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Abstract

It is an important goal for psychologists to develop and improve upon methods for describing

multivariate relationships among observed variables. Psychological network models represent one

class of methods for studying such relationships, and are being applied widely throughout psycho-

logical science. While these models have been shown to have a variety of diverse applications,

they are limited by the fact that they currently only consider pairwise relationships among sets of

variables. Specifically, they don’t take into consideration more complex relational structures such

as those characterized by moderation effects and higher-order interactions. Moderation analysis,

which focuses on these types of effects, is a common technique used within psychological research

to help reveal the contexts and conditions under which different relationships may emerge or be

observed. Thus, the goal of this research is to extend the psychological network framework to

include moderator variables, as well as provide statistical tools and software to facilitate testing

such models with psychological data.

iii



Acknowledgements

Thank you to my loving parents, family, and friends. I am forever grateful for your

unwavering encouragement and support.

iv



Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Psychological Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Interpreting Network Models . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1.1 Conditional associations . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1.2 Types of networks . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Extending Network Models . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Basics of Moderation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Interpreting Multiplicative Terms . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Conditional Marginal Effects . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.3 Visualizing Moderation Effects . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.3.1 (Conditional) marginal effects plot . . . . . . . . . . . . . . . . 12

1.3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Moderated Network Models 16

2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Analyzing Moderated Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Visualizing the exogenous moderator . . . . . . . . . . . . . . . . . . . . 22

2.2.3 Conditional networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Interpreting results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

v



2.3 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Nodewise Fit Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Global Fit Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Model Selection and Network Stability 33

3.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Variable Selection in Moderated Networks . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Penalized Estimation via the LASSO . . . . . . . . . . . . . . . . . . . . 35

3.2.2 The Graphical LASSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Consequences of Omitting Main Effects . . . . . . . . . . . . . . . . . . . 38

3.3 Constructing Moderated Networks with the Hierarchical LASSO . . . . . . . . . . 41

3.3.1 Disadvantages of the LASSO and its Variants . . . . . . . . . . . . . . . . 44

3.3.2 Advanced Variable Selection Techniques . . . . . . . . . . . . . . . . . . 45

3.4 Network Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Case-Dropping Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Simulation Study 55

4.1 Sample-Split Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Network Comparison Test (NCT) . . . . . . . . . . . . . . . . . . . . . . 55

4.1.2 Fused Graphical LASSO (FGL) . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 Study Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2 Models Investigated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Primary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Secondary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

vi



4.3.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.2 False-Discovery Rate (FDR) . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.3 Matthew’s Correlation Coefficient (MCC) . . . . . . . . . . . . . . . . . . 69

4.4.4 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.5 Bias (MAE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 Correlation Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Moderators in Temporal Networks 80

5.1 Experience Sampling Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 The Building Blocks of Temporal Networks . . . . . . . . . . . . . . . . . . . . . 81

5.2.1 Autoregressive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2.2 Vector Autoregressive Models (VAR) . . . . . . . . . . . . . . . . . . . . 83

5.2.2.1 VAR model assumptions . . . . . . . . . . . . . . . . . . . . . 84

5.2.2.2 Correlated errors and contemporaneous relationships . . . . . . 86

5.3 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 Estimating Temporal and Contemporaneous Networks . . . . . . . . . . . . . . . 90

5.4.1 Coping with Correlated Errors . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Simulated Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Empirical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6.1 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6.2 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.6.3 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



A Gibbs Sampling Procedure for Simulation Study 114

B Simulation Study—Specificity 115

C Simulation Study—Primary Analysis Means 116

C.1 Grand Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.2 Sensitivity (Interactions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.3 False-Discovery Rate (Interactions) . . . . . . . . . . . . . . . . . . . . . . . . . 118

C.4 Matthew’s Correlation Coefficient (Interactions) . . . . . . . . . . . . . . . . . . . 119

C.5 Specificity (Interactions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

D Simulation Study—Secondary Analysis Means 121

D.1 Grand Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

D.2 Correlation (Pairwise) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

D.3 Correlation (Interactions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

D.4 Mean Absolute Error (Pairwise) . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

D.5 Mean Absolute Error (Interactions) . . . . . . . . . . . . . . . . . . . . . . . . . . 125

E Simulation Study—Ordinalized Variables 126

E.1 Sensitivity—Ordinal (Interactions) . . . . . . . . . . . . . . . . . . . . . . . . . . 127

E.2 False-Discovery Rate—Ordinal (Interactions) . . . . . . . . . . . . . . . . . . . . 128

E.3 Matthew’s Correlation Coefficient—Ordinal (Interactions) . . . . . . . . . . . . . 129

E.4 Specificity—Ordinal (Interactions) . . . . . . . . . . . . . . . . . . . . . . . . . . 130

E.5 Correlation—Ordinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

E.6 Mean Absolute Error—Ordinal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

F Temporal MNM Empirical Example—Correlation Stability 133

F.1 Centrality Estimates from Full Sample . . . . . . . . . . . . . . . . . . . . . . . . 133

F.2 Correlation Stability—Edge Weights . . . . . . . . . . . . . . . . . . . . . . . . . 134

F.3 Correlation Stability—Centrality Measures . . . . . . . . . . . . . . . . . . . . . 135

viii



List of Figures

1.1 Conditional marginal effects of X on Y across values of Z. The red line represents

the estimated marginal effects, with the gray bands being 95% confidence inter-

vals. The faint blue line at Y = .66 shows the estimated marginal effect when the

interaction term is not included in the model. The 95%CI at the top of the plot

reflects the coverage interval of the interaction effect. . . . . . . . . . . . . . . . . 13

2.1 Moderated network model at depressed = 0, plotted with the AND rule and all

interaction terms included in each nodewise regression. . . . . . . . . . . . . . . . 21

2.2 Moderated network model with the exogenous moderator plotted. The color satu-

ration of the edges is scaled against the largest edge weight, which is represented

by the beta weight of depressed on lonely. . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Conditional network models at the values of depressed ∈ {0,1,2}. Plotted with

the AND rule and no significance thresholding. . . . . . . . . . . . . . . . . . . . 24

2.4 Conditional network models at the values of depressed ∈ {0,1,2}. Plotted with

the AND rule and a significance threshold of p < .05. . . . . . . . . . . . . . . . . 25

ix



2.5 Four plots of conditional marginal effects. Each plot represents average values

across both relevant interaction terms. In (A), the plot shows the average of two

separate conditional marginal effects: that of hostile × depressed on nervous, as

well as for nervous × depressed on hostile. In (B), the plot shows the average

of the conditional marginal effects of sleepy × depressed on nervous, as well as

for nervous × depressed on sleepy. In (C), the plot shows the average of the

conditional marginal effects of sleepy× depressed on hostile, as well as for hostile

× depressed on sleepy. In (D), this is the average conditional marginal effects of

lonely × depressed on sleepy and sleepy × depressed on lonely. . . . . . . . . . . 27

2.6 These plots show the same network model as in Figure 2, but with two different

comparisons represented by the blue shading in each node. In (A), the light blue

shading represents the R2 for each nodewise regression where depression is not

included in any of the models, while the dark blue shading shows the R2
∆

given

the models including depression as well as all of its interaction effects. In (B), the

models being compared to the moderation models include depressed as a covariate. 30

3.1 Simulated data with estimates of coefficients for different interaction models. . . . 40

3.2 Average correlations plotted with 95% coverage intervals for each subsample size.

In total, B = 1000, which means that there were 100 iterations for each of the 10

drop sizes tested. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Average sensitivity across models and conditions. Each plotted point is based on

100 simulated datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Average false-discovery rate across models and conditions. Each plotted point is

based on 100 simulated datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Average MCC across models and conditions. Each plotted point is based on 100

simulated datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



4.4 Average correlations across MNMs and conditions. Each plotted point is based on

100 simulated datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Average MAE across MNMs and conditions. Each plotted point is based on 101

simulated datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6 Distributions of correlation stability coefficients across conditions for the saturated

MNM fit to all simulated datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Original AirPassengers data (left; Box et al., 2015), along with its detrended

counterpart (right). Both linear and quadratic trends were removed from the se-

ries, where the detrended series was obtained by taking the residuals of the model:

AirPassengers∼ time+ time2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Faux temporal and contemporaneous networks illustrating a temporal MNM. . . . 88

5.3 Visualizing the moderator in a temporal network. . . . . . . . . . . . . . . . . . . 89

5.4 Average correlations for three models fit to 100 datasets generated for each of 13

sample sizes, three levels of interaction sparsity, and two network sizes. An addi-

tional sample size (N = 25) was included for p = 5, but was too small for when

p = 10. ‘No Moderator’ reflects the unmoderated temporal network, ‘Covariate

Only’ adds the moderator variable as a covariate, and ‘Moderator’ adds interaction

terms. Values for the temporal networks are in red; blue for the partial contempo-

raneous correlation networks, and green for the interactions. . . . . . . . . . . . . 94

5.5 Saturated temporal MNM with p-value thresholding at p < .05 for both networks.

Dashed edges reflect significant interaction effects (only specified in the temporal

network). Light blue circles around the perimeter of each node reflect the R2 value

for each variable. The darker blue that can be seen for some nodes indicate the

increase R2
∆

that occurred by including interaction terms (fit2) in comparison with

the unmoderated network (fit0). . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xi



5.6 Conditional temporal networks for when the participant is taking versus not taking

medication, as well as the contemporaneous network. These plots represent the

results for the final model which was selected based on the block bootstrap with

AIC selection of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

B.1 Average specificity across models and conditions for the continuous version of the

simulation study. Each plotted point is based on 100 simulated datasets . . . . . . 115

E.1 Average sensitivity across models and conditions for the ordinalized version of the

simulation study. Each plotted point is based on 100 simulated datasets . . . . . . 127

E.2 Average false-discovery rate across models and conditions for the ordinalized ver-

sion of the simulation study. Each plotted point is based on 100 simulated datasets . 128

E.3 Average MCC across models and conditions for the ordinalized version of the sim-

ulation study. Each plotted point is based on 100 simulated datasets . . . . . . . . 129

E.4 Average specificity across models and conditions for the ordinalized version of the

simulation study. Each plotted point is based on 100 simulated datasets . . . . . . 130

E.5 Average correlations across MNMs and conditions for the ordinalized version of

the simulation study. Each plotted point is based on 100 simulated datasets. . . . . 131

E.6 Average MAE across MNMs and conditions for the ordinalized version of the sim-

ulation study. Each plotted point is based on 100 simulated datasets. . . . . . . . . 132

F.1 Centrality estimates based on the conditional temporal networks (left) and the in-

teraction terms (right) using the full sample. The raw centrality values have been

standardized to represent z-scores in the plot. . . . . . . . . . . . . . . . . . . . . 133

F.2 Case-dropping bootstrap results with B = 1000 for edge weights in the temporal

network (specifically, when ‘medication’ = 0). . . . . . . . . . . . . . . . . . . . . 134

F.3 Case-dropping bootstrap results with B = 1000 for ingoing and outgoing variants

of strength centrality and expected influence for nodes and interaction terms in the

temporal network (specifically, when ‘medication’ = 0). . . . . . . . . . . . . . . . 135

xii



List of Tables

3.1 Total parameters for different estimation and moderation techniques in cross-sectional

networks (excluding residual variances). . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Correlation stability coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Percentage of variables and datasets judged to be non-normal based on outputs

with p < .05 from Shapiro tests (assessing univariate normality for each simulated

variable), as well as three tests of multivariate normality. For the latter, the tests

produced one test statistic for each of 4000 datasets, and for the former there was

one for each of 34,000 total variables. The Bonferroni correction was applied at

a family-wise level, meaning that p-values were corrected within each dataset for

the univariate tests, and across datasets for the multivariate tests. The MVN package

in R was used to conduct all analyses (Korkmaz et al., 2014). . . . . . . . . . . . . 60

4.2 Models fit to each simulated dataset, along with the names used in plots. . . . . . . 62

4.3 Means, standard errors, and medians for three correlation stability coefficients at

each sample size and network size. Collapsing across levels of m (interaction spar-

sity), each statistic is based on 400 datasets, where B = 1000 subsamples were

evaluated in each case to obtain a single CS value on each metric. On average, 100

subsamples at each of 10 sizes were used, ranging from a 5% drop to a 75% drop.

Low values indicate low stability, and high values indicate high stability, with .75

being the largest possible value and zero being the lowest. In all cases, a saturated

MNM without p-value thresholding was fit to each subsample. . . . . . . . . . . . 78

xiii



5.1 Omnibus fit statistics and likelihood-ratio tests (LRT) associated with each of three

models: fit0 is the model where the ‘medication’ variable is excluded entirely; fit1

includes ‘medication’ as a covariate, and then fit2 includes interaction terms. . . . . 98

5.2 All names reflect the same meanings as in Table 4.2, with the exception that B =

1000 iterations were used for the block bootstrap. The LRT column reflects the

number of times that each model was selected in a series of likelihood-ratio tests

comparing it with every other model. . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Correlation stability coefficients obtained via the case-dropping bootstrap. . . . . . 101

C.1 Grand means, standard errors, and medians for each model after collapsing across

conditions. Rows differ across facets to reflect rank-ordered performance on each

outcome. Each statistic is based on 4000 observations (100 iterations for each of

40 conditions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.2 Means and standard errors across models and conditions for sensitivity. The values

essentially reflect the same information shown in Figure 4.1. . . . . . . . . . . . . 117

C.3 Means and standard errors across models and conditions for FDR. The values es-

sentially reflect the same information shown in Figure 4.2. . . . . . . . . . . . . . 118

C.4 Means and standard errors across models and conditions for MCC. The values

essentially reflect the same information shown in Figure 4.3. . . . . . . . . . . . . 119

C.5 Means and standard errors across models and conditions for specificity. The values

essentially reflect the same information shown in Figure B.1. . . . . . . . . . . . . 120

D.1 Grand means, standard errors, and medians for each model after collapsing across

conditions. Rows differ across facets to reflect rank-ordered performance on each

outcome. Each statistic is based on 4000 observations (100 iterations for each of

40 conditions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xiv



D.2 Mean pairwise correlations and their associated standard errors across models and

conditions. The values essentially reflect the same information shown in the left-

side column of plots in Figure 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

D.3 Mean interaction correlations and their associated standard errors across models

and conditions. The values essentially reflect the same information shown in the

right-side column of plots in Figure 4.4. . . . . . . . . . . . . . . . . . . . . . . . 123

D.4 Mean pairwise MAEs and their associated standard errors across models and con-

ditions. The values essentially reflect the same information shown in the left-side

column of plots in Figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

D.5 Mean interaction MAEs and their associated standard errors across models and

conditions. The values essentially reflect the same information shown in the right-

side column of plots in Figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xv



Chapter 1

Introduction

In recent years, network representations of complex systems have been applied widely through-

out many scientific disciplines, contributing statistical tools designed to aid us in understanding

intricate causal structures that drive the behavior of multivariate processes (c.f. Borgatti et al.,

2009; Barabási et al., 2016). For instance, network models—i.e., probabilistic graphical mod-

els (Lauritzen, 1996)—have been used by psychologists in studying such diverse phenomena as

the dynamics of psychopathology (e.g., Cramer et al., 2010; Epskamp et al., 2018b), personality

development across the lifespan (e.g., Read et al., 2010; Costantini et al., 2019), the associative

structure of words in memory (e.g., Hills et al., 2010; De Deyne & Storms, 2008), the role of prob-

abilistic phonotactics in spoken word recognition (e.g., Vitevitch & Luce, 2016), and connections

between social networks and personal well-being (e.g., Kindermann & Snell, 1980; Galaskiewicz

& Wasserman, 1993). Researchers working within these domains, among others, are often inter-

ested in characterizing the underlying structure that relates variables within a complex system, as

well as the dynamic, interdependent connections that make up important links between psycholog-

ical, sociological, and behavioral variables as they interact and change over time.

Although they have been applied to a wide array of topics, the general goal of psychological

network models is to characterize the unique associations among variables that are theorized to

be interrelated with regard to some psychological process or construct. These models have been

applied within both cross-sectional and longitudinal contexts, where in the former the objective

is often to describe which variables have conditional relationships across individuals, and in the

latter—i.e., temporal networks—the goal is often to describe the evolution and development of

those relationships within a single individual over time. Multilevel implementations of longitudinal

1



models have also been employed in the study of whether those within-person processes hold across

groups of individuals (Epskamp et al., 2018c,b).

While psychological networks have been shown to have a variety of diverse applications, they

are limited by the fact that at present they are only used to consider pairwise relationships among

sets of variables. Specifically, they don’t take into consideration more complex relational struc-

tures such as those characterized by moderation effects and higher-order interactions. Moderation

analysis, which focuses on these types of effects, is a common technique used within psychologi-

cal research to help reveal the contexts and conditions under which different relationships emerge

or are observed between variables. For instance, we may be interested in whether the relationship

between anxiety and insomnia is dependent on the degree to which an individual is experiencing

situational stress. It is well-known that moderators can be crucial for understanding conditional

interdependencies between variables, and that failing to investigate such variables when they are

present can lead to a distorted understanding of the underlying phenomenon. Thus, my goal for

this research is to extend the psychological network framework to include moderator variables, as

well as to provide both statistical and computational tools that facilitate testing such models with

psychological data.

1.1 Overview

In this paper, I introduce a basic framework for constructing moderated network models (MNMs),

as well as showcase how these have been implemented in a software package I developed for R

called modnets. Overall, the goals of this project were to: (1) Develop a framework for construct-

ing and estimating MNMs in both cross-sectional and longitudinal data; (2) create open-source

software that allows researchers to apply these models in a variety of settings; and (3) present

flexible options for model selection and other analyses of MNMs, including methods for model

comparison and post-hoc stability assessments.

In the current chapter, I begin by describing different types of psychological network models,

as well as how they are commonly interpreted and applied in the literature. I then provide some
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background on moderated regression analysis, as well as how we can integrate this method into

the network framework. Chapter 2 covers the statistical foundations of MNMs, along with a dis-

cussion of general analysis procedures, and presents a cross-sectional example by applying these

to empirical data. In Chapter 3 I discuss model selection techniques for MNMs, which differ from

methods commonly used with psychological networks as they must adapted to incorporate some

additional considerations. Then, in Chapter 4 I present a large-scale simulation study aimed at eval-

uating the performance of MNMs across different contexts, as well as to determine how they stack

up against alternative approaches used in the literature. Chapter 5 changes the focus to temporal

MNMs, presenting the differences between these and the cross-sectional models through another

simulation study accompanied by an application to empirical data. Finally, Chapter 6 provides

a brief discussion of some limitations and future directions regarding the development of these

models, and concludes with a summary of the contributions of this framework to psychologists’

methodological toolkit.

1.2 Psychological Networks

It is an important goal for psychologists to develop and improve upon methods for describing

complex relationships among observed variables. The dominant approach toward this end has

long been latent variable modeling, where the objective is to connect a set of observations with

some unobserved latent construct(s) using methods such as confirmatory factor analysis and struc-

tural equation modeling (e.g., Little et al., 2006). In general, these methods aim at highlighting the

shared variance among variables while downplaying their conditional relationships. The network

perspective in psychology, however, offers a powerful counterpoint to this approach by framing

psychological constructs as systems of interacting variables rather than manifestations of unob-

served factors. Thus, while latent variable models are designed to sift through observed variation

in search of underlying commonalities, network models focus on the direct associations between

variables in an effort to identify their possible causal structure. For instance, rather than con-

ceptualizing cognitive abilities, behavioral dispositions, and mood disorders as indicators of un-
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derlying common causes—such as general intelligence, personality traits, and psychopathology—

psychological networks frame these phenomena as emergent characteristics of networks of inter-

related components.

The primary goal behind the network perspective is to characterize the causal structure of psy-

chological and behavioral systems using concepts from graph theory, a field of study that was

developed to describe information processing in computer networks and transportation systems

(West, 1996). Network models provide both statistical and theoretical representations of psycho-

logical constructs, wherein a set of variables (such as mood states, attitudes, symptoms, etc.) can be

represented as components, or ‘nodes’, whose unique associations are depicted as links, or ‘edges’.

One domain in which these models have been applied is the network approach to psychopathology,

where mental disorders are viewed as arising from networks of directly interacting and mutually

reinforcing symptoms (Cramer et al., 2010; Fried et al., 2017; Bringmann et al., 2013; Cramer

et al., 2016). From this perspective, symptoms of mental disorders such as Major Depression

(MD) co-occur because of their direct causal relationships, rather than their connections to a latent

disease entity. For example, instead of treating symptoms such as insomnia, fatigue, and dysphoria

merely as consequences of a neurochemical imbalance or brain disorder, the network approach to

psychopathology considers distinct causal pathways such as insomnia→ fatigue→ dysphoria as

key contributors to the experience of MD.

1.2.1 Interpreting Network Models

Despite being built on methods from graph theory, psychological networks are often constructed

in ways that are vastly different from traditional graph-theoretic models (Epskamp et al., 2018a).

Specifically, the structure of these networks is typically unknown, rather than observed, and so

must be estimated from data. This leads to questions about the best way to construct such models,

especially with regards to defining the nature of the edges—i.e., associations between variables.

Any type of statistical association can be used, including marginal associations (such as zero-order

correlations; e.g., Forbush et al., 2016; Siew et al., 2019), however the most common way to define
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edges is in terms of conditional associations, or partial correlations between variables (Epskamp

& Fried, 2018b; Williams et al., 2019). This is the standard approach for estimating probabilistic

graphical models (Lauritzen, 1996), and has been widely utilized in psychological research.

1.2.1.1 Conditional associations

The utility of representing edges with partial correlations lies in the fact that this allows us to

understand network models as encoding conditional dependencies between nodes. That is, when

an edge is drawn between nodes A and B in a given network, we can interpret this as indicating

that the variables associated with A and B share unique variation after taking into account all other

nodes in the network. Conversely, when no edge is drawn between two nodes, this indicates that

the corresponding variables are conditionally independent, meaning that they do not have any

direct association after conditioning on their connections with other nodes in the network. These

interpretations are useful in the sense that they help to reveal the core structure of a network in

terms of the direct effects between any given pair of variables (van Borkulo et al., 2015; Haslbeck

& Fried, 2017).

Given that one of the primary objectives of network modeling is to identify causal relation-

ships between variables, estimating conditional (in)dependencies has the potential of revealing the

"causal skeleton" of the network, even when estimated from observational data (McNally et al.,

2015; Boschloo et al., 2016). That is, when two variables are determined to be conditionally in-

dependent given the remaining nodes in the network, it makes it highly unlikely that they have

a direct causal relationship. Thus, researchers often set out to model a sparse network structure,

wherein the fewest number of edges as possible are estimated. Techniques such as significance

thresholding, model selection, and regularization are common approaches to estimating a sparse

network structure, though each of these comes with their own potential drawbacks (Epskamp et al.,

2018a).

Lastly, when the presence of an edge is interpreted as encoding the conditional dependence be-

tween two nodes, this preserves the possibility that the two corresponding variables do indeed have
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a causal relationship. This is certainly not guaranteed when the network has been estimated from

observational, cross-sectional data, but it nevertheless provides an exploratory way for researchers

to begin generating causal hypotheses and perhaps conducting experiments to assess particular

aspects of a given network’s structure.

1.2.1.2 Types of networks

There are two primary types of network models: (a) undirected, and (b) directed networks. Undi-

rected networks are the most common type used in psychological research, as these are estimated

from cross-sectional data where the causal relationships between variables cannot be directly

known. Thus, the edges in these networks are simply represented as lines connecting nodes, in-

dicating that there are no directed causal associations that define the relationships between them.

These are the types of model where partial correlations are most commonly employed, as they

make up the vast majority of investigations within the psychological network literature. Impor-

tantly, inferences about causality are not possible for these types of models (see Ryan et al., 2019),

although researchers often use them for exploratory purposes and as hypothesis-generating tools.

In any event, determining whether some set of nodes are conditionally independent can help to

narrow down the possibilities of what the true causal structure of a network might be.

In contrast with undirected network models, directed networks explicitly encode directed asso-

ciations in the sense that edges are represented with one-sided arrows to signify that one variable

is the predictor of another. These networks are frequently estimated from time-series or repeated-

measures data, and are often interpreted as temporal networks, where edges are identified as re-

gression coefficients with the direction of the arrow representing the relationship from the predictor

to the outcome. I will discuss these models in greater detail in Chapter 5, and for now restrict our

focus on cross-sectional models to provide the basic foundations of what will later be extended

into the temporal context.
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1.2.2 Extending Network Models

In all of the cases described above, one important aspect of network models is that they only encode

pairwise relationships between variables, and do not take into account how some relationships may

vary in accordance with changes in other variables. An implicit assumption of these models is that

pairwise relationships between variables will be the same across all values of both variables (as

well as across others). Additionally, no software currently exists (or at least is not readily available)

for psychologists to test higher-order interactions in network models of the type described in this

paper.

Although in some circumstances it may be a reasonable assumption that the relationships be-

tween variables are restricted to pairwise associations, researchers have explicitly called for the

need to test alternative models in past work (e.g., Fried & Cramer, 2017). Moreover, this as-

sumption seems particularly unreasonable in the case of temporal network models, wherein the

associations between variables are estimated over time, while the influences of important situa-

tional and contextual variables (e.g., situational stress, environmental factors) may be overlooked

entirely due to the lack of an available framework with which to test for moderator and interaction

effects. Thus, an important goal for extending the framework of network modeling is to afford

researchers the ability to test interaction hypotheses as well as use exploratory techniques to in-

vestigate multivariate causal structures in psychological data. In the next section, I will provide a

more detailed background on moderation effects as well as motivate reasons why it is important to

investigate these types of relationships in psychological networks.

1.3 Basics of Moderation

In the most basic sense, moderation implies that the relationship between two variables depends

upon values of a third variable. This third variable is referred to as a moderator, in that it modifies

"the direction and/or strength of the relation between an independent or predictor variable and a de-

pendent or criterion variable" (Baron & Kenny, 1986, p.1174). Moderators can be either qualitative
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(e.g., gender) or quantitative (e.g., situational stress) variables, and so are interpreted differently

depending upon the context. For instance, researchers examining a qualitative moderator may be

interested in subgroup effects, where a predictor has an inconsistent relationship to an outcome

for different types of people (Hall & Sammons, 2013), or perhaps only has influence within spe-

cific subpopulations (Brambor et al., 2006). A quantitative moderator may instead be seen as an

effect modifier (Hinshaw, 2002), where its variation is expected to correspond with variation in

the degree of some observed relationship. Thus, moderation is central to evaluating conditional

hypotheses, or when a researcher is interested in investigating the conditions under which, or for

whom, a purported cause produces some expected effect(s).

Testing conditional hypotheses is ubiquitous in psychological research, as it can afford a more

detailed understanding of both how and when different independent and dependent variables relate

(Baron & Kenny, 1986). Perhaps it is theorized that a particular medication will only be effective

for people with specific neurological characteristics, or that emotional reactions to negative feed-

back will be stronger among individuals who are higher in certain personality traits. In cases such

as these, explicitly testing for the presence of moderation is crucial to obtaining a complete picture

of the phenomenon at hand.

From a statistical standpoint, moderation effects are typically investigated via the inclusion of

multiplicative interaction terms in an analysis of variance (ANOVA) or multiple regression model.

For example, imagine that we wish to determine whether or not the effect of some independent

variable X on some dependent variable Y depends on the value of some third variable Z. In the

context of regression, we can assess this possibility by estimating

Y = β0 +β1X +β2Z +β3XZ + ε, (1.1)

where the multiplicative term XZ and its corresponding coefficient β̂3 serve to represent the mod-

eration effect under investigation. We can then assess the significance of this effect by employing

standard hypothesis tests such as t-tests or F-tests (depending upon the context), and thereby de-
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termine whether or not there is evidence of moderation. That is, if we find that the interaction term

XZ has a significant relationship with Y via our evaluation of β̂3, we would conclude the effect of

X on Y is indeed dependent on levels of Z.

1.3.1 Interpreting Multiplicative Terms

The first reported use of the term "moderation" was by Saunders (1955), in which the term was

employed as a synonym for what is commonly called an "interaction effect". However, although

testing multiplicative terms is still the standard approach for assessing moderation effects, it is

important to note that many authors make a conceptual distinction between the two constructs. An

interaction effect, for instance, is taken to be a more general description of the conditional relation-

ships between an outcome and some set of interacting predictors, while a moderation effect refers

to a more particular type of causal relationship (Hall & Sammons, 2013). Specifically, moderation

requires that the researcher identify which of the two constituent terms is the relevant causal vari-

able (X , in the example here) that directly affects Y , as well as which term is the modifier of their

relationship (here, Z). In sum, moderation requires that we identify one variable as the explana-

tory variable, and the other as the moderator of its effect on the outcome. Still, this distinction is

purely theoretical. It simply guides how we approach analyzing and interpreting the results of a

multiplicative interaction model.

From a mathematical perspective, both types of effect are assessed through the same means:

the statistical significance of a multiplicative term within a regression or ANOVA model. The

interaction term itself is agnostic about which variable is which—it simply provides empirical

evidence as to whether the nonlinear product of the two variables reveals significant variation

in each variable’s slope over the range of observed values for the other. The causally-agnostic

interpretation of a multiplicative term would then be to simply characterize it as an interaction

effect, wherein the researcher does not (or cannot) specify which constituent variable is in fact

the moderator, and which is the independent variable. This is especially relevant in observational

research, where none of the measured variables are experimentally manipulated. Yet, even in such
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cases it may be possible to identify one variable as the moderator based on theory—for instance,

an individual’s social context, personality traits, or average number of stressful events encountered

in a day may reasonably be interpreted as moderators even in the absence of experimental design.

Thus, it is up to the researcher to determine which interpretation of the multiplicative interaction

term and its constituents best applies in a given situation.

Either way we choose to interpret the roles of these two variables, however, we are still left with

the task of interpreting the model parameters. In standard regression models without interaction

terms we interpret the coefficient estimate of a given predictor as the expected change in Y given a

unit change in that variable, assuming all other variables are held constant. This is referred to as the

unconditional marginal effect of that predictor on the outcome Y (Berry et al., 2016; Brambor et al.,

2006; Braumoeller, 2004). These effects are ‘unconditional’ in the sense that they remain constant

regardless of the values of all other predictors. This is only true for additive models, wherein

no multiplicative interaction terms are included. But whenever interaction terms are included, as

in equation 1.1, this interpretation no longer holds. In these situations, the marginal effect of a

predictor that is also part of an interaction term now depends on values of the other variable(s) it

interacts with. Continuing with the example in equation 1.1, we must now interpret X as having

conditional marginal effects on Y , meaning that its contribution to the variance of Y is dependent

upon values of Z.

1.3.2 Conditional Marginal Effects

The key to interpreting slope coefficients in moderated regression models is to consider the condi-

tional marginal effects (or simply ‘conditional effects’) of the independent variable on the depen-

dent variable across substantively meaningful values of the moderator (Wright Jr, 1976; Friedrich,

1982). In the case of a moderation hypotheses, we not only expect that Y depends on values of

both X and Z, but that the effect of X on Y is itself dependent upon values of Z. And while the

converse of this will also be true (i.e., that the slope relating Z to Y is dependent upon X), with

moderation analysis we are typically only interested in how the explanatory variable affects the
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outcome, as well as how their relationship varies across levels of the moderator. Nevertheless,

everything presented here about interpreting conditional effects applies equally to both variables

that are constitutive of an interaction effect.

To start thinking about the conditional effects of X on Y across values of Z, we can re-write

equation 1.1 as follows:

Y = β0 +β1X +β2Z +β3XZ + ε

= β0 +(β1 +β3Z)X +β2Z + ε.

(1.2)

Upon rearranging the terms of our model, we can more clearly see how to interpret the conditional

marginal effects of X on Y . Considering regression models in general, the marginal effect of a

predictor on the outcome is equal to the partial derivative of that predictor with respect to the

outcome, where ∂Y
∂X = β1 would be the marginal effect of X on Y in an additive model that excludes

the interaction term XZ (Brambor et al., 2006; Friedrich, 1982). In the present case, however, the

marginal effect will instead be equal to

∂Y
∂X

= β1 +β3Z, (1.3)

which, as can be seen in equation 1.2, is simply the quantity that we multiply with X to obtain its

marginal effect on Y . This equation clearly shows that even when we hold Z constant, the effect

of X on Y directly depends on its value (in addition to the estimate β̂3). Additionally, we can see

that when Z = 0, the conditional effect of X on Y is equal to β1. This is the meaning of a ‘main

effect’ in a regression model that includes an interaction: the ‘main effect’ or ‘simple slope’ of a

predictor that is part of an interaction is not the ‘average effect’ of that variable across values of

the moderator, as it may sometimes be perceived (c.f. Friedrich, 1982), but is rather the effect of

that variable only when the moderator is equal to 0.

Importantly, this value is still a conditional marginal effect. That is, in this example β̂1 is the

estimated marginal effect of X on Y conditional on Z = 0. At any other value of Z, the marginal
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effect of X will be equal to β̂1 + β̂3Z. The reasoning here applies equally to the standard error of

the estimate: the standard error associated with β̂1, as returned by any standard statistical software,

is also conditional on Z = 0. Just as the marginal effect of X on Y varies over the range of Z, so too

does its standard error. We can obtain the standard errors associated with the conditional effects

by computing

σ̂ ∂Y
∂X

=

√
var(β̂1)+Z2var(β̂3)+2Zcov(β̂1, β̂3) (1.4)

across values of Z.

1.3.3 Visualizing Moderation Effects

With the capacity to obtain both conditional slopes (Eq. 1.3) and their associated standard errors

(Eq. 1.4) for values of Z, we can now clearly visualize the nature of a given interaction effect, as

well as conduct hypothesis tests at meaningful values of the moderator (e.g., +/− 1 SD around

the mean) to determine the conditions under which the independent variable has a significant re-

lationship with the outcome. Relatedly, the availability of standard errors affords us the ability

to plot confidence intervals along with the estimated marginal effects conditioned on values of Z.

The choice of which values of the moderator to estimate conditional effects for will be up to the

researcher and question at hand. However, with a quantitative moderator it is common to simply

plot conditional effects across the full range of observed values (Hainmueller et al., 2019).

1.3.3.1 (Conditional) marginal effects plot

To provide an example of how to visualize conditional marginal effects, I’ve simulated data with

the same structure as the present example. Specifically, two variables {X , Z}with 500 observations

were sampled from N (0,ΣΣΣ) and used to construct the outcome

Y = 0.5+0.6X−0.4Z +0.25XZ + ε, where ε ∼N (0,1). (1.5)
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Regressing Y onto {X , Z, XZ} and estimating the marginal effects of X on Y across the observed

range of Z produced the following conditional effects plot.
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Marginal Effects of X on Y Conditioned on Values of Z

Figure 1.1: Conditional marginal effects of X on Y across values of Z. The red line represents the
estimated marginal effects, with the gray bands being 95% confidence intervals. The faint blue
line at Y = .66 shows the estimated marginal effect when the interaction term is not included in the
model. The 95%CI at the top of the plot reflects the coverage interval of the interaction effect.

Figure 1.1 helps us gain a more comprehensive understanding of how Z moderates the effect

of X on Y . First, as per equations 1.1 and 1.2, the unstandardized estimate of the interaction effect

is equal to the slope of the line observed in the plot (β̂3 = 0.24). Additionally, the marginal effect

conditioned on Z = 0 is equal to the unstandardized main effect of X on Y (β̂1 = 0.66). The gray

bands surrounding the marginal effects represent 95% confidence intervals based on the standard

errors estimated from equation 1.4. We can see that the intervals do not include 0 over most the

range of Z, and reveal that X is expected to have a significant negative effect on Y at low values

of Z, but a significant positive effect across the majority of Z’s range. Moreover, the histogram

at the bottom of the plot displays the distribution of Z, and the 95% CI at the top represents the
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coverage interval of the difference between effects estimated at its maximum and minimum using

data simulated from the posterior distribution of (β1 +β3Z) with the sim function from the arm

package in R (Gelman & Su, 2018).

1.3.3.2 Discussion

The purpose of this example is to demonstrate how a researcher might go about probing an in-

teraction effect by examining the conditional effects of an independent variable across the range

of a continuous moderator. Importantly, this plot illustrates the necessity of testing interaction

effects when one is investigating a conditional hypothesis. Although this is a simulated example,

we can clearly see that without modeling the interaction between X and Z, one’s understanding

of the relationship between X and Y would be greatly misrepresented. Had the interaction effect

not been included, the estimated marginal effect of X on Y would be captured by the dashed blue

line where the y-axis equals 0.66. This is the main effect of X on Y in the non-interaction model,

where Z is still included as a covariate. The bottom line is that visualizing the character of how two

variables interact is crucial for understanding how they might relate with an outcome of interest.

Especially for multivariate models such as psychological networks, failing to include relevant inter-

action terms can lead to misspecified models that improperly characterize the relationships among

a set of variables. This plotting function is included as part of the modnets package for assessing

interaction effects within psychological network models; thus, it is a tool that researchers study-

ing moderated networks in psychology will be able to use as part of their analyses and profitably

employ to explore the nature of interaction effects in their models.

1.3.4 Summary

The goal of the present section was to provide a background describing moderation analysis, in-

teraction effects, and how rich information about multivariate relationships can be gained from

studying the conditional effects of a given predictor on an outcome after considering values of a

moderator. The central point here was to showcase a simple way of extracting this type of informa-
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tion from a moderated regression model to better understand the nature of the relationships among

variables.

In the next section, I will present my approach to analyzing moderated network models, which

are essentially a multivariate generalization of the basic template presented here. Combined with

techniques from graphical modeling, adding interaction terms to network models contributes a po-

tentially powerful framework for investigating more complex models and more specific hypothe-

ses (namely, those dealing with moderation and interaction effects). Furthermore, generalizing

the concept of plotting conditional effects across values of a moderator, I will present a new con-

tribution to psychological network modeling which I term conditional networks. As in the case

of plotting marginal effects at specific values of a moderator, I will show how we can construct

networks after conditioning on specific values of a moderator. This offers a way of gaining added

information about moderated networks and visualizing the results in easily interpretable plots. I

present the basic ideas behind moderated networks in the next section.
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Chapter 2

Moderated Network Models

The goal of this section is to provide an overview of Moderated Network Models (MNMs) along

with some examples of how they can be used to analyze psychological data. I limit the present

discussion to cross-sectional MNMs, where the objective is to estimate an undirected network from

a sample of n > 1 subjects measured on p variables at a single time point. Temporal formulations

of these models (i.e., MNMs applied to time series data; both in idiographic and multi-subject

settings) will be examined in a separate paper.

Currently, the MNM framework I present here and implement in the modnets package supports

the analysis of both continuous and binary variables, where each type can serve as either a predictor

or an outcome. The simplest case, however, is based on the Gaussian Graphical Model (GGM),

wherein all outcomes (i.e., nodes in the network) are assumed to be continuous variables with

a multivariate normal distribution. An undirected network consisting of all binary variables is

commonly referred to as an Ising Model, and has been studied at great length in previous work

(see Lauritzen, 1996; van Borkulo et al., 2014; Marsman et al., 2018). Moreover, Mixed Graphical

Models—where outcome variables may be associated with different univariate distributions—have

also received treatment within the literature (e.g., Yang et al., 2014; Chen et al., 2014). Importantly,

all of these models can be formulated as MNMs using the same basic approach, although the results

will be subject to different interpretations and are not necessarily associated with a normalizable

joint distribution (e.g., Yang et al., 2014; Haslbeck et al., 2018). In such cases, this precludes us

from computing the likelihood of the model when taken as a whole, thereby preventing us from

performing global goodness-of-fit analyses along with model comparison tests. Thus, to outline the

basic foundation of MNMs here, I focus on the scenario where all outcome variables are assumed
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to be continuous, Gaussian variables, as these have the most straightforward interpretation along

with a normalizable joint distribution.

I distinguish between two different types of MNMs: (a) the exogenous MNM, and (b) the

endogenous MNM. The qualifier in each case is meant to refer to the nature of the moderator

variable(s) included in the model. For an exogenous MNM, we essentially treat the moderator

variable(s) as covariates in the model; that is, they are not treated as outcomes which are affected

by the other variables, and therefore are not represented as nodes in the resulting network. Instead,

they are treated as external components of the process or system under investigation. Identifica-

tion of moderators as exogenous variables should be based on theory, or based on a reasonable

assumption that the variable in question is not influenced by the other variables under study (such

as ethnicity, experimental condition, gender, etc.). With endogenous moderators, however, these

variables will be identified as nodes in the network and treated as outcomes in the construction

of the model. This latter case will be most useful in exploratory settings, and will be discussed

in a separate paper. Thus, in the remainder of this section I will present the foundation for esti-

mating and interpreting MNMs wherein all outcomes are Gaussian variables and there is only one

moderator which is treated as an exogenous variable.

2.1 Estimation

The standard way of constructing a GGM is through joint estimation of model parameters via the

standardized inverse covariance matrix—i.e., the partial correlation matrix. Let X be an n× p

matrix, where each column represents a different variable ( j = 1, . . . , p), and each row contains

the response vector for a single subject (i = 1, . . . ,n). For the standard GGM, we assume that the

response vectors are multivariate normal:

xi ∼N (µµµ,ΣΣΣ) ∀i ∈ {1, . . . ,n}, (2.1)
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where µµµ is the p×1 vector of means, and ΣΣΣ is the p× p variance-covariance matrix. For simplicity,

we will also assume that all the variables have been mean-centered, such that µµµ = 0. Thus, our only

objective is to estimate the partial correlation matrix ΩΩΩ, which is a p× p symmetric matrix with

zeros in the diagonal and partial correlations between each pair of variables in the off-diagonal.

This can be obtained by taking the maximum likelihood estimate (MLE) of ΣΣΣ and standardizing its

inverse (i.e., the precision matrix), such that

Σ̂ΣΣ =
XTX

n
, and Ω̂ΩΩ = I−∆∆∆Σ̂ΣΣ

−1
∆∆∆, (2.2)

where I is a p× p identity matrix, and ∆∆∆ is a diagonal scaling matrix with zeros in the off-diagonal

and diag(∆∆∆) = diag(Σ̂ΣΣ
−1
)−

1
2 . The resulting estimate of ΩΩΩ therefore encodes the conditional depen-

dence structure of the data, and is used to define the undirected network.

When moderators, covariates, or any higher-order interaction terms are included in the model,

however, this approach is no longer possible. Instead, we can use an approach called nodewise

regression (Haslbeck & Waldorp, 2015; Epskamp et al., 2018c). This method is based on a graph-

theoretic approach to structure learning called neighborhood selection (Meinshausen & Bühlmann,

2006), and entails estimating the network structure via a series of univariate regression models.

That is, a separate regression model is constructed for each variable represented as a node in

the network, and then the coefficients are aggregated across models to define the final network

structure.

For example, imagine that we wanted to model the conditional dependence of three random

variables: X1, X2, and X3. Taking the nodewise regression approach, we would begin by construct-

ing three separate univariate regressions:

X1 = β10 +β12X2 +β13X3 + ε1

X2 = β20 +β21X1 +β23X3 + ε2

X3 = β30 +β31X1 +β32X2 + ε3.

(2.3)
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Given that the slope parameters represent directed conditional relationships—e.g., in this example,

β12 is the slope predicting X1 from X2 after conditioning on X3—we can combine relevant pairs of

coefficients to obtain the undirected conditional dependencies (i.e., partial correlations) between

variables. For instance, here the partial correlation between X1 and X2 can be defined as ω1,2 =

sign(β12)
√

β12β21. It is important to note that the signs of β12 and β21 will always be the same if

and only if the two slope parameters are conditioned on the same covariates (e.g., X3 serves as a

covariate in both models), and n > p (Williams et al., 2019).

While this equivalence holds when exogenous covariates are included as predictors in the node-

wise regressions, it no longer holds when interaction terms are included. That is, imagine that we

included a potential moderator Z in the current example. We would now have the following equa-

tions:

X1 = β10 +(β12X2 +β13X3 +β1ZZ)+(δ1,2ZX2Z +δ1,3ZX3Z)+ ε1

X2 = β20 +(β21X1 +β23X3 +β2ZZ)+(δ2,1ZX1Z +δ2,3ZX3Z)+ ε2

X3 = β30 +(β31X1 +β32X2 +β3ZZ)+(δ3,1ZX1Z +δ3,2ZX2Z)+ ε3.

(2.4)

Here I use parentheses to separate main effect terms from interaction terms, where parameters asso-

ciated with main effects are represented by β and those associated with interactions are represented

by δ—this distinction is purely for notational clarity.

In these cases, we cannot directly aggregate main effect parameters and transform them into

partial correlations. However, we can still approximate the conditional dependencies between

variables by averaging over relevant pairs of coefficients; this is a common approach taken in the

psychological network literature, even when interactions are not included and exact partial corre-

lations could otherwise be computed (e.g., Haslbeck & Waldorp, 2015; Epskamp et al., 2018c).

While this approach seems simple enough, the examples I’ve provided so far exemplify cases

where each nodewise regression is saturated with all possible terms. In practice, however, model

selection procedures are often implemented to determine whether or not all terms should be in-

cluded in the final models.
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For example, perhaps we find that X2 strongly predicts X1, and so we estimate β12. But, based

on theory or some model selection procedure we conclude that the converse is not true (i.e., X1

is not an important predictor of X2), and so opt to exclude β21 from the final set of models. This

means that we implicitly assume β21 = 0. Now we must choose whether to draw an edge between

X1 and X2 in the resulting network. It is common to make this decision by employing either the

‘AND’ or ‘OR’ rule: with the ‘AND’ rule, we only draw an edge between X1 and X2 if both β12

and β21 are estimated to be non-zero, whereas with the ‘OR’ rule we draw an edge between the

two nodes if at least one of the two relevant parameters is non-zero. In the current example, the

edge between X1 and X2 would be calculated as (β12 +0)/2.

2.2 Analyzing Moderated Networks

It will be helpful to use an example that illustrates the process of analyzing moderated networks.

For simplicity, I will use a subset of the msq dataset from the R package psych (Revelle, 2018).

The data consist of n = 3896 responses to 75 items on the Motivational State Questionnaire, which

measures a variety of mood states on scales ranging from 0 to 3. While these variables are clearly

ordinal rather than continuous, I chose these data because they resemble a common scenario in

psychological research. For this example I will only focus on 5 items from the questionnaire:

hostile, lonely, nervous, sleepy, and depressed. Here, we will treat depressed as an exogenous

moderator variable, and will investigate whether the relationships among the other 4 mood states

vary across levels of depression.

2.2.1 Visualization

First, we begin by mean-centering the data. Although given that 0 is a value on the scales, it could

be argued that mean-centering is not necessary in this case. Nevertheless, centering allows us to

assess the relationships between variables at their mean levels, and also reduces the correlations

between multiplicative terms and their constituents (Lance, 1988; Brambor et al., 2006). The next
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step is to fit 4 nodewise regressions, one for each of the 4 outcomes: hostile, lonely, nervous, and

sleepy. Each regression therefore contains 7 predictors, with 4 main effects and 3 interaction terms.

Upon aggregating the coefficients we obtain the following plot.

0.03

−0.08
0.08

0.09

0.12

0.14

hostile

lonely

nervous

sleepy

Figure 2.1: Moderated network model at depressed = 0, plotted with the AND rule and all inter-
action terms included in each nodewise regression.

In Figure 2.1, green lines indicate a positive relationship between two variables, red lines in-

dicate negative relationships, and dashed lines indicate that the relationship between two nodes is

moderated by the depressed variable at p < .05. Here the coefficients have been aggregated using

the AND rule. Given that all models are saturated, applying either the AND or OR rule produces

the same aggregated parameters. However, the rule also determines whether a dashed line is used

to indicate the presence of moderation effects—specifically, when using the AND rule I only use

a dashed line if both relevant interaction terms pass a threshold for significance, while for the OR

rule I would draw a dashed line if at least one of the two relevant interactions pass the threshold.

To elaborate, here the interaction term nervous× depressed is a significant predictor of hostile,
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and the interaction hostile × depressed is a significant predictor of nervous. Thus, a dashed line is

drawn between the two corresponding nodes in the network. Conversely, the interaction sleepy ×

depressed is a significant predictor of hostile, but hostile × depressed is not a significant predictor

of sleepy. So, using the AND rule, the edge between hostile and sleepy is represented with a solid

line, given that only one of the two relevant interaction terms are significant—this edge would be

drawn as a dashed line if we chose to apply the OR rule instead.

2.2.2 Visualizing the exogenous moderator

The depressed variable is not represented in the overall network because it is not being considered

as an outcome. However, this variable still serves as a predictor in all 4 regression equations.

Thus, we can choose to visualize this variable as an exogenous node in the network as well. In

Figure 2.2, I use a square to represent depressed along with arrows denoting its links to the other

variables to indicate that this variable only serves as a predictor and is therefore conceptualized as

being external to the network. This same approach is taken when other exogenous covariates are

included in the model, even if they don’t serve as potential moderators.

2.2.3 Conditional networks

Given that there are interaction effects in these models, we cannot interpret the network as rep-

resenting average or overall conditional dependencies between variables. Instead, these values

denote the conditional dependencies between nodes when depressed = 0; which, since all of the

variables have been mean-centered in this example, is equal to the sample mean of depressed. The

dashed lines in Figures 2.1 & 2.2 then show us which relationships we should expect to vary across

levels of the moderator, while solid lines show us which relationships we should expect to remain

constant. Thus it is important to investigate how the network changes across different levels of the

moderator, in order to gain more detailed insights into the nature of the interaction effects.

For this example, we will look at how the network changes at increasing levels of depression.

That is, using equations 1.3 & 1.4 we can compute marginal values of the slope parameters (along
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Figure 2.2: Moderated network model with the exogenous moderator plotted. The color saturation
of the edges is scaled against the largest edge weight, which is represented by the beta weight of
depressed on lonely.
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with their corresponding standard errors) after conditioning on fixed values of the depressed vari-

able (i.e., conditional effects). This is the same approach taken in standard moderation analysis

when, given a continuous moderator, researchers often visualize slopes at mean levels of the mod-

erator as well as at +/−1 SD. Given that the depressed variable is positively skewed in this case,

however, we will instead compute marginal slopes for the values depressed ∈ {0,1,2}.
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Figure 2.3: Conditional network models at the values of depressed ∈ {0,1,2}. Plotted with the
AND rule and no significance thresholding.

I refer to the plots in Figure 2.3 as conditional networks to indicate that they exhibit relation-

ships between variables after conditioning on fixed values of the moderator. In fact, any time we

include interaction terms in these models we will always have a conditional network. You’ll no-

tice that the first network here is identical to the one previously shown; this is because including

interaction terms implicitly means that all constituent main effects represent the slopes when the

moderator equals 0. The only difference between the two visualizations lies in the width and sat-

uration of the edges, as those in the conditional networks plotted in Figure 2.3 are scaled against

the largest edge weight, which is the edge connecting hostile and nervous in the network where

depressed = 2.

Lastly, while thus far the AND rule has only determined whether or not edges are drawn with

a dashed or solid line (based on the presence of significant interaction terms), we can similarly
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apply the thresholding rule to all model parameters. That is, we can determine whether to draw an

edge between two nodes based on whether the main effect terms are significant at some threshold

(here, p < .05). Using the AND rule, we determine that an edge is drawn between two nodes

if both relevant main effects are significant at this cutoff. Thus, in Figure 2.4, we have a set of

networks that only represent the most important relationships between variables, in addition to the

most important interaction effects.

−0.08
0.08

0.09

0.12

0.14

hostile

lonely

nervous

sleepy

Depressed = 0

0.15

0.19
hostile

lonely

nervous

sleepy

Depressed = 1

0.16

0.27
hostile

lonely

nervous

sleepy

Depressed = 2

Figure 2.4: Conditional network models at the values of depressed ∈ {0,1,2}. Plotted with the
AND rule and a significance threshold of p < .05.

2.2.4 Interpreting results

We can now more clearly see how the network structure changes at increasing levels of depression.

Looking only at the plots where thresholding was applied (i.e., Figure 2.4), we can see that only

two relationships persist across levels of depression: (a) that between nervous and hostile, and (b)

between nervous and lonely. Moreover, we can see that the latter relation remains relatively con-

stant across levels of depression, spanning [.14, .16], while the former relation exhibits a significant

increase as depression increases, as reflected by the significant interaction effects that modulate the

strength of the edge.
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At low levels of depression, we see some other significant, yet small, relationships: (a) a posi-

tive relationship between hostile and sleepy, (b) a positive relationship between sleepy and lonely,

and (c) a negative relationship between nervous and sleepy. None of these relationships breach

our significance threshold at higher levels of depression. The latter two edges appear with dashed

lines, however, indicating that they are significantly moderated by levels of depression. We can get

a clearer sense of what this means by looking at the non-thresholded set of models in Figure 2.3.

Specifically, both of these relationships switch signs at higher levels of depression, although they

do not reach significance in those models.

If we want to hone-in on any of these results more specifically, we can also look at the marginal

changes in the slopes across levels of the moderator, in terms of conditional marginal effects plots.

In Figure 2.5, we can clearly see how the relationship between hostile and nervous increases as

depression increases, as well as how the signs of the aforementioned relationships change across

this range as well. Lastly, some limitations of this investigation are made clearer in these marginal

effects plots.

First, the distribution of the depressed variable is highly right-skewed; there are a large number

of observations at low levels of depression, with fewer and fewer observations as levels of depres-

sion increase. Second, the ordinal nature of this variable is made very apparent in the histograms

at the base of these plots. Thus, the treatment of this variable as continuous—both in the marginal

effects plots and in the analysis—seems somewhat dubious. It would be more appropriate to treat

the 4 possible responses as discrete, ordered categories, at least based on the available sample val-

ues. Lastly, the values {0,1,2} are not actually represented within the sample once the variable

has been mean-centered, and so it would make more sense to plot networks at the values which are

used in the analysis. I only chose the three values here for simplicity in this demonstration.

2.2.5 Summary

The goal of this section was to demonstrate a very basic analysis using the moderated network

framework. We can see in this example that it is not enough to simply examine one network to
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Figure 2.5: Four plots of conditional marginal effects. Each plot represents average values across
both relevant interaction terms. In (A), the plot shows the average of two separate conditional
marginal effects: that of hostile × depressed on nervous, as well as for nervous × depressed on
hostile. In (B), the plot shows the average of the conditional marginal effects of sleepy× depressed
on nervous, as well as for nervous× depressed on sleepy. In (C), the plot shows the average of the
conditional marginal effects of sleepy × depressed on hostile, as well as for hostile × depressed
on sleepy. In (D), this is the average conditional marginal effects of lonely × depressed on sleepy
and sleepy × depressed on lonely.
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understand the conditional dependencies among variables that are subject to interaction effects.

Plotting and investigating conditional networks is a crucial part of the analysis, and can reveal

patterns in the data that highlight which relationships are most important, which ones change

across levels of the moderator, and which relations only emerge under certain conditions (e.g., low

values of depression). Continuing with the present example, I will discuss goodness-of-fit indices

and model comparison functions that further expand on this type of investigation.

2.3 Model Comparison

Beyond analyzing specific properties of the variables’ conditional dependence structure, proce-

dures for model comparison and variable selection (in this case, edge-selection) are important to

determine whether or not interaction effects are valuable for the models, as well as whether more

parsimonious models with fewer edges can be specified without sacrificing explanatory power.

Luckily, when standard estimation procedures are used (as in the current example), standard fit

indices and model comparison tests can be employed. There are two levels at which these indices

can be assessed: (a) nodewise, and (b) global model fit.

2.3.1 Nodewise Fit Measures

In the case of models where all outcome variables are assumed to be continuous, we can calculate

measures of predictive accuracy for each of the nodewise regressions such as R2, and R2
ad j to

determine the proportion of the response variance accounted for by the predictors overall, as well

as after controlling for the number of predictors (respectively). Additionally, we can assess model

fit by computing the log-likelihood, which for a continuous outcome x( j) is

`(β̂ββ , σ̂2 |X) =−n
2

log(2π)− n
2

log(σ̂2)− 1
2σ̂2

n

∑
i=1

(x( j)
i −x(− j)

i β̂ββ )2, (2.5)

where the superscript ( j) indicates the jth outcome variable, and (− j) denotes the set of columns

from the design matrix (here, X) that excludes the jth variable. The predicted values of x( j) are
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therefore defined as the dot product x̂( j) = X(− j)β̂ββ , and the MLE for the residual variance is σ̂2 =

1
n ∑

n
i=1(x

( j)
i − x̂( j)

i )2.

Using `(β̂ββ , σ̂2 |X) we can then compare one model of j (perhaps one including interaction

terms) with another by performing a likelihood ratio test (LRT), or by computing other fit indices

such as the AIC and BIC. These information criteria are defined as

AIC = 2k−2`(β̂ββ , σ̂2 |X), and BIC = k log(n)−2`(β̂ββ , σ̂2 |X), (2.6)

with k being the number of parameters estimated in the model. The AIC and BIC are transforma-

tions of the log-likelihood that afford different emphases in the model selection process by penaliz-

ing models with a larger number of parameters. The BIC enforces a stronger penalty than the AIC

on models with a greater number of parameters, and is thereby the more conservative of the two

(Yang, 2005). These criteria are particularly important when we have a large number of variables

to consider, or are especially concerned with preserving model fit while limiting ourselves to select

a more parsimonious model.

In the modnets package, all of these criteria are made available to assess model fit. Nodewise

LRTs can be conducted to compare models for each node, individually, across different specifica-

tions of the network, and indices of predictive accuracy—namely, R2 and R2
ad j—can be depicted

graphically to accompany the network representations. This approach was first used by Haslbeck

& Fried (2017), but has been expanded in the modnets package to allow for model comparison.

For instance, in Figure 2.6 we visualize the same model as in Figure 2.1, but use blue rings around

each node in (A) to denote the R2 value of each model in comparison with a model that excludes

the interaction terms, as well as the depressed variable. Specifically, the light blue represents the

R2 of the reduced model (excluding interaction terms and the depressed) variable, while the darker

blue represents the additional R2
∆

that is contributed by including depressed and the accompanying

interaction terms.

When we include depressed as a covariate, however, we can now see that the increase in R2
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Figure 2.6: These plots show the same network model as in Figure 2, but with two different
comparisons represented by the blue shading in each node. In (A), the light blue shading represents
the R2 for each nodewise regression where depression is not included in any of the models, while
the dark blue shading shows the R2

∆
given the models including depression as well as all of its

interaction effects. In (B), the models being compared to the moderation models include depressed
as a covariate.
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after including the interactions is very small (B). This highlights the importance of using fit indices

in addition to these metrics in order to determine which model should be interpreted.

2.3.2 Global Fit Measures

It is possible to obtain similar fit measures to describe the fit of all nodewise models taken together.

That is, in certain circumstances we can compute the multivariate log-likelihood as well as the cor-

responding AIC and BIC values to assess global fit across models. This is currently only possible

when all outcomes are continuous and assumed to be multivariate normal. However, even this may

be undefined in certain cases when many interaction terms are included, particularly when this

prevents the residual covariance matrix from being positive definite (Yang et al., 2014; Haslbeck

et al., 2018). The multivariate normal log-likelihood can be written as

`(M̂, Σ̂ΣΣ |X) =
n

∑
i=1
−m

2
log(2π)− 1

2
log(|Σ̂ΣΣ|)− 1

2
(xi− x̂i)Σ̂ΣΣ

−1
(xi− x̂i) (2.7)

where m is the number of nodewise regression models being estimated (which may be different

from p, the number of variables, e.g. when the moderator is exogenous), M̂ is an n×m matrix

containing the predicted values for each nodewise regression, Σ̂ΣΣ is the m×m residual covariance

matrix, and |Σ̂ΣΣ| is its determinant.

The global AIC and BIC can also be calculated from `(M̂, Σ̂ΣΣ |X), where we supplant k with k∗

to denote the number of estimated parameters summed across all nodewise models. From here,

we can conduct global LRTs and use the other fit indices to compare network models taken as a

whole.

In sum, we can use both nodewise fit measures along with global fit measures to optimize

information criteria at each level of analysis and select the best model in accordance with our (the

researcher’s) priorities. In each of these cases, however, I am assuming that there is a clear set

of candidate models for us to consider. In the present example, I’ve presented 3 clear candidate

models: (a) the set of models excluding depressed, (b) the set of models including depressed as
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a covariate, and (c) the set of models including depressed and its associated interaction terms as

covariates. Yet, it may not always be this easy, as we may have many more variables to consider,

or may be conducting an even more exploratory analysis wherein the goal is to assess an array of

potential moderators and determine the most parsimonious set of models.

2.4 General Discussion

As psychological network models become more widely used across different areas of research, it

is clear that methodological extensions are much needed. One recent approach spearheaded by

Epskamp et al. (2017) has been to integrate network models with latent variable models in an

effort to create ‘hybrid networks’ for studying psychological phenomena. Other new approaches

have included networks for time-series models, particularly those that apply to multiple subjects

sampled over time (Hamaker et al., 2018), as well as those that use non-parametric, time-varying

models to accommodate data that violate parametric model assumptions (Bringmann et al., 2017).

The project described in this paper aims to expand on network models in another, complementary

way, and that is by extending current approaches to move beyond strictly pairwise relationships

and include higher-order effects such as moderators and interaction terms.

In the next chapter, I describe models selection approaches for MNMs in detail and discuss

how we can use penalized estimators to obtain sparse, stable, and interpretable models. The in-

clusion of interaction terms introduces some more than trivial challenges for how best to go about

this process, and so specific methods that accommodate these challenges are investigated. Sec-

ondly, I present an extension of a post-hoc stability analysis developed by Epskamp et al. (2018a)

for studying the influence of sampling variability on parameter estimates from network models.

Importantly, this can help us determine how stable interaction estimates from an MNM are, and so

constitutes an important step in the analysis and application of these methods to empirical data.

32



Chapter 3

Model Selection and Network Stability

So far I have covered the background and foundation of estimating moderated networks in cross-

sectional data. Before moving on to other applications (i.e., temporal networks), however, there

are a few important topics in need of further discussion. These include model selection and post-

hoc analyses of network stability. In this chapter I cover each of these concepts in turn; first,

I briefly review approaches to model selection (particularly `1-regularization; i.e., the LASSO)

commonly used in the psychological network literature, as well as discuss some unique challenges

that emerge for these techniques when we move to moderated networks. In short, the problem

in applying standard model selection techniques to MNMs is that they fail to ensure all relevant

lower-order terms remain in a model when higher-order interactions are included. Consequently, I

suggest an alternative technique—the hierarchical LASSO—for use with moderated networks, as

well as introduce three novel resampling approaches that can be used for model selection in both

unmoderated and moderated contexts. I conclude by discussing the importance of evaluating the

stability of an estimated model, and present a method for assessing (post-hoc) the extent to which

sampling variability influences different aspects of the network.

3.1 Model Selection

Model selection is a central concept, and issue, in fitting complex multivariate models. In general,

model selection techniques are aimed at answering the question: Given the array of possible mod-

els that could be fit to the data, how do we choose the best one? And while the way in which we

determine which model is ‘best’ will vary across circumstances, there are at least two basic goals
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Estimation Intercepts Moderators Total Parameters

Joint estimation No intercepts No moderators p(p−1)
2

Nodewise estimation p intercepts No moderators p2

Nodewise estimation p intercepts One exogenous moderator 2p2

Nodewise estimation p intercepts p endogenous moderators p
( p!

2(p−2)! +1
)

Table 3.1: Total parameters for different estimation and moderation techniques in cross-sectional
networks (excluding residual variances).

common to most approaches:

1. To find a model that provides an optimal balance between parsimony and accuracy.

2. To find a model from which meaningful, interpretable results can be obtained.

When it comes to psychological network models, these essentially boil down to obtaining a net-

work with as few connections as needed to account for the data.1 The reason this is both an

important and challenging goal is that network models typically involve estimating a large number

of parameters. This is already a central issue for unmoderated networks (e.g., Epskamp & Fried,

2018b), and is at least twice as complicated for even the most basic moderated networks; adding

one exogenous moderator to a model quite literally doubles the total number of parameters (as

shown in Table 3.1). Moreover, this number increases rapidly as more nodes or moderators are

included. For simplicity, in this paper I only focus on situations with one exogenous moderator,

especially because this mimics common applications of moderator analysis to hypothesis testing

in psychology.

There are a variety of terms used in the network literature to refer to model selection, such as

variable selection, edge selection, or structure learning (Drton & Maathuis, 2017). But in general

these concepts all refer to the process of determining which nodes should be connected by an edge

in a network. The terms variable selection and model selection are sometimes used in slightly

different ways, however, where ‘variable selection’ refers to the process of determining which

predictors to include in a univariate regression model—that is, should we estimate all possible

interactions/pairwise coefficients, or only some? ‘Model selection’, on the other hand, is a more

1That is, as few connections as possible to adequately explain the inverse-covariance structure of the data.
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general term that refers to the process of comparing models and selecting the final one to interpret.

With the methods described in this chapter, I primarily use the term ‘variable selection’, as here

we are concerned with how to generate more parsimonious models by constraining the number of

parameters in each nodewise regression. And although in Chapter 5 we’ll see that temporal MNMs

are estimated in a multivariate fashion, the methods presented here function exclusively through

the sequential estimation approach, and so are often performed with a ‘two-stage’ approach where

variable selection is performed prior to (rather than in conjunction with) estimation.

3.2 Variable Selection in Moderated Networks

In general, by employing variable selection techniques we aim to estimate a relatively sparse net-

work structure in order to control for spurious relationships and reduce the rate of false positive

associations (Epskamp & Fried, 2018b). Moreover, we can produce a more interpretable model by

constraining the number of parameters to only include those that reflect the most robust associa-

tions. A simple method of doing this is by fitting a saturated model and then removing connections

that fail to reach a threshold of statistical significance (Drton & Perlman, 2004). Alternatively,

when joint estimation techniques are used to construct an unmoderated network, confidence inter-

vals can be computed for partial correlations via Fisher’s z-transformation (e.g., Williams et al.,

2019). However, these approaches may pose a problem of multiple testing (Drton & Perlman,

2007), and many methods of controlling for this problem (such as Bonferroni adjustment) can

result in a loss of statistical power (Costantini et al., 2015).

3.2.1 Penalized Estimation via the LASSO

An alternative approach to thresholding that is commonly used in psychological networks is reg-

ularization, particularly `1-penalized estimation via the ‘least absolute shrinkage and selection

operator’, or LASSO (Tibshirani, 1996). The LASSO was designed for high-dimensional data ap-

plications (where p� n), and can be thought of as a penalized extension of ordinary least squares
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(OLS). Importantly, it has the unique property of performing variable selection in concert with

model estimation by shrinking regression coefficients towards zero—particularly, by estimating

otherwise small coefficients to be exactly zero. The general form of the LASSO can be stated as:

β̂ββ = argmin
βββ

{
n

∑
i=1

(yi−xiβββ )
2 +λ

p

∑
j=1
|β j|

}
, (3.1)

where λ is the penalty or ‘tuning’ parameter that weights the magnitude of the coefficients, and β̂ββ is

the final vector that minimizes both the residual sum of squares (RSS) and the penalized coefficient

values. The objective represented in Equation 3.1 can therefore be conceptualized simply as finding

the β coefficients that minimize: RSS + penalty.

The tuning parameter λ governs the strength of the penalty, and thereby the degree of shrinkage

which is applied to the coefficients. Larger values of λ enforce a larger penalty, which is likely

to translate into more parameters being set to zero. At the most extreme, all coefficients may be

set to zero, leading to an intercept-only model, and conversely when this parameter is small (or

is itself zero), the model will converge toward unpenalized OLS estimates. The optimal value of

this parameter is often determined through k-fold cross-validation, where an array of λ values are

investigated by fitting models to different subsets of the data and then evaluating the quality of

predictions on k hold-out sets to determine which value produces the lowest cross-validated mean-

squared error. Information criteria (such as the AIC and BIC) may be used as an alternative to

cross-validation for this purpose, but in all cases the goal is simply to find which value of λ that

results in a model with the best balance between accuracy and parsimony.

The primary attractive feature of the LASSO is that it narrows down the number of predictors to

only the most important (i.e., only those with the strongest relationships to the outcome) by setting

coefficients for other predictors to zero. Not only does this have the advantage of making mod-

els more interpretable, but it can also increase prediction accuracy by reducing the possibility of

overfitting—that is, fitting a model that gives too much weight to the noise within some particular

dataset, and thereby creates a model that fails to generalize well to new cases.
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3.2.2 The Graphical LASSO

One popular variant of the LASSO often used to estimate psychological networks is the GLASSO,

or graphical LASSO, which was designed specifically for sparse inverse covariance estimation

(Friedman et al., 2008). Here, rather than using the least-squares method in Equation 3.1, we

instead search for penalized estimates of Θ̂ΘΘ such that

Θ̂ΘΘ = argmin
ΘΘΘ≥0

{
logdet(ΘΘΘ)− tr(SΘΘΘ)−λ ∑

i 6= j
|ΘΘΘi, j|

}
, (3.2)

where λ is the penalty that shrinks (or ‘regularizes’) the estimates (as in Eq. 3.1), S is the sample

covariance matrix, and we assume that ΘΘΘ=ΣΣΣ
−1, i.e., that ΘΘΘ is the true inverse covariance structure.

After finding Θ̂ΘΘ, we can then standardize the result to obtain Ω̂ΩΩ, which is the partial correlation

matrix used to characterize the GGM. With the GLASSO, we directly penalize elements of the

inverse covariance matrix ΘΘΘ, rather than obtain them by aggregating p nodewise estimates of βββ .

Both methods—the LASSO and the GLASSO—are quite common in the psychological net-

work literature, where nodewise estimation techniques utilize the former (e.g., Haslbeck & Wal-

dorp, 2015), and joint estimation techniques utilize the latter (e.g., Epskamp & Fried, 2018b). The

GLASSO is typically taken to be the ‘default’ estimator for cross-sectional models, as it is both

more computationally efficient and more direct of an approach (given that the ultimate goal is to

obtain an estimate of ΩΩΩ). Importantly, this is often used to fit sample-split models, which can be

thought of the closest approach used thus far to approximate moderator effects (van Borkulo et al.,

2017; Costantini & Epskamp, 2017). Sample-split methods are techniques designed to compare

a network structure across two (or, in theory, more) groups. In such cases, the researcher splits a

dataset into two subsets based on a binary moderator, or according to a median-split continuous

variable, and then compares the networks estimated for each group to determine which edges (if

any) differ between the two.

Sample-split methods will be described further in Chapter 4, and are tested against various

MNMs in a simulation I conducted to evaluate their performance relative to one another. Given
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that these methods have already seen applications in the literature, it will be important to show that

a better understanding of moderator effects can be attained when one uses a method more properly

suited to the circumstances (i.e., a MNM). As noted in Chapter 2, however, joint estimation tech-

niques are not possible with cross-sectional MNMs, meaning that the GLASSO cannot be utilized

in such cases. Moreover, recent research has shown that the GLASSO often fails to effectively con-

trol for spurious relationships, even in well-powered situations (Williams et al., 2019). This means

that common approaches to detecting moderator effects in network models (i.e., via sample-split

model comparisons) may be inadequate in more than one way, and can potentially be improved by

the MNM framework.

Before moving on to that investigation, however, we must answer the question: how can we

control false positives and utilize regularization in moderated networks? Although it is entirely

possible to apply the standard LASSO when estimating an MNM, the presence of interaction terms

introduces a new challenge; specifically, we now have two types of coefficients—those for pairwise

relationships (i.e., main effects), and those for higher-level interactions. Critically, the LASSO

does not differentiate between these types of coefficients, and so is vulnerable to selecting MNMs

that exclude relevant main effects. As I’ll demonstrate in the following section, omitting main

effects can lead to biased estimates of interaction effects, and so presents a new challenge when

moving from unmoderated to moderated networks.

3.2.3 Consequences of Omitting Main Effects

It is a problem to employ automatic variable selection techniques when higher-order terms (e.g.,

interactions) are included in a model, as this will often lead to interactions being included without

one or more of their corresponding lower-order terms. This occurs because most common variable

selection techniques—such as best subsets selection, stepwise regression, and the LASSO—do not

treat these two types of parameters in different ways, and may thereby exclude variables without

regard to their structural hierarchy. Indeed, these methods are actually more likely to violate this
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constraint than abide by it.2 This is problematic, as it is widely recognized that omitting constituent

terms leads to biased estimates of interaction effects (Brambor et al., 2006; Friedrich, 1982; Aiken

& West, 1991; Braumoeller, 2004).

Simply put, in a model where we aim to predict values of Y based on the interaction between

X and Z, we must also include both main effect terms in order to obtain unbiased coefficients.

Omitting the main effect of X on Y , for instance, is equivalent to assuming that X has no effect

on Y when Z is zero. The degree to which this biases the other parameters will depend on how

much the true value deviates from zero, as well as the magnitude of the effect relative to the other

related parameters. Moreover, the degree to which the variables are correlated and whether or not

any are binary also affects this bias. We can see a simple example of this in Figure 3.1. Here I

constructed a simple model of Y = β0 + β1X + β2Z + β3XZ + ε , where values of X and Z were

drawn separately from a uniform distribution on the unit interval, and Z was then recoded to 1 if

Z ≥ 0.5 and 0 if Z < 0.5. The outcome Y was then constructed as

Y = 0+0.2X−0.5Z +0.2XZ + ε, where ε ∼N (0,0.5). (3.3)

100 datasets were generated from this model for sample sizes N ∈ {50,60, . . . ,500}, and three

separate models were fit in each case: (1) The fully specified model where all terms were included,

(2) A model that excluded the main effect of Z, and (3) A model that omitted the main effect of X .

For each of the four possible model parameters (including the intercept), I then plotted the average

estimate along with standard deviation for each sample size. The solid black line in each facet of

Figure 3.1 depicts the true value of that parameter, and we can see just how omitting main effects

biases the estimates. The blue line represents the fully-specified model, and is unbiased across the

range of sample sizes. Omitting Z (β2 = −0.5) causes the greatest shift in the estimates, and we

see that even though the true effect of X is relatively small (β1 = 0.2), omitting it from the model

leads to a distinct bias in the other parameters.

2This is simply due to the fact that, given a significant interaction, the likelihood of detecting just one significant
main effect is greater than that of detecting two.
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Figure 3.1: Simulated data with estimates of coefficients for different interaction models.

Most notably, we can see that the bias is strongest for the interaction effect itself, β3. Thus,

even in cases where one or more main effects are considered uninteresting, including both terms

in the model will be best for obtaining a less biased estimate of the interaction. And while the

example here only demonstrates this for a continuous × categorical interaction, it can be shown

(for continuous outcomes) that the potential for bias is even stronger with categorical × categor-

ical interactions, and for continuous × continuous is dependent on the degree to which the two

predictors are correlated. It should also be noted that while the inclusion of both main effects does

not guarantee an entirely unbiased estimate of an interaction effect (e.g., in the presence of model

misspecification), it can at least be said that doing so can help to minimize this bias.

This example is meant to highlight the importance of imposing a strong hierarchy on models

that include higher-order interactions. When a model obeys a strong hierarchy, this simply means

that interactions are only included when both main effects are also included.3 While there may

3This extends to any type of higher-order interaction term. For example, when including a three-way interaction
we should also include both two-way interactions, as well as all three main effects.
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be some circumstances where we have reason to omit main effect terms (or simply have different

goals, such as prediction), it should generally be preferred to only select and interpret models that

obey this hierarchy. Thus, given that the LASSO and other variable selection techniques do not

adhere to this constraint, alternative methods will be necessary to support the analysis of moderated

networks.

3.3 Constructing Moderated Networks with the Hierarchical LASSO

One relatively new method that can be used in this situation is the hierarchical LASSO, which

was explicitly designed to integrate hierarchical constraints into the LASSO (Bien et al., 2013;

Lim & Hastie, 2015). This method was first introduced by (Bien et al., 2013), where it has been

implemented in the hierNet package for R. Lim & Hastie (2015) later refined this method with

the glinternet package, which utilizes an algorithm that enforces strong hierarchy along with

flexible model specification, allowing the user to restrict the search for interactions to one or more

candidate variables. Both of these approaches are built on an overlapping group LASSO, wherein

the LASSO is applied to predictor variables on the basis of their grouping into sets of main effects

+ interactions, including cases where certain variables may be allowed to participate in more than

one interaction (for a detailed discussion, see Lim & Hastie, 2015).

While the hierarchical LASSO is only implemented for univariate models, we can extend it to

the graphical modeling domain via nodewise estimation, in the same way that the standard LASSO

is applied for unmoderated networks. That is, for each node in a network, we can perform variable

selection with the hierarchical LASSO to incorporate both exogenous and endogenous moderators

into the models without violating their structural hierarchy. Both the hierNet and glinternet

packages in R produce similar results for a variety of settings, but glinternet exhibits a major

computational advantage in terms of computing time. Furthermore, while both packages afford

searching the entire model space of all possible interactions, glinternet also allows the user to

select a subset of variables (or a single variable) to serve as candidates for interactions. This is

particularly useful when the objective is to evaluate the influence of a particular moderator or set
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of moderators according to theory or pre-specified hypotheses.

Usage of the hierarchical LASSO has been fully integrated in the modnets package, and al-

lows for extremely flexible model specification as well automated variable selection for the MNMs

discussed in this paper. While the hierarchical LASSO eliminates potential bias that would oth-

erwise follow from violations of strong hierarchy, coefficients are still biased towards zero due to

the shrinkage employed by the estimator. So, in order to address (although certainly not solve)

this issue, the software allows the user to seamlessly separate the selection process from esti-

mation, so that the hierarchical LASSO is applied in a nodewise fashion, and then only those

variables/interactions that are selected are included in the final models. These are then fit with

OLS for cross-sectional networks, and other least-squares methods for the models described in the

following chapters.

Moreover, using classical estimators for obtaining the final coefficients affords the inclusion

of standard errors and p-values, which are not obtained by penalized estimators. While this is

desirable for error control and for refining the interpreted model via p-value thresholding, it should

be noted that the variable selection process make inferences uncertain since the test statistics do

not incorporate the potential effects of the selection process. This is known as the problem of

‘inference after selection’, and widely noted in the statistical literature as a problem for which

no standardized solutions are known (Berk et al., 2010). However, this is nothing unique to the

particular models or methods at hand, and is rather a more general issue that should be taken into

account when reporting results or interpreting models when these methods have been applied.

Although use of the hierarchical LASSO affords automated variable and interaction selection

in moderated networks, this method has the same characteristic as the LASSO in that sparsity is

enforced in accordance with fixed values for the parameter λ . Different goals or assumptions about

the data may lead to different decisions on how to select a value for λ , and so I have included

four primary options for this in the modnets package, all of which involve minimizing either

information criteria or prediction error. These include: (a) the AIC, (b) the BIC, (c) the extended

BIC (EBIC), and (d) k-fold cross-validation.
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For each of these procedures, a number of candidate λ values (50, by default) are generated on

a log-scale with a range proportional to the smallest λ that returns an empty model. For the first

three criterion-based options, these indices are simply calculated for each value of the parameter,

and then whichever λ minimizes the criterion is the one selected for the final model. The EBIC is

a common index used in graphical models, as it is even more conservative than either the AIC or

BIC:

EBIC = k log(n)−2`(β̂ββ , σ̂2|X)+2γk log(p). (3.4)

This criterion adds an additional penalty not only for the number of parameters k included in

the model, but also for the number of nodes p which is proportional to the number of possible

parameters. There is also an extra hyperparameter γ which must be selected by the researcher,

which helps to define the strength of this additional penalty. When γ = 0, this criterion will be

equivalent to the BIC. Researchers typically set this value to γ = .5 at its most conservative, and

γ = .25 for more exploratory settings.

The most common technique for selecting λ , however, is likely to be the fourth method, k-

fold cross-validation (CV). This involves splitting the dataset into k complementary subsamples,

where each subsample is treated as hold-out (test) set, and models for each value of λ are fit to

the remainder of the data, and then prediction error is calculated on the test set for each model.

Then, the value of λ that minimizes the average prediction error (typically MSE for continuous

data) across test sets is the one that is selected for the final model.

Although it has been shown that these methods perform quite well with both the standard

LASSO (e.g., Friedman et al., 010b), and the hierarchical variant (e.g., Lim & Hastie, 2015),

there are still some potentially undesirable characteristics of regularization techniques, and variable

selection procedures in general, that should be mentioned.
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3.3.1 Disadvantages of the LASSO and its Variants

Although the LASSOs have some desirable properties for aiding in interpretation and increasing

predictive accuracy, this comes at the cost of producing coefficient estimates that are biased, which

as a result may produce inaccurate representations of their ‘true’ values. While this is not nec-

essarily a problem when prediction is the only interest, it does create an obstacle for inference.

Specifically, there is no known way of determining the standard errors for estimates derived from

the different LASSO penalties, and thus no way to perform significance tests that can be assumed

to reflect the characteristics of their sampling distributions (Tibshirani, 1996). Due to the unique

bias induced by these procedures (i.e., that it can lead to some parameters to be estimated at zero),

even bootstrapped resampling fails to be a valid method for determining the distributions of the

parameters. Bootstrapping may be effective when the true coefficients are especially large, or truly

equal to zero, but for cases in between it will usually generate asymmetric distributions that may

not describe the population-level associations between the candidate variable(s) and outcome of

interest.

A related disadvantage of the LASSO, although not unique to the LASSO, is inconsistent model

selection. In cases where small changes in the tuning parameter λ lead to different variables being

included or excluded from the final model, it may be difficult to make strong inferences about the

values of those variables. To my knowledge, no variable selection technique is immune to this

concern, however, and it may be a persistent challenge for any approach of this nature (e.g., best

subset selection). However, despite the fact that bootstrapping does not seem to solve the inference

problem for the LASSOs, it does provide the researcher with a sense of the selection procedure’s

stability with regard to each of the predictors. One possible way of increasing confidence in the

chosen variables is by reporting the selection rates with reference to each predictor; for instance,

we may have greater confidence in choosing variables that are selected for the best model within

90% of subsamples as opposed to those that are chosen only 15% of the time.

To address the first concern regarding biased estimates, I propose using a two-stage method

where rather than interpreting the estimates returned by the hierarchical LASSO, the models are
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instead fit in a second step using unregularized methods (e.g., OLS) to obtain the final parameter

estimates used for interpretation. There is still some uncertainty for inferences on these parameters,

but in many cases this type of two-stage approach has been shown to improve the accuracy of the

coefficient estimates (Aoshima & Yata, 2011). To address the second concern, I discuss three

resampling techniques below that I extended and implemented in R to perform variable selection

while taking the consistency of the selection process into account.

3.3.2 Advanced Variable Selection Techniques

To extend the two-stage methods described above, I incorporated three resampling methods into

the modnets package aimed at addressing the question: how consistent is selection with the hierar-

chical LASSO for my sample? Moreover, how can we use this information to ensure that we choose

a stable model? Luckily, a number of researchers have attempted to answer these questions with

regard to variable selection and frequentist inference in high-dimensional models (e.g., Wasserman

& Roeder, 2009; Meinshausen & Bühlmann, 2010; Meinshausen et al., 2009; Dezeure et al., 2015).

Broadly speaking, the methods proposed in these papers involve performing the variable selection

and model-fitting procedures in an iterative fashion to subsamples of the original data, then aggre-

gating the results and selecting final models based on error-corrected p-values or by choosing a

model with only the most frequently selected predictors. I have extended these methods to the case

of using the hierarchical LASSO to select variables for moderated networks, and will present two

basic algorithms that have been implemented in the modnets package below.

The first two methods are variations on the multi-sample split approach with p-value aggre-

gation developed by Meinshausen et al. (2009). In general, this approach involves splitting the

dataset at random points into two complementary halves, performing variable selection (using the

methods described above) on the first half, and then fitting the resultant models to the second half.

This process is performed iteratively, and the results of the final model from each iteration are

stored to obtain distributions of model parameters. Importantly, a distribution of p-values is also

obtained for each parameter, and these can then be aggregated based on quantiles to return a fi-
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nal p-value that summarize the degree of support for including that parameter in the model based

on the resampling procedure. Moreover, an additional correction can be applied to control the

family-wise error rate (FWER) before aggregating the p-values if desired.

I’ve created a multi-sample split version of this, that essentially extends the above procedure

into a multivariate context, along with a bootstrapping variant. I’ll present the main algorithm that

I’ve implemented in the modnets function resample borrowing some notation from Meinshausen

et al. (2009).

Algorithm 1 Multi-Sample Split Method

1. For iterations b = 1, . . . ,B:

(a) Randomly split the data into two disjoint groups D(b)
train and D(b)

test . The argument split
can be used to indicate the size of D(b)

train as a proportion of N (defaults to .5).
(b) For each node i = 1, . . . , p:

i. The glinternet algorithm is applied to D(b)
train and obtains the active set of pre-

dictors S̃(b)i .

ii. The predictors selected in S̃(b)i are fit to D(b)
test with OLS and the corresponding

p-values P̃(b)
i, j are calculated for j ∈ S̃(b)i

iii. The p-values for variables not included in S̃(b)i are set to P(b)
i, j = 1, j /∈ S̃(b)i

iv. OPTIONAL: A Bonferroni correction can be applied to each of the p-values:

P(b)
i, j = min

(
P̃(b)

i, j |S̃
(b)
i |, 1

)
, j = 1, . . . ,k

2. There are now B p-values for each predictor j ∈ {1, . . . ,k} of each node i ∈ {1, . . . , p}.

3. In order to aggregate the B p-values for each predictor, we will be adding a penalty θα to its
associated quantile function. The candidate quantiles will be a sequence γ ,

from
dα ·Be

B
to (1−1/B) by 1/B.

4. The penalty is then: θα = 1− log(γmin).

5. For each node i = 1, . . . , p:

(a) For each predictor j = 1, . . . ,k:
i. Given the empirical quantile function qγ(·), the aggregated p-value will be:

Pi, j = min
{

1, θα ·min
{

1, qγ

(
{P(b)

i, j /γ; b = 1, . . . ,B}
)}}

.
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See Meinshausen et al. (2009) for further details on the steps of the algorithm. The objective

is to use the iterated sample-splitting procedure to obtain aggregated p-values for each possible

predictor of each node in the network, taking into account the sampling procedure and controlling

the error rate at some pre-specified level α . The primary innovation here beyond the original

algorithm developed by Meinshausen et al. (2009) (and extended by Dezeure et al., 2015) was to

create a multivariate, network-specific version that integrates the hierarchical LASSO for variable

selection.

Another variation of this algorithm that I’ve implemented in the modnets package performs

(non-parametric) bootstrapping rather than multi-sample splitting, and the only difference between

that case and the foregoing algorithm is that at each iteration b, rather than splitting the dataset

into two disjoint sets D(b)
train and D(b)

test , we simply take a sample of size N from the original data

(with replacement), and perform both the variable-selection and model-fitting steps (essentially,

the entire first step of the algorithm) on that same sample.

These two algorithms are designed to allow for variable selection based on these adjusted,

aggregated p-values. However, another approach we may consider is to select variables based on

the frequencies with which they are selected throughout the resampling process. This is referred to

as stability selection, and involves repeatedly splitting the dataset into separate halves, performing

variable selection to each half, and then for each predictor computing the proportion of iterations

that it was simultaneously selected in both halves of the data. The algorithm is implemented as

follows:

Fundamentally, the goal is to obtain the simultaneous selection probabilities for each predictor

of each node, which denotes the proportion of iterations where a predictor was selected in each

of the two subsamples. The threshold πthr ∈ (0,1) is chosen by the researcher, and indicates the

lowest simultaneous selection probability required for a predictor to be selected in the final model.

The default value is set to πthr = .6, as this value has been shown to perform well and lead to

consistent model selection by Meinshausen & Bühlmann (2010). Larger values can be chosen for

more conservative selection procedures.
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Algorithm 2 Stability Selection

1. For iterations b = 1, . . . ,B:

(a) Randomly split the data into two disjoint groups D(b)
1 and D(b)

2 .
(b) For each node i = 1, . . . , p:

i. Apply the glinternet algorithm to each half of the data to obtain two active sets
of predictors S̃(b)i,1 and S̃(b)i,2 .

ii. For each predictor j ∈ {1, . . . ,k}, assign a value of 1 to S(b)i, j if j ∈ S̃(b)i,1 ∩ S̃(b)i,2 and 0
otherwise.

2. For each node i = 1, . . . , p:

(a) For each predictor j = 1, . . . ,k:
i. Compute the proportion of times that variable was selected in both disjoint sets

taken at each iteration, and include it in the final set S̃i if
∑S(b)i, j

B ≥ πthr

(b) Given the active set of variables S̃i, use OLS to fit the final model to the full dataset.

In each of these cases, glinternet is taken as the standard variable selection algorithm in

order to search for interactions given a particular moderator or set of moderators, as well as to im-

pose the strong hierarchy constraint throughout the process. The resampling algorithms described

above also impose the strong hierarchy constraint when the final models are being selected, to

ensure that the procedures do not lead to violations of the constraint. Moreover, in order to make

these algorithms as general as possible, other variable selection techniques—such as best subsets

selection (via the leaps package), as well as the standard LASSO, ridge regression, and elastic net

(via the glmnet package)—are included for researchers to fit unmoderated networks as well.

One downside of these algorithms, however, is that they can be very computationally expensive.

Most of the models fit in the present study, each with B = 100 iterations, would take 1-2 hours to

run. To reduce the run time, however, I’ve made it easy to parallelize these procedures through

the resample function in modnets. Nevertheless, it is worth noting that these methods can be

computationally burdensome, and thus it will be important to investigate whether this cost comes

with the added benefit of improving the accuracy and stability of parameter estimates.
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3.4 Network Stability

After the selection process is complete and the final model has been chosen, there is still more

we can do in the way of evaluating the stability of our model. The methods described so far have

focused on ensuring that variable selection with an MNM obeys certain rules, and is done in a way

that takes the consistency of the selections into account. But once we select our model, how can

we evaluate its stability?

One way we can conceptualize this question is by thinking of ‘stability’ as the degree to which

certain properties of a model are dependent on the particular make-up of the sample. For instance,

imagine that we changed some minor aspect of the sample, such as removing 10 observations. An

unstable model would be one that changes dramatically even after a relatively small perturbation

like this, and a stable model would be one that maintains the same general characteristics even

after larger perturbations, such as removing 100 observations.

Indeed, a method based on this idea was developed for assessing the stability of centrality

estimates in social networks (Costenbader & Valente, 2003). Centrality measures are popular ways

of analyzing structural aspects of a network, such as identifying which nodes have the greatest

number of connections (degree centrality), or lie on the average shortest path between all possible

pairs of nodes (betweenness centrality). Essentially, centrality measures describe some aspect of

the interconnectedness of any given variable with the rest of the network.

Some centrality measures have been criticized as not having a clear interpretation for weighted

networks (Bringmann et al., 2019), although others—such as strength centrality and expected influ-

ence, have been shown to be relatively stable and have clearer meaning in psychological contexts

(Robinaugh et al., 2016). Strength centrality measures the overall connectedness of a node as the

sum of the absolute values of all edges connected with it, while expected influence is simply the

sum of those raw edge weights. The latter therefore reflects the overall positive connectivity of any

given node, while the former reflects overall magnitude of each node’s connectivity.
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3.4.1 Case-Dropping Bootstrap

Strength centrality and expected influence are both frequently studied measures in psychological

networks, and it is therefore desirable to consider how these—as well as simply the edge weights

and interaction terms—are affected by sampling variability. Thus, the method for assessing sta-

bility in social networks was extended into the domain of psychology to achieve this goal, where

it was termed the case-dropping bootstrap, and has an associated metric—the correlation stabil-

ity coefficient—that can be used to directly quantify the stability of edge weights and centrality

estimates (Epskamp et al., 2018a).

The procedure used for the case-dropping bootstrap involves taking bootstrapped subsamples

from a dataset while dropping increasingly large proportions of the sample size. For example, if

we have a dataset with 100 observations, we could take a 10%-dropped subsample with only 90

observations; and if we took a 25%-dropped subsample then we would only take 75 observations,

and so on for increasingly large drops. Then, for each subsample we re-fit the selected model

and correlate metrics of interest from that sample with those from the original model. This is

done repeatedly and across an array of drop-sizes to investigate the stability of the correlations

across each size. Typically, researchers will take 10 subsample sizes spanning from 5–75% drops,

meaning that a range of sizes are tested in order to assess the stability of correlations with the

original sample as larger amounts of data are dropped.

The correlation stability coefficient (CS) then represents the largest proportion of the sample

that can be dropped while retaining a sufficient correlation with the original sample. This coef-

ficient can be computed and evaluated separately for each metric in order to see which aspects of

the network are most robust to sampling variability, as well as which are the least robust. The

criterion for a ‘sufficient correlation’ is decided by the researcher, although Epskamp et al. (2018a)

recommend specifying the value as the largest proportion of the sample that can be dropped while

retaining a correlation of at least .70 with the original sample across 95% of the subsamples for

that size. To see this more clearly, lets take a look at this method applied to the depression data

analyzed in the previous chapter.
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Figure 3.2: Average correlations plotted with 95% coverage intervals for each subsample size. In
total, B = 1000, which means that there were 100 iterations for each of the 10 drop sizes tested.

In Figure 3.2 we see the average correlations between subsamples of different sizes and the

original dataset. Error ribbons reflect the middle 95% of the empirical distribution at each sub-

sample size. In this case, the original data had N = 3841 observations, and 10 equally-spaced

subsample sizes were tested ranging from 5% drops (N = 3649) to 75% drops (N = 960). A total

of B = 1000 iterations were used, meaning that 100 subsamples were taken for each of the 10

drop sizes. This method was first implemented in the bootnet package for R (Epskamp & Fried,

2018a), but I have extended it into modnets by allowing for the incorporation of interaction ef-

fects. Thus, we see that correlations for each metric are computed for both pairwise and interaction

terms, and so we can compute separate CS coefficients for each type of parameter.
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Correlation Stability CS(ρ.95 ≥ .70)

Edge Strength EI

Pairwise .75 .36 .52

Interactions .52 .13 .67

Table 3.2: Correlation stability coefficients.

In Table 3.2 we see the final CS coefficients associated with Figure 3.2. Given that the largest

drop was 75%, the largest possible CS value was .75. Had we tested a larger range of drop sizes,

the range of coefficient values could also change. Looking at the values in Table 3.2, we see that

the CS value for pairwise edge weights is .75, meaning that even when we dropped 75% of the

total sample size, at least 95% of those subsamples had pairwise edge weights correlated with

those from the original sample at a value greater than .70. With interaction estimates, however,

we see that this value is .52, meaning that the maximum drop-size where a correlation of .70 was

retained across 95% of subsamples was 52%. We can see this difference reflected in the left-most

plot in Figure 3.2, where the error band around around the pairwise edge weight correlations never

goes below the dashed line (where ρ = .70), while that for the interaction parameter correlations

falls below the line once the sampled proportion falls below 48%.

Based on simulation studies conducted by Epskamp et al. (2018a) and Costenbader & Valente

(2003), it is recommended to only interpret properties of network models that have a CS coefficient

of at least .25, and preferably above .50. Thus, we see that the present dataset actually performs

quite well on most metrics, where coefficients for edge weights and expected influence are greater

than .50 for all pairwise and interaction terms, while these values are lower for strength centrality.

This tells us that we should be cautious in interpreting estimates of strength centrality from this

model, as the values have low stability.

As we see here, this method provides us with important information about a network model and

allows us to identify statistics that are more or less vulnerable to sampling variability. Moreover,

since this method is conducted post-hoc, one can assess the efficacy of any given variable selec-

tion method by seeing whether the selected model also produces more stable correlation stability
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estimates. And while this method has already seen various applications in the literature, I extend

it here to accommodate moderated networks, which allows researchers to gain a more complete

picture of their model as well as an understanding of whether or not the estimated interactions

‘hold-up’ against tests of their stability.

3.5 Summary

In the present chapter, I described the characteristics of various variable selection methods, as

well as how I deal with the problem of selection under strong hierarchy in moderated networks.

Specifically, I have integrated the hierarchical LASSO into the modnets package via the algo-

rithms implemented in the glinternet package. Then, I expanded available options for variable

selection to include three resampling procedures that incorporate the hierarchical LASSO with

moderated networks, as well as other variable selection techniques for other types of networks. As

will be described in Chapter 5, these methods can be extended to accommodate temporal networks

as well.

The next topic covered in this chapter was network stability; specifically, given that we wish to

assess the stability of our models after they have been selected, we can use the case-dropping boot-

strap to compute the CS coefficient for a variety of metrics we may be interested in. In this chapter

I only presented results for edge-weight, strength centrality, and expected influence stability, but

we can test any metric we wish to evaluate in a network (e.g., closeness centrality; betweenness).

Moreover, we can now conduct these analyses to attain separate estimates for both pairwise and

interaction effects.

It is also worth noting that this is the first paper (that I know of) which discusses the application

of centrality measures to interaction terms. This is a potentially interesting aspect of moderated

networks that has not been considered in this paper, although is certainly a topic worthy of further

investigation. For instance, an interaction term with high strength centrality could indicate that it is

also the most robust, or that it potentially drives a signification proportion of the patterns seen in the

53



network.4 These are purely hypothetical for now, however, as more research is needed to determine

what different measures of interaction centrality contribute to an understanding of MNMs. Still, if

nothing else the analysis can be used to reveal whether or not the interactions estimated in a model

are relatively stable, or whether they are highly sensitive to variations in the sample.

In the next chapter, I cover a large-scale simulation study I conducted to evaluate the perfor-

mance of moderated network models against more common sample-split techniques (e.g., compar-

ing separate networks fit to different values of a moderator), as well as more broadly to assess the

performance of the variable selection techniques discussed in this chapter.

4Although, some research has indicated that many causal interpretations of centrality measures are likely to be
invalid (Dablander & Hinne, 2019).

54



Chapter 4

Simulation Study

Next, the goal was to conduct a simulation study comparing different MNM procedures—those that

fit saturated models as well as those using the various variable selection techniques—to alternatives

that are currently used to approximate certain types of moderation effects. Specifically, when a

potential moderator is a continuous variable, median-split or other sample-splitting methods have

been used to determine whether high and low levels of the variable are associated with different

network structures for the phenomenon at hand (e.g., van Borkulo et al., 2017). This may be

considered an indirect way of detecting moderator effects, and until now has been the only method

utilized in the psychological network literature for this purpose.

4.1 Sample-Split Methods

There are two methods in particular that have been used for sample-split analyses in the psycho-

logical network literature: (1) the Network Comparison Test (NCT) (van Borkulo et al., 2017), and

(2) the Fused Graphical LASSO (FGL) (Costantini & Epskamp, 2017; Danaher et al., 2014). I’ll

describe each in turn, as well as how—in the context of the current study—I used each method as a

means of detecting moderator effects. Importantly, the performance of these methods is compared

with that of various MNMs on metrics described in the following sections.

4.1.1 Network Comparison Test (NCT)

The goal of the NCT is to take two dataset and compute separate, unmoderated network models

for each, and then use permutation tests to compare each edge parameter across the two models
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and determine which (if any) are reliably different. Given that the NCT requires the comparison

of two datasets—or groups—in cases where a candidate moderator is a continuous variable, the

dataset may be artificially split at the median of that variable to create groups based on ‘high’ and

‘low’ values. If the moderator is a binary variable, however, the dataset may instead be split based

on the pre-defined groups. The NCT is implemented in the R package NetworkComparisonTest

(van Borkulo et al., 2017).

In the first step of the NCT, a model is estimated for each dataset and the absolute values

of the differences between corresponding edges are taken as test statistics. In the second step, a

sampling distribution under the null hypothesis of no difference is generated for each test statistic

by randomly permuting the group membership data points B times, re-estimating the two models,

and computing the absolute value of all edge differences. This affords significance tests for each

edge parameter to indicate the probability of obtaining the observed differences given the null

hypothesis that the parameters do not differ across datasets. Thus, this can be taken as an indirect

way of testing whether or not the grouping variable significantly moderates particular pairwise

relationships, as in the case of moderated network models.

For estimation, the NCT uses the GLASSO (Friedman et al., 2008), and to select the value

of the penalty parameter λ , the defaults to using the EBIC with the hyperparameter γ = .5. For

the current study, I used B = 1000 iterations of the permutation tests, along with a significance

threshold of α = .05. Then, for each permutation test that produced a test statistic with p < α , I

marked that a significant interaction had been detected for that edge.

4.1.2 Fused Graphical LASSO (FGL)

The FGL produces a similar type of result as the NCT although through a different means. Broadly,

the FGL jointly estimates two GGMs by using two `1 penalties, and starts from the same position

as the NCT, where two separate datasets are taken as input. The first penalty, λ1, includes all

parameters of the model (i.e., from two inverse-covariance matrices), while the second penalty,

λ2, weights the difference between the two matrices, thereby penalizing the degree to which the
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corresponding GGMs are allowed to differ. Danaher et al. (2014) provide a full description of the

FGL, while the method has been implemented for network models by the EstimateGroupNetwork

R package (Costantini & Epskamp, 2017).

For the current study, the penalty parameters are selected through the same means as in the

NCT, where the EBIC is used with the hyperparameter γ = .5. This is often the default selection

approach in the psychological network literature, and was therefore chosen to mimic common

approaches to approximating moderator effects. Given the penalty for the parameter differences

λ2, the FGL only returns different values for edges that are deemed sufficiently different by the

selection procedure. Therefore, any edges that differed across the two GGMs were taken to reflect

a significant interaction in the present study.

4.2 Data Generation

Due to the inclusion of moderation effects, data could not be directly sampled from multivariate

distributions. To work around this, I created a Gibbs-sampling function to generate data from mod-

erated network models. Gibbs samplers utilize a Markov-chain Monte Carlo (MCMC) approach

to sampling in order to generate data from a potentially undefined multivariate probability distri-

bution. This allows us to define network structures that incorporate interaction effects, and then

simulate data according to a variety of specifications. General information about Gibbs samplers

can be found in Casella & George (1992), although the general approach I took to approximating

joint distributions for the models was to start with a network structure, along with a pattern of

interactions, and then generate data from the corresponding conditional distributions. In addition

to the study parameters described in the section below, detail about the specific procedure used can

be found in Appendix A.

4.2.1 Study Parameters

There were a number of general parameters that were fixed for this particular study:
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1. Two different network sizes were used: p = 5 and p = 10. Moreover, in each case an

additional variable—an exogenous moderator—was generated, making the total variables in

each case 6 and 11.

2. In all cases, the sparsity of the pairwise network was fixed at .5. This means that when p = 5

there will be 5 non-zero edges out of 10 possible edges, and when p= 10 there will be 22/45

non-zero edges.

3. No main effects of the moderator variables were included. This means that all coefficients

for the effects of the moderator on any variable were fixed to zero.

4. There were 4 different sparsity levels set for the interaction effects: m ∈ {.1, .2, .3, .5}. In-

teraction effects were specified in a similar way to pairwise effects, meaning that they were

always symmetric, and filled the off-diagonal of a matrix the same size as the associated

pairwise network. Thus, a sparsity level of .1 meant that there was only 1 non-zero interac-

tion out of 10 possible interactions in a 5-node network; 2/10 non-zero interactions when the

sparsity level was .2, and so on.

5. For all parameters—interactions and pairwise effects—all non-zero values were fixed at ei-

ther .2 or −.2. On average, half of the values were positive and half negative. The reason

for this was to ensure that all values would be the same size, thereby eliminating possible

confounding effects of coefficient magnitude. Moreover, this value had to be large enough to

be detectable, but also small enough so that data could be feasibly sampled when a number

of interactions are involved.

6. All intercepts were set to zero in all models.

7. For each dataset, a random value was drawn from N (0,1) to be used as the mean for the

moderator variable µm. Then, for each iteration of the Gibbs sampler, a random value was

drawn from N (µm,1). This variable was sampled differently from the other variables, given

that its values were never dependent on the other data.
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8. For each iteration of the Gibbs sampler, values for each variable were drawn from a normal

distribution with σ2 = 1, and a mean that would be defined by the parameter values along

with preceding draws.

9. There were 5 different sample sizes that were simulated: N ∈ {50, 100, 250, 500, 1000}.

10. For all moderated networks (i.e., all models except the NCT and FGL), p-value thresholding

was applied at α = .05, and the AND rule was used to aggregate model parameters. Inter-

action effects were aggregated in the same way as pairwise effects, where the final values

are averages of each pair of corresponding nodewise parameters whenever p < α for both

coefficients. Otherwise, the final value is fixed to zero.

Given these specifications, there were 40 conditions in total. For each condition, 100 models and

datasets were generated, producing 4000 datasets—and moderated networks—altogether.

To begin the data generation process, a network would be generated based on a set of simulation

parameters—for instance, when p = 5, a 5× 5 matrix of zeros was created and 5 elements in the

off-diagonal (given that pairwise sparsity was set to .5) would randomly be set to either positive

or negative .2 with equal probability. Then, a 5× 5 interaction matrix would be created, and the

above procedure would be applied in accordance with the sparsity parameter m ∈ {.1, .2, .3, .5}.

In all cases, the two matrices were symmetric, although never identical. Together, the two matrices

comprised the input for generating a single dataset from the Gibbs sampler.

To give a broad sense of the data that were generated, we can see in Table 4.1 the total propor-

tion of variables that were not normally distributed, as well the proportion of datasets that violated

multivariate normality. The former consideration is not actually an assumption of the GGM, but

the latter is. We can see from this table that the tests deemed about 25–45% of the datasets to be

non-normal. I chose to report proportions for both unadjusted and Bonferroni-adjusted p-values in

order to show less conservative and more conservative estimates of the violation rates.

This is a positive aspect of the study, as it means that this isn’t necessarily an over-idealized

case, allowing us to see how the models perform in a relatively ‘messy’ situation (at least compared
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Normality Violation Rates

Continuous Ordinal

Test Type Unadjusted Bonferroni Unadjusted Bonferroni

Shapiro Univariate 23.3% 15.7% 100% 100%

Henze-Zirkler Multivariate 46.1% 26.1% 98.9% 89.7%

Royston Multivariate 45.8% 29.0% 100% 100%

Doornik-Hansen Multivariate 36.4% 22.4% 98.1% 85.4%

Table 4.1: Percentage of variables and datasets judged to be non-normal based on outputs with
p < .05 from Shapiro tests (assessing univariate normality for each simulated variable), as well as
three tests of multivariate normality. For the latter, the tests produced one test statistic for each of
4000 datasets, and for the former there was one for each of 34,000 total variables. The Bonferroni
correction was applied at a family-wise level, meaning that p-values were corrected within each
dataset for the univariate tests, and across datasets for the multivariate tests. The MVN package in R
was used to conduct all analyses (Korkmaz et al., 2014).

to the case where all data are multivariate normal). It is important to note, however, that about half

of the violations occurred in the m = .5 condition, which only comprises a quarter of the data, and

contains the largest proportion of interactions. When this condition is excluded, the values drop

closer to a range of 16–26%. This was also a motivating factor in performing the study a second

time after ‘ordinalizing’ the datasets, which, as shown in Table 4.1, dramatically increased the

prevalence of non-normal distributions. Discussion of the results and plots for the ordinal version

of the study are provided in Appendix E. Still, it shows that the data were not overly idealized and

still contained plenty of variability as well as violations of model assumptions.

Lastly, a variation on this study was also conducted, wherein the same data were all converted

from continuous variables to ordinal variables with 4 levels. The reason for this was to mimic a

common practice in psychological research, wherein Likert scales or a ranking system is used to

measure variables. Moreover, violations of normality may be more common in empirical data than

in data simulated directly from normal distributions, and so we see in Table 4.1 that the ordinal

versions of the simulated variables tended to have substantially higher rates of non-normality. The

results of this study were similar to what was observed in the continuous-variable setting, and so
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is provided separately (along with details about the ‘ordinalizing’ process) in Appendix E.

4.2.2 Models Investigated

Once all data had been generated, a number of models were fit to each dataset. All models uti-

lized the moderated network procedures that have been described thus far, except for the models

fit with the NCT and the FGL. The first model in Table 4.2 is the saturated network, where all pos-

sible interactions are estimated along with all pairwise relationships, although pruning via p-value

thresholding and the AND rule were applied to obtain a sparse model (this procedure was applied

to all MNMs).

The ‘Two-Stage’ designation refers to variable selection via the hierarchical LASSO where

the glinternet algorithms are first applied to select the active set of predictors, and then the

final models are fit separately using OLS. Moreover, the difference between CVmin and CV1se is

that in the former we take the λ that minimizes the average prediction error, whereas in the latter

we take the λ 1 standard error above the former (in terms of prediction error). Then, all three

resampling-based selection techniques were applied with B = 100 iterations, and the AIC to select

the λ penalty. The reason for using the AIC in these cases is because I expect the resampling

techniques to be relatively conservative, and so I wanted to combine these with a less conservative

selection criterion.

4.3 Performance Measures

The primary goal of this study was to evaluate how well these different methods perform in terms

of detecting interaction effects. It should be noted that the two sample-split methods (i.e., the NCT

and FGL) do not estimate the actual values of interactions, and also estimate very different pairwise

networks than in the other methods (as a result of the median-split moderator). Thus, parameter

accuracy could not be assessed across all models, and the priority was simply to focus on how well

the different methods perform in terms of detecting interactions. However, parameter accuracy
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Name Model Type λ Selection

Prune Saturated MNM -

AIC Two-Stage MNM AIC

BIC Two-Stage MNM BIC

EBIC25 Two-Stage MNM EBIC (γ = .25)

EBIC50 Two-Stage MNM EBIC (γ = .5)

CVmin Two-Stage MNM 10-fold CVmin

CV1se Two-Stage MNM 10-fold CV1SE

split Multi-Sample Split MNM AIC (B = 100)

bootstrap Bootstrapping MNM AIC (B = 100)

stability Stability Selection MNM AIC (B = 100)

NCT NCT Sample-split EBIC (γ = .5)

FGL FGL Sample-split EBIC (γ = .5)

Table 4.2: Models fit to each simulated dataset, along with the names used in plots.

was investigated among the moderated network models (MNMs) in a secondary analysis to test the

hypothesis that the resampling methods will more closely approximate the true network structures

than the two-stage variable selection methods, which will in turn outperform the saturated model

after p-value pruning.

4.3.1 Primary Analysis

The central metrics used as outcomes were: Sensitivity, the false-discovery rate (FDR), and Matthew’s

correlation coefficient (MCC). Sensitivity refers to the true positive rate, and is calculated as the

number of correctly detected interactions (true positives, TP) divided by the number of true pos-

itives plus the number of false negatives (FN; the number of undetected interactions). The false-

discovery rate (FDR) refers to the proportion of false positives out of the total number of interac-

tions detected (i.e., the sum of true and false positives). These can be written as:

Sensitivity =
TP

TP+FN
and FDR =

FP
FP+TP

. (4.1)

62



A true positive (TP) occurs when there is a non-zero interaction in the original network that

is also estimated to be non-zero in the model; a false positive (FP) occurs when an interaction is

estimated to be non-zero when it is actually zero in the true model; and then a false negative (FN)

occurs when an interaction effect is estimated as zero in the model, but was actually non-zero in

the true network. Importantly, for each moderated network model these metrics were computed for

the final, aggregated interaction effects after the AND rule and p-value threshold had been applied.

The third metric—Matthew’s correlation coefficient (MCC)—is a more general performance

measure that takes into account all aspects of binary classification (Powers, 2011). That is, we

can interpret the MCC as a metric that captures how well the different methods perform overall in

terms of correctly detecting interactions. The MCC is defined as:

MCC =
TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
. (4.2)

As with the other measures, MCC can take on values between -1 and 1.

Additionally, specificity (the true negative rate) was calculated and the results are provided

in Appendix B. Across conditions, most all of the models performed exceptionally well on this

metric, and so the results will not be discussed here.

4.3.2 Secondary Analysis

In this analysis I turn to investigating the accuracy of parameter estimates. The sample-split meth-

ods are not included in this analysis, but we can still evaluate how the different MNMs perform

across the tested conditions. To do this, I use two metrics: the Pearson correlation, and mean

absolute error (MAE).

For calculating the correlation, I simply correlate the network structure estimated by each

model with the true network from which the data were simulated. Then, this is done separately for

the matrix encoding the pattern of interactions. This allows us to look at how well the different

methods approximate both the pairwise network, as well as the nature of the interaction effects.
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While the correlation allows us to look at how accurate parameter estimates are, the MAE allows

us to look at how biased they are. To calculate this value, I take the mean of the absolute values of

the differences between each estimate and the corresponding true parameter value.

4.3.3 Overview

In sum, the metrics described above are utilized to address the following research questions:

1. Primary analysis:

(a) When interactions are present, how well do these methods detect them? (Sensitivity)

(b) To what extent do these methods detect spurious interactions? (FDR)

(c) What is the overall quality of their ability to correctly detect interactions? (MCC)

2. Secondary analysis:

(a) Among the MNMs, how accurate are the parameter estimates? (Correlation)

(b) Among the MNMs, to what extent are the parameter estimates biased? (MAE)

4.4 Results

Here I will discuss the results of the study, primarily through visual analysis of the patterns ob-

served in the figures.1 It is worth restating that for all of the primary analyses, the only aspects of

the simulation being investigated are the interaction-detection capabilities of the different models;

the actual parameter estimates themselves are disregarded. Further investigation of this compo-

nent is reserved for the secondary analysis, wherein the objective is to focus on the accuracy of the

parameters.

Additionally, after these two analyses I also conducted a separate correlation stability analysis

using the case-dropping bootstrap on each simulated dataset. The goal of this was to assess how

the different conditions affected the CS coefficients for each of the three metrics described in the

previous chapter—namely, these look at the stability of the edge weights, node strength centralities,

1A variety of hypothesis tests were also conducted, but given the large number of simulated datasets almost all
comparisons were significant in all cases. In fact, the most interesting results were the comparisons that did not reach
significance, and so these are mentioned in the text.
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and expected influence estimates. For these analyses, the only model that was tested was the

saturated MNM, because the goal was simply to see what coefficients are obtained in the most

basic moderated network scenario.

4.4.1 Sensitivity

To start, we can think of sensitivity as a measure of how conservative a method is. That is, methods

that perform ‘worse’ on sensitivity simply reflect those that are most conservative, while those that

perform ‘best’ are the least conservative. Overall, higher values of sensitivity are desirable—we

want to find interactions when they are truly there—but, as we’ll see in the other analyses, high

sensitivity may be less useful when it comes at the cost of low precision.

As shown in Figure 4.1, there are some general trends that are immediately apparent for all

models. First, across conditions we see that sensitivity increases with sample size. This is to

be expected of a method that reliably detects interactions, and reflects positively on all of those

evaluated. The only minor exception to this trend is the FGL, which exhibits average sensitivity

greater than .99 across all conditions and sample sizes.

The next trend we observe is that sensitivity is typically higher when there are fewer parame-

ters. This is especially apparent at smaller sample sizes (N ≤ 250), wherein sensitivity tends to be

higher when p = 5 rather than p = 10. The same trend is seen to a lesser extent for the sparsity

of the true pattern of interactions, wherein sensitivity tends to be slightly higher when there are

fewer true interactions (i.e., when m = .1 over m = .5). However, while average estimates tend to

be higher with fewer parameters, they also tend to have greater variability. At larger sample sizes

these differences diminish as we see that most models converge to the upper limit, particularly

when N = 1000.

When comparing sensitivity across models, we can see that when N ≤ 500 there are certain

methods that stand out as performing better or worse than most others. The FGL, however, always

performs best, and shows a ceiling effect across all sample sizes. Excluding the FGL, the methods

that consistently demonstrate the highest sensitivity are the AIC, CVmin, and bootstrap models.
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Figure 4.1: Average sensitivity across models and conditions. Each plotted point is based on 100
simulated datasets.

66



Also, the pruned saturated model, somewhat surprisingly, performs quite well at most sample

sizes, although is always slightly lower than the former three. The first two models use the two-

stage variable selection process described in Chapter 3 (where the AIC or 10-fold CV error are

minimized, respectively), while the third uses the bootstrapping variant of Algorithm 1, along with

the AIC to select λ at each of the B = 100 iterations.

As for the worst performing methods, the multi-sample split method has the lowest sensitivity

for N ≤ 250 when p = 5, and for N ≤ 500 when p = 10. For the converses of those sample sizes,

we see that the CV1se has the lowest sensitivity. Beyond that, we see that the EBIC50, the stability

selection method, and the NCT perform particularly poorly on this metric at lower sample sizes.

To summarize, the FGL method stands out as having the highest sensitivity across conditions,

and the NCT appears to be relatively low (although performs slightly better than some of the MNM

methods at smaller sample sizes). While average sensitivity for the NCT does not exceed .6 until

N = 500, we see that the better performing MNMs reach or exceed .8 when N = 250.

4.4.2 False-Discovery Rate (FDR)

Next we have the FDR, which is the inverse of precision. That is, the FDR tells us to what extent

a method is susceptible to returning false positives. These results are shown in Figure 4.2, and at

coarse-grained level appear to reflect the inverse of the results from Figure 4.1, although there are

some key deviations to be discussed. In general, an ideal method is one with a relatively low FDR

and relatively high sensitivity; we want a method that reflects a reasonable balance between these

two metrics.

The first major pattern that stands out in Figure 4.2 is how the FDR for the FGL changes as

sample size increases. We see that while the FGL has the lowest FDR when N = 50, this value

increasing substantially as sample size increases. This indicates that the FGL is not a consistent

estimator of interaction effects (at least not of the type investigated in this study), and that it is

inappropriate to be used for this purpose. At the very least, even if a particular method has a

relatively high FDR, we should expect that this will improve as we increase the sample size. In
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Figure 4.2: Average false-discovery rate across models and conditions. Each plotted point is based
on 100 simulated datasets.
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sum, the FGL returns a substantial number of false positives at larger sample sizes, and therefore

should not be used to explore or test moderated network models.

For the other sample-split method—the NCT—we see that it does not suffer from the same

issue as the FGL. However, we can clearly see that it performs relatively poorly in all conditions.

For both p = 5 and p = 10, and across levels of m, the NCT always has either the second or

first highest FDR for N ≥ 250. For the two smaller sample sizes, we see that split and stability

(two of the resampling-based MNMs) have slightly higher FDRs than the NCT, but this relation is

reversed for larger samples. Lastly, while we can see that the FDR for the NCT shrinks as sample

size increases, it does not always converge to the lower bound even when N = 1000, and the only

instance in which the mean is lower than .05 is when N = 1000 and m = .5. Conversely, most

of the MNMs converge at either N = 250 or N = 500, and nearly all have converged to zero by

N = 1000, with a few exceptions that only converge to .05 when m = .1.

Among the MNMs, we can see that at smaller sample sizes the split, stability, EBIC50, and

CV1se methods have the highest FDRs, while the saturated model, AIC, CVmin, and bootstrap

methods all have the lowest. We also see that average FDRs tend to be higher when there is a

smaller proportion of true interaction effects, as is to be expected. In general, though, the MNMs

perform fairly well, although the EBIC50 and multi-sample split method don’t show acceptable

performance until N = 250. Moreover, all methods have relatively high FDRs when N = 50,

indicating that this sample size is likely too small to effectively control false positives. N = 100

is we when we really see differences among the methods, where the AIC, CVmin, and bootstrap

models (along with the pruned model) stand out as performing much better than the others.

4.4.3 Matthew’s Correlation Coefficient (MCC)

Finally, the average MCCs are displayed in Figure 4.3. There is nothing surprising here, given

the results for the preceding metrics, although it provides a clear summary of our conclusions

regarding the quality of the different methods. For the MCC, values closer to 1 are indicative of

superior performance. Moreover, we should expect consistent estimators of interaction effects to
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Figure 4.3: Average MCC across models and conditions. Each plotted point is based on 100
simulated datasets.
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demonstrate performance that improves with increases in sample size.

As we saw with the FDR, the FGL appears to perform extremely well at small sample sizes, but

then showing worsening performance as sample size increases. Again, this indicates that the FGL

should not be considered an acceptable methods for detecting interaction effects within the present

context. With the NCT, we also see a similar pattern in that it exhibits a higher average MCC as

the sample size increases, but its performance tends to be lower than most all of the MNMs across

conditions. This difference is especially pronounced for the larger networks (p = 10), as well as

at larger sample sizes (N ≥ 500).

The methods that consistently perform the best on this metric are the same as for the other

metrics: the two-stage model with either AIC or CVmin selection, and the bootstrapping method

with AIC selection. Also, the stability selection method has the highest average MCC at larger

samples (N ≥ 500), although has relatively poor performance in smaller samples.

To summarize, we can see from the primary analysis that all of the MNMs are consistent

estimators of interactions, and on the whole outperform both of the sample-split methods. We also

saw that while the NCT appears to be a consistent estimator, the FGL is not and therefore should

be avoided in this context.

Lastly, we saw that there was a lot of variability in the performance of the resampling-based

MNMs. In general, the multi-sample split and stability selection algorithms performed poorly at

small sample sizes, but showed excellent performance in large samples. The bootstrapping method,

however, had the best performance in comparison with all other methods. Unreported significance

tests revealed that while this method produced the best results, these were not significantly better

than those from the two-stage methods fit with either AIC or CVmin λ selection.

4.4.4 Correlation

Results are displayed in Figure 4.4, and a table containing the grand means is provided in Appendix

D. In general, we see that all methods produce higher average correlations for both pairwise and in-

teraction parameters as sample size increases. These values tend to be higher for smaller networks
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Figure 4.4: Average correlations across MNMs and conditions. Each plotted point is based on 100
simulated datasets.

72



(p = 5) and lower for larger networks (p = 10). Also, while correlations do not significantly differ

across levels of m (interaction sparsity) for pairwise effects, we see that they tend to be slightly

higher for interactions at lower values of m (i.e., when true interactions are sparse).

Overall, all methods perform quite well at estimating true parameter values for N ≥ 500. The

multi-sample split and two-stage CV1se methods showed the worst performance across conditions,

where the split method produced the lowest average correlation for both pairwise and interaction

effects when N ≤ 250, as well as the lowest when both N ≥ 500 and p = 10; conversely, the

CV1se method had the lowest values when N ≥ 500 and p = 5. Collapsing across network sizes

and interaction sparsity, at N = 500 all methods produced an average pairwise correlation ≥ .90

and an average interaction correlation≥ .80, with the exception of the split method which returned

average values of .80 and .70, respectively.

The methods that consistently performed the best on this metric—for both pairwise and interac-

tion effects—were the two-stage models with either AIC or CVmin selection, and the bootstrapping

method with AIC selection. In terms of magnitude, the bootstrapping method produced the highest

average correlations with the true models, although not significantly higher than that for the AIC

and CVmin methods. For these three methods—as well as the pruned, saturated model—average

pairwise correlations exceeded .81, and interaction correlations exceeded .71 when N = 250.

4.4.5 Bias (MAE)

The degree to which each method produced biased parameter estimates is depicted in Figure 4.5.

Overall, the patterns here generally reflect the inverse of the patterns seen in Figure 4.4. That is,

methods that produced the largest correlations also tended to produce the lowest average MAE.

One difference between the patterns seen for these two metrics is that for MAE, smaller values

were obtained for interaction effects than pairwise effects. This is particularly true at lower levels

of m (i.e., when there were fewer true interactions to estimate), while at higher values (m = .5)

average MAE was comparable for both. This is simply a product of the fact that there is a lower

likelihood of obtaining unbiased parameter estimates with a larger number of non-zero effects.
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Figure 4.5: Average MAE across MNMs and conditions. Each plotted point is based on 101
simulated datasets.

Beyond this, our interpretation of the MAE is similar to what we saw for the correlations, as

it identifies the same high-performing and low-performing methods. The only minor difference

is that the CVmin method had slightly lower average MAE than the bootstrap method; the same

was true for the AIC method with relation to the bootstrap, but only for pairwise effects (these are

displayed in Appendix D). However, as was the case for previous metrics, these three methods did

not produce significantly different means.
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4.5 Correlation Stability Analysis

This is a separate analysis from those described thus far, although the same datasets have been

used. Specifically, a correlation stability analysis was conducted on each dataset using the case-

dropping bootstrap with B = 1000 iterations across 10 subsample sizes ranging from 5–75% drops.

We can see the distributions of these statistics for each condition in Figure 4.6, as well as some

descriptive statistics in Table 4.3.

As is to be expected, we see that correlation stability increased with sample size across all

metrics and conditions. Also, the CS values associated with pairwise terms were always higher,

on average, compared to those associated with interaction terms. This not surprising, as many

researchers have noted that interaction terms are typically subject to more variability than pairwise

terms (e.g., Brambor et al., 2006; Friedrich, 1982). Additionally, we tend to see greater variability

for smaller networks (p = 5), as well as more stable interaction estimates with a greater number

of interactions (i.e., larger values of m).

Looking at Table 4.3, I was interested in seeing at which sample sizes values began to exceed

.25 and .50 for any given metric and condition, given that these reflect rules-of-thumb cutoffs for

identifying acceptable and excellent coefficient values, respectively (Epskamp et al., 2018a). In

each case, summary statistics were computed across levels of m. For edge weight stability, we

see that all CS values for pairwise and interaction terms exceeded .25 for N ≥ 100. Moreover,

all pairwise terms exceeded .5 for N ≥ 250, and the same is true for interaction terms when N ≥

500. This further reflects the idea that interaction terms tend to be less stable than pairwise terms,

although it also shows that stable estimates for interaction terms can be attained with larger sample

sizes.

For strength centrality, however, these values were smaller across the board. Average CS coef-

ficients for pairwise terms exceeded .25 when N ≥ 250, and interaction terms exceeded this value

when N ≥ 500. Additionally, both terms did not produce means that exceeded .5 until N = 1000.

This shows that strength centrality is typically more unstable than edge weights, and that this is

especially true for interactions. Nevertheless, we still see that at very large sample sizes we are
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Figure 4.6: Distributions of correlation stability coefficients across conditions for the saturated
MNM fit to all simulated datasets.
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able to obtain stable estimates in each case. Lastly, expected influence showed very similar pat-

terns (albeit with slightly lower means) to the analysis of edge weights. This reflects the general

finding from Robinaugh et al. (2016), wherein it was concluded that expected influence is typically

the most reliable centrality measure within psychological networks. The present analysis extends

this conclusions by also showing that the same is true for interaction terms.

4.6 Summary

In addition to the plots shown on the previous pages, I have provided the grand means (collapsing

across all conditions) for the primary analysis in Table C.1, along with tables containing all infor-

mation from the plots in Appendix C. Also, these same tables for the secondary analysis can be

found in Appendix D. Overall, we see from this analysis that the moderated network framework

generally performed quite well with simulated data, and that the variable selection techniques can

play a potentially valuable role in improving the accuracy of parameters and reducing the rate of

false positive associations. We also saw that the sample-split methods—which have been used as

an alternative to moderated networks—perform much worse than the true MNMs. Namely, the

NCT tended to produce outputs that had the lowest or near-lowest values in comparison with the

other models, and the FGL was shown to be an inconsistent estimator as well as one that should be

thought of as inappropriate in this context.

4.6.1 Limitations

There are of course a number of limitations to this study, where one particularly unrealistic com-

ponent was that all moderator variables were generated to be independent of the other variables in

each model. Moreover, the main effects of the moderators were always fixed to zero, along with

the intercepts for the other variables. It’s hard to imagine real-world scenarios where these assump-

tions would hold, and so additional studies must be conducted to vary these and other parameters

in order to more comprehensively address the questions posed in this chapter.
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Correlation Stability CS(ρ.95 ≥ .70)

Edge Weights
p = 5 p = 10

Pairwise Interactions Pairwise Interactions

N M SE Mdn M SE Mdn M SE Mdn M SE Mdn

50 .26 .005 .28 .15 .005 .12 .22 .002 .22 .13 .003 .10

100 .43 .005 .44 .25 .005 .28 .42 .002 .44 .26 .003 .28

250 .62 .004 .67 .43 .007 .44 .66 .001 .67 .47 .004 .44

500 .73 .002 .75 .58 .006 .59 .75 .000 .75 .62 .004 .59

1000 .75 .000 .75 .70 .004 .75 .75 .000 .75 .72 .003 .75

Strength Centrality
p = 5 p = 10

Pairwise Interactions Pairwise Interactions

N M SE Mdn M SE Mdn M SE Mdn M SE Mdn

50 .08 .004 .04 .03 .002 .04 .05 .002 .04 .02 .001 .10

100 .15 .005 .13 .07 .004 .05 .12 .004 .13 .06 .002 .05

250 .31 .007 .28 .19 .006 .20 .31 .005 .28 .16 .004 .13

500 .45 .008 .52 .36 .008 .36 .49 .000 .52 .31 .006 .28

1000 .61 .000 .67 .70 .007 .59 .65 .000 .67 .48 .007 .52

Expected Influence
p = 5 p = 10

Pairwise Interactions Pairwise Interactions

N M SE Mdn M SE Mdn M SE Mdn M SE Mdn

50 .21 .006 .20 .12 .005 .12 .16 .004 .16 .10 .003 .10

100 .36 .007 .36 .20 .007 .21 .33 .005 .36 .19 .005 .21

250 .54 .008 .60 .36 .009 .36 .55 .005 .60 .37 .007 .36

500 .65 .007 .67 .49 .009 .52 .70 .000 .75 .50 .007 .52

1000 .72 .000 .75 .70 .007 .67 .74 .000 .75 .64 .006 .67

Table 4.3: Means, standard errors, and medians for three correlation stability coefficients at each
sample size and network size. Collapsing across levels of m (interaction sparsity), each statistic is
based on 400 datasets, where B = 1000 subsamples were evaluated in each case to obtain a single
CS value on each metric. On average, 100 subsamples at each of 10 sizes were used, ranging from
a 5% drop to a 75% drop. Low values indicate low stability, and high values indicate high stability,
with .75 being the largest possible value and zero being the lowest. In all cases, a saturated MNM
without p-value thresholding was fit to each subsample.
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Other components such as the sparsity of the pairwise networks (which was always .5), the sizes

of the parameters (which were all set to +/− .2), and the distributions of the error terms could be

varied to better understand a wider array of cases that might be encountered in empirical settings.

The briefly mentioned ‘ordinalized’ version of the study was conducted to extend this analysis into

slightly different territory, and we did see that this analysis (i.e., with ordinal variables) generally

led to lower performance across all metrics (these results are discussed and shown in Appendix E).

Thus, while this study allowed us to get an initial sense of how moderated networks function on

somewhat realistic data, additional research must be done to more comprehensively evaluate these

models. Next, now that we have a strong sense of how to estimate and test moderated network

models in cross-sectional data, we can move to thinking about temporal MNMs in the following

chapter.
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Chapter 5

Moderators in Temporal Networks

Thus far, we have only considered how to model moderators in cross-sectional networks. However,

there is a great deal of interest in applying and testing psychological network models with longi-

tudinal data (e.g., Bringmann et al., 2013, 2017; Haslbeck & Waldorp, 2015). In order to study

psychological processes as they unfold over time, researchers often use repeated sampling tech-

niques, including longitudinal research designs and experience sampling methods. These methods

allow one to investigate within-person processes, such as the extent to which certain variables pre-

dict the values of others (as well as themselves) at subsequent points in time. It is not possible to

directly study these types of relationships in cross-sectional data, and so temporal models represent

an important complement to the methods covered in previous chapters (c.f. Molenaar, 2004). Thus,

here I introduce temporal MNMs, and focus on cases where idiographic data (N = 1) are modeled

with moderated temporal networks. Many of the methods discussed so far (particularly for variable

selection) can be extended to temporal MNMs, although there are a number of additional factors

that must be taken into consideration given the temporal dependencies in the data.

5.1 Experience Sampling Methodology

To study moment-to-moment changes in psychological and affective experience, researchers have

utilized intensive longitudinal modeling to better understand the dynamics of daily life. For in-

stance, participants may be sent surveys to their phones via text message multiple times per day

(e.g., Nielson et al., 2015; Wild et al., 2010; Myin-Germeys et al., 2009) with questions designed

to measure mood states, the experience of stress, and social interactions as they occur in real time.
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These techniques are referred to as experience sampling methods (ESM, and are often used to

measure variables within short time frames and across large time windows (e.g., weeks, or even

months; Nielson et al., 2015; Wild et al., 2010; Myin-Germeys et al., 2009). The relatively re-

cent increase in applications of these methods is due to the greater prevalence and use of ‘smart’

devices, such as mobile phones, watches, and other similar products. Many processes realized in

daily life may be difficult to study within lab settings, and these tools therefore provide a potentially

valuable window into studying psychological phenomena as they occur ‘in the wild’.

Given the high sampling frequency of most ESMs, we can utilize methods from time series

analysis to study the dynamics of mental processes, rather than simple long-term trends or changes

in means. Common techniques for analyzing longitudinal data—such as latent growth curve mod-

els, the repeated measures ANOVA, and panel models—typically focus on the latter aim; e.g.,

assessing trends over time (for example, do average levels of depression increase linearly or

quadratically in this sample?), or comparing differences in intercepts and slopes across groups.

In contrast, time series methods allow us to investigate the short-term dynamics in longitudinal

data. These methods tend to be accompanied by stricter assumptions and data requirements than

alternative methods. In particular, a much larger number of time points are typically required even

for simple analyses. Thus, access to and availability of ESM data has been crucial for the develop-

ment of these models, where it is not uncommon to see data with hundreds of observations taken

for single individuals.

5.2 The Building Blocks of Temporal Networks

In general, temporal networks are directed graphs with weighted edges that signify the magnitudes

and directions of time-lagged relationships between pairs of nodes. These parameters are the

outcomes of multivariate, multiple regression models (as is the case for cross-sectional networks),

although in these situations we are not only regressing variables onto one another to understand

their conditional (in)dependence structure, but we are doing so with respect to some time lag h.

In many cases, a ‘lag-1’ model is used, where we simply regress each variable onto itself (and the
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other variables of interest) at the preceding time point. Models with additional lags can also be

tested (e.g., by regressing a variable onto its values at the previous 2, 3, or more time points), but

it is most common to see these models restricted to only the previous time point.

The key contribution of time series methods to network modeling is that they afford a richer

picture of the temporal dynamics governing intraindividual processes (Molenaar, 2004). Moving

our focus to time-lagged relationships allows us to assess the extent to which certain variables are

able to predict future states of the psychological system they are embedded in. Indeed, a great

deal of research has emerged touting the value of studying short-term, within-person fluctuations

in psychological data (Hamaker & Dolan, 2009; Hamaker et al., 2018).

In the present chapter, I focus exclusively on idiographic applications of temporal networks,

where samples are taken and studied within a single individual. However, it is worth noting that

these methods can be extended to samples of individuals who are measured over time and analyzed

via multi-level temporal networks (Epskamp et al., 2018c; Bringmann et al., 2013). Two methods

for incorporating moderates in these types of analysis are available in the modnets package, and

will be touched on briefly at the end of this chapter. I will now move to introduce some basic

statistical methods used for specifying time series models with psychological data, and will present

an example illustrating how these models can be interpreted.

5.2.1 Autoregressive Models

The most basic type of time series model used in psychological research is the autoregressive

model (AR), which, in its most basic form, describes the degree to which past values of some

variable predict its subsequent values at some fixed time lag h. For instance, this may be captured

in a model that is specified to describe how an individual’s current emotional state (e.g., level of

sadness), predicts their emotional state at the next observation. The goal of these models is to

capture the degree to which current states of some variable is dependent on its past states, or the
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past states of some other variables. This model can be estimated via standard OLS regression with

Xt = β0 +β1Xt−1 + εt , (5.1)

where Xt represents the value of some variable at a particular time point, and Xt−1 is its value at

the preceding time point. The more general form of this model (i.e., that which takes into account

other lag structures) can be defined as:

Xt = β0 +β1Xt−1 + · · ·+βhXt−h + εt (5.2)

where, given some number of lags h, we can add as many relevant terms to the model as desired

(or to the extent that it is afforded by the data).

5.2.2 Vector Autoregressive Models (VAR)

While the most basic AR model only requires that a single variable is measured repeatedly over

time, other variables may be included as predictors as well. Similarly, multivariate extensions of

the AR model exist wherein more than one response variable, in addition to multiple predictors, are

considered. These multivariate extensions are referred to as vector autoregressive models (VAR),

and are the most common types of model used to construct temporal networks. In general, a set of

measured variables Xt ∈ Rp at time point t ∈ Z are modeled as a linear combination of the same

variables at earlier time points. For a lag-1 model, VAR(1), we model Xt as

Xt = βββ 0 +BXt−1 + εεε t =


Xt,1

...

Xt,p

=


β0,1

...

β0,p

+


β1,1 · · · β1,p

... . . . ...

βp,1 · · · βp,p




Xt−1,1

...

Xt−1,p

+


εt,1

...

εt,p

 , (5.3)

where B is a matrix of time-lagged relationships for p predictors of p outcomes, βββ 0 represents the

vector of intercepts for each variable, and εεε reflects their associated error terms.
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One attractive feature of these models is that they don’t require any prior assumptions about

the structure of relationships between variables. Moreover, we can see how the models are easily

extended to incorporate interaction terms—given a particular moderator M, we simply add one

vector of predictors to Equation 5.3 to reflect the time-lagged main effects for Mt−1 on some Xt,p,

as well as the interaction effects of each predictor Xt−1,p×Mt−1 on some Xt,p. However, there are

some important assumptions that must hold in order to preserve the validity of inferences drawn

from these types of models.

5.2.2.1 VAR model assumptions

The primary assumption behind linear models of time series data is that the processes are stationary

over time. There are different types of stationarity to be concerned with, but for Gaussian processes

there are only two: (1) mean stationarity, or trend stationarity, and (2) covariance stationarity. The

idea behind mean stationarity is that, within each varaible, the mean of the series is expected to

be the same across the entire observation window, E[xt ] = µµµ t = µµµ . Linear and nonlinear trends in

the data represent violations of this assumption, and are therefore typically investigated at the first

stage of an analysis. When univariate trends are discovered, a common technique for transforming

the data is by detrending, or removing different types of trends from the data by regressing a

variable on time and taking the residuals (see Hamaker & Dolan, 2009; Falkenström et al., 2020).

A visual example of this can be seen in Figure 5.1, where data on the number of monthly airline

passengers recorded from 1949–1960 (in thousands) are displayed (Box et al., 2015). On the left

we see the original time series, for which a positive trend can be observed across the time window

(i.e., the average number of airline passengers increased over time). After detrending this series,

we see the trend-stationary version on the right. We can see that while this process removed the

increasing trend from the data, it preserved the short-term fluctuations, which in this case may

be reflecting patterns such as increased air travel during the holidays and decreased travel during

other periods. In essence, temporal networks are focused on isolating and testing this aspect (i.e.,

short-term fluctuations) of time series data.
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Figure 5.1: Original AirPassengers data (left; Box et al., 2015), along with its detrended coun-
terpart (right). Both linear and quadratic trends were removed from the series, where the detrended
series was obtained by taking the residuals of the model: AirPassengers∼ time+ time2.

Moving over to covariance stationarity, however, we are instead concerned with the autocorre-

lation structure of the data (as well as the cross-correlation structure, in multivariate settings)—that

is, we want to ensure that the relationships between variables (or between a variable and its own

past states) at a particular fixed lag (e.g., h = 1) remain stable across the observation window. This

implies that

ΣΣΣ(xt , xt−h) = ΣΣΣh = E[(xt−µµµ)(xt−h−µµµ)T], (5.4)

meaning that the auto- and cross-covariances do not depend on occasion t but only on lag h, a fixed

interval between any given pair of measurements which lie h observations apart.

To put this in a clearer context, imagine that we’re studying how Depression and Anxiety relate

within a single individual over time, and that these variables are each measured once per day across

some number of days. In applying the VAR(1) model, we assume that the lag-1 cross-covariances

(i.e., for {Anxt , Dept−1}, and {Anxt−1, Dept}), and lag-1 auto-covariances (i.e., {Anxt , Anxt−1}

and {Dept , Dept−1}) remain the same across the entire sample. In other words, we expect that the

relationship between feelings of depression today and feelings of anxiety tomorrow will be similar

to (or the same as) that for two consecutive days measured a week from now, or a month from
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now. This assumption applies to all other time-lagged relationships as well, and also extends to

interaction effects when a moderator is included.

To my knowledge there are not transformation methods available for inducing covariance sta-

tionarity, as there are for inducing trend-stationarity, and so some researchers recommend switch-

ing to non-parametric methods when substantial violations of this are observed (e.g., Bringmann

et al., 2017; Haslbeck et al., 2017). An example of what such a violation might look like (at least

in the univariate case) can be seen for the detrended plot in Figure 5.1. Here we can see that the

variance of the series increases over time, meaning that for the lag-1 relation {Xt , Xt−1} we will

be likely to see smaller values at earlier points in the series, and larger values at later times.

In sum, it is important to consider these assumptions when fitting VAR models to time series

data, particularly because they can have substantial impact on both the values and interpretation of

parameter estimates. While I will not consider these particular assumptions further in this paper

(although see Hamaker & Dolan (2009) for a detailed discussion), there is one final assumption that

will be almost ubiquitously violated in practice and is therefore dealt with by methods described

in this chapter.

5.2.2.2 Correlated errors and contemporaneous relationships

An important, implicit assumption in VAR models is that the error terms are independent (i.e.,

uncorrelated) across models. However, all variables are clearly likely to be correlated with them-

selves across time, and by restricting the model to only consider certain fixed lags (or simply lag-1)

we are also imposing the assumption that there are no relationships between variables at other lag

sizes. Moreover, our time-lagged model does not take into consideration the relationships between

variables within time.

This last point reflects the core issue: with standard estimation techniques for VAR models

(i.e., OLS), we make the assumption that there are no contemporaneous relationships between

variables; there are only relationships across some particular lag(s). Because this assumption is

unlikely to hold in empirical data, common techniques used to model temporal networks also
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model a contemporaneous network which accounts for within-timepoint relationships and is also

used to inform better estimates of the between-timepoint associations (Epskamp et al., 2018c;

Abegaz & Wit, 2013; Rothman et al., 2010).

Before going into more detail about how to estimate these types of models, however, it is

worth taking a moment to step back and illustrate what these sorts of models look like, how we

can interpret them, and what is added to our understanding of a temporal network by considering

contemporaneous relations. For now, it is enough to know that the contemporaneous network

models conditional associations (i.e., partial correlations) between the error terms associated with

each node in the temporal network.

5.3 Motivating Example

To connect these statistical considerations with some real-world meaning, lets consider a simple

illustration of what we might gain by applying moderated network models to ESM data. Imagine

we are studying how Depression, Anxiety, and Insomnia relate over time, as well as how those inter-

temporal relationships are moderated by Stress. We can use a multi-level variant of the temporal

MNM if we sample multiple individuals on these variables over time, but I will restrict the present

case to the study of a single individual. This echoes the call for ‘personalized network models’

which could have practical value in clinical settings (c.f. Epskamp et al., 2018b).

In this example, say we conduct a study where these variables are measured for a single indi-

vidual via smartphone multiple times per day over the course of many days. We then fit a tempo-

ral MNM to obtain representations of both the inter-temporal and contemporaneous relationships

among the three primary outcomes (Stress is assumed to be the moderator)1. We can see both

networks displayed in Figure 5.2.

These networks afford a detailed interpretation of the relationships among variables. Starting

with the temporal network, we see self-directed arrows on each node. These represent autoregres-

sive effects, also called self-loops, which show how each variable is related to itself at subsequent

1Faux network structures were created purely for illustration.
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Depression

Anxiety

Insomnia

		Moderated Temporal Network

Depression

Anxiety

Insomnia

Partial Contemporaneous Correlations

Figure 5.2: Faux temporal and contemporaneous networks illustrating a temporal MNM.
.

time points. The green self-loop for Depression, for instance, shows that when depression increases

(decreases), it tends to continue increasing (decreasing) at the next time point. The negative self-

loop on Insomnia, however, indicates that increases in insomnia are associated with subsequent

decreases in insomnia (and vice versa). In most settings it is uncommon to find negative self-

loops, although in this case it may indicate that increased insomnia often requires an individual to

‘catch-up’ on lost sleep.

Moving to the cross-lagged relationships (i.e., the arrows between nodes), we see that Depres-

sion predicts subsequent increases in Anxiety, which predicts subsequent increases in Insomnia,

which itself predicts increases in Depression. Moreover, each of these edges are dashed, indicating

that the effects are moderated by Stress. In this example, we may imagine that higher (lower) levels

of Stress increase (decrease) the strength of these pairwise relationships.

Next, we see a different sort of pattern in the contemporaneous network. The contemporaneous

network reflects the partial correlations of the residuals from the time-lagged model. This is

obtained by standardizing the inverse of the estimated residual covariance matrix, which itself is
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Depression

Anxiety

Insomnia

Figure 5.3: Visualizing the moderator in a temporal network.

used in the estimation of B (as discussed in the next section). Thus, these reflect the relationships

observed, on average, at any given time point after controlling for the inter-temporal relationships.

The strongest contemporaneous relationship is between Insomnia and Anxiety, which tells us

that these two often vary together within timepoints. The edge between Depression and Anxiety is

much weaker, and also negative, indicating that the two are expected to be negatively related at any

particular timepoint, even though they have positive time-lagged relationships across timepoints.

Simply put, these networks show when the participant is experiencing anxiety, he is also likely

experiencing insomnia, although not as likely to be experiencing depression. Instead, it appears

that depression is the key driver of subsequent changes in anxiety.2

Lastly, in Figure 5.3 we see the same temporal network as in Figure 5.2, except here we also

visualize the main effects of Stress on the variables constituting the network. All of these edges

are green, indicating positive regression coefficients which signify that higher levels of Stress, in

this example, predict subsequently higher levels of the other variables.

This fictional example is simply meant to illustrate how temporal MNMs may be used in a

2Causal relations, however, cannot be inferred without experimental design.
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practical setting to make sense of complex, temporal relationships. And although these networks

did not come from real data, we can see the value of investigating both contemporaneous and the

time-lagged effects which, taken together, give us a more complete picture of the dynamics at hand.

In the next section, I provide a description of how exactly we go about estimating these models.

5.4 Estimating Temporal and Contemporaneous Networks

Now that we have a visual sense of what temporal networks look like, it will be useful to have a

formal sense of these models as well. We start with the same general framework as with the cross-

sectional GGM, where the objective is to model a system of linear equations, although in this case

we are using the VAR model with parameters that represent time-lagged, directed associations.

Using the previous example to illustrate this, the equations corresponding to Figure 5.2 would be

Anxt = β0,1 +β1,1Anxt−1 +β2,1Dept−1 +β3,1Inst−1 +β4,1Stresst−1 + · · ·+ εt,1

Dept = β0,2 +β1,2Anxt−1 +β2,2Dept−1 +β3,2Inst−1 +β4,2Stresst−1 + · · ·+ εt,2

Inst = β0,3 +β1,3Anxt−1 +β2,3Dept−1 +β3,3Inst−1 +β4,3Stresst−1 + · · ·+ εt,3.

(5.5)

The ellipses indicate where we would write the interaction terms between the each predictor and

Stresst−1.3 The reason I include this equation at all, however, is to show that for the saturated VAR,

each equation in our model will have all the same predictors. As a result, each β coefficient (with

the exception of the intercepts) will represent a separate parameter in the final network model.

While with cross-sectional networks we must aggregate the regression coefficients post-hoc to

obtain values for edges in the network, in this we can directly use the estimated values to create

the network.

After estimating the temporal network, we can then construct the contemporaneous network

by modeling the relationships among {εt,1,εt,2,εt,3} as a cross-sectional GGM; i.e., using the same

methods discussed in Chapter 2. That is, let Σ̂ΣΣt be the estimated covariance structure of the error

terms; we obtain the contemporaneous network (Ω̂ΩΩt) by standardizing its inverse.

3I only omit writing the interaction terms because the full equations are very long and therefore hard to read.
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5.4.1 Coping with Correlated Errors

Thus far, the only unpenalized estimator I’ve discussed in this paper has been OLS. However, this

requires taking the assumption that the error terms are independent across equations, which we

can be relatively sure is false in most cases. So, how can we incorporate this consideration into the

estimation process? One method designed to handle these types of situations is generalized least

squares (GLS) (Aitkin, 1935). For notational clarity, let Y be the outcome variables measured at t,

and let X be the matrix of predictors (which are the same variables as in Y except time-lagged at

t− 1). With GLS, we obtain estimates of the autoregressive and cross-lagged parameters B with

the following equation:

B̂ = (XT
ΣΣΣ
−1X)−1XT

ΣΣΣ
−1Y, (5.6)

where ΣΣΣ
−1 is the true inverse covariance matrix for the residuals across equations. This means that

the relationships among error terms are being accounted for in the estimation of both the temporal

network and the interaction terms.

One issue with this method, however, is that it assumes prior knowledge of the residual covari-

ance matrix. Given that this is unlikely to be the case in most settings, we can use a variant referred

to as feasible generalized least squares (FGLS), where an iterative approach is taken to estimate

both matrices. Specifically, this procedure involves first estimating B using OLS, taking the esti-

mate of the covariance matrix ΣΣΣ, and then re-estimating B using Equation 5.6 although substituting

the true inverse covariance matrix ΣΣΣ
−1 with the OLS estimate Σ̂ΣΣ

−1
. A new estimate of the residual

covariance matrix can then be obtained based on the FGLS estimate of B, and this process is then

repeated until B̂ and Σ̂ΣΣ achieve a pre-specified level of convergence (Zellner & Theil, 1992).

The application of FGLS to a multivariate regression model is known as a seemingly unre-

lated regression (SUR) model (Zellner, 1962; Zellner & Huang, 1962), and has also been referred

to as “multivariate regression with covariance estimation” (MRCE) (Abegaz & Wit, 2013; Roth-

man et al., 2010). The latter has been used in the psychological network literature (e.g., Epskamp

et al., 2018c), and incorporates the GLASSO using two penalty parameters (one for each model).
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However, given that this method is not capable of enforcing strong hierarchy (or even supporting

interaction terms at all) it is not available for fitting temporal MNMs. The SUR method, however,

is unpenalized and affords the inclusion of interaction terms via the systemfit package for R

(Henningsen & Hamann, 2007). Moreover, estimation of both B and ΣΣΣ
−1 is performed in a si-

multaneous fashion rather than with the nodewise regression approach used with cross-sectional

networks.

In general, this approach to modeling temporal networks with an accompanying contempora-

neous network is termed graphical vector autoregression (GVAR). And although the hierarchical

LASSO has not yet been integrated with the SUR model, we still have the same variable selection

techniques from Chapter 3 available to us via two-stage or resampling-based methods. Specifically,

I have setup the modnets package to allow temporal MNMs to be fit using variable selection meth-

ods by performing sequential, nodewise regressions to select the predictors that will be included

in each equation, and then that pattern of predictors is used to apply constraints in the multivariate

SUR estimation approach used in systemfit. Next, I wanted to get a general sense of how the

moderated GVAR performs in analyses of simulated data where true interactions are included in

the network structure.

5.5 Simulated Example

In order highlight the potential utility of the moderated GVAR model, I conducted a brief simula-

tion to illustrate what happens when we fail to include true moderator effects in a temporal model,

as well as to see how the moderated GVAR performs in relatively simple settings. That is, imagine

that in the ground truth there is a significant moderator in a temporal network; to what extent does

failing to include this in the final model affect the accuracy of the parameter estimates? I investi-

gated this under a variety of conditions similar to those tested in with cross-sectional networks in

Chapter 4. However I tested a greater number of sample sizes4 so as to get a more nuanced picture

of how the tested models perform as sample size is progressively increased.

4Albeit with a smaller range, in order to mimic more realistic data scenarios.
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For each of the conditions described below, the objective was to compare the accuracy of pa-

rameters from three models: (1) An unmoderated network where the true moderator is excluded

from the analysis entirely, (2) an unmoderated network that includes that true moderator as a co-

variate in each model, and (3) a saturated MNM that includes all interaction terms. All three

models were fit to each simulated dataset, and then correlations were computed between the es-

timated and true temporal networks, as well as between the estimated and true contemporaneous

networks to see how each model performed across conditions. Correlations representing the ac-

curacy of interaction estimates were also included for the third model, although these parameters

were not included in the other two models.

In general, there were two network sizes p ∈ {5,10}, three levels of interaction sparsity m ∈

{.05, .10, .25} (which meant that there were either 5%, 10% or 25% of possible interactions in-

cluded in the model, respectively), and thirteen sample sizes5 that were chosen on a logarithmic

scale ranging from N = 33 to N = 500. This method was used in order to over-sample from the

smaller sample sizes, where I expected to see the greatest differences in performance across mod-

els. This led to 81 conditions in total, and 100 models with accompanying datasets were generated

for each case.

The data generation procedure was based on an algorithm described in the supplementary ma-

terials of a paper by Epskamp et al. (2018c), where the only aspect which was changed was that

models were adapted to include (and generate) interaction terms for a moderator variable in each

case. Interaction effects were only included on temporal networks, and so the procedure for gen-

erating contemporaneous networks was identical to that described by Epskamp et al. (2018c).

5.5.1 Simulation Results

The results from the simulation are displayed in Figure 5.4. We see generally good performance

across the board, and that correlations between the estimated and true temporal networks (lines

5A fourteenth sample size of N = 25 was simulated only for p = 5, as it was too small to be used for models with
p = 10.
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Figure 5.4: Average correlations for three models fit to 100 datasets generated for each of 13
sample sizes, three levels of interaction sparsity, and two network sizes. An additional sample size
(N = 25) was included for p = 5, but was too small for when p = 10. ‘No Moderator’ reflects
the unmoderated temporal network, ‘Covariate Only’ adds the moderator variable as a covariate,
and ‘Moderator’ adds interaction terms. Values for the temporal networks are in red; blue for the
partial contemporaneous correlation networks, and green for the interactions.
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in red) quickly converged to the upper bound for all three models as sample size increased. This

was a surprising result to me, as given that interaction terms were only specified for the temporal

networks, I anticipated that excluding these parameters from the model would negatively impact

the accuracy of the pairwise estimates. We see instead that the pairwise relationships are accurately

estimated even when moderators are omitted from these models.

For the contemporaneous networks, however, we see a very different pattern of results. Specifi-

cally, correlations between the estimated and true contemporaneous networks were clearly affected

when interactions were omitted, as we see that correlations worsen for the unmoderated models as

both network size (p = 10) and the proportion of true interactions (e.g., m = .25) increase. This

essentially boils down to a simple conclusion: the more true interactions there are in a system, the

worse estimates of contemporaneous relationships become when the moderator is not accounted

for.

This result was somewhat unanticipated, and I essentially expected to see the opposite pattern;

where failing to include interactions would impact estimates from the temporal network moreso

than for the contemporaneous network. Thus, it would be beneficial to conduct further investiga-

tions in order to determine how exactly moderators influence the contemporaneous relationships.

Still, for now the central message is that omitting moderators when they impact a temporal network

can have unexpected, downstream consequences on other aspects of the model. It would therefore

be interesting to extend this analysis into seeing how failing to include moderators impacts the

stability of both the parameter values and centrality estimates (e.g., using the case-dropping boot-

strap).

5.6 Empirical Example

To exemplify the temporal MNM using empirical data, I applied the model to idiographic ESM

data originally studied by Wichers et al. (2016) and made publicly available by Kossakowski et al.

(2017). The data consist of 1471 measurements taken over 239 days (1-10 [Mdn = 6] per day) on

psychological variables related to the experience of major depression in a single individual. The
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participant was a 57-year-old man with a history of depression who decreased his intake of anti-

depressants over the course of the study and experienced a relapse of major depression (Wichers

et al., 2016).

The first published analysis of these data investigated whether changes in the variables’ auto-

correlation structure could predict sudden, non-linear changes in depression (Wichers et al., 2016),

and a recent analysis studied the structure of symptoms during the post-reduction phase—when

medication levels were no longer changed (Epskamp, 2020). In the present analysis, I include

both the baseline measurements (when levels were highest) and post-reduction measurements in

order to assess the extent to which high versus low medication levels moderated changes in mood

and symptom structure. Specifically, I studied 14 continuous variables designed to measure mood

states, self-esteem, and physical condition.6

The time frame spanned the first 42 days of the study (baseline; N = 286 measurements), as

well as the 29-day assessment period following medication reduction (N = 316 measurements).

I chose to omit the actual reduction period, as dosage levels decreased monotonically and with a

unit root, which are strong violations of VAR model assumptions. I therefore instead chose to treat

medication levels as a binary variable, wherein we are interested in comparing mood states and

symptom structure when the participant is (not) taking anti-depressant medication (venlafaxine).

The following items were investigated: “irritated”, “satisfied”, “lonely”, “anxious”, “enthusi-

astic”, “guilty”, “strong”, “restless”, “agitated”, “worried”, “ashamed”, “tired”, “headache”, and

“sleepy”.7 At each timepoint the participant was asked to indicate the extent to which they were

currently experiencing these. The items were all measured on 7-point Likert scales anchored from

Not at all to Very much, and constituted the network under investigation. All variables were stan-

dardized prior to analysis, and the medication variable (“medication”) was coded 1 for the baseline

period (when medication levels were highest), and 0 during the post-reduction period (when no

medication was taken).
6These were identified as having sufficient variability by Epskamp (2020).
7The actual wording of each item varied (e.g., “I am tired”; “I feel lonely”; “I worry”), but were all simple state-

ments about the degree to which the participant was currently feeling X .
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Considering only the baseline and post-reduction periods, there are a total of N = 602 complete

observations. Given that the data violate the equal-interval assumption for time series data (i.e., no

measurements are taken during sleep, of course), I systematically reduced the number of usable

observations to 352 time-lagged pairs; i.e., 352 pairs of measurements separated by a single time

point (t and t−1). This is common practice when analyzing ESM data (e.g., Haslbeck & Waldorp,

2015; Bringmann et al., 2017; Epskamp, 2020), as it is problematic to assume that the relation

between the final measurement on any given day and the first measurement of the following day is

the same as that for two consecutive measurements within a single day. Thus, when creating the

lag-1 model matrices I removed all rows where measurements on a given day were regressed onto

measurements from the preceding day. Moreover, only consecutive measurements were retained.

This gives us a grand total of N = 352 intra-day, lag-1 relationships for the final analysis.

5.6.1 Model Estimation

The following procedure was used to estimate and evaluate the temporal MNM. First, three differ-

ent models were fit to the data: (1) An unmoderated network that excluded the moderator entirely,

(2) an unmoderated network that used the moderator as an exogenous covariate, and (3) a saturated

MNM, wherein for each outcome interactions between medication and all predictors were included

in the model. The model was fit using the SUR method with FGLS as the estimator; this allowed

me to fit a single, multivariate model rather than use the sequential nodewise method. In the tables

to follow these models are referred to as fit0, fit1, and fit2, respectively.

The above formed the initial part of the investigation, where the goal was to determine whether

or not including medication as a moderator significantly improves the model fit over either of

the former unmoderated models. The omnibus likelihood values and fit statistics, along with

likelihood-ratio tests, are presented in Table 5.1, and the plot for fit2 (the MNM) is displayed

in Figure 5.5.

Next, I applied the variable selection techniques described in the foregoing chapters to obtain

a more parsimonious model and assess more specifically which interactions are important in the
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Temporal MNM Fit Statistics

Omnibus Fit Values Likelihood-Ratio Tests

Model LL df AIC BIC M1 M2 χ2 df ∆ p-value Decision

fit0 -5316.51 315 11263.01 13311.36 fit0 fit1 72.18 14 < .001 fit1

fit1 -5280.42 329 11218.84 13358.22 fit0 fit2 359.43 210 < .001 fit2

fit2 -5136.79 525 11323.58 14737.50 fit1 fit2 287.25 196 < .001 fit2

Table 5.1: Omnibus fit statistics and likelihood-ratio tests (LRT) associated with each of three
models: fit0 is the model where the ‘medication’ variable is excluded entirely; fit1 includes ‘med-
ication’ as a covariate, and then fit2 includes interaction terms.
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Figure 5.5: Saturated temporal MNM with p-value thresholding at p < .05 for both networks.
Dashed edges reflect significant interaction effects (only specified in the temporal network). Light
blue circles around the perimeter of each node reflect the R2 value for each variable. The darker
blue that can be seen for some nodes indicate the increase R2

∆
that occurred by including interaction

terms (fit2) in comparison with the unmoderated network (fit0).
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model.

5.6.2 Variable Selection

Because this is intended to be an exploratory, demonstrative analysis, I tested a series of MNMs

fit with the variable selection methods discussed in the previous chapter. Given the temporal de-

pendency in the data, however, I used a variation on the bootstrapped selection procedure called

the fixed block bootstrap. With this method, the bootstrapped version of Algorithm 1 was applied

except at each iteration I sampled ‘blocks’ of fixed length l from the data (rather than single values,

one at a time), and append them end-to-end until a new series of length N is created. This method

is provided as an option within the resample function created for modnets. The length chosen for

l was based on previous research showing that blocks of size l = 3.15(N
1
3 ) can be optimal under

many conditions (c.f. Kunsch, 1989; Politis & Romano, 1994).8 Thus, given N = 352 time-lagged

observations, this size was set to l = 22. The other two resampling methods (multi-sample split

and stability selection) were not used as I have yet to implement the block-resampling approach in

those contexts.

In order to determine which model should be selected, I first assessed differences in likelihood

using LRTs with Bonferroni corrections comparing every possible pair of models. The omnibus fit

statistics for each model are shown in Table 5.2, where the right-most column reflects the number

of times each model was selected by the LRTs. Given that there were 8 models in total, there were

7 LRTs comparing each model to all others.

In line with the simulation results from Chapter 4, we see that the bootstrap method was se-

lected across all comparisons with the other models, while the two-stage AIC was selected in 6/7

comparisons, and the two-stage CVmin was selected in 5/7 comparisons. Moreover, we see that

while the bootstrap minimized the AIC, the two-stage AIC and CVmin methods returned lower

BIC values. This highlights a common situation where the researcher must decide which criterion

to use for selecting the best model. In this case, given the exploratory nature of the analysis, I

8This is set as the default for the block bootstrap in the resample function, although can also be specified.
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Model Fit Statistics

Name Model Type LL df AIC BIC LRT

bootstrap Block Bootstrap MNM -5242.57 278 11041.14 12848.89 7

AIC Two-Stage MNM -5262.51 268 11061.02 12803.74 6

CVmin Two-Stage MNM -5262.66 270 11065.31 12821.04 5

fit2 Saturated MNM -5136.79 525 11323.58 14737.50 4

EBIC25 Two-Stage MNM -5367.83 168 11071.65 12164.11 3

BIC Two-Stage MNM -5365.40 170 11070.80 12176.26 2

fit1 Saturated Covariate -5280.42 329 11218.84 13358.22 1

fit0 Saturated Unmoderated -5316.51 315 11263.01 13311.36 0

Table 5.2: All names reflect the same meanings as in Table 4.2, with the exception that B = 1000
iterations were used for the block bootstrap. The LRT column reflects the number of times that
each model was selected in a series of likelihood-ratio tests comparing it with every other model.

selected the bootstrap model since it appeared to strike an optimal balance between parsimony and

likelihood relative to the other models.

5.6.3 Analysis Results

The models obtained by the block-bootstrap selection method are displayed in Figure 5.6. Specif-

ically, I’ve plotted here the contemporaneous network, as well as the two conditional temporal

networks—the network on the left shows the pairwise relationships when medication = 1 (during

the baseline phase), and the one on the right reflects when medication = 0. The first aspect of

these plots that stands out is that there are substantially more interactions and pairwise effects that

emerge after the participant ceased anti-depressant medication. That is, relationships among mood

states and depression symptoms seem to become more dense and well-connected once medication

was no longer being taken.

In addition to the plots showing the final model (i.e., the block-bootstrap results; Figure 5.6),

centrality estimates for the model are displayed in Appendix F, along with results from the case-

dropping bootstrap which I conducted to investigate the stability of the selected model. We can see
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Correlation Stability CS(ρ.95 ≥ .70)

Temporal Network Contemporaneous

Parameters Edges OutStr InStr OutEI InEI Edge Strength EI

Pairwise .28 .28 .52 .28 .20 .75 .28 .67

Interactions .28 .20 .28 .28 .28 - - -

Table 5.3: Correlation stability coefficients obtained via the case-dropping bootstrap.

in Table 5.3 that most correlation stability coefficients meet the recommended criterion (Epskamp

et al., 2018a) of being larger than .25. Centrality estimates (i.e., strength and expected influence)

in the case of temporal networks have to be amended, however, as we are now studying directed

relationships rather than undirected connections. Thus, each centrality measure has an “outgoing”

and “incoming” version, where out-strength, for instance, shows the overall magnitude of the

extent to which one node predicts subsequent values of other nodes in the network, while in-

strength tells us the extent to which a particular node is predicted by other nodes in the network.

Overall, we see that while the CS coefficients are not particularly high for these metrics, they

still exceed an acceptable level for both pairwise and interaction effects.

5.7 Conclusion

In this chapter, I covered the foundation of temporal MNMs, as well as provided a number of

demonstrations to show how these models can be constructed, interpreted, and applied to empirical

data. The modnets package is designed to afford a wide array of flexible options for researchers to

use when fitting these models, and there are still other techniques that must be covered in a future

paper. For now, we have at least seen the basics of how these models work, as well as what they can

contribute to a variety of different types of investigation. From cross-sectional to longitudinal data,

and exploratory to confirmatory analyses, my goal was to provide options that would accommodate

a number of different objectives for these types of models.

Moderation analysis has been a core statistical tool within psychology for a number of years,

and it has certainly been recognized as a staple within our methodological toolkit. Psychologi-
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Figure 5.6: Conditional temporal networks for when the participant is taking versus not taking
medication, as well as the contemporaneous network. These plots represent the results for the final
model which was selected based on the block bootstrap with AIC selection of λ .
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cal networks represent a newer class of methods, although have gained incredible popularity and

widespread use in the short time since they have been developed. Moderated networks thus offer

an integration of these two frameworks in a way that is both incremental (e.g., adding interac-

tion terms to nodewise regression models; treating moderators as exogenous variables) and novel

in its approach (e.g., visualizing conditional networks; performing global model comparison and

goodness-of-fit tests).

Finally, the modnets package, which is the centerpiece of this project, is currently available

online for free download and use via GitHub (https://github.com/tswanson222/modnets).

It is not yet a compiled package, however, and so more work needs to be done in order to make it

formally available for R. Still, it can be used quite easily in its current form, and is available for

researchers to use for addressing a wide variety of interesting questions regarding the influence of

moderators on both cross-sectional and temporal networks.
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Appendix A

Gibbs Sampling Procedure for Simulation Study

At the start of the procedure, a random value is drawn from N (0,1) to define the mean of the

moderator µm. At the first iteration, initial values for the p variables are then drawn from N (0,1),

and the moderator is initialized by a single draw from N (µm,1). Then, the procedure outlined in

Algorithm 3 is applied. Overall, this is a standard Gibbs sampling procedure, with the exception

being that the order of the variables for which values are generated is randomized at each iteration.

The reason for this is because of a bias caused by the presence of interaction effects. By random-

izing the order of the variables, it will never be the case that certain interactions are always defined

by values from the preceding iteration, while others are always defined by values from the current

iteration. Instead, each variable will be defined by a mixture of the two iterations. ω is the number

of ‘burn-in’ iterations, which are removed from the final data (set to ω = 250 for the current study).

Algorithm 3 Gibbs sampling procedure
For each iteration t = 2, . . . ,(ω +N):

1. Draw a value for the moderator m(t) ∼N (µm,1).

2. Define k(t) as a random order of the values {1, . . . , p}.

3. For i = k(t)1 , . . . ,k(t)p :

(a) Take the sum of the products of the most recent draws for each variable (either t or
t−1) and the parameter values in row i of the pairwise effects matrix.

(b) Take the sum of the products of the most recent draws for each variable, the correspond-
ing draws for m, and the parameter values in row i of the interaction effects matrix.

(c) Define µ
(t)
i as the sum of the two preceding sums (e.g., when there are no interactions

between any variable × m on i, the second sum will be zero. The same applies to the
first sum but only with regards to pairwise effects).

(d) Draw a single value for i(t) ∼N (µ
(t)
i ,1).
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Appendix B

Simulation Study—Specificity
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Figure B.1: Average specificity across models and conditions for the continuous version of the
simulation study. Each plotted point is based on 100 simulated datasets
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Appendix C

Simulation Study—Primary Analysis Means

C.1 Grand Means

Sensitivity FDR

Model Type M SE Mdn Model Type M SE Mdn

FGL Sample-split .997 .001 1.000 bootstrap MNM .212 .005 .000

bootstrap MNM .624 .006 .778 AIC MNM .219 .006 .000

AIC MNM .618 .006 .778 CVmin MNM .220 .006 .000

CVmin MNM .609 .006 .739 Prune MNM .251 .006 .000

Prune MNM .600 .006 .739 BIC MNM .265 .007 .000

BIC MNM .538 .007 .600 CV1se MNM .289 .007 .000

NCT Sample-split .531 .007 .652 stability MNM .311 .007 .000

stability MNM .518 .007 .565 EBIC25 MNM .327 .007 .000

EBIC25 MNM .494 .007 .500 FGL Sample-split .362 .005 .400

CV1se MNM .464 .006 .400 EBIC50 MNM .376 .008 .000

EBIC50 MNM .451 .007 .333 split MNM .437 .008 .000

split MNM .400 .007 .200 NCT Sample-split .481 .007 .357

MCC Specificity

Model Type M SE Mdn Model Type M SE Mdn

bootstrap MNM .631 .006 .756 split MNM .999 .000 1.000

AIC MNM .623 .006 .744 CV1se MNM .998 .000 1.000

CVmin MNM .620 .006 .735 EBIC50 MNM .996 .000 1.000

FGL Sample-split .617 .005 .574 stability MNM .996 .000 1.000

Prune MNM .603 .006 .705 EBIC25 MNM .995 .000 1.000

BIC MNM .572 .006 .667 BIC MNM .992 .000 1.000

stability MNM .550 .007 .667 CVmin MNM .979 .001 1.000

EBIC25 MNM .527 .007 .610 bootstrap MNM .977 .001 1.000

CV1se MNM .516 .006 .543 Prune MNM .976 .001 1.000

EBIC50 MNM .485 .007 .500 AIC MNM .976 .001 1.000

NCT Sample-split .459 .006 .509 NCT Sample-split .937 .002 1.000

split MNM .436 .007 .398 FGL Sample-split .635 .005 .667

Table C.1: Grand means, standard errors, and medians for each model after collapsing across
conditions. Rows differ across facets to reflect rank-ordered performance on each outcome. Each
statistic is based on 4000 observations (100 iterations for each of 40 conditions).
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C.2 Sensitivity (Interactions)

Average Sensitivity (SE) – Interactions

P = 5

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .15 (.04) .33 (.05) .90 (.03) .98 (.01) 1.00 (.00) .67 .13 (.02) .28 (.02) .81 (.03) .98 (.01) 1.00 (.00) .64 Prune

AIC .17 (.04) .38 (.05) .90 (.03) 1.00 (.00) 1.00 (.00) .69 .15 (.02) .30 (.03) .82 (.03) .99 (.01) 1.00 (.00) .65 AIC

BIC .12 (.03) .18 (.04) .67 (.05) .97 (.02) 1.00 (.00) .59 .10 (.02) .16 (.02) .64 (.03) .94 (.01) 1.00 (.00) .57 BIC

EBIC25 .10 (.03) .12 (.03) .50 (.05) .95 (.02) 1.00 (.00) .53 .08 (.02) .11 (.02) .53 (.04) .91 (.02) 1.00 (.00) .53 EBIC25

EBIC50 .06 (.02) .09 (.03) .38 (.05) .90 (.03) .98 (.01) .48 .06 (.01) .06 (.01) .42 (.03) .86 (.02) 1.00 (.00) .48 EBIC50

CVmin .17 (.04) .38 (.05) .90 (.03) .99 (.01) 1.00 (.00) .69 .15 (.02) .29 (.03) .81 (.03) .99 (.01) 1.00 (.00) .65 CVmin

CV1se .10 (.03) .15 (.04) .32 (.05) .62 (.05) .91 (.03) .42 .09 (.02) .12 (.02) .43 (.03) .68 (.03) .97 (.01) .46 CV1se

split .00 (.00) .01 (.01) .25 (.04) .92 (.03) 1.00 (.00) .44 .00 (.00) .02 (.01) .33 (.03) .80 (.02) 1.00 (.00) .43 split

bootstrap .18 (.04) .35 (.05) .89 (.03) 1.00 (.00) 1.00 (.00) .68 .15 (.02) .30 (.03) .82 (.02) .98 (.01) 1.00 (.00) .65 bootstrap

stability .01 (.01) .08 (.03) .60 (.05) .98 (.01) 1.00 (.00) .53 .02 (.01) .07 (.01) .63 (.03) .95 (.01) 1.00 (.00) .53 stability

NCT .05 (.02) .16 (.04) .41 (.05) .92 (.03) 1.00 (.00) .51 .08 (.02) .18 (.03) .57 (.04) .90 (.02) .99 (.00) .54 NCT

FGL .99 (.01) .99 (.01) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 .99 (.00) .99 (.01) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 FGL

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .16 (.02) .37 (.03) .76 (.03) .98 (.01) 1.00 (.00) .65 .12 (.02) .30 (.02) .75 (.02) .98 (.01) 1.00 (.00) .63 Prune

AIC .20 (.03) .38 (.03) .76 (.03) 1.00 (.00) 1.00 (.00) .67 .14 (.02) .30 (.02) .75 (.02) .99 (.01) 1.00 (.00) .64 AIC

BIC .12 (.02) .13 (.02) .57 (.04) .93 (.02) 1.00 (.00) .55 .07 (.01) .16 (.02) .60 (.03) .95 (.01) 1.00 (.00) .56 BIC

EBIC25 .09 (.02) .10 (.02) .48 (.04) .90 (.02) 1.00 (.00) .51 .05 (.01) .11 (.02) .50 (.03) .91 (.02) 1.00 (.00) .51 EBIC25

EBIC50 .08 (.02) .06 (.02) .40 (.04) .84 (.03) 1.00 (.00) .48 .05 (.01) .08 (.01) .40 (.03) .86 (.02) 1.00 (.00) .48 EBIC50

CVmin .20 (.03) .34 (.03) .76 (.03) .99 (.01) 1.00 (.00) .66 .12 (.02) .28 (.02) .75 (.02) .99 (.01) 1.00 (.00) .63 CVmin

CV1se .12 (.02) .12 (.02) .40 (.03) .69 (.04) .96 (.01) .46 .07 (.01) .14 (.02) .44 (.02) .79 (.02) .97 (.01) .48 CV1se

split .00 (.00) .04 (.01) .26 (.03) .84 (.03) 1.00 (.00) .43 .00 (.00) .02 (.01) .26 (.02) .79 (.02) .99 (.00) .41 split

bootstrap .20 (.03) .34 (.03) .77 (.03) .98 (.01) 1.00 (.00) .66 .13 (.01) .31 (.02) .75 (.02) .98 (.01) 1.00 (.00) .63 bootstrap

stability .04 (.01) .10 (.02) .51 (.04) .96 (.01) 1.00 (.00) .52 .01 (.00) .09 (.01) .60 (.02) .97 (.01) 1.00 (.00) .53 stability

NCT .12 (.03) .18 (.03) .52 (.04) .89 (.03) 1.00 (.00) .54 .08 (.02) .25 (.03) .59 (.03) .88 (.02) 1.00 (.00) .56 NCT

FGL 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 .98 (.01) .99 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 FGL

P = 10

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .06 (.01) .26 (.02) .74 (.02) .98 (.01) 1.00 (.00) .61 .04 (.01) .18 (.01) .59 (.01) .87 (.01) .97 (.01) .53 Prune

AIC .09 (.01) .33 (.02) .79 (.02) .98 (.01) 1.00 (.00) .64 .09 (.01) .22 (.01) .61 (.02) .88 (.01) .97 (.01) .55 AIC

BIC .05 (.01) .13 (.01) .61 (.02) .95 (.01) 1.00 (.00) .55 .05 (.01) .11 (.01) .52 (.02) .85 (.01) .97 (.01) .50 BIC

EBIC25 .02 (.01) .05 (.01) .48 (.02) .93 (.01) 1.00 (.00) .50 .02 (.00) .05 (.01) .41 (.02) .82 (.02) .96 (.01) .45 EBIC25

EBIC50 .01 (.01) .02 (.01) .32 (.02) .89 (.02) 1.00 (.00) .45 .01 (.00) .02 (.00) .30 (.02) .78 (.02) .96 (.01) .42 EBIC50

CVmin .09 (.01) .33 (.02) .78 (.02) .98 (.01) 1.00 (.00) .64 .07 (.01) .20 (.01) .60 (.02) .87 (.01) .97 (.01) .54 CVmin

CV1se .04 (.01) .15 (.02) .57 (.02) .90 (.01) .99 (.00) .53 .04 (.00) .13 (.01) .46 (.02) .74 (.02) .94 (.01) .46 CV1se

split .00 (.00) .01 (.00) .25 (.02) .83 (.02) 1.00 (.00) .42 .00 (.00) .01 (.00) .20 (.01) .61 (.02) .94 (.01) .35 split

bootstrap .14 (.01) .34 (.02) .80 (.02) .99 (.01) 1.00 (.00) .66 .11 (.01) .25 (.01) .63 (.01) .89 (.01) .97 (.01) .57 bootstrap

stability .04 (.01) .09 (.01) .62 (.02) .97 (.01) 1.00 (.00) .54 .02 (.00) .10 (.01) .52 (.02) .86 (.01) .97 (.01) .49 stability

NCT .00 (.00) .06 (.02) .45 (.04) .91 (.02) 1.00 (.00) .48 .03 (.01) .18 (.02) .65 (.02) .93 (.01) 1.00 (.00) .56 NCT

FGL 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) .99 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 FGL

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .06 (.01) .24 (.01) .69 (.01) .93 (.01) .99 (.00) .58 .04 (.00) .16 (.01) .51 (.01) .81 (.01) .91 (.01) .49 Prune

AIC .10 (.01) .26 (.01) .73 (.02) .93 (.01) .99 (.00) .60 .07 (.01) .20 (.01) .52 (.01) .82 (.01) .90 (.01) .50 AIC

BIC .04 (.01) .11 (.01) .61 (.02) .91 (.01) .98 (.01) .53 .04 (.00) .11 (.01) .46 (.01) .80 (.01) .90 (.01) .46 BIC

EBIC25 .02 (.00) .05 (.01) .48 (.02) .88 (.02) .98 (.01) .48 .02 (.00) .06 (.01) .40 (.01) .78 (.01) .89 (.01) .43 EBIC25

EBIC50 .01 (.00) .03 (.01) .31 (.02) .83 (.02) .98 (.01) .43 .01 (.00) .04 (.00) .29 (.01) .73 (.01) .89 (.01) .39 EBIC50

CVmin .08 (.01) .27 (.01) .73 (.02) .93 (.01) .98 (.00) .60 .06 (.00) .18 (.01) .50 (.01) .79 (.02) .86 (.02) .48 CVmin

CV1se .04 (.01) .13 (.01) .59 (.02) .83 (.02) .97 (.01) .51 .04 (.00) .11 (.01) .37 (.01) .65 (.02) .76 (.02) .38 CV1se

split .00 (.00) .01 (.00) .27 (.01) .73 (.02) .96 (.01) .39 .00 (.00) .01 (.00) .19 (.01) .57 (.01) .87 (.01) .33 split

bootstrap .12 (.01) .29 (.01) .74 (.01) .93 (.01) .99 (.00) .61 .10 (.01) .23 (.01) .54 (.01) .83 (.01) .92 (.01) .52 bootstrap

stability .03 (.01) .08 (.01) .62 (.02) .92 (.01) .98 (.01) .53 .02 (.00) .09 (.01) .48 (.01) .79 (.01) .89 (.01) .45 stability

NCT .00 (.00) .04 (.01) .50 (.03) .93 (.01) 1.00 (.00) .49 .05 (.01) .25 (.02) .66 (.02) .88 (.01) .96 (.01) .56 NCT

FGL 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 .99 (.00) .99 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 FGL

Table C.2: Means and standard errors across models and conditions for sensitivity. The values
essentially reflect the same information shown in Figure 4.1.
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C.3 False-Discovery Rate (Interactions)

Average MAE (SE) – Interactions

P = 5

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .86 (.03) .71 (.04) .18 (.03) .14 (.03) .12 (.02) .40 .67 (.05) .39 (.05) .08 (.02) .04 (.01) .04 (.01) .24 Prune

AIC .84 (.04) .66 (.05) .18 (.03) .11 (.02) .12 (.02) .38 .65 (.05) .36 (.05) .07 (.02) .04 (.01) .04 (.01) .23 AIC

BIC .88 (.03) .82 (.04) .34 (.05) .04 (.02) .03 (.01) .42 .75 (.04) .59 (.05) .12 (.03) .01 (.00) .02 (.01) .30 BIC

EBIC25 .90 (.03) .88 (.03) .50 (.05) .06 (.02) .02 (.01) .47 .77 (.04) .69 (.05) .19 (.04) .01 (.00) .01 (.01) .33 EBIC25

EBIC50 .94 (.02) .91 (.03) .62 (.05) .10 (.03) .03 (.02) .52 .82 (.04) .81 (.04) .26 (.04) .02 (.01) .01 (.01) .38 EBIC50

CVmin .84 (.04) .66 (.05) .19 (.03) .11 (.02) .12 (.02) .39 .64 (.05) .39 (.05) .08 (.02) .04 (.01) .04 (.01) .24 CVmin

CV1se .90 (.03) .85 (.04) .68 (.05) .38 (.05) .09 (.03) .58 .75 (.04) .66 (.05) .23 (.04) .05 (.02) .00 (.00) .34 CV1se

split 1.00 (.00) .99 (.01) .75 (.04) .08 (.03) .00 (.00) .56 1.00 (.00) .94 (.02) .31 (.05) .00 (.00) .00 (.00) .45 split

bootstrap .82 (.04) .68 (.05) .18 (.03) .11 (.02) .12 (.02) .38 .64 (.05) .35 (.05) .06 (.02) .04 (.01) .04 (.01) .22 bootstrap

stability .99 (.01) .92 (.03) .40 (.05) .04 (.02) .03 (.01) .47 .94 (.02) .79 (.04) .08 (.03) .01 (.01) .02 (.01) .37 stability

NCT .98 (.01) .88 (.03) .66 (.04) .30 (.03) .16 (.03) .59 .89 (.03) .73 (.04) .39 (.04) .13 (.02) .09 (.01) .44 NCT

FGL .16 (.03) .28 (.03) .42 (.04) .73 (.02) .78 (.02) .47 .10 (.02) .17 (.02) .33 (.03) .54 (.02) .61 (.01) .35 FGL

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .72 (.04) .44 (.05) .11 (.03) .05 (.01) .06 (.01) .28 .57 (.05) .24 (.04) .03 (.01) .01 (.00) .02 (.01) .17 Prune

AIC .64 (.05) .41 (.05) .11 (.03) .05 (.01) .06 (.01) .25 .50 (.05) .24 (.04) .03 (.01) .01 (.00) .02 (.01) .16 AIC

BIC .76 (.04) .74 (.04) .22 (.04) .03 (.01) .00 (.00) .35 .71 (.05) .43 (.05) .04 (.02) .01 (.00) .01 (.00) .24 BIC

EBIC25 .82 (.04) .80 (.04) .30 (.05) .03 (.01) .00 (.00) .39 .79 (.04) .58 (.05) .05 (.02) .01 (.00) .01 (.00) .29 EBIC25

EBIC50 .84 (.04) .87 (.03) .39 (.05) .06 (.02) .00 (.00) .43 .80 (.04) .69 (.05) .12 (.03) .01 (.00) .01 (.00) .33 EBIC50

CVmin .64 (.05) .44 (.05) .11 (.03) .05 (.01) .06 (.01) .26 .52 (.05) .25 (.04) .03 (.01) .01 (.00) .02 (.01) .17 CVmin

CV1se .78 (.04) .78 (.04) .34 (.05) .17 (.04) .00 (.00) .41 .71 (.05) .49 (.05) .05 (.02) .01 (.01) .00 (.00) .25 CV1se

split 1.00 (.00) .93 (.03) .54 (.05) .02 (.01) .00 (.00) .50 .99 (.01) .89 (.03) .20 (.04) .00 (.00) .00 (.00) .42 split

bootstrap .64 (.05) .47 (.05) .11 (.03) .04 (.01) .05 (.01) .26 .50 (.05) .23 (.04) .02 (.01) .01 (.00) .02 (.01) .16 bootstrap

stability .92 (.03) .80 (.04) .28 (.04) .01 (.00) .00 (.00) .40 .95 (.02) .66 (.05) .01 (.01) .00 (.00) .01 (.00) .33 stability

NCT .90 (.03) .80 (.04) .46 (.04) .23 (.03) .13 (.02) .50 .85 (.03) .55 (.05) .21 (.03) .10 (.02) .04 (.01) .35 NCT

FGL .15 (.02) .20 (.03) .38 (.03) .61 (.02) .71 (.01) .41 .06 (.01) .10 (.01) .21 (.02) .35 (.01) .42 (.01) .23 FGL

P = 10

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .80 (.04) .41 (.04) .18 (.02) .14 (.01) .13 (.01) .33 .64 (.04) .23 (.03) .08 (.01) .06 (.01) .07 (.01) .22 Prune

AIC .73 (.04) .31 (.03) .15 (.02) .13 (.01) .12 (.01) .29 .39 (.04) .14 (.02) .08 (.01) .06 (.01) .07 (.01) .15 AIC

BIC .78 (.04) .48 (.05) .03 (.01) .04 (.01) .02 (.01) .27 .52 (.05) .25 (.04) .03 (.01) .03 (.01) .03 (.00) .17 BIC

EBIC25 .92 (.03) .79 (.04) .05 (.02) .02 (.01) .01 (.00) .36 .74 (.04) .49 (.05) .01 (.00) .02 (.00) .02 (.00) .26 EBIC25

EBIC50 .93 (.03) .91 (.03) .17 (.04) .02 (.00) .01 (.00) .41 .82 (.04) .74 (.04) .04 (.02) .01 (.00) .02 (.00) .33 EBIC50

CVmin .70 (.04) .26 (.03) .15 (.02) .13 (.01) .12 (.01) .27 .44 (.05) .13 (.02) .06 (.01) .06 (.01) .07 (.01) .15 CVmin

CV1se .81 (.04) .43 (.05) .03 (.02) .00 (.00) .00 (.00) .25 .52 (.05) .17 (.03) .02 (.01) .00 (.00) .00 (.00) .14 CV1se

split 1.00 (.00) .96 (.02) .20 (.04) .00 (.00) .00 (.00) .43 1.00 (.00) .86 (.03) .04 (.02) .00 (.00) .00 (.00) .38 split

bootstrap .63 (.04) .31 (.03) .13 (.01) .11 (.01) .13 (.01) .26 .40 (.04) .13 (.02) .06 (.01) .06 (.01) .06 (.01) .14 bootstrap

stability .84 (.04) .63 (.05) .02 (.01) .02 (.01) .01 (.00) .30 .74 (.04) .20 (.04) .01 (.00) .01 (.00) .02 (.00) .20 stability

NCT .98 (.01) .90 (.03) .60 (.03) .39 (.02) .30 (.01) .64 .94 (.02) .70 (.04) .31 (.02) .17 (.01) .12 (.01) .45 NCT

FGL .02 (.01) .07 (.01) .33 (.03) .77 (.02) .83 (.01) .40 .03 (.01) .15 (.02) .44 (.02) .62 (.00) .64 (.00) .38 FGL

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .63 (.05) .22 (.03) .08 (.01) .09 (.01) .10 (.01) .23 .40 (.05) .10 (.02) .05 (.01) .06 (.01) .08 (.01) .14 Prune

AIC .48 (.04) .21 (.03) .08 (.01) .08 (.01) .09 (.01) .19 .24 (.04) .06 (.01) .06 (.01) .05 (.01) .08 (.01) .10 AIC

BIC .71 (.05) .40 (.05) .02 (.01) .03 (.01) .03 (.01) .24 .46 (.05) .09 (.02) .04 (.01) .04 (.00) .06 (.01) .13 BIC

EBIC25 .86 (.03) .64 (.05) .04 (.02) .02 (.00) .02 (.01) .32 .62 (.05) .26 (.04) .03 (.01) .03 (.00) .05 (.01) .20 EBIC25

EBIC50 .92 (.03) .81 (.04) .06 (.02) .01 (.00) .02 (.01) .36 .75 (.04) .40 (.05) .03 (.01) .03 (.00) .04 (.01) .25 EBIC50

CVmin .52 (.05) .17 (.03) .08 (.01) .08 (.01) .09 (.01) .19 .30 (.04) .05 (.01) .05 (.01) .05 (.01) .06 (.01) .10 CVmin

CV1se .68 (.05) .38 (.05) .01 (.00) .00 (.00) .00 (.00) .22 .44 (.05) .06 (.02) .02 (.01) .02 (.01) .01 (.00) .11 CV1se

split 1.00 (.00) .89 (.03) .05 (.02) .00 (.00) .00 (.00) .39 1.00 (.00) .78 (.04) .01 (.01) .00 (.00) .02 (.00) .36 split

bootstrap .44 (.04) .19 (.03) .07 (.01) .09 (.01) .09 (.01) .17 .18 (.03) .07 (.01) .05 (.01) .05 (.01) .08 (.01) .09 bootstrap

stability .74 (.04) .51 (.05) .01 (.00) .02 (.01) .03 (.01) .26 .61 (.05) .07 (.03) .02 (.01) .01 (.00) .02 (.00) .15 stability

NCT .96 (.02) .88 (.03) .43 (.03) .26 (.01) .20 (.01) .55 .87 (.03) .42 (.04) .16 (.01) .09 (.01) .06 (.01) .32 NCT

FGL .01 (.00) .05 (.01) .30 (.03) .72 (.01) .75 (.00) .37 .04 (.01) .14 (.02) .37 (.01) .43 (.00) .46 (.00) .29 FGL

Table C.3: Means and standard errors across models and conditions for FDR. The values essentially
reflect the same information shown in Figure 4.2.
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C.4 Matthew’s Correlation Coefficient (Interactions)

Average MCC (SE) – Interactions

P = 5

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .13 (.03) .29 (.04) .85 (.03) .89 (.02) .92 (.02) .62 .15 (.03) .35 (.03) .81 (.02) .95 (.01) .97 (.01) .65 Prune

AIC .14 (.04) .35 (.05) .84 (.03) .92 (.02) .92 (.02) .63 .17 (.03) .37 (.03) .83 (.02) .96 (.01) .97 (.01) .66 AIC

BIC .11 (.03) .17 (.04) .66 (.05) .96 (.02) .98 (.01) .58 .13 (.03) .22 (.03) .70 (.03) .95 (.01) .99 (.00) .60 BIC

EBIC25 .09 (.03) .11 (.03) .50 (.05) .95 (.02) .99 (.01) .53 .12 (.02) .16 (.03) .60 (.03) .93 (.01) .99 (.00) .56 EBIC25

EBIC50 .05 (.02) .09 (.03) .38 (.05) .90 (.03) .97 (.02) .48 .09 (.02) .09 (.02) .50 (.03) .89 (.02) .99 (.00) .51 EBIC50

CVmin .15 (.04) .35 (.05) .84 (.03) .92 (.02) .92 (.02) .63 .17 (.03) .35 (.03) .82 (.02) .96 (.01) .97 (.01) .65 CVmin

CV1se .09 (.03) .15 (.04) .32 (.05) .62 (.05) .91 (.03) .42 .12 (.02) .17 (.03) .52 (.03) .76 (.02) .97 (.01) .51 CV1se

split .00 (.00) .01 (.01) .25 (.04) .92 (.03) 1.00 (.00) .44 .00 (.00) .03 (.01) .43 (.03) .86 (.02) 1.00 (.00) .46 split

bootstrap .16 (.04) .32 (.05) .83 (.03) .93 (.01) .92 (.02) .63 .18 (.03) .38 (.03) .83 (.02) .96 (.01) .97 (.01) .66 bootstrap

stability .01 (.01) .08 (.03) .60 (.05) .97 (.02) .98 (.01) .53 .03 (.01) .10 (.02) .71 (.03) .95 (.01) .99 (.00) .56 stability

NCT .02 (.02) .11 (.03) .35 (.05) .77 (.03) .89 (.02) .43 .06 (.02) .18 (.03) .49 (.03) .82 (.02) .92 (.01) .49 NCT

FGL .88 (.02) .79 (.03) .67 (.03) .36 (.02) .31 (.02) .60 .90 (.02) .82 (.03) .68 (.03) .42 (.02) .32 (.02) .63 FGL

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .18 (.03) .41 (.04) .78 (.03) .95 (.01) .95 (.01) .66 .15 (.02) .34 (.03) .76 (.02) .97 (.01) .98 (.01) .64 Prune

AIC .22 (.03) .44 (.04) .79 (.03) .96 (.01) .96 (.01) .67 .18 (.02) .35 (.03) .75 (.02) .97 (.01) .98 (.01) .65 AIC

BIC .16 (.03) .17 (.03) .64 (.04) .94 (.02) 1.00 (.00) .58 .10 (.02) .22 (.02) .64 (.02) .94 (.01) .99 (.00) .58 BIC

EBIC25 .12 (.03) .13 (.03) .55 (.04) .92 (.02) 1.00 (.00) .54 .07 (.02) .16 (.02) .56 (.02) .91 (.01) .99 (.00) .54 EBIC25

EBIC50 .11 (.02) .08 (.02) .47 (.04) .87 (.03) 1.00 (.00) .51 .07 (.02) .12 (.02) .47 (.03) .88 (.02) .99 (.00) .50 EBIC50

CVmin .23 (.03) .40 (.04) .78 (.03) .96 (.01) .96 (.01) .67 .17 (.02) .33 (.03) .75 (.02) .97 (.01) .98 (.01) .64 CVmin

CV1se .15 (.03) .15 (.03) .49 (.04) .73 (.04) .97 (.01) .50 .10 (.02) .19 (.02) .52 (.02) .81 (.02) .97 (.01) .52 CV1se

split .00 (.00) .05 (.02) .33 (.04) .88 (.02) 1.00 (.00) .45 .00 (.00) .04 (.01) .35 (.02) .82 (.01) .99 (.00) .44 split

bootstrap .23 (.03) .38 (.04) .79 (.03) .96 (.01) .97 (.01) .67 .17 (.02) .35 (.03) .76 (.02) .97 (.01) .98 (.01) .65 bootstrap

stability .05 (.02) .13 (.03) .58 (.04) .97 (.01) 1.00 (.00) .55 .02 (.01) .12 (.02) .65 (.02) .97 (.01) .99 (.01) .55 stability

NCT .09 (.02) .15 (.03) .47 (.04) .77 (.03) .90 (.01) .47 .05 (.02) .22 (.03) .51 (.03) .79 (.02) .95 (.01) .50 NCT

FGL .88 (.02) .84 (.02) .67 (.03) .43 (.02) .30 (.02) .62 .91 (.02) .87 (.02) .71 (.03) .49 (.03) .33 (.02) .66 FGL

P = 10

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .08 (.02) .35 (.03) .74 (.02) .90 (.01) .92 (.01) .60 .07 (.01) .29 (.02) .66 (.01) .86 (.01) .93 (.01) .56 Prune

AIC .12 (.02) .43 (.02) .79 (.01) .91 (.01) .93 (.01) .63 .15 (.01) .34 (.01) .67 (.01) .87 (.01) .93 (.01) .59 AIC

BIC .10 (.02) .24 (.02) .74 (.02) .95 (.01) .99 (.00) .60 .12 (.01) .23 (.02) .63 (.01) .88 (.01) .95 (.01) .56 BIC

EBIC25 .03 (.01) .10 (.02) .64 (.02) .94 (.01) .99 (.00) .54 .06 (.01) .13 (.01) .56 (.01) .86 (.01) .96 (.01) .51 EBIC25

EBIC50 .03 (.01) .04 (.01) .49 (.03) .92 (.01) 1.00 (.00) .49 .04 (.01) .06 (.01) .46 (.02) .83 (.01) .96 (.01) .47 EBIC50

CVmin .14 (.02) .44 (.02) .78 (.01) .91 (.01) .93 (.01) .64 .14 (.01) .33 (.01) .67 (.01) .87 (.01) .93 (.01) .59 CVmin

CV1se .08 (.02) .28 (.03) .71 (.02) .94 (.01) .99 (.00) .60 .11 (.01) .27 (.01) .59 (.01) .81 (.01) .95 (.01) .55 CV1se

split .00 (.00) .02 (.01) .42 (.02) .89 (.01) 1.00 (.00) .47 .00 (.00) .03 (.01) .37 (.01) .72 (.01) .95 (.01) .41 split

bootstrap .18 (.02) .44 (.02) .81 (.01) .93 (.01) .92 (.01) .65 .16 (.02) .37 (.01) .70 (.01) .88 (.01) .93 (.01) .61 bootstrap

stability .07 (.02) .17 (.02) .75 (.02) .97 (.01) .99 (.00) .59 .06 (.01) .23 (.01) .64 (.01) .89 (.01) .96 (.01) .56 stability

NCT .01 (.01) .06 (.02) .35 (.03) .69 (.02) .80 (.01) .38 .01 (.00) .14 (.02) .53 (.02) .81 (.01) .90 (.01) .48 NCT

FGL .99 (.00) .95 (.01) .74 (.03) .31 (.02) .24 (.01) .65 .97 (.02) .84 (.03) .55 (.03) .31 (.01) .26 (.01) .58 FGL

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .11 (.02) .36 (.02) .75 (.01) .90 (.01) .92 (.01) .61 .09 (.01) .25 (.01) .53 (.01) .77 (.01) .83 (.01) .49 Prune

AIC .17 (.02) .38 (.02) .78 (.01) .90 (.01) .93 (.01) .63 .13 (.01) .29 (.01) .54 (.01) .77 (.01) .82 (.02) .51 AIC

BIC .09 (.02) .22 (.02) .73 (.01) .92 (.01) .97 (.01) .59 .09 (.01) .21 (.01) .52 (.01) .78 (.01) .85 (.02) .49 BIC

EBIC25 .04 (.01) .12 (.02) .63 (.02) .91 (.01) .97 (.01) .54 .06 (.01) .14 (.01) .47 (.01) .77 (.01) .85 (.02) .46 EBIC25

EBIC50 .02 (.01) .06 (.01) .49 (.02) .89 (.01) .97 (.01) .49 .04 (.01) .10 (.01) .39 (.01) .74 (.01) .86 (.02) .42 EBIC50

CVmin .16 (.02) .40 (.02) .77 (.01) .90 (.01) .93 (.01) .63 .12 (.01) .28 (.01) .54 (.01) .76 (.01) .82 (.02) .50 CVmin

CV1se .10 (.02) .25 (.02) .72 (.01) .89 (.01) .98 (.01) .59 .09 (.01) .23 (.01) .45 (.01) .69 (.02) .78 (.02) .45 CV1se

split .00 (.00) .03 (.01) .45 (.02) .82 (.01) .98 (.01) .46 .00 (.00) .03 (.01) .31 (.01) .62 (.01) .86 (.01) .37 split

bootstrap .19 (.02) .41 (.02) .80 (.01) .90 (.01) .93 (.01) .65 .16 (.01) .31 (.01) .56 (.01) .79 (.01) .84 (.01) .53 bootstrap

stability .08 (.01) .18 (.02) .74 (.01) .94 (.01) .97 (.01) .58 .07 (.01) .20 (.01) .55 (.01) .80 (.01) .87 (.01) .49 stability

NCT .01 (.01) .05 (.01) .42 (.03) .77 (.01) .86 (.01) .42 .04 (.01) .21 (.02) .54 (.01) .79 (.01) .90 (.01) .49 NCT

FGL .99 (.00) .96 (.01) .75 (.03) .30 (.01) .24 (.01) .65 .93 (.02) .78 (.03) .46 (.02) .31 (.02) .22 (.01) .54 FGL

Table C.4: Means and standard errors across models and conditions for MCC. The values essen-
tially reflect the same information shown in Figure 4.3.
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C.5 Specificity (Interactions)

Average Specificity (SE) – Interactions

P = 5

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .98 (.00) .98 (.00) .98 (.01) .97 (.01) .97 (.01) .98 .98 (.01) .99 (.00) .97 (.01) .97 (.01) .98 (.01) .98 Prune

AIC .98 (.00) .98 (.00) .98 (.01) .97 (.01) .97 (.01) .98 .98 (.01) .98 (.01) .98 (.01) .98 (.01) .98 (.01) .98 AIC

BIC .99 (.00) .99 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) .99 .99 (.00) .99 (.00) 1.00 (.00) .99 (.00) .99 (.00) .99 BIC

EBIC25 .99 (.00) .99 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) .99 (.00) 1.00 EBIC25

EBIC50 .99 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) 1.00 EBIC50

CVmin .98 (.00) .98 (.00) .97 (.01) .97 (.01) .97 (.01) .98 .98 (.01) .98 (.01) .97 (.01) .98 (.01) .98 (.01) .98 CVmin

CV1se .99 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 .99 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 CV1se

split 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 split

bootstrap .98 (.00) .98 (.00) .98 (.01) .97 (.01) .97 (.01) .98 .98 (.01) .99 (.00) .98 (.01) .98 (.01) .98 (.01) .98 bootstrap

stability 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) .99 (.00) 1.00 stability

NCT .97 (.01) .96 (.01) .97 (.01) .94 (.01) .96 (.01) .96 .97 (.01) .97 (.01) .89 (.02) .92 (.01) .95 (.01) .94 NCT

FGL .95 (.01) .90 (.02) .80 (.02) .52 (.02) .44 (.02) .72 .92 (.02) .85 (.02) .69 (.03) .41 (.03) .29 (.02) .63 FGL

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .98 (.00) .98 (.01) .98 (.01) .98 (.01) .98 (.01) .98 .99 (.00) .98 (.01) .97 (.01) .98 (.01) .98 (.01) .98 Prune

AIC .98 (.00) .99 (.00) .98 (.01) .98 (.01) .98 (.01) .98 .99 (.00) .98 (.01) .97 (.01) .98 (.01) .98 (.01) .98 AIC

BIC 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) 1.00 (.00) 1.00 1.00 (.00) .99 (.00) .98 (.01) .99 (.00) .99 (.01) .99 BIC

EBIC25 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) .99 (.00) .99 (.00) .99 (.01) .99 EBIC25

EBIC50 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) .99 (.00) 1.00 EBIC50

CVmin .98 (.00) .98 (.00) .98 (.01) .98 (.01) .98 (.00) .98 .99 (.00) .98 (.01) .97 (.01) .98 (.01) .98 (.01) .98 CVmin

CV1se 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) .99 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 CV1se

split 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 split

bootstrap .98 (.00) .99 (.00) .98 (.01) .98 (.01) .98 (.00) .98 .99 (.00) .98 (.01) .98 (.01) .99 (.01) .98 (.01) .98 bootstrap

stability 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) .99 (.00) .99 (.00) .99 (.01) .99 stability

NCT .97 (.01) .95 (.01) .93 (.01) .90 (.01) .95 (.01) .94 .96 (.01) .94 (.01) .87 (.02) .88 (.02) .94 (.01) .92 NCT

FGL .92 (.01) .88 (.02) .74 (.03) .50 (.02) .33 (.02) .67 .91 (.02) .86 (.02) .67 (.03) .42 (.03) .26 (.02) .62 FGL

P = 10

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .99 (.00) .98 (.00) .98 (.00) .98 (.00) .98 (.00) .98 .99 (.00) .98 (.00) .98 (.00) .97 (.00) .97 (.00) .98 Prune

AIC .98 (.00) .98 (.00) .98 (.00) .98 (.00) .98 (.00) .98 .98 (.00) .98 (.00) .98 (.00) .97 (.00) .97 (.00) .98 AIC

BIC 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) .99 (.00) .99 (.00) .99 (.00) .99 BIC

EBIC25 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) .99 (.00) 1.00 EBIC25

EBIC50 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) 1.00 EBIC50

CVmin .99 (.00) .99 (.00) .98 (.00) .98 (.00) .98 (.00) .98 .99 (.00) .99 (.00) .98 (.00) .98 (.00) .97 (.00) .98 CVmin

CV1se 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 CV1se

split 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 split

bootstrap .97 (.00) .98 (.00) .98 (.00) .98 (.00) .98 (.00) .98 .97 (.00) .98 (.00) .98 (.00) .97 (.00) .97 (.00) .98 bootstrap

stability 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) 1.00 stability

NCT 1.00 (.00) .99 (.01) .91 (.01) .91 (.01) .94 (.00) .95 .98 (.01) .94 (.01) .86 (.01) .91 (.01) .93 (.01) .92 NCT

FGL 1.00 (.00) .99 (.00) .85 (.02) .43 (.02) .34 (.01) .72 .97 (.01) .86 (.02) .54 (.03) .26 (.01) .19 (.01) .57 FGL

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .99 (.00) .99 (.00) .98 (.00) .98 (.00) .97 (.00) .98 .99 (.00) .98 (.00) .97 (.00) .95 (.01) .92 (.01) .96 Prune

AIC .98 (.00) .98 (.00) .98 (.00) .98 (.00) .97 (.00) .98 .99 (.00) .99 (.00) .97 (.00) .95 (.01) .92 (.01) .96 AIC

BIC 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) .99 (.00) 1.00 1.00 (.00) .99 (.00) .98 (.00) .97 (.00) .94 (.01) .98 BIC

EBIC25 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) 1.00 1.00 (.00) 1.00 (.00) .99 (.00) .98 (.00) .95 (.01) .98 EBIC25

EBIC50 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) .99 (.00) .98 (.00) .96 (.01) .99 EBIC50

CVmin .99 (.00) .99 (.00) .98 (.00) .98 (.00) .97 (.00) .98 .99 (.00) .99 (.00) .98 (.00) .96 (.00) .94 (.01) .97 CVmin

CV1se 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 CV1se

split 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) 1.00 split

bootstrap .98 (.00) .98 (.00) .99 (.00) .98 (.00) .97 (.00) .98 .98 (.00) .98 (.00) .97 (.00) .95 (.00) .92 (.01) .96 bootstrap

stability 1.00 (.00) 1.00 (.00) 1.00 (.00) .99 (.00) .99 (.00) 1.00 1.00 (.00) 1.00 (.00) .99 (.00) .99 (.00) .98 (.00) .99 stability

NCT 1.00 (.00) .99 (.00) .89 (.01) .90 (.01) .93 (.01) .94 .98 (.01) .91 (.01) .85 (.01) .91 (.01) .94 (.01) .92 NCT

FGL 1.00 (.00) .98 (.01) .81 (.02) .33 (.01) .24 (.01) .67 .94 (.02) .77 (.03) .36 (.02) .20 (.01) .12 (.01) .48 FGL

Table C.5: Means and standard errors across models and conditions for specificity. The values
essentially reflect the same information shown in Figure B.1.
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Appendix D

Simulation Study—Secondary Analysis Means

D.1 Grand Means

Correlation

Pairwise Interactions

Model M SE Mdn Model M SE Mdn

bootstrap .726 .004 .805 bootstrap .680 .006 .834

AIC .725 .004 .806 AIC .672 .006 .830

CVmin .721 .004 .803 CVmin .664 .006 .819

BIC .716 .004 .789 Prune .650 .006 .810

Prune .711 .004 .806 BIC .598 .006 .745

stability .706 .004 .782 stability .569 .007 .745

EBIC25 .705 .004 .768 EBIC25 .549 .007 .673

EBIC50 .693 .004 .752 CV1se .542 .006 .647

CV1se .688 .004 .750 EBIC50 .504 .007 .565

split .520 .006 .607 split .453 .007 .455

MAE

Pairwise Interactions

Model M SE Mdn Model M SE Mdn

CVmin .063 .001 .058 CVmin .033 .000 .022

BIC .063 .001 .059 AIC .033 .000 .022

AIC .064 .001 .057 bootstrap .033 .000 .023

EBIC25 .064 .001 .062 BIC .034 .000 .022

bootstrap .065 .001 .059 stability .034 .000 .022

stability .065 .001 .060 Prune .034 .000 .023

Prune .065 .001 .058 EBIC25 .035 .000 .024

EBIC50 .066 .001 .065 CV1se .036 .000 .027

CV1se .066 .001 .065 EBIC50 .037 .000 .026

split .072 .001 .082 split .038 .000 .031

Table D.1: Grand means, standard errors, and medians for each model after collapsing across
conditions. Rows differ across facets to reflect rank-ordered performance on each outcome. Each
statistic is based on 4000 observations (100 iterations for each of 40 conditions).
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D.2 Correlation (Pairwise)

Average Correlations (SE) – Pairwise

P = 5

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .38 (.03) .58 (.02) .85 (.01) .91 (.01) .92 (.01) .73 .36 (.03) .55 (.03) .78 (.02) .86 (.01) .88 (.01) .69 Prune

AIC .43 (.03) .58 (.03) .85 (.01) .91 (.01) .92 (.01) .74 .39 (.03) .56 (.02) .78 (.02) .86 (.01) .88 (.01) .69 AIC

BIC .43 (.03) .56 (.02) .83 (.01) .91 (.01) .92 (.01) .73 .40 (.03) .55 (.02) .76 (.02) .86 (.01) .88 (.01) .69 BIC

EBIC25 .43 (.03) .55 (.02) .82 (.01) .91 (.01) .92 (.01) .72 .41 (.02) .54 (.02) .74 (.02) .86 (.01) .88 (.01) .69 EBIC25

EBIC50 .43 (.03) .53 (.02) .80 (.01) .90 (.01) .92 (.01) .72 .41 (.02) .53 (.02) .72 (.02) .86 (.01) .88 (.01) .68 EBIC50

CVmin .42 (.03) .57 (.02) .85 (.01) .91 (.01) .92 (.01) .73 .38 (.03) .56 (.02) .78 (.02) .86 (.01) .88 (.01) .69 CVmin

CV1se .42 (.02) .49 (.02) .71 (.02) .84 (.01) .91 (.01) .67 .38 (.03) .53 (.02) .70 (.02) .82 (.01) .88 (.01) .66 CV1se

split .05 (.01) .17 (.02) .54 (.03) .86 (.01) .92 (.01) .51 .06 (.02) .20 (.03) .56 (.03) .82 (.02) .88 (.01) .50 split

bootstrap .40 (.03) .58 (.02) .85 (.01) .91 (.01) .92 (.01) .73 .41 (.03) .55 (.02) .77 (.02) .86 (.01) .88 (.01) .69 bootstrap

stability .35 (.03) .48 (.03) .79 (.02) .91 (.01) .92 (.01) .69 .35 (.03) .52 (.02) .75 (.02) .86 (.01) .88 (.01) .67 stability

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .37 (.03) .60 (.02) .81 (.01) .88 (.01) .89 (.01) .71 .34 (.03) .54 (.02) .80 (.02) .85 (.02) .82 (.02) .67 Prune

AIC .42 (.03) .61 (.02) .82 (.01) .88 (.01) .89 (.01) .72 .36 (.03) .56 (.02) .80 (.02) .85 (.02) .82 (.02) .68 AIC

BIC .41 (.03) .58 (.02) .80 (.02) .88 (.01) .89 (.01) .71 .36 (.03) .55 (.02) .79 (.02) .85 (.02) .83 (.02) .68 BIC

EBIC25 .42 (.03) .57 (.02) .78 (.02) .87 (.01) .89 (.01) .71 .35 (.03) .53 (.02) .77 (.02) .85 (.02) .83 (.02) .67 EBIC25

EBIC50 .42 (.03) .55 (.02) .76 (.02) .87 (.01) .89 (.01) .70 .35 (.03) .51 (.02) .75 (.02) .85 (.02) .83 (.02) .66 EBIC50

CVmin .41 (.02) .60 (.02) .82 (.01) .88 (.01) .89 (.01) .72 .35 (.03) .55 (.02) .80 (.02) .85 (.02) .82 (.02) .68 CVmin

CV1se .43 (.03) .52 (.02) .69 (.02) .82 (.02) .89 (.01) .67 .35 (.03) .53 (.02) .74 (.02) .83 (.02) .83 (.02) .65 CV1se

split .04 (.01) .18 (.03) .56 (.03) .83 (.02) .89 (.01) .50 .07 (.02) .21 (.02) .58 (.02) .82 (.02) .83 (.02) .50 split

bootstrap .42 (.03) .59 (.02) .82 (.01) .88 (.01) .89 (.01) .72 .36 (.03) .56 (.02) .80 (.02) .85 (.02) .83 (.02) .68 bootstrap

stability .37 (.03) .51 (.03) .77 (.02) .87 (.01) .89 (.01) .68 .32 (.03) .51 (.02) .79 (.02) .85 (.02) .83 (.02) .66 stability

P = 10

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .33 (.01) .58 (.01) .85 (.01) .94 (.00) .96 (.00) .73 .34 (.01) .58 (.01) .83 (.01) .90 (.01) .93 (.01) .72 Prune

AIC .41 (.01) .60 (.01) .86 (.01) .94 (.00) .96 (.00) .75 .40 (.01) .60 (.01) .83 (.01) .90 (.01) .93 (.01) .73 AIC

BIC .40 (.01) .56 (.01) .83 (.01) .94 (.00) .96 (.00) .74 .40 (.01) .56 (.01) .81 (.01) .91 (.01) .94 (.01) .72 BIC

EBIC25 .38 (.01) .52 (.01) .79 (.01) .94 (.00) .96 (.00) .72 .39 (.01) .53 (.01) .78 (.01) .90 (.01) .94 (.01) .71 EBIC25

EBIC50 .37 (.01) .48 (.01) .75 (.01) .94 (.00) .96 (.00) .70 .39 (.01) .50 (.01) .75 (.01) .90 (.01) .94 (.01) .69 EBIC50

CVmin .40 (.01) .59 (.01) .86 (.01) .94 (.00) .96 (.00) .75 .40 (.01) .59 (.01) .83 (.01) .90 (.01) .93 (.01) .73 CVmin

CV1se .38 (.01) .54 (.01) .80 (.01) .93 (.00) .96 (.00) .72 .38 (.01) .54 (.01) .79 (.01) .89 (.01) .93 (.01) .71 CV1se

split .00 (.00) .23 (.01) .59 (.01) .90 (.01) .96 (.00) .54 .02 (.01) .25 (.01) .62 (.01) .87 (.01) .94 (.01) .54 split

bootstrap .41 (.01) .61 (.01) .86 (.01) .95 (.00) .96 (.00) .76 .42 (.01) .60 (.01) .83 (.01) .91 (.01) .93 (.01) .74 bootstrap

stability .41 (.01) .53 (.01) .83 (.01) .95 (.00) .96 (.00) .74 .42 (.01) .56 (.01) .82 (.01) .91 (.01) .94 (.01) .73 stability

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .32 (.01) .57 (.01) .85 (.01) .92 (.01) .93 (.01) .72 .34 (.01) .60 (.01) .82 (.01) .91 (.01) .93 (.01) .72 Prune

AIC .40 (.01) .60 (.01) .86 (.01) .92 (.01) .93 (.01) .74 .40 (.01) .61 (.01) .82 (.01) .91 (.01) .93 (.01) .73 AIC

BIC .41 (.01) .55 (.01) .84 (.01) .93 (.01) .93 (.01) .73 .41 (.01) .56 (.01) .81 (.01) .91 (.01) .93 (.01) .72 BIC

EBIC25 .40 (.01) .52 (.01) .80 (.01) .93 (.01) .93 (.01) .71 .41 (.01) .53 (.01) .79 (.01) .91 (.01) .93 (.01) .71 EBIC25

EBIC50 .38 (.01) .49 (.01) .75 (.01) .92 (.01) .93 (.01) .69 .41 (.01) .52 (.01) .75 (.01) .90 (.01) .93 (.01) .70 EBIC50

CVmin .40 (.01) .59 (.01) .86 (.01) .92 (.01) .93 (.01) .74 .39 (.01) .60 (.01) .81 (.01) .91 (.01) .92 (.01) .73 CVmin

CV1se .39 (.01) .54 (.01) .81 (.01) .91 (.01) .93 (.01) .72 .39 (.01) .56 (.01) .77 (.01) .89 (.01) .90 (.01) .70 CV1se

split .01 (.00) .21 (.01) .60 (.01) .88 (.01) .94 (.01) .53 .03 (.01) .26 (.01) .64 (.01) .88 (.01) .93 (.01) .55 split

bootstrap .40 (.01) .61 (.01) .86 (.01) .93 (.01) .93 (.01) .74 .43 (.01) .62 (.01) .82 (.01) .91 (.01) .93 (.01) .74 bootstrap

stability .41 (.01) .55 (.01) .84 (.01) .93 (.01) .93 (.01) .73 .45 (.01) .60 (.01) .81 (.01) .91 (.01) .93 (.01) .74 stability

Table D.2: Mean pairwise correlations and their associated standard errors across models and
conditions. The values essentially reflect the same information shown in the left-side column of
plots in Figure 4.4.
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D.3 Correlation (Interactions)

Average Correlations (SE) – Interactions

P = 5

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .15 (.03) .31 (.05) .86 (.03) .94 (.02) .98 (.00) .65 .20 (.03) .41 (.03) .85 (.02) .96 (.01) .99 (.00) .68 Prune

AIC .17 (.04) .36 (.05) .87 (.03) .97 (.01) .98 (.00) .67 .23 (.03) .42 (.03) .86 (.02) .97 (.00) .99 (.00) .69 AIC

BIC .12 (.03) .18 (.04) .67 (.05) .97 (.02) .99 (.00) .59 .15 (.03) .25 (.03) .73 (.03) .96 (.01) .99 (.00) .62 BIC

EBIC25 .10 (.03) .12 (.03) .50 (.05) .95 (.02) 1.00 (.00) .53 .14 (.03) .18 (.03) .64 (.03) .93 (.01) .99 (.00) .58 EBIC25

EBIC50 .06 (.02) .09 (.03) .38 (.05) .90 (.03) .98 (.01) .48 .11 (.02) .10 (.02) .54 (.04) .90 (.02) .99 (.00) .53 EBIC50

CVmin .17 (.04) .36 (.05) .86 (.03) .96 (.01) .98 (.00) .67 .22 (.03) .40 (.03) .85 (.02) .97 (.00) .99 (.00) .69 CVmin

CV1se .10 (.03) .15 (.04) .32 (.05) .62 (.05) .91 (.03) .42 .15 (.03) .20 (.03) .56 (.03) .79 (.02) .97 (.01) .53 CV1se

split .00 (.00) .01 (.01) .25 (.04) .92 (.03) 1.00 (.00) .44 .00 (.00) .03 (.01) .46 (.03) .88 (.01) .99 (.00) .47 split

bootstrap .18 (.04) .34 (.05) .86 (.03) .97 (.01) .98 (.00) .67 .23 (.03) .43 (.03) .87 (.02) .97 (.00) .99 (.00) .70 bootstrap

stability .01 (.01) .08 (.03) .60 (.05) .97 (.01) .99 (.00) .53 .03 (.01) .12 (.02) .74 (.03) .96 (.01) .99 (.00) .57 stability

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .21 (.03) .44 (.04) .80 (.03) .97 (.01) .99 (.00) .68 .21 (.03) .46 (.03) .83 (.01) .97 (.00) .99 (.00) .69 Prune

AIC .26 (.03) .47 (.04) .81 (.03) .98 (.00) .99 (.00) .70 .25 (.03) .46 (.03) .83 (.01) .97 (.00) .99 (.00) .70 AIC

BIC .17 (.03) .18 (.03) .66 (.04) .95 (.01) .99 (.00) .59 .13 (.02) .29 (.03) .73 (.02) .96 (.01) .99 (.00) .62 BIC

EBIC25 .12 (.03) .14 (.03) .57 (.04) .93 (.02) .99 (.00) .55 .09 (.02) .20 (.02) .67 (.02) .94 (.01) .99 (.00) .58 EBIC25

EBIC50 .12 (.03) .09 (.02) .49 (.04) .87 (.03) .99 (.00) .51 .09 (.02) .15 (.02) .57 (.03) .91 (.01) .99 (.00) .54 EBIC50

CVmin .25 (.03) .43 (.04) .81 (.03) .98 (.01) .99 (.00) .69 .23 (.03) .44 (.03) .83 (.01) .97 (.00) .99 (.00) .69 CVmin

CV1se .16 (.03) .16 (.03) .51 (.04) .75 (.04) .97 (.01) .51 .14 (.02) .25 (.03) .62 (.02) .86 (.02) .97 (.00) .57 CV1se

split .00 (.00) .05 (.02) .35 (.04) .89 (.02) .99 (.00) .46 .00 (.00) .05 (.02) .45 (.03) .87 (.01) .98 (.00) .47 split

bootstrap .26 (.03) .41 (.04) .82 (.02) .97 (.01) .99 (.00) .69 .23 (.02) .47 (.03) .83 (.01) .97 (.00) .99 (.00) .70 bootstrap

stability .06 (.02) .14 (.03) .59 (.04) .96 (.01) .99 (.00) .55 .02 (.01) .16 (.02) .74 (.02) .97 (.00) .99 (.00) .58 stability

P = 10

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .11 (.02) .38 (.03) .78 (.01) .94 (.00) .97 (.00) .64 .12 (.02) .37 (.02) .73 (.01) .90 (.01) .96 (.00) .61 Prune

AIC .14 (.02) .46 (.02) .82 (.01) .95 (.00) .98 (.00) .67 .22 (.02) .43 (.01) .74 (.01) .90 (.01) .96 (.00) .65 AIC

BIC .10 (.02) .25 (.02) .75 (.01) .96 (.01) .99 (.00) .61 .15 (.02) .28 (.02) .69 (.01) .89 (.01) .96 (.00) .59 BIC

EBIC25 .04 (.01) .10 (.02) .66 (.02) .94 (.01) .99 (.00) .55 .08 (.01) .16 (.02) .61 (.01) .88 (.01) .96 (.00) .54 EBIC25

EBIC50 .03 (.01) .04 (.01) .50 (.03) .92 (.01) .99 (.00) .50 .05 (.01) .07 (.01) .51 (.02) .85 (.01) .96 (.00) .49 EBIC50

CVmin .15 (.02) .47 (.02) .82 (.01) .95 (.00) .98 (.00) .67 .19 (.02) .41 (.01) .73 (.01) .90 (.01) .95 (.00) .64 CVmin

CV1se .09 (.02) .29 (.03) .73 (.02) .93 (.01) .99 (.00) .61 .14 (.01) .32 (.02) .64 (.01) .84 (.01) .95 (.01) .58 CV1se

split .00 (.00) .02 (.01) .44 (.02) .90 (.01) .99 (.00) .47 .00 (.00) .04 (.01) .43 (.01) .76 (.01) .95 (.00) .44 split

bootstrap .22 (.02) .47 (.02) .84 (.01) .96 (.00) .98 (.00) .69 .24 (.02) .46 (.01) .76 (.01) .91 (.01) .96 (.00) .67 bootstrap

stability .07 (.02) .18 (.02) .76 (.02) .97 (.00) .99 (.00) .59 .08 (.01) .27 (.02) .69 (.01) .90 (.01) .96 (.00) .58 stability

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .14 (.02) .41 (.02) .79 (.01) .92 (.01) .96 (.00) .65 .15 (.01) .37 (.01) .68 (.01) .86 (.01) .91 (.01) .59 Prune

AIC .22 (.02) .44 (.02) .81 (.01) .93 (.01) .97 (.00) .67 .22 (.01) .42 (.01) .69 (.01) .86 (.01) .91 (.01) .62 AIC

BIC .10 (.02) .25 (.02) .76 (.01) .92 (.01) .97 (.00) .60 .13 (.01) .30 (.01) .65 (.01) .86 (.01) .91 (.01) .57 BIC

EBIC25 .05 (.01) .13 (.02) .65 (.02) .91 (.01) .97 (.00) .54 .08 (.01) .20 (.01) .60 (.01) .85 (.01) .91 (.01) .53 EBIC25

EBIC50 .03 (.01) .07 (.01) .52 (.02) .89 (.01) .97 (.00) .49 .05 (.01) .14 (.01) .51 (.01) .82 (.01) .91 (.01) .49 EBIC50

CVmin .19 (.02) .45 (.02) .81 (.01) .92 (.01) .97 (.00) .67 .19 (.01) .40 (.01) .67 (.01) .85 (.01) .89 (.01) .60 CVmin

CV1se .11 (.02) .27 (.02) .75 (.01) .89 (.01) .97 (.01) .60 .13 (.01) .32 (.01) .58 (.01) .77 (.01) .83 (.02) .53 CV1se

split .00 (.00) .04 (.01) .48 (.02) .84 (.01) .97 (.00) .47 .00 (.00) .05 (.01) .42 (.01) .73 (.01) .90 (.01) .42 split

bootstrap .24 (.02) .47 (.02) .82 (.01) .93 (.01) .97 (.00) .69 .27 (.01) .45 (.01) .70 (.01) .87 (.01) .91 (.01) .64 bootstrap

stability .09 (.02) .19 (.02) .76 (.01) .94 (.01) .97 (.00) .59 .09 (.01) .27 (.01) .66 (.01) .86 (.01) .91 (.01) .56 stability

Table D.3: Mean interaction correlations and their associated standard errors across models and
conditions. The values essentially reflect the same information shown in the right-side column of
plots in Figure 4.4.
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D.4 Mean Absolute Error (Pairwise)

Average MAE (SE) – Pairwise

P = 5

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .11 (.00) .09 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .07 Prune

AIC .11 (.00) .09 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .07 AIC

BIC .11 (.00) .09 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .10 (.00) .06 (.00) .05 (.00) .04 (.00) .07 BIC

EBIC25 .11 (.00) .09 (.00) .05 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .10 (.00) .06 (.00) .05 (.00) .04 (.00) .07 EBIC25

EBIC50 .11 (.00) .09 (.00) .05 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .10 (.00) .07 (.00) .04 (.00) .04 (.00) .07 EBIC50

CVmin .11 (.00) .09 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .10 (.00) .06 (.00) .05 (.00) .04 (.00) .07 CVmin

CV1se .11 (.00) .09 (.00) .06 (.00) .04 (.00) .03 (.00) .07 .11 (.00) .10 (.00) .07 (.00) .05 (.00) .04 (.00) .08 CV1se

split .10 (.00) .11 (.00) .08 (.00) .04 (.00) .03 (.00) .07 .10 (.00) .11 (.00) .09 (.00) .05 (.00) .04 (.00) .08 split

bootstrap .11 (.00) .09 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .10 (.00) .06 (.00) .05 (.00) .04 (.00) .07 bootstrap

stability .11 (.00) .09 (.00) .05 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .10 (.00) .06 (.00) .05 (.00) .04 (.00) .07 stability

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .12 (.00) .09 (.00) .05 (.00) .04 (.00) .04 (.00) .07 .12 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .08 Prune

AIC .12 (.00) .09 (.00) .05 (.00) .04 (.00) .04 (.00) .07 .12 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .08 AIC

BIC .11 (.00) .09 (.00) .06 (.00) .04 (.00) .04 (.00) .07 .12 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .08 BIC

EBIC25 .11 (.00) .09 (.00) .06 (.00) .04 (.00) .04 (.00) .07 .11 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .08 EBIC25

EBIC50 .11 (.00) .09 (.00) .06 (.00) .04 (.00) .03 (.00) .07 .12 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .08 EBIC50

CVmin .11 (.00) .09 (.00) .05 (.00) .04 (.00) .04 (.00) .07 .11 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .07 CVmin

CV1se .11 (.00) .10 (.00) .07 (.00) .05 (.00) .04 (.00) .07 .11 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .08 CV1se

split .11 (.00) .11 (.00) .09 (.00) .05 (.00) .03 (.00) .08 .10 (.00) .11 (.00) .08 (.00) .05 (.00) .05 (.00) .08 split

bootstrap .12 (.00) .09 (.00) .05 (.00) .04 (.00) .04 (.00) .07 .12 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .08 bootstrap

stability .11 (.00) .10 (.00) .06 (.00) .04 (.00) .03 (.00) .07 .12 (.00) .10 (.00) .06 (.00) .05 (.00) .05 (.00) .08 stability

P = 10

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .11 (.00) .09 (.00) .04 (.00) .03 (.00) .02 (.00) .06 .11 (.00) .09 (.00) .05 (.00) .04 (.00) .03 (.00) .06 Prune

AIC .11 (.00) .08 (.00) .04 (.00) .03 (.00) .02 (.00) .06 .11 (.00) .08 (.00) .05 (.00) .04 (.00) .03 (.00) .06 AIC

BIC .10 (.00) .08 (.00) .04 (.00) .02 (.00) .02 (.00) .05 .10 (.00) .08 (.00) .05 (.00) .04 (.00) .03 (.00) .06 BIC

EBIC25 .10 (.00) .09 (.00) .05 (.00) .02 (.00) .02 (.00) .06 .10 (.00) .09 (.00) .05 (.00) .03 (.00) .03 (.00) .06 EBIC25

EBIC50 .10 (.00) .09 (.00) .05 (.00) .02 (.00) .02 (.00) .06 .10 (.00) .09 (.00) .06 (.00) .04 (.00) .03 (.00) .06 EBIC50

CVmin .10 (.00) .08 (.00) .04 (.00) .03 (.00) .02 (.00) .05 .10 (.00) .08 (.00) .05 (.00) .04 (.00) .03 (.00) .06 CVmin

CV1se .10 (.00) .09 (.00) .05 (.00) .03 (.00) .02 (.00) .06 .10 (.00) .09 (.00) .05 (.00) .04 (.00) .03 (.00) .06 CV1se

split .10 (.00) .10 (.00) .08 (.00) .03 (.00) .02 (.00) .06 .10 (.00) .10 (.00) .08 (.00) .04 (.00) .03 (.00) .07 split

bootstrap .11 (.00) .09 (.00) .04 (.00) .02 (.00) .02 (.00) .06 .11 (.00) .09 (.00) .05 (.00) .04 (.00) .03 (.00) .06 bootstrap

stability .11 (.00) .09 (.00) .04 (.00) .02 (.00) .02 (.00) .06 .11 (.00) .09 (.00) .05 (.00) .03 (.00) .03 (.00) .06 stability

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .11 (.00) .09 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .09 (.00) .05 (.00) .04 (.00) .03 (.00) .06 Prune

AIC .11 (.00) .08 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .09 (.00) .05 (.00) .04 (.00) .03 (.00) .06 AIC

BIC .10 (.00) .08 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .10 (.00) .09 (.00) .05 (.00) .04 (.00) .03 (.00) .06 BIC

EBIC25 .10 (.00) .09 (.00) .05 (.00) .03 (.00) .03 (.00) .06 .10 (.00) .09 (.00) .05 (.00) .04 (.00) .03 (.00) .06 EBIC25

EBIC50 .10 (.00) .09 (.00) .05 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .09 (.00) .06 (.00) .04 (.00) .03 (.00) .07 EBIC50

CVmin .10 (.00) .08 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .10 (.00) .09 (.00) .05 (.00) .04 (.00) .03 (.00) .06 CVmin

CV1se .10 (.00) .08 (.00) .05 (.00) .03 (.00) .03 (.00) .06 .10 (.00) .09 (.00) .06 (.00) .04 (.00) .04 (.00) .06 CV1se

split .10 (.00) .10 (.00) .08 (.00) .03 (.00) .03 (.00) .07 .10 (.00) .10 (.00) .08 (.00) .04 (.00) .03 (.00) .07 split

bootstrap .11 (.00) .08 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .09 (.00) .05 (.00) .04 (.00) .03 (.00) .06 bootstrap

stability .10 (.00) .09 (.00) .04 (.00) .03 (.00) .03 (.00) .06 .11 (.00) .09 (.00) .05 (.00) .04 (.00) .03 (.00) .06 stability

Table D.4: Mean pairwise MAEs and their associated standard errors across models and conditions.
The values essentially reflect the same information shown in the left-side column of plots in Figure
4.5.
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D.5 Mean Absolute Error (Interactions)

Average MAE (SE) – Interactions

P = 5

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .03 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .01 .07 (.00) .05 (.00) .02 (.00) .01 (.00) .01 (.00) .03 Prune

AIC .03 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .01 .07 (.00) .05 (.00) .02 (.00) .01 (.00) .01 (.00) .03 AIC

BIC .02 (.00) .02 (.00) .01 (.00) .00 (.00) .00 (.00) .01 .06 (.00) .05 (.00) .03 (.00) .01 (.00) .01 (.00) .03 BIC

EBIC25 .02 (.00) .02 (.00) .01 (.00) .00 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .03 (.00) .01 (.00) .01 (.00) .03 EBIC25

EBIC50 .02 (.00) .02 (.00) .01 (.00) .00 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .04 (.00) .02 (.00) .01 (.00) .04 EBIC50

CVmin .03 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .01 .06 (.00) .05 (.00) .02 (.00) .01 (.00) .01 (.00) .03 CVmin

CV1se .02 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .04 (.00) .02 (.00) .01 (.00) .04 CV1se

split .02 (.00) .02 (.00) .02 (.00) .00 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .05 (.00) .02 (.00) .01 (.00) .04 split

bootstrap .03 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .01 .06 (.00) .05 (.00) .02 (.00) .01 (.00) .01 (.00) .03 bootstrap

stability .02 (.00) .02 (.00) .01 (.00) .00 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .03 (.00) .01 (.00) .01 (.00) .03 stability

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .05 (.00) .04 (.00) .02 (.00) .01 (.00) .01 (.00) .02 .10 (.00) .09 (.00) .04 (.00) .02 (.00) .01 (.00) .05 Prune

AIC .04 (.00) .03 (.00) .02 (.00) .01 (.00) .01 (.00) .02 .10 (.00) .08 (.00) .04 (.00) .02 (.00) .02 (.00) .05 AIC

BIC .04 (.00) .04 (.00) .02 (.00) .01 (.00) .00 (.00) .02 .10 (.00) .09 (.00) .05 (.00) .02 (.00) .01 (.00) .06 BIC

EBIC25 .04 (.00) .04 (.00) .02 (.00) .01 (.00) .00 (.00) .02 .10 (.00) .09 (.00) .06 (.00) .02 (.00) .01 (.00) .06 EBIC25

EBIC50 .04 (.00) .04 (.00) .03 (.00) .01 (.00) .00 (.00) .02 .10 (.00) .10 (.00) .07 (.00) .03 (.00) .01 (.00) .06 EBIC50

CVmin .04 (.00) .03 (.00) .02 (.00) .01 (.00) .01 (.00) .02 .10 (.00) .09 (.00) .04 (.00) .02 (.00) .02 (.00) .05 CVmin

CV1se .04 (.00) .04 (.00) .03 (.00) .02 (.00) .01 (.00) .03 .10 (.00) .09 (.00) .06 (.00) .03 (.00) .02 (.00) .06 CV1se

split .04 (.00) .04 (.00) .03 (.00) .01 (.00) .00 (.00) .03 .10 (.00) .10 (.00) .08 (.00) .03 (.00) .01 (.00) .07 split

bootstrap .05 (.00) .04 (.00) .02 (.00) .01 (.00) .01 (.00) .02 .10 (.00) .08 (.00) .04 (.00) .02 (.00) .01 (.00) .05 bootstrap

stability .04 (.00) .04 (.00) .02 (.00) .01 (.00) .00 (.00) .02 .10 (.00) .10 (.00) .05 (.00) .02 (.00) .01 (.00) .06 stability

P = 10

M = 10% M = 30%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .03 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .02 .07 (.00) .06 (.00) .03 (.00) .02 (.00) .02 (.00) .04 Prune

AIC .03 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .01 .07 (.00) .06 (.00) .03 (.00) .02 (.00) .02 (.00) .04 AIC

BIC .02 (.00) .02 (.00) .01 (.00) .00 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .04 (.00) .02 (.00) .02 (.00) .04 BIC

EBIC25 .02 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .04 (.00) .02 (.00) .02 (.00) .04 EBIC25

EBIC50 .02 (.00) .02 (.00) .02 (.00) .01 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .05 (.00) .03 (.00) .02 (.00) .04 EBIC50

CVmin .02 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .03 (.00) .02 (.00) .02 (.00) .04 CVmin

CV1se .02 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .04 (.00) .03 (.00) .02 (.00) .04 CV1se

split .02 (.00) .02 (.00) .02 (.00) .01 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .05 (.00) .03 (.00) .02 (.00) .05 split

bootstrap .03 (.00) .02 (.00) .01 (.00) .01 (.00) .00 (.00) .02 .07 (.00) .06 (.00) .03 (.00) .02 (.00) .02 (.00) .04 bootstrap

stability .02 (.00) .02 (.00) .01 (.00) .00 (.00) .00 (.00) .01 .06 (.00) .06 (.00) .04 (.00) .02 (.00) .02 (.00) .04 stability

M = 20% M = 50%

Model N = 50 N = 100 N = 250 N = 500 N = 1000 MN N = 50 N = 100 N = 250 N = 500 N = 1000 MN Model

Prune .05 (.00) .04 (.00) .02 (.00) .01 (.00) .01 (.00) .03 .11 (.00) .10 (.00) .06 (.00) .04 (.00) .04 (.00) .07 Prune

AIC .05 (.00) .04 (.00) .02 (.00) .01 (.00) .01 (.00) .02 .10 (.00) .09 (.00) .06 (.00) .04 (.00) .04 (.00) .07 AIC

BIC .04 (.00) .04 (.00) .02 (.00) .01 (.00) .01 (.00) .02 .10 (.00) .09 (.00) .07 (.00) .04 (.00) .04 (.00) .07 BIC

EBIC25 .04 (.00) .04 (.00) .02 (.00) .01 (.00) .01 (.00) .03 .10 (.00) .10 (.00) .07 (.00) .05 (.00) .04 (.00) .07 EBIC25

EBIC50 .04 (.00) .04 (.00) .03 (.00) .01 (.00) .01 (.00) .03 .10 (.00) .10 (.00) .08 (.00) .05 (.00) .04 (.00) .07 EBIC50

CVmin .04 (.00) .04 (.00) .02 (.00) .01 (.00) .01 (.00) .02 .10 (.00) .09 (.00) .06 (.00) .05 (.00) .04 (.00) .07 CVmin

CV1se .04 (.00) .04 (.00) .02 (.00) .01 (.00) .01 (.00) .02 .10 (.00) .09 (.00) .07 (.00) .05 (.00) .05 (.00) .07 CV1se

split .04 (.00) .04 (.00) .03 (.00) .02 (.00) .01 (.00) .03 .10 (.00) .10 (.00) .09 (.00) .06 (.00) .04 (.00) .08 split

bootstrap .05 (.00) .04 (.00) .02 (.00) .01 (.00) .01 (.00) .02 .11 (.00) .09 (.00) .06 (.00) .04 (.00) .04 (.00) .07 bootstrap

stability .04 (.00) .04 (.00) .02 (.00) .01 (.00) .01 (.00) .02 .10 (.00) .10 (.00) .06 (.00) .04 (.00) .04 (.00) .07 stability

Table D.5: Mean interaction MAEs and their associated standard errors across models and condi-
tions. The values essentially reflect the same information shown in the right-side column of plots
in Figure 4.5.
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Appendix E

Simulation Study—Ordinalized Variables

The following pages contain the same plots as shown for the simulation study, except that in these

cases we see the results for the ordinalized versions of the datasets. That is, I transformed all

variables in each case to become ordinal variables with four levels. Additionally, I wanted to add

some variability to the shapes of the distributions. Because the data were originally generated

from univariate normal distributions, the example is rather idealized since researchers may often

be working with non-normal variables. Moreover, rank-ordered scales are overwhelmingly used in

clinical psychological research, where measures are commonly taken with 0–3 or 1–5 point scales.

Thus, the objective was to try and mimic a scenario that was potentially more realistic.

To do this, for each variable in each dataset (including the moderators) I selected 3 random

cut points from N (0,1) and grouped values accordingly. And although the cut points were drawn

from normal distributions, they ubiquitously induced non-normality to the distributions of the vari-

ables, as well as the multivariate distributions of the datasets (as shown in Table 4.1. This provides

a much stronger test of the models, and is perhaps a much more realistic scenario than the original

data.

For the results, we see more or less the same patterns as observed in the continuous-variable

analyses, however across the board there are reductions in both sensitivity and accuracy, increases

in false positives, and a general increase in the variability of the estimates. Specificity remains

equally as high as in the original study. Despite an overall reduction in performance, which is to

be expected, we see that it remains satisfactory for many models at larger sample sizes (N ≥ 500).

The general conclusion that can be drawn here is that larger samples will typically be necessary to

achieve good performance when items are measured on ordinal scales and the data are skewed.
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E.1 Sensitivity—Ordinal (Interactions)
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Figure E.1: Average sensitivity across models and conditions for the ordinalized version of the
simulation study. Each plotted point is based on 100 simulated datasets
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E.2 False-Discovery Rate—Ordinal (Interactions)
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Figure E.2: Average false-discovery rate across models and conditions for the ordinalized version
of the simulation study. Each plotted point is based on 100 simulated datasets
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E.3 Matthew’s Correlation Coefficient—Ordinal (Interactions)
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Figure E.3: Average MCC across models and conditions for the ordinalized version of the simula-
tion study. Each plotted point is based on 100 simulated datasets
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E.4 Specificity—Ordinal (Interactions)
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Figure E.4: Average specificity across models and conditions for the ordinalized version of the
simulation study. Each plotted point is based on 100 simulated datasets
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E.5 Correlation—Ordinal

●
● ● ● ● ● ●

●

●

●

● ● ● ● ●
● ●

●

●
●

●

● ● ● ● ●
●

●

●
●

●
● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ● ●

●

●

●

● ●
●

● ●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●

● ●
● ● ●

●

●

●

●
●

● ● ● ● ●
●

●

●

●
●

● ● ● ● ●
●

●

●

●
●

● ● ● ●
●

●

●

●

● ●

● ● ● ● ● ●

●
●

● ●

● ● ● ● ● ●
●

●
● ●

● ● ● ● ● ●
●

●
● ●

Pairwise

N = 50

Pairwise

N = 100

Pairwise

N = 250

Pairwise

N = 500

Pairwise

N = 1000

M
 =

 10%

P
 =

 5

M
 =

 20%

P
 =

 5

M
 =

 30%

P
 =

 5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

● ●
● ● ●

●
●

●

●

●

● ●

● ● ●

●

●

●

●

●

● ●

● ● ●

●

●
●

●

●

●
●

● ● ●

●

●
●

●

●

● ●

● ● ●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

Interactions

N = 50

Interactions

N = 100

Interactions

N = 250

Interactions

N = 500

Interactions

N = 1000

M
 =

 10%

P
 =

 5

M
 =

 20%

P
 =

 5

M
 =

 30%

P
 =

 5

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

●
●

● ● ● ●
●

●

● ●

●
●

● ● ● ●
●

●

● ●

●

● ● ● ● ● ●

●

● ●

●
● ● ● ●

●
●

●

●

●

●
● ●

● ●
●

●

●

●

●

●
● ● ●

●
● ●

●

●
●

● ●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

● ●
●

●
●

●

●

●

●
●

● ●
●

●
●

●
●

●

● ●

● ●
●

●
●

●
●

●

● ●

● ● ● ● ● ●
● ●

● ●

● ● ● ● ● ●
● ●

● ●

● ● ● ● ● ● ● ●
● ●

Pairwise

N = 50

Pairwise

N = 100

Pairwise

N = 250

Pairwise

N = 500

Pairwise

N = 1000

M
 =

 10%

P
 =

 10

M
 =

 20%

P
 =

 10

M
 =

 30%

P
 =

 10

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

●

●

● ● ●

●

● ●

●

●

●
●

● ● ●

●
●

●

●

●

●
●

●
● ●

●

●
●

●

●

●
●

●
● ●

●

●

●

●

●

● ●

● ● ●

●

●

●

●

●

● ●

●
● ●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

●
●

● ●

● ●
●

●
●

●

● ●

● ●

● ●
●

●

●

●

●

●

● ●

Interactions

N = 50

Interactions

N = 100

Interactions

N = 250

Interactions

N = 500

Interactions

N = 1000

M
 =

 10%

P
 =

 10

M
 =

 20%

P
 =

 10

M
 =

 30%

P
 =

 10

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

●

●

●

●

●

●

●

●

●

●

Prune
AIC

BIC
EBIC25

EBIC50
CVmin

CV1se
split

bootstrap
stability

Correlation

A
ve

ra
ge

 C
or

re
la

tio
n 

(9
5%

 C
I)

Figure E.5: Average correlations across MNMs and conditions for the ordinalized version of the
simulation study. Each plotted point is based on 100 simulated datasets.
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E.6 Mean Absolute Error—Ordinal
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Figure E.6: Average MAE across MNMs and conditions for the ordinalized version of the simula-
tion study. Each plotted point is based on 100 simulated datasets.

132



Appendix F

Temporal MNM Empirical Example—Correlation Stability

F.1 Centrality Estimates from Full Sample
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Figure F.1: Centrality estimates based on the conditional temporal networks (left) and the inter-
action terms (right) using the full sample. The raw centrality values have been standardized to
represent z-scores in the plot.
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F.2 Correlation Stability—Edge Weights
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Figure F.2: Case-dropping bootstrap results with B = 1000 for edge weights in the temporal net-
work (specifically, when ‘medication’ = 0).
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F.3 Correlation Stability—Centrality Measures
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Figure F.3: Case-dropping bootstrap results with B = 1000 for ingoing and outgoing variants of
strength centrality and expected influence for nodes and interaction terms in the temporal network
(specifically, when ‘medication’ = 0).
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