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Abstract

Ligand binding thermodynamics and kinetics are critical parameters for drug design. However, 

it has proven challenging to efficiently predict ligand binding thermodynamics and kinetics 

from molecular simulations due to limited simulation timescales. Protein dynamics especially 

in the ligand binding pocket often plays an important role in ligand binding. Based on our 

previously developed Ligand Gaussian accelerated molecular dynamics (LiGaMD), here we 

present LiGaMD2 in which a selective boost potential was applied to both the ligand and protein 

residues in the binding pocket to improve sampling of ligand binding and dissociation. To validate 

the performance of LiGaMD2, the T4 lysozyme (T4L) mutants with open and closed pockets 

bound by different ligands were chosen as model systems. LiGaMD2 could efficiently capture 

repetitive ligand dissociation and binding within microsecond simulations of all T4L systems. The 

obtained ligand binding kinetic rates and free energies agreed well with available experimental 

values and previous modeling results. Therefore, LiGaMD2 provides an improved approach to 

sample opening of closed protein pockets for ligand dissociation and binding, thereby allowing for 

efficient calculations of ligand binding thermodynamics and kinetics.
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Introduction

ligand binding to target receptors plays a critical role in many fundamental biological 

processes1, as well as in the design of more effective and selective drugs for treating human 

diseases2. A number of experimental techniques3 have been developed to explore protein-

small molecule interactions. For example, structural biology techniques3b have been widely 

applied to determine protein-ligand complex structures. However, X-ray crystallography and 

cryo-electron microscopy (cryo-EM) could provide only static snapshots of protein-small 

molecule interactions. It is rather challenging for experimental methods to capture ligand 

binding and dissociation pathways and determine potential intermediate states of ligand 

binding to the protein target site.

Recently, ligand binding kinetics has been recognized to be critical for drug design4. The 

ligand dissociation rate koff  or residence time 1/koff  appears to correlate with drug efficacy 

better than ligand binding free energy. However, ligand binding kinetic rates have proven 

more challenging to predict, due to slow processes of ligand dissociation and rebinding4b, 5. 

With remarkable advances in computer hardware and method developments, conventional 

molecular dynamics (cMD) simulations nowadays are able to capture spontaneous ligand 

binding to target proteins and predict corresponding binding association rates kon
6. 

However, it remains challenging to use cMD to simulate repetitive ligand binding and 

dissociation processes, precluding accurate prediction of ligand binding kinetic rates. 

For example, based on tens-of-microsecond cMD simulations, Shan et al. 7 successfully 

captured spontaneous binding of the Dasatinib drug to its target Src kinase and accurately 

predicted the ligand association rate kon . However, no dissociation event was observed in 

the cMD simulations. Similar results were observed in the binding of benzene (BEN) to 

the L99A mutant of T4 lysozyme (T4L)8. The cMD simulations with lengths of 2 to 8 

μs successfully captured BEN binding to the L99A T4L8. Tens to hundreds of repetitive 

guest binding and dissociation from the β-CD host were observed in microsecond cMD 

simulations9, which enabled accurate prediction of host-guest binding thermodynamics 

and kinetics. Tens-of-microsecond cMD simulations6d captured repetitive binding and 

dissociation of six small-molecule fragments with weak millimolar binding affinities to 

the protein FKBP, which enabled accurate prediction of fragment binding free energies 

and kinetic rates. Nevertheless, cMD simulations have not captured repetitive binding and 

dissociation of typical small-molecule ligands to target proteins so far.

In this regard, enhanced sampling methods10 have been developed to extend accessible 

timescale of MD simulations, including Metadynamics11, Steered MD12, Umbrella 

Sampling12a, 13, Replica Exchange MD 14, Random Acceleration Molecular Dynamics 

(RAMD) 15, Scaled MD 16, accelerated MD (aMD) 17, Gaussian accelerated MD (GaMD) 
18, Markov State Model (MSM)8, 19, Weighted Ensemble20, and so on. Using T4L as a 

model system, a total of ~12 μs infrequent Metadynamics11a, 11b simulations successfully 

captured 20 times of ligand binding and dissociation events and predicted the values of 

kon and koff at 3.5 ± 2 × 104 M−1s−1 and 7 ± 2 s−1, being comparable to experimental 

values of 0.8±1×106M−1s−1 and 950±20 s−1, respectively. However, Metadynamics requires 

predefined collective variables (CVs) before running the simulations. Thus, a priori 
knowledge of the systems is often required. In comparison, Weighted Ensemble21 and 
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MSM22 combine a large number of short cMD simulations to predict ligand binding kinetic 

rates. For example, Weighted Ensemble20b of a total of 29 μs cMD was able to accurately 

predict the dissociation rate of BEN from the L99A T4L as 1000s−1, being highly consistent 

with the experimental value of 950±200s−1. One MSM8 built on a total of 69 μs cMD 

simulations predicted the values of kon and koff at 21±91×106 M−1s−1 and 311±130 s−1, 

being in reasonable agreement with experiment values of 0.8±1×106M−1s−1 and 950±20 s−1, 

respectively. However, these calculations required very expensive computational resources.

GaMD was developed to provide both unconstrained enhanced sampling and free energy 

calculations of large biomolecules18. It works by applying a harmonic boost potential 

to reduce system energy barriers. The boost potential normally exhibits a near Gaussian 

distribution, which enables proper reweighting of the free energy profiles through cumulant 

expansion to the second order18. Ligand GaMD (LiGaMD)23 has recently been developed 

to allow for more efficient sampling of ligand dissociation and rebinding processes, being 

able to accurately predict ligand binding thermodynamics and kinetics. In LiGaMD, one 

selective boost was applied to the ligand non-bonded interaction potential energy to 

accelerate ligand dissociation. Another boost was applied on the remaining potential to 

facilitate ligand rebinding. Recently, an increasing number of studies suggested that the 

flexibility of proteins, particularly those with closed pockets, played an important role in 

ligand binding8, 24. Protein structural flexibility allows the opening, closing, and adaptation 

of the binding pocket, which are critical for ligand binding to protein8, 25. Additionally, 

enhanced sampling of the protein binding pocket has proven to significantly improve 

the efficiency and accuracy of simulating protein-ligand interaction14d, 26. Wang et al.26 

proposed FEP/REST to improve the accuracy of ligand binding free energy calculation, 

which combined the free energy perturbation (FEP) and replica exchange with solute 

tempering (REST) to enhance sampling of protein residues in the binding site. FEP/REST 

was demonstrated to achieve much quicker simulation convergence and more accurate 

binding free energy calculations. Sugita et al.14d developed the generalized replica exchange 

with solute tempering (gREST) to simulate small molecule binding to the L99A T4L. By 

enhanced sampling of ligand and protein residues in the binding site, the gREST simulations 

successfully captured ligand binding to the L99A T4L in a total of 2.4 μs simulations. The 

obtained free energy profiles of binders (BEN, ethylbenzene, and n-hexylbenzene) were 

distinct from those of nonbinders (phenol and benzaldehyde). Another study25a from the 

same group combined the gREST with the replica exchange umbrella sampling (gREST/

REUS) to capture the binding of compound PP1 to its target Src kinase. The gREST/REUS 

simulations25a could capture multiple ligand binding and unbinding events.

Built on our previously developed LiGaMD, here we developed a novel approach termed 

LiGaMD2, in which a selective boost was added to both the ligand and protein pocket 

residues to accelerate ligand dissociation and binding. Various T4L mutants bound by BEN 

and indole (IND) with open and closed pockets were chosen as testing systems. The T4L 

mutants with small hydrophobic cavities that can accommodate different ligands have been 

widely used as model systems for benchmarking computational methods27. Microsecond 

LiGaMD2 simulations could capture repetitive ligand binding and unbinding processes 

in all the simulated T4L systems. LiGaMD2 thus enabled highly efficient and accurate 
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prediction of ligand binding thermodynamics and kinetics. Simulation predictions agreed 

well with experimental binding free energy and kinetic rates. Since the chosen systems 

included different ligands and protein mutants with distinct binding pockets, the simulations 

validated the robustness of LiGaMD2. Furthermore, multiple ligand binding and dissociation 

pathways were identified by LiGaMD2 simulations, being highly consistent with published 

simulation results8, 15a, 20b, 28.

Methods

LiGaMD2: Selectively boosting both the ligand and protein pocket

LiGaMD is an enhanced sampling technique for characterizing ligand binding 

thermodynamics and kinetics. It works by adding a selective harmonic boost potential to 

the non-bonded ligand interaction potential energy. Detail of the LiGaMD method has 

been described in our previous study29. Here, we briefly describe the algorithm for further 

development of the LiGaMD2 method.

We consider a system of ligand L binding to a protein P  in a biological environment 

E. The system comprises of N atoms with their coordinates r ≡ {r1⃑, ⋯, r ⃑N} and momenta 

p ≡ p⃑1, ⋯, p⃑N . The system Hamiltonian can be expressed as:

H r, p = K p + V r , (1)

where K p  and V r  are the system kinetic and total potential energies, respectively. The 

protein P could be further divided into two parts: residues in the binding pocket Pb  and 

other parts Po . We decompose the potential energy into the following terms:

V r = V Pb, b rPb + V Po, b rPo + V PbPo, b rPbPo + V L, b rL + V E, b rE
+ V PbPb, nb rPb + V PoPo, nb rPo + V LL, nb rL + V EE, nb rE
+ V PbL, nb rPbL + V PbE, nb rPbE + V PbPo, nb rPbPo
+ V PoL, nb rPoL + V PoE, nb rPoE + V LE, nb rLE

(2)

where V Pb, b, V Po, b, V L, b and V E, b are the bonded potential energies in the binding pocket of 

protein Pb, the remaining atoms of protein Po, ligand L and environment E, respectively.

V PbPo, b rPbPo  is the bonded potential energies involving atoms between the protein binding 

pocket and the other parts. V PbPb, nb, V PoPo, nb, V LL, nb and V EE, nb are the self non-bonded potential 

energies in the protein binding pocket Pb, the remaining atoms of protein Po, ligand L and 

environment E, respectively. V PbPo, nb rPbPo , V PbL, nb rPbL , V PbE, nb rPbE , V PoL, nb rPoL , V PoE, nb rPoE

and V LE, nb are the non-bonded interaction energies between Pb‐Po, Pb‐L, Pb‐E, Po‐L, Po‐E and 

L‐E, respectively. According to classical molecular mechanics force fields30, the non-bonded 

potential energies are usually calculated as:

V nb = V elec + V vdW , (3)

where V elec and V vdW  are the system electrostatic and van der Waals potential energies. The 

bonded potential energies are usually calculated as
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V b = V bond + V angle + V diℎedral (4)

where V bond, V angle  and V diℎedral are the system bond, angle and dihedral potential energies. 

As mentioned above, flexibility of the protein pocket often plays a critical role in ligand 

binding. Therefore, the ligand essential potential energy in the LiGaMD2 is defined as

V L(r) = V L, b rL + V Pb, b rPb + V LL, nb rL + V Pb, nb rPb + V PbL, nb rPbL + V PoL, nb rPoL +
V LE, nb rLE + V PbPo, nb rPbPo + V PbE, nb rPbE

(5)

In the Pd-GaMD, we add boost potential selectively to the ligand essential potential energy 

according to the GaMD algorithm:

ΔV L r =
1
2kL EL − V L r 2, V L r < EL

0, V L r ≥ EL,
(6)

where EL is the threshold energy for applying boost potential and kL is the harmonic 

constant. The LiGaMD2 simulation parameters are derived similarly as in the previous 

LiGaMD. When E is set to the lower bound as the system maximum potential energy 

E = V max , the effective harmonic force constant k0 can be calculated as:

k0 = min 1.0, k0
′ = min(1.0, σ0

σV

V max − V min

V max − V avg
), (7)

where V max, V min, V avg and σV  are the maximum, minimum, average and standard deviation of 

the boosted system potential energy, and σ0 is the user-specified upper limit of the standard 

deviation of ΔV  (e.g., 10kBT) for proper reweighting. The harmonic constant is calculated 

as k = k0 · 1
V max − V min

 with 0 < k0 ≤ 1. Alternatively, when the threshold energy E is set to its 

upper bound E = V min + 1
k , k0 is set to:

k0 = k0
” ≡ (1 − σ0

σV
)V max − V min

V avg − V min
, (8)

if k0
” is found to be between 0 and 1. Otherwise, k0 is calculated using Eqn. (7).

In addition to selectively boosting the ligand and surrounding protein residues in the binding 

site, another boost potential is applied on the protein and solvent to enhance conformational 

sampling of the protein and facilitate ligand rebinding. The second boost potential is 

calculated using the total system potential energy other than the ligand essential potential 

energy as:

ΔV D r =
1
2kD ED − V D r 2, V D r < ED

0, V D r ≥ ED

(9)

Wang and Miao Page 5

J Chem Theory Comput. Author manuscript; available in PMC 2023 July 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Where VD is the total system potential energy other than the ligand essential potential energy, 

ED is the corresponding threshold energy for applying the second boost potential and kD is 

the harmonic constant. This leads to dual-boost LiGaMD2 with the total boost potential 

ΔV r = ΔV L r + ΔV D r .

Energetic Reweighting of LiGaMD2

To calculate potential of mean force (PMF)31 from LiGaMD2 simulations, the probability 

distribution along a reaction coordinate is written as p* A . Given the boost potential ΔV r ⃑
of each frame, p*(A) can be reweighted to recover the canonical ensemble distribution, p(A), 
as:

p(Aj) = p* Aj
〈eβΔV r ⃑ 〉j

∑i = 1
M 〈p* Ai eβΔV r ⃑ 〉i

, j = 1, …, M, (10)

where M is the number of bins, β = kBT  and 〈eβΔV r ⃑ 〉j is the ensemble-averaged Boltzmann 

factor of ΔV (r ⃑) for simulation frames found in the jth bin. The ensemble-averaged 

reweighting factor can be approximated using cumulant expansion:

〈eβΔV r ⃑ 〉 = exp ∑
k = 1

∞ βk

k!Ck , (11)

where the first two cumulants are given by

C1 = ΔV ,
C2 = ΔV 2 − ΔV 2 = σv

2 . (12)

The boost potential obtained from LiGaMD2 simulations usually follows near-Gaussian 

distribution. Cumulant expansion to the second order thus provides a good approximation 

for computing the reweighting factor18b, 32. The reweighted free energy F (A) = −kBT ln p(A)
is calculated as:

F (A) = F*(A) − ∑
k = 1

2 βk

k!Ck + F c, (13)

where F*(A) = −kBT ln p*(A) is the modified free energy obtained from LiGaMD2 

simulation and Fc is a constant.

Ligand binding free energy calculations from 3D potential of mean force

We calculate ligand binding free energy from 3D potential of mean force (PMF) of ligand 

displacements from the target protein as the following33:

ΔG0 = − ΔW 3D − RTLnV b

V 0
, (14)
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where V 0 is the standard volume, V b = ∫be−βW r dr is the average sampled bound volume of 

the ligand with β = 1/kBT , kB is the Boltzmann constant, T  is the temperature, and ΔW 3D is 

the depth of the 3D PMF. ΔW 3D can be calculated by integrating Boltzmann distribution of 

the 3D PMF W r  over all system coordinates except the x, y, z of the ligand:

ΔW 3D = − RTLn
∫ue−βW r dr

∫udr , (15)

where V u = ∫udr is the sampled unbound volume of the ligand. The exact definitions of the 

bound and unbound volumes V b and V u are not important as the exponential average cut off 

contributions far away from the PMF minima33b. A python script “PyReweighting-3D.py” 

in the PyReweighting tool kit (http://miao.compbio.ku.edu/PyReweighting/) 34 was applied 

for reweighting LiGaMD2 simulations to calculate the 3D reweighted PMF and associated 

ligand binding free energies.

Ligand binding kinetics obtained from reweighting of LiGaMD2 Simulations

Reweighting of ligand binding kinetics from LiGaMD2 simulations followed a similar 

protocol using Kramers’ rate theory that has been recently implemented in kinetics 

reweighting of the GaMD35, LiGaMD34b, Pep-GaMD29 and PPI-GaMD36 simulations. 

Provided sufficient sampling of repetitive ligand dissociation and binding in the simulations, 

we record the time periods and calculate their averages for the ligand found in the bound 

(τB) and unbound (τU) states from the simulation trajectories. The τB corresponds to residence 

time in drug design37. Then the ligand dissociation and binding rate constants (koff and kon) 

were calculated as:

koff = 1
τB

. (16)

kon = 1
τU · L , (17)

where L  is the ligand concentration in the simulation system.

According to Kramers’ rate theory, the rate of a chemical reaction in the large viscosity limit 

is calculated as35:

kR ≅ wmwb

2πξ e−ΔF /kBT , (18)

where wm and wb are frequencies of the approximated harmonic oscillators (also referred to 

as curvatures of free energy surface38) near the energy minimum and barrier, respectively, 

ξ is the frictional rate constant and ΔF  is the free energy barrier of transition. The friction 

constant ξ is related to the diffusion coefficient D with ξ = kBT /D. The apparent diffusion 

coefficient D can be obtained by dividing the kinetic rate calculated directly using the 

transition time series collected directly from simulations by that using the probability 

density solution of the Smoluchowski equation39. In order to reweight ligand kinetics from 
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the LiGaMD2 simulations using the Kramers’ rate theory, the free energy barriers of ligand 

binding and dissociation are calculated from the original (reweighted, ΔF ) and modified 

(no reweighting, ΔF*) PMF profiles, similarly for curvatures of the reweighed w  and 

modified (w*, no reweighting) PMF profiles near the ligand bound (“B”) and unbound 

(“U”) low-energy wells and the energy barrier (“Br”), and the ratio of apparent diffusion 

coefficients from simulations without reweighting (modified, D*) and with reweighting D . 

The resulting numbers are then plugged into Eq. (17) to estimate accelerations of the ligand 

binding and dissociation rates during LiGaMD2 simulations35, which allows us to recover 

the original kinetic rate constants.

System Setup

The complex structures of benzene (BEN) bound to the L99A T4L, M102A T4L and F104A 

T4L were obtained from the 3HH440, 220L41 and 227L41 PDB files, respectively. The 

crystal structure of indole (IND) bound to the L99A T4L was obtained from the 185L42 

PDB file. The AMBER ff14SB force field43 was used for the protein and the GAFF force 

field44 for the ligand with AM1-BCC charges. Each system was solvated in a periodic 

box of TIP3P water molecules with a distance of 18 Å from the solute to the box edge 

using tleap. Therefore, the ligand concentration was 0.0034 M in the simulation system. 

Appropriate number of Cl- ions were added to achieve system neutrality.

Simulation Protocol

Each system was energy minimized and gradually heated to 300 K in 1 ns with the 

Langevin thermostat and harmonic restraints of 50 kcal/mol/Å2 on all non-hydrogen atoms 

of the protein and the ligand using the AMBER22 software45. The simulation system 

was firstly energy minimized with 1.0 kcal/mol/Å2 constraints on the heavy atoms of 

the proteins, including the steepest descent minimization for 50,000 steps and conjugate 

gradient minimization for 50,000 steps. The system was then heated from 0 K to 300 K 

for 200 ps. It was further equilibrated using the NVT ensemble at 300 for 200 ps and 

the NPT ensemble at 300 K and 1 bar for 1 ns with 1 kcal/mol/Å2 constraints on the 

heavy atoms of the protein, followed by 2 ns short cMD without any constraint. The 

LiGaMD2 simulations proceeded with 14 ns short cMD to collect the potential statistics, 

49.2 ns LiGaMD2 equilibration after adding the boost potential and then three independent 

1,000 ns production runs. It provided more powerful sampling to set the threshold energy 

for applying the boost potential to the upper bound (i.e., E = V min + 1/k) in our previous 

study ligand dissociation and binding using LiGaMD29. Therefore, the threshold energy for 

applying the ligand essential potential was also set to the upper bound in the LiGaMD2 

simulations. The selective boost potential was applied to both the ligand and protein pocket 

residues within 5Å of ligand in the LiGaMD2 simulations. For the second boost potential 

applied on the system total potential energy other than the ligand essential potential energy, 

sufficient acceleration was obtained by setting the threshold energy to the lower bound. 

In order to observe ligand dissociation during LiGaMD2 equilibration while keeping the 

boost potential as low as possible for accurate energetic reweighting, the σ0P, σ0D  parameters 

were finally set to (9.0 kcal/mol, 6.0 kcal/mol), (7.0 kcal/mol, 6.0 kcal/mol), (9.0 kcal/

mol, 6.0 kcal/mol) and (9.0 kcal/mol, 6.0 kcal/mol) for the LiGaMD2 simulations of the 
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BEN bound to the L99A T4L (T4L:L99A-BEN), F104A T4L (T4L:F104A-BEN), M102A 

T4L (T4L:M102A-BEN) and IND bound to the L99A T4L (T4L:L99A-IND). LiGaMD2 

production simulation frames were saved every 0.4 ps for analysis.

Simulation Analysis

The VMD46 and CPPTRAJ47 tools were used for simulation analysis. The number of ligand 

dissociation and binding events (ND and NB) and the ligand binding and unbinding time 

periods (τB and τU) were recorded from individual simulations (Tables 1 &S1). With high 

fluctuations, τB and τU were recorded for only the time periods longer than 1 ns. The 1D, 

2D and 3D PMF profiles, as well as the ligand binding free energy, were calculated through 

energetic reweighting of the LiGaMD2 simulations. The center-of-mass distance between 

the ligand and the protein pocket (defined by protein residues within 5 Å of ligand) and 

ligand heavy atom RMSDs relative to X-ray structures with the protein aligned were chosen 

as the reaction coordinate for calculating the 1D PMF profiles. The bin size was set to 

1.0 Å. The software trj_cavity48 implemented in GROMACS was used to calculate the 

pocket volume. 2D PMF profiles of the ligand RMSD and pocket volume were calculated 

to analyze conformational changes of the protein upon ligand binding. The bin size was set 

to 50 Å3 for pocket volume. The cutoff for the number of simulation frames in one bin 

was set to 500 for reweighting 1D and 2D PMF profiles. The 3D PMF profiles of ligand 

displacements from the T4L mutants in the X, Y and Z directions were further calculated 

from the LiGaMD2 simulations. The bin sizes were set to 1 Å in the X, Y and Z directions. 

The cutoff of simulation frames in one bin for 3D PMF reweighting (ranging from 100–

400 for three individual LiGaMD2 simulations) was set to the minimum number below 

which the calculated 3D PMF minimum will be shifted. The ligand binding free energies 

(ΔG) were calculated using the reweighted 3D PMF profiles and binding kinetic rates by 

ΔG = − RTLn koff /kon , respectively. The ligand dissociation and binding rate constants (kon

and koff) were calculated from the LiGaMD2 simulations with their accelerations analyzed 

using the Kramers’ rate theory (Table S2).

Results

Flexibity of the protein pocket plays an important role in dissociation of buried ligands

The ligand binding pockets are different in the L99A and F104A mutants of T4 lysozyme 

(T4L). The binding pocket in L99A T4L is deeply buried (Fig. 1A), while the pocket is 

exposed to the solvent in the F104A mutant (Fig. 1D). LiGaMD and LiGaMD2 testing 

simulations with σ0P increasing from 6.0 to 10.0 kcal/mol and σ0D at 6.0 kca/mol were 

performed on these two systems. Ligand dissociation was captured in both LiGaMD and 

LiGaMD2 simulations of benzene (BEN) binding in the F104A mutant with an exposed 

binding pocket (Fig. 1E& 1F). With LiGaMD, the ligand dissociated from the F104A T4L at 

5.45 ns, 7.20 ns, 18.22 ns and 7.80 ns with the σ0P  values of 6.0, 7.0, 8.0 and 9.0 kcal/mol, 

respectively. Interestingly, LiGaMD with the σ0P value at 9.0 could capture both the ligand 

dissociation and rebinding within the 49.2 ns equilibration simulation. LiGaMD2 captured 

the ligand dissociation at 3.60 ns, 11.20 ns, 4.50 ns and 29.60 ns with the σ0P value of 6.0, 

7.0, 8.0 and 9.0 kcal/mol, respectively. The LiGaMD2 with the σ0P values of 7.0 and 8.0 
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kcal/mol could capture the ligand dissociation and rebinding within the 49.2 ns equilibration 

simulation.

For the L99A T4L with a buried protein pocket, the LiGaMD could not capture ligand 

dissociation even with the value of σ0P increased to 10.0 kcal/mol (Fig. 1B). In comparison, 

the LiGaMD2 simulations could capture the ligand dissociation and rebinding with the σ0P

values of 9.0 and 10.0 kcal/mol (Fig. 1B&1C). The ligand dissociated at 12.52 ns and 

rebound at ~29.50 ns in the LiGaMD2 simulation with the σ0P value of 9.0 kcal/mol. In 

the LiGaMD2 simulation with the σ0P value of 10.0 kcal/mol, the ligand dissociation and 

rebinding occurred at ~23.60 ns and ~26.80 ns, respectively.

Next, we identified correlation of the ligand dissociation and conformational changes of 

the protein pocket in the L99A T4L (Fig. S1). The binding pocket exhibited low RMSD 

of ~1–2 Å in the LiGaMD simulations with all the tested parameters as no selective boost 

potential was applied to the protein pocket (Fig. S1A). In comparison, RMSD of the binding 

pocket significantly increased in the LiGaMD2 simulations with the σ0P values of 9.0 and 

10.0 kcal/mol, respectively (Fig. S1B). As the σ0P value of 9.0 kcal/mol was the lowest 

value that enabled the ligand dissociation and rebinding, we further focused on the binding 

pocket in this simulation. During ligand dissociation around 12 ns, RMSD of the binding 

pocket increased to ~1.7 Å. RMSD of the binding pocket decreased to mostly <1.0 Å when 

the ligand completely dissociated to the solvent. The binding pocket RMSD increased to 

~2 Å when the ligand rebound to the pocket at ~30 ns (Fig S1C). After the ligand bound 

completely to the protein pocket, RMSD of the binding pocket deceased to ~1 Å again. We 

further calculated volume of the protein pocket during the LiGaMD2 simulation (Fig S1D). 

The volume of the protein pocket was overall smaller in the ligand-free (apo) state than in 

the ligand-bound (holo) state (Fig S1D). Similar opening of the binding pocket was observed 

in previous aMD simulation of BEN dissociation from the L99A T4L49. In summary, 

LiGaMD2 showed improved sampling of ligand binding to the buried protein pockets, where 

dynamics of the binding pocket played an important role in the ligand dissociation and 

rebinding. For the system with an open pocket, both LiGaMD and LiGaMD2 worked well.

Microsecond LiGaMD2 simulations captured repetitive ligand dissociation and rebinding 
to the T4L mutants

As the σ0P values of 9.0 and 7.0 kcal/mol were the lowest to capture the ligand dissociation 

and rebinding in LiGaMD2 equilibration simulations of the L99A and F104A T4L systems 

(Figs. 1C & 1F), they were used for further three independent 1,000 ns production 

simulations. Furthermore, two more systems with buried binding pockets were added to 

demonstrate the robustness of LiGaMD2, including the M102A T4L bound by BEN and the 

L99A T4L bound by a different ligand indole (IND). In summary, LiGaMD2 simulations 

were performed on three complexes of BEN bound to the L99A T4L (T4L:L99A-BEN), 

M102A T4L (T4L:M102A-BEN) and F104A T4L (T4L:F104A-BEN), and another complex 

of IND bound to the L99A T4L (T4L:L99A-IND) (Figs. 2A–D). Three independent 1,000 

ns LiGaMD2 production simulations were performed on each of the four systems (Table 

1). The LiGaMD2 simulations of the T4L:L99A-BEN system recorded an average boost 

potential of 107.77–109.84 kcal/mol with 9.58–9.67 kcal/mol standard deviation. The 
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LiGaMD2 simulations of the T4L:M102A-BEN system recorded an average boost potential 

of 108.04–109.21 kcal/mol with 9.49–10.04 kcal/mol standard deviation. In comparison, 

the average boost potential was 70.45–72.53 kcal/mol with 7.81–8.11 kcal/mol standard 

deviation in the three simulations of the T4L:F104A-BEN. The boost potential applied in 

simulations of the T4L:L99A-IND system was slightly larger than that of the T4L:L99A-

BEN system, with average of 115.80–118.16 kcal/mol and 9.68–9.79 kcal/mol standard 

deviation (Table 1).

RMSDs of the ligand relative to the X-ray structures with the T4L aligned were calculated 

(Figs. 2A–2D) to record the number of ligand dissociation and binding events (ND and NB) 

in each of the 1,000 ns LiGaMD2 simulations. With close examination of the ligand binding 

trajectories, RMSD cutoffs of the ligand unbound and bound states were set to >15 Å and 

<5.0 Å, respectively. Because of ligand fluctuations, we recorded only the corresponding 

binding and dissociation events that lasted for more than 1.0 ns. In each simulation of the 

T4L:L99A-BEN system, about 5–6 binding and 5–6 dissociation events were observed (Fig. 

2A & Table 1). In each simulation of the T4L:F104A-BEN system, about 3–4 dissociation 

and 3–4 binding events were observed (Fig. 2B & Table 1). In each simulation of the 

T4L:M102A-BEN system, about 3–7 dissociation and 3–7 binding events were observed 

(Fig. 2C & Table 1). A similar number of ligand dissociation (3–6) and binding (3–7) 

events were observed in simulations of the T4L:L99A-IND system (Fig. 2D & Table 1). In 

summary, repetitive ligand dissociation and rebinding were successfully captured in each of 

the 1,000 ns LiGaMD2 simulations of various T4L mutants bound by different ligands (Figs. 

2).

Next, we explored the correlation between conformational changes of the binding pocket 

and ligand binding in the LiGaMD2 production simulations. The ligand RMSD and volume 

of the binding pocket were used as reaction coordinates to calculate 2D PMF (Fig. 3). Five 

low-energy states were identified in the 2D PMF profile of the T4L:L99A-BEN system 

including the Bound (“B”), Intermediate (“I”), Unbound U1 (“U1”), Unbound U2 (“U2”) 

and Unbound U3 (“U3”) states (Fig. 3A). The ligand RMSD and pocket volume in the 

B, I, U1, U2 and U3 states centered around (2.5 Å, 300 Å3), (9.3 Å, 425.7 Å3), (24.5 

Å, 259.9 Å3), (34.8 Å, 360.3 Å3), and (41.6 Å, 251.9 Å3), respectively (Fig 3A). In the 

T4L:F104A-BEN system, three low-energy states were identified, including the Bound 

(“B”), Intermediate (“I”) and Unbound (“U”) states (Fig. 3B). The ligand RMSD and the 

pocket volume in the B, I and U centered around (3.8 Å, 176.80 Å3), (11.6 Å, 59.6 Å3) and 

(35.0 Å, 54.7 Å3), respectively (Fig. 3B). In the T4L:M102A-BEN system, five low-energy 

states were identified including the Bound (“B”), Intermediate (“I”), Intermediate (“I2”), 

Unbound (“U1”) and Unbound (“U2”) states (Fig. 3C). The ligand RMSD and pocket 

volume in the B, I, I2, U1 and U2 states centered around (2.7 Å, 219.7 Å3), (10.7 Å, 356.5 

Å3), (11.0 Å, 113.4 Å3), (32.9 Å, 258.8 Å3), and (37.8 Å, 132.9 Å3), respectively (Fig 

3C). In the T4L:L99A-IND system, four low-energy states were identified including the 

Bound (“B”), Intermediate (“I”), Intermediate (“I2”) and Unbound (“U”) states (Fig. 3D). 

The ligand RMSD and pocket volume in the B, I, I2, and U states centered around (1.9 

Å, 363.2 Å3), (5.0 Å, 468.8 Å3), (11.5 Å, 357.4 Å3), and (28.8 Å, 155.4 Å3), respectively 

(Fig 3D). In compared with the bound state, a larger binding pocket volume was identified 
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in the intermediate I state in the systems with an burred protein pocket including the 

T4L:L99A-BEN, T4L:M102A-BEN and T4L:L99A-IND (Figs. 3A, 3B & 3D). In contrast, 

the binding pocket volume was significantly smaller in the intermediate I state in the 

T4L:F104A-BEN with an exposed binding pocket (Fig. 3B). The representative intermediate 

conformational states from the four systems were shown in Fig. 3E–3H. Compared to 

the bound X-ray structures, helices C and G in the intermediate “I” state moved outward 

in the T4L:L99A-BEN system, leading to opening of the binding pocket (Fig. 3E). In 

the T4L:F104A-BEN system, major conformational changes upon ligand binding involved 

helices C and B, which moved inwards and reduced volume of the binding pocket (Fig. 3F). 

In the T4L:M102A-BEN system, helices D, F and G moved outwards in the intermediate 

“I” state with opening of the ligand binding pocket, accompanied by inward movement of 

helix C (Fig. 3G). In the T4L:L99A-IND system, outward movements were observed in 

helices C, D and G in the intermediate I state (Fig. 3H). Therefore, conformational changes 

of the protein pocket greatly facilitated the ligand dissociation and binding in the L99A and 

M104A systems with a buried binding pocket.

Ligand binding kinetic rates and free energies calculated from LiGaMD2 agreed well with 
experimental data

LiGaMD2 simulations that successfully captured repetitive ligand binding and dissociation 

allowed us to calculate the ligand binding kinetic rate constants. We recorded the time 

periods for the ligand found in the bound τB  and unbound τU  states throughout the 

LiGaMD2 simulations. Without reweighting, the ligand binding rate constants kon *
were calculated directly from the LiGaMD2 trajectories as 8.22 ± 5.48×107 M−1·s−1, 

7.79±1.36 × 106 M−1·s−1, 6.81±1.27×107 M−1·s−1 and 1.67±0.67×109 M−1·s−1 in the system 

of T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems, 

respectively (Table 2). The accelerated dissociation rate constants koff *  were calculated 

as 3.47 ± 2.31×105 s−1, 3.46 ±1.81×109 s−1, 1.72±1.44×109 s−1 and 2.49±1.25×107 s−1 

in the T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems, 

respectively (Table 2).

Next, we reweighted the LiGaMD2 simulations of ligand-T4L mutants to calculate 

acceleration factors of ligand binding and dissociation processes (Table S1) and recovered 

the original kinetic rate constants using the Kramers’ rate theory (Table 2). The dissociation 

free energy barrier ΔFoff  significantly decreased from 10.5±0.86, 9.00±1.07, 8.55±0.54, 

and 7.11±0.34 kcal/mol in the reweighted PMF profiles to 2.55±0.43, 2.35±0.34, 2.36±0.35 

and 2.23±0.26 kcal/mol in the modified PMF profiles for the system of T4L:L99A-BEN, 

T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND, respectively, respectively (Table 

S1 and Fig. S2). The free energy barrier for ligand binding ΔFon  slightly decreased 

from 4.93±1.38, 6.03±0.11, 5.40±1.07, 4.37±0.33 kcal/mol in the reweighted profiles to 

0.57±0.14, 1.15±0.50, 0.54±0.053, 0.53±0.10 kcal/mol in the modified PMF profiles for 

the system of T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND, 

respectively (Table S1 and Fig. S2). Curvatures of the reweighed (w) and modified (w*, 

no reweighting) free energy profiles were calculated near the ligand Bound (“B”) and 

Unbound (“U”) low-energy wells and the energy barrier (“Br”), as well as the ratio of 

apparent diffusion coefficients calculated from LiGaMD2 simulations with reweighting 
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D  and without reweighting (modified, D*) (Table S1). According to the Kramers’ rate 

theory, the ligand association was accelerated by 11.07, 0.81, 0.02 and 558.5 times for 

the systems of T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND, 

respectively. The ligand dissociation was significantly accelerated by 2.40×102, 1.72×106, 

1.24×103 and 7.13×103 times in the T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-

BEN and T4L:L99A-IND systems, respectively. Therefore, the reweighted kon in the 

T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems were 

calculated as 7.42±4.81×106, 9.57±6.29×106, 3.16±2.29×109 and 2.99±2.87×106 M−1·s−1, 

being highly consistent with the corresponding experimental values50 of 0.8–1.0×106, 3.0–

5.0×106, >10×106 and 0.7–1.0×106 M−1·s−1, respectively (Table 2). The reweighted koff

in the T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems 

were calculated as 1441±883, 2011±1606, 1.38±0.67×106 and 3494±559 s−1, in good 

agreement with the corresponding experimental values50 of 950, 3000, >10000 and 325 

s−1, respectively.

Based on the ligand binding kinetic rates (kon and koff), we calculated the ligand binding 

free energies as ΔG = − RTLn koff /kon . The resulting binding free energies in the T4L:L99A-

BEN, T4L:M102A-BEN, T4L:F104A-BEN and T4L:L99A-IND systems (Table 1) were 

−5.17±0.72 kcal/mol, −5.01±0.73 kcal/mol, −3.42±0.72 kcal/mol and −4.87±1.06 kcal/mol, 

being highly consistent with the corresponding experimental values of −4.12 kcal/mol, 

−4.18 kcal/mol, −4.02 kcal/mol and −4.82 kcal/mol, respectively. The root-mean square 

error (RMSE) of binding free energy was only 0.73 kcal/mol. Alternatively, we could 

calculate the ligand binding free energy using the 3D reweighted PMF profiles of the ligand 

displacement from the T4L binding pocket in the X, Y and Z directions (Table 1). The 

ligand binding free energies in the T4L:L99A-BEN, T4L:M102A-BEN, T4L:F104A-BEN 

and T4L:L99A-IND systems (Table 1) were estimated as −5.88±0.61 kcal/mol, −6.43±0.70 

kcal/mol, −4.57± 0.12 kcal/mol and −7.40±0.39 kcal/mol, respectively. The RMSE of 

binding free energies predicted from the 3D PMF was greater as 1.94 kcal/mol, but still 

within the acceptable range of binding free energy predictions (2.0 kcal/mol)51. Therefore, 

both efficient conformational sampling and accurate ligand binding thermodynamic and 

kinetic calculations were achieved through the LiGaMD2 simulations.

Multiple ligand binding and dissociation pathways were identified from LiGaMD2 
simulations

We closely examined the LiGaMD2 trajectories to explore ligand binding and dissociation 

pathways. For dissociation of BEN from the T4L:L99A, four pathways between the CD, 

CF, DG and FGH helices were identified (Fig. 4). All these pathways were involved 

in the BEN rebinding to the T4L:L99A. One extra binding pathway of HG was found 

in the BEN binding to the T4L:L99A. LiGaMD2 captured 5, 3, 6 and 3 times of BEN 

dissociation events through pathways of CD, CF, DG and FGH, respectively (Fig 4). The 

BEN rebinding events through pathways of CD, CF, DG, FGH and HG were 3, 2, 3, 6 

and 2, respectively. The same ligand dissociation pathways of CD, CF, DG and FGH were 

identified in the LiGaMD2 simulations of T4L:M102A-BEN and T4L:L99A-IND systems 

(Fig. 4). Two pathways of DG and FGH were observed in the simulations of BEN binding 

to the T4L:M102A. The ligand dissociation events in T4L:M102A system along pathways of 
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CD, CF, DG and FGH were 1, 2, 1 and 12, respectively (Fig 4). The ligand rebinding events 

in the T4L:M102A-BEN through pathways of DG and FGH were 2 and 11, respectively. 

For dissociation of BEN from the T4L:F104A, two pathways near the A and C helices were 

identified. The dissociation events in the T4L:F104A-BEN were 8 and 1 via pathways A and 

C, respectively (Fig. 4). Pathway C was observed in BEN binding to the F104A T4L mutant 

(Fig. 4). For the dissociation of IND from the T4L:L99A, four pathways between the CD, 

CF, DG and FGH helices were identified. While only pathways CF and FGH were observed 

in the rebinding of IND to the L99A T4L mutant. The dissociating event via pathways 

CD, CF, DG and FGH in the T4L:L99A-IND system were 3, 3, 5, and 3, respectively. The 

IND binding events via pathways CF and FGH were 3 and 9, respectively (Fig. 4). The 

binding and dissociating pathways were consistent with earlier simulation findings using 

Metadynamics28, 52, Weighted Ensemble20b, Machine Learning53, tRAMD15a and aMD49 

simulations. In summary, multiple ligand binding and dissociation pathways were observed 

in the LiGaMD2 simulations of the T4L mutants. The ligand binding and dissociation 

mostly followed the same pathways.

Discussions

We have presented LiGaMD2 that improved enhanced sampling and accurate prediction 

of protein-ligand binding thermodynamics and kinetics for especially proteins with closed 

binding pockets. LiGaMD2 works by selectively boosting the potential of both ligand and 

protein residues in the binding pocket. LiGaMD2 shows significantly improved sampling of 

systems with buried binding pockets, where flexibility of the binding pocket plays a critical 

role in ligand binding. Microsecond LiGaMD2 simulations have allowed us to capture 

repetitive ligand dissociation and rebinding processes as demonstrated on four T4L mutant 

model systems. These simulations then enabled accurate predictions of ligand binding free 

energies and kinetic rate constants.

LiGaMD2 simulations revealed the critical role of protein flexibility for ligand binding, 

especially in the case of solvent-inaccessible buried pockets, in good agreement with 

previous experimental52a, 54 and computational studies14d, 20b, 49. Protein flexibility 

has been recognized as one of the main factors that regulates protein-ligand binding 

kinetics25c–e. The influence of protein flexibility on ligand binding site can vary from small 

changes like opening or closing of an existing pocket to the formation of a new pocket25e. 

For example, the MSM8 built with 60 μs cMD simulations revealed that the movement 

of helix D/G/H/J could transiently open a channel for ligand binding to the target site of 

the L99A T4L. Such movement of helix D/G/H were also observed in the intermediate 

states in the LiGaMD2 simulations (Fig. 3). Additionally, multiple ligand binding and 

dissociation pathways were identified from LiGaMD2 simulations (Fig. 4), being highly 

consistent with previous enhanced sampling simulations, including the RAMD15a, aMD49, 

Metadynamics28, MSM8 and Weighted Ensemble20b. For example, the dissociation pathway 

FGH with highest probability observed in LiGaMD2 was also captured in the simulations of 

RAMD15a, Metadynamics28, aMD49, MSM8 and Weighted Ensemble20b.

Compared with the cMD55, Metadynamics56, Weighted Ensemble,57 MSM8 and Replica 

Exchange MD simulations25a, LiGaMD2 provides an efficient and/or easier-to-use approach 
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to simulation of ligand binding and dissociation and calculations of ligand binding 

thermodynamics and kinetics. It is advantageous over previous LiGaMD for proteins with 

buried binding pockets. Microsecond cMD simulations were able to capture benzene binding 

to the L99A T4L8. However, slower ligand dissociation was still beyond the accessibility 

of cMD. Weighted Ensemble20b and MSM were able to accurately predict ligand binding 

kinetics8. However, tens of microsecond cMD simulations were needed for the Weighted 

Ensemble20b and MSM8. For the Replica Exchange method58, a large number of replica 

simulations were often needed to model protein-ligand binding. In the case of gREST 

simulations14d, eight replicas were needed to capture ligand binding to the L99A T4L. With 

carefully designed CV, Metadynamics could capture both ligand binding and unbinding with 

high efficiency. However, the predefined CVs could potentially lead to certain constraints on 

the ligand binding pathways and conformational space. Such simulations could also suffer 

from the “hidden energy barrier” problem and slow convergence if important CVs were 

missing.59 Overall, the previous methods appeared computationally expensive, requiring 

mostly tens-of-microsecond simulations to characterize ligand binding thermodynamics 

and kinetics. In this context, LiGaMD2 that has allowed us to capture repetitive ligand 

binding and unbinding within microsecond simulations. It provides an improved approach to 

characterization of ligand binding thermodynamics and kinetics, especially for proteins with 

buried binding pockets.
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Figure 1. 
Comparison of LiGaMD and LiGaMD2 simulations on the T4L mutant systems with buried 

and open binding pockets: Computational models of benzene binding to the T4L:L99A 

with a burred binding pocket (A) and T4L:F104A with an open binding pocket (D); Time 

courses of ligand root-mean-square deviation (RMSD) in T4L:L99A calculated from 49.2 

ns LiGaMD (B) and LiGaMD2 (C) equilibration simulations, respectively. Time courses 

of ligand RMSD in F104A T4L calculated from 49.2 ns LiGaMD (E) and LiGaMD2 (F) 

equilibration simulations, respectively.
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Figure 2. 
LiGaMD2 simulations captured repetitive dissociation and binding of two different 

ligands (benzene and indole) to T4L mutants: (A-D) time courses of ligand heavy atom 

RMSDs relative to X-ray structures calculated from three independent 1 μs LiGaMD2 

simulations of (A) benzene binding to T4L:L99A, (B) benzene binding to T4L:F104A, 

(C) benzene binding to the T4L:M102A and (D) indole binding to the T4L:L99A. (E-H) 

The corresponding PMF profiles of the ligand RMSDs averaged over three LiGaMD2 

simulations of (E) benzene binding to T4L:L99A, (F) benzene binding to T4L:F104A, (G) 

benzene binding to the T4L:M102A and (H) indole binding to the T4L:L99A. Error bars are 

standard deviations of the free energy values calculated from three LiGaMD2 simulations.
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Figure 3. 
2D Free energy profiles and low-energy intermediate conformational states of ligand binding 

to the T4L mutants: (A-D) 2D PMF profiles regarding the ligand heavy atom RMSD and 

the pocket volume in LiGaMD2 simulations of (A) benzene binding to T4L:L99A, (B) 

benzene binding to T4L:F104A, (C) benzene binding to T4L:M102A, (D) indole binding 

to T4L:F99A. (E-H) Low-energy “Intermediate” (“I”) conformations (blue) as identified 

from the 2D PMF profiles of (E) benzene binding to T4L:L99A, (F) benzene binding to 

T4L:F104A, (G) benzene binding to T4L:M102A and (H) indole binding to T4L:L99A. 

X-ray structures of the ligand-bound complexes (“Bound”) are shown in green. The ligands 

are shown in balls and sticks, and the helix are shown in cartoon. The helix C, D, F and 

G are labeled as they show significant changes between the “Bound” and “Intermediate” 

conformational states.
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Figure 4. 
Pathways of ligand binding and dissociation in the T4L mutants. (A) Cartoon representation 

of the protein with helices labelled. Binding and dissociation pathways are denoted by 

the arrow lines. Number of binding (B) and dissociation (C) events through the different 

pathways captured by the LiGaMD2 simulations.
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Table 1.

Summary of LiGaMD2 simulations performed on ligand binding to the T4L mutants. ΔV  is the total boost 

potential. ND and NB are the number of observed ligand dissociation and binding events, respectively. ΔGsim and 

ΔGexp are the ligand-T4L binding free energies obtained from LiGaMD2 simulations and experiments, 

respectively. ΔGsim
a  and ΔGsim

b  were calculated with 3D PMF and reweighted binding kinetic rates by 

ΔG = − RTLn koff /kon , respectively.

T4L Ligand ID NB ND ΔV  (kcal/mol) ΔGsim
a  (kcal/mol) ΔGsim

b  (kcal/mol) ΔGexp (kcal/mol)

L99A BEN

Sim1 6 6 107.77±9.67

−5.88±0.61 −5.17±0.72 −4.12Sim2 6 6 109.84±9.58

Sim3 5 5 109.63±9.59

M102A BEN

Sim1 6 6 108.10±10.04

−6.43±0.12 −5.01±0.73 −4.18Sim2 3 3 108.04±9.97

Sim3 7 7 109.21±9.49

F104A BEN

Sim1 4 4 70.96±8.11

−6.02±0.70 −3.42±0.72 −4.02Sim2 3 3 72.53±7.84

Sim3 3 3 70.45±7.81

L99A IND

Sim1 6 7 115.80±9.68

−7.40±0.39 −4.87±1.06 −4.82Sim2 3 3 118.16±9.79

Sim3 4 4 116.49±9.71
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Table 2

Comparison of kinetic rates obtained from experiments and LiGaMD2 simulations for ligand binding to T4L 

mutants. kon and koff are the kinetic dissociation and binding rate constants, respectively, from experimental 

data or LiGaMD2 simulations with reweighting using Kramers’ rate theory. kon * and koff * are the accelerated 

kinetic dissociation and binding rate constants calculated directly from LiGaMD2 simulations without 

reweighting.

System Method kon (M−1·s−1) koff (s−1) kon * (M−1·s−1) koff *(s−1)

T4L:L99A-BEN Experiment 0.8–1.0×106 9.50×102 - -

LiGaMD2 7.42±4.81×106 1.44±0.88×103 8.22±5.48×107 3.47±2.31× 105

T4L:M102A-BEN Experiment 3.0–5.0×106 3.00×103

LiGaMD2 9.57±6.29×106 2.01±1.61×103 7.79±1.36×106 3.46±1.81× 109

T4L:F104A-BEN Experiment >10×106 >1.00×104

LiGaMD2 3.16±2.29×109 1.38±0.67×106 6.81±1.27×107 1.72±1.44× 109

T4L:L99A-IND Experiment 0.7–1.0×106 3.25×102

LiGaMD2 2.99±2.87×106 3.49±0.56×103 1.67±0.67 ×109 2.49±1.25× 107

J Chem Theory Comput. Author manuscript; available in PMC 2023 July 03.


	Abstract
	Graphical Abstract
	Introduction
	Methods
	LiGaMD2: Selectively boosting both the ligand and protein pocket
	Energetic Reweighting of LiGaMD2
	Ligand binding free energy calculations from 3D potential of mean force
	Ligand binding kinetics obtained from reweighting of LiGaMD2 Simulations
	System Setup
	Simulation Protocol
	Simulation Analysis

	Results
	Flexibity of the protein pocket plays an important role in dissociation of buried ligands
	Microsecond LiGaMD2 simulations captured repetitive ligand dissociation and rebinding to the T4L mutants
	Ligand binding kinetic rates and free energies calculated from LiGaMD2 agreed well with experimental data
	Multiple ligand binding and dissociation pathways were identified from LiGaMD2 simulations

	Discussions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.
	Table 2

