdYr by

(3.1.12). In addition, we can approximate this integral as follows,

ˆ t

s
ZrDW (r,Yr)dYr =ZsDW (s,Ys)Ys,t +Z′sDW (s,Ys)Y ′s Ws,t (3.5.5)

+ZsŶsD
(1)Y ′s Ws,t +ZsD2W (s,Ys)Y ′sY ′s Ws,t +O(|t− s|3α),

where D (1) is defined as in (3.4.2),

Z′sDW (s,Ys)Y ′s (φ1,φ2) = Z′s(φ1)[DW (s,Ys)(Y ′s (φ2))],
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ZsŶsD
(1)Y ′s (φ1,φ2) = Zs[Dφ1(Ys)Y ′s (φ2)],

and

ZsD2W (s,Ys)Y ′sY ′s (φ1,φ2) = Zs[D2W (s,Ys)(Y ′s (φ1),Y ′s (φ2))],

for all (φ1,φ2) ∈ C βββ 3(V ;V ).

By a similar argument as in Theorem 3.2.10 and the Sewing Lemma, we can show that the

limit in (3.5.2) uniquely exists. It allows us to define Xt to be the limit. In addition, we can

verify that X ∈ D2α
W (L (V ;V )). Thus the three quadratic compensator terms on the second line

of (3.5.1) are all well-defined, and according to Remark 3.1.10 (iii), 〈Y 〉 ∈ C 2α
2 ([0,T ];V ⊗V )

and ⟪X ,Y⟫,⟪Y,X⟫ ∈ C 2α
2 ([0,T ];V ). Therefore, the integrals on the second line of (3.5.1) can be

interpreted as Young’s integrals. We can approximate them as follows:

ˆ t

s
Zr⟪X ,Y⟫r = ZsDWs,t(Ys)Ys,t−2ZsŶsD

(1)Y ′s Ws,t +O(|t− s|3α), (3.5.6)

ˆ t

s
Zr⟪Y,X⟫r = ZsDWs,t(Ys)Ys,t−2ZsY ′sŶsD

(2)Ws,t +O(|t− s|3α), (3.5.7)

and

ˆ t

s
ZrD2W (r,Yr)d〈Y 〉r = ZsD2W (s,Ys)+O(|t− s|3α).

Notice that, by definition,

〈Y 〉s,t =Ys,t⊗Ys,t−2Ys,t = Ys,t⊗Ys,t−2
(ˆ t

s
Yr⊗dYr−Ys⊗Ys,t

)
=Ys,t⊗Ys,t−2

(
Ys⊗Ys,t +Y ′sY ′s Ws,t−Ys⊗Ys,t

)
+O(|t− s|3α).
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This allows us to write

ˆ t

s
Zr = ZsD2W (s,Ys)

[
Ys,t⊗Ys,t−2Y ′sY ′s Ws,t

]
+O(|t− s|3α) (3.5.8)

As we approximated all the integrals in (3.5.1), the proof of Theorem 3.5.1 is straightforward.

Proof of Theorem 3.5.1. Denote by LHS and RHS the left and right-hand side of equation (3.5.1)

respectively. Recall equality (3.5.3), that is,

LHS =ZsWs,t(Ys)+ZsDWs,t(Ys)Ys,t +ZsDWs(Ys)Ys,t +
1
2

ZsD2Ws(Ys)(Ys,t ,Ys,t)

+Z′sŶsWs,t +ZsDWs(Ys)Y ′s Ws,t +O(|t− s|3α).

On the other hand, combining (3.5.4) - (3.5.8), we have

RHS =ZsWs,t(Ys)+ZsDWs,t(Ys)Ys,t +ZsDWs(Ys)Ys,t +
1
2

ZsD2Ws(Ys)(Ys,t ,Ys,t)

+Z′sŶsWs,t +ZsDWs(Ys)Y ′s Ws,t +O(|t− s|3α),

as well. Since α ∈ (1
3 ,

1
2 ], it follows that equality (3.5.1) holds for all 0≤ s≤ t ≤ T .

3.5.2 RDEs with spatial parameters

Let (W,W ) ∈ C α([0,T ];C βββ 3(Rd;Rd)), and let W be given by (3.4.1). Assume Hypothesis (H).

Then, due to Theorem 3.3.4, for any fixed x ∈ Rd , the following equation

Yt(x) = x+
ˆ t

0
W (dr,Yr(x)), (3.5.9)

has a unique solution Y (x) on [0,T ]. In this section, by studying the gradient in x of Yt(x), we will

show that Yt(x) is invertible in x, and the inverse is controlled by W as well.

In the next theorem, we follow the idea of Hu & Lê [42] to show that Yt(x) is differentiable

in x. Before presenting the theorem, we introduce some notations. Let M be a d× d matrix. We
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define the operators ML,MM : (Rd⊗Rd)⊗2→ Rd⊗Rd as follows, for any (A,B) ∈ (Rd⊗Rd)2,

ML(A⊗B) = M ·A ·B and MM(A⊗B) = A ·MM ·B. (3.5.10)

For any d×d matrices M1,M2, we define the operator {M1,M2} : Rd⊗Rd → R by

{M1,M2}A = ∑
k1,k2,k3

Mk1k2
1 Mk1k3

2 Ak2k3 for all A ∈ Rd⊗Rd. (3.5.11)

These operators appear when we approximate matrix-valued rough integrals.

Theorem 3.5.4. Let (W,W )∈C α([0,T ];C βββ 3(Rd;Rd)). Assume Hypothesis (H). Let Y = {Yt(x), t ∈

[0,T ],x ∈Rd} be the unique solution to (3.5.9). Then for any t ∈ [0,T ], Yt is differentiable, and the

gradient DYt satisfies the following equation:

DYt(x) = I +
ˆ t

0
dFr(x)DYr(x), (3.5.12)

where I denotes the d×d identity matrix and F(x) is a d×d matrix-valued function given by

Ft(x) :=
ˆ t

0
DW (dr,Yr(x))

that is defined in the sense of (3.5.2). Moreover, for every t ∈ [0,T ] and x∈Rd , DYt(x) is invertible,

and its inverse (DYt(x))−1 =: Mt(x) satisfies the following equation:

Mt(x) = I−
ˆ t

0
Mr(x)dFr(x)+

ˆ t

0
[Mr(x)]Ld〈F(x)〉r. (3.5.13)

where 〈F(x)〉r is the quadratic compensator of F(x), which is an (Rd⊗Rd)⊗2-valued 2α-Hölder

continuous function on [0, t], and [Mr(x)]L : (Rd⊗Rd)⊗2→ Rd⊗Rd is defined as in (3.5.10).

Proof. Fix x ∈ Rd . Let e be a unit vector in Rd . For any h ∈ (0,1), we write

η
h
t :=

1
h
[Yt(x+he)−Yt(x)].
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We claim that as h ↓ 0, ηh
t converges to the solution to the following equation

ηt = e+
ˆ t

0
dFr(x)ηr = e+

ˆ t

0
DW (dr,Yr(x))ηr. (3.5.14)

Firstly, we show that (3.5.14) has a unique solution. Notice that F(x) is defined as a nonlinear

rough integral. Then, by Proposition 3.2.12, F(x) is controlled by DW and thus by W . That is,

Fs,t(x) = DWs,t(Ys(x))+O(|t− s|2α) := (Ŷs(x)D)Ws,t +O(|t− s|2α),

where Ŷ·(x)D is considered as an α-Hölder continuous function on [0,T ] that takes values in

L (C βββ 3(Rd;Rd);L (Rd;Rd)). Here Ŷ is defined in (3.4.3). We can also directly define the opera-

tor Ŷs(x)D by the former expression. DWs,t(Ys(x)) is just an approximation of the integral without

the double integral term, thus the error is O(|t− s|2α). By Proposition 3.1.7 (ii), F(x) can be inter-

preted as a linear rough path. Thus, equation (3.5.14) is a linear RDE. According to the theory of

linear RDE (c.f. Theorem 2 of Lejay [60]), this equation has a unique solution.

On the other hand, by Corollary 3.3.8, ‖ηh‖α is uniformly bounded in h ∈ (0,1). As a conse-

quence of the Arzelà-Ascoli theorem, there exists a sequence {hn}n≥1, such that, as n→∞, hn ↓ 0,

and η
hn
t converges to some function ηt in C α ′([0,T ];Rd) for any fixed α ′ ∈ (0,α). In addition, by

the Sewing Lemma, ηhn satisfies the following estimate

η
hn
s,t = DWs,t(Ys(x))ηhn

s +DWs,t(Ys(x),Ys(x))(ηhn
s ,ηhn

s )+O(|t− s|3α)+O(hn), (3.5.15)

for all 0≤ s < t ≤ T . Let n→ ∞. The estimate (3.5.15) implies that ηt satisfies the RDE (3.5.14).

Therefore, DYt(x) exists and is the unique solution to (3.5.12).

To prove the invertibility of DYt(x), we follow Stroock’s idea (see Chapter 8 of Stroock [76]).

Let Mt(x) be the unique solution to the linear RDE (3.5.13). By (3.1.16) and Itô’s formula for linear
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rough paths (c.f. Theorem 3.4 of Keller & Zhang [53]), we can deduce the following equation:

DYt(x)Mt(x) =I +
ˆ t

0
dFr(x)DYr(x)Mr(x)−

ˆ t

0
DYr(x)Mr(x)dFr(x)

+

ˆ t

0
[DYr(x)Mr(x)]Ld〈F(x)〉r−

ˆ t

0
[DYr(x)Mr(x)]Md〈F(x)〉r,

where [DYr(x)Mr(x)]M is a linear operator on (Rd ⊗Rd)⊗2 defined as in (3.5.10). Notice that

DYt(x)Mt(x) ≡ I solves this equation. Thus the uniqueness of linear RDEs implies that Mt =

(DYt)
−1.

Remark 3.5.5. By taking further spatial derivatives on both sides of (3.5.12) and (3.5.13), we can

show that DYt and Mt are both twice spatial differentiable with locally bounded derivatives. On

the other hand, since Theorem 3.5.4 shows that DYt(x) is invertible in x for all (t,x) ∈ [0,T ]×Rd ,

by the implicit function theorem, we deduce that for any fixed t ∈ [0,T ], Yt has an inverse Zt such

that Zt(Yt(x)) = Yt(Zt(x)) = x.

In the next lemma, we prove that fix x ∈ Rd , Z(x) is controlled by W .

Lemma 3.5.6. Let Y (x) = {Yt(x), t ∈ [0,T ]} be the solution to the RDE (3.5.9), and let Zt = Y−1
t

be the inverse of Yt . Fix x ∈ Rd . Then Z(x) is controlled by W.

Proof. Recall that for any t ∈ [0,T ], Zt is the inverse of Yt and DYtMt = I. Therefore, we can

deduce that

I = Dx = DYt(Zt(x)) = DYt(Zt(x))DZt(x).

This yields that

DZt(x) = Mt(Zt(x)). (3.5.16)

Fix (t,x) ∈ (0,T ]×Rd . Let y = Zt(x). Then x = Yt(y). Notice that a similar argument as in

Theorem 3.5.4 implies that Mt(x) is differentiable in x and the derivative is locally bounded. Thus
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by Taylor’s Theorem 3.1.11, the following equality holds for all s ∈ [0, t)

Zs,t(x) =Zs(Ys(y))−Zs(Yt(y))

=−DZs(Ys(y))Ys,t(y)+O(|t− s|2α)

=−Ms(Zs(x))Ys,t(Zs(x))+O(|t− s|2α).

On the other hand, by Proposition 3.2.12, we have

Ys,t(x) =Ws,t(Ys(x))+O(|t− s|2).

Combining above two inequalities, we can write

Zs,t(x) =−Ms(Zs(x))Ws,t(x)+O(|t− s|2α). (3.5.17)

Let Z′(x) = {Z′t(x), t ∈ [0,T ]} where Z′t(x) : C βββ 3(Rd;Rd)→ Rd is given by

Z′t(x)Φ :=−Mt(Zt(x))Φ(x).

Then it is easy to check that Z′s(x) ∈L (C βββ 3(Rd;Rd);Rd), and thus (Z(x),Z′(x)) ∈D2α
W (Rd).

Remark 3.5.7. (i) One may find that Z′t(x) = −DZt(x). But they are totally different objects.

Z′t(x) is the Gubinelli derivative that represents the proportional changing rate to W of Zt(x)

with respect to the time argument, while DZt(x) is the spatial derivative of Zt for fixed t.

(ii) By taking derivative on both sides of (3.5.16), we have

D2Zt(x) = DMt(Zt(x))Mt(Zt(x)).
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Recall that Y is the solution to RDE (3.5.9), thus

Ys,t(x) =Ws,t(Ys(x))+Ws,t(Ys(x),Ys(x))+O(|t− s|3α).

This allow us to deduce an estimate, which is more precise than (3.5.17) and will be used in

Section 3.5.3 below. We start with the following equation

Zs,t(x) =−Ms(Zt(x))Ys,t(Zt(x))−
1
2

DMs(Zt(x))Ms(Zt(x))Ys,t(Zt(x))⊗2

+O(|t− s|3α)

=−Ms(Zt(x))Ws,t(Ys(Zt(x)))−Ms(Zt(x))Ws,t(Ys(Zt(x)),Ys(Zt(x)))

− 1
2

DMs(Zt(x))Ms(Zt(x))Ys,t(Zt(x))⊗2 +O(|t− s|3α). (3.5.18)

Notice that

Ms(Zt(x))Ws,t(Ys(Zt(x)),Ys(Zt(x)))−Ms(Zs(x))Ws,t(x,x) = O(|t− s|3α) (3.5.19)

and

Ms(Zt(x))Ws,t(Ys(Zt(x)))−Ms(Zs(x))Ws,t(Ys(Zs(x)))

=DMs(Zs(x))Zs,t(x)Ws,t(Ys(Zt(x))) (3.5.20)

+Ms(Zs(x))DWs,t(Ys(Zs(x)))DYs(Zs(x))Zs,t(x)+O(|t− s|2α)

=−DMs(Zs(x))Ms(Zs(x))Ws,t(x)⊗2

−Ms(Zs(x))DWs,t(x)DYs(Zs(x))Ms(Zs(x))Ws,t(x)+O(|t− s|2α), (3.5.21)

148



where for all i = 1,2, . . . ,d,

[
DMs(Zs(x))Ms(Zs(x))Ws,t(x)⊗2]i

=
d

∑
k1,k2,k3=1

∂Mik2(x)
∂xk1

(Zs(x))Mk1k3
s (Zs(x))W

k2
s,t (x)W

k3
s,t .

Therefore, combining formulas (3.5.18) - (3.5.20), we have

Zs,t(x) =
1
2

DMs(Zs(x))Ms(Zs(x))Ws,t(x)⊗2 +Ms(Zs(x))DWs,t(x)Ws,t(x)

−Ms(Zs(x))Ws,t(x)−Ms(Zs(x))Ws,t(x,x)+O(|t− s|3α). (3.5.22)

3.5.3 Rough partial differential equations

Let C 3
loc(R

d;R) be the space of functions that are locally bounded and have locally bounded first,

second and third derivatives. Suppose that h ∈ C 3
loc(R

d;R). In this section, we will show that

u = {u(t,x) = h(Zt(x)),(t,x) ∈ [0,T ]×Rd}, where Zt(x) is defined in Section 3.5.1, is a solution

to equation (1.2.7). Moreover, the solution is unique if h ∈ C 4
loc(R

d;R)).

Definition 3.5.8. Let (W,W ) ∈ C α([0,T ];C βββ 3(Rd;Rd)), let W : [0,T ]2× (Rd)2 → Rd be given

by (3.4.1), and let h be a real-valued function on Rd . A function u = {u(t,x),(t,x) ∈ [0,T ]×Rd}

is called a solution to equation (1.2.7) with initial condition h, if the following properties are

satisfied:

(i) u(0,x) = h(x) for all x ∈ Rd .

(ii) u is twice spatially differentiable everywhere, and Du(·,x) is controlled by W for all x ∈ Rd .

(iii) The following equality is true for all (t,x) ∈ [0,T ]×Rd

u(t,x) =h(x)−
ˆ t

0
Du(r,x)W (dr,x)+

1
2

ˆ t

0
Du(r,x)d⟪DW (x),W (x)⟫r

+
1
2

ˆ t

0
Du(r,x)d⟪W (x),DW (x)⟫r +

1
2

ˆ t

0
D2u(r,x)d〈W (x)〉r, (3.5.23)
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where the first integral is defined as follows,

ˆ t

0
Du(r,x)W (dr,x) :=

ˆ t

0
Du(r,x)dWr(ξ )

∣∣∣
ξ=x

,

the quadratic compensators

⟪DW (x),W (x)⟫s,t := ⟪DW,W⟫s,t(ξ1,ξ2)
∣∣
(ξ1,ξ2)=(x,x),

⟪W (x),DW (x)⟫s,t := ⟪W,DW⟫s,t(ξ1,ξ2)
∣∣
(ξ1,ξ2)=(x,x),

and

〈W (x)〉s,t := 〈W 〉s,t(ξ1,ξ2)
∣∣
(ξ1,ξ2)=(x,x)

are defined by (3.1.15), (3.1.17) and (3.1.18) respectively, D2u(r,x) is considered as a linear

operator from Rd⊗Rd → R, that is

D2u(t,x)M =
d

∑
i, j=1

∂ 2u(t,x)
∂xi∂x j

Mi j,

for any d×d matrix M = (Mi j)d
i, j=1, and the last three integrals are in Young’s sense.

In the next theorem, we will show that h(Zt), where Zt is defined as in Lemma 3.5.6, is a

solution to equation (1.2.7).

Theorem 3.5.9. Let (W,W ) ∈ C α([0,T ];C βββ 3(Rd;Rd)), and let W be given by (3.4.1). Assume

Hypothesis (H). Let Y be the solution to the equation (3.5.9), and let Zt = Y−1
t for all t ∈ [0,T ].

Suppose that h ∈ C 3
loc(R

d;R). Then, u(t,x) = h(Zt(x)) is a solution to (1.2.7) in the sense of

Definition 3.5.8.

Proof. We prove this theorem by checking every property in Definition 3.5.8. By assumption, we

know that u(0,x) = h(Z0(x)) = h(x). In addition, since h ∈ C 3
loc(R

d;R) and Zt(x) is twice spatial
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differentiable, we can show that

D[h(Zt(x))] = (Dh)(Zt(x))Mt(Zt(x)) (3.5.24)

and

D2[h(Zt(x))] = (D2h)(Zt(x))Mt(Zt(x))2 +(Dh)(Zt(x))DMt(Zt(x)),

where (Dh)(Zt(x))DMt(x) is a d×d matrix with components

[(Dh)(Zt(x))DMt(Zt(x))]i j =
d

∑
k=1

∂

∂xk
h(Zt(x))

∂

∂x j
Mki(Zt(x)).

Recall that Mt(x) is the solution to the linear RDE (3.5.13). Then we can write

Ms,t(x) =−Ms(x)Fs,t(x)+O(|t− s|2α) =−Ms(x)DWs,t(Ys(x))+O(|t− s|2α).

Combining this fact with (3.5.17), we can deduce that

Mt(Zt(x))−Ms(Zs(x)) = Mt(Zt(x))−Ms(Zt(x))+Ms(Zt(x))−Ms(Zs(x)) (3.5.25)

=Ms,t(Zt(x))−DMs(Zs(x))Zs,t(x)+O(|t− s|2α)

=Ms,t(Zs(x))+ [Ms,t(Zt(x))−Ms,t(Zs(x))]

−DMs(Zs(x))Ms(Zs(x))Ws,t(x)+O(|t− s|2α)

=−Ms(Zs(x))DWs,t(x)−DMs(Zs(x))Ms(Zs(x))Ws,t(x)+O(|t− s|2α).

Let M′t (Zt(x)) : C βββ 3(Rd;Rd)→ Rd⊗Rd be given by

M′t (Zt(x))Φ :=−Mt(Zt(x))DΦ(x)−DMt(Zt(x))Mt(Zt(x))Φ(x), (3.5.26)

151



where

[DMt(Zt(x))Mt(Zt(x))Φ(x)]i j = ∑
k1,k2

∂

∂xk1

Mi j
t (Zt(x))M

k1k2
t (Zt(x))Φk2(x)

for any (t,x) ∈ [0,T ]×Rd . We can show that

M′(Z(x)) ∈ C α([0,T ];L (C βββ 3(Rd;Rd);Rd⊗Rd)). (3.5.27)

Thus formulas (3.5.25) - (3.5.27) imply that

(M(Z(x)),M′(Z(x))) ∈D2α
W (L (C βββ 3(Rd;Rd);Rd⊗Rd)).

In a similar way, recalling (3.5.24) and (3.5.25), we can also deduce that

D[h(Zt(x))]−D[h(Zs(x))] = (Dh)(Zt(x))Mt(Zt(x))− (Dh)(Zs(x))Mt(Zs(x))

=(Dh)(Zt(x))[Mt(Zt(x))−Ms(Zs(x))]+ [(Dh)(Zt(x))−Dh(Zs(x))]Ms(Zs(x))

=(Dh)(Zs(x))
[
−Ms(Zs(x))DWs,t(x)−DMs(Zs(x))Ms(Zs(x))Ws,t(x)

]
−D2h(Zs(x))Ms(Zs(x))Ws,t(x)Ms(Zs(x))+O(|t− s|2α).

As a consequence, D(h(Z(x))) ∈D2α
W (Rd) where the Gubinelli derivative

[Dh(Z(x))]′ : C βββ 3(Rd;Rd)→ Rd

is given by

[D(h(Z(x)))]′Φ =− (Dh)(Zt(x))DMt(Zt(x))Mt(Zt(x))Φ(x)

− (Dh)(Zt(x))Mt(Zt(x))DΦ(x)

− (D2h)(Zt(x))Mt(Zt(x))Φ(x)Mt(Zt(x)) (3.5.28)

As a consequence, properties (i) and (ii) of Definition 3.5.8 are satisfied.
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In the next step, we will prove equality (3.5.23) by a similar argument as in Theorem 3.5.1. For

any 0≤ s≤ t ≤ T , as a consequence of Taylor’s Theorem 3.1.11, we can write

h(Zt(x))−h(Zs(x)) =(Dh)(Zs(x))Zs,t(x)+
1
2
(D2h)(Zs(x))Zs,t(x)⊗2 +O(|t− s|3α)

:=I1 + I2 +O(|t− s|3α). (3.5.29)

By (3.5.22), we have

I1 =− (Dh)(Zs(x))Ms(Zs(x))Ws,t(x)− (Dh)(Zs(x))Ms(Zs(x))W(x,x) (3.5.30)

+
1
2
(Dh)(Zs(x))DMs(Zs(x))Ms(Zs(x))Ws,t(x)⊗2

+(Dh)(Zs(x))Ms(Zs(x))DWs,t(x)Ws,t(x)+O(|t− s|3α),

and

I2 =
1
2
[
(D2h)(Zs(x))Ms(Zs(x))Ws,t(x)

]
·
[
Ms(Zs(x))Ws,t(x)

]
+O(|t− s|3α), (3.5.31)

where

(Dh)(Zs(x))DMs(Zs(x))Ms(Zs(x))Ws,t(x)⊗2

=
d

∑
k1,...,k4=1

∂h
∂xk1

(Zs(x))
∂Mk1k2

s

∂k3
(Zs(x))Mk3k4

s (Zs(x))W
k2
s,t (x)W

k4
s,t (x).

Recall that D[h(Z(x))] is controlled by W with Gubinelli derivative given by (3.5.28). Due to

Theorem 3.1.4, the integral
´ t

s D[h(Zr(x))]W (dr,x) is well-defined and it can be approximated as
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follows

ˆ t

s
D[h(Zr(x))]W (dr,x) = (Dh)(Zs(x))Ms(Zs(x))Ws,t(x)

−
{
(D2h)(Zs(x))Ms(Zs(x)),Ms(Zs(x))

}
Ws,t(x,x)

− (Dh)(Zs(x))Ms(Zs(x))W∗s,t(x,x)

− (Dh)(Zs(x))DMs(Zs(x))Ms(Zs(x))Ws,t(x,x)+O(|t− s|3α), (3.5.32)

where
{
(D2h)(Zs(x))Ms(Zs(x)),Ms(Zs(x))

}
is defined as in (3.5.11),

W∗s,t(x,x) =
ˆ t

s
DWs,r(x)W (dr,x) = D (1)Ws,t(x,x)

and

(Dh)(Zs(x))DMs(Zs(x))Ms(Zs(x))Ws,t(x,x)

=
d

∑
k1,...,k4=1

∂h
∂xk1

(Zs(x))
∂Mk1k3

s

∂xk2

(Zs(x))Mk2k4
s (Zs(x))W

k3k4
s,t (x,x)

Taking into account Definition 3.1.9 and Remark 3.1.10, we can write

〈W (x)〉s,t =Ws,t(x)⊗Ws,t(x)−2Ws,t(x,x),

⟪DW (x),W (x)⟫s,t = DWs,t(x)Ws,t(x)−2W∗s,t(x,x)

and

⟪W (x),DW (x)⟫s,t = DWs,t(x)Ws,t(x)−2Ws,t(x,x).
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Therefore, combining (3.5.29) - (3.5.32), we have

h(Zt(x))−h(Zs(x))+
ˆ t

s
D[h(Zr(x))]W (dr,x)

=
1
2
(Dh)(Zs(x))Ms(Zs(x))

[⟪DW (x),W (x)⟫s,t +⟪W (x),DW (x)⟫s,t
]

+
1
2
{
(D2h)(Zs(x))Ms(Zs(x)),Ms(Zs(x))

}
〈W (x)〉s,t

+
1
2
(Dh)(Zs(x))DMs(Zs(x))Ms(Zs(x))〈W (x)〉s,t +O(|t− s|3α).

On the other hand, by the theory of Young’s integral, we can show that

ˆ t

0
D[h(Zr(x))]d⟪DW (x),W (x)⟫r +

ˆ t

0
D[h(Zr(x))]d⟪W (x),DW (x)⟫r

+

ˆ t

0
D2[h(Zr(x))]d〈W (x)〉r

=(Dh)(Zs(x))Ms(Zs(x))
[⟪DW (x),W (x)⟫s,t +⟪W (x),DW (x)⟫s,t

]
+
{
(D2h)(Zs(x))Ms(Zs(x)),Ms(Zs(x))

}
〈W (x)〉s,t

+(Dh)(Zs(x))DMs(Zs(x))Ms(Zs(x))〈W (x)〉s,t +O(|t− s|3α).

It follows that (3.5.23) holds if u(t,x) = h(Zt(x)) for all (t,x) ∈ [0,T ]×Rd .

Remark 3.5.10. The formulation of equation (1.2.7) looks odd. We will provide a Brownian ex-

ample to this equation in Section 3.6.2, and will see that it is an application of Itô’s formula.

In the next theorem, we will show that the solution is unique in the space C α,3
loc ([0,T ]×Rd)

provided that (W,W ) ∈ C α([0,T ];C βββ 4(Rd;Rd)) and h ∈ C 4
loc(R

d;R).

Theorem 3.5.11. Let (W,W ) ∈ C α([0,T ];C βββ 3(Rd;Rd)), and let W be given by (3.4.1). Assume

Hypothesis (H). Let h ∈ C 4
loc(R

d;R). The solution to the RPDE (1.2.7) exists and is unique in the

space C α,3
loc ([0,T ]×Rd;R).

Proof. Firstly, we show the existence of the equation (1.2.7) in the space C α,3
loc ([0,T ]×Rd;R).

Due to Theorem 3.5.9, it suffice to show that h(Z) ∈ C α,3
loc ([0,T ]×Rd;R).
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Notice that DZt(x) = Mt(Zt(x)), D2Zt(x) = DMt(Zt(x))Mt(Zt(x)), and

D3Zt(Zt(x)) =D2Mt(Zt(x))Mt(Zt(x))Mt(Zt(x))

+DMt(Zt(x))DMt(Zt(x))Mt(Zt(x))

for all (t,x) ∈ [0,T ]×Rd . Fix x ∈ Rd , the functions Mt(x), DMt(x), D2Mt(x) and D3Mt(x) are

all solutions to corresponding linear RDEs driven by α-Hölder linear rough paths. Thus Mt(x),

DMt(x), D2Mt(x) and D3MT (x) are all α-Hölder in time and locally bounded in space. Recall

that h ∈ C 4
loc(R

d;R). As a consequence h(Zt(x)), D[h(Zt(x))], D2[h(Zt(x))] and D3[h(Zt(x))] are

all α-Hölder in time and locally bounded in space. In other words, we can conclude that h(Z) ∈

C α,3
loc ([0,T ]×Rd;R).

In the next step, we will prove the uniqueness of RPDE (1.2.7). Suppose that u ∈ C α,3([0,T ]×

Rd;R) is a solution to (1.2.7). Let Y be the solution to RDE (3.5.9). Then, by Taylor’s Theorem

3.1.11, we can write

u(t,Yt(x))−u(s,Ys(x)) =us,t(Ys(x))+Dus,t(Ys(x))Ys,t +Dus(Ys(x))Ys,t(x)

+
1
2

D2us(Ys(x))Ys,t(x)⊗2 +O(|t− s|3α). (3.5.33)

Notice that as a solution to (1.2.7), u satisfies the following equality for all x ∈ Rd ,

us,t(x) =−Dus(x)Ws,t(x)+O(|t− s|2α).

It follows that fix x ∈ Rd , u(x) is controlled by W (x). As a consequence, Du(x) is also controlled
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by W (x) with the Gubinelli derivative −D2us(x). Therefore, the following estimate holds

us,t(Ys(x)) =−Du(s,Ys(x))Ws,t(Ys(x))+D2u(s,Ys(x))Ws,t(Ys(x),Ys(x))

+
1
2

Du(s,x)
[⟪DW (Ys(x)),W (Ys(x))⟫s,t +⟪W (Ys(x)),DW (Ys(x))⟫s,t

]
+

1
2

D2u(s,x)〈DW (Ys(x))〉s,t +O(|t− s|3α). (3.5.34)

In addition, recall that Y is the solution to (3.5.9). Then, (3.5.34) implies that

Dus,t(Ys(x))Ys,t(x) =−D2u(s,Ys(x))Ws,t(Ys(x))Ws,t(Ys(x))

−Du(s,Ys(x))DWs,t(Ys(x))Ws,t(Ys(x))+O(|t− s|3α). (3.5.35)

Also, we have the following estimates

Dus(Ys(x))Ys,t(x) =Dus(Ys(x))Ws,t(Ys(x))

+Dus(Ys(x))Ws,t(Ys(x),Ys(x))+O(|t− s|3α), (3.5.36)

and

D2us(Ys(x))Ys,t(x)⊗2 = D2us(Ys(x))Ws,t(Ys(x))⊗2 +O(|t− s|3α). (3.5.37)

Combining (3.5.33) - (3.5.37), we have

u(t,Yt(x))−u(s,Ys(x)) = O(|t− s|3α).

Because α ∈ (1
3 ,

1
2 ], it follows that u(t,Yt(x)) ≡ u(0,Y0(x)) = h(x). In other words, u(t,x) =

u(t,Yt(Zt(x))) = h(Zt(x)) for all (t,x) ∈ [0,T ]×Rd . This completes the proof of the theorem.
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3.6 Examples

In this section, we provide some examples for nonlinear rough paths and transport equation with

compensators. More precisely, in section 3.6.1, we construct a nonlinear rough path as the compo-

sition of a smooth function and a linear rough path. Then, we prove the double integral term of the

nonlinear rough path can be represented as the rough integral in the sense of the classical theory

of linear rough paths by using Itô’s formula. In Section 3.6.2, we give an example for the transport

equation in the Brownian case, and show that the equation is just an application of Itô’s formula.

3.6.1 Nonlinear rough paths as compositions of linear rough paths

In this section, we consider a special class of nonlinear rough paths that are constructed by com-

positions of some nonlinear functions and linear rough paths.

Definition 3.6.1. Let m be a positive integer. The space C m,βββ n
loc (V 2;V ) is the collection of function

f : V 2 → V that is m times differentiable in the first argument with locally bounded derivatives

and n times differentiable in the second argument with the growth given by βββ n. That is, for any

compact set K ⊂V

‖ f‖K,m,βββ n :=
m

∑
j=0

n

∑
k=0

sup
x∈K
y∈V

‖Dk
2D j

1 f (x,y)‖Bk+ j

(1+‖y‖V )βk
< ∞ (3.6.1)

where D1 and D2 are the partial derivatives of the first and second argument, respectively, and

Bk+ j is the corresponding linear space of derivatives.

Let f ∈ C m,βββ n
loc (V 2;V ), and let X = (X ,X) ∈ C α([0,T ];V ) be a V -valued linear rough path. We

aim to interpret W (t,x) = f (Xt ,x) as a nonlinear rough path with suitable parameters m,n∈N. Due

to Definition 3.2.3, an α-Hölder nonlinear rough path contains a α-Hölder continuous function W

and a 2α-Hölder continuous function W that defines a version of following double integral:

ˆ t

s
DW (dr,y)Ws,r(x) :=Ws,t .

158



As W (t,x) = f (Xt ,x), we expect that W is defined via the theory of linear rough paths by the

following expression

Ws,t(x,y) :=
ˆ t

s
g(dr,y)( f (Xr,x))−gs,t(y)( f (Xs,x)), (3.6.2)

where g(t,y) = D2 f (Xt ,y) and gs,t(y) = g(t,y)− g(s,y). Applying Itô’s formula for linear rough

pahts (c.f. Theorem 3.4 of Keller & Zhang [53] for finite dimensional cases), the integral on the

right-hand side of (3.6.2) can be defined as follows

ˆ t

s
g(dr,y)( f (Xr,x)) :=

ˆ t

s
D21 f (Xr,y) f (Xr,x)dXr

+
1
2

ˆ t

s
D211 f (Xr,y) f (Xr,x)d〈X〉r. (3.6.3)

In the next proposition, we will show that (W,W) is a nonlinear rough path where W (t,x)= f (Xt ,x)

and Ws,t(x,y) is defined in (3.6.2).

Proposition 3.6.2. Assume that n≥ 1, and f ∈C 3,βββ n
loc (V 2;V ). Suppose that X=(X ,X)∈C α([0,T ];V ).

Let W (t,x)= f (Xt ,x), and let W be defined by (3.6.2) and (3.6.3). Then W :=(W,W)∈C α,βββ n([0,T ]×

V ;V ).

Proof. We prove this proposition by checking the properties in Definition 3.2.3. Let K be the

closed convex hull of the set {Xt , t ∈ [0,T ]}. Then K is a compact subset in V .

(i) For any k ∈ {0, . . . ,n} and zk = (z1, . . . ,zk) ∈V k, by Taylor’s theorem 3.1.11, we can show

that

‖DkWs,t(x)(zk)‖V =‖Dk
2 f (Xt ,x)(zk)−Dk

2 f (Xs,x)(zk)‖V

≤ sup
τ∈[0,1]

‖D1Dk
2 f (τXt +(1− τ)Xs,x)(zk)(Xs,t)‖V

≤‖ f‖K,3,βββ n

( k

∏
i=1
‖zi‖V

)
‖X‖α(1+‖x‖V )βk |t− s|α .

This implies that W ∈ C α,βββ n([0,T ]×V ;V ).
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(ii) a) Fix (x,y) ∈ V 2. Set h(z) = hx,y(z) := D21 f (z,y)( f (z,x)) for all z ∈ V . Then, h is an

L (V ;V )-valued function on V . It is easy to verify that h ∈ C 2
loc(V ;V ). Let Yt = h(Xt), and let

Y ′t = Dh(Xt) = D211 f (Xt ,y)( f (Xt ,x))+D21 f (Xt ,y)D1 f (Xt ,y),

for all t ∈ [0,T ], where D21 f (Xt ,y)D1 f (Xt ,y) is considered as an operator on V ×V with values in

V , that is

D21 f (Xt ,y)D1 f (Xt ,y)(x1,x2) = D21 f (Xt ,y)(D1 f (Xt ,y)(x2),x1).

By Lemma 7.3 of Friz & Hairer [36], (Y,Y ′) ∈ D2α
X (L (V ;V )). In addition, by Taylor’s theorem

3.1.11, we can easily show that

‖Y ′‖α ≤ 2‖ f‖2
K,3,βββ n

(1+‖x‖V )β0(1+‖y‖V )β1‖X‖α (3.6.4)

and

‖RY‖2α ≤ 2‖ f‖2
K,3,βββ n

(1+‖x‖V )β0(1+‖y‖V )β1‖X‖2
α . (3.6.5)

Let Ξs,t := YsXs,t +Y ′sXs,t for any (s, t) ∈ [0,T ]2. The following estimate follows from (3.6.4),

(3.6.5) and Theorem 3.1.4:

∥∥∥ˆ t

s
YrdXr−Ξs,t

∥∥∥
V
≤kα(‖X‖α‖RY‖2α +‖X‖2α‖Y ′‖α)|t− s|3α

≤2kα

[
‖ f‖2

K,3,βββ n
(1+‖x‖V )β0(1+‖y‖V )β1‖X‖3

α

+‖ f‖2
K,3,βββ n

(1+‖x‖V )β0(1+‖y‖V )β1‖X‖α‖X‖2α

]
|t− s|3α . (3.6.6)

On the other hand, by Taylor’s theorem, there exists ξ = cXs +(1− c)Xt for some c ∈ [0,1] such
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that

Ξs,t−gs,t(y)( f (Xs,x))

=D21 f (Xs,y)( f (Xs,y),Xs,t)+D211 f (Xs,y)( f (Xs,x),Xs,t)

+D21 f (Xs,y)D1 f (Xs,y)Xs,t−
(
D2 f (Xt ,y)( f (Xs,x))−D2 f (Xs,y)( f (Xs,x))

)
=D211 f (Xs,y)( f (Xs,x),Xs,t)+D21 f (Xs,y)D1 f (Xs,y)Xs,t

− 1
2

D211 f (ξ ,y)( f (Xs,y),Xs,t ,Xs,t).

It follows that

‖Ξs,t−gs,t(y)( f (Xs,x))‖V ≤
[
2‖ f‖2

K,3,βββ n
(1+‖x‖V )β0(1+‖y‖V )β1‖X‖2α (3.6.7)

+
1
2
‖ f‖2

K,3,βββ n
(1+‖x‖V )β0(1+‖y‖V )β1‖X‖2

α

]
|t− s|2α .

Finally, by definition

〈X〉s,t = Xs,t⊗Xs,t−2Xs,t ,

which implies that

‖〈X〉‖2α ≤ ‖X‖2
α +2‖X‖α .

Therefore, Young’s integral term can be estimated as follows

∥∥∥ˆ t

s
D211 f (Xr,y) f (Xr,x)d〈X〉r

∥∥∥
V
≤ sup

z∈K

∥∥D211 f (z,y) f (z,x)〈X〉s,t
∥∥

V (3.6.8)

≤‖ f‖2
K,3,βββ n

(1+‖x‖V )β0(1+‖y‖V )β1(‖X‖2
α +2‖X‖2α).

Recall that

Ws,t(x,y) =
ˆ t

s
g(dr,y)( f (Xr,x))−gs,t(y)( f (Xs,x))

=

ˆ t

s
YrdXr−gs,t( f (Xs,x))+

1
2

ˆ t

s
D211 f (Xr,y) f (Xr,x)d〈X〉r.
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Thus by combining (3.6.6) - (3.6.8), we have

‖W(x,y)‖2α ≤C(1+‖x‖V )β0(1+‖y‖V )β1,

where the constant C depends on α , ‖ f‖K,3,βββ n , ‖X‖α and ‖X‖2α .

(ii) b) The next step is to estimate the spatial derivatives of W. Observe that W consists of

three terms: the rough integral, Young’s integral, and gs,t(y)( f (Xs,x)). Consider gs,t(y)( f (Xs,x))

as a function of (x,y) ∈V 2. Then, for any (z1,z2) ∈V 2,

Dgs,t(y)( f (Xs,x))(z1,z2) =[D2 f (Xt ,y)−D2 f (Xs,y)](D2 f (Xs,y)(z1))

+ [D22 f (Xt ,y)−D22 f (Xs,y)]( f (Xs,y),z2).

For the rough integral term, we compute the derivative of its approximation. That is, for all

(z1,z2) ∈V 2,

DΞs,t(z1,z2) = D21 f (Xs,y)(D2 f (Xs,x)(z1),Xs,t)+D212 f (Xs,y)( f (Xs,x),Xs,t ,z2)

+D211 f (Xs,y)(D2 f (Xs,x)(z1),Xs,t)D2112 f (Xs,y)( f (Xs,x),Xs,t ,z2)

+D21 f (Xs,y)D12 f (Xs,x)(Xs,t ,z1)+D212 f (Xs,y)D1 f (Xs,x)(Xs,t ,z2),

where

D21 f (Xs,y)D12 f (Xs,x)(z1,z2,z3) = D21 f (Xs,y)(z1,D12 f (Xs,x)(z2,z3))

and

D212 f (Xs,y)D1 f (Xs,x)(z1,z2,z3) = D212 f (Xs,y)(D1 f (Xs,x)(z2),z1,z3).

By the sewing lemma, we can show that for all 0≤ s≤ t ≤ T ,

∑
|π|→0

DΞs,t →Js,t(DΞ),
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in L (V 2;V ) uniformly on compact sets in (x,y) ∈V 2. Therefore,

Js,t(DΞ) = DJs,t(Ξ) = D
[ˆ t

s
D21 f (Xr,y) f (Xr,x)dXr

]
.

By a similar argument in (ii) a), we can show that

D
[ˆ t

s
D21 f (Xr,y) f (Xr,x)dXr

]
−Dgs,t(y)( f (Xs,x))

is 2α-Hölder continuous in time. Moreover, the growth is of order β0∨β1 in x, and β1∨β2 in y.

Young’s integral term can be also estimated by using the sewing lemma and get the same result.

Finally, by iteration, we conclude that W ∈ C
2α,βββ ∗n−1,βββ

∗∗
n−1

2 ([0,T ]2×V 2;V ).

(iii) Notice that the linear rough integral on the right hand side of (3.6.2) is additive, Chen’s

relation follows immediately.

Let W (t,x) = f (Xt ,x) for all (t,x) ∈ [0,T ]×V . In the next lemma, we show that a rough

function controlled by W is also controlled by X .

Lemma 3.6.3. Suppose that f ∈ C 3,βββ 1
loc (V 2;V ) and X ∈ C α([0,T ];V ). Let W (t,x) = f (Xt ,x), and

let (Y,Ẏ ) ∈ E 2α
W in the sense of Definition 3.2.5. Then (Y,Y ′) ∈D2α

W (V ) in the sense of Definition

3.1.3 for some Y ′ ∈ C α(V ;L (V ;V )).

Proof. Let RY : [0,T ]2→V be given by

RY
s,t = Ys,t−Ws,t(Ẏs) = Ys,t− [ f (Xt ,Ẏs)− f (Xs,Ẏs)]

for all 0≤ s≤ t ≤ T . Then, RY ∈ C 2α([0,T ];V ). Additionally, applying Taylor’s theorem 3.1.11,

one get

‖ f (Xt ,Ẏs)− f (Xs,Ẏs)‖V ≤ ‖D1 f (Xs,Ẏs)Xs,t‖V + sup
τ∈[0,1]

1
2
‖D11 f (τxs +(1− τ)Xt ,Ẏs)X⊗2

s,t ‖V
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Let Y ′ : [0,T ]→L (V ;V ) be given by Y ′t := D1 f (Xt ,Ẏt) for any t ∈ [0,T ]. Then it follows that

‖Ys,t−Y ′s Xs,t‖V ≤
1
2
‖D11 f (τxs +(1− τ)Xt ,Ẏs)X⊗2

s,t ‖V +‖RY
s,t‖V . (3.6.9)

On the other hand, by using Taylor’s theorem 3.1.11 again, we have

‖Y ′s,t‖L (V ;V ) =‖D1 f (Xt ,Ẏt)−D1 f (Xs,Ẏs)‖L (V ;V )

= sup
τ∈[0,1]

[
‖D11 f (τXt +(1− τ)Xs,τẎt +(1− τ)Ẏs)Xs,t‖L (V ;V )

+‖D12 f (τXt +(1− τ)Xs,τẎt +(1− τ)Ẏs)Ẏs,t‖L (V ;V )

]
. (3.6.10)

Similarly as in Proposition 3.6.2, let K be the closed convex hull of {Xt ,0≤ t ≤ T}. The equalities

(3.6.9) and (3.6.10) yield that

‖Y ′‖α ≤ ‖ f‖K,2,βββ 1

[
(1+‖Ẏ‖∞)

β1‖Ẏ‖α +(1+‖Ẏ‖∞)
β0‖X‖α

]
and

‖R̃Y‖2α ≤
1
2
‖ f‖K,3,βββ n(1+‖Ẏ‖∞)

β0‖X‖2
α +‖RY‖2α ,

where R̃Y
s,t := Ys,t−Y ′s Xs,t for all 0≤ s≤ t ≤ T . This completes the proof.

In the next theorem, we prove the equivalence of linear and nonlinear rough integrals, provided

that (W,W) is given in Proposition 3.6.2.

Theorem 3.6.4. Suppose that f ∈ C 3,βββ 2
loc (V 2;V ) and X = (X ,X) ∈ C α([0,T ];V ). Let (W,W)

be defined in Proposition 3.6.2, and let (Y,Ẏ ) ∈ E 2α
W . Then by Lemma 3.6.3, there exits Y ′ =

D1 f (X ,Ẏ ), such that (Y,Y ′) ∈ D2α
X (V ). In addition, the following equality holds for all 0 ≤ s ≤

t ≤ T ,

ˆ t

s
W (dr,Yr) =

ˆ t

s
D1 f (Xr,Yr)dXr +

1
2

ˆ t

s
D11 f (Xr,Yr)d〈X〉r, (3.6.11)
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where the integral on the left hand side is the nonlinear rough integral in the sense of Theorem

3.2.10, the first integral on the right hand side is the linear rough integral in the sense of Theorem

3.1.4, and the last integral is Young’s integral.

Proof. Let Ξ and Ξ̃ be the approximation of left hand and right hand sides of (3.6.4) respectively.

That is

Ξs,t =Ws,t(Ys)+D21 f (Xs,Ys) f (Xs,Ẏs)Xs,t +D211 f (Xs,Ys) f (Xs,Ẏs)Xs,t

+D21 f (Xs,Ys)D1 f (Xs,Ẏs)Xs,t +
1
2

D211 f (Xs,Ys) f (Xs,Ẏs)〈X〉s,t

− [D2 f (Xt ,Ys) f (Xs,Ẏs)−D2 f (Xs,Ys) f (Xs,Ẏs)]. (3.6.12)

and

Ξ̃s,t =D1 f (Xs,Ys)Xs,t +D11 f (Xs,Ys)Xs,t +D12 f (Xs,Ys)D1 f (Xs,Ẏs)Xs,t

+
1
2

D11 f (Xs,Ys)〈X〉s,t ,

where

D21 f (Xs,Ys)D1 f (Xs,Ẏs)(z1,z2) = D21 f (Xs,Ys)(D1 f (Xs,Ẏs)(z2),z1),

and

D12 f (Xs,Ẏs)D1 f (Xs,Ẏs)(z1,z2) = D12 f (Xs,Ys)(z1,D1 f (Xs,Ẏs)(z2)).

By Theorem 3.1.4, 3.2.10 and Proposition 3.6.2, it is not hard to verify that

‖Zs,t−Ξs,t‖V +‖Z̃s,t− Ξ̃s,t‖V = O(|t− s|3α),

where Zs,t and Z̃s,t denotes the left and right hand side of (3.6.4). On the other hand, note that by
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definition 〈X〉s,t = Xs,t⊗Xs,t−2Xs,t . Thus by Taylor’s theorem 3.1.11, we can show that

Ξs,t =D1 f (Xs,Ys)Xs,t +
1
2

D11 f (Xs,Ys)Xs,t⊗Xs,t

+D21 f (Xs,Ys)D1 f (Xs,Ẏs)Xs,t +O(|t− s|3α),

and

Ξ̃s,t =D1 f (Xs,Ys)Xs,t +
1
2

D11 f (Xs,Ys)Xs,t⊗Xs,t

+D12 f (Xs,Ẏs)D1 f (Xs,Ẏs)Xs,t +O(|t− s|3α).

This yields that Zs,t = Z̃s,t for all 0≤ s≤ t ≤ T .

3.6.2 A Brownian example for the transport equation

In this section, we give a Brownian example for transport equation (1.2.7). Let B = {Bt , t ∈ [0,T ]}

be a one-dimensional Brownian motion, and let Bs,t =
1
2B2

s,t − 1
2(t − s). In other words, B is a

pathwise representation of the iterated Itô-Wiener integral

Bs,t =

ˆ t

s
Bs,rdBr.

Let W (t,x) = xBt , and let Ws,t(x,y) = xyBs,t . Then, a similar argument as in Section 3.6.1 implies

that (W,W ) is a C (R;R)-valued rough path. Also, we can easily deduce that

Ws,t(x,x) = xBs,t ,〈W (x,x)〉s,t = x2B2
s,t−2x2Bs,t = x2(t− s),

and

⟪DW (x),W (x)⟫s,t = ⟪W (x),DW (x)⟫s,t = x(t− s).
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This allows us to rewrite the transport equation (1.2.7) as follows

∂

∂ t
u(t,x)+

∂

∂x
u(t,x)xḂt =

∂

∂x
u(t,x)x+

1
2

∂ 2

∂x2 u(t,x)x2. (3.6.13)

On the other hand, RDE (3.5.9) in this Brownian setting can be reformulated as follows:

Yt(x)+ x+
ˆ t

0
Yr(x)dBr.

By solving this linear SDE, we get

Yt(x) = xeBt− 1
2 t ,

and its inverse

Zt(x) = Y−1
t (x) = xe−Bt+

1
2 t .

For any h ∈ C 3
b (R;R), let u(t,x) = h(Zt(x)). Then, Itô’s formula yields that

u(t,x) =h(x)−
ˆ t

0
h′(Zs(x))Zs(x)dBs +

ˆ t

0
h′(Zs(x))Zs(x)ds (3.6.14)

+
1
2

ˆ t

0
h′′(Zs(x))Zs(x)2ds. (3.6.15)

Using chain rule, we can write

∂

∂x
u(t,x) =

∂

∂x
h(Zt(x)) = h′(Zt(x))Zt(x)x−1,

∂ 2

∂x2 u(t,x) = h′′(Zt(x))Zt(x)2x−2.

Therefore, (3.6.14) can be reformulated as follows

u(t,x) =h(x)−
ˆ t

0

∂

∂x
u(s,x)xdBs +

ˆ t

0

∂

∂x
u(s,x)xds

+
1
2

ˆ t

0

∂ 2

∂x2 u(s,x)x2ds,
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and thus u is a solution to equation (3.6.13).

As we have seen in the example, quadratic compensators Ws,t(x,x), ⟪DW (x),W (x)⟫s,t and

⟪W (x),DW (x)⟫s,t come from the quadratic variation of the Brownian motion. If we define the

stochastic integral in the Stratonovich sense, namely, Bs,t =
1
2B2

s,t , such quadratic compensators

disappear. In other words, the solution formula provides a solution to the classical transport equa-

tion in the Stratonovich sense (c.f. [32, 34, 56] for similar equations).
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Chapter 4

Parabolic Anderson model of Skorohod type

In this chapter, we study the following parabolic Anderson model of Skorohod type

∂

∂ t
u(t,x) =

1
2

∆u(t,x)+u(t,x)� ∂

∂ t
W (t,x), (4.0.1)

where � is the Wick product, and W is a Gaussian random field that is fractional Brownian in

time with Hurst parameter H ∈ (0, 1
2 ] and has correlation Q in space. By using the Feynman-Kac

representation for the Lp(Ω) moments of the solution, we find the upper and lower bounds for the

moments.

4.1 Preliminaries

Let W = {W (t,x),(t,x) ∈ R+×Rd} be a Gaussian random field defined on a probability space

(Ω,F ,P) with correlation

E[W (t,x)W (s,y)] =
1
2
(
t2H + s2H−|t− s|2H)Q(x,y),

for all s, t ∈ R+ and x,y ∈ Rd . We assume that the covariance function Q satisfies the following

conditions:

Hypothesis (H1). There exist constants α ∈ (1−2H,1] and C1 > 0 such that

Q(x,x)+Q(y,y)−2Q(x,y)≤C1|x− y|2α , (4.1.1)
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for all x,y ∈ Rd .

Hypothesis (H2). There exist constants β ∈ [0,1) and C2 > 0 such that for any M > 0,

inf
min

i=1,...,d
(|xi|∧ |yi|)> M

Q(x,y)≥C2M2β . (4.1.2)

On the other hand, let H be the Hilbert space defined as the completion of the linear span of the

indicator functions of rectangles of R+×Rd with respect to the inner product

〈1[0,t]×[0,x],1[0,s]×[0,y]〉H =
1
2
(
t2H + s2H−|t− s|2H)Q(x,y),

for all s, t ∈ R+ and x = (x1, . . . ,xd),y = (y1, . . . ,yd) ∈ Rd , where 1[0,x] = ∏
d
i=1 1[0,xi] and 1[0,xi] =

−1[xi,0] if xi < 0. For any function h ∈ H, we write

W (h) :=
ˆ

∞

0

ˆ
Rd

h(t,x)W (dt,dx),

where the integral is the Itô-Wiener integral. Then, {W (h),h ∈ H} is an isonormal Gaussian pro-

cess on H, that is, a centered Gaussian family with covariance

E[W (h)W (ĥ)] = 〈h, ĥ〉H,

for all h, ĥ ∈ H. For any positive integer n, we write Hn for the Hermite polynomial on R, that is,

Hn(x) =
(−1)n

n!
e

x2
2

dn

dxn e−
x2
2 , x ∈ R.

Let Hn be the closed linear subspace of L2(Ω) generated by the set of random variables {Hn(W (h)),h∈

H,‖h‖H = 1}. The space Hn is called the n-th Wiener chaos. Denote by H⊗n the n-fold tensor

product space of H. We write In for the isometry map between H⊗n (with the modified norm
√

n!‖ · ‖H⊗n) and Hn, given by In(h⊗n) = Hn(W (h)). It is known (c.f. Lemma 1.1.1 and Theorem
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1.1.2 of Nualart [71]) that

(i) Hn and Hm are orthogonal if n 6= m. That is

E(FG) = 0, ∀F ∈Hn,G ∈Hm,n 6= m.

(ii) Any square integrable W -measurable random variable F can by uniquely represented as the

following orthogonal Wiener chaos expansion

F = E(F)+
∞

∑
n=1

In( fn), (4.1.3)

where fn ∈ H⊗n are symmetric.

By above properties and the isometry between H⊗n and Hn, for any F ∈ L2(Ω) has the chaos

expansion (4.1.3), the following equality holds

E(F2) = E(F)2 +
∞

∑
n=1

n!‖ fn‖2
H⊗n.

Let F,G ∈ L2(Ω). Suppose that F = E(F)+∑
∞
n=1 In( fn) and G = E(G)+∑

∞
m=1 Im(gm). Then, by

definition, the Wick product of F and G can be written as the following expression, if the last series

is convergent in L2(Ω),

F �G = E(F)
∞

∑
m=1

Im(gm)+E(G)
∞

∑
n=1

In( fn)+
∞

∑
n,m=1

In+m( fn⊗̃gm),

where fn⊗̃gm is the symmetrization of fn⊗gm in H⊗(n+m).

Remark 4.1.1. The assumption F,G∈ L2(Ω) does not imply the convergence of F �G. We refer the

readers to the book of Hu [40] for a detailed account on the Wick product and sufficient conditions

for the existence of F �G.

Let u = {u(t,x),(t,x)∈R+×Rd} be a W -measurable random field. Suppose that E[u(t,x)2]<
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∞ for all (t,x) ∈ R+×Rd . Then, u(t,x) has a Wiener chaos expansion as follows

u(t,x) = E(u(t,x))+
∞

∑
n=1

In(hn(·, t,x)). (4.1.4)

In the following, we define the Skorohod integral and the solution to the Skorohod type stochastic

partial differential equation (SPDE) (4.0.1). For more details on this topic, we refer the readers to

Hu and Nualart [46].

Definition 4.1.2. A square integrable random field u of the the form (4.1.4) is called to be Skorohod

integrable, if E(u) ∈ H, hn ∈ H⊗(n+1) for all n≥ 1 and the series

δ (u) =
ˆ

∞

0

ˆ
Rd

u(t,x)δW (t,x) :=W (E(u))+
∞

∑
n=1

In+1(h̃n)

converges in L2(Ω), where h̃n is the symmetrization of hn as an element in H⊗(n+1). The collection

of all such random fields is denoted by Dom(δ ).

Definition 4.1.3. Let u0 be a bounded measurable function on Rd . A random field u = {u(t,x) ∈

R+×Rd} is said to be a (mild) solution to the SPDE (4.0.1) with initial condition u0, if for any

(t,x) ∈ R+×Rd the random field

{
1[0,t](s)

ˆ
Rd

pt−s(x− z)u(s,z)1[0,z](y)dz,(s,y) ∈ R+×Rd
}

is an element of Dom(δ ), and the following equality holds almost surely,

u(t,x) =
ˆ
R

pt(x− y)u0(y)dy+
ˆ

∞

0

ˆ
Rd

(
1[0,t](s)

ˆ
Rd

pt−s(x− z)u(s,z)1[0,z](y)dz
)

δW (s,y),

where pt(x) = (2πt)−
d
2 e−

|x|2
2t denotes the heat kernel on Rd and the last integral is the Skorohod

integral in the sense of Definition 4.1.2.
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4.2 Feynman-Kac formula, chaos expansion and the upper bound

Let B be a standard d-dimensional Brownian motion independent of W . For any (t,x) ∈ R+×Rd ,

let Bx
t = x+Bt , and let gB

t,x : R+×Rd → R be given by

gB
t,x(r,z) := 1[0,t](r)1[0,Bx

t−r]
(z). (4.2.1)

Then due to Theorem 2.2 of Chen et al. [14], we know that gt,x ∈ H. Since the Feynman-Kac

representation for the Stratonovich type equation has been already established in [14], then by the

same argument as in Section 6 of Hu et al. [43], we can immediately derive the following theorem.

Theorem 4.2.1. Suppose that Q satisfies Hypothesis (H1). Let B be a standard d-dimensional

Brownian motion independent of W. For any (t,x) ∈ R+×Rd , let gB
t,x be defined in (4.2.1). Then

for any bounded measurable function u0 on Rd , the process u = {u(t,x),(t,x) ∈ R+×Rd} given

by

u(t,x) = E
[
u0(Bx

t )exp
(
W (gB

t,x)−
1
2
‖gB

t,x‖2
H

)]
(4.2.2)

is the unique (mild) solution to (4.0.1) with initial condition u0.

Remark 4.2.2. We can further deduce that u(t,x) has the following chaos expansion,

u(t,x) =
∞

∑
n=0

In(hn(t,x)),

with

hn(t,x)(r,z) =
1
n!
E
[
u0(Bx

t )g
B1

t,x(r1,z1) . . .gBn

t,x(rn,zn)
]
,

where {Bk}k≥1 are independent copies of B, r = (r1, . . . ,rn) ∈ Rn
+ and z = (z1, . . . ,zn) ∈ (Rd)n.

The next theorem provides an upper bound for moments of the solution to (4.0.1).
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Theorem 4.2.3. Suppose that u0 is bounded and Q satisfies Hypothesis (H1). Let u be the solution

to equation (4.0.1). Then for all positive integer n, t ≥ 1 and x∈Rd , the following inequality holds,

E
[
u(t,x)n]≤Cx exp

(
Cn

2−α

1−α t
2H+α

1−α

)
,

where C > 0 depends on d,H,α,‖u0‖∞ and Cx > 0 depends on d,H,α,‖u0‖∞ and x.

Proof. Recall that {Bk}k≥1 are independent d-dimensional Brownian motions and gBk

t,x is defined

in (4.2.1). By the Feynman-Kac formula (4.2.2), we can write the moment formula for the solution

as follows

E[u(t,x)n] = EB
[ n

∏
k=1

u0(B
k,x
t )exp

(1
2 ∑

1≤i6= j≤n
〈gBi

t,x,g
B j

t,x〉H
)]

. (4.2.3)

Combining (4.2.3) and Theorem 3.1 in [14], we can deduce that

E[u(t,x)n]≤ EB
[ n

∏
k=1

u0(B
k,x
t )exp

(1
2 ∑

1≤i, j≤n
〈gBi

t,x,g
B j

t,x〉H
)]
≤Cx exp

(
Cn

2−α

1−α t
2H+α

1−α

)
.

The proof of this theorem is completed.

Remark 4.2.4. An alternative proof of Theorem 4.2.3 can be established by the chaos expansion

of the solution to the SPDE (4.0.1) and the hypercontractivity property of fixed Wiener chaos (c.f.

Hu et al. [41]).

4.3 Lower bound for the moments

In this section, we prove the following theorem, which provides a lower bound for the moments of

the solution to the SPDE (4.0.1).

Theorem 4.3.1. Suppose that u0 is bounded, infx∈Rd u0 > 0, and Q satisfies Hypotheses (H1) and

(H2) with α = β . Let u be the solution to equation (4.0.1). Then there exists a positive integer N
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depending on d,H and α , such that for all n≥ N, t ≥ 1 and x ∈Rd , the following inequality holds,

E
[
u(t,x)n]≥Cx exp

(
Cn

2−α

1−α t
2H+α

1−α

)
, (4.3.1)

where C > 0 depends on d,H,α,‖u0‖∞, infx∈Rd u0 and Cx > 0 depends on d,H,α,‖u0‖∞, infx∈Rd u0

and x.

Proof. We follow the ideas of Chen et al. [14] and Hu et al. [41] to prove this theorem. Without

loss of generality, we assume that u0 ≡ 1. Recall that {Bk}k≥1 are independent d-dimensional

Brownian motions and gBk

t,x is defined in (4.2.1). By the moment formula (4.2.3) and Lemma 4.2

of [14], there exist a Gaussian process X = {X(x),x ∈Rd} with correlation E[X(x)X(y)] = Q(x,y)

and an independent fractional Brownian motion B̂ = {B̂t , t ∈R} with Hurst parameter H, such that

E[u(t,x)n] = EB exp
{
EX ,B̂

[1
2

(ˆ t

0

n

∑
i=1

X(Bi,x
t−s)dB̂s

)2]
− 1

2

n

∑
i=1
‖gBi

t,x‖2
H

}
. (4.3.2)

Due to Lemma 4.3 of [14], we know that there exists a constant CH > 0 depending on H such that

EX ,B̂
[1

2

(ˆ t

0

n

∑
i=1

X(Bi,x
t−s)dB̂s

)2]
≥CH

[ˆ t

0

( n

∑
i, j=1

Q(Bi,x
s ,B j,x

s )
) 1

2H
ds
]2H

. (4.3.3)

On the other hand, by (2.2) and (2.12) of [14], we have

‖gBi,x

t,x ‖2
H = E

[
I1(g

Bi,x
t,x )2]=H

ˆ t

0
θ

2H−1[Q(Bi,x
θ
,Bi,x

θ
)+Q(Bi,x

t−θ
,Bi,x

t−θ
)]dθ

+ |αH |
ˆ t

0

ˆ
θ

0
r2H−2Q̂(θ ,θ − r,Bi,x,Bi,x)drdθ , (4.3.4)

where αH = 2H(2H−1) and

Q̂(u,v,φ ,ψ) =
1
2
[Q(φu,ψu)+Q(φv,ψv)−Q(φu,ψv)−Q(φv,ψu)].
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Recall that Q satisfies Hypothesis (H1). Thus it is easy to deduce that

Q̂(θ ,θ − r,Bi,x,Bi,x)≤ C1

2
|Bi

θ −Bi
θ−r|

2α (4.3.5)

and

|Q(x,y)| ≤ (C1/2
1 |x|

α +Q(0,0)1/2)(C1/2
1 |y|

α +Q(0,0)1/2). (4.3.6)

To simplify the computations, we assume that Q(0,0) = 0. In the general case, the proof can be

done in a similar way without significant differences. Let M > 0 and let ε ∈ (0, 1
2). Consider the

following events

G1
0(M) =

{
inf

1≤i≤n,1≤ j≤d
s∈[t/2,t]

|Bi,x, j
s | ≥M

}
, G2

0(M) =

{
sup

1≤i≤n,1≤ j≤d
s∈[0,t]

|Bi,x, j
s | ≤ 4M

}
,

and

G3
0(M) =

{
sup

1≤i≤n,1≤ j≤d
0≤v<u≤t

|Bi,x, j
u −Bi,x, j

v |
|u− v| 12−ε

≤ 16M

t
1
2−ε

}
,

where Bi,x, j denotes the j-th component of Bi,x for j = 1, . . . ,d.

On G1
0(M), by Hypothesis (H2) and using the assumption that α = β , we have the inequality

[ˆ t

0

( n

∑
i, j=1

Q(Bi,x
s ,B j,x

s )
) 1

2H
ds
]2H
≥
[ˆ t

t
2

(
C2n2|M|2α

) 1
2H ds

]2H

=2−2HC2n2M2αt2H . (4.3.7)
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On G2
0(M), using (4.3.6), we get that

ˆ t

0
θ

2H−1[Q(Bi,x
θ
,Bi,x

θ
)+Q(Bi,x

t−θ
,Bi,x

t−θ
)]dθ ≤

ˆ t

0
θ

2H−12C1|4
√

dM|2αdθ

=24αdαH−1C1M2αt2H . (4.3.8)

Finally, on G3
0(M), using (4.3.5), we get

ˆ t

0

ˆ
θ

0
r2H−2Q̂(θ ,θ − r,Bi,x,Bi,x)drdθ ≤

ˆ t

0

ˆ
θ

0
r2H−2C1

2

(16
√

dM

t
1
2−ε

r
1
2−ε

)2α

drdθ

=
28α−1dαC1M2αt2H

(2H +α−2αε−1)(2H +α−2αε)
. (4.3.9)

Set G0(M) =
⋂3

k=1 Gk
0(M). Due to inequalities (4.3.2) - (4.3.4) and (4.3.7) - (4.3.9), we obtain

E[u(t,x)n]≥exp
[
(c1n2− c2n)M2αt2H]P[G0(M)], (4.3.10)

where

c1 = 2−2HC2CH and c2 = 24α−1dαC1 +
28α−2dαC1|αH |

(2H +α−2αε−1)(2H +α−2αε)
.

For any x = (x1, . . . ,xd) ∈Rd , let {B̃ j,x j}1≤ j≤d be independent one-dimensional Brownian mo-

tions such that B̃ j,x j starts from x j for all j = 1, . . . ,d. For any j, let G j(M) be the event given

by

G j(M) :=
{

inf
s∈[t/2,t]

|B̃ j,x j
s | ≥M, sup

s∈[0,t]
|B̃ j,x j

s | ≤ 4M, sup
0≤v<u≤t

|B̃ j,x j
u − B̃ j,x j

v |
|u− v| 12−ε

≤ 16M

t
1
2−ε

}
, (4.3.11)

and denote G(M) =
⋂d

j=1 G j(M). Since {Bi,x}1≤i≤n are independent d-dimensional Brownian
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motions starting at x = (x1, . . . ,xd), the following equality holds

P[G0(M)] = P[G(M)]n =
d

∏
j=1

P[G j(M)]n.

This allows us to rewrite (4.3.10) in the following way,

E[u(t,x)n]≥exp
[
(c1n2− c2n)M2αt2H] d

∏
j=1

P[G j(M)]n. (4.3.12)

In order to estimate P[G j(M)], we pin the Brownian motion B̃ j,x j at t/2, and obtain that

P[G j(M)] =

ˆ 4M

M
P
[
G j(M)

∣∣B̃ j,x j
t/2 = r

]
qt/2(r− x j)dr

≥
ˆ 3M

2M
P
[
G j(M)

∣∣B̃ j,x j
t/2 = r

]
qt/2(r− x j)dr, (4.3.13)

where qt(x) = (2πt)−
1
2 exp[−x2/(2t)] is the one-dimensional heat kernel. Notice that conditioned

on B̃ j,x j
t/2 = r, the process {B̃ j,x j

s ,s∈ [0, t/2]
}

is a Brownian bridge, denoted by Y = {Ys,s∈ [0, t/2]},

such that Y0 = x j and Yt/2 = r. In addition, the process {B̃ j,x j
t/2+s− r,s ∈ [0, t/2]}, denoted by Z =

{Zs,s ∈ [0, t/2]}, is a standard Brownian motion independent of Y . Let A1, . . . ,A4 be the events

given by

A1 =
{

sup
s∈[0,t/2]

|Zs| ≤M
}
, A2 =

{
sup

s∈[0,t/2]
|Ys| ≤ 4M

}
,

A3 =

{
sup

0≤u<v≤t/2

|Zu−Zv|
|u− v| 12−ε

≤ 8M

t
1
2−ε

}
, A4 =

{
sup

0≤u<v≤t/2

|Yu−Yv|
|u− v| 12−ε

≤ 8M

t
1
2−ε

}
.

Observe that for any 0≤ v < t/2 < u≤ t, it is easy to see that

|B̃ j,x j
u − B̃ j,x j

v |
|u− v| 12−ε

≤ 2max
{ |B̃ j,x j

t/2 − B̃ j,x j
v |

|t/2− v| 12−ε
,
|B̃ j,x j

u − B̃ j,x j
t/2 |

|u− t/2| 12−ε

}
.
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It follows that conditional on B̃ j,x j
t/2 = r,

sup
0≤v<u≤t

|B̃ j,x j
u − B̃ j,x j

v |
|u− v| 12−ε

≤ 2max
{

sup
0≤v<u≤t/2

|Yu−Yv|
|u− v| 12−ε

, sup
0≤v<u≤t/2

|Zu−Zv|
|u− v| 12−ε

}
,

and thus

{
sup

0≤v<u≤t

|B̃ j,x j
u − B̃ j,x j

v |
|u− v| 12−ε

≤ 16M

t
1
2−ε

}
⊃ A3∩A4. (4.3.14)

Moreover, if we restrict r ∈ [2M,3M] as in (4.3.13), the following inclusion is true,

{
inf

s∈[t/2,t]
|B̃ j,x j

s | ≥M, sup
s∈[0,t]

|B̃ j,x j
s | ≤ 4M

}
⊃ A1∩A2. (4.3.15)

Therefore, by (4.3.11), (4.3.14) and (4.3.15), we have for r ∈ [2M,3M],

P
[
G j(M)

∣∣B j,x j
t/2 = r

]
≥ P

( 4⋂
k=1

Ak

)
.

Because Y and Z are independent, we can write

P
( 4⋂

k=1

Ak

)
=1−P

( 4⋃
k=1

Ac
k

)
≥ 1−P

(
Ac

1

⋃
Ac

2)−P
(
Ac

3

⋃
Ac

4)

=P(A1)P(A2)+P(A3)P(A4)−1. (4.3.16)

Estimation of P(A1): It follows from Doob’s martingale inequality that

P(A1) = 1−P(Ac
1)≥ 1−M−2E(|Zt/2|2) = 1− t

2M2 . (4.3.17)

Estimation of P(A3): Recall that ε ∈ (0,1/2). By Kolmogorov’s continuity criterion (c.f. The-

orem 3.1 of Friz and Hairer [36]), there exists a modification of Z, denoted by Z̃, and a random
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variable Kε , such that

sup
0≤u<v≤t/2

|Z̃u− Z̃v|
|u− v| 12−ε

≤ Kε and E(|Kε |
2
ε )≤Cεt2,

where Cε > 0 is a constant depending only on ε . Combining this fact with Chebyshev’s inequality,

we have

P(A3) = 1−P(Ac
3)≥ 1−

( 8M

t
1
2−ε

)− 2
ε E(|Kε |

2
ε )≥ 1−2−

6
ε Cε

t
1
ε

M
2
ε

. (4.3.18)

Estimation of P(A2): Let B̃ be a one-dimensional standard Brownian motion. Then the Brownian

bridge Y has the same distribution as the process Ỹ = {Ỹs,0≤ s≤ t/2} where

Ỹs = x j + B̃s−
2s
t
(B̃t/2− r+ x j). (4.3.19)

Thus, we can deduce that

P(Ac
2) =P

[
sup

0≤s≤t/2

∣∣∣(1− 2s
t

)
x j +

2sr
t

+ B̃s−
2s
t

B̃t/2

∣∣∣> 4M
]

≤P
(

sup
0≤s≤t/2

|B̃s|+ |B̃t/2|> 4M− r−|x j|
)
≤ P

(
sup

0≤s≤t/2
|B̃s|> 2M−

r+ |x j|
2

)
.

Assume that M
2 > max{|x1|, . . . , |xn|} and recall that r ∈ [2M,3M]. It follows that

P(A2) = 1−P(Ac
2)≥ 1−P

(
sup

0≤s≤t/2
|B̃s|>

M
4

)
≥ 1− 8t

M2 . (4.3.20)

Estimation of P(A4): Due to (4.3.19) and the fact r ∈ [2M,3M], we have

|Ỹu− Ỹv|
|u− v| 12−ε

≤ |B̃u− B̃v|
|u− v| 12−ε

+
2|u− v| 12+ε

t
(|B̃t/2|+ r+ |x j|)

≤KB̃
ε +

2
1
2−ε(|B̃t/2|+ 7

2M)

t
1
2−ε

,
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for all 0≤ v < u≤ t/2, where KB̃
ε is the almost surely upper bound of the (1

2 − ε)-Hölder norm of

B̃ on [0, t/2] and E[|KB̃
ε |

2
ε ]≤Cεt2. Therefore,

P(A4) =1−P(Ac
4) = 1−P

(
sup

0≤u<v≤t/2

|Ỹu− Ỹv|
|u− v| 12−ε

≥ 8M

t
1
2−ε

)
≥1−P

(
KB̃

ε +
2

1
2−ε |B̃t/2|

t
1
2−ε

≥ M

t
1
2−ε

)
≥ 1−

[
2

2
ε
−1Cε +2

2
ε
−3E|B̃1|

2
ε

] t
1
ε

M
2
ε

. (4.3.21)

According to inequalities (4.3.17), (4.3.18), (4.3.20) and (4.3.21), and choosing

M ≥C1,εt
1
2 := max

{( 8
1−
√

3/2

)1/2
,
(2

2
ε
−1Cε +2

2
ε
−3E|B̃1|

2
ε

1−
√

3/2

)ε/2}
t

1
2 , (4.3.22)

we can make P(Ak)≥
√

3/2 for all k = 1, . . . ,4. Thus by (4.3.16), we have

P
[
G j(M)|B̃ j,x j

t/2 = r
]
= P(

4⋂
k=1

Ak)≥
1
2
. (4.3.23)

Plugging (4.3.23) into inequality (4.3.13) and recalling that M satisfies (4.3.22) and M
2 ≥ |x j|, we

can write

P(G j(M))≥1
2

ˆ 3M

2M
drqt/2(x

j− r)≥ M√
4πt

e−
16M2

t ≥
C1,ε√

4π
e−

16M2
t ≥ e−

16M2
t . (4.3.24)

Combining (4.3.12) and (4.3.24), we have

E[u(t,x)n]≥exp
[
(c1n2− c2n)M2αt2H− c3nM2t−1], (4.3.25)

where c3 = 16d. Let N be the smallest integer such that c1n− c2 > 0. Then, for any n ≥ N, by

maximizing the function

f (M) = (c1n2− c2n)M2αt2H− c3nM2t−1,
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we find

M0 =
(
α(c1n− c2)c−1

3 t2H+1) 1
2−2α , (4.3.26)

such that

sup
M≥0

f (M) = f (M0) =(1−α)α
α

1−α c
− α

1−α

3 n(c1n− c2)
1

1−α t
2H+α

1−α

≥(1−α)α
α

1−α c
− α

1−α

3 (c1− c2/N)n
2−α

1−α t
2H+α

1−α . (4.3.27)

Notice that for any t ≥ 1 and n ≥ N, the number M0 given by (4.3.26) satisfies the following

inequality

M0 ≥max{
(
α(c1N− c2)c−1

3 t2H+α
) 1

2−2α t
1
2 ,
(
α(c1n− c2)c−1

3
) 1

2−2α t
1
2}. (4.3.28)

Let

n0(x) := max
{

N,
c2α + c3[2max{|x1|, . . . , |xd|}]2−α

c1α
,
c2α + c3C2−2α

1,ε

c1α

}
and let

t0(x) := max
{

1,
(c3[2max{|x1|, . . . , |xd|}]2−2α

α(c1N− c2)

) 1
2H+α

,
( c3C2−2α

1,ε

α(c1N− c2)

) 1
2H+α

}
.

Then, for any

(t,n) ∈ L1 := {(s,m) ∈ R+×N,s≥ 1,m≥ n0(x)}, (4.3.29)

or

(t,n) ∈ L2 := {(s,m) ∈ R+×N,s≥ t0(x),m≥ N}, (4.3.30)
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by using (4.3.28), we have M0
2 ≥max{|x1|, . . . , |xd|} and M0 ≥C1,εt

1
2 . This implies that if (t,n) ∈

L1∪L2, inequality (4.3.25) is true when M is replaced by M0. In this case, it follows from (4.3.27)

that

E[u(t,x)n]≥ e f (M0) ≥ exp
[
(1−α)α

α

1−α c
− α

1−α

3 (c1− c2/N)n
2−α

1−α t
2H+α

1−α

]
. (4.3.31)

On the other hand, let M1 = max{2|x1|, . . . ,2|xd|,C1,εt0(x)
1
2}. Then for any

(t,n) ∈ L3 := {(s,m) ∈ R+×N,1≤ s≤ t0(x),N ≤ m≤ n0(x)}, (4.3.32)

inequality (4.3.25) is true when M is replaced by M1. In this case, we can deduce that

E[u(t,x)n]≥exp
[
(c1n2− c2n)M2α

1 t2H− c3nM2
1t−1]

≥ inf
1≤t≤t0(x)

N≤n≤n0(x)

{
exp
[
(c1n2− c2n)M2α

1 t2H− c3nM2
1t−1−C0n

2−α

1−α t
2H+α

1−α ]

}

× exp
(

C0n
2−α

1−α t
2H+α

1−α

)
:=Cx exp

(
C0n

2−α

1−α t
2H+α

1−α

)
, (4.3.33)

where C0 = (1−α)α
α

1−α c
− α

1−α

3 (c1− c2/N). Notice that {t ≥ 1,n ≥ N} = L1∪L2∪L3 where L1,

L2 and L3 are defined in (4.3.29), (4.3.30) and (4.3.32) respectively. Therefore, by (4.3.31) and

(4.3.33), we have inequality (4.3.1). This completes the proof of this theorem.
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