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Abstract

This thesis focuses on the development and application of hybrid methods for modeling excited

state properties of large systems. The rapid growth of technology and computer processing power

allows the wide application of accurate quantum mechanical (QM) methods to different areas of

scientific research. However, more accurate computational methods are usually associated with

higher computational cost that limits their application to small to medium sized systems. In many

cases, modeling the environment at QM level is not possible, and yet completely neglecting the

effect of the environment may not be a reasonable assumption. One popular approach for reduc-

ing computational cost is to use hybrid methods, which combine two or multiple computational

methods to treat a single system.

An area where major development is still necessary for hybrid methods is modeling excited

states. For a realistic description of these phenomena, a combination of two different QM methods

(QM/QM) may even be required. The challenging part of such a hybrid approach is to properly

describe the mutual polarization among layers. Currently, in the field, there is no accepted standard

computational protocol for a multi-layered embedding scheme that provides reliable modeling

of excited state properties in complex environments. In order to design a multi-layered, fully

mutually-polarizable embedding (MPE) scheme, implementing and thoroughly benchmarking the

methods that act as its components is crucial. Our research aims to benchmark and implement

several key methods that serve as components of an MPE, and to further expand the area of hybrid

methods development for accurately modeling excited state properties.

One focus of our research is the development and application of hybrid methods that use cou-

pled cluster with single and double excitations (CCSD) and its excited state version, equation-of-

motion CCSD (EOM-CCSD), as high level. Methods based on CC theory provide consistently

accurate results in gas phase. However, due to their steep computational scaling, works that focus
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on CCSD as part of hybrid schemes are limited, and even less has been done for excited state

CCSD compared to density functional theory (DFT)/time dependent (TD)-DFT.

We first benchmark EOM-CCSD combined with the polarizable continuum model (PCM) of

solvation, for computing electronic excitation energies of solvated molecules. We address the

PCM shortcoming of neglecting specific interactions, such as H bonding, through micro-solvated

clusters inside the PCM cavity. We then combine EOM-CCSD with a classical polarizable molec-

ular mechanics force field (MMPol) based on the induced dipole model to describe such specific

interactions more efficiently.

Our work also extends to QM/QM hybrid methods. We consider embedding for the ONIOM

(our own n-layered integrated molecular orbital and molecular mechanics) hybrid method, and

investigate the importance of including a polarizable embedding based on the induced dipole

model. In addition, to simulate large regions of the UV/vis spectrum, we develop a multi-state

extrapolation scheme based on the ONIOM extrapolation formula. This method overcomes the

state-matching difficulty among sub-calculations in standard ONIOM, and is able to efficiently

extrapolate several bands of the spectra at once.

In summary, our research expands the field of hybrid methods development for excited states,

by proposing and testing several approaches for the simulation of large chromophores in complex

environments.
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Chapter 1

Introduction

Accurate computational methods based on quantum mechanics (QM) have been developed and

widely applied in different areas of scientific research. Thanks to the rapid growth of technology

and computer processing power, QM calculations are not limited to theoretical studies, but have

been used as a powerful tool to support, explain, and predict experiments. However, better per-

forming computational methods are usually associated with higher computational cost that limits

their application to small to medium-sized systems. Selecting only strictly the part of the system

that is important to the process of interest for the modeling may be a solution to effectively min-

imize the computational cost, but the results of such calculations can be biased if the rest of the

system also has a significant contribution to the process. For example, to study the properties of

a molecule in solution, one can perform a gas phase calculation to reduce the computational cost,

but this may not give an accurate enough description of the system as the interaction of the solute

with the solvent molecules may considerably alter the property of interest. In order to perform QM

calculations to effectively model the properties of large systems (such as biological molecules,

solvated molecules, and large chromophores with complex interactions with their surroundings),

a strategy that provides a good description while maintaining a reasonable computational cost is

needed.

A popular approach for reducing the computational cost when performing calculations on large

systems is to use hybrid approaches, which combine two or multiple computational methods for

treating a single system. This is first partitioned in layers: the core region, such as a reaction/in-

teraction center, which is treated with a more accurate and expensive computational method, and

outer layers, which are treated with less accurate and expensive methods to provide a meaningful
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description of the environmental effect. This approach provides a more efficient strategy for using

computing resources, and its impact is such that, in 2013, Martin Karplus, Micheal Levitt, and

Arieh Warshel were awarded the Nobel Prize for their development.1 Over the past decades, dif-

ferent hybrid approaches have been developed and benchmarked that allow the wide application of

QM methods to accurately modeling complex systems in various areas of scientific research.2–10

Typically, in a hybrid approach, the core region is described at QM level, whereas the rest of

the system can be treated classically or with a QM method that has a lower computational cost

than the one used for treating the core region, as shown in Figure 1.1. The choice of methods for

treating the different regions depends on their respective size, the desired accuracy and computing

time, as well as the amount of available computational resources.

Figure 1.1: Different hybrid methods that combine (1) quantum mechanical (QM) and molecu-
lar mechanical (MM) methods, (2) QM and polarizable continuum model (PCM), (3) two QM
methods.

A classical environment can be described explicitly or implicitly. In explicit models, the QM

core is surrounded by a fixed1,11–14 or polarizable molecular mechanics (MM) force field.15–27

In implicit models, the effect of the environment is modeled by a continuum medium. One of

the most famous examples for treating the environment implicitly is the polarizable continuum

model (PCM) of solvation,28–30 where the solvent molecules are replaced by a continuum dielec-

tric medium. Both the implicit and explicit descriptions of the environment have pros and cons.

Implicit models are unable to describe inhomogeneous environments and the direct interactions

with the core region, such as the hydrogen bonding between solute and solvent molecules. Ex-
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plicit models provide a more realistic description of the environment, and are able in principle

to reproduce all sorts of environments. However, explicit models are more expensive due to the

additional effort to account for conformational averaging, which in implicit models is included in

the macroscopic dielectric constant of the medium.

While a classical treatment is an efficient way to include some major effects of the environment

into QM calculations, it lacks the ability to describe QM effects, which can be important in certain

cases. In such situations, a second layer can be treated with another QM method that has a lower

computational cost than the one used for describing the core region. There are different approaches

being developed to treat the interactions between two QM regions, which can be categorized into

additive and subtractive. In the additive approaches, the interaction energy (Eint) between the

high and low QM levels is computed directly, where in subtractive approaches, Eint is obtained

indirectly with an extrapolation formula. Typically, low level QM methods are based on density

functional theory (DFT) or semiempirical wave function (WF) theory.

A popular family of additive methods is DFT-in-DFT and WF-in-DFT.31–41 In these methods,

the core region (embedded subsystem) described at DFT level or with a correlated WF method,

such as coupled-cluster theory, is embedded in the potential created based on the charge density

of the environment computed with a low-level DFT method. Although, WF-in-DFT is more accu-

rate than DFT-in-DFT for single-point calculations, it is too expensive for treating large systems

and processes that involve multiple calculations, such as exploring reaction pathways. DFT-in-

DFT is more efficient, thus it found wider applications.42–46 In this family of embedding methods,

one can employ the frozen-density-embedding (FDE) approximation, where the density of the

environment is determined once and kept frozen. Alternatively, both densities can be optimized

simultaneously with a freeze-and-thaw procedure, until mutual polarization is achieved. One of

the advantages of DFT-in-DFT embedding is that it avoids the approximations associated with link

atoms for system partitioning, which exist in other popular hybrid methods. The major limitations

of these DFT embedding methods come from issues caused by the density overlap between the

embedded subsystem and the environment. Another issue is the non-additive nature of the kinetic
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potential (NAKP).47,48 There have been many attempts to obtain improved approximations of the

NAKP,49–54 but most have limited applications to weakly interacting subsystems. Other popu-

lar additive methods are based on fragmentation, such as the fragment molecular orbital (FMO)

method.55–68 These methods separate the entire system into fragments, and then each fragment is

treated separately within the embedding of the other fragments. These methods are powerful as

they are able to treat very large systems at QM level, but they are only applicable to systems that

can be clearly separated into fragments, such as proteins.

One of the most popular subtractive methods is ONIOM (our own n-layered integrated molec-

ular orbital and molecular mechanics),69–74 developed by Morokuma and co-workers, which has

applications in both QM/MM and QM/QM studies. In ONIOM, the core region is usually called

the "model", and dangling bonds that result from the partitioning of the system are capped with H

link atoms. For 2-layered ONIOM, the energy is obtained as the combination of the energies of

three independent subcalculations: 1) a calculation on the entire system (called "real" system) at

the low level 2) a calculation on the model at the high level, and 3) a calculation on the model at

the low level. The fact that ONIOM requires a low level calculation on the entire system somewhat

limits its application to systems of certain sizes for QM/QM hybrid.75–77 However, the energy

is obtained directly within the ONIOM extrapolation without additional modification of quantum

chemistry codes. The model calculations can in principle be performed in the presence of a polar-

izing embedding for a more accurate description of the model region.78–81

Both additive and subtractive methods have advantages and disadvantages. For instance, sub-

tractive methods have an intrinsic mechanism to soften the effect of a poor choice of low-level

method through the extrapolation formula. On the other hand, the additive methods based on frag-

mentation usually do not require calculations on the entire system. Thus, they are more easily

applicable to larger systems, but they require specific implementations in QM software packages.

Therefore, despite all this effort, the development of hybrid methods is still an active field of re-

search. In fact, selecting the proper hybrid approach for a specific application is not trivial.

An area of major development for hybrid methods is the study of excited states. Accurately
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modeling the excitation of systems that have complex interactions with their surrounding is chal-

lenging, but essential to correctly model those processes. For example, in dye-sensitized solar

cells,82,83 accurately modeling the complex interaction between the chromophore and its surround-

ing is necessary to obtain qualitatively correct trends of energy absorption and charge transport.

Thus, a combination of two different QM methods (QM/QM) is needed to accurately model the

chromophore. In such a hybrid approach, the challenging part is to properly describe the mutual

polarization among layers. Currently, there is no accepted standard computational protocol for a

multi-layered embedding scheme that provides reliable modeling of the excited state properties in

complex environments. In order to design a multi-layered fully mutually-polarizable-embedding

(MPE) scheme, implementing and thoroughly benchmarking the methods that act as components

of the MPE is crucial. The purpose of our research is to implement and benchmark the methods

that serve as components of a general MPE, and to further expand the area of hybrid methods

development for accurately modeling excited state properties.

In a hybrid system, the choice of QM method used for modeling the core region plays a very

important role. Accurate DFT functionals as high level are a popular choice, which has been well

benchmarked for excited state calculations in both gas84,85 and solution phases.86–90 These func-

tionals have been combined with many classical embedding schemes. For instance, the Mennucci

group combined various polarizable embedding schemes with DFT/time dependent (TD)-DFT, and

used it in many applications.2–10 However, the performance of DFT highly depends on the choice

of functional, and it is very system-dependent. Methods based on coupled cluster (CC) theory, such

as CC with single and double excitations (CCSD) and its excited state version, i.e., equation-of-

montion CCSD (EOM-CCSD, see section 2.3.1 in Chapter 2),91–99 provide consistently accurate

results in gas phase.85,100,101 Although EOM-CCSD is one of the most accurate methods for com-

puting one-electron excitation energies, it has a steep computational scaling: O(N6), where N is

the size of the basis set. Thus, works that focus on CCSD as part of a hybrid approach are lim-

ited, and even less has been done for excited state CCSD compared to DFT/TD-DFT.95–97,100,102

Therefore, part of our work focuses on the development and application of hybrid methods with
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CCSD/EOM-CCSD as high level.

In the Chapter 3, we benchmark EOM-CCSD combined with PCM for the calculation of elec-

tronic excitation energies of solvated molecules. The goal is to test the reliability of EOM-CCSD-

PCM for the evaluation and prediction of excitation energies of solvated molecules compared to

TDDFT-PCM. We also investigate a particularly important source of error: the lack of H-bonding

interactions in PCM, by adding explicit solvent molecules to form micro-solvated clusters inside

the PCM cavity. We define an energy shift, ∆HB, from bare PCM to microsolvation + PCM at DFT

level, and show that ∆HB is independent of the functional used, contrary to the absolute value of the

excitation energy. Hence, we suggest an efficient protocol where the EOM-CCSD-PCM transition

energy is corrected by ∆HB (DFT), which consistently improves the agreement with the experi-

mental measurements. The EOM-CCSD-PCM benchmark confirms that modeling solvation with

an implicit model neglects important specific interactions between solvent and solute. Treating

explicit solvent molecules with CC is too expensive even for micro-clusters. Although we address

this by forming micro-solvated clusters inside the PCM cavity at DFT level, proper sampling is

still required for deciding where to place the solvent molecules.

Therefore, in Chapter 4, we combine CCSD with a classical polarizable molecular mechan-

ics force field (MMPol) based on the induced dipole model.5,19,22,27,103–105 We present the theory

and implementation for combining CCSD/EOM-CCSD with MMPol within both the state specific

(SS)95,106–108 and linear response (LR)108–110 formalisms for the interaction of the QM and MM

regions. We also consider an approximate expression of the correlation energy, originally devel-

oped for CCSD with implicit solvation models, where the interaction term is linear in the coupled

cluster density. This approximation allows us to include the explicit contribution of the environ-

ment to the CC equations without increasing the computational effort. We perform tests on a set of

microsolvated systems, where the CCSD/MMPol method is compared to full CCSD calculations,

and demonstrate the reliability of this computational protocol for all interaction schemes (error <

2%). We also show that it is important to include induced dipoles on all atomic centers of the

classical region, and that too diffuse functions in the basis set may be problematic due to a too
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strong interaction with the environment. In this work, the induced dipoles included in the MMPol

force field are computed by using pre-determined parameters. However, it would be desirable to

have a strategy to determine these parameters on-the-fly for a generic system.

In Chapter 5, we introduce an embedding with fixed point charges and induced dipoles for

the ONIOM (QM:QM) hybrid method. We devise a strategy for obtaining atomic polarizabilities

on-the-fly, which are the key parameter for the induced dipole embedding model. This strategy al-

lows us to treat any generic system. We compare excitation energies from ONIOM extrapolations

with different embedding models against the corresponding full QM calculation (i.e., the entire

molecule calculated at the high QM level). These preliminary tests show that this on-the-fly po-

larizable embedding is better than no or fixed embedding when the substituent groups around the

model system are polar.

These methods provide excitation energies and transition properties for individual states. How-

ever, in many cases, we are interested in an entire region of the absorption spectrum, rather than a

single excited state. Unfortunately, it is hard to obtain the full spectrum with standard ONIOM, be-

cause proper state-matching between the subcalculations is challenging. In Chapter 6, we present

a method to perform multi-state extrapolation of UV-vis spectra, based on the ONIOM extrapola-

tion formula. This method overcomes the state-matching difficulty between sub-calculations, and

is able to efficiently extrapolate several bands of the spectrum at once. This is accomplished by

extrapolating the parameters that characterize the band position and shape in the spectrum of each

subcalculation, e.g., band/shoulder position, width, and height, with a formula similar to that of

ONIOM. We perform tests on seven chromophoric molecules that show the efficacy and robustness

of this methodology in reproducing the spectrum computed for the entire molecule at a high level

of theory.

In summary, our research expand the field of hybrid methods development for excited states,

by developing and implementing various hybrid approaches that serve as components of a general

multi-layered MPE for simulating large systems in complex environments.
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Chapter 2

Theory

In this chapter, we review the theory that underlies the methods developed and utilized in the later

chapters of this thesis, in order to provide a theoretical foundation for these methods. This chapter

is constructed as follows: Section 2.1 gives an overview of hybrid methods; Section 2.2 introduces

the basic theory of the polarizable continuum model (PCM); Section 2.3 reviews coupled cluster

theory for ground and excited states, in gas phase and in combination with PCM.

2.1 Hybrid Methods

A hybrid approach in computational chemistry combines multiple computational methods in order

to achieve the best balance between computational cost and accuracy. For example, in a two-

layered hybrid scheme in Figure 2.1, the system core is selected to be treated with a more accurate

(high) method, while the rest of the system (environment) is treated with a less expensive (low)

method. The choice of core region depends on the specific problem at hand, and it is where the

process of interest occurs, such as a reaction/interaction center. An accurate quantum mechanical

(QM) method is usually chosen as the high level to treat the core region, while the choice of

low level depends on the size of the system and the desired accuracy. The most common hybrid

approaches combine a QM method with molecular mechanical (MM) methods (QM/MM).1,11–14

or a continuum model, such as PCM (QM/PCM).28,29,95,99,103,106–109,111,112 Combinations can also

be made between a QM method and another QM method with lower computational cost.31–44 In a

8



Figure 2.1: Illustration for the partitioning of a system for a hybrid scheme.

hybrid scheme, the energy of the system can be expressed as:3,113,114

E = E(core)+E(env)+E(int) (2.1)

where E(core) is the energy of the core region, E(env) is the energy of the environment, and

E(int) is the interaction energy between the core region and the environment. There are two main

categories of hybrid methods: additive and subtractive, and they differ in how they compute the

interaction energy. In an additive approach, the interaction energy is calculated explicitly. In a

subtractive method, such as ONIOM (Our own N-layered Integrated molecular Orbital molecular

Mechanics),69–77 the interaction energy of the system is expressed as:

E(int) = E(real, low)− [E(model, low)+E(rest, low)] (2.2)

where E(real, low), E(model, low), and E(rest, low) are the energies of the entire system, the core

region, and the environment calculated at the same low level, respectively. Inserting Eq. 2.2 into
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Eq. 2.1, we obtain the extrapolated energy expression for ONIOM:

E(ONIOM) = E(model,high)+E(real, low)−E(model, low) (2.3)

Therefore, in a subtractive method, E(int) is never actually calculated. In Eq. 2.2 and 2.3, we

use a notation that is specific for ONIOM: comparing to the general energy expression in Eq. 2.1,

E(env) ≡E(rest, low) and E(core) ≡E(model,high). The expression in Eq. 2.3 can be interpreted

as the energy of the entire system calculated with a low level of method (E(real, low)) being

corrected by the energy difference of the model between low and high methods.

In an additive approach, the accuracy highly depends on the low level method used for ob-

taining the interaction energy. Additionally, specific implementations of the hybrid scheme are

required. In a subtractive approach, if no electronic embedding schemes are used, the subcalcula-

tions are independent from each other and the method requires no specific implementation. This

permits maximum flexibility in the choice of the high and low levels of theory. In our research,

we use both approaches: additive for combining coupled cluster (CC) with PCM and a classi-

cal polarizable molecular mechanics force field (MMPol); subtractive for ONIOM with electronic

embedding (EE), and for the multi-state extrapolation of UV/vis spectra.

2.2 Polarizable Continuum Model

Including environmental effects is important when modeling processes that occur in solution,

which are typically introduced with classical models. One of the most popular solvation models

(belonging to the additive family of hybrid methods) is the polarizable continuum model (PCM).

In PCM (Figure 2.2),30 the solute molecule is placed in a cavity surrounded by a polarizable di-

electric, and the bulk polarization is represented by an apparent surface charge on the cavity. The
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Figure 2.2: An example of a solute molecule (ball and stick) placed in a PCM cavity (light blue).

model starts from the Poisson equations:

−∇2V(r⃗) = 4πρM(r⃗) within C (2.4)

−ε∇2V(r⃗) = 0 outside C (2.5)

where C represent the PCM cavity, ε is a dielectric constant for the solvent medium, and V is the

electrostatic potential on point r⃗:

V(r⃗) =VM(r⃗)+VR(r⃗) (2.6)

VM(r⃗) is the electrostatic potential generated by the charge distribution ρM inside the cavity, and

VR(r⃗) is the reaction potential generated by the polarization of the dielectric medium. At the cavity

surface Γ, the potential V satisfies jump conditions expressed as:30

[V ] =Vin−Vout = 0 on Γ (2.7)

[∂V ] = (
∂V
∂ n⃗

)
in
−ε(

∂V
∂ n⃗

)
out

= 0 on Γ (2.8)

where n⃗ is a set of outward-pointing vectors perpendicular to the cavity surface. The first jump

condition in Eq. 2.7 expresses the continuity of the potential across the surface, whereas the

second jump condition in Eq. 2.8 expresses the discontinuity of the gradient of the potential with

respect to the n⃗ vectors. The dielectric constant inside the cavity is 1, i.e., the dielectric constant

of the vacuum, while the dielectric constant outside equals to ε (a finite value > 1). From the jump
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conditions in Eq. 2.7-2.8, an apparent surface charge (ASC) σ(s⃗) spread on the cavity surface is

defined, where s⃗ is a position on the cavity surface. The ASC defines the reaction field potential

VR in Eq. 2.6 over the whole space as:

VR(r⃗) = ∫
Γ

σ(s⃗)
∣r⃗− s⃗∣

ds⃗ (2.9)

The cavity surface is approximated in terms of a set of finite elements that are small enough to

consider a constant σ(s⃗k) within each element, and a set of charges qk is defined in terms of the

local value of σ(s⃗k) on each of these finite elements times the corresponding area Ak. With this

new definition, the integral in Eq. 2.9 is transformed into a finite sum:

VR(r⃗) =∑
k

σ(s⃗k)Ak

∣r⃗− s⃗k∣
=∑

k

qk

∣r⃗− s⃗k∣
(2.10)

There are different ACS variants of PCM that differ in their definition of surface charges and

potentials.30 However, most ACS models can be recast in a matrix form for the calculation of the

PCM charges:

q = −Kf (2.11)

where K is a T ×T square matrix that collects the cavity geometrical factors and the dielectric con-

stant of the medium, with T equal to the number of finite elements. q and f are vectors that contain

the charges and the potential, respectively. For different ACS variants of PCM, the definitions of

K and f are different, and we use the Integral Equation Formalism (IEF)115–117 in our research.

The advantages of PCM include its adaptability to virtually any solute and solvent, and its

efficient implementation with QM methods allows its wide application for electronic structure

calculations in solution.
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2.3 Coupled Cluster Theory

Coupled-cluster (CC) theory collects a highly accurate family of QM methods that can be used

as the high-level in a hybrid scheme. This section contains an overview of CC theory and its

combination with the PCM solvation model for ground and excited states.95,99,106–112,118

2.3.1 CC Electronic Ground State

CC theory provides a systematic approach to evaluate approximate solutions of the time-independent

Schrödinger equation:94

Ĥ ∣Ψ⟩ = E ∣Ψ⟩ (2.12)

where Ĥ is the Hamiltonian of the system, Ψ is the exact wave function, and E is the exact en-

ergy of the ground state (GS). The wave function ansatz in coupled cluster theory is given by an

exponential wave operator acting on a reference Slater determinant ∣Φ0⟩:119–122

∣ΨCC⟩ = eT̂ ∣Φ0⟩ ,

T̂ = T̂1+ T̂2+ ⋯ + T̂n

(2.13)

where T̂ is the linear combination of all possible T̂n excitation operators for a system with n elec-

trons.123,124 Each T̂n generates n-fold excitations of the same order:

T̂1 = ∑
singles

t1τ̂1 =∑
i
∑
a

ta
i a+i (2.14)

T̂2 = ∑
doubles

t2τ̂2 =∑
i, j
∑
a,b

tab
i j a+ib+ j (2.15)

⋮ (2.16)

T̂n = ∑
n order excitations

tnτ̂n = ∑
i1<i2⋯<in

∑
a1<a2⋯<an

ta1a2⋯an
i1i2⋯ in a+1 i1a+2 i2⋯a+n im (2.17)
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More explicitly, T̂1 is the operator that collects all single excitations, T̂2 is the operator that collects

all double excitations and so forth. Including different orders of excitations in the operator T̂ results

in different truncated CC methods, for example, CCSD includes single and double excitations

(T̂ = T̂1 + T̂2), whereas CCSDT includes single, double, and triple excitations (T̂ = T̂1 + T̂2 + T̂3).

τ̂n is an excitation operator that creates a n-order excited determinant ∣Φn⟩ when acting on the

reference Slater determinant ∣Φ0⟩: τ̂n ∣Φ0⟩ = ∣Φn⟩, and it takes the form of a+i,a+ib+ j,⋯ , etc. For

a sequence of creation/annihilation operators in second quantization, i, j,k,⋯(a,b,c,⋯) refer to

occupied (virtual) molecular orbitals in the Fermi-vacuum Φ0.

The expression for the CC ground state energy is obtained by inserting the ∣ΨCC⟩ ansatz into

the Schrödinger equation in Eq. 2.12, multiplying on the left by e−T̂ , then projecting onto the

reference wave function ⟨Φ0∣:

⟨Φ0∣e−T̂ ĤeT̂ ∣Φ0⟩ = ⟨Φ0∣H̄ ∣Φ0⟩ = E0 (2.18)

where the overbar indicates the similarity transformation of the Hamiltonian: H̄ = e−T̂ ĤeT̂ . The

similarity transformed Hamiltonian in CC theory is non-Hermitian, thus it has different left- and

right-hand eigenvectors that result in more complicated equations for excited states. However, the

non-Hermitian property of Ĥ guarantees the size extensivity of the CC ground state energy at every

level of truncation of T̂ . Additionally, using the Baker–Campbell–Hausdorff (BCH) expansion:

H̄ = Ĥ + [Ĥ, T̂ ]+
1
2!

[[Ĥ, T̂ ], T̂ ]+
1
3!

[[[Ĥ, T̂ ], T̂ ], T̂ ]+
1
4!

[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ] (2.19)

This expansion of H̄ ends exactly after four nested commutators, based on Wick’s theorem.124

It is convenient to express the energy using Lagrange multipliers,94 for combining CC theory

with a polarizable environment later. The Lagrangian for ground state CC in gas phase is expressed

as:

L0 = ⟨Φ0∣(1+ Λ̂)H̄ ∣Φ0⟩ (2.20)
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where Λ̂ is a linear combination of de-excitation operators:123,124

Λ̂ =∑
n

λnτ̂
†
n (2.21)

where τ̂
†
n is the Hermitian conjugate of τ̂ in Eq. 2.14, and λn is the corresponding amplitude. It is

useful to separate the reference contribution to E0 from the rest. By introducing the normal product

form of an operator:123,124

X̂N = X̂ − ⟨Φ0∣X̂ ∣Φ0⟩ = X̂ −X0 (2.22)

Eq. 2.20 can be rewritten as:

L0 = E0+ ⟨Φ0∣(1+ Λ̂)H̄N ∣Φ0⟩ (2.23)

where E0 is the reference energy. Minimizing L0 with respect to λn amplitudes, we obtain:

∂L0

∂λn
= ⟨Φn∣H̄N ∣Φ0⟩ = 0 (2.24)

which is the equations of tn amplitudes. At convergence, Eq. 2.20 is reduced to:

L0 =L
0+ ⟨Φ0∣H̄N ∣Φ0⟩ = ⟨Φ0∣H̄ ∣Φ0⟩ = E0 (2.25)

i.e., the CC ground state energy.

2.3.2 Coupled Cluster Theory for Electronic Excited States

There are two approaches for extending CC theory to excited states: linear response (LR) and

equation of motion (EOM).91–94,125 These two approaches start from different points, but they

arrive to the same eigenvalue equation. The CC LR function expresses excited states observables

as the response of the ground state to external field, and the excitation energies are obtained as the

poles of the LR function. On the other hand, EOM-CC begins with the ansatz that expresses the
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wave function of the excited state K as:

∣ΨK⟩ = R̂K ∣ΨCC⟩ (2.26)

where R̂K is an excitation operator that satisfies the "equation-of-motion":126,127

[Ĥ, R̂K] =ωKR̂K (2.27)

The EOM ansatz is then inserted into the Schrödinger equation in Eq. 2.12, leading to an eigen-

value equation for excited states. Since H̄ is non-Hermitian, its left and right eigenvectors are

different. For the right-hand diagonalization, the transition ωK is found by solving:

⟨Φn∣[H̄, R̂K]∣Φ0⟩ =ωK ⟨Φn∣R̂K ∣Φ0⟩ (2.28)

From the left-hand side, we have:

⟨Φ0∣L̂K[H̄, τ̂n]∣Φ
0⟩ =ωK ⟨Φ0∣L̂K ∣Φn⟩ (2.29)

where R̂K and L̂K are the right- and left- hand eigenvectors of the similarity transformed Hamilto-

nian H̄, respectively:

R̂K = rK
0 +∑

n
rK

n τ̂n (2.30)

L̂K = lK
0 +∑

n
lK
n τ̂

†
n (2.31)

which satisfy the biorthonormality condition:

⟨Φ0∣L̂R̂∣Φ0⟩ = 1 (2.32)

We can introduce an energy functional for the excited state K using Lagrangian multipliers,94

again for making a connection with the CC-PCM equations, which will be introduced next. The
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Lagrangian for an excited state K is expressed as:

LK = E0+ ⟨0∣L̂K[H̄N , R̂K]∣0⟩+ ⟨Φ0∣(1+ΛK)H̄N ∣Φ0⟩+ωK(1− ⟨Φ0∣L̂KR̂K ∣Φ0⟩) (2.33)

Here we used the normal-product form of an operator (Eq. 2.22) to separate the reference wave

function contribution toLK from the correlation part, where E0 is the ground state reference energy.

Equations for the T̂K , Λ̂K , and R̂K (L̂K) for the ground and excited amplitudes can be obtained by

minimizing LK in Eq. 2.33 with respect to their amplitude parameters. At convergence, Eq. 2.33

reduces to:

LK = EK = E0+ ⟨Φ0∣H̄N ∣Φ0⟩+ωK (2.34)

2.3.3 CC-PCM Electronic Ground State

In order to perform CC calculations in solution, one can combine CC with a continuum model,

like PCM. The CC-PCM energy functional can be conveniently expressed as a Lagrangian, as for

gas phase CC:95,106–110,118

GPCM
0 = G0+ ⟨Φ0∣(1+ Λ̂)H̄PCM

N ∣Φ0⟩+
1
2

QQQN ⋅VVV N (2.35)

where G0 is the reference free energy:

G0 = ⟨Φ0∣Ĥ ∣Φ0⟩+
1
2

QQQ0 ⋅VVV 0 (2.36)

G0 is a free energy because it includes the energy for polarizing the dielectric. H̄PCM
N is the QM

Hamiltonian including the PCM operator with the reference reaction field QQQ0:

ĤPCM
N = ĤN +V̂N ⋅QQQ

0 (2.37)

17



where QQQN /VVV N are the surface charge/electrostatic potential induced by the correlation density:

QQQN = ⟨Φ0∣(1+ Λ̂)e−T̂ Q̂QQNeT̂ ∣Φ0⟩ = ⟨Φ0∣(1+ Λ̂)Q̄QQN ∣Φ0⟩ (2.38)

VVV N = ⟨Φ0∣(1+ Λ̂)e−T̂V̂VV NeT̂ ∣Φ0⟩ = ⟨Φ0∣(1+ Λ̂)V̄VV N ∣Φ0⟩ (2.39)

The expression in Eq. 2.35 is quadratic in the CCSD density through the last term, and it is usually

referred to as PTED scheme (from perturbation theory energy and density).128,129

The free energy for the ground state is evaluated by minimizing the Lagrangian in Eq. 2.35

with respect to the T̂ and Λ̂ amplitudes. The partial derivative of the Lagrangian with respect to λn

gives the T̂ equations:

∂GPCM
0

∂λn
= ⟨Φn∣H̄PCM

N ∣Φ0⟩+ QQQN ⋅ ⟨Φ
n∣V̄VV N ∣Φ0⟩ = 0 (2.40)

This is similar to the gas phase T̂ equations in Eq. 2.24 with an additional PCM term. The partial

derivative of the Lagrangian with respect to tn gives the Λ̂ equations:

∂GPCM
0

∂ tn
= ⟨Φ0∣(1+ Λ̂)[H̄PCM

N , τ̂n]∣Φ
0⟩+ QQQN ⋅ ⟨Φ

0∣(1+ Λ̂)[V̄VV N , τ̂n]∣Φ
0⟩ = 0 (2.41)

At convergence Eq. 2.35 reduces to:

GPCM
0 = G0+∆E0−

1
2

QQQN ⋅VVV N (2.42)

where

∆E0 = ⟨Φ0∣H̄PCM
N ∣Φ0⟩+QQQN ⋅ ⟨Φ

0∣V̄VV N ∣Φ0⟩ (2.43)

In gas phase, it is not necessary to evaluate the Λ̂ amplitudes. However, since Eq. 2.35 is

quadratic in T̂ and Λ̂ due to the PCM term, contrary to the gas phase case, Eqs. 2.40-2.41 are cou-

pled and must be solved simultaneously. Thus, there is a steep increase in the computational cost
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for solving these equations iteratively. To reduce this computational cost, approximate free energy

functionals for CC-PCM can be used instead of the complete PTED version of the Lagrangian.95

The goal is to decouple the T̂ and Λ̂ equations by eliminating the terms that cause the coupling. In

order to do this, QQQN in Eq. 2.35 is split into two contributions:

QQQN =QQQT
N +QQQΛ

N (2.44)

defined as:

QQQT
N = ⟨Φ0∣Q̄QQN ∣Φ0⟩

QQQΛ
N = ⟨Φ0∣Λ̂Q̄QQN ∣Φ0⟩

(2.45)

If the same separation is performed for VVV N , the last term in Eq. 2.35 can be written as:

1
2

QQQN ⋅VVV N =
1
2

QQQT
N ⋅VVV

T
N +QQQT

N ⋅VVV
Λ
N +

1
2

QQQΛ
N ⋅VVV

Λ
N (2.46)

where in the second term on the right hand side we use the symmetry of the PCM kernel (1
2QQQT

N ⋅VVV
Λ
N =

1
2QQQΛ

N ⋅VVV
T
N). By eliminating the last term in Eq. 2.46, which is responsible for coupling the T̂ and Λ̂

equations, one obtain the approximate energy functional for the PTES scheme (where the S stands

for singles):

GS,PCM
0 = G0+ ⟨Φ0∣(1+ Λ̂)H̄PCM

N ∣Φ0⟩+
1
2

QQQT
N ⋅VVV

T
N +QQQT

N ⋅VVV
Λ
N (2.47)

The T̂ equations become:

∂GS,PCM
0
∂λn

= ⟨Φn∣H̄PCM
N ∣Φ0⟩+QQQT

N ⋅ ⟨Φ
n∣V̄VV N ∣Φ0⟩ = 0 (2.48)
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The Λ̂ equations become:

∂GS,PCM
0
∂ tn

=⟨Φ0∣(1+ Λ̂)[H̄PCM
N ,τn]∣Φ

0⟩+QQQT
N ⋅ ⟨Φ

0∣Λ̂[V̄VV N ,τn]∣Φ
0⟩

+ QQQN ⋅ ⟨Φ
0∣V̄VV N ∣Φn⟩ = 0

(2.49)

At convergence, Eq. 2.47 is reduced to:

GS,PCM
0 = G0+ ⟨Φ0∣H̄PCM

N ∣Φ0⟩+
1
2

QQQT
N ⋅VVV

T
N (2.50)

Since in the PTES scheme the Lagrangian is linear in Λ̂, as in gas phase, the equations for the T̂

and Λ̂ are decoupled, and can be solved seperately.

In terms of computational effort, the cost for evaluating all PCM terms scales as O(N5), where

N is the basis set size, because that is the cost to evaluate the correlation density. Therefore, the

PCM terms do not directly increase the cost of CC equations, which scale as O(N6) for CCSD.

The main increase in computational cost comes from the coupling of the amplitude equations for

the PTED scheme, contrary to the gas phase CC equations. However, by using the approximate

PTES scheme, CC-PCM is equivalent in cost to CC in gas phase.

2.3.4 CC-PCM Electronic Excited States

As in gas phase, there are two strategies for including solvent effects in excited state calculations:

the state specific (SS) (equivalent to EOM)95,106–108 and linear response (LR)108–110 formalisms.

Although the two approaches provide the same result for the gas phase energy, they differ in so-

lution. The origin of the difference comes from the definition of the solvent response, and can be

summarized by saying that in the SS formalism the solvent response depends on the excited state

density, while in the LR formalism it depends on the transition density. More detailed discussion

of the difference between the two approaches can be found in Refs. 130,131.
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2.3.4.1 State Specific formalism for CC-PCM

In the SS formalism,95,106–108 the excited state Lagrangian can be written in a form equivalent to

that of the ground state:

GPCM
K = G0+ ⟨Φ0∣(1+ Λ̂K)H̄PCM

N ∣Φ0⟩+ ⟨Φ0∣L̂K[H̄PCM
N , R̂K]∣Φ0⟩

+ωK (1− ⟨Φ0∣L̂KR̂K ∣Φ0⟩)+
1
2

QQQKN ⋅VVV KN

(2.51)

where L̂K and R̂K are the left- and right-hand eigenvectors of the EOM-CCSD Hamiltonian for

the K-th state, and ωK is the eigenvalue associated with L̂K and R̂K . The free energy for the K-th

excited state can be computed by minimizing the Lagrangian in Eq. 2.51 with respect to all sets of

amplitudes, as in gas phase. At convergence, Eq. 2.51 reduces to:

GPCM
K = G0+∆EK +ωK −

1
2

QQQKN ⋅VVV KN (2.52)

where:

∆EK = ⟨Φ0∣H̄PCM
N ∣Φ0⟩+QQQKN ⋅ ⟨Φ

0∣V̄VV N ∣Φ0⟩ (2.53)

For excited states, the equations for the ground state amplitudes (T̂K and Λ̂K equations) and the

equations for the excited state amplitudes (R̂K and L̂K equations) are all coupled by the solvent

reaction field. Additionally, the T̂K amplitudes are different from those of the ground state, because

they are obtained in the presence of excited state charges QQQKN . Therefore, the transition energy

from the ground to the K-th excited state must be evaluated through two separate calculations, as

the difference between GK in Eq. 2.52 and G0 in Eq. 2.42.

The PTED formalism described above is computationally expensive because all the amplitude

equations must be solved simultaneously. To reduce the computational cost, as for ground state,

approximate schemes can be used to decouple these amplitude equations.95 An excited state PTES

scheme can be defined also for excited states. At convergence, GS,PCM
K in Eq. 2.51 can be reduced
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to:

GS,PCM
K = GS,PCM

0 +ωK −
1
2

QQQK
N ⋅VVV

K
N (2.54)

where GS,PCM
0 is the ground state PTES energy. It is important to note that in the PTES scheme

the ground state equations for the T̂K and Λ̂K amplitudes are decoupled from the excited state

equations, as in gas phase, but the R̂K and L̂K equations are still coupled. Nevertheless, since the

ground and excited state amplitude equations are decoupled, excitation energies can be computed

in a single calculation, contrary to the PTED scheme.

2.3.4.2 Linear Response Formalism for CC-PCM

In the LR formalism,108–110 as in gas phase, the excitation energies are obtained as the poles of the

LR function, and are calculated from the right or left-hand diagonalization of the Jacobian matrix,

⟨Φm∣[(H̄N +QQQN ⋅V̄VV N), τ̂n]∣Φ0⟩. The complete derivation of the CC/PCM LR function can be in

found in Ref. 108–110. For the right-hand diagonalization, the transition energy ωK is found by

solving:

⟨Φn∣[(H̄N +QQQN ⋅V̄VV N), R̂K]∣Φ0⟩+ ⟨Φn∣QQQRK
N ⋅V̄VV N ∣Φ0⟩ =ωK ⟨Φn∣R̂K ∣Φ0⟩ (2.55)

From the left-hand side, we have:

⟨Φ0∣L̂K[(H̄N +QQQN ⋅V̄VV N), τ̂n]∣Φ
0⟩+ ⟨Φ0∣(1+ Λ̂)[QQQLK

N ⋅V̄VV N , τ̂n]∣Φ
0⟩ =ωK ⟨Φ0∣L̂K ∣Φn⟩ (2.56)

The QQQRK
N and QQQLK

N charges (CC has different right-hand and left-hand transition densities) can be

interpreted as transition charges, as they express the solvent response to the transition density of
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the solute:

QQQRK
N = ⟨Φ0∣(1+ Λ̂)[Q̄QQN , R̂K]∣Φ0⟩ =QQQT RK

N +QQQΛRK
N (2.57)

QQQLK
N = ⟨Φ0∣L̂KQ̄QQN ∣Φ0⟩ (2.58)

These charges depend on the transition density of the solute, and are different from the charges in

the SS formalism, which depends on the excited state density. LR transition properties were also

derived and implemented for CCSD/PCM.93,94,109,111

The PTES approximation can be also introduced for the LR formalism, where the right and

left-hand diagonalization equations become:95,108

⟨Φn∣[(H̄Q
N +QQQT

N ⋅V̄VV N), R̂K]∣Φ0⟩+ ⟨Φn∣QQQT RK
N ⋅V̄VV N ∣Φ0⟩ =ωK ⟨Φn∣R̂K ∣Φ0⟩ (2.59)

⟨Φ0∣L̂K[(H̄Q
N +QQQT

N ⋅V̄VV N),τn]∣Φ
0⟩+ ⟨Φ0∣[QQQT LK

N ⋅V̄VV N ,τn]∣Φ
0⟩ =ωK ⟨Φ0∣L̂K ∣Φn⟩ (2.60)

The advantage of the PTES over the PTED scheme for the LR formalism is due to the fact that

in the former the ground state T̂ and Λ̂ equations are decoupled. Thus, LR-CCSD/PCM with the

LR-PTES scheme is virtually equal in cost to the corresponding gas phase method.
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Chapter 3

An EOM-CCSD-PCM Benchmark for Electronic Excitation

Energies of Solvated Molecules

(This work is taken from: Sijin Ren, Joseph Harms, and Marco Caricato, J. Chem. Theory

Comput. 2017, 13, 117-124.132 Supporting information is available online.)
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Abstract

In this work, we benchmark the equation of motion coupled cluster with single and

double excitations (EOM-CCSD) method combined with the polarizable continuum

model (PCM) for the calculation of electronic excitation energies of solvated molecules.

EOM-CCSD is one of the most accurate methods for computing one-electron excita-

tion energies, an accounting for the solvent effect on this property is a key challenge.

PCM is one of the most widely employed solvation models due to its adaptability to

virtually any solute, and its efficient implementation with density functional theory

methods (DFT). Our goal in this work is to evaluate the reliability of EOM-CCSD-

PCM, especially compared to time-dependent DFT-PCM (TDDFT-PCM). Compar-

isons between calculated and experimental excitation energies show that EOM-CCSD-

PCM consistently overestimates experiment by 0.4-0.5 eV, which is larger than the

expected EOM-CCSD error in vacuo. We attribute this decrease in accuracy to the ap-

proximated solvation model. Thus, we investigate a particularly important source of

error: the lack of H-bonding interactions in PCM. We show that this issue can be ad-

dressed by computing an energy shift, ∆HB, from bare-PCM to micro-solvation + PCM

at DFT level. Our results show that such shift is independent of the functional used,

contrary to the absolute value of the excitation energy. Hence, we suggest an efficient

protocol where the EOM-CCSD-PCM transition energy is corrected by ∆HB(DFT),

which consistently improves the agreement with the experimental measurements.
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3.1 Introduction

The simulation of electronic spectra of molecules in solution is fundamental for basic research

since it provides invaluable information about, for instance, the presence of products or interme-

diates in a chemical reaction. It also allows us to probe the interactions between a chromophore

and its surrounding, and in this respect it is the first step in the design of new and efficient dyes

in solar energy research82,83. Despite tremendous progress in the evaluation of electronic excited

states of isolated molecules, including the effect of the environment is still a big challenge. This

is due to the large number of molecular species that surround the chromophore of interest, which

makes it nearly impossible to treat the entire system quantum mechanically (QM). For solvents,

the common approach is to resort to classical models that may or may not include polarization

terms. These models can be classified in two large families: explicit and implicit models, each

with its advantages and disadvantages. Explicit models maintain an atomistic and thus more re-

alistic representation of the solvent, and they can describe direct solute-solvent interactions such

as hydrogen bonding (H-bonding). However, these models require a thorough conformational av-

eraging in order to achieve a statistically appropriate description of a specific molecular property,

which implies the repetition of the QM calculation on the solute. Therefore, explicit models are

computationally intensive. Additionally, these models can include explicit polarization terms for

the classical region (through fluctuating charges or induced atomic dipoles)133 that further increase

the computational cost since mutual polarization between solute and solvent must be achieved for

each conformation included in the averaging. On the other hand, implicit solvation models replace

the atomistic structure of the solvent with a continuum, polarizable medium characterized by some

macroscopic properties (e.g. the dielectric constant). These models are particularly efficient since

the averaging is included implicitly in the macroscopic solvent property, and mutual polarization

with the solute is achieved with only a moderate increase in the computational effort compared to

that required for an isolated molecule. The limitation of implicit models is that dynamical effects

for both solute and solvent are neglected, as well as direct interactions. The range of applicability

of both strategies must be obtained through a comparison with available experimental data.
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In this work, we test one particular QM method for the solute: the equation of motion coupled

cluster with single and double excitations (EOM-CCSD)91,92, with a particular implicit solvation

model: the polarizable continuum model (PCM).30 EOM-CCSD is one of the most accurate meth-

ods for computing one-electron excitation energies (which are the most relevant in solar energy

research, for instance), but it has a steep computational scaling: O(N6), where N is the size of the

basis set. PCM is one of the most widely employed solvation models due to its adaptability to virtu-

ally any solute and solvent, and its efficient implementation with density functional theory methods

(DFT). In fact, modern DFT-PCM implementations lead to an increase in the cost of the calcula-

tion by less than 20% compared to the corresponding isolated molecule. However, CCSD-PCM

calculations are considerably more expensive than DFT-PCM because the solvent terms couple

the equations for the CC T and Λ amplitudes,107,112,118,134 so that the cost of the calculations in

solution is 2-3 times larger than in gas phase. We presented the first implementation of CCSD

and PCM for ground and excited state properties, and we developed a series of approximations to

limit the computational cost increase.95,96,98,99,102,118,134–136 What is now missing is a systematic

benchmarking of EOM-CCSD-PCM so that the reliability of this approach can be assessed.

Before diving into the details of the present study, it is important to note that the interfacing

of CC methods with solvation models, especially explicit ones, is an active area of research. Im-

portant contributions come from Kongsted and coworkers, who used a polarizable solvation model

with induced dipole and higher multipole terms.137–140 Recent work with the same approach was

presented by the Klopper group, which extended this model to two-component CC.141,142 Other

important contributions come from the Slipchenko group, where CC methods are interfaced with

the effective fragment potential (EFP) method.143–148 We also proposed an implementation of

EOM-CCSD with a fluctuating charge (FQ) explicit solvation model.97 As discussed above, the

drawback of all of these approaches is that they require the repetition of the EOM-CCSD calcula-

tion many times to achieve statically meaningful conformational averages. For continuum models,

the first work with CC methods was presented by Christiansen and Mikkelsen112,112 with a sim-

plified multipole model. In recent years, Cammi has presented various developments related to
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PCM.106,107,109. Ehara and coworkers, in collaboration with Cammi, also interfaced PCM with the

symmetry adapted cluster-configuration interaction (SAC-CI) method,149,150 which shares many

features with EOM-CCSD.

The goal of this work is to test how reliable EOM-CCSD-PCM calculations are for the evalua-

tion and prediction of excitation energies of solvated molecules. We accomplish this by comparing

calculated and measured excitation energies, and by discussing the possible sources of disagree-

ment between the two. These sources include the lack of vibronic effects, and the proper descrip-

tion of H-bonding. Both can be significant, but the former requires an intense computational effort

at the CC level. On the other hand, the lack of H-bonding interactions in continuum models can

be addressed with a simple and computationally inexpensive approach described below. A main

outcome of this work is that the average error of EOM-CCSD- PCM is about 0.2 eV larger than for

isolated molecules,84,85 which is not surprising considering the solvation model employed. How-

ever, the error is consistent in its sign (i.e., overestimation of experiment), which is an essential

feature for predictive studies. Additionally, such error can be considerably reduced by computing

a H-bond shift via DFT microsolvation calculations. The key advantages of computing such a

shift with DFT are that only one EOM-CCSD calculation is required and that the shift is largely

independent of the choice of the functional.

The chapter is structured as follows. Section 3.2 provides some theoretical background and

reports the details of the calculations. Section 3.3 contains all of the calculations outcomes and

analysis. Finally, Section 3.4 summarizes the findings of the study and reports concluding remarks.

3.2 Theory and Computational Details

The calculations were performed using standard linear response (LR) techniques151–156 for the

solute (EOM-CCSD and LR-CCSD provide the same excitation energies91–99). We used the LR

approach also for PCM,157 where the solvent response depends on the solute transition density.

Since we consider vertical transitions, all calculations were performed within the non-equilibrium

solvation regime,30 which assumes that only the solvent electrons move fast enough to respond to
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changes in the solute electron density (the so-called “dynamic” response) while the solvent nuclei

are fixed in the equilibrium position with the solute electronic ground state (i.e., the “inertial”

response).

We consider five popular approximate functionals together with EOM-CCSD. Three function-

als are global hybrids: B3LYP,158 PBE0,159,160 and M06;161 while two are range-separated hy-

brids: CAM-B3LYP162 and LC-ωPBE.163–165 This list is certainly far from complete, but our goal

is to test EOM-CCSD, and the DFT results are used for comparison and for the micro-solvation

calculations that were too large for EOM-CCSD. We refer to previous work of Jacquemin, Adamo,

and coworkers for a thorough benchmarking of DFT methods.86–90 We note that some of the DFT

results differ from those in Refs. 86–90 because we used an alternative definition of the PCM

cavity radii, but the effect is minor.

We tested five double- and triple-ζ (i.e., number of basis functions for each valence atomic

orbital) basis sets: TZVP, aug-cc-pVDZ, 6-31++G**, 6-311++G**, 6-311(3+,3+)G**, which in-

clude polarization and diffuse functions. While DFT is not very sensitive to the choice of basis set,

EOM-CCSD is, and these sets represent a good compromise between computational cost and ac-

curacy. TZVP (a split valence triple zeta basis set without diffuse functions developed by Ahlrichs

and coworkers166) was used by Kánnár and Szalay when they compared EOM-CCSD and CC3 re-

sults in gas phase,84 while 6-311(3+,3+)G** (with three sets of diffuse functions) was used by Car-

icato et al. when they tested DFT and EOM-CCSD against experimental gas phase data.85,100,101

The correlation-consistent series is often a preferred choice with CC methods, but we could not go

beyond the double-ζ set (aug-cc-pVDZ167) due to the size of the molecules considered. Finally,

the remaining Pople sets were chosen for their reduced size compared to 6-311(3+,3+)G**. As

discussed below, the choice of basis set in solution is not necessarily the same as in gas phase

calculations since we need to take into account the escaped charge error, i.e., the error due to the

fraction of solute electron density that extends beyond the PCM cavity.30

For PCM, we used the symmetric version of the integral equation formalism (IEF-PCM)168 ap-

proach with non-electrostatic contributions from the solvation model based on density (SMD).169
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These non-electrostatic terms do not affect the excitation energy, but enter the ground state geom-

etry optimization. We also used SMD radii for all calculations. For the excitation energy calcula-

tions, we included added spheres in the cavity to avoid unphysical solvent pockets, especially in

the micro-solvation calculations.

All ground state geometries were optimized using B3LYP158 with the cc-pVTZ basis set. The

same geometries were then used for the excitation calculations with all other levels of theory in

order to avoid geometry effects on the results. The geometrical changes across methods should be

relatively small since the test molecules are relatively rigid. All calculations were performed with

a Development Version of the GAUSSIAN suite of programs.170

3.3 Results and Discussion

We chose a test set of 16 molecules divided in four groups according to the principal structural

moiety. The molecules are shown in Figure 3.1, and the four groups are: nitroso, AB, NQ, and

U (for uracil). We chose medium size molecules that were affordable with EOM-CCSD with

all basis sets, and for which experimental data in polar solvents is available.171–175 The effect of

non-polar solvents on electronic energies is either small or due to non-electrostatic interactions,

and in either case using PCM is ineffective. Most of the solvents in this work are protic and can

form hydrogen bonds, which are also not well reproduced with PCM. However, one can partially

account for H-bonding using a simple micro-solvation + continuum approach, where the H-bond

sites are saturated with few solvent molecules and the entire cluster is embedded in the continuum

dielectric.

The comparison with experiment is reported in terms of signed average errors stacked on top

of each other to form a cumulative error bar. The averaging is done in terms of the total number of

molecules (we consider one state per molecule). The total average error is:

∆ω̄ =
N
∑
i=1

∣∆ω̄
i∣ =

N
∑
i=1

∣ω i
cal −ω i

exp∣

N
(3.1)
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Figure 3.1: Test set used for the benchmarking. This includes 16 molecules divided in 4 groups:
Nitroso, NQ, AB, and U, and the solvents in which measurements were performed.

where ω i
cal and ω i

exp are the calculated and experimental excitation energies for compound i, re-

spectively, and N is the total number of molecules. The experimental and calculated excitation

energies, and the optimized geometries are reported in the supporting material (SI).

The error bars for all of the methods and basis sets are reported in Figure 3.2. The trend

across basis sets is pretty similar for all methods, with EOM-CCSD showing the largest sensitivity

whereas the functionals are rather insensitive, as for isolated molecules. For EOM-CCSD, the sets

that provide the largest errors are TZVP and 6-311(3+,3+)G** with ∆ω̄ > 0.5 eV. The reason is

that TZVP does not contain diffuse functions that are important for excitation energies, while 6-

311(3+,3+)G** contains too many diffuse functions that lead to the escaped charge problem. The
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Figure 3.2: Stacked average errors of the excitation energies (eV) calculated with all methods and
basis sets. The molecule enumeration follows the order in Figure 3.1.

best results are obtained with 6-311++G** and aug-cc-pVDZ (∆ω̄ ≃ 0.4 eV), while 6-31++G**

is slightly worse because double-ζ Pople basis sets are rather small. It would be interesting to

compare EOM-CCSD results obtained with aug-cc-pVTZ and -pVQZ sets, but these are too large

for our computational resources. However, it is likely that some of the diffuse functions in these
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large sets may contribute to the escaped charge problem as seen in 6-311(3+,3+)G*, and should be

pruned.

The remarkable result in Figure 3.2 is the worse performance of EOM-CCSD compared to all

DFT methods. Such poor performance can be only attributed to the approximations introduced in

the solvation model (assuming that the experimental values are accurate), since there is no reason

to believe that EOM-CCSD would represent the solute electronic density any worse than in gas

phase. The approximations introduced in this comparison are several: we are comparing calcu-

lated vertical excitation energies with experimental maxima of absorption, the calculations neglect

direct solute-solvent interactions like hydrogen bonds, and they lack non-electrostatic interactions.

As discussed above, the last term should not represent a considerable source of error for polar

solvents. To account for the first term, we should include dynamical solvation effects, which is

typically done by computing and averaging the excitation energies of many explicit solute and sol-

vent configurations obtained from a molecular dynamics (MD) simulation. However, using such

an approach with EOM-CCSD is particularly costly because it requires a considerable number of

CC calculations in order to obtain a proper averaging, even when a classical model is used for

the surrounding solvent molecules. The effect of hydrogen bonding, on the other hand, can be

investigated with the micro-solvation model introduced above.

Before we describe the micro-solvation results, it is instructive to compare the EOM-CCSD

error trends with those of the functionals. EOM-CCSD always overestimates experiment, consis-

tently with gas phase84 and previous LR PCM calculations102. This is an advantage since one

always knows the direction of the error when making predictions on new compounds. Only LC-

ωPBE shows the same trend, and to a large extent also CAM-B3LYP (except for Me2N−N−−O).

These are the two range-separated functionals, which display a better long range behavior. LC-

ωPBE provides a performance that is only slightly better than that of EOM-CCSD, and less basis

set dependent. CAM-B3LYP provides a better performance, with ∆ω̄ ≃ 0.25 eV. The three global

functionals provide an overall good performance in terms of total average error: 0.2 ≤ ∆ω̄ ≤ 0.3

eV, but experiment may be over- or underestimated, thus making the use of these methods for pre-
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Figure 3.3: On the left: Errors (eV) for all molecules and all methods with the two best basis sets,
aug-cc-pVDZ and 6-311++G**. On the right: the corresponding error standard deviations.

dictive studies inadvisable. Another important advantage of EOM-CCSD compared to DFT is the

smaller error spread. This is shown in Figure 3.3, which reports the signed, unscaled error for all

of the methods with the two best basis sets, aug-cc-pVDZ and 6-311++G**, and the corresponding

standard deviation. The figure shows how for EOM-CCSD the error standard deviation is 2-3 times

smaller than that for any functional.

In order to study the effect of hydrogen bonding, we first consider the 2,3−Cl NQ molecule,

whose experimental data was measured in methanol. We built micro-solvated clusters with up

to four solvent molecules forming H-bonds with the carbonyl groups. All of the micro-solvated

clusters are also embedded in PCM. We define a H-bond shift ∆HB with respect to the PCM-only

calculations:

∆HB =ωHB−ωPCM (3.2)
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Figure 3.4: Solvent shifts for the excitation energy (eV) of 2, 3-Cl NQ after adding 1, 2, and 4
explicit methanol molecules. The shifts are computed as in Eq. 3.2.

where ω represents the excitation energy, the subscript HB refers to the explicit solvent + PCM

system, and the subscript PCM refers to the PCM-only system. The results for this solute with

all of the functionals are shown in Figure 3.4 for the two basis sets that work best with EOM-

CCSD: aug-cc-pVDZ and 6-311++G**, which is in agreement with a recent work by Laurent and

coworkers.176 The figure also reports the optimized geometries for the clusters. This data shows a

decrease in the excitation energy when H-bonds are treated explicitly. The red shift is particularly

pronounced when all of the H-bond sites are saturated: the average across all functionals is 0.14

eV. An important result in this figure is that all of the functionals provide a rather consistent value

of the shift, with deviations of at most 0.02 eV from the average.
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Figure 3.5: Solvent shifts for the excitation energy (eV) of one molecule for each group in Figure
3.1 after saturation of the H-bond sites with explicit solvent molecules. The shifts are computed as
in Eq. 3.2.

Therefore, we selected one member from each of the four molecular groups and computed the

shifts ∆HB by saturating the H-bond sites (using the same two basis sets). The results, shown in

Figure 3.5 together with the optimized micro-solvated structures, confirm the trends of the first

molecule: ∆HB is always negative and its value is fairly consistent across functionals (with the

exception of the 13DMU molecule with CAM-B3LYP and the aug-cc-pVDZ basis set). The shift

can be small as for 13DMU, 0.04 eV on average, medium as for BuO and NQ, 0.1 eV on av-

erage, and rather large as for AB, 0.4 eV on average. If we apply the average shift ∆HB to the

EOM-CCSD-PCM results, we obtain a considerable improvement of the agreement with experi-

ment. This is shown in Figure 3.6, which reports the error with and without ∆HB. The corrected

EOM-CCSD-PCM results get closer to what is expected from gas phase EOM-CCSD calculations.

When the shift is small, as for 13DMU, it is an indication that dynamical effects (which originate

from not averaging over many solvent and solute configurations) are important, and an explicit
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Figure 3.6: Errors in excitation energy (eV) for EOM-CCSD-PCM with and without ∆HB for the
four molecules considered in Figure 3.5.

MD simulation may be necessary. It is noteworthy that adding a negative shift would worsen the

performance of those functionals that already underestimate experiment with a continuum-only

approach, thus providing more evidence that their performance relies on cancellation of errors.

However, one must be careful that improving the description of the solvent may in fact worsen the

DFT agreement with experiment.

3.4 Conclusions

In this work, we compare electronic excitation energies of solvated molecules computed at the

EOM-CCSD-PCM level with various basis sets and experimental results for a series of 16 molecules.

All of the solvents are polar so that electrostatic contributions play a central role. We also include

DFT results from a subset of popular global and range-separated hybrid functionals. These results

confirm some trends that are common to EOM-CCSD calculations in gas phase: a considerable

basis set dependence compared to DFT, and a consistent overestimation of experiment. The latter
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point is a positive feature, as one is always aware of the error direction when making predictions.

The error is due to the intrinsic limitations of this approach: incompleteness of the electron cor-

relation description and lack of vibronic effects. The basis set issue is more delicate than in gas

phase, as one needs to take into account the escaped charge problem so that basis sets with too

many diffuse functions perform as badly as those without diffuse functions. The overall error of

EOM-CCSD in solution is, not surprisingly, larger than in gas phase by about 0.2 eV on overage.

This is due to the additional approximations introduced by the solvation model.

To demonstrate the last point, we investigate the effect of hydrogen bonding on the excita-

tion energy with a micro-solvation + PCM approach, where the H-bond sites are saturated with

explicit solvent molecules and the entire cluster is embedded in the continuum dielectric. These

calculations, performed entirely at DFT level, uniformly show a decrease of the excitation energy,

i.e. in the direction that would increase the agreement of the CC calculations with experiment.

Furthermore, this preliminary data suggests that the EOM-CCSD performance in solution can be

improved through a computationally inexpensive route when protic solvents are involved, i.e. per-

forming a DFT geometry optimization and subsequent LR calculation at the same level of theory

for a micro-solvated + continuum solvation. Computing ∆HB as in Eq. 3.2, and adding it to the

PCM-only EOM-CCSD excitation energy provides a more reliable estimate of the excitation. It is

remarkable that ∆HB is rather independent of the nature of the functional, contrary to the absolute

value of the excitation energy itself. This observation greatly reduces the burden of the proper

choice of functional, which is one of the greatest drawbacks of modern DFT. This simple protocol

has the advantage that only one expensive EOM-CCSD calculation is required, thus minimizing

the computational effort. Obviously, H-bonds are not the only factor that can influence the excita-

tion energy, as shown by the 13DMU case, and in those situations a proper averaging over many

MD snapshots may be necessary, although we hypothesize that even in that case a shift from a

continuum-only picture can be computed employing only DFT. We are working towards verifying

this conjecture. In summary, EOM-CCSD-PCM + ∆HB(DFT) can provide reliable predictions of

excitation energies of solvated systems, with the added bonus that, contrary to DFT, one is confi-
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dent that the simulations can be improved by improving the solvation model.
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Chapter 4

Coupled Cluster Theory with Induced-Dipole Polarizable

Embedding for Ground and Excited States

(This work is taken from: Sijin Ren, Filippo Lipparini, Benedetta Mennucci, and Marco Caricato,

J. Chem. Theory Comput. 2019, 15, 4485-4496.177 Supporting information is available online.)
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Abstract

In this work, we present the theory and implementation of the coupled cluster single

and double excitations (CCSD) method combined with a classical polarizable molec-

ular mechanics force field (MMPol) based on the induced dipole model. The method

is developed to compute electronic excitation energies within the state specific (SS)

and linear response (LR) formalisms for the interaction of the quantum mechanical

and classical regions. Furthermore, we consider an approximate expression of the

correlation energy, originally developed for CCSD with implicit solvation models,

where the interaction term is linear in the coupled cluster density. This approxima-

tion allows to include the explicit contribution of the environment to the CC equations

without increasing the computational effort. The test calculations on microsolvated

systems, where the CCSD/MMPol method is compared to full CCSD calculations,

demonstrates the reliability of this computational protocol for all interaction schemes

(errors < 2%). We also show that it is important to include induced dipoles on all atom

centers of the classical region, and that too diffuse functions in the basis set may be

problematic due to too strong interaction with the environment.
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4.1 Introduction

Hybrid methods allow one to describe large systems in complex environments by treating the core

region at an accurate level of theory and the rest with a less computationally intensive method.

Typically, the core region is treated at a quantum mechanical (QM) level and the environment is

treated classically using two common strategies: 1) a continuum dielectric such as the polarizable

continuum model (PCM)28,29 for bulk solvation, or 2) atomistic molecular mechanics force fields

(MM).1,11–14 Most approaches use an effective Hamiltonian (He f f ) to define the electronic proper-

ties of the QM region embedded in the classical environment. In the most basic form, He f f includes

a term that describes the coupling of the QM region with the environment through a Coulomb inter-

action with the embedding field, often represented in MM methods by fixed point charges. Implicit

and explicit embedding models have advantages and disadvantages: the former automatically take

into account mutual polarization with the environment and are more computationally efficient be-

cause the conformational averaging of the medium is implicit in the dielectric constant, but they

cannot describe inhomogeneous environments or direct interactions with the QM region (such as

H bonding); explicit models are more realistic and can reproduce all sorts of environments, but

mutual polarization can be computationally costly and averaging over multiple configurations is

required to obtain statistically meaningful results. Thus, the proper choice of embedding depends

on the problem at hand, but it is desirable to have both in one’s computational toolbox.

Classical polarizable force fields (MMPol) can be designed in multiple ways,15–27 and this

work focuses on the induced dipoles scheme.2,4,5,104,105,133,178–183 In this QM/MMPol approach,

part or all classical centers are endowed with a point dipole, whose magnitude and direction is de-

termined by the electric field generated by the QM and MM regions (including the other induced

dipoles), thus providing mutual polarization with the system core. Some of us presented an effi-

cient implementation of this approach for electronic ground and excited states with time-dependent

density functional theory (TD-DFT).2–10

The scope of this work is to extend this implementation to coupled cluster methods,123,124

in particular the version that includes single and double excitations (CCSD) and the equation of
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motion/linear response (EOM/LR) variants for excited states.91,92 The combination of CC with in-

duced multipole embedding was first presented by Kongsted and coworkers in the context of linear

response (LR) theory.5,19,22,27,103–105 However, in this contribution we go beyond the LR formal-

ism to include state specific (SS) solvation, where the mutual polarization depends on the excited

state density rather than just on the ground state density response. More importantly, the similar-

ity of the functional form of the CCSD/MMPol and CCSD/PCM equations,95,99,103,106–109,111,112

discussed in section 4.2, allows us to employ the approximate schemes that some of us have de-

veloped for continuum models.95,99,108,110,118 In fact, one of the complications of CC/polarizable

embedding theory is the considerable increase of the cost of the calculation compared to the gas

phase theory (i.e., the prefactor of the scaling increases by a factor between 2 and 5). The approx-

imations we developed for CCSD/PCM allow us to obtain accurate results for CCSD/MMPol at

a computational cost virtually identical to that of gas phase CCSD.95,118 We test these schemes

on a series of microsolvated systems, where we can compare QM/MMPol against full QM exci-

tation energies to determine the hybrid protocol with the best compromise between accuracy and

computational cost.

The chapter is organized as follows. The theory is presented in section 4.2, the computational

details of the test calculations are described in section 4.3, the results are discussed in section 4.4,

and concluding remarks are reported in section 4.5.

4.2 Theory

In this section, we present the theory for combining a polarizable classical molecular mechanics

force field (MMPol)2,4,5,104,105,133,178–183 with the coupled cluster singles and doubles (CCSD)

method and its excited state versions, i.e., the equation of motion (EOM)92 and linear response

(LR)91 approaches. In this version of MMPol, the environment polarization is created by including

induced dipoles on specific classical sites, although very similar equations apply to other types of

polarizable force fields (e.g., fluctuating charges and higher induced multipoles). We report a

summary of the main MMPol equations for completeness, but a more detailed treatment can be
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found in Refs. 95,103,104,108,110. In the following, the “gas phase” expression is loosely defined

as the absence of MMPol embedding. In a system that is partitioned into a core region described

at a quantum mechanical (QM) level while the rest is described at MM level, the energy can be

expressed as:3,113,114

ε(P,µ) = ε
QM(P)+ε

MM(µ⃗)+ε
Coup(P, µ⃗)

= ε
QM(P)+ε

Env(P, µ⃗)

(4.1)

where P and µ⃗ indicate the electronic density and induced dipoles, respectively, εQM(P) is the en-

ergy of the QM region, εMM(µ⃗) is the energy of the MM region, and εCoup(P, µ⃗) is the interaction

energy between the QM and MM regions. The last two terms in Eq. 4.1 represent the environment

energy, εEnv(P, µ⃗). The energy also depends on the QM nuclear charges and the fixed contribu-

tions in the MM force field, e.g. point charges, but since these do not vary during the solution of

the CCSD/MMPol equations, we do not mention them explicitly. The environment energy can be

further expanded into three parts:

ε
Env(P, µ⃗) = ε

FF +ε
QM/MM(P)+ε

Pol(P, µ⃗) (4.2)

where εFF is a constant term that corresponds to the energy of the static force field, εQM/MM(P)

is the interaction energy between the QM density and the fixed MM field, and εPol(P, µ⃗) is the

polarization energy that depends on the induced dipoles:

ε
Pol(P, µ⃗) = −µ⃗µµ ⋅[E⃗EE

MM
+ E⃗EE

QM
(P)]+

1
2

µ⃗µµ ⋅TTT µ⃗µµ (4.3)

which includes the interaction of the induced dipoles with the electric field generated by the QM

and MM regions on the dipole sites, and the induced dipole/induced dipole interactions. The bold
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font collectively indicates all polarizable sites. The interaction matrix TTT takes the form:

TTT =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ααα−1
1 T 12 ⋯ T 1Npol

T 21 ααα−1
2 ⋯ T 2Npol

⋮ ⋮ ⋱ ⋮

T Npol1 T Npol2 ⋯ ααα−1
Npol

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.4)

where T i j is the classical damped interaction tensor between sites i and j, Npol is the number of

polarizable sites, and ααα i is the polarizability tensor of site i, which is taken as the isotropic value

and is a parameter of the force field. The polarization energy is computed by minimizing Eq. 4.3

with respect to the induced dipoles:

∂εPol

∂ µ⃗µµ
= TTT µ⃗µµ − E⃗EE

MM
− E⃗EE

QM
(P) = 0

Ô⇒ TTT µ⃗µµ = E⃗EE
MM

+ E⃗EE
QM

(P)

(4.5)

Combining Eq. 4.5 and Eq. 4.3, we get:

ε
Pol = −

1
2

µ⃗µµ ⋅(E⃗EE
MM

+ E⃗EE
QM

(P)) = −
1
2

µ⃗µµ ⋅ E⃗EE (4.6)

4.2.1 CCSD/MMPol Electronic Ground State

The expression for εPol in Eq. 4.6 takes a form similar to the PCM energy,28,29 with the surface

charges replaced by the induced dipoles and electrostatic potential replaced by the electrostatic

field. Because of this analogy, the CCSD/MMPol equations are basically identical to CCSD/PCM

equations, and the same approximate schemes can be employed.95,99,103,106–112,118 Thus, we only

report the key equations, and refer the reader to Refs. 95,106–110,118 for a complete derivation.

The ground state Lagrangian with MMPol embedding can be expressed as the sum of a term
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that includes the gas phase QM and the fixed MM parts, and a polarization term:

G
µ

0 = G
f ix
0 −

1
2

µ⃗µµ0 ⋅ E⃗EE0 (4.7)

This expression is quadratic in the CCSD density through the last term, and it is usually referred to

as PTED scheme (from perturbation theory energy and density). The ground state induced dipoles

and electric field, µ⃗µµ0 and E⃗EE0, are:

µ⃗µµ0 = ⟨Φ0∣(1+ Λ̂)e−T̂
µ̂µµeT̂ ∣Φ0⟩ = ⟨Φ0∣(1+ Λ̂)µ̄µµ ∣Φ0⟩ (4.8)

E⃗EE0 = ⟨Φ0∣(1+ Λ̂)e−T̂ ÊEEeT̂ ∣Φ0⟩ = ⟨Φ0∣(1+ Λ̂)ĒEE ∣Φ0⟩ (4.9)

where T̂ and and Λ̂ are the CC excitation and de-excitation operators, respectively, and the overbar

indicates similarity transformation.123,124 By separating the reference wave function contribution

to Gµ

0 from the correlation part through the normal-product form of an operator:123,124

X̂N = X̂ − ⟨Φ0∣X̂ ∣Φ0⟩ = X̂ −X0 (4.10)

Eq. 4.7 can be rewritten as:

G
µ

0 = G0+ ⟨Φ0∣(1+ Λ̂)H̄µ

N ∣Φ0⟩−
1
2

µ⃗µµN ⋅ E⃗EEN (4.11)

where G0 is the reference free energy, H̄µ

N is the QM Hamiltonian including the fixed embedding

and the dipole embedding induced by the reference density, and µ⃗µµN are the dipoles induced by the

correlation density (µ⃗µµN = µ⃗µµ0− µ⃗µµ
0).

The free energy for the ground state is evaluated by minimizing the Lagrangian in Eq. 4.11 with

respect to the T̂ and Λ̂ amplitudes, whose explicit expressions are reported in Eqs. S1-S2 of the

Supporting Information (SI). Since Eq. 4.11 is quadratic in T̂ and Λ̂ due to the induced dipole term,

and contrary to the gas phase case, Eqs. S1-S2 are coupled and must be solved simultaneously. At
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convergence Eq. 4.11 reduces to:

G
µ

0 = G0+∆ε0+
1
2

µ⃗µµN ⋅ E⃗EEN (4.12)

where

∆ε0 = ⟨Φ0∣H̄µ

N ∣Φ0⟩− µ⃗µµN ⋅ ⟨Φ
0∣ĒEEN ∣Φ0⟩ (4.13)

4.2.2 State Specific Formalism for Electronic Excited States

There are two strategies for including the polarizable embedding effect in excited state calcula-

tions, called state specific (SS) and linear response (LR) formalisms. The difference between the

two is discussed in detail in Refs. 130,131, and it can be summarized by saying that in the SS for-

malism the environment response depends on the excited state density, while in the LR formalism

it depends on the transition density. We implemented both approaches, and we report the main

equations in the following.

In the SS formalism, the excited state Lagrangian can be written in a form equivalent to that of

the ground state, where the polarizable quantities depend on the excited state density:

µ⃗µµKN = ⟨Φ0∣L̂K[µ̄µµN , R̂K]∣Φ0⟩+ ⟨Φ0∣(1+ Λ̂K)µ̄µµN ∣Φ0⟩ (4.14)

E⃗EEKN = ⟨Φ0∣L̂K[ĒEEN , R̂K]∣Φ0⟩+ ⟨Φ0∣(1+ Λ̂K)ĒEEN ∣Φ0⟩ (4.15)

where L̂K and R̂K are the left and right-hand eigenvectors of the EOM-CCSD Hamiltonian for the

K-th state. The excited state Lagrangian is:

G
µ

K = G0+ ⟨Φ0∣(1+ Λ̂K)H̄µ

N ∣Φ0⟩+ ⟨Φ0∣L̂K[H̄µ

N , R̂K]∣Φ0⟩

+ωK (1− ⟨Φ0∣L̂KR̂K ∣Φ0⟩)−
1
2

µ⃗µµKN ⋅ E⃗EEKN

(4.16)

where ωK is the eigenvalue associated with L̂K and R̂K . The free energy for the K-th excited state
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can be computed by minimizing the Lagrangian in Eq. 4.16 with respect to all sets of amplitudes,

which are all coupled through the environment term that is quadratic in the excited state density.

The explicit expressions for the amplitude equations are reported in Eqs. S3-S7 of the SI. At

convergence, Eq. 4.16 reduces to:

G
µ

K = G0+∆εK +ωK +
1
2

µ⃗µµKN ⋅ E⃗EEKN (4.17)

where:

∆εK = ⟨Φ0∣H̄µ

N ∣Φ0⟩− µ⃗µµKN ⋅ ⟨Φ
0∣ĒEEN ∣Φ0⟩ (4.18)

Since all amplitude equations are coupled in the excited state Lagrangian, the T̂ amplitudes are

different from those of the ground state. Therefore, the transition energy from the ground to the

K-th excited state must be evaluated through two separate calculations as the difference between

GK in Eq. 4.17 and G0 in Eq. 4.12.

The PTED formalism described in section 4.2.2 is computationally expensive because all the

amplitude equations must be solved simultaneously. To reduce the computational cost, similar

to EOM-CCSD/PCM,95 we introduce an approximate free energy functional for CCSD/MMPol,

called PTES scheme, where S stands for singles. The goal is to decouple the ground state from

the excited state equations, similar to gas phase EOM-CCSD. We split µ⃗µµKN in Eq. 4.16 into three

contributions:

µ⃗µµKN = µ⃗µµ
K
N + µ⃗µµ

T
N + µ⃗µµ

Λ

N (4.19)
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defined as:

µ⃗µµ
K
N = ⟨Φ0∣L̂K[µ̄µµN , R̂K]∣Φ0⟩

µ⃗µµ
T
N = ⟨Φ0∣µ̄µµN ∣Φ0⟩

µ⃗µµ
Λ

N = ⟨Φ0∣Λ̂K µ̄µµN ∣Φ0⟩

(4.20)

If the same separation is performed for E⃗EEKN , the last term in Eq. 4.16 can be written as:

−
1
2

µ⃗µµNK ⋅ E⃗EENK =−
1
2

µ⃗µµ
K
N ⋅ E⃗EE

K
N − µ⃗µµ

K
N ⋅ E⃗EE

T
N −

1
2

µ⃗µµ
T
N ⋅ E⃗EE

T
N

− µ⃗µµ
T
N ⋅ E⃗EE

Λ

N −
1
2

µ⃗µµ
Λ

N ⋅ E⃗EE
Λ

N − µ⃗µµ
Λ

N ⋅ E⃗EE
K
N

(4.21)

The last two terms in Eq. 4.21 are responsible for coupling the ground and excited state equations,

and they are neglected in the PTES scheme, so that the approximate Lagrangian is:

G
S,µ
K = G0+ ⟨Φ0∣L̂K[H̄µ

N , R̂K]∣Φ0⟩+ ⟨Φ0∣(1+ Λ̂K)H̄µ

N ∣Φ0⟩

+ωK(1− ⟨Φ0∣L̂KR̂K ∣Φ0⟩)−
1
2

µ⃗µµ
T K
N ⋅ E⃗EE

T K
N − µ⃗µµ

T
N ⋅ E⃗EE

Λ

N

(4.22)

where µ⃗µµ
T K
N = µ⃗µµ

T
N + µ⃗µµ

K
N and ET K

N = E⃗EE
T
N + E⃗EE

K
N . The partial derivative equation for the T̂ amplitudes in

the PTES scheme can be found in Eqs. S8 of the SI. The R̂K and L̂K equations are similar to those

in the PTED with µ⃗µµKN being replaced with µ⃗µµ
T K
N . At convergence, GS,µ

K in Eq. 4.22 can be reduced

to:

G
S,µ
K = GS

0 +ωK +
1
2

µ⃗µµ
K
N ⋅ E⃗EE

K
N (4.23)

where GS
0 is the ground state PTES energy:

GS
0 = G

0+ ⟨Φ0∣H̄µ

N ∣Φ0⟩−
1
2

µ⃗µµ
T
N ⋅ E⃗EE

T
N (4.24)

It is important to note that in the ground state, the equations for the T̂ and Λ̂ amplitudes are also
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decoupled in the PTES scheme, so that the computational cost is virtually equivalent to that of a

gas phase calculation. For excited states with the SS formalism, however, the R̂K and L̂K equations

are still coupled because of the first term on the right-hand side of Eq. 4.21. Nevertheless, since the

ground and excited state amplitude equations are decoupled, excitation energies can be computed

in a single calculation.

4.2.3 Linear Response Formalism for Electronic Excited States

In the LR formalism, excitation energies are obtained as the poles of the LR function, which

are calculated from the right or left-hand diagonalization of the Jacobian matrix. In gas phase,

LR-CCSD and EOM-CCSD provide the same excitation energies but different transition proper-

ties.93,94,125 In the presence of a polarizable environment, LR-CCSD and EOM-CCSD differ also

in the excitation energy. The derivation of the CC/MMPol LR function follows that of the CC/PCM

method, and more details can be in found in Refs. 98,99,103,107,108,110–112. For the right-hand

diagonalization, the transition energy ωK is found by solving:

⟨Φn∣[(H̄µ

N − µ⃗µµN ⋅ ĒEEN), R̂K]∣Φ0⟩−⟨Φn∣µ⃗µµ
RK
N ⋅ ĒEEN ∣Φ0⟩ =ωK ⟨Φn∣R̂K ∣Φ0⟩ (4.25)

where R̂K is the right-hand eigenvector and Φn is an excited Slater determinant. From the left-hand

side, we have:

⟨Φ0∣L̂K[(H̄µ

N − µ⃗µµN ⋅ ĒEEN), τ̂n]∣Φ
0⟩−⟨Φ0∣(1+ Λ̂)[µ⃗µµ

LK
N ⋅ ĒEEN , τ̂n]∣Φ

0⟩ =ωK ⟨Φ0∣L̂K ∣Φn⟩ (4.26)

where L̂K is the left-hand eigenvector and τ̂n is an elementary excitation operator: τ̂n ∣Φ0⟩ = ∣Φn⟩.

The µ⃗µµ
RK
N and µ⃗µµ

LK
N dipoles should be interpreted as induced transition dipoles:

µ⃗µµ
RK
N = ⟨Φ0∣(1+ Λ̂)[µ̄µµN , R̂K]∣Φ0⟩ = µ⃗µµ

T RK
N + µ⃗µµ

ΛRK
N (4.27)

µ⃗µµ
LK
N = ⟨Φ0∣L̂K µ̄µµN ∣Φ0⟩ (4.28)
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Although the results in this work concentrate on transition energies, we also derived and imple-

mented LR transition properties, following the equations for CCSD/PCM. 98,99,103,107,108,110–

112

The PTES approximation can be also introduced for the LR formalism, where the right and

left-hand diagonalization equations become:

⟨Φn∣[(H̄µ

N − µ⃗µµ
T
N ⋅ ĒEEN), R̂K]∣Φ0⟩−⟨Φn∣µ⃗µµ

T RK
N ⋅ ĒEEN ∣Φ0⟩ =ωK ⟨Φn∣R̂K ∣Φ0⟩ (4.29)

⟨Φ0∣L̂K[(H̄µ

N − µ⃗µµ
T
N ⋅ ĒEEN),τn]∣Φ

0⟩−⟨Φ0∣[µ⃗µµ
LK
N ⋅ ĒEEN ,τn]∣Φ

0⟩ =ωK ⟨Φ0∣L̂K ∣Φn⟩ (4.30)

The advantage of the PTES over the PTED scheme for the LR formalism is due to the fact that in

the former the ground state T̂ and Λ̂ equations are decoupled. Thus, LR-CCSD/MMPol with the

LR-PTES scheme is virtually equal in cost to the corresponding gas phase method.

In terms of overall computational effort, the evaluation of all induced dipole terms for ground

and excited state equations (both SS and LR) scale as O(N5), where N is the basis set size, because

that is the cost to evaluate the correlation ground, excited state, or transition densities. The cost of

including the induced dipole terms in the CCSD equations is also no larger than O(N5), and these

terms can be usually folded into contractions already necessary for the gas phase equations. Thus,

these terms do not directly increase the cost of the CCSD equations, which scale as O(N6). The

cost increase comes from the coupling of the amplitude equations, which is not a feature of the gas

phase method. According to the discussion above, the four excited state schemes can be ranked in

terms of computational cost as: SS-PTED > SS-PTES > LR-PTED > LR-PTES = gas phase.

4.3 Computational Details

All ground state geometries were optimized using the B3LYP hybrid functional158 with the aug-

cc-pVDZ basis set.167 These structures were then used for the excitation energy calculations with

all levels of theory in order to avoid geometrical effects on the results. The excitation energies
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are computed with the time-dependent (TD) B3LYP,151–153 the configuration interaction singles

(CIS),184 and the EOM/LR-CCSD methods91,92 (in the following, we will use only the EOM-

CCSD acronym for simplicity, as the use of the EOM or LR approaches should be clear from the

context). The QM/MMPol calculations treat the solute at QM level and the solvent molecules with

the Amber force field185 plus the induced dipoles described in section 4.2. The theory and im-

plementation for the evaluation of excitation energies with TD-B3LYP/MMPol and CIS/MMPol

are described in Refs. 2,3,5. The results in the next sections are discussed in terms of the per-

formance of the QM/MMPol approach compared to the corresponding full QM calculation rather

than with experiment. This means that the comparison is not, for instance, between the EOM-

CCSD and the CIS results, but rather full-EOM-CCSD vs. EOM-CCSD/MMPol and full-CIS vs.

CIS/MMPol. For CCSD, we test the four computational schemes described in the previous section:

SS-PTED, SS-PTES, LR-PTED, and LR-PTES. We utilize the same five basis sets from our previ-

ous benchmark paper for EOM-CCSD/PCM:132 TZVP, aug-cc-pVDZ, 6-31++G**, 6-311++G**,

6-311(3+,3+)G**, plus cc-PVDZ. These basis sets include a variety of polarization and diffuse

functions, and they can give us information on how well the classical model can reproduce sol-

vent polarization. We consider two solvents, water and chloroform, where the induced dipoles

are located on each atomic center (MMPol1). For water, we also consider a version where there

is only one induced dipole for the whole molecule, located at the oxygen atom (MMPol2). The

polarizability parameters for the induced dipoles are obtained from Refs. 178,180,182,183. All

calculations were performed with a development version of the GAUSSIAN suite of programs.170

4.4 Results and Discussion

We use three test molecules for the benchmarking of the QM/MMPol methods: formaldehyde,

azobenzene, and acrolein. These compounds are surrounded by 2-6 water or 2 chloroform molecules,

so that we can investigate the MMPol performance with an increasing number of polarizable sites

and with different solvents. Since the full-EOM-CCSD calculations are computationally expen-

sive, we arranged the solvent in a symmetrical fashion around the solute. The structures of the
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clusters and their point group symmetry are reported in Figure 4.1.

Figure 4.1: Test systems: formaldehyde, azobenzene, and acrolein microsolvated with water and
chloroform molecules. The solute molecules are in "ball and stick" form, and the solvent molecules
are in "tube" form. The point group symmetry of each system (solute + solvent molecules) is shown
in parentheses.

In the following, the results are shown in a series of bar plots where we compare the rela-

tive solvatochromic shift computed with the full-QM methods and the corresponding QM/MMPol

methods (panel a), and the relative full-QM shift with the relative errors for the QM/MMPol meth-

ods (panel b). Note that the relative solvatochromic shift is defined slightly differently for the two

sets of bar plots so that the denominator is the same across plots in the same panel (the expressions

are reported explicitly in the figures). The first set of plots carries visual information about the

ability of the force field to reproduce the solvatochromic shift, while the second set of plots shows

whether the relative error for the hybrid approach is indeed smaller than the solvatochromic shift
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itself. These plots also include the data computed with only the non-polarizable part of the classical

field (QM/Q), which provides an idea on the importance of the induced dipole contributions. The

CCSD/MMPol results reported in this series of plots are computed with the LR-PTED method.

Another series of bar plots reports the relative error for the four EOM-CCSD/MMPol schemes

compared to the full-EOM-CCSD calculations. All transition energies are reported in Table S1-S9

of the SI.

Figure 4.2: Relative solvatochromic shift (a) and relative error (b) for the excitation energy of
formaldehyde + 2H2O for all methods and basis sets. The subscript X in the formulas on the side
refers to the red label in the plots.

The comparisons of the methods for formaldehyde with two water molecules are shown in

Figures 4.2-4.3. We consider the lowest excitation, which has n → π∗ character and is dipole-

forbidden for perfectly symmetrical cases. The excitation energies and oscillator strengths for all

method combinations are reported in Table S2 of the SI. For reference here, the EOM-CCSD/aug-

cc-pVDZ transition energy for the isolated formaldehyde is 4.1 eV and f = 0.00. From a cursory
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Figure 4.3: Relative errors for the excitation energy of formaldehyde + 2H2O using the four EOM-
CCSD/MMPol schemes for all basis sets.

inspection of the relative shifts and relative errors in Figure 4.2, it is evident that the MMPol1

method is able to reproduce the full-QM results rather well for all QM methods. Using only the

non-polarizable part of the force field already provides good results, but the inclusion of the in-

duced dipoles on each atomic site reduces the error to < 1% for all methods and basis sets except for

the smallest one (cc-pVDZ). The MMPol2 option improves the performance compared to QM/Q,

but the improvement is somewhat small considering that the difference in computational cost be-

tween MMPol1 and MMPol2 is negligible. The largest errors are with CIS, not surprisingly since

this method is the least flexible in terms of wave function polarization. The MMPol approach

works equally well when combined with DFT and CC methods. The best overall results are ob-

tained with the basis sets that include a reasonable amount of diffuse functions. The lack of diffuse

functions (cc-pVDZ), or too many diffuse functions (6-311(3+,3+)G**) lead to poor performance.

This trend is consistent with our previous findings for the EOM-CCSD/PCM method,132 and it

can be explained by realizing that diffuse functions are necessary for an accurate representation

of excited states, but too many diffuse functions create issues due to the close contact of the QM

density and the classical region. For this case, the TZVP basis set performs rather well, prob-

ably because the triple-ζ functions provide enough flexibility to the electron density. The four

EOM-CCSD/MMPol1 solvation schemes are compared in Figure 4.3. The relative errors are be-
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low 2% with all schemes and basis sets except the worst two choices described above (cc-pVDZ

and 6-311(3+,3+)G**), and the LR scheme provides the best performance with errors < 0.5%. The

difference between PTED and PTES is very small for the LR formalism, and smaller than the rel-

ative error for the SS formalism (the PTES/PTED difference is expected to be larger for the latter

formalism because it takes into account the full polarization of the excited state).

Figure 4.4: Relative solvatochromic shift (a) and relative error (b) for the excitation energy of
formaldehyde + 4H2O for all methods and basis sets. The subscript X in the formulas on the side
refers to the red label in the plots.

The results for formaldehyde with four water molecules are shown in Figures 4.4-4.5. These

results refer to the same dark transition as in the previous example. The solvatochromic shift (4%-

6%) is smaller than with two solvent molecules because the second set of solvent units is positioned

away from the solute, thus reducing the interaction with the closer solvent units. The QM/MMPol

calculations reproduce this trend with all QM levels of theory and with all classical embedding

models. MMPol1 has again the smallest errors, see Figure 4.4. The relative error is basically the

same as that with two solvent molecules. All basis sets provide good results except for cc-pVDZ
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Figure 4.5: Relative errors for the excitation energy of formaldehyde + 4H2O using the four EOM-
CCSD/MMPol schemes for all basis sets.

and 6-311(3+,3+)G** as in the previous case, and the best performance is obtained with aug-cc-

pVDZ. The difference between the various EOM-CCSD/MMPol computational schemes, shown

in Figure 4.5, is rather similar to the case with two water molecules: the LR formalism provides

errors < 1% with all basis sets except cc-pVDZ, and the difference between PTED and PTES is

negligible; the errors with the SS formalism are larger but still < 2% with the PTED scheme, and

around 2% with the PTES scheme.

The microsolvated azobenzene cluster has 4 water molecules H-bonded to the N centers, see

Figure 4.1. We selected the lowest π → π∗ (bright) excitation for this compound; the EOM-

CCSD/aug-cc-pVDZ calculation for the isolated molecule predicts ω = 4.4 eV and f = 0.76, while

the rest are reported in Table S4 of the SI. The data on solvatochromic shifts and relative errors are

reported in Figures 4.6-4.7. The red-shift is well reproduced by all methods, with negligible errors

with MMPol1 for B3LYP and EOM-CCSD and with MMPol2 for CIS (the latter trend is probably

due to cancellation of errors, given the lack of flexibility of both the QM method and the MMPol2

scheme). The relative errors of MMPol1 compared to those from the QM/Q calculations empha-

size the importance of polarization in the force field. Contrary to formaldehyde, for azobenzene

the SS-PTED scheme has the best performance, as shown in Figure 4.7. However, the errors are

so small with most basis sets (< 0.5%) that the difference between the SS and LR formalisms is
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Figure 4.6: Relative solvatochromic shift (a) and relative error (b) for the excitation energy of
azobenzene + 4H2O for all methods and basis sets. The subscript X in the formulas on the side
refers to the red label in the plots.

Figure 4.7: Relative errors for the excitation energy of azobenzene + 4H2O using the four EOM-
CCSD/MMPol schemes for all basis sets.

effectively negligible.

For acrolein, we consider another bright π → π∗ transition (ω = 6.8 eV with f = 0.29 at EOM-

CCSD/aug-cc-pVDZ level for the isolated molecule). This compound is surrounded by two, four,
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Figure 4.8: Panel a: solvatochromic shifts in the excitation energies of acrolein with two to six
water molecules (N) computed at EOM-CCSD/aug-cc-pVDZ level. Panel b: corresponding rela-
tive errors for the four EOM-CCSD/MMPol1 schemes. For the gas phase solute ω = 6.8 eV and
f = 0.29.
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and six water molecules as shown in Figure 4.1. The usual bar graphs for this test case are re-

ported in Figures S1-S6 in the SI. The trends are very similar to those for the previous compounds:

MMPol1 provides the best agreement with the full-QM calculations, and aug-cc-pVDZ performs

best among the various basis sets. Thus, in Figure 4.8 we report the actual solvatochromic shifts

with EOM-CCSD/aug-cc-pVDZ, and the relative errors for the four CCSD/MMPol schemes as a

function of the number of water molecules. All choices of force field reproduce the correct sign

of the shift, but only MMPol1 reproduces the full-QM results both qualitatively and quantitatively.

MMPol2 produces the wrong trend for N = 4, while the non-polarizable option fails to reproduce

the trend for N = 4, 6. All four coupling schemes show small errors (Figure 4.8b), with the best

performance obtained with the LR formalism and small differences between the PTES and PTED

schemes.

Figure 4.9: Relative solvatochromic shift (a) and relative error (b) for the excitation energy of
formaldehyde + 2CHCl3 for all methods and basis sets. The subscript X in the formulas on the
side refers to the red label in the plots.

To test the performance of the polarizable force field with a different solvent, we performed
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calculations for formaldehyde and acrolein surrounded by chloroform, as shown in Figure 4.1.

Given the size of CHCl3, we limited the number of solvent molecules to two, and we considered

only the 6-311++G**, TZVP, and aug-cc-pVDZ basis sets. The formaldehyde plots are in Figures

4.9-4.10. The solvatochromic shift for the full QM calculation is smaller than with water, since

chloroform is a less polar solvent. The QM/Q calculations perform slightly better than QM/MM-

Pol1, as shown in Figure 4.9b. However, the difference between the MMPol1 and Q results is

significant, as shown in panel a of the same figure, indicating that polarization effects on the sol-

vent are non-negligible. Thus, the better performance of the non-polarizable force field is likely

fortuitous. Furthermore, the QM/MMPol1 errors are < 1%, thus overall negligible. The compar-

ison between the CC schemes shows a slightly better performance of the SS formalism, but the

largest errors with LR are still < 1%.

The results for acrolein with chloroform are shown in Figures 4.11-4.12. Also in this case, the

overall solvatochromic shift is smaller than with water, compare with Figures S1-S6 in the SI, but

the agreement with the full QM calculations is considerably better with the polarizable force field,

see Figure 4.11. The best performance is obtained with aug-cc-pVDZ, and the plot in Figure 4.12

indicates that the LR formalism provides better results than SS, although the difference between

all schemes is again small.

4.5 Conclusions

In this work, we present an implementation of CCSD with a polarizable force field based on the

induced dipole model for ground and electronic excited states. We test different formalisms and

approximations for the correlation part of the embedding, based on schemes that some of us de-

veloped for CCSD with implicit solvation models. We utilize microsolvated molecules to compare

the QM/MMPol simulations with the corresponding full QM calculations (including lower level

methods such as TD-B3LYP and CIS) employing six different basis sets, two MMPol models, and

two solvents (water and chloroform). The results show that this flavor of hybrid QM/MMPol is

able to reproduce the relative shift in transition energies due to the environment with good accuracy
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Figure 4.10: Relative errors for the excitation energy of formaldehyde + 2CHCl3 using the four
EOM-CCSD/MMPol schemes for all basis sets.

Figure 4.11: Relative solvatochromic shift (a) and relative error (b) for the excitation energy of
acrolein + 2CHCl3 for all methods and basis sets. The subscript X in the formulas on the side
refers to the red label in the plots.
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Figure 4.12: Relative errors for the excitation energy of acrolein + 2CHCl3 using the four EOM-
CCSD/MMPol schemes for all basis sets.

for all levels of theory and most basis sets. In fact, a comparison with non-polarizable embedding

shows the importance of including mutual polarization between the QM region and the environ-

ment. The simulations show similar performance with multiple basis sets, except for those with no

diffuse functions (cc-pVDZ) that are important for describing excited states, and too many diffuse

functions (6-311(3+,3+)G**) where the QM density is too close to the classical region. With the

best basis set, aug-cc-pVDZ, the errors are consistently below 2% with any combination of level

of theory and embedding scheme. The QM/MMPol approach works equally well with both sol-

vents tested, water and chloroform, as long as induced dipoles are located on each atomic center.

The four CCSD/MMPol embedding schemes (LR-PTES, LR-PTED, SS-PTES, and LR-PTED)

perform similarly well for all cases, with the LR or SS formalisms being the best in different situ-

ations. Given the different computational cost and comparable performance, the best compromise

is obtained with the LR-PTES scheme, which is equivalent in cost to a gas phase calculation.

The tests presented in this work show that CCSD/MMPol with the LR-PTES scheme is a

promising tool to study chromophores in complex, non-homogeneous environments. Future stud-

ies will apply the method to more realistic systems for a comparison with experimental results.
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4.6 Supporting Information

The Supporting Information includes the equations of the partial derivatives of the Lagrangians for

(EOM-)CCSD/MMPol, the excitation energies and oscillator strengths for all systems studied, the

bar plots for acrolein with 2-6 water molecules, and the optimized geometries for all test systems.
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Chapter 5

Induced-Dipole Polarizable Embedding for the

ONIOM(QM:QM) Hybrid Method
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Abstract

In this chapter, we develop a new polarizable embedding for ONIOM (our own n-

layered integrated molecular orbital and molecular mechanics), and apply it to the

calculation of vertical excitation energies. In ONIOM without electronic embedding

(EE), commonly called mechanical embedding (ME), the model subcalcualtions do

not experience any polarization effects from the rest of the system. Since this effect

may be important, EE is introduced in two ways: 1) fixed point-charges embedding

(QE), 2) polarizable embedding (PQE) based on fixed charges and induced dipoles.

The charges are computed with a fitting method previously developed in our group

specifically to address overpolarization issues at the boundary. The PQE is based

on the same idea of classical polarizable force field (MMPol), but the atomic polar-

izabilities (the central parameter) are computed on-the-fly. The ONIOM excitation

energies with and without embedding are compared against the target values, (i.e.,

the excitation energies obtained from the calculation with the higher level of quantum

mechanical method on the entire system). The method is tested on several related

molecules: betaine-30 (B30), which has been used to define a polarity scale for sol-

vents due to the sensitivity of its absorption spectrum to the environment, and the

functionalized analogs with polar substituent groups. Preliminary results show that

the PQE performs better than QE and ME, especially for the cases with polar groups,

and it represent a promising approach for performing reliable and efficient calculations

of excitation energies with the ONIOM (QM:QM) hybrid method.
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5.1 Introduction

Accurate modeling of excited state properties of large systems is important in different areas of

research. For example, in energy science, these simulations are used to understand reactions oc-

curring in photovoltaic devices based on organic chromophores.82,83 Other examples include exci-

tations occurring in biological systems, light-sensitive drug molecules, and photocatalysts. Hybrid

methods allow efficient modeling of large systems by combining multiple computational methods

of different cost and accuracy to study systems that are otherwise too large for standard quantum

mechanical (QM) simulations. When applying a hybrid method, the system is partitioned in a core

region where the process occurs, (e.g. a reaction center), which is treated with a more accurate QM

method, and the rest of the system (environment), which is treated with a less accurate but more

computationally efficient method. This allows us to effectively utilize limited computing resource

to model process with high accuracy, while still take into account the effects from the rest of the

system.

One of the most popular treatment for the environment is with classical physics methods.1,11–14

A classical method allows one to model the effects of a large section of the environment with a

relatively modest additional computational cost. However, in cases where a classical treatment

of the environment is not sufficient for accurately describing complex interactions with the core

region, the outer layers must be treated at QM level. A typical example is a large chromophore

with active substituent groups.

Describing the interactions between QM regions is important but challenging. There are vari-

ous approaches being developed in the field, and they can be categorized into additive and subtrac-

tive. In an additive approach, the interaction energy (Eint) between the high and low QM levels is

computed directly, whereas in a subtractive approach, Eint is obtained indirectly with an extrapo-

lation formula. Typical choices of low level QM methods are based on density functional theory

(DFT) or semiempirical wave function (WF) theory. One of the most successful examples of ad-

ditive QM/QM hybrid method is DFT-in-DFT,31–44 where a subsystem is selected and embedded

in the density of the rest of the system. The most popular subtractive method is ONIOM (our
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own n-layered integrated molecular orbital and molecular mechanics),69–74 which can be used as a

QM/molecular mechanics (MM) or QM/QM method. One of the distinct advantages of ONIOM is

its intrinsic error canceling mechanism, which reduces the burden for a perfect choice of low level

method.

In ONIOM, the entire structure is usually called the "real" system, and the core region is called

the "model" system. A 2-layered ONIOM requires three subcalcualtions: 1) a low-level calculation

on the real system (rl) 2) a high-level calculation on the model (mh), and 3) a low-level calculation

on the model (ml). These are combined to obtain the total energy with an extrapolation formula.

The same extrapolation method also applies to excitation energies. If no electronic embedding (EE)

is used, the ONIOM subcalculations are independent, and the model subcalculations do not feel the

existence of the rest of the system. To recover this effect, the model calculations can be performed

with the EE obtained from the real system subcalculation. The Raghavachari group has made great

contributions to ONIOM-EE methods for ground state problems.74,78–81 One of the basic form of

EE is based on fixed point charges (QE) placed at the positions of the atoms in the real system

surrounding the model region. One possible issue with QE is the unphysical overpolarization of

the model system electronic density at the boundary region, caused by the capping atoms being too

close to the embedding charges. To address this issue, our group developed a method for creating

embedding charges specifically fitted to minimize such overpolarization.186

However, in QE, the embedding charges are not polarizable, thus, the environment is unable to

reach mutual polarization with the core region. A typical approach in classical mechanics to create

polarizable force field is to use induced dipoles, which adjust to the presence of the QM electron

density. These classical polarizable force fields (MMPol) have been combined with various levels

of theory.5,19,22,27,104,105 In this work, we adapt this approach to ONIOM(QM:QM)-EE methods

by computing the required parameters (i.e., atomic polarizabilities) on-the-fly. We test this new

approach for excitation energies against standard ONIOM with no embedding (called mechanical

embedding, ME), and with ONIOM-QE. Preliminary results show that the PQE approach performs

better than QE and ME, especially for the cases with polar substituent groups around the model
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region.

The rest of the chapter is organized as follows. The theory is presented in section 5.2, the

computational details of the test calculations are described in section 5.3, the results are discussed

in section 5.4, and conclusions are reported in section 5.5.

5.2 Theory

In this section, we discuss a new approach to include polarizable embedding in ONIOM(QM:QM).

For completeness, we first review the ONIOM method. In a 2-layered case, the entire system (real)

is partitioned as shown in Figure 5.1.69–74 The core region (called "model" system) is capped

Figure 5.1: Illustration of the ONIOM partitioning of a molecule.

with link atoms, and is treated at a high level of theory. The ONIOM energy is defined with an

extrapolation formula that combines the energies from separate subcalculations:

EONIOM = E low
real +Ehigh

model −E low
model (5.1)

where high and low represent the levels of theory, and real and model refer to the partition shown

in Figure 5.1. For excited states, the ONIOM transition energy is obtained with a similar extrapo-

lation:

ωONIOM =ω
low
real +ω

high
model −ω

low
model (5.2)
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In standard ONIOM-ME calculations, the model subcalculations do not include polarization effect

from the rest of the system, thus, the individual subcalculations are independent from each other.

In contrast, in ONIOM-EE, the model system feels the effect of the environment through the em-

bedding. In this work, we consider a fixed embedding through a set of point charges (QE), and a

polarizable embedding that also includes induced dipoles (PQE).

In the QE model, fixed point charges are placed at the positions of the atoms in the environment.

However, these charges may create unphysical overpolarization of the electronic density at the

boundary region. To address this issue, our group previously developed a method for creating

an improved charge distribution to minimize this overpolarization, by fitting the charges on the

electrostatic potential (ESP) of the entire structure in the presence of the link atoms. A more

detailed discussion of this approach can be found in Ref. 186.

The QE is a fixed embedding computed with the ground state density, and it cannot respond

to changes induced by an electronic excitation. In order to add this flexibility to the embedding

field, we borrow an idea used in classical polarizable force field (MMPol).5,19,22,27,104,105 We en-

dow the embedding sites (where the fixed charges are located) with a set of induced dipoles. Here,

we review the key equations for this approach for completeness, and a detailed derivation of the

QM/MMPol method can be found in Refs. 5,19,22,27,104,105. The embedding dipoles are com-

puted through a minimization of the polarization energy with respect to the induced dipoles:

∂EPol

∂ µ⃗µµ
= TTT µ⃗µµ − E⃗EE

MM
− E⃗EE

QM
(P) = 0

Ô⇒ TTT µ⃗µµ = E⃗EE
MM

+ E⃗EE
QM

(P)

(5.3)

where TTT is the interaction matrix, which takes the form:

TTT =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ααα−1
1 T 12 ⋯ T 1Npol

T 21 ααα−1
2 ⋯ T 2Npol

⋮ ⋮ ⋱ ⋮

T Npol1 T Npol2 ⋯ ααα−1
Npol

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.4)
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T i j is the classical damped interaction tensor between sites i and j, which are the positions of the

atoms in the environment, Npol is the number of polarizable sites, and ααα i is the polarizability tensor

of site i, which is replaced by the isotropic value for simplicity:

αi =
1
3
[αxx(i)+αyy(i)+αzz(i)] (5.5)

For an environment that can be subdivided in individual fragments, such as a solvent or a

protein, we could use the same set of pre-calculated atomic polarizabilities as in a classical force

field. However, when we have a generic chromophore with novel substituent groups, no parameters

are generally available. For these cases, we need to calculate the atomic polarizability parameters

on-the-fly.

We propose a strategy to obtain atomic polarizability parameters based on a decomposition

of the polarizability of the entire molecule (i.e., the real system), computed at the low level of

theory. Such an approach is completely general, and it allows us to obtain these parameters with

minimum computational effort. The molecular polarizability is computed with standard linear

response techniques,187 as a contraction between the dipole matrix (µ i
λσ

) and the density matrix

(Pi
λσ

). For instance, for xx element we have:

αxx =∑
λσ

⟨λ ∣µ̂x∣σ⟩Px
λσ

=∑
λσ

µ
x
λσ

Px
λσ

(5.6)

where λ and σ represent atomic orbitals (AOs), and the summation runs over all AOs in the

molecule. Therefore, µ i
λσ

and Pi
λσ

are square matrices that can be split according to the atoms

where the AO functions are located. Using a water molecule as an example, the µx
λσ

and Px
λσ

matrices in the x direction take the form shown in Figure 5.2, where the elements in the diagonal

blocks represent the contributions from the AOs of each atom, and in the off-diagonal blocks λ
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Figure 5.2: A pictorial representation of the µx
λσ

and Px
λσ

matrices for a water molecule.

and σ belong to different atoms. The atomic polarizability for an atom A is computed as:

αxx(A) =∑
λσ∈A

⟨λ ∣µ̂x∣σ⟩Px
λσ

+
1
2
∑
λ∈A
σ∈B

⟨λ ∣µ̂x∣σ⟩Px
λσ

(5.7)

The first term is the contraction for the diagonal block corresponding to atom A, see Figure 5.2. The

second term corresponds to the contraction of the off-diagonal blocks, where we assign half of the

contribution to atom A and the other half to atom B, to avoid double-counting. Using this method,

the sum of all atomic polarizabilities equals the molecular polarizability (αxx =∑A αxx(A)). For

the y and z directions, αyy(A) and αzz(A) are obtained in the same way.

Once the atomic polarizabilities are computed, we can perform a ONIOM-PQE calculation

by making use of the Gaussian170 program by the Mennucci group. Although there are no MM

force field parameters for a generic chromofore, the energy expressions for ONIOM in Eq. 5.1

and 5.2 lead to a complete cancellation of the fixed MM force field contributions in the two model

subcalculations.

5.3 Computational Details

All geometries were optimized using the B3LYP hybrid functional151–153,158 with the aug-cc-

pVDZ basis set.167 For the excited state calculations, we used the CAM-B3LYP functional with

the 6-311++G** basis set as the high level. The entire system treated with this method provides

the target values used as references. For the low level, we used the configuration interaction sin-
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gles (CIS)184 method or the B3LYP functional with the 3-21G basis set. Therefore, we considered

two sets of method combinations for ONIOM: CAM-B3LYP/6-311++G**:CIS/3-21G and CAM-

B3LYP/6-311++G**:B3LYP/3-21G. The method in Ref. 186 is used to evaluate the QE scheme.

For the PQE embedding, we perform QM/MMPol calculations using the Amber185 force field with

QE charges. As explained in the previous section, the choice of force field is irrelevant, given that

it is contributions to the model subcalculations cancel out. The only requirement is that the chosen

force field is defined for all atoms. The atomic polarizability parameters for the PQE embedding

were obtained as discussed in section 5.2, by performing a molecular polarizability calculation on

the entire molecule at the low level, and separating the diagonal elements in atomic contributions

as in Eq. 5.7. All calculations were performed with a development version of the GAUSSIAN

suite of programs.170

5.4 Results and Discussion

We consider four test molecules, shown in Figure 5.3: betaine-30 (B30) and three functionalized

analogs with polar substituent groups. The model is chosen as the two central rings (in "ball

and stick" form in the figure). We compare ONIOM-ME and ONIOM-EE, the latter considersing

various EE models: 1) fixed point charge embedding (QE) 2) polarizable embedding (PQE), which

includes induced dipoles, and for testing purposes, we also consider 3) polarizable embedding

(PE), where fixed point charges are set to zero. For all test cases, the excitation energies are

compared with the target calculations (i.e., the entire molecule calculated with the high level:

CAM-B3LYP/6-311++G**).

The results for 1 (B30) are shown in Table 5.1. For B3LYP as low level, QE performs the best

at reproducing the target excitation energy with a positive error of 0.04 eV, whereas ME performs

the worst with a negative error of -0.29 eV. PQE gives an error of 0.18 eV, which is 0.14 eV larger

than that of QE but 0.11 eV smaller in magnitude than that of ME. To test explicitly the effect of

the induced dipoles, we set the fixed point charges to zero (PE). It is shown that PE has a same error

sign as ME, but it is 0.07 eV smaller. This indicates that the effect of the induced dipoles is much
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Figure 5.3: stuctures of all test cases

smaller than that of the point charges. For CIS as low level, PE and ME give the smallest error,

opposite in sign compared to both QE and PQE, and PE works best. For B3LYP, the ML excitation

energies are affected only slightly by the electronic embedding (changes < 0.05 eV), while for CIS

there is a significant shift (1 eV) in excitation energies going from ME to PQE. This is consistent

also in the following cases. The MH excitation energies increase with both the B3LYP and CIS

embeddings with a 0.5 eV difference in excitation energies between ME and PQE.

PQE QE PE ME
B3LYP

RL 1.48
MH 2.35 2.22 1.92 1.88
ML 1.93 1.93 1.89 1.93
ext 1.90 1.77 1.51 1.43
error 0.18 0.04 -0.22 -0.29

CIS
RL 2.69
MH 2.46 2.35 1.91 1.88
ML 3.75 3.60 2.82 2.72
ext 1.40 1.44 1.78 1.85
error -0.33 -0.29 0.05 0.12

Table 5.1: Excitation energies (eV) of B30 (1) from the ONIOM subcalculations: real low (RL),
model high (MH), and model low (ML), with different embedding models: polarizable point
charge embedding (PQE), point charge embedding (QE), polarizable embedding (PE), and me-
chanical embedding (ME). "ext" represents the ONIOM extrapolated excitation energies, and "er-
ror" is calculated with respect to the target calculation (1.73 eV). Top: B3LYP as low level, Bottom:
CIS as low level.

To investigate the effect of polar substituent groups, we replace the rings around the model
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with amide functional groups. For 2, we replace the bottom two rings. The results for 2 are

shown in Table 5.2. For both B3LYP and CIS as low level, ME performs the worst. Especially

for B3LYP, the ME error is 0.77 eV, while for PQE it is only 0.11 eV. The errors for B3LYP are

all negative, and decrease in magnitude with a trend: ME>PE>QE>PQE. The difference in error is

0.26 eV between QE and PQE; 0.52 eV between PE and PQE. These comparisons indicate again

that point charges have a greater impact than the induced dipoles, and the combination of these

embedding schemes reduces the error considerably in this case. For CIS, QE performs the best,

and the error difference between PQE and QE is small (0.04 eV). Both QE and PQE reduce the

error considerably compared to ME (0.3 eV).

PQE QE PE ME

B3LYP

RL 1.37

MH 2.31 2.03 1.72 1.63

ML 1.61 1.60 1.55 1.60

ext 2.07 1.80 1.54 1.40

error -0.11 -0.37 -0.63 -0.77

CIS

RL 3.56

MH 2.42 2.21 1.68 1.63

ML 3.85 3.60 2.79 2.64

ext 2.12 2.18 2.44 2.55

error -0.05 0.01 0.27 0.38

Table 5.2: Excitation energies (eV) of a functionalized B30 analog (2) from the ONIOM subcalcu-
lations: real low (RL), model high (MH), and model low (ML), with different embedding models:
polarizable point charge embedding (PQE), point charge embedding (QE), polarizable embedding
(PE), and mechanical embedding (ME). "ext" represents the ONIOM extrapolated excitation ener-
gies, and "error" is calculated with respect to the target calculation (1.73 eV). Top: B3LYP as low
level, Bottom: CIS as low level.
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For 3, we replace the top two rings to investigate the effect of polar groups at different posi-

tions. The results for 3 are shown in Table 5.3. For B3LYP, the same trend of decreasing errors

(ME>PE>QE>PQE) is seen, consistently with 2, and PQE reduces the error of ME by 0.25 eV. In

this case, QE and PE perform similarly, with a 0.03 eV difference in error. For CIS as low level,

both QE and PE reduce the error of ME, whereas PQE increases the error. However, all errors are

rather small in this case.

PQE QE PE ME

B3LYP

RL 1.61

MH 2.22 2.08 2.07 2.01

ML 2.06 2.08 2.04 2.10

ext 1.77 1.60 1.63 1.52

error -0.09 -0.26 -0.23 -0.34

CIS

RL 2.69

MH 2.09 2.08 2.05 2.01

ML 3.07 3.00 2.94 2.74

ext 1.72 1.77 1.80 1.96

error -0.15 -0.09 -0.06 0.10

Table 5.3: Excitation energies (eV) of a functionalized B30 analog (3) from the ONIOM subcalcu-
lations: real low (RL), model high (MH), and model low (ML), with different embedding models:
polarizable point charge embedding (PQE), point charge embedding (QE), polarizable embedding
(PE), and mechanical embedding (ME). "ext" represents the ONIOM extrapolated excitation ener-
gies, and "error" is calculated with respect to the target calculation (1.73 eV). Top: B3LYP as low
level, Bottom: CIS as low level.

For 4, we replace four rings around the model. The results of 4 is shown in Table 5.4. The same

trend in error (ME>PE>QE>PQE) is seen again for B3LYP as low level, and PQE decrease the

error of ME by 0.5 eV. The performance of QE and PE are very similar, with a 0.02 eV difference
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in error similar to 3. For CIS as low level, all EE models reduces the error of ME with QE being

the best, and PQE close behind.

PQE QE PE ME

B3LYP

RL 1.74

MH 2.34 2.08 1.98 1.90

ML 1.89 1.93 1.85 1.95

ext 2.18 1.88 1.86 1.68

error -0.19 -0.49 -0.51 -0.69

CIS

RL 3.57

MH 2.39 2.15 1.96 1.90

ML 3.67 3.33 2.97 2.71

ext 2.28 2.39 2.56 2.76

error -0.09 0.02 0.19 0.38

Table 5.4: Excitation energies (eV) of a functionalized B30 analog (4) from the ONIOM subcalcu-
lations: real low (RL), model high (MH), and model low (ML), with different embedding models:
polarizable point charge embedding (PQE), point charge embedding (QE), polarizable embedding
(PE), and mechanical embedding (ME). "ext" represents the ONIOM extrapolated excitation ener-
gies, and "error" is calculated with respect to the target calculation (1.73 eV). Top: B3LYP as low
level, Bottom: CIS as low level.

As we test the embedding on these functionalized B30 analogs by replacing the rings around the

model system with polar substituent groups, we see the same trend in errors (ME>PE>QE>PQE)

for B3LYP as low level. In Figure 5.4, we plot the errors against the number of polar groups

surrounding the model, and the figure shows that as we replace the non-polar rings around the

model with polar ones, ME fails at reproducing the results of the target calculations, and the trend

in errors (ME>PE>QE>PQE) becomes clearer. For these functionalized cases, there are significant

differences in errors (0.2-0.3 eV) between PQE and QE. This indicates that the polarization of
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the environment becomes more important when the groups surrounding the model are polar, and

including the induced dipoles in the embedding significantly reduces the errors. However, for CIS

as low level, the trend that we see in B3LYP does not completely apply. PQ performs better than

PQE for all test molecules. Both PE and QE give lower error than ME for the functionalized

analogs with polar substituent groups, with QE performs much better than PE.

Figure 5.4: Errors (eV) plotted for all test molecules. Different embedding models are considered:
polarizable point charge embedding (PQE), point charge embedding (QE), polarizable embedding
(PE), mechanical embedding (ME). Top: B3LYP as low level, Bottom: CIS as low level.
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5.5 Conclusions

In this work, we present a polarizable embedding scheme based on induced dipoles that can be used

within ONIOM(QM:QM) hybrid method. This embedding is used together with the fixed point-

charge embedding for ONIOM(QM:QM) previously developed in our group. We devise a strategy

for obtaining atomic polarizabilities, which is the key parameter required for the induced-dipole

embedding, by decomposing the polarizability of the entire molecule in atomic contributions. We

perform tests using B30 and functionalized analogs to compare ONIOM excitation energies with

various EE models (PQE, QE, and PE) against standard full QM calculations. These preliminary

tests show that this on-the-fly polarizable embedding is better than no or fixed embedding when

substituent groups around the model are polar.
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Chapter 6

Multi-State Extrapolation of UV/Vis Absorption Spectra with

QM/QM Hybrid Methods

(This work is taken from: Sijin Ren and Marco Caricato, J. Chem. Phys. 2016, 18, 184102.188

Supporting information is available online.)
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Abstract

In this work, we present an approach to simulate absorption spectra from hybrid

QM/QM calculations. The goal is to obtain reliable spectra for compounds that are

too large to be treated efficiently at a high level of theory. The present approach is

based on the extrapolation of the entire absorption spectrum obtained by individual

subcalculations. Our program locates the main spectral features in each subcalcu-

lation, e.g. band peaks and shoulders, and fits them to Gaussian functions. Each

Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own

N-layered Integrated molecular Orbital molecular Mechanics). However, information

about individual excitations is not necessary so that difficult state-matching across

subcalculations is avoided. This multi-state extrapolation thus requires relatively low

implementation effort while affording maximum flexibility in the choice of methods

to be combined in the hybrid approach. The test calculations show the efficacy and

robustness of this methodology in reproducing the spectrum computed for the entire

molecule at a high level of theory.
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6.1 Introduction

Theoretical simulations of UV/Vis absorption spectra of large chromophores have become an im-

portant tool for the design of new compounds in materials and renewable energy science. For

instance, it is important to develop compounds that present a large absorption in the visible region

where the sun emits most photons so that large amounts of solar energy can be harvested82,189. The

photochemical characteristics of chromophores and dyes can be tuned by proper choices of sub-

stituent groups. Hence, accurate theoretical simulations of such effects largely benefit the design

process by screening promising candidates83. The most successful tool to perform such calcula-

tions is time-dependent density functional theory (TD-DFT), since it provides the best compro-

mise between accuracy and computational effort. However, an important limitation of DFT is that

the approximate functionals available perform differently for different compounds, and a sensible

choice for each case is often difficult83,190. Thus, much effort has been devoted to the bench-

marking and calibration of approximate functionals85,101,191–193. On the other hand, more reliable

methods may simply not be affordable in practical situations.

A possible strategy to overcome this difficulty is to use multi-scale or hybrid techniques. In

general, the goal of multi-scale methods is to reduce the computational cost by partitioning the

system into regions, where the core is treated at a high level of theory while the rest is treated at a

lower and less computationally demanding level. This reduction in cost should be obtained without

a significant loss in accuracy compared to the calculation on the entire system at the high level of

theory. An example of such partitioning is shown in Figure 6.1, where “model” refers to the core

region, and “real” refers to the entire system. Such approaches have been used extensively in

biochemical applications where, for instance, the reactive pocket of a protein is described quantum

mechanically (QM) while the rest is treated classically. These methods can also combine two QM

methods, QM/QM, and they have been used in many applications194–200. The use of QM/QM

methods has also been extended in recent times to excited state calculations201–208.

One of the most successful hybrid methods is ONIOM (Our own N-layered Integrated molec-

ular Orbital molecular Mechanics)69–74, which is briefly described in the next Section. The main
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Figure 6.1: A sample system partitioning scheme for two layered ONIOM, in which the entire
system (real system) is labeled as real, and the model system is labeled as model.

feature of ONIOM is that the combined energy is expressed as an extrapolation of the energy com-

puted for the real and model systems, see Figure 6.1. Thus, if no electronic embedding schemes are

used78–81, these subcalculations are independent and the method requires no specific implementa-

tion. This also permits maximum flexibility in the choice of the high and low levels of theory. We

showed that ONIOM can accurately reproduce excitation energies and transition properties com-

puted at a high level of theory at a fraction of the computational cost75–77. However, a drawback

of this approach is that its success depends on the correct matching of states between the subcal-

culations. This is relatively easy for low-lying, isolated, and bright transitions, but it becomes a

significant issue if one is interested in various regions of the spectrum.

In this work, we propose a proof-of-concept approach to extrapolate multiple states at once

or, in other words, to extrapolate the entire spectrum within an energy range. The extrapolation

formula is borrowed from ONIOM, but no state-matching is required. Therefore, this approach

maintains attractive ONIOM features (e.g., simplicity, favorable cost/accuracy ratio) while avoid-

ing any connection to a particular description of individual excited states. Perfect state-matching

would indeed provide a direct interpretation of the extrapolated spectrum in terms of character-

istic transition types (e.g. π → π∗). Unfortunately, a typical band is composed of a relatively

large number of excitations with varying oscillator strength, especially in higher energy regions.

This often makes a definite assignment difficult even with standard methods, and it renders the
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use of QM/QM hybrid methods like ONIOM virtually impossible. The reason is that states that

are close in energy often present various degrees of orbital mixing that are different across levels

of theory and model vs. real systems. It is this mixing that prevents a clear state-matching, thus

precluding the extrapolation in the higher energy regions. Our method bypasses this limitation by

extrapolating spectral features (i.e., bands and shoulders) rather than individual states. However,

once the multi-state extrapolation is performed, a qualitative analysis of the types of transitions

that form a particular band can always be obtained by examination of the corresponding bands of

the subcalculations that were used for the extrapolation. An important application of this multi-

state extrapolation is the design of new dyes for solar energy harvesting. As mentioned above,

a critical goal in this field is the tuning of the substituents on the main chromophoric moiety for

maximum absorption of sunlight. Our method may allow to explore a large number of options

by treating the core moiety at a high level of theory and the substituents at a lower level without

sacrificing accuracy. These calculations would provide valuable screening information of promis-

ing candidates for sunlight harvesting dyes, which could then be synthesized and tested in actual

devices. From a computational perspective, our method may permit, for instance, the use of global

functionals as low level methods without worrying about the unphysical low-lying excitations with

small oscillator strength (typical of these functionals), since these will not contribute to the overall

spectrum. The computer program that we developed to perform the extrapolation can be down-

loaded from our group web site209, and it can read the necessary information for the extrapolation

(i.e., excitation energies and related oscillator strength) from a simple text file. As shown by our

test calculations, this proof-of-concept approach is quite robust, and provides spectra that are in

very good agreement with the corresponding high level calculations on the entire system.

The chapter is organized as follows. Section 6.2 reviews the ONIOM method and discusses

the multi-state extrapolation. Details of the calculations are presented in Section 6.3, while test

calculations are described in Section 6.4. Section 6.5 reports an overall discussion of the results

and final remarks.
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6.2 Theory

In this work, we propose to simulate UV-Vis spectra of large chromophores through a multi-state

extrapolation of spectra obtained by combining two QM levels of theory, following a strategy

similar to the ONIOM method69–77. Hence, let us briefly review ONIOM for two layers, and

introduce the notation that we will use throughout the chapter. Following the layer separation

in Figure 6.1, open valencies resulting from the severing of covalent bonds are capped with link

atoms (usually hydrogens), e.g. XÐY ÐÐ→ X−H. The link atom bond length is based on the

ratio between the current X−Y length and its typical value. The energy extrapolation is performed

combining the energies from separate subcalculations:

Eext = E low
real +Ehigh

model −E low
model (6.1)

where high and low refer to the levels of theory, and model and real to the system partition as in

Figure 6.1. If no electronic embedding is introduced, the three subcalculations are truly indepen-

dent. The same extrapolation can also be used to compute excitation energies:

ωext =ω
low
real +ω

high
model −ω

low
model (6.2)

Finally, transition properties are evaluated by extrapolation of transition moments with formulas

equivalent to Eqs. 6.1 and 6.277. In previous studies75–77, we showed that excitation energies and

properties can be accurately evaluated with ONIOM with great savings in computational cost, and

that the use of link atoms does not affect the results when the model system is sensibly chosen.

Despite these promising results and the simplicity of the extrapolation in Eq. 6.2, a straightforward

application of ONIOM to compute excitation energies is difficult. The issue resides in the proper

matching of states across subcalculations. Indeed, a clear classification of an excitation is often

difficult, and clear-cut cases such as very bright π → π∗ excitations with large oscillator strength

( f ) are not the norm. On the contrary, matching based on oscillator strength, energy ordering
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or even orbital contribution can be ambiguous due to considerable differences between levels of

theory or between model and real systems.

Thus, here we propose to abandon individual states and attempt to directly extrapolate entire

absorption bands. In particular, we concentrate on three key parameters for the definition of an

extrapolated band i: position ωext
i , height εext

i , and half-width σ ext
i . These parameters, collectively

called {Pext}, are obtained through an ONIOM-type extrapolation from individual subcalculations

as:

Pext = Plow
real +Phigh

model −Plow
model (6.3)

Once the Pexts are computed with Eq. 6.3, a Gaussian envelope is assigned to the extrapolated

band as:

ε
ext (ω) = ε

ext
i exp

⎡
⎢
⎢
⎢
⎢
⎣

−(
ω −ωext

i
σ ext

i
)

2⎤
⎥
⎥
⎥
⎥
⎦

(6.4)

The final extrapolated spectrum is then built from the sum of the individual extrapolated bands.

In this approach, the spectral bands from each subcalculation may include any number of excited

states with different oscillator strengths. Thus, the issue of individual state-matching is transformed

into the issue of finding and matching a relatively small number of bands from each subcalcula-

tion (more precisely, finding and matching the band parameters {Psub}). Although defining and

matching bands may still be ambiguous in certain cases, as we shall see in Section 6.4, it is still

a much simpler and better defined problem than matching a large number of states individually.

We note that information about the nature of the states that mostly contribute to a band in the ex-

trapolated spectrum can always be recovered from an analysis of the subcalculations spectra. This

qualitative analysis can help in the characterization of the band contributions while still avoiding

the cumbersome state-matching in the extrapolation.

The first step is to simulate the spectrum for each subcalculation. This is achieved by as-

signing a Gaussian function to each excitation, which is proportional to the extinction coefficient

through210:

ε (ω) =
Diωi

4∗2.926×10−39
√

πσ
exp[−(

ω −ωi

σ
)

2
] (6.5)
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where ωi is the excitation energy in eV, σ is the half-width at εmax/e (we set σ = 0.4 eV), and Di is

the dipole strength (in cgs units), which is related to the oscillator strength ( fi) by:

Di =
fi

3.7922×1033ωi
(6.6)

The final spectrum is obtained by summing all of the Gaussian functions. Note that this choice of

fitting is not unique, and others can be selected without altering the procedure for obtaining {Psub}

described below.

Once the full spectrum for a subcalculation is obtained, our program performs a scan to find

each peak, and their position ωsub
i and height εsub

i are stored. Then, σ sub
i is taken for each peak as

the half-width at the height of εsub
i /e. If two bands are too close to each other, an alternative value of

σ is taken at 2εsub
i /e. A particularly delicate point is the treatment of band shoulders. These cannot

be well represented by a single Gaussian function for the main band peak, so a different Gaussian

is assigned to each shoulder. The detection of shoulders in the subcalculation bands is performed

with a second scan after the primary Gaussian parameters for the peaks have been assigned. The

shoulder detection scheme is shown in Figure 6.2. The shoulder detection is performed on both the

Figure 6.2: A schematic representation of shoulder detection. The dotted red curve represents
the fitted Gaussian assigned to the mean peak (1). ∆X is the width difference between the fitted
Gaussian and the actual spectrum, and it is used to assign the presence of a shoulder (2). ∆Y is the
height of the shoulder at (2).

right- and the left-hand sides of each band peak. As shown in Figure 6.2 for a right-hand search,

starting from position 1 the difference between the assigned Gaussian and the actual spectrum (∆X)

is monitored. If ∆X > α , where α is a parameter, the presence of a shoulder is detected. At this
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point, the height of the shoulder is obtained by scanning the difference in height between the actual

spectrum and the Gaussian function assigned to the main peak (∆Y in Figure 6.2). The position

for the shoulder Gaussian is chosen at the largest value of ∆Y, i.e. point 2 in Figure 6.2. We use

α = 0.1 in this work. The band width parameter (σ ) of the new Gaussian is taken as the width

difference between the peak Gaussian and the actual band at shoulder height/e. However, since

a shoulder is described by a single Gaussian that is very close to the main peak, the direct sum

of the two Gaussian functions (one for the peak and one for the shoulder) would overestimate the

height for both peak and shoulder. Therefore, we implemented an iterative optimization of both

height and width of the two Gaussians so that their sum matches the original height (ε1,ε2) and

half-width (σ1,σ2) parameters.

Once the main features (peak/shoulder) of each subcalculation spectrum are found and a Gaus-

sian function is assigned to each of them (i.e., {Psub}), the extrapolated Gaussian functions are

obtained using Eqs. 6.3 and 6.4. In our program, we can extrapolate a subset of the bands, and a

sanity check is implemented so that the number of requested bands is equal or smaller than those

found in the subcalculations. The complete implementation steps are outlined in Figure 6.3.

Figure 6.3: Scheme of the steps involved in the spectra extrapolation.
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6.3 Computational Details

All calculations were performed with a development version of the GAUSSIAN suite of pro-

grams170. The geometries were optimized at the CAM-B3LYP162/6-311++G** level of theory,

and are available in the Supporting Information. The same level is used for the target and mod-

el/high excited state calculations using the usual linear response approach151–153. The target spec-

tra, i.e. the spectra obtained considering the entire molecule and the target level of theory, are

used as reference for the comparison of the extrapolated and subcalculation spectra. We chose

CAM-B3LYP because it has shown the ability to provide a balanced description of excitations of

different nature (e.g., valence and Rydberg) thanks to its range separation85,101,191. In the layer

definition, we follow the standard ONIOM approach to use hydrogen link atoms to cap severed

covalent bonds. We test two methods as low level of theory: CIS211 and B3LYP158,212,213 with

the 6-31+G* basis set. However, we report only the CIS result in the main text since the B3LYP

results are qualitatively the same, and can be found in the Supporting Information.

6.4 Results

Figure 6.4: Test molecules used in evaluating the method.

We apply our method on six test molecules, shown in Figure 6.4: 1-hexene (1), 1,3-decadiene

(2), 2-nonenal (3), 1-cyanoazulene (4), 1-isocyanoazulene (5), betaine-30 (6), and a methylamino-
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carbonyl-substituted betaine (7). The size of the main chromophoric moiety is different across

the test set so that we can evaluate the performance of our method in different conditions. In the

following, the model system is shown in a ball-and-stick representation, while the other layer is

shown in a tube-frame representation. The figures also show all spectra (i.e. target, subcalculations,

and extrapolated) overlaid on each other for a direct comparison of the band positions, heights, and

widths. Insets also show the target and subcalculation spectra individually, where each excited

state is represented as a stick with length proportional to the oscillator strength. In this way, we

are able to visualize the number and the relative importance of the individual excitations that really

contribute to each band.

Figure 6.5: Absorption spectra for 1-hexene (1). The ball-and-stick representation describes the
model system, while the tube-frame representation indicates the rest of the molecule. The insets
report the subcalculations and target spectra with the stick representation of individual excitations.
rl: real/low, ml: model/low, mh: model/high, ext: extrapolated.

The results for 1 are shown in Figure 6.5. In this case, the chromophore is the alkene group. We

consider ten states for the target and each subcalculation. As shown by the stick spectra in the insets

of the figure, only a few states provide significant contribution to the final spectrum. Additionally,

a shoulder in the target calculation is present to the right of the main peak (i.e., at higher energy).

The same band is found as individual peaks in the subcalculations. The extrapolation is able to
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correctly handle these differences so that the extrapolated spectrum is in excellent agreement with

the target. Indeed, the position, height, and width of both peak and shoulder of the target spectrum

are better reproduced by the extrapolated spectrum than by any of the subcalculations.

Figure 6.6: Absorption spectra for 1,3-decadiene (2). The ball-and-stick representation describes
the model system, while the tube-frame representation indicates the rest of the molecule. The insets
report the subcalculations and target spectra with the stick representation of individual excitations.
rl: real/low, ml: model/low, mh: model/high, ext: extrapolated.

For 2, shown in Figure 6.6, two conjugated double bonds form the main chromophore. 100

states are used to build the spectrum. There is only one main peak within this subset of states,

which is mainly due to one π → π∗ excitation. However, a large number of states with small

oscillator strength are also present that form a small tail in the 6.5-7 eV region. The extrapolated

spectrum is able to describe both the large peak and the tail with excellent accuracy. Figure 6.6

clearly shows that all subcalculations individually do not reproduce the main peak in position

or height. For this case in particular, the advantage of extrapolating bands rather than individual

states is particularly evident for the tail part of the spectrum where many states with small oscillator

strength contribute.

For 3, shown in Figure 6.7, we consider the conjugated carbonyl and alkene groups as the

chromophore. Considering 50 states produces three spectral features: one intense peak at lower
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Figure 6.7: Absorption spectra for 2-nonenal (3). The ball-and-stick representation describes the
model system, while the tube-frame representation indicates the rest of the molecule. The insets
report the subcalculations and target spectra with the stick representation of individual excitations.
rl: real/low, ml: model/low, mh: model/high, ext: extrapolated.

energy, and two moderate peaks. The extrapolated spectrum provides the best match for the first,

intense band both in terms of position and intensity. The two small bands, on the other hand, are

merged together into a tail of reasonable intensity. This is due to the fact that the two shallow

peaks strongly overlap, and the two Gaussians assigned to them merge together into one. It is

not surprising that close, shallow peaks are problematic for our approach. Nonetheless, we find

the simulation of this region acceptable at this stage, especially compared to that of the individual

subcalculations, see Figure 6.7. One way to improve the description of these cases may be to

extend the iterative optimization of the shoulders described in Section 6.2 to the entire spectrum in

a recursive manner.

Test cases 4 and 5 are two isomers: 1-cyanoazulene and 1-isocyanoazulene214. The results

for these molecules are shown in Figure 6.8. They represent an unusual choice of model system

since the core layer (azulene) is larger than the second layer (substituent). However, they are

interesting because they allow us to study the effect of different substituents on the absorption of

the main chromophore. Indeed, azulene is a particularly versatile compound whose photochemical
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Figure 6.8: Absorption spectra for 1-cyanoazulene (4, top) and 1-isocyanoazulene (5, bottom).
The ball-and-stick representation describes the model system, while the tube-frame representation
indicates the rest of the molecule. The insets report the subcalculations and target spectra with the
stick representation of individual excitations. rl: real/low, ml: model/low, mh: model/high, ext:
extrapolated.

characteristics can be finely tuned by substitution in any of the eight possible positions214. Here

we want to probe how our approach handles relatively small differences due to similar substituents.

We considered 100 states for the target and each subcalculation to simulate the spectrum. As shown

in the insets in Figure 6.8, there are a handful of states with large oscillator strength, but the band
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structure in the 7-8 eV and 9-10 eV regions is due to a large number of states with moderate value

of oscillator strength. The main effect of the substituents is to add a small band at low energy (< 4

eV), and to modify the higher energy bands in the 6-10 eV region, whereas the main peak at 5 eV is

clearly due to azulene since it is qualitatively similar in both molecules and across subcalculations.

From a comparison of the target insets of Figure 6.8, the effect of the different substituents in 4

and 5 is evident in the 7-9 eV region. We also point out that the small differences between the

model subcalculations in the two molecules are due to the slightly different link atom bond lengths

(1.025 and 1.080 Å, respectively) induced by the different substituents. The extrapolated spectrum

for the cyanoazulene is in very good agreement with the target for the main peak as well as for the

higher energy region. The extrapolated data improves the agreement both in terms of position and

intensity of the bands compared to the subcalculations. The agreement for the isocyano isomer

is excellent in the energy region below 5 eV, but it is not quite as good in the higher energy

region. In the 6-8 eV region, the first peak is slightly underestimated while the second is slightly

overestimated. However, this description is overall closer to the target spectrum than any of the

subcalculations. Moreover, the extrapolation is able to capture the differences between the spectra

of compounds 4 and 5 qualitatively and quantitatively.

Betaine-30 (6) is a large conjugated molecule, which has been used to define a polarity scale

for solvents due to the sensitivity of its absorption spectrum to the environment215. The layer sep-

aration and simulated spectra are shown in Figure 6.9 (top). This is a particularly challenging case

because there is no clear way to define a layer separation. The model system shown in the figure

is directly conjugated, but weaker conjugation with the phenyl substituents may be important for

the absorption spectrum. Additionally, the phenyl substituents are chromophores themselves, and

they may contribute to the spectrum independently. We considered 100 states for the simulation of

the spectrum, which results in a peak below 2 eV, a peak/shoulder around 3.5 eV, a peak around

5 eV, and a peak around 6 eV. The latter two are the result of many states with moderate oscil-

lator strength. The model system calculations are able to reproduce the low energy peak, but the

remaining parts of the spectrum are shifted at higher energies compared to the target calculation,

94



Figure 6.9: Absorption spectra for betaine-30 (6). The ball-and-stick representation describes the
model system, while the tube-frame representation indicates the rest of the molecule. The insets
report the subcalculations and target spectra with the stick representation of individual excitations.
rl: real/low, ml: model/low, mh: model/high, ext: extrapolated.

which indicates that the effect of the substituents is significant. The first band is reproduced well

by the extrapolation despite the overestimation of the low level subcalculations. The second and

third features (at 3.5 and 5 eV, respectively) are in excellent agreement with the target, and show

considerable improvement with respect to the subcalculations. The last band is slightly overesti-

mated in intensity and underestimated in position, which is due to the increasing contributions of
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the substituents. Nonetheless, the agreement with the target is remarkable considering the perfor-

mance of the subcalculations. This case shows the robustness of the extrapolation approach even

when the core layer definition is pushed towards the limit of acceptability. Compound 7 is a variant

of betaine 30 where two of the phenyl rings are substituted with a methylamino-carbonyl group,

see Figure 6.9 (bottom). The substitution considerably changes the target spectrum both in terms

of position and intensity of the bands. For instance, the shoulder at 3.5 eV disappears, and the

last peak is considerably less intense. We used the same model system as for 6 so that the model

subcalculations are basically the same as before. The extrapolated spectrum is able to reproduce

these modifications, providing a performance that is comparable to that for betaine 30: the first

peak is slightly shifted towards higher energy, the second peak is well reproduced, and the last

peak is shifted towards lower energy and overestimated in intensity. As before, the extrapolated

spectrum is in better qualitative and quantitative agreement with the target one than any of the

subcalculations.

6.5 Discussion and Conclusions

In this work, we present an extrapolation approach for the simulation of absorption spectra with

hybrid QM/QM methods. The extrapolation is based on the ONIOM formula, but instead of con-

sidering individual states we extrapolate entire bands. Thus, we shift the problem of matching

individual states, which is easy only for few low-lying bright states, to that of matching spectral

features that are fewer in number. One of the key points is to recognize these features. This is easy

for peaks but less so for shoulders, and in Section 6.2 we discuss how we propose to handle this

issue. The results in Section 6.4, where the method is applied to a number of test cases, show the

ability of the band-extrapolation idea to reproduce spectra computed at higher levels of theory on

the entire molecule.

The main issue for the success of the method is the proper layer separation. This is not specific

to our case, but it is common to all multi-layer methods. In previous work, we suggested a number

of guidelines for the proper choice of the model system for excited state calculations75–77, and
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the same guidelines apply here. An issue that is specific to our method is the overlap between

bands. Since we assign a Gaussian function to each spectral feature with extrapolated values of

position, height, and width, overlap between adjacent Gaussian functions may lead to intensity

overestimation in the extrapolated band. This is particularly problematic for shoulders and their

relative main peak. To solve, or at least alleviate this problem, we suggest an iterative procedure

for the definition of the optimal choice of these parameters within each subcalculation. The final

parameters are then extrapolated in the usual way, see Eq. 6.3. This provides excellent results for

test molecules 1, 2, and 4. However, band overlap can also happen between peaks, and we have

not addressed this issue yet. This results in overestimations of certain bands, e.g. in molecule

3, although the overall shape of the spectrum is still well described. A promising approach to

overcome this problem is to extend the iterative process used for shoulders to the entire spectrum

recursively, but we leave this development for future work. Finally, test molecules 6 and 7 indicate

that the extrapolation method is robust even when the layer separation is not optimal.

The range of applicability of this method is connected to the choice of model system. Since

the latter is meant to be the main chromophoric moiety in the molecule, its excitations are likely

to be concentrated in the low energy region of the spectrum. Thus, this is the region where the

extrapolation method will work best. At higher energies, excitations from the second layer will

contribute significantly to the overall spectrum, and the extrapolation may fail. However, this is

not a strong limitation since practical applications in materials and energy research are focused

on the low energy region. Therefore, we expect that this extrapolation approach will be useful,

for instance, in the design of efficient dyes where the absorption spectrum is tuned by different

ligands.

6.6 Acknowledgment

This material is based upon work supported by the National Science Foundation under Award

No. EPS-0903806 and matching support from the State of Kansas through the Kansas Board of

Regents.

97



Chapter 7

Concluding Remarks

This thesis focuses on the development and application of hybrid methods to efficiently perform

accurate excited state calculations on large systems. In fact, accurate standard QM methods are

usually associated with a high computational cost that limits their application to small to medium

sized systems. In many cases, describing the effect of the environment surrounding the system

of interest at quantum mechanical (QM) level is not possible, while eliminating the environment

from the modeling is not a good approximation. A popular approach to reduce computational cost

of treating large system is to use hybrid methods, which combine two or multiple computational

methods to describe different regions of the system. Our research has pushed the boundaries in

the area of hybrid methods in different directions, by making contributions to both additive and

subtractive hybrid methods.

EOM-CCSD is one of the most accurate methods for computing one-electron excitation ener-

gies in molecules, although it has a steep computational scaling: O(N6), where N is the size of

the basis set. In Chapter 3, we presented an EOM-CCSD-PCM benchmark to evaluate its per-

formance for electronic excitation energies of solvated molecules. Excitation energies computed

with EOM-CCSD-PCM and time-dependent density functional theory-PCM (TD-DFT-PCM) for

16 test molecules were compared with experiment. EOM-CCSD-PCM consistently overestimates

experimental excitation energies, with an error larger than in the gas phase by about 0.2 eV on

average. For TD-DFT-PCM, the size and the sign of the error for different functionals vary among

test molecules. These results are consistent among all tested basis sets. The consistent overesti-

mation of experimental results by EOM-CCSD is due to the additional approximations introduced

by the solvation model. Testing different basis sets shows that aug-cc-pVDZ and 6-311++G**
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perform best, and than it is important to include a proper number of diffuse functions for the solute

molecule, as too many diffuse functions that interact with the PCM region can be problematic.

One of the important effects neglected by using PCM is the specific interaction between solvent

and solute, such as hydrogen bonding (HB). To recover the effect of HB, we considered a micro-

solvation + PCM approach, where QM solvent molecules are added explicitly to saturate the HB

sites of the solute molecule, and the entire cluster is embedded in the continuum dielectric. A

shift (∆HB) in excitation energy was calculated at DFT level between calculations with and without

microsolvation. It was shown that this shift is not functional dependent, and applying the shift

calculated at DFT level to the EOM-CCSD excitation energy considerably reduces its error. While

introducing explicit solvation with forming micro-solvated clusters is necessary for describing the

specific interaction between solvent and solute, treating explicit solvent molecules with CC is too

expensive. Also, proper sampling is required for deciding where to place the solvent molecules.

Thus, it is necessary to use a classical explicit solvation model to reproduce the effect of specific

interactions efficiently.

In Chapter 4, we presented a combination of coupled cluster theory with a polarizable embed-

ding scheme for ground and excited states. We combined CC theory with a classical polarizable

force field (MMPol) based on induced dipoles with both the linear response (LR) and state specific

(SS) formalisms for the response of the dipoles. We considered an approximate expression of the

correlation environment response, originally developed for CC/PCM. This scheme allows us to in-

clude the explicit induced dipoles in the CC equations without increasing the computational cost.

For testing the implementation, we considered several microsolvated systems, and compared their

solvatochromic shifts obtained with classical embeddings and full CC calculations. We compared

MMPol embedding with point charge embedding, and showed that the former performs best. We

also showed that it is important to include induced dipoles on all of the atom centers of the clas-

sical region, and that too many diffuse functions in the basis set may be problematic due to too

strong interaction with the environment (as for CC-PCM). We demonstrated the reliability of this

computational protocol for the approximate scheme with the LR formalism because of its lower
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computational cost. The induced dipoles scheme is part of a classical force field, where parameters

are pre-computed. However, it is desirable to have a strategy to obtain such parameters on-the-fly

for describing a generic environment.

Thus, in Chapter 5, we presented an induced dipole polarizable embedding scheme that can

be used within QM/QM hybrid methods. Our group had already introduced fixed point-charge

embedding for QM/QM based on the ONIOM (our own n-layered integrated molecular orbital

and molecular mechanics) hybrid method. We now made this embedding polarizable using the

induced-dipole model. We devised a strategy for obtaining atomic polarizabilities, which is the

key parameter required for the induced-dipole embedding on-the-fly, by partitioning the molecular

polarizability in atomic contributions. We used several related test molecules to compare excitation

energies with different embedding methods against standard full QM calculations. These prelimi-

nary tests showed that this on-the-fly polarizable embedding is better than no or fixed embedding

when substituent groups around the core region are polar.

However, we are often interested in an extended region of the absorption spectrum, instead of a

single excited state. This is hard to do with standard ONIOM, as state-matching among the required

subcalculations is challenging. In Chapter 6, we addressed this problem and presented a multi-

state extrapolation method for UV/Vis absorption spectra based on a formula similar to that of

ONIOM. Instead of state-by-state extrapolation, the method performs a ONIOM-like extrapolation

on entire bands (using the band location and shape). The method was tested on seven chromophoric

molecules, and compared with standard calculations of the entire molecule with the high QM

method. We obtained extrapolated spectra that closely match the target spectra, and the results

demonstrated the efficacy and robustness of this methodology.

In our research, the systems were chosen to be small enough to compare with standard full

QM calculations on the entire system, with the purpose of performing benchmarks and testing the

implementations. The next step is to perform systematic testing of EOM-CCSD-MMPol against

experimental data. This will require molecular dynamic (MD) simulations to sample configura-

tions of the solvent, from which we can extract snapshots to average out the spectra. Another
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application is to use the QM/QM hybrid method with polarizable embedding along with the multi-

state extrapolation of UV/Vis spectra to simulate the spectra of large chromophores, and compare

against experimental spectra. This application would provide essential testing on different em-

bedding schemes in QM/QM hybrid for large systems, and would determine the reliability of this

hybrid scheme. These applications would be challenging, because the source of error would not

only come from the intrinsic error of the QM methods, but also from the extrapolation procedure.

Performing extensive testing on large-sized systems with hybrid approach, and make comparisons

with experiment will help to devise a systematic protocol for treating novel systems. Other ap-

plications of these methods could include reactions in solution or on solid supports, which are of

great interest in material and energy science, and in biological research.

Two-layered hybrid methods may not be sufficient for accurately describing complex interac-

tion with the environment. More complex multi-layered hybrid approaches may be needed to strike

the best balance between limited computational resources and the need for a reliable description

of the entire system. My research has developed and benchmarked hybrid methods that act as a

starting point to design more complex methods. The next step would be to design multi-layered

hybrid methods, which may include two layers treated at different QM levels, a layer treated with

explicit classical models, and the outmost layer treated with an implicit model. This develop-

ment is challenging as the mutual polarization between layers may be significant. Thus, special

computational mechanisms would need to be designed for the system to reach complete mutual

polarization efficiently.

In the future, hybrid methods could be combined with machine learning, which has also been

a popular area of development with wide applications in different fields. One could achieve au-

tomatic system analysis, partitioning, and method selection based on the specific system under

study. The program would start by performing preliminary calculations to analyze the system, then

these preliminary information would be processed by a machine learning algorithm to partition the

system into layers based on its size, the amount of computational resources, and desired accura-

cy/computing time. The program would determine the best hybrid approach based on number of
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layers, available implementation, and the result of existing benchmarking. Finally, the program

would perform the calculations, and output the results. The most challenging part of such project

is to have various hybrid approaches benchmarked for a large number of test systems, in order to

create an effective training set for the machine learning algorithm. In principle, this development

could achieve complete automation for performing calculations with hybrid methods, which would

expand their application to even more scientific areas. This would allow researchers who are not

expert in theoretical calculations and method development to take advantage of hybrid methods,

and perform complex simulations in a black-box manner.
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Chapter 9

Appendix for Induced-Dipole Polarizable Embedding for the

ONIOM(QM:QM) Hybrid Method

Table 9.1: Optimized geometry (Å) for 1

Atoms x y z
C 2.61016 3.56223 -0.85390
C 4.27851 2.17901 -1.87962
C 2.58256 -2.81140 2.41396
C 4.24449 -2.83720 0.68902
C 3.16748 -3.92186 3.00550
C 4.82779 -3.94832 1.27897
C 4.87375 3.31003 -2.41790
C 3.20791 4.69322 -1.39117
C 4.29368 -4.49992 2.43681
C 4.34239 4.57188 -2.18160
C -6.06987 1.13323 -0.21361
C -6.04304 -1.24802 0.11216
C -7.42885 -1.26315 0.11071
C -7.45565 1.11580 -0.22161
C -0.09860 -1.77762 -2.36314
C -1.27676 -3.43028 -1.06719
C -0.62992 -4.44034 -1.76602
C 0.27523 -4.12039 -2.76569
C 0.53331 -2.78754 -3.06605
C -0.16542 1.83923 2.30210
C -1.34371 3.42884 0.93045
C -0.71648 4.47182 1.59924
C 0.44882 2.88135 2.97312
C 0.18100 4.19948 2.61971
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Atoms x y z
C -8.13882 -0.08185 -0.05781
H 4.81606 5.45281 -2.59901
H 2.79406 5.67278 -1.17910
H 1.74545 3.67339 -0.20885
H 4.71163 1.20326 -2.04319
H 5.76670 3.20469 -3.02355
H 4.68016 -2.39790 -0.19599
H 5.71403 -4.38421 0.83187
H 4.75838 -5.36362 2.89794
H 2.75029 -4.32681 3.92066
H 1.72194 -2.35128 2.88668
H -2.03001 3.64227 0.11910
H -0.92316 5.49552 1.31237
H 0.68042 5.01053 3.13516
H 1.15445 2.66319 3.76472
H 0.07580 0.81623 2.55832
H -1.97107 -3.68143 -0.27361
H -0.82687 -5.47620 -1.51909
H 0.78783 -4.90667 -3.30600
H 1.24326 -2.53241 -3.84269
H 0.13287 -0.74322 -2.58001
H -5.54618 2.06959 -0.36420
H -9.22181 -0.09456 -0.06147
H -7.95610 -2.19925 0.24766
H -8.00379 2.03927 -0.36226
H -5.49836 -2.17178 0.26614
C 1.04452 -1.07405 0.57011
C 2.41772 -1.11121 0.59153
C 3.19984 -0.03497 -0.02434
C 2.43180 1.09493 -0.55424
C 1.05873 1.07042 -0.54382
C 0.35790 -0.00113 0.00498
N -1.07795 -0.00611 -0.02375
C -1.77655 1.02030 0.55638
C -1.74847 -1.03886 -0.62394
O 4.43878 -0.06894 -0.07721
C 3.12280 2.28399 -1.09991
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Atoms x y z
C 3.09756 -2.25572 1.23880
C -3.15564 1.02041 0.52147
C -3.12867 -1.06662 -0.60465
C -3.87109 -0.03246 -0.04296
C -5.34627 -0.04905 -0.04835
C -1.06589 2.10837 1.27113
C -1.00895 -2.09522 -1.35482
H 0.48357 -1.90342 0.98636
H 0.50955 1.89146 -0.99073
H -3.62025 -1.88140 -1.11687
H -3.66927 1.82962 1.02078

Table 9.2: Optimized geometry (Å) for 2

Atoms x y z
C 5.71851 1.30013 0.56075
C 5.83829 -0.88960 -0.42409
C 7.22232 -0.82498 -0.39751
C 7.10265 1.35919 0.59561
C -0.01935 -2.51603 1.66163
C 1.17588 -3.56030 -0.15084
C 0.60123 -4.78055 0.17223
C -0.27395 -4.87157 1.24304
C -0.57646 -3.73987 1.98978
C -0.13632 2.38805 -1.80843
C 0.81260 3.53179 0.08651
C 0.14710 4.69260 -0.28072
C -0.78496 3.55324 -2.17979
C -0.64945 4.70549 -1.41502
C 7.85767 0.29819 0.11444
C -5.46398 1.83590 3.20114
C -5.00912 -0.13513 -2.74591
H 1.42218 3.51996 0.98240
H 0.24529 5.58284 0.32783
H -1.17115 5.61048 -1.70130
H -1.40644 3.55915 -3.06662
H -0.26121 1.49011 -2.39917
H 1.84684 -3.48831 -0.99901
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Atoms x y z
H 0.82796 -5.65582 -0.42348
H -0.73008 -5.82195 1.49128
H -1.26222 -3.80605 2.82505
H -0.27867 -1.63667 2.23605
H 5.13862 2.12476 0.95726
H 8.93943 0.34641 0.13870
H 7.80630 -1.65217 -0.78180
H 7.59294 2.23406 1.00445
H 5.35222 -1.76239 -0.84301
H -4.66544 -2.11758 -3.41216
H -5.32647 2.91854 3.14437
H -6.52195 1.60463 3.08128
H -5.13957 1.51579 4.19469
H -5.15543 0.54925 1.46883
H -4.32066 0.64705 -2.42930
H -5.34900 0.09994 -3.75692
H -5.85153 -0.13573 -2.05487
O -2.72773 1.97546 2.85288
O -2.71900 -2.90464 -2.31985
N -4.72055 1.16092 2.16440
N -4.32813 -1.41364 -2.77309
C -3.38562 1.28580 2.07299
C -3.24947 -1.82682 -2.06448
C 5.06987 0.17359 0.05262
C 0.66740 2.37215 -0.66934
C 0.86081 -2.42019 0.58415
C -1.29133 -0.85783 -0.99833
C -2.66552 -0.92801 -1.01925
C -3.46872 -0.28465 0.00211
C -1.36068 0.61399 0.90592
C -0.63828 -0.08046 -0.05170
N 0.81271 -0.01969 -0.03865
C 1.44300 1.16453 -0.29221
C 1.53546 -1.14388 0.24393
O -4.71319 -0.44463 0.05762
C 2.82091 1.23442 -0.24020
C 2.91607 -1.08571 0.24937
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Atoms x y z
C 3.59475 0.10693 0.02038
H -0.73715 -1.43100 -1.73349
H -0.87645 1.22744 1.65840
H 3.45392 -1.98594 0.50945
H 3.28536 2.18102 -0.47637
C -2.73234 0.52620 0.95846

Table 9.3: Optimized geometry (Å) for 3

Atoms x y z
C 2.51669 3.73022 -0.26330
C 4.30795 2.55926 -1.37592
C 2.60063 -3.27467 1.73650
C 4.37496 -2.83740 0.16396
C 3.21732 -4.46604 2.11255
C 4.98913 -4.03089 0.54053
C 4.89315 3.78231 -1.69979
C 3.10479 4.95099 -0.58748
C 4.41642 -4.85330 1.51229
C 4.29755 4.98381 -1.31185
C -6.10290 1.17026 0.08210
C -6.09837 -1.23260 -0.19333
C -7.49078 -1.23284 -0.19903
C -7.49528 1.16716 0.07169
C -8.19458 -0.03370 -0.06766
C 0.48469 2.20071 3.51722
C 0.55383 -2.27989 -3.52190
H 4.76189 5.93420 -1.56220
H 2.63548 5.87636 -0.26280
H 1.60306 3.72608 0.32603
H 4.78672 1.63333 -1.66396
H 5.82512 3.79442 -2.25963
H 4.83643 -2.19675 -0.57505
H 5.92627 -4.31823 0.07007
H 4.90340 -5.77957 1.80609
H 2.76605 -5.08542 2.88378
H 1.68433 -2.97301 2.23773
H -5.57265 2.11460 0.16308

131



Atoms x y z
H -9.28083 -0.03502 -0.07398
H -8.02692 -2.17223 -0.29930
H -8.03483 2.10527 0.16542
H -5.56481 -2.17551 -0.26882
H 0.26848 0.48711 2.28083
H 0.35128 -0.57975 -2.26222
H 1.31796 2.74789 3.05927
H -0.23255 2.91989 3.91443
H 0.86906 1.57869 4.32891
H 1.34581 -2.87221 -3.04749
H -0.17631 -2.95941 -3.96305
H 0.99262 -1.65436 -4.30275
O -1.60993 2.98031 1.81917
O -1.63709 -3.01069 -1.93055
N -0.19288 1.34758 2.54868
N -0.12352 -1.42395 -2.55625
C 3.09716 2.50800 -0.65801
C 3.15603 -2.43983 0.74728
C -5.38110 -0.03029 -0.05138
C -1.14098 1.85067 1.72105
C -1.12584 -1.90509 -1.78269
C 1.06567 -1.18875 0.30515
C 2.44845 -1.20480 0.32805
C 3.21134 0.00833 -0.04640
C 2.42214 1.22672 -0.33709
C 1.04033 1.17631 -0.31817
C 0.35207 -0.01475 -0.01056
N -1.07698 -0.02753 -0.02597
C -1.78503 0.89394 0.72187
C -1.77346 -0.95022 -0.78318
O 4.45539 0.00618 -0.10269
C -3.16567 0.93537 0.66118
C -3.15549 -0.99050 -0.73803
C -3.90666 -0.02863 -0.04264
H 0.51239 -2.09669 0.53411
H 0.46575 2.05715 -0.59480
H -3.63123 -1.75502 -1.33938
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Atoms x y z
H -3.65054 1.70015 1.25507

Table 9.4: Optimized geometry (Å) for 4

Atoms x y z
C 5.74287 -1.31193 -0.33858
C 5.86075 1.06330 0.11084
C 7.25027 1.00525 0.04258
C 7.13224 -1.36479 -0.41381
C 7.89027 -0.20762 -0.22186
C -5.33648 -2.98202 -2.52950
C -5.08221 1.05036 2.54218
C -0.88248 -3.16494 2.72663
C -0.91217 3.56329 -2.07864
H -0.60432 1.47609 -1.84667
H -0.22783 4.40789 -2.16463
H -1.40717 3.39366 -3.03746
H 5.16381 -2.21359 -0.51490
H 8.97422 -0.25077 -0.27798
H 7.83393 1.90727 0.20186
H 7.62288 -2.30971 -0.62840
H 5.37723 2.00757 0.34311
H -4.85865 3.14888 2.28669
H -5.13949 -3.98948 -2.14497
H -6.41078 -2.78622 -2.48662
H -5.01089 -2.96044 -3.57672
H -5.13278 -1.20321 -1.28714
H -4.34646 0.24413 2.58900
H -5.44350 1.24213 3.55818
H -5.90767 0.71769 1.90680
H -0.73881 -1.18218 1.96344
H -1.55970 -3.70156 2.05142
H -0.12237 -3.86141 3.08364
H -1.45049 -2.77551 3.57440
H -1.65775 3.77298 -1.30191
O -2.59144 -2.88501 -2.10367
O -2.94863 3.49547 0.89578
O 1.37985 -3.35621 1.10671
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Atoms x y z
O 1.41821 3.48190 -0.48651
N -4.64848 -1.98017 -1.74225
N -4.45159 2.25661 2.03553
N -0.22826 -2.05124 2.05060
N -0.14023 2.36819 -1.73179
C -3.30413 -2.01150 -1.59495
C -3.39837 2.38054 1.18435
C 5.08599 -0.09571 -0.07722
C 0.82312 -2.27048 1.22790
C 0.87973 2.44162 -0.85106
C -1.36430 1.10287 0.69815
C -2.74317 1.14300 0.63291
C -3.50466 0.15148 -0.12663
C -1.33384 -0.92415 -0.64966
C -0.64887 0.06542 0.07364
N 0.79430 0.05262 0.10199
C 1.47112 -1.06604 0.53867
C 1.51025 1.13886 -0.34953
O -4.75603 0.23812 -0.23865
C 2.84986 -1.13147 0.43408
C 2.89431 1.11318 -0.35258
C 3.61369 -0.03886 -0.00355
H -0.84090 1.90027 1.22020
H -0.80786 -1.72487 -1.16514
H 3.39168 2.01106 -0.69655
H 3.31078 -2.05082 0.77157
C -2.71092 -0.90569 -0.75920
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