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Abstract

We have developed a new Deep Boosted Molecular Dynamics (DBMD) method. Probabilistic 

Bayesian neural network models were implemented to construct boost potentials that exhibit 

Gaussian distribution with minimized anharmonicity, thereby allowing for accurate energetic 

reweighting and enhanced sampling of molecular simulations. DBMD was demonstrated on 

model systems of alanine dipeptide and the fast-folding protein and RNA structures. For alanine 

dipeptide, 30ns DMBD simulations captured up to 83–125 times more backbone dihedral 

transitions than 1μs conventional molecular dynamics (cMD) simulations and were able to 

accurately reproduce the original free energy profiles. Moreover, DBMD sampled multiple folding 

and unfolding events within 300ns simulations of the chignolin model protein and identified 

low-energy conformational states comparable to previous simulation findings. Finally, DBMD 

captured a general folding pathway of three hairpin RNAs with the GCAA, GAAA, and UUCG 

tetraloops. Based on Deep Learning neural network, DBMD provides a powerful and generally 

applicable approach to boosting biomolecular simulations. DBMD is available with open source in 

OpenMM at https://github.com/MiaoLab20/DBMD/.
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Molecular dynamics (MD) is a powerful computational technique for simulating 

biomolecular dynamics at an atomistic level1. With recent advances in computing hardware 

and software developments, timescales accessible to MD simulations have significantly 

increased2, 3. However, conventional MD (cMD) is often limited to tens to hundreds 

of microseconds4 for simulations of typical biomolecular systems, and cannot attain the 

timescales required to observe many biological processes of interest, which typically occur 

over milliseconds or longer with high energy barriers (e.g., 8–12 kcal/mol)5.

Many enhanced sampling techniques have been developed during the last several decades 

to overcome the challenges mentioned above6. In particular, Gaussian accelerated molecular 

dynamics (GaMD) is an enhanced sampling that technique works by applying a harmonic 

boost potential to smooth biomolecular potential energy surface7. Since this boost potential 

exhibits a near Gaussian distribution, cumulant expansion to the second order (“Gaussian 

approximation”) can be applied to achieve proper energetic reweighting8. GaMD allows 

for simultaneous unconstrained enhanced sampling and free energy calculations of large 

biomolecules 7. GaMD has been successfully demonstrated on enhanced sampling of ligand 

binding, protein folding, protein conformational change, as well as protein-membrane, 

protein-protein, and protein-nucleic acid interactions3. GaMD has been implemented in 

widely used simulation packages including AMBER7, NAMD9, OpenMM10, GENESIS11, 

and TINKER-HP12.
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Recently, Machine Learning/Deep Learning techniques (ML/DL) have been combined 

with MD methods to enhance the sampling of biomolecular simulations. DeepDriveMD 

is a DL driven adaptive MD method designed specifically to simulate protein folding13. 

In DeepDriveMD, DL was utilized to reduce the dimensionality of MD simulations to 

automatically build latent representations that correspond to biophysically relevant collective 

variables (CVs) and drive MD simulations to automatically sample potentially novel 

conformational states based on the CVs13. DeepDriveMD has been demonstrated to speed 

up the folding simulations of Fs-peptide and the fast-folding variant of the villin head piece 

protein by at least 2.3 folds13. The State Predictive Information Bottleneck (SPIB) approach 

was applied as a deep neural network to learn a priori CV for well-tempered metadynamics 

from undersampled trajectories14. The well-tempered metadynamics performed along the 

biased SPIB-learned CVs were shown to achieve > 40 times acceleration in simulating 

the left- to right-handed chirality transitions in a synthetic helical peptide and permeation 

of a small benzoic acid molecule through a synthetic, symmetric phospholipid bilayer14. 

Moreover, denoising diffusion probabilistic models were combined with replica exchange 

MD to achieve superior sampling of biomolecular energy landscape at temperatures that 

were not simulated without the assumption of particular slow degrees of freedom15. The 

temperature was treated as a fluctuating random variable and not a control parameter to 

allow for the direct sampling from the joint probability distribution in configuration and 

temperature space. The procedure was shown to discover transition and metastable states 

that were previously unseen at the temperature of interest and bypass the need to perform 

simulations for a wide range of temperatures15.

In this work, we have developed a new Deep Boosted Molecular Dynamics (DBMD) 

method. In DBMD, probabilistic Bayesian neural network models were used to construct 

boost potentials that exhibit Gaussian distribution with minimized anharmonicity for 

accurate energetic reweighting and enhanced sampling (Figure 1). DBMD has been 

demonstrated on model systems of the alanine dipeptide in explicit and implicit solvent, 

the chignolin fast-folding protein, and three hairpin RNAs with the GCAA, GAAA, and 

UUCG tetraloops.

DBMD simulations were performed on alanine dipeptide on alanine dipeptide (Figure 2a) 

in explicit and implicit solvent. Representative distributions of randomly generated boost 

potentials and the boost potentials generated by DL for alanine dipeptide in explicit and 

implicit solvent are shown in Figure 2b and 2c, respectively. DL was able to reduce the 

anharmonicity from 0.153 for the randomly generated boost potentials to 0.019 and 0.006 

in two iterations of the explicit-solvent simulation (Figure 2b), and from 0.295 to 0.013 and 

0.006 in two iterations of the implicit-solvent simulation (Figure 2c).

The time courses of the effective harmonic force constants (k0P and k0D) as well as the 

total and dihedral boost potential parameters (V min, V max, and E) during the equilibration of 

the alanine dipeptide in explicit and implicit solvent are shown in Figure S1. During the 

one round of 1ns DBMD equilibration in explicit solvent, the total and dihedral effective 

harmonic force constants k0P and k0D stayed at 0.35 and 1.0, respectively (Figure S1a). 

The minimum total and dihedral potential energies V minP and V minD also remained constant 

at −5,966.96 kcal/mol and 5.92 kcal/mol, respectively (Figure S1b–S1c). However, the 
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maximum total and dihedral potential energy V maxP and V maxD increased from −5,742.44 

kcal/mol and 25.18 kcal/mol to −5,690.89 kcal/mol and 33.16 kcal/mol, respectively (Figure 

S1b–S1c). The reference total and dihedral potential energy for applying boosts were the 

same as the maximum potential energies. The effective harmonic force constants as well 

as extrema and reference potential energies in the implicit-solvent equilibration followed 

similar trends as the explicit-solvent simulation (Figure S1e–S1g).

Three independent 30ns DBMD simulations of alanine dipeptide in both explicit and 

implicit solvent captured more dihedral transitions compared to 1μs cMD simulations 

(Figure S2). In particular, DBMD sampled ~15, ~14, and ~10 Φ dihedral transitions 

during the 30ns of Sim1, Sim2, and Sim3, respectively, compared to only ~4 dihedral 

transitions observed in the 1μs cMD of alanine dipeptide in explicit solvent (Figure 

S2a–S2d). In the implicit-solvent simulations, Sim1, Sim2, and Sim3 sampled ~17, ~28, 

and ~28 Φ dihedral transitions during the 30ns simulations, respectively, compared to 

the ~26 Φ dihedral transitions observed in the 1μs cMD simulation (Figure S2e–S2h). 

Therefore, DBMD accelerated the explicit-solvent simulations by ~83–125 times and 

implicit-solvent simulations by ~22–36 times. Furthermore, the boost potentials applied 

in DBMD simulations of alanine dipeptide followed Gaussian distributions, with low 

anharmonicity of 6.2 × 10−3 in the explicit-solvent and 1.7 × 10−4 in implicit-solvent 

simulations (Figure S3a–S3b). The averages and standard deviations of the added boost 

potentials were recorded to be 11.2 ± 2.8 and 11.3 ± 2.3 kcal/mol in the explicit and implicit 

solvent simulations, respectively.

The PMF free energy profiles of alanine dipeptide were calculated for the Φ and Ψ dihedral 

angles. The 1D PMF free energy profiles were in excellent agreement between DBMD 

and cMD for both Φ and Ψ in explicit and implicit solvent (Figure S3c–S3f). Moreover, 

the 2D PMF free energy profiles of the Φ, Ψ  backbone dihedrals showed high degrees 

of similarity between DBMD and cMD simulations (Figure 2d–2g). In particular, DBMD 

simulations in explicit solvent sampled five different low-energy conformational states of 

alanine dipeptide, which centered around (−150°, 159°) in the β-sheet, (−72°, 162°) in the 

polyproline II (PII), (48°, 18°) in the left-handed α helix αL , and (−148°, 0°) and (−69°, 

−17°) in the right-handed α helix αR  conformation (Figure 2d). In implicit solvent, DBMD 

also identified five low-energy conformational states of alanine dipeptide, including β-sheet 

centered around (−160°, 150°), PII around (−62°, 140°) and (−90°, 61°), αL around (56°, 

34°), and αR around (−70°, −27°) (Figure 2e). The 1D and 2D free energy profiles of Φ, Ψ
calculated from DBMD simulations were in excellent agreements with previous GaMD 

simulations performed by AMBER7, NAMD9, and OpenMM10. Therefore, simulations of 

alanine dipeptide have demonstrated the enhanced sampling capability as well as accuracy 

of DBMD for both explicit and implicit solvent systems.

Representative distributions of randomly generated dual boost potentials and the boost 

potentials generated by DL for chignolin folding are shown in Figure 3a. With the use of 

DL, the anharmonicity reduced from 0.17 for the randomly generated boost potentials to 

0.01 and 0.005 in two iterations (Figure 3a).
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The time courses of the effective harmonic force constants (k0P and k0D) as well as the 

total and dihedral boost potential parameters (V min, V max, and E) during the equilibration 

of the chignolin fast-folding protein in explicit solvent are shown in Figure S4. During 

the two rounds of 5ns DBMD equilibration, the dihedral effective harmonic force constant 

k0D remained at 1.0, while the total effective harmonic force constant k0P decreased from 

0.94 in round one to 0.89 in round two (Figure S4a). The minimum total potential energy 

V minP increased from −21,388.36 kcal/mol in round one to −20,761.33 kcal/mol in round 

two (Figure S4b). The maximum total potential energy V maxP increased from −20,742.03 

kcal/mol to −20,234.95 kcal/mol and −19,671.23 kcal/mol at the end of round one and 

two, respectively (Figure S4b). The minimum dihedral potential energy V minD increased from 

87.50 kcal/mol in round one to 94.88 kcal/mol in round two (Figure S4c). The maximum 

dihedral potential energy V maxD increased from 120.52 kcal/mol to 139.37 kcal/mol at the end 

of round one and 143.53 kcal/mol at the end of round two (Figure S4c). While the reference 

dihedral potential energy ED was identical to the maximum dihedral potential energy V maxD, 

the reference total potential energy EP was slightly higher than the maximum total potential 

energy V maxP (Figure S4b).

Three independent 300ns DBMD simulations of chignolin in explicit solvent starting from 

its extended conformation were able to capture multiple folding and unfolding events of the 

protein (Figure S5). In particular, six, seven, and ten different folding-unfolding events were 

sampled in Sim1, Sim2, and Sim3 of chignolin (Figure S5a). Here, chignolin was considered 

folded if the Cα-atom RMSD of residues Y2-W9 was ≤ 1.0 Å. Furthermore, the boost 

potentials applied in DBMD simulations of chignolin followed the Gaussian distribution, 

with an anharmonicity of 7.1 × 10−3 (Figure S5c) and an average of 23.1 ± 5.1 kcal/mol.

The 2D PMF free energy profile of chignolin folding was calculated using the Cα-atom 

RMSD relative to the 1UAO16 PDB structure and Rg of residues Y2-W9 as RCs. Three 

different low-energy conformational states of chignolin were identified from the free energy 

profile, namely “Folded”, intermediate “I”, and “Unfolded” (Figure 3b). The “Folded” low-

energy conformational state of chignolin centered around 0.4 Å and 4.1 Å of RMSD and Rg, 

respectively. In this state, terminal residues Y2-D3 formed β-sheets with residues G7-W9 

of chignolin, while the loop formed by the backbone atoms of residues P4-T6 closely 

matched with the 1UAO16 PDB structure (Figure 3c). In the intermediate “I” low-energy 

conformational state, the Cα-atom RMSD and Rg were ~4.0 Å and ~5.2 Å. Transitioning 

from the “Folded” to intermediate “I” state, the β-strands were broken apart due to the 

opposite movement of residues G1-D3 and T8-G10. However, the core loop of chignolin 

was somewhat maintained with the hydrophilic side chains of residues E5-T6 exposed to the 

solvent (Figure 3d). Finally, in the “Unfolded” low-energy conformational state, chignolin 

was fully extended with all amino acids exposed to the solvent, resulting in a RMSD of ~5.0 

Å and Rg of ~6.5 Å (Figure 3e).

Representative distributions of randomly generated dual boost potentials and the boost 

potentials generated by DL for the hairpin RNAs with the GCAA, GAAA, and UUCG 

tetraloops are shown in Figures 4a–6a, respectively. With the use of DL, the anharmonicity 

reduced from 0.135 for the randomly generated boost potentials to 0.016, 0.015, and 0.009 
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in three iterations of the GCAA RNA system simulation (Figure 4a). For GAAA, DL 

lowered the anharmonicity from 0.137 for the random boost potentials to 0.012, 0.01, and 

0.008 in three iterations (Figure 5a). For UUCG, the anharmonicity reduced from 0.147 to 

0.014 to 0.013 and 0.008 (Figure 6a).

The time courses of the effective harmonic force constants (k0P and k0D) as well as the total 

and dihedral boost potential parameters (V min, V max, and E) during the equilibration of the 

hairpin RNAs with GCAA, GAAA, and UUCG tetraloop in implicit solvent are shown in 

Figures S6–S8. During the three rounds of 5ns DBMD equilibration of the GCAA RNA 

tetraloop system, the total effective harmonic force constant k0P decreased from 0.20 in 

round one to 0.10 in round two but increased to 0.17 in round three, while the dihedral 

effective harmonic force constant k0D decreased from 0.84 in round one to 0.56 in round two 

and 0.51 in round three (Figure S6a). The minimum total potential energy V minP fluctuated 

from −2867.79 kcal/mol in round one to −2930.46 kcal/mol in round two to −2871.63 

kcal/mol in round three (Figure S6b). The maximum total potential energy V maxP also 

fluctuated between −2509.02 kcal/mol, −2366.52 kcal/mol, and −2458.10 kcal/mol among 

the three (Figure S6b). The minimum dihedral potential energy V minD fluctuated from 291.14 

kcal/mol in round one to 326.13 kcal/mol in round two to 314.70 kcal/mol in round three, 

whereas the maximum dihedral potential energy V maxD decreased from 400.88 kcal/mol to 

391.04 and 368.91 kcal/mol from round one to round three (Figure S6c). The reference total 

and dihedral potential energies EP and ED were mostly identical to the maximum total and 

dihedral potential energies V maxP and V maxD, except during round one for the ED (Figure S6c).

For the GAAA RNA tetraloop system, the total and dihedral effective harmonic force 

constants k0P and k0D decreased from 1.0 and 0.33 in round one to 0.15 and 0.98 in round 

two to 0.098 and 0.51 in round three (Figure S7a). The minimum total potential energy 

V minP decreased from −2621.20 kcal/mol in round one to −2746.68 kcal/mol in round two 

to −2799.21 kcal/mol in round three, whereas the maximum total potential energy V maxP

fluctuated between −2380.18 kcal/mol, −2177.94 kcal/mol, and −2265.46 kcal/mol during 

the three rounds of DBMD equilibration (Figure S7b). The minimum dihedral potential 

energy V minD increased from 289.55 kcal/mol to 323.12 kcal/mol and 331.20 kcal/mol from 

round one to round three, while the maximum dihedral potential energy V maxD decreased 

from 396.04 kcal/mol to 387.99 and 380.68 kcal/mol from round one to three (Figure S7c). 

The reference total and dihedral potential energies were identical to the maximum total and 

dihedral energies.

For the UUCG RNA tetraloop system, the total and dihedral effective harmonic force 

constants k0P and k0D fluctuated between 0.12 and 1.0 in round one to 0.27 and 0.32 in 

round two to 0.19 and 0.46 in round three (Figure S8a). The minimum total potential 

energy V minP also fluctuated between −3360.51 kcal/mol, −3189.11 kcal/mol, and −3258.47 

kcal/mol from round one to three of DBMD equilibration, whereas the maximum total 

potential energy V maxP increased from −2900.68 kcal/mol in round one to −2831.27 kcal/mol 

and −2733.89 kcal/mol in round two and three, respectively (Figure S8b). The minimum 

dihedral potential energy V minD fluctuated between 341.78 kcal/mol, 337.89 kcal/mol, and 

327.41 kcal/mol from round one to three of DBMD equilibration, whereas the maximum 
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dihedral potential energy V maxD decreased from 416.37 kcal/mol to 411.57 kcal/mol to 407.42 

kcal/mol from round one to three (Figure S8c). The reference total and dihedral potential 

energies were the same as the maximum potential energies during the DBMD equilibration 

of the UUCG RNA tetraloop system.

Multiple independent 2μs DBMD simulations were performed on the hairpin RNAs with 

GCAA, GAAA, and UUCG tetraloops in implicit solvent, starting from their extended 

conformations (Figures 4–6). Remarkably, DBMD was able to capture multiple folding 

and unfolding events for all three hairpin RNAs within 2μs of simulations. In particular, a 

total of 18, 16, and 11 different stable folding-unfolding events were observed within 2μs 

DBMD simulations of the RNAs with GCAA, GAAA, and UUCG tetraloops, respectively 

(Figures S9a–S11a). The DBMD boost potentials exhibited Gaussian distributions, with low 

anharmonicity of 8.3 × 10−3, 3.9 × 10−4, and 2.9 × 10−3 in the GCAA, GAAA, and UUCG 

RNA tetraloop simulations (Figures S9c, S10c, and S11c). Furthermore, the boost potentials 

were recorded to be 37.0 ± 4.5 kcal/mol for the GCAA, 32.9 ± 3.1 kcal/mol for GAAA, and 

27.6 ± 3.4 for UUCG system, given the different ηP and ηD used for the RNA systems.

The 2D PMF free energy profiles of the hairpin RNAs with tetraloops were calculated 

using the heavy-atom RMSDs of the whole RNAs relative to respective PDB structures 

(1ZIH17 for GCAA, 2ADT18 for GAAA, and 2KOC19 for UUCG) and the G1-U12, C1-

G12, and G1-C14 center-of-mass (COM) distances as RCs. DBMD sampled three different 

low-energy conformational states, including “Folded”, intermediate “I”, and “Unfolded”, for 

the RNA with GCAA tetraloop (Figure 4b), four different low-energy conformational states, 

namely “Folded”, intermediate “I1” and “I2”, and “Unfolded”, for the GAAA tetraloop 

(Figure 5b), and three different low-energy conformational states, including “Folded”, 

intermediate “I”, and “Unfolded”, for the UUCG tetraloop (Figure 6b).

In the “Folded” low-energy conformational state of the 12-mer hairpin RNA with the 

GCAA tetraloop, the heavy-atom RMSD relative to the 1ZIH17 PDB structure was ~1.1 

Å, and the COM distance between terminal nucleotides G1 and U12 was ~10.7 Å. This 

“Folded” low-energy conformational state was maintained by the Watson-Crick base pairs 

between nucleotides G2-C11, G3-C10, and C4-G9 and base stacking between nucleotides 

C6-A7-A8 of the GCAA tetraloop (Figure 4c). With transition from the “Folded” to the 

intermediate “I” state, most of the Watson-Crick base pairs distorted, with the side chains 

of nucleotides G9, C11, and U12 flipping out and exposing themselves to the solvent, 

while the base stacking between nucleotides C6-A7-A8 of the GCAA tetraloop was intact 

as observed in a conformation at ~8.3Å heavy-atom RMSD relative to the 1ZIH17 PDB 

structure and ~6.5Å G1-U12 COM distance (Figure S12). In the intermediate “I” low-energy 

conformational state, the RNA began extending, with nucleotides G1-C4 and C10-U12 

extending in opposite directions. The base stacking between nucleotides C6-A7-A8 was 

mostly broken, with nucleotide A8 flipping out to base stack with nucleotide A9. In this 

state, the heavy-atom RMSD relative to the 1ZIH17 PDB structure was ~9.2 Å, and the G1-

U12 COM distance was ~12.9 Å (Figure 4d). In the “Unfolded” low-energy conformational 

state, the RNA was completely stretched out, with a heavy-atom RMSD of ~14.5 Å and 

G1-U12 COM distance of ~48.3 Å (Figure 4e).
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In the “Folded” low-energy conformational state of the 12-mer hairpin RNA with the 

GAAA tetraloop, the heavy-atom RMSD relative to the 2ADT18 PDB structure was ~1.3 

Å, and the COM distance between terminal nucleotides C1 and G12 was ~10.3 Å. Similar 

to the GCAA system, this “Folded” state of the GAAA system was maintained by the 

Watson-Crick base pairs between nucleotides C1-G12 and G4-C9 as well as the base 

stacking between nucleotides A6-A7-A8 of the GAAA tetraloop (Figure 5c). The heavy-

atom RMSD increased to ~7.8 Å, whereas the C1-G12 COM distance decreased to ~7.5 Å 

in the intermediate “I1” low-energy conformation. In this state, both the Watson-Crick base 

pairs and base stacking in the GAAA tetraloop were broken, with nucleotides G3, G4, A7, 

A8, C9, U10 flipping out and exposing to the solvent. However, base stacking was observed 

between nucleotides G5 and A6 of the GAAA tetraloop (Figure 5d). In the “I2” intermediate 

state, the heavy-atom RMSD the 2ADT18 PDB structure was ~9.5 Å, and the COM distance 

between terminal nucleotides C1 and G12 was ~17.9 Å. The 12-mer RNA was mostly 

distorted, with random base stacking formed between nucleotides G5-G12 and A6-A8. The 

side chains of the other nucleotides flipped out and exposed to the solvent (Figure 5e). In the 

“Unfolded” low-energy conformational state, the RNA was completely stretched out, with a 

heavy-atom RMSD of ~13.5 Å and C1-G12 COM distance of ~45.0 Å (Figure 5f).

The “Folded” low-energy conformational state of the 14-mer hairpin RNA with the UUCG 

tetraloop has a heavy-atom RMSD relative to the 2KOC19 PDB structure of ~2.3 Å and 

COM distance between terminal nucleotides G1 and C14 of ~9.8 Å. In this state, Watson-

Crick base pairs were formed between nucleotides G2-C13, C3-G12, A4-U11, and C5-G10. 

However, unlike the GCAA and GCAA systems, no base stacking was observed between the 

nucleotides in the UUCG tetraloop (Figure 6c). In the “I” intermediate state, the heavy-atom 

RMSD increased to ~9.3 Å and the G1-C14 COM distance decreased to ~7.6 Å. The RNA 

was mostly distorted, with random base stacking formed between nucleotides G2 and G10. 

Most of the other nucleotides flipped out and exposed to the solvent (Figure 6d). In the 

“Unfolded” low-energy conformational state, the heavy-atom RMSD relative to the 2KOC19 

PDB structure further increased to ~14.3 Å and the COM distance between nucleotides G1 

and C14 increased to ~43.4 Å. The RNA was mostly stretched out (Figure 6e). Therefore, 

DBMD was able to capture repetitive folding and unfolding of RNA tetraloop structure 

in 2μs simulations, thereby enabling characterization of the RNA folding free energy 

landscapes.

In this work, we have developed DBMD, which generates boost potentials with Gaussian 

distribution using DL to reduce energy barriers and enhanced conformational sampling of 

biomolecules. Probabilistic Bayesian DL models are trained using potential energies of 

finished simulation frames to build the boost potentials that exhibit Gaussian distribution 

with anharmonicity γ < 0.01. We have demonstrated DBMD on the simulations of alanine 

dipeptide in explicit and implicit solvent and folding of the chignolin protein and hairpin 

RNAs with the GCAA, GAAA, and UUCG tetraloops. Overall, DBMD was able to greatly 

enhance conformational transitions and characterize the protein and RNA folding free 

energy landscapes.

DBMD captured multiple folding and unfolding events of chignolin within 300 ns of 

simulations (Figure S5a). Compared to previous aMD20 simulations of chignolin folding, 
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DBMD sped up the folding-unfolding transition by 1.35 times. Furthermore, DBMD 

accelerated the folding-unfolding transition by 6 times compared to previous 300ns 

simulations performed with GaMD in AMBER7 and NAMD9. However, it should be 

noted that the reference total potential energy EP was set to V minP + V maxP − V minP
k0P

 for DBMD 

simulations of chignolin (Figure S4b). Therefore, the boost potentials in the DBMD 

simulations of chignolin were recorded to be 23.1 ± 5.1 kcal/mol, which was approximately 

triple and double the boost potentials applied in the previous all-atom dual-boost lower-

bound GaMD simulations of chignolin in AMBER ( △ V = 9.54 ± 2.44 kcal/mol)7 and 

NAMD (ΔV = 11.2 ± 2.8 kcal/mol)9, respectively, where EP = V maxP. Nevertheless, even with 

the larger average and standard deviation of applied boost potentials, DBMD still managed 

to obtain relatively a smaller anharmonicity γ = 7.1 × 10−3  compared to GaMD in AMBER 

γ = 9.2 × 10−3 7
 and NAMD γ = 9.7 × 10−3 9

, which was one advantage of using DL to 

generate Gaussian boost potentials. On the other hand, DBMD still provided a 2D free 

energy profile of the Cα-atom RMSD and Rg of residues Y2-W9 with high degrees of 

similarity compared to previous GaMD simulations of chignolin performed with AMBER 

and NAMD7, 9. In particular, DBMD sampled all three low-energy conformational states 

(“Folded”, intermediate “I”, and “Unfolded”) as GaMD in AMBER7 and the two low-energy 

conformations (“Folded” and “I”) as GaMD in NAMD9 (Figure 3). Moreover, the folding 

mechanism uncovered by DBMD was relatively similar to that by GaMD in AMBER7. 

Starting from the extended conformation of the “Unfolded” state (Figure 3e), the terminal 

residues of chignolin was brought closer due to the interactions between residues P4 and 

G7 in the intermediate “I” state (Figure 3d). With transition from the intermediate “I” to the 

“Folded” state, antiparallel β-sheets were formed between residues G1-D3 and G7-G10, with 

the hydrophilic side chains of residues D3, E5, T6, and T8 exposed to the solvent (Figure 

3c).

For the simulations of the hairpin RNAs with GCAA, GAAA, and UUCG tetraloops, the 

total number of folding and unfolding events captured by AIMBD simulations reduced from 

the GCAA to GAAA to UUCG simulation system, which was in good agreement with 

previous studies by Tan et al.21 and Chen et al.22. This also demonstrated the importance 

of the base stacking within the tetraloop for RNA folding. In particular, while nucleotides 

C6-A7-A8 of the GCAA tetraloop and A6-A7-A8 of the GAAA tetraloop base-stacked in 

their respective “Folded” low-energy conformations, no base stacking was observed within 

the “Folded” hairpin RNA with UUCG tetraloop (Figures 4c–6c). Furthermore, the folding 

mechanisms uncovered by DBMD were similar among the hairpin RNAs with GCAA, 

GAAA, and UUCG tetraloop (Figures 4–6). Starting from the extended conformation in the 

“Unfolded” low-energy conformational states (Figures 4e, 5f, and 6e), Watson-Crick base 

pairs began to form from terminal nucleotides towards the cores and tetraloops of the RNAs. 

Finally, base stacking between the nucleotides of the tetraloops were formed to enable the 

stable folding of the hairpin RNAs (Figures 4c and 5c). This general mechanism of RNA 

folding showed high degrees of similarity to the previous study by Chen et al.22, even 

though they used shorter RNA strands, a different force field parameter set, and a different 

solvation model.

Do and Miao Page 9

J Phys Chem Lett. Author manuscript; available in PMC 2023 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In conclusion, we have developed DBMD, a DL-based enhanced sampling technique that 

allows for accurate energetic reweighting and enhanced sampling of biomolecular systems. 

DBMD is available with open source in OpenMM at https://github.com/MiaoLab20/

DBMD/. As demonstrated on the model systems, DBMD captured multiple dihedral 

transitions of alanine dipeptide as well as folding-unfolding events of the chignolin 

protein and hairpin RNAs with tetraloops within relatively short simulation lengths. The 

performances of DBMD in OpenMM on simulations of larger biological systems, including 

membrane proteins, and with other force fields besides AMBER will be examined in future 

studies. DBMD is expected to facilitate the simulations and free energy calculations of a 

wide range of biomolecules.

Methods

Theory of DBMD

In DBMD, boost potentials ΔV  are optimized using DL to follow Gaussian distribution with 

minimized anharmonicity. Considering a system comprised of N atoms with coordinates 

r ≡ r1⃑, …, r ⃑N  and momenta p ≡ p⃑1, …, pN , the system Hamiltonian can be expressed as:

H r, p = K p + V r , (1)

where K p  and V r  are the system kinetic and total potential energies, respectively. To 

enhance biomolecular conformational sampling, boost potentials can be added to the system 

potential energies. According to the DBMD algorithm, the boost potential can be calculated 

as the following7:

ΔV r =
1
2k E − V r 2, V (r) < E

0, V (r) ≥ E .
(2)

where E is the reference energy for adding boost potential and k is the harmonic force 

constant. Here, the reference energy can be set in a range: V max ≤ E ≤ V min + 1
k . The harmonic 

force constant is calculated as k = k0
V max − V min

, with the effective harmonic force constant 

k0 ∈ 0,1 . Accordingly, the reference energy can be expressed as E = V min + V max − V min
k0

. Here, 

E = V max when k0 = 1, and the smaller the k0 values, the higher the reference energy E. In 

DBMD, we introduce a parameter called the reference energy factor (η) valued between 

0 and 1 to avoid exceedingly large E and control the acceleration during simulations. 

Physically, V max + η * V max  represents the upper limit of the reference energy E.

E = V min + V max − V min

k0

if E > V max + η * V max , tℎen: E = V max

(3)

Therefore, the boost potential can be rewritten as:
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ΔV (r) =
k0

2 V max − V min
E − V (r) 2, V (r) < E

0, V (r) ≥ E .
(4)

To characterize the extent to which ΔV  follows a Gaussian distribution, its distribution 

anharmonicity γ is calculated as:

γ = Smax − SΔV = 1
2ln 2πeσΔV

2 + ∫
0

∞

p ΔV ln p ΔV dΔV , (5)

where ΔV  is dimensionless as divided by kBT  with kB and T  being the Boltzmann constant 

and system temperature, respectively, and Smax = 1
2 ln 2πeσΔV

2  is the maximum entropy of 

ΔV 8. When γ is zero, ΔV  follows exact Gaussian distribution with sufficient sampling. 

Reweighting by approximating the ensembled-averaged Boltzmann factor with cumulant 

expansion to the 2nd order (“Gaussian approximation”) can accurately recover the original 

free energy landscape7, 23. As γ increases, the ΔV  distribution becomes less harmonic, and 

the reweighted free energy profile obtained from cumulant expansion to the 2nd order would 

deviate from the original7. The anharmonicity of ΔV  distribution serves as an indicator of 

the enhanced sampling convergence and accuracy of the reweighted free energy7.

Deep Learning of Potential Energies

In DBMD, the probabilistic Bayesian neural network model, developed based on Bayes’ 

theorem24, within the TensorFlow Probability25 module was applied to minimize the 

anharmonicity of boost potentials ΔV . The probabilistic model was initiated with the 

definition of a prior distribution. A standard normal distribution was adopted as the 

prior distribution since the central limit theorem asserts that a properly normalized sum 

of samples will approximate a normal distribution26, 27. Here, a multivariate normal 

distribution with a diagonal covariance matrix was used, with the mean values initialized 

to zero and the variances σi
2 to one26.

Σ =
σ1

2 0 …
0 σ2

2 …
⋮ ⋮ ⋱

. (6)

The posterior distribution was also set to be a multivariate Gaussian distribution, but the 

off-diagonal elements in the covariance matrix were allowed to be non-zero. This was 

achieved with a lower-triangular matrix L with positive-valued diagonal entries such that 

Σ = LLT, and the triangular matrix can be obtained through Cholesky decomposition of the 

covariance matrix26.
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L =
L11 0 …
L21 L22 …
⋮ ⋮ ⋱

. (7)

Finally, the probabilistic layers were defined using the DenseVariational function of the 

TensorFlow Probability module25–27. Our Bayesian neural network model consisted of two 

or four dense variational layers of two different types, namely L1 and L2. The first dense 

variational layer L1 had 64 filters, with a sigmoid activation function to enable the fitting of 

non-linear data26, 27. The second dense variational layer L2 used the IndependentNormal25 

function to parameterize a normal distribution and capture aleatoric uncertainty, with an 

event shape equal to one26, 27. The prior and posterior distributions used in both L1 and L2 
were specified above. Testing simulations have showed us that the number of the second 

dense variational layer L2 could significantly affect the average and standard deviation of 

the output boost potentials after DL. Overall, the lower the numbers of L2, the wider the 

distributions and the higher the average boost potentials. Therefore, to balance between 

the stability and sampling of the simulations as well as the learning speed, we included 

one L2 layer in the DL model for explicit-solvent simulations and three L2 layers for 

implicit-solvent simulations. The input and output shape were set to one since both the 

potential energies and boost potentials were scalars.

Workflow of DBMD

The workflow of DBMD is shown in Figure 1. First, a short cMD was performed on the 

biological system of interest, and the potential statistics (V min and V max) were collected as 

parameters for pre-equilibration of DBMD simulation. During the pre-equilibration, the 

effective harmonic force constants (k0P and k0D) were kept fixed at (1.0, 1.0) for explicit-

solvent simulations and (0.05, 1.0) for implicit-solvent simulations. The boost potentials 

were calculated based on equation (4), and the potential statistics (V min and V max) were 

updated during pre-equilibration. The system total and dihedral potential energies from the 

pre-equilibration were then collected (Figure 1a), which served as the X inputs for the 

probabilistic Bayesian DL models25, 26 (Figure 1b). Initial boost potentials were randomly 

generated from the system potential energies and randomly assigned k0 using equations 

(3–4) and used as the Y  inputs for DL (Figure 1c). DL was carried out in multiple iterations 

until the output boost potentials followed Gaussian distribution with anharmonicity γ < 0.01
(Figure 1d). If γ ≥ 0.01, the generated boost potentials were used as Y  inputs to retrain the 

DL model until γ < 0.01 (Figure 1e). Based on the potential statistics learnt until the last 

frame of the pre-equilibration (V min, V max, V , and ΔV ), the effective harmonic force constants 

were calculated as following:
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k0 = 2ΔV V max − V min − 2ΔV V max − V min − 4 V min − V V max − V min

2 V min − V
2

if k0 > 1 or E > V max + η * V max , tℎen:

k0 = 2ΔV V max − V min

(E − V )2

k0 = min 1.0, k0 .

(8)

and used as input alongside V min and V max to equilibrate the simulation system (Figure 1f). 

The equilibration usually consisted of multiple rounds, with the effective harmonic force 

constants (k0P and k0D) kept fixed and potential statistics (V min and V max) updated in each 

round. DL was carried out at the end of each round using the updated potential energies as 

inputs, with the same DL model as obtained at the end of the pre-equilibration (Figure 1). 

This multi-round equilibration approach also allows users to select a simulation checkpoint 

that suits their simulation goals the most to go into the production simulations, giving 

users some control over their simulation outcomes. Finally, the effective harmonic force 

constants (k0P and k0D) and potential statistics (V min and V max) taken from the last round of the 

equilibration were used as input parameters for DBMD production simulations (Figure 1f), 

during which the effective harmonic force constants and potential statistics were kept fixed, 

and boost potentials were calculated based on equation (4).

System Setup and Simulation Protocols

Simulations of the alanine dipeptide and chignolin were performed using the AMBER 

ff99SB force field parameter set28. The LEaP module in the AmberTools package28 were 

used to build the simulation systems. For the DBMD simulations in explicit solvent, alanine 

dipeptide was solvated in a TIP3P29 water box that extended ~8 Å from the solute surface. 

The unfolded chignolin with a sequence of 10 residues (GYDPETGTWG)16 was solvated 

in a TIP3P29 water box that extended ~10 Å from the solute surface. The final system for 

alanine dipeptide in explicit solvent, alanine dipeptide in implicit solvent, and chignolin in 

explicit solvent contained 1912, 22, and 6773 atoms, respectively.

Simulations of the hairpin RNAs with the GCAA, GAAA, and UUCG tetraloops were 

carried out using the AMBER Shaw force field parameter set21, starting from their unfolded 

states. The sequences of the hairpin RNAs with GCAA, GAAA, and UUCG tetraloops 

were GGGCGCAAGCCU (12 nucleotides)17, CGGGGAAACUUG (12 nucleotides)18, and 

GGCACUUCGGUGCC (14 nucleotides)19, respectively. The final systems of the hairpin 

RNAs with GCAA, GAAA, and UUCG tetraloops in implicit solvent contained 389, 390, 

and 447 atoms, respectively. All simulations were carried out at 300K temperature.

For the explicit-solvent simulations, periodic boundary conditions were applied, and bonds 

containing hydrogen atoms were restrained with the SHAKE30 algorithm. Weak coupling 

to an external temperature and pressure bath was necessary to control both temperature 

and pressure31. The electrostatic interactions were calculated using the particle mesh Ewald 

(PME) summation32 with a cutoff of 8.0–9.0 Å for long-range interactions. For the implicit-

solvent simulations, the generalized Born solvent model 2 (GBn2)33 parameters were 
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used. No nonbonded cutoff was set and no periodic boundary condition was used in the 

implicit-solvent simulations. The solute and solvent dielectric constants were set to 1.0 and 

78.5, respectively, and the effect of a non-zero salt concentration was achieved by setting 

the Debye-Huckel screening parameter34 to 1.0/nm. A 2-fs timestep with the SHAKE30 

algorithm applied was used in all simulations.

For alanine dipeptide, the simulations consisted of a 2ns short cMD, followed by a 2ns 

DBMD pre-equilibration, one round of 2ns DBMD equilibration, and three independent 

30ns DBMD production simulations. The reference energy factors were set to zero for 

both total and dihedral potential energy (ηP and ηD), i.e., E = V max. For chignolin, the 

simulation involved a 5ns cMD, a 2ns DBMD pre-equilibration, two rounds of 5ns DBMD 

equilibration, and three independent 300ns DBMD production simulations, with ηP and ηD

both set to 0.05. For the hairpin RNAs with GCAA, GAAA, and UUCG tetraloops, the 

simulations consisted of a 20ns cMD, followed by a 5ns DBMD pre-equilibration, three 

rounds of 5ns DBMD equilibration, and three-four independent 2μs DBMD production 

simulations. ηP and ηD were set to 0.05 and 0.05 for GCAA, 0.05 and 0.0 for GAAA, and 

0.0 and 0.0 for UUCG RNA tetraloops. The simulation frames were saved every 0.1 ps. The 

CPPTRAJ35 tool was used for simulation trajectory analysis.

Finally, the PyReweighting toolkit8 was used to compute the potential of mean force (PMF) 

profiles of the backbone dihedrals Phi and Psi (Φ and Ψ) in the alanine dipeptide (Figure 

2a). The Cα-atom root-mean-square deviation (RMSD) of residues Y2-W9 of chignolin 

relative to the 1UAO16 PDB and Cα-atom radius of gyration (Rg) of residues Y2-W9 were 

selected as RCs to calculate the PMF profiles in the simulations of chignolin folding. 

The heavy-atom RMSD of the whole hairpin RNAs with tetraloops relative to respective 

PDB structures (1ZIH17 for GCAA, 2ADT18 for GAAA, and 2KOC19 for UUCG) and 

the G1-U12, C1-G12, and G1-C14 center-of-mass (COM) distances were used as RCs to 

calculate the PMF profiles in the simulations of hairpin RNAs with tetraloops. A bin size 

of 6°, 1.0 Å, and 1.0–2.0 Å and cutoff of 10, 100, and 100–500 in one bin were used for 

reweighting of DBMD simulations of alanine dipeptide, chignolin, and hairpin RNAs with 

tetraloops, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Summary of Deep Boosted Molecular Dynamics (DBMD).
(a) First, molecular dynamics (MD) simulation is performed on the system of interest. (b) 
The system potential energies from finished simulation frames V 1, V 2, …, V M  are collected 

as the X inputs for the probabilistic Bayesian Deep Learning (DL) model. (c) Reference 

boost potentials ΔV 1, ΔV 2, …, ΔV M  were generated from the collected system potential 

energies and randomized effective harmonic force constants k0 to serve as the Y  inputs 

for the DL. (d) The probabilistic Bayesian neural network was trained to generate boost 

potentials that follow Gaussian distribution with the probability density function f ΔV . 

Here, ΔV  is boost potential, and μ and σ are the average and standard deviation of the 

boost potentials. DL is carried out in multiple iterations until the anharmonicity of output 

boost potentials γ < 0.01. (e) If the anharmonicity of output boost potential γ is ≥ 0.01, the 

generated boost potentials are used as Y  inputs to retrain the DL model until γ < 0.01. (f) 

Finally, the effective harmonic force constants k0 are calculated from the system potential 

energy V M  and used as input alongside the minimum and maximum of potential energy 

(V min and V max) (b) for the next round of enhanced sampling simulation.
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Figure 2. DBMD simulations of alanine dipeptide.
(a) Schematic representation of backbone dihedrals Phi Φ  and Psi Ψ  dihedrals of alanine 

dipeptide. (b-c) Representative distributions of randomly generated dual boost potentials and 

DL-generated boost potentials iterated until γ < 0.01 from the potential energies collected 

from the pre-equilibration of the alanine dipeptide in explicit solvent (b) and implicit solvent 

(c). The legends include the anharmonicity and average ± standard deviation of the dual 

boost potentials. (d-g) 2D Potential of mean force (PMF) free energy profile of backbone 

dihedrals Φ, Ψ  of alanine dipeptide calculated from three 30ns DBMD simulations (d-e) 

compared to 1μs cMD simulations (f-g) in explicit solvent (d, f) and implicit solvent (e, g). 
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The low-energy states are labeled corresponding to the right-handed α helix αR , left-handed 

α helix αL , β-sheet β , and polyproline II (PII) conformations.
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Figure 3. Folding of chignolin in explicit solvent captured by DBMD.
(a) Representative distributions of randomly generated dual boost potentials and DL-

generated boost potentials iterated until γ < 0.01 from the potential energies collected from 

the pre-equilibration of chignolin. The legends include the anharmonicity and average ± 

standard deviation of the dual boost potentials. (b) 2D PMF free energy profile of the 

Cα-atom root-mean-square deviation (RMSD) of residues Y2-W9 of chignolin relative to 

the 1UAO PDB and Cα-atom radius of gyration (Rg) of residues Y2-W9. The low-energy 

conformational states are labeled “Folded”, “I”, and “Unfolded”. (c) The “Folded” low-

energy conformational state compared to the 1UAO PDB structure, for which the RMSD 

is ~0.4 Å and the Rg is ~4.1 Å. (d) The intermediate “I” low-energy conformational state 

compared to the 1UAO PDB structure, for which the RMSD is ~4.0 Å and the Rg is ~5.2 Å. 

(e) The “Unfolded” low-energy conformational state compared to the 1UAO PDB structure, 

for which the RMSD is ~5.0 Å and the Rg is ~6.5 Å. The low-energy conformational states 

are colored red, and the 1UAO PDB structure is colored blue.
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Figure 4. Folding of the 12-mer hairpin RNA with GCAA tetraloop in implicit solvent captured 
by DBMD.
(a) Representative distributions of randomly generated dual boost potentials and DL-

generated boost potentials iterated until γ < 0.01 from the potential energies collected from 

the pre-equilibration of the 12-mer hairpin RNA with GCAA tetraloop. The legends include 

the anharmonicity and average ± standard deviation of the dual boost potentials. (b) 2D 

PMF free energy profile of the heavy-atom RMSD of the 12-mer hairpin RNA relative to 

the 1ZIH PDB and the center of mass (COM) distance between terminal nucleotides G1 

and U12. The low-energy conformational states are labeled “Folded”, “I”, and “Unfolded”. 

(c) The “Folded” low-energy conformational state compared to the 1ZIH PDB structure, 

for which the RMSD is ~1.1 Å and the G1-U12 distance is ~10.7 Å. (d) The intermediate 

“I” low-energy conformational state compared to the 1ZIH PDB structure, for which the 

RMSD is ~9.2 Å and the G1-U12 distance is ~12.9 Å. (e) The “Unfolded” low-energy 

conformational state compared to the 1ZIH PDB structure, for which the RMSD is ~14.5 Å 

and the G1-U12 distance is ~48.3 Å. The low-energy conformational states are colored red, 

and the 1ZIH PDB structure is colored blue.
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Figure 5. Folding of the 12-mer hairpin RNA with GAAA tetraloop in implicit solvent captured 
by DBMD.
(a) Representative distributions of randomly generated dual boost potentials and DL-

generated boost potentials iterated until γ < 0.01 from the potential energies collected from 

the pre-equilibration of the 12-mer hairpin RNA with GAAA tetraloop. The legends include 

the anharmonicity and average ± standard deviation of the dual boost potentials. (b) 2D 

PMF free energy profile of the heavy-atom RMSD of the 12-mer hairpin RNA relative 

to the 2ADT PDB and the COM distance between terminal nucleotides C1 and G12. The 

low-energy conformational states are labeled “Folded”, “I1”, “I2”, and “Unfolded”. (c) 
The “Folded” low-energy conformational state compared to the 2ADT PDB structure, for 

which the RMSD is ~1.3 Å and the C1-G12 distance is ~10.3 Å. (d) The intermediate 

“I1” low-energy conformational state compared to the 2ADT PDB structure, for which the 

RMSD is ~7.8 Å and the C1-G12 distance is ~7.5 Å. (e) The intermediate “I2” low-energy 

conformational state compared to the 2ADT PDB structure, for which the RMSD is ~9.5 Å 

and the C1-G12 distance is ~17.9 Å. (f) The “Unfolded” low-energy conformational state 

compared to the 2ADT PDB structure, for which the RMSD is ~13.5 Å and the C1-G12 

distance is ~45.0 Å. The low-energy conformational states are colored red, and the 2ADT 

PDB structure is colored blue.
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Figure 6. Folding of the 14-mer hairpin RNA with UUCG tetraloop in implicit solvent captured 
by DBMD.
(a) Representative distributions of randomly generated dual boost potentials and DL-

generated boost potentials iterated until γ < 0.01 from the potential energies collected from 

the pre-equilibration of the 14-mer hairpin RNA with UUCG tetraloop. The legends include 

the anharmonicity and average ± standard deviation of the dual boost potentials. (b) 2D 

PMF free energy profile of the heavy-atom RMSD of the 14-mer hairpin RNA relative to 

the 2KOC PDB and the COM distance between terminal nucleotides G1 and C14. The low-

energy conformational states are labeled “Folded”, “I”, and “Unfolded”. (c) The “Folded” 

low-energy conformational state compared to the 2KOC PDB structure, for which the 

RMSD is ~2.3 Å and the G1-C14 distance is ~9.8 Å. (d) The intermediate “I” low-energy 

conformational state compared to the 2KOC PDB structure, for which the RMSD is ~9.3 

Å and the G1-C14 distance is ~7.6 Å. (e) The “Unfolded” low-energy conformational state 

compared to the 2KOC PDB structure, for which the RMSD is ~14.3 Å and the G1-C14 

distance is ~43.4 Å. The low-energy conformational states are colored red, and the 2KOC 

PDB structure is colored blue.

Do and Miao Page 24

J Phys Chem Lett. Author manuscript; available in PMC 2023 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	Methods
	Theory of DBMD
	Deep Learning of Potential Energies
	Workflow of DBMD
	System Setup and Simulation Protocols

	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

