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Abstract

The peculiar velocity of galaxies and galaxy clusters is the only dynamical probe of gravity on

cosmic scales, which makes it a crucial tool in studying gravitational instability, mass distributions

and density fluctuations on large scales.

In this dissertation, I present the work we did in estimating the cosmic peculiar velocity field.

We introduce a new method of estimating peculiar velocities from kinetic Sunyaev-Zel’dovich

(kSZ) effect using deep learning neural networks to simplify the complicated calculation steps

in the conventional method. We explore the feasibility of applying the formalism to future kSZ

observations by testing it with multiple noise models using numerical simulations designed for

these purposes.

We further discuss an analysis of the two-point peculiar velocity correlation function using

data from both observations and simulations. We find a non-Gaussian distribution of the cosmic

variance of the correlation function, which makes the peculiar velocity correlation function less

than ideal as a probe of large-scale structure.

To solve this problem, we develop an improved method for calculating the parallel and per-

pendicular velocity correlation functions directly from peculiar velocity surveys using maximum-

likelihood estimators. The central feature of this method is the use of a position-dependent weight-

ing scheme in order to reduce the contribution of nearby galaxies, which are typically overrepre-

sented relative to more distant galaxies that occupy the volume of most surveys. We demonstrate

that the correlation function calculated in this way is less susceptible to bias due to our particular

location in the Universe and provides a better approximation of a Gaussian distribution errors than

other velocity correlation functions. In addition, the position weighted parallel velocity correlation

function provides stabler and tighter cosmological parameter constraints than other methods.
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Chapter 1

Background: Peculiar Velocity

In the early 20 century, physicist (Leavitt, 1908; Leavitt & Pickering, 1912; Hubble, 1929) discov-

ered the expansion of the universe: V = H0r, where V is the Doppler-shift measured velocity of

galaxies, H0 is the Hubble constant and r is the radial distance. Due to the difficulties in measuring

distances, results of early studies (see, Burstein, 1990) indicated that the Universe expansion was

smooth and homogeneous. Gamow (1946) first questioned if there are deviations from a smooth

expansion. Rubin (1951) first explored this question suggesting a possible rotation of the Universe.

Later, many studies explored the problem with large-scale motions of galaxies. Corey & Wilkin-

son (1976) and Smoot et al. (1977) confirmed the existence of a dipole anisotropy in the cosmic

microwave background (CMB), which implies a large-scale motion of the Local Group, which is

the galaxy group of the Milky Way and our nearest neighboring galaxies. The motion of galaxies

and galaxy clusters caused by gravity is called peculiar velocity in cosmology.

The existence of galaxies, clusters and other structures formed by gravitational instability, in-

dicates that our Universe is not perfectly homogeneous. Rather, the Universe had small density

fluctuations at early times that grew into the structures we observed today by gravitational in-

stability. The relation between the velocity field and the density field v = H0 f
4π

´
d3r′ r′−r

|r′−r|3 δ (r′)

(Peebles, 1980), where f is the growth rate of structure, δ indicates the density field, r and r′ are

the radial distances of the velocity and density fields, makes the peculiar velocity a good tracer

of density fluctuations and gravitational instability. A direct test of gravitational instability comes

from the comparison of peculiar velocity and redshift surveys (e.g. Watkins et al., 2009; Feldman

et al., 2010; Davis et al., 2011; Nusser et al., 2011; Macaulay et al., 2011; Turnbull et al., 2012;

Macaulay et al., 2012; Nusser, 2014; Springob et al., 2014a; Johnson et al., 2014; Scrimgeour et al.,
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2016a). Furthermore, the peculiar velocity field can be used to constrain cosmological model pa-

rameters, such as the matter density (Ωm) and the growth rate ( f ) (e.g. Borgani et al., 2000; Wang

et al., 2018; Adams & Blake, 2020).

Today, we know that the peculiar velocity causes deviations from the Hubble Flow, which

makes the redshift we observe a linear combination of the peculiar velocity and the Hubble Flow:

cz = H0r+ v, (1.1)

where c is the speed of light, z is the redshift, and v is the peculiar velocity. For better accuracy,

the redshift z can be replaced by zmod by including the cosmic acceleration: zmod = z[1+0.5(1−

q0)z− (1/6)(1−q0−3q2
0 +1)z2], where q0 is the deceleration parameter (Springob et al., 2014a;

Davis & Scrimgeour, 2014; Watkins & Feldman, 2015a). Equation 1.1 shows that the estimate

of peculiar velocities relies on the measurements of redshift and distance. The redshift can be

accurately measured by the Doppler effect of the light spectrum. Theoretically, the distance can

be determined by the luminosity of galaxies with the inverse-square law. However, the luminosity

of galaxies cannot be measured directly, which makes the distance measurement more challenging

than the redshift.

Many methods have been introduced to determine the luminosity of galaxies, such as Tully-

Fisher (TF) relation (Tully & Fisher, 1977), Faber-Jackson (FJ) relation (Faber & Jackson, 1976),

Fundamental Plane (FP, Djorgovski & Davis, 1987; Dressler et al., 1987b), Surface Brightness

Fluctuation (SBF, Tonry & Schneider, 1988), and Type Ia supernova distances (Rest et al., 2014).

TF describes the relation between the luminosity and the rotation velocity of spiral galaxies. FJ

illustrates the relation between the luminosity and the velocity dispersion of elliptical galaxies. FP

expresses the relation between the effective radius, surface brightness and velocity dispersion of

elliptical galaxies. SBF measures the variance in the light distribution of galaxies arising from

fluctuations in the numbers and luminosities of individual stars per resolution element. The type

Ia supernova is a category of supernovas that have consistent luminosity peaks, which can be used

2



as standard candles whose luminosities are known.

The luminosity is then being used to calculate the distance modulus. The distance modulus

describes the distance in logarithmic scale (µ = 5log10(
r

10pc)), which will cause a non-Gaussian

error distribution of the distance and therefore in the peculiar velocity. This non-Gaussian problem

can be addressed by using the unbiased estimator v= czlog( cz
H0r ) introduced by Watkins & Feldman

(2015a), since its velocity is proportional to the logarithm of distances.

In current peculiar velocity surveys, the distance uncertainty is about 20% (e.g. Masters et al.,

2006; Springob et al., 2007; Tully et al., 2013, 2016), which leads to a low signal-to-noise ratio

for the peculiar velocity estimates. Due to the large peculiar velocity error, statistical studies of

velocity ensembles are necessary. The most widely used statistical approaches for studying the

peculiar velocity field are bulk flow, velocity correlation function, and pairwise velocity statistic.

The bulk flow is the lowest order statistic of the velocity field and is generally thought of as

the weighted average of peculiar velocities in a volume. Rubin et al. (1976a,b) first detected a

bulk flow of the Local Group relative to the volume defined by a sample of 96 galaxies. Later, the

research of bulk flows has been further refined by many studies (e.g. Schechter, 1980; Tonry &

Davis, 1981; Dressler et al., 1987a; Lauer & Postman, 1994). Bulk flows are typically calculated

by two methods. The first is the maximum likelihood estimate (MLE) method (e.g. Kaiser, 1988;

Watkins & Feldman, 2007). The MLE formalism estimates the bulk flow as a weighted average of

sample velocities, with the weight calculated to minimize its overall uncertainty given the position,

velocity and error distributions in the catalogue. A modern formulation is the minimum variance

(MV) method (Watkins et al., 2009; Feldman et al., 2010; Agarwal et al., 2012b; Scrimgeour et al.,

2016a). The MV formalism minimizes the differences between the actual observational data and

an “ideal" survey that may be designed to probe a volume in a particular way.

The velocity correlation function is a two-point correlation function of velocity fields. The most

widely used velocity correlation estimator was introduced by Gorski (1988) and further developed

in Gorski et al. (1989). The velocity correlation function can be expressed as two independent

functions, one for velocity components along the separation vector of pairs of galaxies and one for
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components perpendicular to the vector. The Gorski (1988) correlation estimator is a combination

of these two functions, with the precise mixture given by selection functions that depend on the

distribution of survey objects as well as the separation distance. The velocity correlation function

has revealed interesting results in constraining cosmological parameters (e.g. Jaffe & Kaiser, 1995;

Zaroubi et al., 1997; Juszkiewicz et al., 2000; Borgani et al., 2000; Abate & Erdoǧdu, 2009; Nusser

& Davis, 2011; Okumura et al., 2014; Howlett et al., 2017; Hellwing et al., 2017; Wang et al., 2018;

Dupuy et al., 2019).

The pairwise velocity is the mean value of the peculiar velocity difference of galaxy pairs at

separation r, which is introduced by Peebles (1980). Juszkiewicz et al. (1999) derived approximate

solution of the pair conservation equation relating the pairwise velocity to the matter density and

two-point correlation functions of mass density fluctuations, which is used in many studies (e.g.

Ferreira et al., 1999; Juszkiewicz et al., 2000; Feldman et al., 2003; Hellwing, 2014; Hellwing

et al., 2014). Studies show that the pairwise velocity can also be used to investigate the kinetic

Sunyaev-Zel’dovich effect (Zhang et al., 2008; Hand et al., 2012; Planck Collaboration et al.,

2016a).

The error in distance measurement grows with redshift, which will propagate to the velocity

and make the velocity signal-to-noise ratio worse at high redshift. Thus, current peculiar velocity

surveys are shallow (z < 0.05). In contrast, the kinetic Sunyaev-Zel’dovich effect provides a dis-

tance and redshift independent approach for measuring peculiar velocities, which could increase

the depth of peculiar velocity surveys significantly.

The Sunyaev-Zel’dolvich (SZ) effect (Sunyaev & Zeldovich, 1970, 1972, 1980) describes

the CMB distortion caused by the inverse Compton scattering of CMB photons off electrons in

galaxy clusters. The SZ effect has two contributions: the thermal (tSZ) and the kinetic Sunyaev-

Zel’dolvich (kSZ) effects. The tSZ effect is caused by random motions of hot electrons in the intra-

cluster medium, while the kSZ effect is caused by the bulk motion of galaxy clusters. Therefore,

the kSZ effect can be used to estimate peculiar velocities of galaxy clusters. Haehnelt & Tegmark

(1996) first discussed the feasibility of estimating peculiar velocities of clusters from CMB obser-
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vations. Holzapfel et al. (1997) estimated peculiar velocities of two distant galaxy clusters through

milimeter-wavelength observations of SZ effect. Later, many studies estimated peculiar velocities

and bulk flows through kSZ effect on large scales (e.g. Kashlinsky & Atrio-Barandela, 2000; Ben-

son et al., 2003; Kashlinsky et al., 2008; Zhang et al., 2008; Planck Collaboration et al., 2014b;

Soergel et al., 2017; Sayers et al., 2019). However, the kSZ signal is very weak, which causes

limitation on the accuracy of peculiar velocity estimations. With improvements in the kSZ mea-

surements (e.g. Mittal et al., 2018), the peculiar velocity estimation from kSZ effect for individual

clusters may become feasible in the near future.

In this dissertation, I present and discuss the work we have done by studying the peculiar

velocity field. In chapter 2, I present the work we did in estimating peculiar velocities from kSZ

effect using deep learning neural networks, and discuss the feasibility and advantages of applying

the deep learning algorithms to the kSZ velocity estimate with both simulations and observations.

In chapter 3, I discuss the peculiar velocity correlation function with new findings of its non-

Gaussian cosmic variance distribution. In chapter 4, I present our work improving the method for

estimating peculiar velocity correlation functions by implementing a position-dependent weighting

scheme to reduce the effect caused the non-Gaussian cosmic variance.
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Chapter 2

Analysis of Peculiar Velocity Estimate from Kinematic SZ

Effect using Deep Neural Networks

The Sunyaev-Zel’dolvich (SZ) effect is expected to be instrumental in measuring distant veloc-

ities of galaxy clusters in future surveys. We simplify the conventional calculations of peculiar

velocities of galaxy clusters using a deep learning model. Using one of the largest Cosmological

hydrodynamical simulations, the image of distorted photon backgrounds are generated for ide-

alized observations. We explore the feasibility of applying the deep learning neural network to

extract peculiar velocities from future kSZ observations with multiple noise models. We combin-

ing kinetic and thermal SZ effects in the neural network architectures to understand the effect of the

optical depth and extending the pipeline to include redshift-dependence. This chapter is from the

project collaborated with Nesar S. Ramachandra, Edgar M. Salazar, Hume A. Feldman, Richard

Watkins and Klaus Dolag. It is under preparation for submission.

2.1 Introduction

The Sunyaev-Zel’dolvich (SZ) effect (Sunyaev & Zeldovich, 1970, 1972, 1980) describes the pro-

cess of Cosmic Microwave Background (CMB) distortion caused by the inverse Compton scatter-

ing of the CMB photons off by the electrons in galaxy clusters. The SZ effect has two contributions:

the thermal (tSZ) and the kinetic Sunyaev-Zel’dolvich (kSZ) effect. The tSZ effect is caused by

the random motion of hot electrons in the intra-cluster medium, while the kSZ effect is caused

by the bulk motion of galaxy clusters. Therefore, the kSZ effect can be used in estimating pecu-

liar velocities of galaxy clusters (e.g. Rephaeli & Lahav, 1991; Bhattacharya & Kosowsky, 2008;
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Kashlinsky et al., 2009; Zhang et al., 2008; Atrio-Barandela et al., 2012; Planck Collaboration

et al., 2014c; Sayers et al., 2016; Planck Collaboration et al., 2018a; Soergel et al., 2017; Hurier,

2017; Kirillov & Savelova, 2019). However, the weak signal of the kSZ effect makes its detection

very difficult. Hand et al. (2012) first detected the kSZ effect from CMB maps with the Atacama

Cosmology Telescope (ACT) through pairwise momentum estimator. Using similar methods, sev-

eral groups have detected the kSZ effect in both real and Fourier spaces (e.g. Planck Collaboration

et al., 2016b; Soergel et al., 2016; Sugiyama et al., 2018; Calafut et al., 2017; Li et al., 2018). In

addition, some studies detected the kSZ effect by cross-correlating kSZ temperature map with den-

sity or velocity field (e.g. Schaan et al., 2016; Hill et al., 2016). Planck Collaboration et al. (2018b)

detected the kSZ effect through measurements of the CMB temperature dispersion. Furthermore,

Mittal et al. (2018) discussed the ability of measuring the kSZ effect for individual clusters in the

upcoming multi-frequency surveys. With the improvements in the kSZ measurement, the estimate

of peculiar velocities from kSZ effects for individual clusters becomes possible.

The peculiar velocity field is a powerful tracer of density fluctuations, which is generally stud-

ied through ensemble statistics such as bulk flows, velocity correlation functions, and the pairwise

velocity statistic (e.g. Borgani et al., 2000; Watkins et al., 2009; Kumar et al., 2015; Wang et al.,

2018). The pairwise velocity statistic is the mean value of the peculiar velocity difference of galaxy

pairs at separation r and is a widely used approach to study the large-scale velocity field (e.g. Fer-

reira et al., 1999; Feldman et al., 2003; Zhang et al., 2008; Hand et al., 2012; Planck Collaboration

et al., 2016a). Estimating peculiar velocities using kSZ effect requires information about optical

depth, which describes the integration of electron densities. However, the measurement of optical

depth has errors and bias that may affect peculiar velocity estimates. Lindner et al. (2015) has a

average uncertainty of the cluster optical depth around 31% and Mittal et al. (2018) forecasts a

average uncertainty about 24% in observations. In addition, using emission-weighted temperature

instead of the density-weighted temperature, which is not observable, in the optical depth measure-

ment may cause a systematic bias of the optical depth (Diaferio et al., 2005; Dolag & Sunyaev,

2013). In simulations, the optical depth varies between models with and without star-formation
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and feedback (Flender et al., 2016, 2017). The weak kSZ signal and errors of optical depth make

the kSZ peculiar velocity calculation imprecise and difficult. Machine learning algorithms may

provide a simpler and more accurate method for estimating kSZ peculiar velocities.

Machine learning algorithms are designed without explicit programming of the physical phe-

nomena, instead they perform complex analyses in a data-driven manner. Some of the machine

learning methods including Gaussian processes, decision trees, nearest neighbor algorithms and

support vector machines have been used in astrophysical context. On the other hand, utilization of

deep learning (DL) methods, specifically the Convolutional Neural Networks (CNNs), is rapidly

increasing due to the availability of data, advancements of computational architectures (such as

the Graphic Processors, Tensor Processors and dedicated accelerators), and the development of

libraries (such as TensorFlow, Keras, Torch).

However, the model interpretability and explainability of DL methods remains to be an area of

active research since they are generally characterized as ’black box’ inference techniques. How-

ever, complex deep learning neural networks trained on sufficiently large amount of data capture

information much more efficiently than traditional machine learning techniques (shown in various

comparison studies, e.g., Metcalf et al. (2019) in strong lensing detection problem).

Learning the intrinsic characteristics of the dataset may be accomplished unsupervised where

training is unaccompanied by correct responses, for instance in Generative models (Ravanbakhsh

et al. (2016), Morningstar et al. (2018), He et al. (2019)). Alternatively, a supervised learning

routine involves providing the correct mapping during training. Supervised techniques for object

identification have been applied to a broad variety of astrophysical problems including strong lens-

ing image classification (Petrillo et al. (2017)) and parameter estimation (Levasseur et al. (2017),

Hezaveh et al. (2017), Morningstar et al. (2018)), which have demonstrated improvements on pre-

dictive precision and inference speed compared to traditional inference techniques.

Machine learning applications in Cosmological analyses frequently deal with using simulated

data instead of real astronomical data. This is in part due to the dearth of large quantity of data. On

the other hand, calibrating the forward model parameters is not robust enough to generate unbiased
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training data.

In this chapter, we use simulation data to test the feasibility of extracting peculiar velocities

from kSZ effect by deep learning architectures. In section 2.2, we describe the relation between

the SZ effect and the peculiar velocity. In section 2.3, we introduce the simulation we used for

generating training and validation data. In section 2.4, we display the CNN structure of the deep

learning model. In section 2.5, we explain the training methods and results of the model. In

section 2.6, we display the error analysis for the model. In section 2.7, we examine the model

predictions through the pairwise velocity statistic. In section 2.8, we discuss the feasibility of the

model using various noise templates. In section 2.9, we conclude this chapter.

2.2 Sunyaev-Zel’dovich Effect

The relation between radial motions of galaxy clusters and the observed radiation temperature was

first introduced by Sunyaev & Zeldovich (1980) with the Equation 2.1, where τ =
´

σT Nedl is the

optical depth with respect to Thomson Scattering. σT is the Thomson Scattering cross-section and

Ne is the electron density.

v =− c
τ

∆TkSZ

TCMB
, (2.1)

On the other hand, the tSZ effect (Sunyaev & Zeldovich, 1970) is usually expressed by the

Compton y parameter:
4TtSZ

TCMB
= y f (x), y =

ˆ
kBTe

mec2 σT Nedl, (2.2)

where f (x) = xcoth(x/2)−4 and x is the dimensionless frequency given by x = hν/(kBTCMB).

Since the kSZ signal is independent of the redshift and has a strong suppression on the sec-

ondary CMB anisotropy, the kSZ effect can be available up to the era of reionization. However,

due to the weakness of the signal and the error in optical depth measurement, the peculiar velocity

estimation from kSZ effect is still very challenging in real observations.

Alternatively, the potential of utilizing numerical simulations for estimating peculiar veloc-

ity from kSZ effect are being studied extensively. For instance, Soergel et al. (2017) has shown
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promising results with obtaining pairwise velocity statistics with kSZ effect by applying map fil-

tering to the signals and used tSZ signal to estimate average optical depth.

For both the observation and the simulation, the requirement of optical depth is inevitable when

using the conventional method to kSZ peculiar velocity. In addition, the estimation of optical depth

in simulation is various between models with and without star-formation and feedback. The mea-

surement of optical depth for single cluster in observation is even harder. Therefore, a new method

that can predict peculiar velocity from the kSZ effect without optical depth would reduce the dif-

ficulty in calculating kSZ peculiar velocity significantly. The deep learning algorithms provide a

possible approach to achieve it. A training data set from a numerical simulation with a realistic

SZ map-making pipeline may empower a deep learning model to simplify the computation in the

estimation of peculiar velocities by avoiding the signal integral, map filtering and optical depth

estimates.

2.3 Simulation and Training Data

The Deep Neural Networks typically require a large amount of training data in order to optimize a

large amount of weights. Therefore, a big enough cosmological simulation that can provide large

number of galaxy cluster samples is necessary. In addition, the simulation data must resemble

idealized observations from telescopes, which leads to a lightcone pipeline to generate kSZ and

tSZ images.

In this paper, we use the Magneticum Simulations1 to generate kSZ and tSZ cluster images.

The Magneticum simulations are a set of cosmological hydrodynamical simulations with a large

range of scales and resolutions. The Magneticum Simulations are generated by an extended version

of the N-body/SPH GADGET3 code (Springel et al., 2001; Springel, 2005; Beck et al., 2016) with

WMAP7 (Larson et al., 2011) cosmological parameters from Komatsu et al. (2011). The dark

matter only (DM-only) simulation includes dark matter and dark energy which provide gravity

information, while the hydrodynamical simulation uses the hydrodynamic equations to include the

1http://www.magneticum.org
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Table 2.1: The cosmological parameters of the Magneticum Simulation Box0 and parameters of
training data sets

Matter density, Ωm 0.272
Cosmological constant density, ΩΛ 0.728
Baryon density, Ωb 0.046
Hubble parameter, h (100kms−1Mpc−1) 0.704
Amplitude of matter density fluctuations, σ8 0.809
Primordial scalar spectral index, ns 0.963
Box size (h−1Mpc) 2688
Number of particles 2×45363

Mass of dark matter particles, mdm (109h−1M�) 13
Mass of gas particles, mgas (109h−1M�) 2.6
Softening of particles, fp (h−1kpc) 10
Softening of stars, fs (h−1kpc) 5
Redshift of slice 1 [1.04,1.32]
Redshift of slice 2 [1.32, 1.59]
Redshift of slice 3 [1.59, 1.84]
Redshift of slice 4 [1.84, 2.15]
Mass of galaxy clusters > 1013M�
kSZ maps of each slice 10,000
tSZ maps of each slice 10,000
Size of maps 2Rvir

baryonic component, which can be described as an ideal fluid. With the baryonic particles and

temperature information, the SZ signal can be detected by tracking back along the line of sight.

In this chapter, we use the largest box, Box0, in the Magneticum Simulation suite. Table 2.1

shows the cosmological parameters of the simulation box and the parameters of our data sets. We

take four redshift slices from the simulation that cover redshift in a range of [1.04, 2.15]. From

those four redshift slices, we generated 40000 kSZ and 40000 tSZ images (10000 images for each

redshift slice) through SMAC (Dolag et al., 2005), which is a map making utility for idealized

observations. The size of a cluster image is set to be two times of its virial radius. To reduce

the calculation expense, we use the redshift of each slice instead of the redshift of each cluster in

calculating the virial radius, which means the size of the cluster images is not perfectly normalized

to the virial radius. According to our test, the difference is tiny and its effect on the final results is

negligible.
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Figure 2.1: kSZ images (upper panel) and tSZ images (lower panel) of six clusters. The unit of the
kSZ images is sinh−1(∆TkSZ/TCMB×106), and the unit of the tSZ image is log10(y×106).

Figure 2.1 shows the kSZ and tSZ examples of six clusters generated from the Magneticum

Simulation. We train the neural network with 80% of the kSZ & tSZ images, which are similarly

to the examples shown in figure, and use the remaining 20% as validation data for testing.

2.4 The Learning Model

An end-to-end deep learning algorithm is implemented here to predict the peculiar velocity from

kSZ effect. Convolutional Neural Networks (CNNs) are an obvious choice for such image-based

regression analyses due to the following reasons: First, the amount of generated data (40000 kSZ

images) can be efficiently utilized in deep learning neural networks which consist of a large number

of trainable model parameters called weights. It can be seen that with respect to the scaling of

accuracy with the size of the data set, deep learning neural networks outperform most existing

machine learning models. Secondly, despite having characteristic features in the SZ image (as

seen in Figure 2.1), the modeling is complex and the feature-mapping to peculiar velocity is not

straightforward due to the optical depth. This makes feature-agnostic training algorithms like

CNNs is more desirable than feature-specified learning methods for modeling SZ images. The

CNNs can extract high and low level features from a series of convolutional filters, which are used

to train the peculiar velocity prediction model.

While there are numerous advanced deep learning neural network architectures in literature and
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Figure 2.2: Schematic Convolutional Neural Network architecture for regression including kSZ
effect only. The real architecture used in this analyses is multiple blocks of convolutional, pooling
and dropout layers repeated before feeding the dense layers.

under active research, our goal is not to achieve the best accuracy. Instead, we would simply like to

demonstrate the feasibility of using deep learning neural networks to estimate peculiar velocities

using the direct input of kSZ images and highlight the advantage of such simulation-based training

approaches over traditional calculation techniques on the kSZ peculiar velocity estimation.

Figure 2.2 shows our CNN architecture with only kSZ images as input data. It follows a

Conventional Deep Neural Network architecture like the CIFAR-10 (LeCun et al. 2015), with

layers stacked sequentially. The kSZ image, the input data, will be addressed through several

layer blocks (includes convolutional, pooling and dropout layers) and multiple dense layers to get

peculiar velocity as the output. Short descriptions of each layer are as follows: 1. Convolutional

layers consist of numbers of image kernels that extract morphological features of images. While
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Figure 2.3: Schematic Convolutional Neural Network architecture for regression including both
kSZ and tSZ effect. The real architecture used in this analyses is multiple blocks of convolutional,
pooling and dropout layers repeated before feeding the dense layers.
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the high-level features are extracted at the initial layer, a more abstract featured map (2D matrix

that contains the image information) is obtained after. 2. The pooling layer operates on each

map independently, and progressively reduces the spatial size of the map to reduce the amount of

computations in the network. 3. Dropout layers re-initialize a sub-set of neurons of the network

at every epoch of the training, which reduces the chances of over-training. 4. The flattening layer

converts the map from 2-D matrix to a single 1-D vector. 5. Dense layers change the dimension of

the flattened 1-D vector to peculiar velocity scatter corresponding to the input image.

Overall, the repeated convolutional layer blocks extract abstract featured maps from the images,

which are then used as inputs in the dense layers toward to the end of the network. As opposed

to the image classification, this regression pipeline has a linear activation to get point estimation

of the peculiar velocity. In addition, the loss function is defined by the mean square error (MSE)

value L = (v− vp)
2, where v is the true peculiar velocity and vp is the predicted peculiar velocity

from deep learning model. By providing enough correct data to learn from, the model would be

trained to project the input kSZ images to the output peculiar velocities.

The model of including both kSZ and tSZ images has similar architecture with an independent

repeated convolutional structure, shown in figure 2.3. The only difference in the combined SZ

image analysis is that the kSZ and tSZ are computed in separate branches. After the flattening

layer, the outputs from those two branches are concatenated to a 1-D vector, which is then fed into

a dense layer block for predicting the peculiar velocity.

2.4.1 Uncertainty Quantification

One of the shortcomings of a traditional regression analysis with CNNs is that it lacks proper treat-

ment for the uncertainty quantification. Methods like Bayesian Neural Network frameworks using

Markov Chain Monte Carlo (MCMC) or Variational Inference (VI) techniques have been explored

for solving this problem. However, most of these methods are challenging due to convergence,

diagnosis or computational expenses.

Alternatively, Monte Carlo (MC) Dropout method (see Gal & Ghahramani (2015) for a de-
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tailed review) enables utilizing existing trained deep learning models in interpreting prediction

uncertainty. While the dropout layer is generally used to avoid over-fitting in the training phase,

using it in the testing phase can be a highly useful uncertainty quantification. It also shown by Gal

& Ghahramani (2015) that the MC dropout is a Bayesian approximation of Neural Networks to

Gaussian processes, where the error modeling is formally defined.

The implementation involves an ensemble of neural networks (of ensemble size Ntot) that only

differ from each other by a fraction (prescribed by the dropout rate d) of trained neurons that are

dropped out. We use our base architectures shown in Figures 2.2 and 2.3 with dropout rate d =

0.5 and form an ensemble of Ntot = 100 test-phase networks. We find the prediction uncertainty

reduces with the dropout rate. We use a large dropout rate (d = 0.5) in this chapter to test out

model with more challenges.

The validation image I is forward propagated through each of the network, providing individual

point-predictions vi
p(I), where i = 0, ...,Ntot . The mean and standard deviation of the prediction

for each image is calculated by < vp >= 1
Ntot

∑
Ntot
i vi

p(I) and σv =
1

Ntot
∑

Ntot
i [vi

p(I)−< vp >]2.

Hence, the MC dropout is a simple prediction uncertainty quantification tool, without any ad-

ditional expensive computation tasks while training, unlike the Bayesian Neural Networks that

explicitly define distributions in predictions Kendall & Gal (2017). In addition to providing un-

certainty estimations, such ensemble methods can also monitor failure modes, i.e., the choice of

network architecture and training schemes can be compared in terms for robustness of the results.

2.5 Training

We build two models respective to the two CNN architectures in section 2.4: Model I, kSZ only

model shown in Figure 2.2; Model II, the combined kSZ and tSZ model shown in Figure 2.3.

For training strategy, we check the universality of the model in different redshifts by training the

models with data of single redshift slices and with data of multiple redshift slices (all the four

redshift slices).

For Model I, we first train the model with kSZ images of each redshift slice, which means we
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Figure 2.4: The results of the Model I trained by kSZ images of each redshift slice. The x-axis
shows the true peculiar velocity and the y-axis indicate the predicted peculiar velocity. The red
solid line shows the 1:1 ideal relation between the true and predicted velocities, the navy dashed
line shows the regular linear fitting of the scatters, and the black dotted line shows the uncertainty
weighted linear fitting of the scatters. The error bar shows the uncertainty of the predicted velocity
using the MC Dropout method.

train the model four times independently and each time use the 80% of the 10000 kSZ images of a

single redshift slice; secondly, we train the model with the data of multiple redshift slices, which

means the training data is the 80% of the whole 40000 kSZ images.

Model II is trained with both kSZ and tSZ images. Due to the scaling relation between τ and y

(Battaglia, 2016), adding tSZ images into training may improve network predictions by including

information of optical depth.

Figure 2.4 shows the prediction results of Model I trained by kSZ images of single redshift

slices. In the figure, we show two linear fittings of the scatter: regular (uniform-weighted) fitting

and uncertainty weighted fitting, where the weight equals to 1/σv. Though the regular fitting (navy
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dashed line) is biased from the 1:1 ideal expectation (red solid line), the uncertainty weighted fitting

result (black dotted line) agrees with the ideal expectation well. In the figure, k value shows the

slope of the uncertainty weighted fitting. Although trained by data from different redshift slices,

the prediction results of those four training sets have very similar fitting slopes, which means the

model for predicting peculiar velocity from kSZ images is fairly stable with different redshift.

This is consistent with eq. 2.1 that the kSZ effect is independent of the redshift. In addition, the

similarity of contours (tested but not shown in the figure) of the scatters of different redshfit slices

proves the redshift independence.

Figure 2.5 shows the results of the Model I trained by the kSZ images from multiple redshift

slices, which covers a larger redshift region. Comparing with figure 2.4, figure 2.5 has larger

scatters due to more validation data. However, the fitting slope is similar as figure 2.4. Though the

model trained by full data (from all four redshift slices) may have larger errors, it covers a larger

region which makes the model more universal and flexible for applications.

In both figure 2.4 and 2.5, the predictions (vp) using kSZ images show good agreements with

the true velocities (v). However, the difference from the regular fitting line to the expectation shows

that some predictions of the model have inevitable bias from the expectation. Since the Model I

does not include information of optical depth, we add tSZ information into the training to explore

a possible improvement (Model II).

The prediction results of Model II trained by both kSZ and tSZ images of single and multiple

redshift slices show negligible difference from the results of Model I. Figure 2.6 shows the results

of Model II using data of multiple redshift slices. Similar as Model I, the results of Model II are

redshift independence. However, the fitting slope and the scatters are not improved by adding tSZ

information into consideration. The similar performances between Model I and Model II might

mean that the deep learning neural network could estimate the peculiar velocity well enough with

only kSZ input, which simplifies the calculation significantly.
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Figure 2.5: The results of the Model I trained by kSZ images of multiple redshift slices. The x-
axis shows the true peculiar velocity and the y-axis indicate the predicted peculiar velocity. The red
solid line shows the 1:1 ideal relation between the true and predicted velocities, the navy dashed
line shows the regular linear fitting of the scatters, and the black dotted line shows the uncertainty
weighted linear fitting of the scatters. The error bar shows the uncertainty of the predicted velocity
using the MC Dropout method.
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Figure 2.6: Same as figure 2.5 but for Model II trained by both kSZ and tSZ images.
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Figure 2.7: The prediction of Model I (blue line), result of conventional method (red line) and true
velocities from the simulation (black line). The left panel shows the results of 2000 testing clusters
in each redshift slice and the right panel shows amplification of the selected areas (areas between
the black dotted lines).

2.5.1 Comparing with Conventional Method

The conventional method for estimating peculiar velocities from kSZ effect requires information

of optical depth of each individual clusters (equation 2.1). The optical depth of individual clusters

in this chapter is calculated through equation:

τcluster =

´ Rvir
0

´ l+
l−

σT Nedldr

πR2
vir

, (2.3)

where l− = −100h−1Mpc, l+ = +100h−1Mpc and Rvir is the virial radius of clusters. Therefore,

the optical depth of individual clusters is calculated by averaging the electron density within the

virial radius. The integral distance for the optical depth is 200 h−1Mpc, which is large enough

since it has already converged at 100 h−1Mpc. The kSZ value used in the conventional method is

calculated by averaging the kSZ signals of each cluster within its virial radius.

Figure 2.7 shows the results of Model I and conventional method of each redshift slice. From

the figure, we could find that the predictions using the deep learning neural network and conven-

tional method both have very strong correlations with the true peculiar velocity from the simu-

lation. However, the predictions of conventional method show smaller magnitude than the pre-

dictions of deep learning neural networks and the true velocity. The bias caused by the smaller
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magnitude becomes more obvious in the figure 2.8. The slope of the fitting line of conventional

method is around 0.45, which indicates a significant bias from the expected value (the true peculiar

velocity).

For conventional method, the choice of the averaging area of the cluster is heuristic, therefore,

the calculations of kSZ signals and optical depth are affected the averaging radius or aperture.

We set the averaging radius of the calculation to be the virial radius of each cluster. However,

the setting of averaging radius may miss some features of kSZ signals out side the radius. The

deep learning algorithm, instead, provides a better approach for dealing with the image that it

can extract more details about the cluster pattern from kSZ images with convolutional neural net-

works. Therefore, it provides less biased velocity predictions. In addition, the deep learning neural

network provides reasonable predictions without optical depth information, which makes it more

powerful for estimating peculiar velocities in observations due to difficulties in measuring optical

depth.

2.6 Error Analysis

In this section, we quantify the uncertainty in order to test the performance of our models. Since the

difference between the results of Model I and Model II is negligible, we only present the dropout

uncertainties of Model I in this section. In the figure 2.5, the dropout uncertainties increase with

the magnitude of the predicted velocity, and the average relative dropout uncertainty (∆vp/vp) is

about 25%.

However, the value of the relative uncertainty is highly affected by its denominator, the pre-

dicted velocity vp. Though the dropout uncertainty of low vp is smaller than the uncertainty of high

vp, the smaller denominator will increase the relative uncertainty of low vp. Therefore errors of low

velocity clusters might bias the estimate of the average uncertainty. We set different velocity limits

(vlimit) to eliminate the effect from the low velocities, which is shown by the red line in figure 2.9.

Eliminating velocities lower than 20 km s−1 reduces the average uncertainty significantly to about

12%. With larger velocity limits, the average uncertainty converges to about 8%.
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Figure 2.8: The linear fitting of the results of Model I and conventional method. The x-axis shows
the true peculiar velocity and the y-axis indicate the predicted peculiar velocities. The red solid
line shows the 1:1 ideal relation between the true and predicted velocities, the navy dashed line
shows the regular linear fitting of Model I predictions, and the green dash-dotted line shows the
fitting of the conventional method result.
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Figure 2.9: The average dropout uncertainties and the average scatter in percentage of Model
I trained by data from multiple redshift slices with different velocity limits. The x-axis is the
velocity limits, for instance the label 20 in x-axis means eliminating all the predicted velocities
lower than 20 km s−1 (|vp|< 20). The y-axis is the average uncertainties and the average scatter in
percentage. The red line indicates the average uncertainties in percentage and the blue line shows
the average scatter in percentage.
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In addition, the scatter between the true velocity v and the predicted velocity vp is another factor

that affects the accuracy of the prediction. Using the same method, we calculate the average scatter

with different velocity limits, which is shown by the blue line in figure 2.9. After eliminating the

velocities lower than 20 km s−1, the average scatter becomes to about 38%.

2.7 Pairwise Velocity

Though our model trained by simulation data provides predictions with average uncertainties

around 12%, the average scatter off from expectations is not ideal (38%). In addition, the uncer-

tainty using observational kSZ signals can be worse due to difficulties in the detection. Therefore,

ensemble statistics of peculiar velocities is more necessary than analysis of individual velocities.

We apply pairwise velocity statistic to the predicted peculiar velocity.

Figure 2.10 shows the pairwise velocity statistics of Model I trained by the data from multiple

redshift slices. In the pairwise velocity calculation, we use the all the predicted velocities without

any velocity limits. Although the uncertainty and scatter without velocity limits are larger, the pair-

wise velocity results of predictions agree with the results of true velocities within tiny uncertainties

(error bars). The uncertainty of the pairwise velocity are calculated through two different ways: 1)

the jackknife method and 2) perturbation method that is perturbing the velocity catalog 100 times

by the dropout uncertainty and calculating the statistical error through the standard deviation of

the 100 perturbed catalogs. In the figure, the error bars of the perturbation method are significantly

small, which are invisible.

2.8 Feasibility to Observations

To test the feasibility of our model to observations, we mimic observational kSZ signals by per-

turbing the simulated kSZ images with multiple noise models. We employ three noise schemes in

the perturbations: 1) Gaussian blur noise, 2) white noise, and 3) residual tSZ signals.

Figure 2.11 shows the example images using different noise schemes. For 1) the Gaussian blur
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Figure 2.10: The pairwise velocity statistic of true velocities and predicted velocities of Model
I. The black dashed line shows the result of true velocities, the blue line indicates the result of
predicted velocities with error bars showing the statistical errors using jackknife method, and the
red dotted line indicates the results of predicted velocities with error bars calculated through the
perturbation method.
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Figure 2.11: kSZ images with different noise schemes.

27



noise, we set the smoothing width equal to 8% of the cluster virial radius. The Gaussian blur width

varies from observations. Here, we do not use any observation setting as reference for the Gaussian

blur width, since we are only testing the effect of Gaussian blur noise on the model with simulation

data. For 2) the white noise scheme, we use Gaussian distribution noise with the standard deviation

equals to the average value of the original kSZ signal, which means the noise-to-signal ratio equals

to one. Again, this ratio is only used for testing. For 3) the residual tSZ signal as noise, we added

1% tSZ signals to the kSZ image to mimic the possible noise caused by the remnant tSZ signals in

kSZ observations. The 1% fraction is a testing value too.

We test our model with those noise schemes and present the predictions in figure 2.12. One

should notice that we implement two methods in the test: 1). the model is trained without noise

but tested with the noisy images (blue scatters and navy dotted lines); 2). the model is trained and

tested both by the noisy images (green scatters and dark green dashed lines).

For method 1), our model shows great compatibility with the white noise. However, the predic-

tion of adding the residual tSZ noise shows bias from expectations, and the bias of adding Gaussian

blur noise is even worse.

For method 2), the prediction of white noise shows no difference from the method 1). Fur-

thermore, biases caused by the Gaussian blur and residual tSZ noise are improved by training the

model with noisy images, especially for the Gaussian Blur noise.

Due to the difficulty in kSZ and optical depth detections, the observational kSZ detection for

individual clusters is very rare and the peculiar velocity estimated from kSZ observations is not

accurate enough (Sayers et al., 2019) to train a deep learning model. Therefore, the possibility

for applying the deep learning neural network model on estimating peculiar velocities from kSZ

observations is to train the model with simulation data. In this chapter, we only tested three possi-

ble sources of uncertainties (Gaussian blur, white noise, and residual tSZ signal) in observations,

and the intensity of those noise are set only for testing. A real kSZ observation may include more

kinds of noise, such as residual CMB anisotropy signals. Therefore, to apply the deep learning

algorithm to a specific observation, the simulated training data set should include noise that repre-
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Figure 2.12: Predictions with different noise schemes. The models are trained by data of multiple
redshift slices with (green) and without (blue) noise and tested by the noisy kSZ images. The red
line shows the 1:1 ideal relation between the true and predicted velocities. The blue scatters and
navy dotted lines show the results and linear fitting of models trained by kSZ images without noise
and tested by the kSZ images with noise. The green scatters and dark green dashed line show the
results of models trained and tested by kSZ images with noise.
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sent the corresponding observation conditions. Considering the advantages of using deep learning

neural networks than using the conventional method ( subsection 2.5.1), estimating peculiar ve-

locities from kSZ effect with deep learning algorithms is very promising. With the upcoming kSZ

detections (e.g. Mittal et al., 2018), a suitable machine learning model for observational kSZ is

foreseeable.

2.9 Conclusion

The conventional method of estimating peculiar velocities from the kSZ effect requires several

steps, such as integration of signals, map filtering, and optical depth estimates. In addition, the

error in optical depth estimate makes it difficult to predict the peculiar velocity accurately.

In this chapter, we test the feasibility of using deep learning neural networks to simplify the

estimation of peculiar velocities from the kSZ effect. We find our deep learning model is redshift

independent, which is consistent with the theory, by comparing results using simulation data from

different redshift slices.

Considering the relation between the tSZ effect and the optical depth, we build models that are

trained by kSZ images only (Model I) and kSZ+tSZ images (Model II). Those two models have

similar predictions and uncertainties. We find that the average uncertainty of Model I is about 12%

and the average scatter is about 38%. Although the average scatter is not ideal, the pairwise velocity

statistic of the predictions indicates that our model can provide reliable kSZ peculiar velocities for

cosmological studies elaborate further.

The similar results of Model I and Model II indicate that including tSZ does not show signifi-

cant improvement to the velocity predictions when using deep learning neural networks. Accord-

ing to our model structures and prediction results, we have two explanations for the inefficacy of

Model II. First, the predictions of Model I have a good fitting with slope around one, therefore the

improvement of adding tSZ effect is negligible. In this instant, simplifying of the kSZ peculiar

velocity estimate using deep learning neural networks performs even better than our original ex-

pectations. Second, our model structure and training is not sufficiently accurate to show the effect
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of tSZ. Though the prediction of Model I has a good fitting curve, adding tSZ input may have the

possibility to improve the scatter, further detailed studies are needed to resolve this issue.

We test applying our model to observations by perturbing the kSZ signals with three noise

models: Gaussian blur, white noise and residual tSZ noise. For using noise-free training data and

noisy validation data, the predictions with white noise show little bias, whereas the biases caused

by the Gaussian blur and residual tSZ are significant. However, those biases can be reduced by us-

ing noisy data for both training and testing. It proves that deep learning neural network can be used

to estimate peculiar velocities from the kSZ effect for simulations and for observations. A possi-

ble way for applying the deep learning neural network to observations is to train the model with

simulated training data sets that include noise models corresponding to observations. However, a

suitable model for observations still needs more kSZ detections of individual galaxy clusters in the

future.

To summarize, using deep learning neural networks to estimate peculiar velocities from the

kSZ effect is both feasible and promising. It simplifies the calculation of kSZ peculiar velocities

significantly with only kSZ input, and thus avoids the error prone estimation of optical depth as

well as map filtering.
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Chapter 3

The Peculiar Velocity Correlation Function

In this chapter, we present an analysis of the two-point peculiar velocity correlation function using

data from the Cosmicflows catalogues. The Millennium and MultiDark Planck 2 N-body sim-

ulations are used to estimate cosmic variance and uncertainties due to measurement errors. We

compare the velocity correlation function to expectations from linear theory to constrain cosmo-

logical parameters. Using the maximum likelihood method, we find values of Ωm = 0.315+0.205
−0.135

and σ8 = 0.92+0.440
−0.295, consistent with the Planck and WMAP CMB derived estimates. However,

we find that the cosmic variance of the correlation function is large and non-Gaussian distributed,

making the peculiar velocity correlation function less than ideal as a probe of large-scale structure.

The results in the chapter were first discussed in Wang et al. (2018).

3.1 Introduction

The peculiar velocity field is a sensitive probe of mass fluctuations on large scales and a powerful

tool for constraining cosmological parameters. However, the precision measurement of the velocity

field is limited by the error in the measurement of radial distance. Many methods have been

introduced to measure the distance with the smallest possible error, such as Tully-Fisher (TF)

(Tully & Fisher, 1977), Faber-Jackson (Faber & Jackson, 1976), and the Fundamental Plane (FP)

(Djorgovski & Davis, 1987; Dressler et al., 1987b).

These methods do not directly measure radial distance. Rather they estimate the distance modu-

lus, which is proportional to the logarithm of the distance. While the errors in the distance modulus

are Gaussian, the distances themselves have a non-Gaussian error distribution which may bias the
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results. To address this issue, Watkins & Feldman (2015a) introduced a new unbiased estimator

of the peculiar velocity that gives Gaussian distributed errors. In this chapter we will use this un-

biased estimator together with the measured redshift (see also Davis & Scrimgeour, 2014; Tully

et al., 2016) to derive the velocity correlation function.

The fractional observational errors of the radial distances are typically on the order of ≈ 20%

(e.g. Masters et al., 2006; Springob et al., 2007; Tully et al., 2013), and peculiar velocities tend to

have errors proportional to the distances, which may be large. Because of this large error, a single

peculiar velocity measurement is not a good approximation of the velocity of a galaxy. However,

statistical ensembles, especially the low-order moment statistics, may be a good estimator of the

cosmic velocity field and thus a good tracer of the underlying mass distribution in the Universe

(e.g. Feldman & Watkins, 2008; Watkins et al., 2009; Feldman et al., 2010; Davis et al., 2011;

Nusser et al., 2011; Macaulay et al., 2011; Turnbull et al., 2012; Macaulay et al., 2012; Nusser,

2014; Springob et al., 2014a; Johnson et al., 2014; Scrimgeour et al., 2016a).

Many recent studies have focused on the bulk flow, which is the lowest order statistic of the

velocity field and is generally thought of as the average of peculiar velocities in a volume (e.g.

Abate & Feldman, 2012; Nusser, 2014; Kumar et al., 2015; Seiler & Parkinson, 2016; Scrimgeour

et al., 2016b; Nusser, 2016). Bulk flows are typically calculated using one of two popular methods.

The first is the maximum likelihood estimate (MLE) method (e.g. Kaiser, 1988; Watkins &

Feldman, 2007). The MLE formalism estimates the bulk flow as a weighted average of the sam-

ple velocities, with the weights calculated to minimize its overall uncertainty given the positions,

velocities and errors distributions in the catalogue. The formalism reduces the entire dataset to

three numbers, namely the components of the bulk flow vector. Since the particular data and error

distribution in the surveys analyzed are unique to each catalogue, it is difficult to compare the bulk

flow calculated using this method between independent surveys.

The other popular formulation is the minimum variance (MV) method (Watkins et al., 2009;

Feldman et al., 2010; Scrimgeour et al., 2016a). The MV formalism minimizes the differences

between the actual observational data and an “ideal" survey that may be designed to probe a volume
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in a particular way. It can be used with Gaussian-weighted (Agarwal et al., 2012b) or tophat-

weighted ideal survey distributions (Davis et al., 2011; Hoffman et al., 2016). Because it uses a

standard ideal survey bulk flow as a reference, it easily lends itself to direct comparisons between

independent surveys.

Another approach to studying the large-scale velocity field is the pairwise velocity statistic

(v12) (Ferreira et al., 1999; Juszkiewicz et al., 2000; Feldman et al., 2003; Hellwing, 2014; Hell-

wing et al., 2014), which is the mean value of the peculiar velocity difference of a galaxy pair at

separation r. Recent studies show that it can also be used to detect the kinetic Sunyaev-Zel’dovich

effect (Zhang et al., 2008; Hand et al., 2012; Planck Collaboration et al., 2016a).

In this chapter we will use a different approach to probe the cosmic velocity field, namely

the peculiar velocity correlation function. It was first introduced by Gorski (1988) and further

elucidated in Gorski et al. (1989). In subsequent studies, the velocity correlation function has

shown potential for providing interesting constraints on cosmological parameters (e.g. Jaffe &

Kaiser, 1995; Zaroubi et al., 1997; Juszkiewicz et al., 2000; Borgani et al., 2000; Abate & Erdoǧdu,

2009; Nusser & Davis, 2011; Okumura et al., 2014; Howlett et al., 2017). At the time that the

original studies of velocity correlation were done, the small sizes of peculiar velocity catalogues

limited its usefulness. The recent availability of large, calibrated catalogues of peculiar velocities

and large-scale cosmological simulations suggests that the it is worthwhile to revisit the velocity

correlation function as a cosmological probe.

Here we will present a feasibility study of this statistic for the study of the large-scale-structure

given state-of-the-art peculiar velocity catalogues CosmicFlow-2 (CF2) (Tully et al., 2013) and

CosmicFlows-3 (CF3) (Tully et al., 2016). In particular, we assess the magnitude of the cosmic

variance expected in the correlation function using mock catalogues extracted from the Millennium

Simulation1. Using this result, we show that the velocity correlation functions calculated from

CF2 and CF3 are consistent with the standard cosmological model. However, our results suggest

that the particular cosmological volume we live in is on the higher end of the cosmic variance,

1http://gavo.mpa-garching.mpg.de/Millennium/
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suggesting that the ∼150h−1Mpc radius region around us has greater large scale motions than one

would expect on average.

The organization of this chapter is as follows: in section 3.3 we detail our use of N-body

simulations to generate mock surveys. In section 3.2 we introduce the velocity correlation statistic

and the methods used to calculate it. In Section 3.4 we discuss the use of the Monte Carlo method

for error analysis. In section 3.5, we show the results for the velocity correlation function using

the CosmicFlows catalogues. In Section 3.6 we explore using the correlation function to constrain

cosmological models. Section 3.7 concludes this chapter.

3.2 Velocity Correlations

Measuring the velocity correlation tensor Ψi j(r) =
〈
vi(r1)v j(r2)

〉
directly is untenable in prac-

tice, since we can only measure the radial component of a galaxy velocity. Gorski et al. (1989)

got around this problem by introducing two velocity correlation statistics that use only the radial

peculiar velocity, u = v · r̂,

ψ1(r) ≡
Σpairs(r)u1u2 cosθ12

Σpairs(r) cos2 θ12
, (3.1)

ψ2(r) ≡
Σpairs(r)u1u2 cosθ1 cosθ2

Σpairs(r) cosθ12 cosθ1 cosθ2
. (3.2)

where r = |r2− r1| is the scalar separation between galaxies and the sums are performed over

separation bins, the quantities u1 and u2 are the radial peculiar velocities of the first and second

galaxy in a given pair, respectively. The angles θ1, θ2 are the angles between the position vectors

of galaxies, ri, and the vector separating them, e.g. cosθ1 = r̂1 · r̂, where r̂ = r2−r1
r . The angle θ12

is the angle between the position vectors of the two galaxies, so that cosθ12 = r̂1 · r̂2. Thus the

numerator of ψ1 is the sum over the dot products of the radial peculiar velocities, while that of ψ2

is the sum over the products of the components of the radial velocities along the separation vector.

Theoretically, the velocity field should be a potential flow field (Bertschinger & Dekel, 1989),

35



so that the radial peculiar velocity field should in principle carry all of the information contained in

the full 3-D velocity field. Indeed, Gorski et al. (1989) showed that when making this assumption,

the radial and transverse velocity correlation tensor Ψi j = 〈viv j〉 can be recovered from the statistics

ψ1 and ψ2. We begin by expressing the correlation between radial peculiar velocities in terms of

the velocity correlation tensor,

〈u1u2〉= r̂1r̂2〈v1iv2 j〉r̂1ir̂2 j , (3.3)

Gorski (1988) showed that the full velocity correlation tensor can be written in terms of two inde-

pendent functions Ψ‖(r) and Ψ⊥(r), the correlation of the components of the velocity along and

perpendicular to the vector separating two galaxies respectively,

〈v1iv2 j〉=
[
Ψ‖(r)−Ψ⊥(r)

]
r̂1ir̂2 j +Ψ⊥(r)δi j , (3.4)

and r = r2− r1.

Plugging Eqs. (3.3) and (3.4) into Eqs. (3.1) and (3.2) results in

ψ1(r) = A(r)Ψ‖+[1−A(r)]Ψ⊥ , (3.5)

ψ2(r) = B(r)Ψ‖+[1−B(r)]Ψ⊥ , (3.6)

where functions A(r) and B(r) are given by

A(r) =
Σpairs(r) cosθ1 cosθ2 cosθ12

Σpairs(r) cos2 θ12
, (3.7)

B(r) =
Σpairs(r) cos2 θ1 cos2 θ2

Σpairs(r) cosθ12 cosθ1 cosθ2
. (3.8)

Note that the functions A and B are independent of the velocities and only depend on the distribu-

tion of the galaxies in the sample.

Inverting these relations, we can express the parallel and perpendicular components of the
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velocity correlation as simple linear combination of ψ1 and ψ2,

ψ‖(r) =
[1−B(r)]ψ1(r)− [1−A(r)]ψ2(r)

A(r)−B(r)
, (3.9)

ψ⊥(r) =
B(r)ψ1(r)−A(r)ψ2(r)

B(r)−A(r)
. (3.10)

These relations allow us to estimate the physically meaningful 3-D velocity correlations from cat-

alogues using only measurements of radial peculiar velocities.

Eqs. (3.1), (3.2), (3.7), (3.8), (3.9) and (3.10) all involve sums over pairs of galaxies whose

separation falls within a given bin. Thus it is important to determine the positions of galaxies as

accurately as possible. Here we will follow previous researchers (Gorski et al., 1989; Borgani

et al., 2000) and use redshift to estimate galaxy distances and hence galaxy separations. Redshift

provides more accurate distances than distance indicators for all but the closest galaxies in our

catalogues and also removes the need for Malmquist bias corrections (e.g. Davis et al., 1996;

Willick et al., 1997; Tully et al., 2016).

3.3 Mock Catalogues

To study the properties of the velocity correlation function, we use mock catalogues generated

from the Virgo - Millennium Database of the Millennium Simulation (Springel et al., 2005), which

contains the result of the L-Galaxies run used in De Lucia & Blaizot (2007). The Millennium

Simulation is a dark matter only simulation using the GADGET-2 simulation code (Springel et al.,

2005). Table 3.1 (Guo et al., 2013) shows the cosmological parameters of the simulation we used.

We generate 100 mock catalogues for each real survey centered at random locations in the box.

Each mock catalogue is designed to have the same radial selection function as the real CF2/CF3

surveys we use here.

Each of the CosmicFlows catalogues comes in two versions, one where galaxies are given

individually, which we will call the galaxy compilation, and a group catalog where galaxies in

known groups have had their distance moduli and redshifts averaged, resulting in a single velocity
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Table 3.1: The cosmological parameters of the Millennium Simulation

Matter density, Ωm 0.272
Cosmological constant density, ΩΛ 0.728
Baryon density, Ωb 0.045
Hubble parameter, h (100kms−1Mpc−1) 0.704
Amplitude of matter density fluctuations, σ8 0.807
Primordial scalar spectral index, ns 0.967
Box size (h−1Mpc) 500
Number of particles 21603

Particle mass, mp (108h−1M�) 8.61
Softening, fc (h−1kpc) 5

and position for the group as a whole . The CF2 galaxy catalogue (CF2-galaxy) (Tully et al., 2013)

contains 8,135 galaxies, whereas the CF2 group catalogue (CF2-group) contains 4,842 galaxies and

groups. The characteristic depth of both catalogues is∼ 33 h−1Mpc (Watkins et al., 2009; Feldman

et al., 2010; Agarwal et al., 2012b). The CF2 catalogues were assembled by a compilation of Type

Ia Supernovae (SNIa) (Tonry et al., 2003), Spiral Galaxy Clusters (SC) TF clusters (Giovanelli

et al., 1998; Dale et al., 1999), Streaming Motions of Abell Clusters (SMAC) FP clusters (Hudson

et al., 1999, 2004), Early-type Far Galaxies (EFAR) FP clusters (Colless et al., 2001), TF clusters

(Willick, 1999), the SFI++ catalogue (Masters et al., 2006; Springob et al., 2007, 2009), group

SFI++ catalogue (Springob et al., 2009), Early-type Nearby Galaxies (ENEAR) survey (da Costa

et al., 2000; Bernardi et al., 2002; Wegner et al., 2003) and a surface brightness fluctuations (SBF)

survey (Tonry et al., 2001).

The CF3-galaxy catalogue (Tully et al., 2016) contains 17,669 galaxies, including all the CF2

galaxy distances together with 2,257 distances derived from the correlation between galaxy rotation

and luminosity with photometry at 3.6µm obtained with Spitzer Space Telescope and 8,885 dis-

tances based on the Fundamental Plane sample derived from the Six Degree Field Galaxy Survey

(6dFGS) (Springob et al., 2014b). The CF3-group catalogue contains 11,878 groups and galaxies.

We select the galaxies for each mock survey by ensuring a best fit to the radial selection function
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of the real catalogue, parametrized as (see also Feldman et al., 1994)

f (r) =A

(
r
r0

)n1
[

1+
(

r
r0

)n1+n2
]−1

, (3.11)

where A is the scaling factor, which depends on the number of galaxies and the bin size. The

constants n1 and n2 are the powers that fit the volume- and magnitude-limited regions, respec-

tively, and r0 is the distance at which the number of galaxies is maximum. At r < (>) r0, volume

(magnitude)–limited effects dominate, respectively.

The galaxies in the real surveys are binned by their estimated distance, and the selection func-

tion given in Eq. 3.11 is fit to the radial distribution by the least-squares method, as shown in

Fig. 3.1 (the smooth dashed curve). The resulting fit is then used to select the correct number

of galaxies from the Millennium Simulation at each distance. The relevant selection function pa-

rameters for each of the four catalogues we use are fairly similar. For each real survey catalogue,

we generated 100 mock catalogues by placing the centers of the mock catalogs randomly in the

simulation box, which can be regarded as Copernican observers.

We studied in detail the construction of mock catalogues, both their distribution in the sim-

ulation boxes and the parameters used to produce them. A recent study choosing local group

observers was introduced by Hellwing et al. (2017), that provides a detailed study of cosmic vari-

ance by considering differences in velocity observables as measured by a Copernican observer

and its local group (LG)–equivalents. As discussed in Sec. 3.4.1 below, the differences between

the velocity correlation functions in our mock catalogs are cosmic variance dominated; the large

variations between random observers thus overwhelm the difference between choosing random or

LG–equivalent locations. The angular distribution of the CosmicFlows surveys is not considered

in the mock catalogues, since its effect was found to be negligible on both velocity correlation

statistics and cosmological parameter estimation.

The mean distance between the centers of mock catalogs from Millennium Simulation is about

250 h−1Mpc, which is not large enough for the mock catalogs to be completely independent.

39



Figure 3.1: The radial distribution the CF2-galaxy survey (red histogram) and an example of one of
its mock catalogues (solid line histogram). The dashed blue line indicates the selection function for
CF2-galaxy survey given in Eq. 3.11 with parameter values A = 933, r0 = 96 h−1Mpc, n1 = 0.23,
and n2 = 4.25. The bin width is 10h−1Mpc. For the real survey, the fit has a χ2 = 191 for 25
degrees of freedom, whereas for the mock survey it is χ2 = 41.7.

However, we also tested mock catalogs from the MultiDark Planck 2 (MDPL22) Simulation (box

size equals 1,000 h−1Mpc, mean center separation about 680 h−1Mpc) and found no significant

differences in the results.

3.4 Variance Analysis

To use velocity correlation statistics effectively, one needs to know how much they can be expected

to vary between different locations and from sample to sample due to measurement errors. While

it would be ideal to estimate variances theoretically, the sums over pairs form of the statistics

2https://www.cosmosim.org/cms/simulations/mdpl2/

40



make this extremely difficult. Here we will estimate the variances using mock surveys from the

Millennium Simulation data. As mentioned before, we also used the MDPL2 simulation to verify

that the results are robust.The two main components of the variance of the velocity correlation

statistics are the cosmic variance, which can be estimated using mock surveys drawn from different

locations in the simulation box, and measurement uncertainty, which can be estimated by making

multiple realizations of a single survey with randomly generated errors.

3.4.1 Cosmic Variance

In section 3.3, we discussed generating one hundred simulation catalogues for each real survey.

Since the simulation box is much larger than the survey volume, if we draw mock surveys centered

on random galaxies in the box we can study how much our correlation statistics are affected by

cosmic variance.

In figure 3.2 we show the mean and variance of the velocity correlation function with 500 km

s−1 bin width calculated from CF2-galaxy mock catalogues. In order to match our calculations

with real catalogues, we have calculated the correlation function using the redshift instead of dis-

tance as discussed above. Using CF2-groups instead of CF2-galaxies makes very little difference

in our results.

Comparing the six plots in Fig 3.2, we might be surprised that the velocity independent func-

tions A(r) and B(r) also show cosmic variance. This is due to the fact that even though the sim-

ulation catalogues have the same radial selection functions, each mock catalogue has a slightly

different distribution of galaxies due to the particular locations of the galaxies in the region of the

simulation box where the catalogue was drawn from.

Several things are notable in Fig. 3.2. First, we see that the statistic ψ2 appears to be well

behaved on CosmicFlow type surveys, ψ2 of CF3 shows similar result. This is in contrast to the

Gorski et al. (1989) findings (Fig. 2 in Gorski et al. (1989)) , who neglected to use this statistic

since it was deemed less stable when applied to the catalogues that were available at the time.

Further, we see that the cosmic variance in the velocity correlation function is large, of the
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Figure 3.2: The mean and cosmic variance of ψ1, ψ2, A(r), B(r), ψ‖ and ψ⊥, of 100 mock
catalogues with CF2-galaxy distribution. ψ1, ψ2, ψ‖ and ψ⊥ are in units of (100 km s−1)2. The
center solid line and error bars show the average and standard deviation of each function. The
contours indicate the regions containing 68% and 95% of the results. The bins in this plot are 500
km s−1 wide.
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order of the mean, and the distribution of cosmic variance is skewed, and thus non-Gaussian. This

can be seen most clearly from the 95% contours in Fig. 3.2, which are not symmetric about the

mean. We can understand the skewness by noticing that the correlation function is quadratic in

the velocity, which is itself a Gaussian distributed variable. Thus we expect the cosmic variance

of the correlation functions to have a bi-variate Gaussian distribution, that is, a Wishart distribu-

tion (Wishart, 1928), which is a generalization of a χ2-distribution. Like the χ2 distribution, this

distribution has exponential tails which fall off much more slowly than Gaussian tails. We expect

that the correlation functions also contain contributions from noise, which we would expect to be

Gaussian distributed.

In general, then, the variance in the correlation function has a distribution that is a convolution

of a Wishart and a Gaussian, as the example in Fig. 3.3 clearly shows. The skewness becomes

more non-Gaussian in larger separation bins, due to the lower number of degrees of freedom, in

that fewer modes are contributing to the correlation function. The non-Gaussian distribution of

the cosmic variance, in particular, the exponential tails of the distribution, limits the information

we get using the velocity correlation function. Thus, both the size of the cosmic variance and

its distribution pose challenges for using velocity correlation statistics to constrain cosmological

models.

We compare the cosmic variance of mock catalogs from the Millennium and the MDPL2 Sim-

ulations, with and without including an angular mask (i.e. reproducing the CF3 angular distribu-

tion). We find the mean measurement and the contours of the cosmic variance are all within the

uncertainties and show little differences across the samples. The cosmic variance from those four

kinds of mock catalogs are combinations of Wishart and Gaussian distributions; however, their

distribution parameters may be different, which leads to variations in the cosmological constraints.

The cosmic variance distribution is somewhat sensitive to non-Gaussian skewness (e.g. bin width,

correlation truncations, and mock selections), which leads to some differences in cosmological

parameter constrains. This topic will be discussed further in section 3.6.
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Figure 3.3: The distribution of ψ1 in 4,000-4,500 km s−1 bin of 200 mock catalogues, in units of
(100 km s−1)2. The blue vertical line on the left is the mean of the mock catalogues (ψ1); the red
vertical line on the right is the CF3-galaxy catalogue measurement in the bin; the black solid curve
is the Wishart distribution fitting.
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Figure 3.4: The result of perturbing the distance moduli of one CF2-galaxy simulation catalogue,
in units of (100 km s−1)2. The bin width is 500 km s−1 (redshift). The black dashed line shows
the original simulation catalogue; the red solid line with error bars is the average of the perturbed
catalogues. The error bars show the standard deviation of the perturbed results, which is regarded
as the measurement error. The background contours indicate the cosmic variance from Fig. 3.2.
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3.4.2 Measurement Error

The other main source of uncertainty in the correlation functions comes from the uncertainty of

the peculiar velocity measurements. Because the peculiar velocity measurements from the simu-

lation do not have uncertainty, we used a Monte Carlo method to simulate distance measurement

errors, which are also manifested as uncertainties in radial peculiar velocities. We generate 100

error analysis catalogues of each mock with distance perturbed by a constant Gaussian variance,

which is about 20% (e.g. Masters et al., 2006; Springob et al., 2007; Tully et al., 2013); however,

this uncertainty is non–Gaussian, since it originates from the uncertainty of the distance modulus.

Thus, we simulate the measurement error by generating a set of 100 versions of each mock cata-

logue with distance moduli perturbed with a constant Gaussian variance σ = 0.43, which roughly

corresponds to ∼20% distance error. The perturbed distances are used to calculate new velocities

using the unbiased method described in Watkins & Feldman (2015b) so that the errors in the ve-

locities are Gaussian distributed. The uncertainties in the correlation function due to measurement

errors are estimated by averaging the standard deviations of the correlations calculated from the

perturbed data sets. In Fig. 3.4 we show the results of perturbing a single CF2-galaxy catalogue

in this way. From the figure it is evident that measurement errors affect our results much less than

cosmic variance (see also Fig. 3.5).

3.4.3 Measurement Error and Sample Size

Once we have a large enough sample size to adequately probe a volume, we do not expect cosmic

variance to change with sample size, since in this case it is due to the variations between volumes of

a similar size. To decrease the cosmic variance we would need to increase the depth of our sample;

larger volumes should vary less as we approach the scale of homogeneity for the Universe.

In contrast, we can reduce the effect of measurement errors by increasing our sample size,

even if the volume being probed stays the same. To characterize the effect of sample size on

measurement errors, we select new mock surveys with up to 20,000 galaxies by changing A in

Eq. (3.11) while leaving the other selection function parameters unchanged. We then perturb them
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Figure 3.5: The dashed line shows the standard deviation of the cosmic variance of the correlation
statistic ψ1 at the redshift separation bin 0 - 500 km s−1 of the simulation catalogues as a function
of sample size. The solid line indicates measurement error of the perturbed sample averaged over
all the bins as a function of sample size, in units of 1000 km2 s−2. The contours show the 68% and
95% ranges of the results, whereas the error bars are the standard deviations of the measurement
errors.
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using the same method described in section 3.4.2. In Fig. 3.5 we show how the cosmic variance

and measurement errors of the correlation statistic ψ1 changes with sample size. Increasing the

sample size reduces the statistical errors significantly, while, as expected, the cosmic variance

doesn’t show significant difference.

3.5 Correlation Results

Fig. 3.5 shows the relationship between sample size and statistical error. Using this relation, we

can calculate the statistical error of CF3 surveys, which have many more data points than the CF2

surveys. Fig. 3.6 shows the correlation function of CF3-galaxy survey with Hubble constant H0 =

75 km s−1 Mpc−1; this is the value given by Tully et al. (2016) as the best fit to the data. We see

that the correlation function of CF3 is larger than the mean value of correlations of mock catalogs.

Hellwing et al. (2017) show that cosmic variance of local group (LG) observer mock catalogs with

a Virgo like cluster is larger than the Copernican observer mock catalogs without Virgo, which

explains the smaller mean correlation value from mock catalogs in Fig. 3.6.

The 75 km s−1 Mpc−1 value for the Hubble constant is in significant tension with the larger-

scale Planck Collaboration et al. (2014a) result of 67.74±0.46 km s−1 Mpc−1 obtained from the

cosmic background radiation. One possible source of this discrepency is an error in the calibra-

tion of the distance indicators used in the CF3 measurement. Given that distance indicators are

calibrated in sequence working outward, this would most likely be an error near the base of the

distance ladder; for example, with the calibration of cepheid distances (see e.g. Riess et al., 2016,

for a discussion of this tension). However, a second possibility is that our local volume has a

significant outflow which is artificially inflating the value of H0. Tully et al. (2016) discuss this

possibility qualitatively by assessing the size and radial profile of the outflow required to obtain

different underlying values of H0. Given that radial flows also impact the correlation function, we

can preform a similar analysis here by varying the Hubble constant used in estimating velocities

from distances in the CF3 survey.

In Fig. 3.7 we show the correlation functions assuming H0 values from 70-75 km s−1 Mpc−1 in
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Figure 3.6: Velocity correlation functions of CF3-galaxy survey with H = 75km s−1 Mpc−1. ψ1,
ψ2, ψ‖ and ψ⊥ are in units of (100 km s−1)2. The solid line shows the real survey result, the error
bar indicates its uncertainty, combining the effects of cosmic variance and measurement error. The
dashed line indicates the average of 100 mock catalogues.

the top panel and 75-80 km s−1 Mpc−1 in the bottom panel. As can be seen, even small deviations

from the value of 75 km s−1 Mpc−1 can lead to unrealistically large correlations on a wide range

of scales. Particularly troubling is the increase in ψ1 (or equivalently ψ⊥) with increasing scale.

This analysis confirms the conclusion of Tully et al. (2016) that it is unlikely that outflows can be

the source of the discrepancy in the value of the Hubble constant between the Planck result and

more local probes.

3.6 Linear Theory

In this section we explore the use of the correlation function to constrain cosmological models.

This was previously attempted by Borgani et al. (2000); however, they incorrectly assumed that

the cosmic variance in the correlation function ψ1 was Gaussian distributed. We examine the

implications that the cosmic variance in ψ1 is, to a good approximation, Wishart distributed, as
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Figure 3.7: Top Panel: Velocity correlation functions of CF3-galaxy surveys with Hubble con-
stant from 70 to 75 km s−1 Mpc−1 (top to bottom, 0.5 km s−1 Mpc−1 each). ψ1, ψ2, ψ‖ and ψ⊥
are in units of (100 km s−1)2. The contours indicates the cosmic variance. Bottom Panel: Same
as the top panel, but Hubble constant from 75 to 80 km s−1 Mpc−1 (bottom to top, 0.5 km s−1

Mpc−1 each).
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Figure 3.8: ψ1 values of CF3-galaxy catalogue, mock catalogues and linear theory predictions,
in units of (100 km s−1)2. The blue dots show the mean of 100 mock catalogues using distance
separation, the black dash dotted line shows the mean of the mock catalogues using redshift sepa-
ration, the red solid line indicates the linear theory prediction, and the green dashed line shows the
CF3-galaxy correlation value using redshift separation. The blue error bars represent the cosmic
variance.

discussed in section 3.4.1.

Linear theory describes the relation between the radial and transverse correlation functions and

the power spectrum of density fluctuation P(k) (Borgani et al., 2000). The radial and transverse

velocity correlations can be written in terms of the power spectrum as follows:

ψ‖(r) =
β 2H2

0
2π2

ˆ
P(k)

[
j0(kr)−2

j1(kr)
kr

]
dk , (3.12)

ψ⊥(r) =
β 2H2

0
2π2

ˆ
P(k)

j1(kr)
kr

dk, (3.13)
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Figure 3.9: χ2 plots of four weighting schemes of mock catalogue correlations in redshift and
linear theory predictions truncated at 4000 km s−1 with 500 km s−1 binwidth. The minimum χ2

value has been subtracted from each cell. The dot indicates the best χ2 fitting, and the contours
show 68% and 95% and 99.9% likelihood of χ2 values. The cross indicates the value of the
Millennium simulation (Table 3.1).

where ji(kr) is the ith-order spherical Bessel function, P(k) is the power spectrum, and on large

scales β = f (Ωm)σ8 (Guzzo et al., 2008; Turnbull et al., 2012), f (Ωm) = Ω0.55
m (Linder, 2005)

and σ8, is the amplitude of density fluctuations on a scale of 8h−1Mpc. For P(k) we use the

parametrization of Eisenstein & Hu (1998), that expresses P(k) in terms of the matter density Ωm,

the baryon density Ωb, and the Hubble parameter h. We normalize the power spectrum using the

value of σ8. We checked that P(k) obtained from this parametrization is in good agreement with

those produced by more sophisticated methods, such as Heitmann et al. (2010, 2014); Agarwal

et al. (2012a, 2014).

Linear theory reproduces the average correlation functions from the mock catalogues quite

well if true distances are used to specify positions rather than redshift. In Fig 3.8 we show ψ1
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obtained from linear theory using the simulation cosmological parameters from Table 3.1 together

with the mean ψ1 from the mock catalogues. We used the average A and B functions from the

mock catalogues to go from the linear theory ψ‖ and ψ⊥ to ψ1 via Eq. 3.5. We see that linear

theory prediction matches the averages of the mock catalogues well when using distance separa-

tion. However, when redshift is used to specify distance, we see the effects of redshift distortion,

although even in this case the effects are smaller than the cosmic variance. Redshift distortions

also affect the estimation of cosmological parameters and we discuss their inclusion below.

The velocity correlation functions measured using the CF3 catalogues are within the cosmic

variance of those using mock catalogues from the simulations, which in turn use initial condi-

tions close to those parameters measured by seven-year Wilkinson Microwave Anisotropy Probe

(WMAP Larson et al., 2011, see also Table 3.1). Thus the CF3 correlation function appears to

agree with the cosmological standard model. We can make this assessment more quantitative by

developing a χ2 statistic for the difference between the measured correlation function and the pre-

diction from linear theory. This analysis results in constraints on Ωm and σ8, which are the main

factors that determine the shape and amplitude of the power spectrum, respectively. In addition,

χ2 analysis is complicated by the fact that the values of ψ1 in different bins are strongly correlated,

since the large-scale velocity modes lead to correlations that contribute similarly to all separations.

In order to account for this correlation, we use the weighted χ2 fitting method first introduced by

Kaiser (1989):

χ
2 = ∑

i
w(ri)

[
ψ

M
1 (ri)−ψ

L
1 (ri)

]2
, (3.14)

where w is the weighting function, ψM
1 is the measured value from the catalogue (CF2 or CF3), ψL

1

is the linear prediction.

The χ2 fitting is strongly affected by the errors of velocity correlation functions: the cosmic

variance, the redshift distortion, and the measurement error, which is small enough to be neg-

ligible. In order to explore the effects of the complicated error distributions, we choose four

different weighting schemes and test them with mock catalogues: i) Linear prediction weight

w(r) = 1/ψL
1 (r); ii) Cosmic variance based weight using covariance matrix (Borgani et al., 2000);
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iii) redshift distortion based weight using the redshift distortion matrix, which can be regarded as

an error correlated matrix; iv) Combination of error and redshift distortion based weight using the

sum of the covariance matrix and redshift distortion matrix, which leads to a full covariance matrix

(Blobel, 2003; D’Agostini, 1995).

Eq. 3.15 - 3.18 below show the four weighting schemes, where C is the covariance matrix; λ is

the redshift distortion matrix; Nmock is the number of mock catalogues; ψ i
1,l is the correlation value

of the ith separation bin of the lth mock catalogue; ψ
i
1 is the average value of Nmock catalogues in

the ith separation bin; ψ
i,s
1,l (ψ i,r

1,l) is the correlation value of the ith bin of the lth mock catalogue

using redshift (distance) separation.

i). χ
2 = ∑

i

[
ψM

1 (ri)−ψL
1 (ri)

]2
ψL

1 (ri)
(3.15)

ii). χ
2 = ∑

i, j

[
ψ

M
1 (ri)−ψ

L
1 (ri)

]
C−1

i j
[
ψ

M
1 (r j)−ψ

L
1 (r j)

]
Ci j =

1
Nmock

Nmock

∑
l=1

(
ψ

i
1,l−ψ

i
1

)(
ψ

j
1,l−ψ

j
1

)
(3.16)

iii). χ
2 = ∑

i, j

[
ψ

M
1 (ri)−ψ

L
1 (ri)

]
λ
−1
i j
[
ψ

M
1 (r j)−ψ

L
1 (r j)

]
λi j =

1
Nmock

Nmock

∑
l=1

(
ψ

i,s
1,l−ψ

i,r
1,l

)(
ψ

j,s
1,l −ψ

j,r
1,l

)
(3.17)

iv). χ
2 = ∑

i, j

[
ψ

M
1 (ri)−ψ

L
1 (ri)

](
Ci j +λi j

)−1 [
ψ

M
1 (r j)−ψ

L
1 (r j)

]
(3.18)

In Fig. 3.9, we show the χ2 estimates of the mock catalogue correlations and the estimates for

the parameters Ωm (x-axis) and σ8 (y-axis) for each of the weighting schemes. (The 68% and 95%

contours are defined by the same method used in Borgani et al. (2000).)

i) Linear prediction weighted scheme (Eq. 3.15) gives a reasonable though not very tight constraint,

especially for Ωm, it is somewhat sensitive to the truncation of the correlation functions. Note that

this method treats the bins as independent from each other, and thus does not incorporate the strong

correlations among different bins.
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Figure 3.10: Same as Fig. 3.9, but using CF3-galaxy correlations. The triangle is the WMAP
result (Bennett et al., 2013) and the square is the Planck result (Planck Collaboration et al., 2014a).
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ii) Covariance matrix weighted scheme (Eq. 3.16) does not provide strong constraints. That is

because the covariance matrix is dominated by cosmic variance which is decreasing for increasing

separation, and thus larger separations are given more weight in the χ2 fitting scheme. Further-

more, the non-Gaussian skewness also becomes more pronounced in large separation bins (see

Sec. 3.4.1) and thus biases the results. In addition, the Wishart error distribution is sensitive to

different mock selections. Comparing the Millennium and MDLP2 mock catalogs with and with-

out the angular mask, we found that the simulation mock catalogs effect the covariance matrix

estimates since the covariance matrix weighted scheme is sensitively dependent on the Wishart

distribution parameters for the determination of cosmic variance (see Sec. 3.4.1). However, differ-

ences caused by the different simulation mock catalogs do not show any trend of improving the

constraints, instead, they are somewhat random. Non–Gaussian skewness is the dominant source

of bias for the covariance matrix weighted scheme.

iii) Redshift distortion weighted scheme (Eq. 3.17) provides a good estimate of the parameters

while using mock catalogues only and the contours are more compacted than other schemes.

iv) We combine the effects of cosmic variance and redshift distortion. The constraining result of

combined weighting scheme is not as tight as methods i and iii, but it does agree with the simulation

parameters within 1σ .

Fig. 3.10 shows the constraints using the CF3-galaxy. The redshift distortion scheme by itself

shows very tight contours, but disagrees with the Planck and WMAP results at a high confidence

limit, which leads us to conclude that the simulation redshift distortions do not mimic the distor-

tions in the CF3 catalogue well. In addition, the schemes become more sensitive to truncations

when using real survey. Figs. 3.11 and 3.12 show the Ωm and σ8 results of the four weighting

schemes with different truncations. The redshift distortion weighted scheme (iii) is more strongly

dependent on the truncation choice but mostly agrees within two standard deviations, whereas the

others agree within one standard deviation.

Considering the performances of those four weighting schemes for the simulation and obser-

vation data, we choose the scheme iv that combines the cosmic variance and redshift distortion
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Figure 3.11: The effect truncation has on the estimation of Ωm. the green cross markers show
the constrains using the linear prediction weighted scheme (i), the red circle markers show the
results using covariance matrix weighted scheme (ii), the blue triangle markers indicate the results
using redshift distortion weighted scheme(iii) and black square indicate the results using the combo
weighting scheme (iv). The horizontal black lines are the Ωm value and 1σ determined by Planck.
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Figure 3.12: Same as Fig. 3.11, but showing the σ8 truncation results.

effects in this chapter to be most reliable. In Fig. 3.13, we show the χ2 of CF3-galaxy correla-

tions using the redshift distortions and cosmic variance combination scheme (Eq. 3.18). We get

Ωm = 0.315+0.205
−0.135 and σ8 = 0.92+0.440

−0.295. As can be seen, the value of Ωm and σ8 agree with the

results from Planck (Ωm = 0.315±0.013; σ8 = 0.831±0.013, Planck Collaboration et al., 2014a)

and WMAP9 (Ωm = 0.279± 0.023; σ8 = 0.821± 0.023 Bennett et al., 2013), whereas the value

of σ8 we get from the correlation analysis with CF3 is slightly larger but still within 1σ .

Part of the discrepancy in σ8 could be due to the fact that in the present analysis σ8 is obtained

from local data. As was clearly shown in Juszkiewicz et al. (2010), estimators that probe the

value of σ8 on small cosmological scales do not take into account the nonlinear evolution of the

parameter at late times. Using the parametrization from Juszkiewicz et al. (2010), we should

compare our σ8 results to 0.888 (Planck) and 0.879 (WMAP9) which agree to within ∼ 1σ .
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Figure 3.13: χ2 plot for the CF3-galaxy survey with combo weighting scheme for binwidth equals
500 km s−1 and truncation at 4000 km s−1. The minimum χ2 value has been subtracted from each
cell. The contours indicate 68% and 95% likelihood of χ2 values. The square marker indicates
the best value from Planck (Planck Collaboration et al., 2014a), whereas the triangle marker is the
value of WMAP9 (Bennett et al., 2013).
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3.7 Conclusion

In principle, the velocity Correlation Function is a powerful statistical tool in exploring the Pe-

culiar Velocity Field and through that, the mass distribution on cosmological scales. We have

shown that on average the correlation function calculated from simulated catalogues recovers the

expected signal from linear theory, thus demonstrating that it is an unbiased statistic. Since the

statistical error in the correlation function is significantly smaller than the cosmic variance, the

velocity correlation function does a reasonable job dealing with the large uncertainty inherent in

the determination of peculiar velocities of galaxies and groups. However, the non-Gaussian nature

of the cosmic variance and redshift distortion put limits on how well we can use this statistic to

constrain cosmological parameters.

We have calculated the velocity correlation functions for the CosmicFlows-2 and CosmicFlows-

3 catalogues and shown that they are consistent with expectations from the standard cosmological

model. In addition, we have used our results together with linear theory to constrain the cos-

mological parameter Ωm and σ8. In constraining the cosmological parameters, we have assumed

Gaussian distributed errors, while the simulations have clearly shown that the error distribution

of the cosmic variance has distinct non-Gaussian tails. Furthermore, since the cosmic variance is

smaller at larger separations, the covariance matrix gives more weight at larger separations, where

skewness is most pronounced and thus, may introduce systematic biased parameter estimations.

In addition, redshift distortions give rise to the mismatch between CosmicFlows correlations and

linear predictions and thus may contribute further bias to parameter constrains. To mitigate this

effect, we have used a weighting scheme that combines the effects of cosmic variance and redshift

distortion, which appears to be both more stable and less biased. Future studies that account for the

non-Gaussian distribution of cosmic variance may result in more robust constraints, particularly

with regard to uncertainties in parameter estimation.

The systematically larger velocity correlations observed in this study, especially in closer bins,

using both the CosmicFlows-2 and and CosmicFlows-3 compilations is consistent with the ob-

served bulk flows from these and other catalogues that is on the larger end of the expected range
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given the predictions from the ΛCDM model with CMB derived parameters. However, this excess

may also arise from local inhomogeneities in our local volume.
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Chapter 4

Improved Methods for Estimating Peculiar Velocity Correlation

Functions Using Volume Weighting

In this chapter, we present a feasible solution for the problems mentioned in Chapter 3. In this

chapter, we investigate an improved method for calculating the parallel and perpendicular velocity

correlation functions directly from peculiar velocity surveys using maximum-likelihood estima-

tors. A central feature of our method is the use of position-dependent weighting in order to re-

duce the influence of nearby galaxies, which are typically overrepresented relative to more distant

galaxies that occupy the volume of most surveys. We demonstrate that the correlation functions

calculated in this way are less susceptible to bias due to our particular location in the Universe,

and thus are easily comparable with linear theory and between surveys. Our results suggest that

the parallel velocity correlation function is a promising cosmological probe, given that it provides

a better approximation of a Gaussian distribution than other velocity correlation functions and that

its bias is more easily minimized by weighting. The position weighted parallel velocity corre-

lation function specifically provides stabler and tighter cosmological parameter constraints than

other popular methods (e.g., Gorski ψ1 correlation function). The results in the chapter were first

discussed in Wang et al. 2020, collaborated with Sarah Peery, Hume A. Feldman and Richard

Watkins (will be submitted soon).

4.1 Introduction

Studies of density perturbations provide information used to analyze the large scale structure of

the Universe. However, density perturbation studies based on redshift galaxy distributions are
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limited by the bias due to peculiar velocities, also known as redshift space distortion (RSD). Many

studies have shown the effects of peculiar velocities in RSD studies (e.g. Kaiser, 1987; Thomas

et al., 2004; Scoccimarro, 2004; Taruya et al., 2010; Reid & White, 2011; Seljak & McDonald,

2011; Zhang et al., 2013; Zheng et al., 2013; Song et al., 2013; Taruya et al., 2013; Senatore &

Zaldarriaga, 2014; Uhlemann & Kopp, 2015; Okumura et al., 2015; Vlah et al., 2016; Bianchi

et al., 2016; Hand et al., 2017; Bel et al., 2018).

Peculiar velocity is a powerful tracer of mass distribution (e.g. Watkins et al., 2009; Feldman

et al., 2010; Davis et al., 2011; Nusser et al., 2011; Macaulay et al., 2011; Turnbull et al., 2012;

Macaulay et al., 2012; Nusser, 2014; Springob et al., 2014a; Johnson et al., 2014; Scrimgeour

et al., 2016a). However, current peculiar velocity measurements are still based on radial distances,

which limit the precision of peculiar velocity surveys. A different method of measuring the peculiar

velocity can be made using the kinematic Sunyaev-Zel’dovich effect (e.g. Sunyaev & Zeldovich,

1980; Dolag et al., 2005; Kashlinsky et al., 2008; Hand et al., 2012; Dolag et al., 2016; Planck

Collaboration et al., 2016a, 2018c). However, due to the signal weakness, it is a very difficult

measurement. Therefore, ensemble statistics of peculiar velocities is more practical for current

studies (e.g. Kaiser, 1988; Ferreira et al., 1999; Juszkiewicz et al., 2000; Feldman et al., 2003;

Watkins & Feldman, 2007; Watkins et al., 2009; Feldman et al., 2010; Davis et al., 2011; Agarwal

et al., 2012b; Abate & Feldman, 2012; Hand et al., 2012; Nusser, 2014; Hellwing, 2014; Planck

Collaboration et al., 2016a; Kumar et al., 2015; Scrimgeour et al., 2016b,a; Seiler & Parkinson,

2016; Hoffman et al., 2016; Nusser, 2016; Hellwing et al., 2017).

The velocity correlation function analysis provides another tool to investigate the peculiar ve-

locity field. The most widely used velocity correlation estimator was introduced by Gorski (1988)

and further formulated in Gorski et al. (1989). It has revealed interesting results constraining cos-

mological parameter (e.g. Jaffe & Kaiser, 1995; Zaroubi et al., 1997; Juszkiewicz et al., 2000; Bor-

gani et al., 2000; Abate & Erdoǧdu, 2009; Nusser & Davis, 2011; Okumura et al., 2014; Howlett

et al., 2017; Hellwing et al., 2017; Wang et al., 2018; Dupuy et al., 2019).

The velocity correlation function can be expressed as two independent functions, one for veloc-
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ity components along the separation vector of a pair of galaxies and one for components perpendic-

ular to this vector. The Gorski (1988) correlation estimator results in a complicated combination

of these two functions, with the precise mixture given by selection functions that depend on the

distribution of the survey objects as well as the separation distance. This estimator has the decided

disadvantage of not being comparable between studies that use different survey objects. At the

same time it was introduced that it was seen as being more stable than other methods given the

small size of the available datasets. Given the availability of much larger peculiar velocity cata-

logs today, it is an opportune time to explore other methods of estimating velocity correlations. In

addition, Wang et al. (2018) found that the cosmic variance of the correlation function using the

Gorski estimator is large and non-Gaussian distributed, and Hellwing et al. (2017) showed that it

is susceptible to biases due to our special location near a large overdensity – the Virgo Cluster.

These problems make peculiar velocity correlation function estimator less than ideal as a probe of

large-scale structure.

In this chapter, we use an alternative method, introduced by Kaiser (1989) and Groth et al.

(1989), that estimates the parallel and perpendicular correlation functions directly in a way that is

independent of the survey distribution. This method further allows for the weighting of individual

velocity measurements to improve the estimator. While Groth et al. (1989) used weighting to

reduce the effect of random errors, we introduce a novel weighting scheme that reduces cosmic

variance and bias by increasing the effective volume probed by a survey.

The chapter is organized as follows: In section 4.2, we derive the weighted estimators for

the parallel and perpendicular correlation functions. In section 4.3, we discuss the CosmicFlow-3

(CF3) catalog we analyze. In section 4.4, we introduce the N-body simulations and methods used

for generating mock catalogs. In section 4.5, we show results for our method on both randomly

centered mock catalogs as well as those centered in environments similar to that of the Milky

Way for several different weighting schemes. We also apply our methods to obtain estimates of

the parallel and perpendicular correlation functions in the local Universe using data from the CF3

catalog. In section 4.6, we discuss the parameter constraining result using the weighted estimators.
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Section 4.7 concludes this chapter.

4.2 The Peculiar Velocity Correlation Estimator

The general form of the two-point velocity correlation tensor is

Ψi j(r) = 〈vi(r0)v j(r0 + r)〉, (4.1)

where i and j designate the cartesian components of the velocity and the average is over points

separated by the vector r. Making the usual assumption that the velocity field is a statistically

isotropic and homogeneous random field, we can write the correlation tensor in terms of two

functions which depend only on the magnitude of the separation vector r = |r|,

Ψi j(r) = Ψ‖(r)r̂ir̂ j +Ψ⊥(r)
(
δi j− r̂ir̂ j

)
(4.2)

where r̂ is a unit vector in the direction of the separation vector. These two functions have simple

physical interpretations; Ψ‖(r) is the (parallel) correlation of the velocity components along the

separation vector and Ψ⊥(r) gives the (perpendicular) correlation of the components of the velocity

perpendicular to the separation vector.

Our goal is to estimate Ψ‖(r) and Ψ⊥(r) from the correlations in the radial component of the

peculiar velocity, u, which is the only component that can be measured. Given a pair of galaxies at

positions r1 and r2, we can write the correlation of their radial peculiar velocities as

〈u1u2〉= r̂1ir̂2 j〈viv j〉

= Ψ‖(r)(r̂1 · r̂)(r̂2 · r̂)

+Ψ⊥(r) [r̂1 · r̂2− (r̂1 · r̂)(r̂2 · r̂)] .

(4.3)

This expression can be written in terms of θ1 and θ2, the angles the separation vector r makes
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with the position vectors r1 and r2 respectively. Specifically,

(r̂1 · r̂)(r̂2 · r̂) = cos(θ1)cos(θ2), (4.4)

and

r̂1 · r̂2 = cos(θ2−θ1) = cos(θ1)cos(θ2)+ sin(θ1)sin(θ2). (4.5)

Using these results, we can put eq. 4.3 into the simple form

〈u1u2〉= Ψ‖(r) f (θ1,θ2)+Ψ⊥(r)g(θ1,θ2), (4.6)

where f = cos(θ1)cos(θ2) and g = sin(θ1)sin(θ2).

Following Kaiser (1989) and Groth et al. (1989), we use a weighted least-squares method to

estimate Ψ‖(r) and Ψ⊥(r) from a catalog of peculiar velocities um. We minimize the function

χ
2(r) = ∑

m,n
wm,n

[
umun−Ψ‖(r) f (θ1,θ2)−Ψ⊥(r)g(θ1,θ2)

]
(4.7)

with respect to Ψ‖(r) and Ψ⊥(r), where the sum is over pairs of galaxies whose separations fall

within a specified bin and wi, j is a weight assigned to each galaxy pair. The minimization can be

done analytically, resulting in the estimates

Ψ‖(r) =
∑wg2

∑w f u1u2−∑w f g∑wgu1u2

∑w f 2 ∑wg2− (∑w f g)2 , (4.8)

and

Ψ⊥(r) =
∑w f 2

∑wgu1u2−∑w f g∑w f u1u2

∑w f 2 ∑wg2− (∑w f g)2 , (4.9)

where the sums are over galaxy pairs whose separations lie in a bin centered on r.

An alternative approach to studying peculiar velocity correlations is to use the ψ1 and ψ2

statistics introduced by Gorski et al. (1989) and utilized in several subsequent studies (e.g. Borgani

et al., 2000; Hellwing et al., 2017; Wang et al., 2018). While these statistics in principle carry the
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same information as Ψ‖ and Ψ⊥, in practice they depend on the particular distribution of objects

in a survey, making them not comparable between surveys. While in the past there was some

motivation to focus on ψ1 as being particularly stable when applied to the small datasets available

at the time, there is now sufficient data to estimate Ψ‖ and Ψ⊥ directly. It is possible to calculate

Ψ‖ and Ψ⊥ from ψ1 and ψ2 given the positions of the survey objects (see e.g. Wang et al., 2018);

however, this process can be shown to be mathematically equivalent to the calculations shown in

Eqs. 4.8 and 4.9.

It is not obvious how best to choose weights to use in Eqs. 4.7, 4.8 and 4.9. Kaiser (1989) used

the simplest choice, w = 1, while Groth et al. (1989) chose weights with an eye towards reducing

the effects of measurement errors. However, previous work (Wang et al., 2018) has shown that,

for the surveys we will be working with, statistical errors are small compared to the effects of

cosmic variance, since we calculate the correlation function in a volume that is smaller than the

scale of homogeneity. This problem is exacerbated by the radial distribution of galaxies in a typical

survey; the concentration of galaxies and clusters at small distances puts greater emphasis on the

nearby volume, so that the effective volume reflected in the correlation function can be significantly

smaller than that of the survey. This effect increases the cosmic variance and may also lead to bias.

Here we will weight the pairs in order to better “balance" the survey, so that it has a larger effective

volume and hence smaller cosmic variance and bias but may lead to larger statistical errors.

Our approach will be to weight pairs of galaxies by the factor w = (r1r2)
p, where r1 and r2

are the positions of the galaxies and p is a positive power. This scheme gives less weight to pairs

of nearby galaxies, which are overrepresented in the sample, and greater weight to pairs of more

distant galaxies, which are underrepresented. Correlation functions calculated using this weighting

should thus reflect a more even sampling of the volume, and hence reflect a larger effective volume.

However, in giving greater weight to galaxies that are far away, and hence have larger peculiar

velocity uncertainties, our weighting scheme will necessarily increase statistical errors. We will

explore several different choices for the power p in order to determine which value provides the

best overall statistic for the data we are working with.
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When analyzing data from simulations, we have access to all three components of the peculiar

velocity. In this case we can calculate Ψ‖ and Ψ⊥ directly by taking a weighted average of products

of velocity components parallel and perpendicular to the separation vector for each pair, namely

Ψ
3D
‖ (r) = ∑

pairs
w(v1 · r)(v2 · r)/ ∑

pairs
w (4.10)

and

Ψ
3D
⊥ =

1
2 ∑

pairs
w [(v1 · v2)− (v1 · r)(v2 · r)]/ ∑

pairs
w (4.11)

where r = r2− r1.

In linear theory, Ψ‖ and Ψ⊥ can be related directly to the power spectrum of density fluctuations

P(k) (Eisenstein & Hu, 1998) through the relations

Ψ‖(r) =
(σ8 f H0)

2

2π2σ2(8)

ˆ
P(k)

[
j0(kr)−2

j1(kr)
kr

]
dk , (4.12)

Ψ⊥(r) =
(σ8 f H0)

2

2π2σ2(8)

ˆ
P(k)

j1(kr)
kr

dk, (4.13)

where f =Ω0.55
m (Linder, 2005), H0 is the Hubble constant, jn(x) are the spherical Bessel functions,

σ8 is the amplitude of density fluctuations on a scale of 8 h−1Mpc. In the equations, σ8 is the value

from the simulation we use (see Section 4.4) and the σ(8) is calculated following the method in

Eisenstein & Hu (1998).

4.3 Data

The CosmicFlow-3 (CF3) peculiar velocity compilation (Tully et al., 2016) includes two catalogs:

the galaxy catalog and the group catalog. The CF3-galaxy catalog contains 17,669 galaxies, includ-

ing all the 8,135 CosmicFlow-2 (CF2) (Tully et al., 2013) galaxy distances, which is assembled by

a compilation of Type Ia Supernovae (SNIa) (Tonry et al., 2003), Spiral Galaxy Clusters (SC) TF

clusters (Giovanelli et al., 1998; Dale et al., 1999), Streaming Motions of Abell Clusters (SMAC)
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FP clusters (Hudson et al., 1999, 2004), Early-type Far Galaxies (EFAR) FP clusters (Colless et al.,

2001), TF clusters (Willick, 1999), the SFI++ catalog (Masters et al., 2006; Springob et al., 2007,

2009), group SFI++ catalog (Springob et al., 2009), Early-type Nearby Galaxies (ENEAR) sur-

vey (da Costa et al., 2000; Bernardi et al., 2002; Wegner et al., 2003), and a surface brightness

fluctuations (SBF) survey (Tonry et al., 2001), together with 2,257 distances derived from the cor-

relation between galaxy rotation and luminosity with photometry at 3.6µm obtained with Spitzer

Space Telescope and 8,885 distances based on the Fundamental Plane sample derived from the Six

Degree Field Galaxy Survey (6dFGS) (Springob et al., 2014b). The CF3-group catalog contains

11,878 groups and galaxies, where galaxies in known groups have had their distance moduli and

redshifts averaged, resulting in a single velocity and position for the group as a whole. In the

following analysis we use the CF3-galaxy catalog.

The peculiar velocities of the CF3 are calculated through the unbiased peculiar velocity esti-

mator introduced by Watkins & Feldman (2015a):

v = cz log
(

cz
H0r

)
. (4.14)

The redshift (cz) and distance (r) are provided by the CF3 survey, however, the choice of the value

of Hubble constant will affect the peculiar velocity and therefore affect the velocity correlation

result. Wang et al. (2018) discussed the effect of the Hubble constant on the Gorski (1988) corre-

lation functions. For this study we will set the Hubble constant equal to 75 km s−1 Mpc−1 for the

peculiar velocities of CF3 survey, the value that minimizes the magnitude of radial flows.

Due to the large uncertainties in the measurement of distance, previous studies of the velocity

correlation functions (e.g. Gorski, 1988; Borgani et al., 2000; Wang et al., 2018) used redshift to

determine positions of objects and hence the separations between them. In this chapter we will also

use redshifts to determine positions of the objects in our catalog, using distance estimates only in

our calculation of peculiar velocities.
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4.4 Mock Catalogs

The mock catalogs we use in this chapter are generated from halo catalogs of the OuterRim Sim-

ulation (Habib et al., 2016; Heitmann et al., 2019a,b), which is carried out from the Mira-Titan

Universe Simulations. The OuterRim simulation is a dark matter only simulation with cosmo-

logical parameters similar to the WMAP-7 (Larson et al., 2011) cosmology, which are shown in

Table 4.1.

Table 4.1: The cosmological parameters of the OuterRim Simulation

Matter density, Ωm 0.2648
Cosmological constant density, ΩΛ 0.7352
Baryon density, Ωb 0.0448
Hubble parameter, h (100 km s−1 Mpc−1) 0.71
Amplitude of matter density fluctuations, σ8 0.8
Primordial scalar spectral index, ns 0.963
Box size (h−1Mpc) 3,000
Number of particles 10,2403

Particle mass, mp (109h−1M�) 1.85
Softening, fc (h−1kpc) 3

The simulation contains halos in a very large range that covers galaxies, groups, and clusters.

We use halos in mass range [1011, 1013]M� as galaxies to generate mock catalogs for CF3-galaxy

survey. Figure 4.1 shows the redshift distribution of the CF3-galaxy catalog and an example of one

mock catalog.

We generated 100 versions each of two types of mock catalogs differing in how their halo center

points are chosen. The first type, which we call “random" mock catalogs, are centered on randomly

chosen halos inside the Gpc3 region of the simulation. The second type, called Local Group (LG)

mock catalogs, are centered on a Milky Way-like halo (M = [13.5±6.5]× 1011h−1M�]) with a

Virgo-like cluster at a similar distance of the Virgo Cluster from the Milky Way. This selection

criterion is based on that introduced by Hellwing et al. (2017). These catalogs are useful for

exploring the consequences of the fact that we do not reside at a typical location in the Universe,

but rather are in a region whose dominant characteristic is the neighboring Virgo-like cluster (M =

[1.2±0.6]×1015h−1M�) at a distance of 12±4 h−1Mpc.
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Figure 4.1: The redshift distributions of the full CF3-galaxy catalog(red histogram). The black
lined histogram shows the example of the mock catalogs.

We also generated mock catalogs that mimic the angular distribution of the CF3 objects, which

is significantly anisotropic. However, we found that the anisotropy of CF3 angular distribution

does not have a significant effect on the correlation functions, shown in figure 4.2.

Finally, the effects of measurement (statistical) errors are explored by perturbing the distances

of the objects in a mock catalog with a 20% random error, similar to the uncertainties in the CF3

distances. We estimate statistical errors by taking the standard deviations of the results over 100

versions of a perturbed mock catalog. To avoid cosmic variance we average our results over 10

randomly selected mock catalogs.
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Figure 4.2: Ψ‖ and Ψ⊥ results of mock catalogs with (green) and without (blue) the anisotropy of
CF3 angular distribution. The error bars show the total error of the correlations.

4.5 Results

Figure 4.3 shows Ψ‖ and Ψ⊥ and their cosmic variance (upper) and statistical errors (lower) using

randomly centered mock catalogs with uniform weighting. In the figure, the cosmic variance which

is larger than the statistical errors (especially for closer pairs), dominates the error budget. This

is consistent with Wang et al. (2018) results that showed that the cosmic variance is the dominant

source of error in the Gorski correlation functions, which use uniform weighting. Wang et al.

(2018) also showed that the error distribution of the function ψ1 was significantly non-Gaussian.

Below we will examine the question of the distribution of the correlation functions in more detail.

Figure 4.4 shows the cosmic variance distribution of Ψ‖ and Ψ⊥, calculated from our estimators

using uniform weighting, and ψ1, and ψ2 calculated using the Gorski (1988) formalism, for 100

randomly centered mock catalogs. We show the distributions for a particular bin (40-45 h−1Mpc)
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Figure 4.3: The parallel and perpendicular correlation functions of randomly centered mock cata-
logs with uniform weighting. Ψ‖ and Ψ⊥ are in units of (100 km s−1)2. The blue solid lines show
the average values for 100 mock catalogs. The upper blue error bars show the standard deviation
of the values from individual catalogs, which is the cosmic variance. The lower red error bars
indicate the statistical errors calculated; these were calculated by taking the standard deviations
of the results of 100 versions of a mock catalog perturbed with random measurement errors. The
values given are the average standard deviation taken over 30 mock catalogs.

as an example. In the figure, we see that Ψ‖ and ψ2 have roughly Gaussian distributions, while

the distributions of Ψ⊥ and ψ1 are noticeably skewed, with significant non-Gaussian tails. The

similarity of Ψ‖ and ψ2 is not surprising, since ψ2 is calculated from the projections of the radial

velocities onto the separation vectors. The other Gorski correlation function, ψ1, is estimated from

the unprojected radial velocity, making it a combination of Ψ‖ and Ψ⊥. Quantities with non-

Gaussian distributions are difficult to interpret, suggesting that studies of the velocity correlation

function should focus on Ψ‖. We will return to this issue in Section 4.7.

Figure 4.5 shows the Ψ‖ and Ψ⊥ estimators (eq. 4.8 and 4.9) and 3D velocity fields (eq. 4.10

and 4.11) using randomly centered mock catalogs. The simulation results agree well with linear
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Figure 4.4: The distribution of Ψ‖, Ψ⊥, ψ1, and ψ2 in 40-45 h−1Mpc bin of 100 randomly centered
mock catalogs using uniform weighting, in units of (100 km s−1)2. The blue dotted vertical line is
the mean of the mock catalogs.

predictions for both Ψ‖ and Ψ⊥. Although the estimators use only line of sight peculiar velocities,

they also agree well with the full 3D results, lending credence to their efficacy and stability.

Hellwing et al. (2017) discussed the effect of observer location on velocity statistics. They

compared both the Gorski velocity correlation function estimators and the pairwise velocity statis-

tic calculated for mock catalogs with random halo centers and for those centered on locations that

mimicked the local group (LG) and found that the correlation functions calculated from the local

group-like catalogs exhibited significant bias relative to linear theory. To study the effects of the

observer location on the parallel and perpendicular correlation functions, we display the results

of using random and LG centered mock catalogs. We show that Ψ‖ and Ψ⊥ for the LG centered

mock catalogs with uniform weighting are also biased. As we discuss below, this bias can be

greatly reduced through the use of weighting.
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Figure 4.5: The parallel and perpendicular correlation functions of 100 randomly centered mock
catalogs in units of (100 km s−1)2. The red dash-dotted lines show the linear predictions (LP).
The green solid lines indicate the average of mock catalog results calculated using the estimators
discussed in the text (S). The black dashed lines indicate the average of mock catalog results for
the full 3D velocity fields (S3D). The error bars show the cosmic variance over the mock catalogs.

Figure 4.6 shows the parallel and perpendicular correlation results of using LG centered mock

catalogs with uniform weighting (w = 1). We see that the restriction to local group-like locations

introduces significant systematic bias into our results relative to linear theory. This bias takes two

distinct forms. First, we see that both our estimators, which use only radial velocities, do not ac-

curately recover the 3D correlation function. Second, we see that, especially for the perpendicular

correlation function, the average correlations calculated from the 3D velocities also do not accu-

rately reflect linear theory. Both of these biases arise, most likely, because the volumes around

the LG centered mock catalogs are not “typical", but rather exhibit particular flow patterns that are

significantly different than the averages taken over random volumes.

Figure 4.7 shows a comparison between random and LG centered mock catalogs. The error
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Figure 4.6: Same as Figure 4.5 but using LG centered mock catalogs.

bars of the simulation results show the total error (σt =
√

σ2
c +σ2

s , where σt is the total error, σc

is the cosmic variance and σs is the statistical error) of the correlation functions. We see that the

variance of the LG centered mock catalogs is significantly larger than that of the randomly centered

mock catalogs, particularly for the perpendicular correlation function (Ψ⊥).

The fact that the bias in the estimated correlation functions with uniform weights in LG cen-

tered mock catalogs has the same order of magnitude as the correlation functions themselves sug-

gests that correlation functions calculated using the CF3 with uniform weights, which includes

those calculated using the Gorski method, should not be used in comparisons with linear theory.

As discussed above, weighting can be used to increase the effective volume of the survey. Our

approach will be to weight galaxy pairs by w = (r1r2)
p, where r1 and r2 are the distances of the

two galaxies and p is a non-negative power. In the LG centered mock catalogs, this weighting

reduces emphasis on the relatively small volume near the center of the survey, which for the LG

centered mock catalogs is atypical. We will see that the use of weighting can effectively reduce
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Figure 4.7: Parallel and perpendicular correlation results of 100 random centered and 100 LG
centered mock catalogs in units of (100 km s−1)2 using uniform weighting (w = 1). All mock
catalogs have had galaxy distances perturbed by random measurement errors. The red dash-dotted
lines show the linear predictions. The green solid lines indicate the average results for the randomly
centered mock catalogs. The black dashed lines show the average results for the LG centered mock
catalogs. The error bars show the total error of the correlation function, which includes both cosmic
variance and statistical error.

the bias found in the LG centered mock catalogs.

Figure 4.8 shows the results using weights w = (r1r2)
p with p = 0.5,1,2, respectively (p =

0 gives uniform weights). The use of weighting has reduced the bias to an insignificant level.

However, the total error becomes larger while increasing the effective volume of the surveys.

Figure 4.9 shows the cosmic variance and the statistical errors of the weighted correlation

functions with p = 1
2 (w = (r1r2)

1/2), p = 1 (w = r1r2), and p = 2 (w = (r1r2)
2), respectively. The

cosmic variance generally decreases with weighting as expected; however, the statistical errors

increase and dominate when using weights with larger p. Table 4.2 shows the cosmic variance

and statistical errors of Ψ‖ with different weighting volumes. Considering that tension, p = 1
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Figure 4.8: Same as Figure 4.7 but using position weighted method with weights p = 1/2 (left
panel), p = 1 (middle panel), and p = 2 (right panel).

(w = r1r2) gives the optimal results.

Figure 4.9: The parallel and perpendicular correlation functions with weights p = 1
2 (left panel),

p = 1 (middle panel), and p = 2 (right panel). Ψ‖ and Ψ⊥ are in units of (100 km s−1)2. The
blue solid lines show averages over 100 mock catalogs. The upper blue error bars show the cosmic
variance. The lower red error bars indicate the statistical errors; these were calculated by taking the
standard deviations of the results of 100 versions of a mock catalog perturbed with 20% random
measurement errors. The values given are the average of the standard deviation taken over 30 mock
catalogs. It is quite clear that the statistical errors increase with weighting.

Now that we have determined that p = 1 provides the optimal weighting for our analysis,

we apply our methods to the actual CF3-galaxy catalog. In Figure 4.10, we show the parallel

and perpendicular correlation functions for the CF3-galaxy catalog, using the p = 1 (w = r1r2)

weighting scheme, together with the results (with estimated total uncertainties, including cosmic

variance and measurement errors) of both the random and LG centered mock catalogs with the

same weighting. We see that both Ψ‖ and Ψ⊥ have the expected behavior: decreasing amplitude

with increasing separation. Also as expected from linear theory, Ψ⊥ decreases more slowly and has

larger amplitude than Ψ‖ at large separation. Considering the magnitudes of the total uncertainties,

both Ψ‖ and Ψ⊥ are consistent (within two standard deviations) with the results from the mock
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Table 4.2: The errors of Ψ‖ with random observer using different weighting schemes. The σt , σc
and σs indicate the total error, cosmic variance and statistical errors of the correlation function in
units of (100 km s−1)2, respectively. The bin regions are in unit of h−1Mpc.

Weight p [15-20] [35-40] [55-60]
σc 2.45 1.88 1.59

1 0 σs 0.95 0.66 0.66
σt 2.63 1.99 1.72
σc 1.78 1.48 1.29√

r1r2
1
2 σs 2.58 1.45 1.13

σt 3.13 2.07 1.71
σc 1.59 1.37 1.14

r1r2 1 σs 5.37 2.54 1.79
σt 5.6 2.89 2.12
σc 1.59 1.47 1.27

(r1r2)
2 2 σs 11.39 5.04 3.36

σt 11.5 5.25 3.59

catalogs, and thus consistent with the standard cosmological model.

4.6 Parameter Constraints

In Wang et al. (2018), we showed that the correlation function ψ1 has a long, non-Gaussian tail

in its cosmic variance distribution, making it unsuitable for placing constraints on cosmological

parameters. As we discussed in section 4.5, the cosmic variance of ψ‖ exhibits a better approxima-

tion of a Gaussian distribution than ψ1. This suggests that ψ‖ may be a more useful measurement

of peculiar velocity correlations. In this section, we test the performance of uniformly weighted

and position weighted ψ‖ with both random and LG observers with respect to putting constraints

on cosmological parameters.

As can be seen in Figure 4.9, the statistical errors increase with weighting. To test the effect

of larger statistical errors and cosmic variances on the cosmological parameter constraints, we

implement three fitting methods (χ2
c , χ2

s and χ2
t ) given by

χ
2
c = ∑

i, j

[
ψ

S
‖ (ri)−ψ

L
‖ (ri)

]
C−1

i j

[
ψ

S
‖ (r j)−ψ

L
‖ (r j)

]
, (4.15)
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Figure 4.10: The blue dotted lines indicate the parallel and perpendicular correlation estimates in
units of (100 km s−1)2 calculated from the CF3-galaxy catalog using weighting scheme w = r1r2
(p = 1). The red dash-dotted lines show the linear prediction. The green solid lines indicate the
average results from randomly centered mock catalogs with the same weighting. The black dashed
lines show the average results from the LG centered mock catalogs, also with the same weighting.
The error bars show the total uncertainty, including cosmic variance and measurement errors.

χ2
s = ∑i, j

[
ψS
‖ (ri)−ψL

‖ (ri)
]

ε
−1
i j

[
ψS
‖ (r j)−ψL

‖ (r j)
]
, (4.16)

χ2
t = ∑i, j

[
ψS
‖ (ri)−ψL

‖ (ri)
](

Ci j + εi j
)−1
[
ψS
‖ (r j)−ψL

‖ (r j)
]
, (4.17)

where

Ci j =
1

Nmock

Nmock

∑
l=1

(
Ψ

i
‖,l−Ψ

i
‖

)(
Ψ

j
‖,l−Ψ

j
‖

)
, (4.18)

εi j =
1

Npert

Npert

∑
p=1

(
Ψ

i
‖,p−Ψ

i
‖,A

)(
Ψ

j
‖,p−Ψ

j
‖,A

)
. (4.19)

χ2
c (equation 4.15) uses the covariance matrix that only containes the cosmic variance informa-

tion, where C is the covariance matrix of cosmic variance; Nmock is the number of mock catalogs;

80



ψ i
‖,l is the correlation value of the ith separation bin of the lth mock catalogue; ψ

i
‖ is the average

value of Nmock catalogs in the ith separation bin; ψS
‖ is the average value of ψ‖ over Nmock mock

catalogs; ψL
‖ is the linear prediction.

χ2
s (equation 4.16) implement the covariance matrix that contains the information of statistical

errors, where ε is the covariance matrix of statistical errors; ψ i
‖,A is the parallel correlation of a

selected mock catalog whose value closes to the average value of the 100 mock catalogs in the ith

separation bin; ψ i
‖,p is the correlation value of the ith separation bin of the pth perturbed catalog of

the selected the mock catalog; Npert is the number of perturbed catalogs. The value of the selected

mock catalog ψ‖,A is close to the average of 100 mock catalogs. The parameter constraints of using

a selected mock catalog is similar as using a random mock catalog, but slightly tighter than using

a random mock catalog. χ2
t (equation 4.16) combines two covariance matrices that contain the

information of both the cosmic variance and statistical errors.

Figure 4.11 shows the cosmological parameters constraints for Ωm and σ8. In our test, we find

the results using Ψ‖ are much stabler than using ψ1 for implementing different truncations (see

Wang et al., 2018).

For the χ2
c fitting method, all of the four correlation weights, p = 0 (w = 1), p = 0.5 (w =

(r1r2)
1/2), p = 1 (w = r1r2), p = 2 (w = (r1r2)

2), agree with the simulation value within 1σ for

both the random and LG observers. However, the results of the uniform weighted Ψ‖ with the LG

observer are not as consistent as the results of random observers. The position weighted method

improves the parameter constraints for LG observer significantly. It provides tighter and stabler

constraints than the uniform weighted Ψ‖, which is due to the smaller cosmic variance of the

position weighted Ψ‖. In addition, the position weighted Ψ‖ provides closer constraining results

to the expected value (simulation value) for both the random and LG observers. Comparing the

results of the three position weighted Ψ‖, p = 1 provides the most optimal results.

In the χ2
s plots, all of the four correlation weights agree with the simulation value within 1σ for

the random observer, while only the position weighted (p = 0.5,1,2) correlations agree with the

simulation value within 1σ for the LG observer. Similar as the results of χ2
c method, the uniform

81



Figure 4.11: Ωm and σ8 constrains using simulation data with bin equals 500 km s−1 and trun-
cation at 6000 km s−1. The minimum χ2 value has been subtracted from each cell. The contours
indicate 68% likelihood of χ2 values. The triangle marker indicates the value from the OuterRim
Simulation. χ2

c shows the result of covariance matrix with cosmic variance, χ2
s indicates the result

of covariance matrix with statistical errors, and χ2
t combines two covariance matrices that contain

the information of both the cosmic variance and statistical errors. R and L indicate the random and
LG observers, respectively.

weighted Ψ‖ provides a biased parameter constraints for the LG observer, which is greatly im-

proved by the position weighted method. However, the position weighted Ψ‖ has laxer constraints

than the uniform weighted Ψ‖, which is opposite to the χ2
c fitting method. This is due to the

larger statistical errors caused by the larger position weights. The constraining results for weight

p = 0.5 is roughly as tight as the uniform weighted Ψ‖, which makes it the most optimal weight

for the χ2
s method. For the χ2

t method that combines both cosmic variance and statistical error,

the constraining results are even laxer, which is not reliable enough for parameter constraints. In

addition, the results for all the four correlation weights show no significant difference when using

the combination covariance matrix.

82



The position weighted scheme of Ψ‖ increases the statistical uncertainty of the correlations, and

the effect of the large statistical error makes the parameter constraints later. However, it improves

the parameter constraining results of the LG observer. The position weighted Ψ‖ improves the

cosmological parameter constraining with tighter and stabler constraints for the χ2
c method. For

both of the χ2
c and χ2

s methods, the position weighted Ψ‖ shows significant improvement in the

cosmological parameter constraints of the LG observers. Considering the more Gaussian cosmic

variance distribution of Ψ‖ and smaller bias of the position weighted Ψ‖ result for LG observers,

the position weighted Ψ‖ is a stabler correlation estimator for dealing with both the random and

LG observers. In addition, the constraining results indicate that p = 1 (w = r1r2) provides the

optimal results for χ2
c and p = 0.5 (w =

√
r1r2) provides the optimal results for χ2

s .

4.7 Conclusion

Previous studies of velocity correlations have mostly focused on ψ1, a correlation function intro-

duced by Gorski (Gorski, 1988). This function has several disadvantages. First, it is dependent on

the distribution of objects being analyzed and hence is not comparable between surveys. Second,

it is a complicated mixture of the physically meaningful correlation functions that quantify cor-

relations of the velocity components parallel and perpendicular to the separation vector between

pairs of galaxies. Third, as shown by Wang et al. (2018), the distribution of cosmic variance in

ψ1 is significantly non-Gaussian, complicating its use as a cosmological probe. Finally, as noted

by Hellwing et al. (2017), and as we have shown here, our special location near the Virgo cluster

can bias correlation functions calculated using typical catalogs whose density of objects decreases

rapidly with distance.

In this chapter we have presented an alternative method, an extension of a method introduced

by Kaiser (1989) and Groth et al. (1989), that can stably estimate the parallel and perpendicular

correlation functions directly from currently available peculiar velocity data. We have shown that

the non-Gaussian distribution of the cosmic variance in ψ1 is mostly due to its containing Ψ⊥; the

parallel correlation function Ψ‖ has a more Gaussian distribution and therefore should be much
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more useful as a cosmological statistic.

We showed that the parallel and perpendicular correlation functions calculated with uniform

weights are biased in LG centered mock catalogs, especially for small separations. The LG mock

catalog results also showed less agreement between the results of using estimators (Ψ‖ and Ψ⊥)

and the results of using the full 3D velocity fields (Ψ3D
‖ and Ψ3D

⊥ ). Ψ⊥ shows more bias, which

explains the different behaviors shown by ψ1 and ψ2 when LG centered mock catalogs were used

in Hellwing et al. (2017).

Our results, together with those of Hellwing et al. (2017), suggest that velocity correlation

functions calculated from peculiar velocity data dominated by nearby galaxies will be biased due to

our location near the Virgo Cluster. We have presented a novel way to reduce this bias by including

position weights into our analysis. These weights reduce the emphasis on nearby galaxies, which

are overrepresented in most catalogs. The weighted correlation functions probe a larger effective

volume and thus give better agreement with linear theory. Comparing the results of different

weights (w = (r1r2)
p), we find the larger power provides better agreement between the results of

random and LG observers. However, the statistical errors increase with the power. Therefore, the

weight needs to be within a reasonable range to balance the tension between better agreements

and larger errors. We found that the optimal weighting scheme requires an intermediate power

(p = 1) to balance these effects.We have demonstrated that weighting is particularly effective at

eliminating bias in the parallel velocity correlation function, Ψ‖.

Though the weighting scheme increases the statistical errors of the correlations, the larger er-

rors do not degrade the effectiveness of the cosmological parameter constraints estimation signif-

icantly. Instead, the position weighted Ψ‖ provides stabler and tighter constraints with the widely

used covariance matrix weighted χ2 method (χ2
c ). The constraining result using optimal weighting

scheme (p = 1) show agreements with the simulation value (Ωm = 0.2648 and σ8 = 0.8) within 1σ

for both random and LG observers. Considering the more Gaussian cosmic variance of Ψ‖ than

ψ1 and the tighter constraints of using the position-dependent weighting scheme, we suggest that

Ψ‖ with weight p = 1 is a more promising velocity correlation estimator. However, the constraints
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with the LG observer are not as stable as those using the random observer, even though the bias

and the parameter constraints has been improved significantly by the position-dependent weighting

scheme, requires for further studies.
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Chapter 5

Conclusion

In this dissertation, I presented the work we did in studying the dynamics and statistics of large-

scale structure of the Universe with peculiar velocity fields. In this chapter, I will encapsulate the

significant findings of our work.

In chapter 2, we tested the feasibility of using deep learning neural networks to simplify the es-

timation of kSZ peculiar velocities from the conventional method that requires several steps, such

as map filtering and optical depth estimates. Furthermore, the optical depth measurement makes

it difficult to predict the peculiar velocity accurately with the conventional method. By comparing

the results using simulation data from different redshift slices, we found our deep learning neural

network model is redshift independent, which is consistent with the theory. In addition, the pair-

wise velocity statistic of our neural network predictions indicates that our model provides reliable

peculiar velocities for cosmological studies. Our results suggest that models using kSZ and using

both kSZ and tSZ show no significant difference, which means the deep learning neural network

simplified kSZ velocity estimate may only need kSZ input. We tested the feasibility of applying

our model to observations by perturbing the kSZ signals with three different noise representations

and found a possible way of applying deep learning algorithms to observations by training the

model with simulation data sets that include various noise models corresponding to observations.

However, a suitable model for observations needs more observational kSZ detections of individ-

ual galaxy clusters in the future. To summarize, using deep learning neural networks to estimate

peculiar velocities from the kSZ effect is both feasible and promising. It could simplify the con-

ventional calculation of kSZ peculiar velocities significantly with only kSZ input, which avoids

difficulties arising from the estimation of optical depth as well as map integral and filtering.
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In chapter 3, we studied the Gorski velocity correlation function theoretically and statistically

using simulations and observations. We presented the analysis of the velocity correlation function

and the simplified estimator of moments of the selection function. We have shown that on average

the correlation function calculated from simulated catalogues recovers the expected signal from

linear theory. In the error analysis, we found the statistical errors of the correlation function are

significantly smaller than the cosmic variance, which means the velocity correlation function does

a reasonable job dealing with the large uncertainty of peculiar velocities. However, the cosmic vari-

ance distribution of the Gorski velocity correlation function is not Gaussian but a combination of

Gaussian and Wishart distributions. We clarified the effect of the non-Gaussian skew on cosmolog-

ical parameter constraints. Furthermore, since the cosmic variance is smaller at larger separations,

the covariance matrix gives more weight at larger separations, where skewness is most pronounced

and thus, may introduce systematic biased parameter estimations. In addition, redshift distortions

give rise to the mismatch between CosmicFlows correlations and linear predictions and thus may

contribute further bias to parameter constraints. To mitigate this effect, we have used a weighting

scheme that combines the effects of cosmic variance and redshift distortion, which appears to be

both more stable and less biased. Our parameter constraints agree with the Planck and WMAP9 re-

sults. However, the cosmological parameter constraints using Gorski velocity correlation function

is very unstable due to its non-Gaussian cosmic variance distribution.

Furthermore, the Gorski velocity correlation function is dependent on the distribution of objects

being analyzed and hence is not comparable between surveys. As noted by Hellwing et al. (2017),

our special location near the Virgo cluster can bias correlation functions estimated using typical

catalogs whose density of objects decreases rapidly with distance.

In chapter 4, we presented a feasible solution for the above problems. We have presented an

alternative method, an extension of a method introduced by Kaiser (1989) and Groth et al. (1989),

that can stably estimate the parallel and perpendicular correlation functions directly from currently

available peculiar velocity data. We have shown that the non-Gaussian distribution of the cosmic

variance in Gorski correlation function is mostly due to the perpendicular correlation function.
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The parallel correlation function has a more Gaussian cosmic variance distribution and therefore

should be much more useful as a cosmological statistic. Due to observational restrictions, velocity

surveys have more galaxies nearby, whereas in reality the number of galaxies increase with volume

and distance. To balance the overrepresented nearby galaxies relative to the more distant galaxies,

we formulated a position-dependent weighting scheme in the new estimators. From simulations,

we saw that galaxy distributions of velocity surveys centered at a position near a Virgo-like clus-

ter (LG) are different from galaxy distributions of surveys centered randomly. Thus, correlation

functions with LG observers are more biased than correlations with random observers. We found

that using the position-dependent weighting scheme could significantly reduce the systematic bias

caused by different observers. However, the statistical error increases and becomes dominant com-

pared to the cosmic variance as the weight power increases, leading to a larger total error. Though

the weighting scheme increases the statistical errors of the correlations, the larger errors do not

degrade the effectiveness of the cosmological parameter constraints significantly. Instead, the posi-

tion weighted parallel correlation function provides stabler and tighter constraints with the widely

used covariance matrix weighted χ2 method. The constraining results using optimal weighting

scheme show agreements with the simulation values within 1σ for both random and LG observers.

Considering the more Gaussian distribution of cosmic variance of the parallel correlation function

than the Gorski correlation function and the tighter constraints of using the position-dependent

weighting scheme, we suggest that the parallel correlation function with the optimal weight is a

more promising velocity correlation estimator. The results suggest that the parallel velocity cor-

relation function is a powerful cosmological probe, given that it has a better Gaussian distribution

than other velocity correlation functions and that its bias is more easily reduced by weighting.

With future kSZ detections of individual clusters, we can extend the depth of peculiar velocity

catalogs to high redshift. This will bring the study of large-scale velocity fields to an new era,

e.g., peculiar velocity studies for distant galaxy clusters may provide an independent method for

constraining Hubble constant. In future work, I propose to further investigate the kSZ effect with

observational data and further improve our deep learning neural network model. Furthermore, the
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application of machine learning algorithms on cosmological studies is very promising. I would

hone my skills using machine learning and data analysis with velocity field studies as well as other

fields, such as CMB and gravitational lensing.
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