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Marlon E. Cobos a,*, Claudia Nuñez-Penichet a, Peter D. Campbell a, Jacob C. Cooper a,b, 
Fernando Machado-Stredel a, Narayani Barve c, Uzma Ashraf d,e, Abdelghafar A. Alkishe a, 
Eric Ng’eno a, Rahul Raveendran Nair a, P. Joser Atauchi f,g, Adeola Adeboje a, A. 
Townsend Peterson a 

a Department of Ecology and Evolutionary Biology & Biodiversity Institute, University of Kansas, Lawrence, KS 66045, USA 
b Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA 
c Florida Museum of Natural History, University of Florida, Gainesville, FL, USA 
d Department of Land, Air and Water Resources, University of California, Davis, USA 
e Wild Energy Initiative, Institute of the Environment, University of California, Davis, USA 
f Museo de Historia Natural Cusco (MHNC), Universidad Nacional de San Antonio Abad del Cusco. Paraninfo s/n, Cusco, Peru 
g Instituto para la Conservación de Especies Amenazadas, Cusco, Peru   

A R T I C L E  I N F O   

Keywords: 
Occurrence data 
Data density 
Ecological niche model 
Birds 
Species distribution models 
Zonation 

A B S T R A C T   

Place-prioritization analyses are a means by which researchers can translate information on the geographic 
distributions of species into quantitative prioritizations of areas for biodiversity conservation action. Although 
several robust algorithms are now available to support this sort of analysis, their vulnerability to biases deriving 
from incomplete and imbalanced distributional information is not well understood. In this contribution, we took 
a well-sampled group (i.e., Icteridae or New World blackbirds) in an intensively sampled region (the contiguous 
continental United States), and developed a set of pseudo-experimental manipulations of occurrence data den-
sity—in effect, we created situations in which data density was reduced 10- or 100-fold, and situations in which 
data density varied 100-fold from region to region. The effects were marked: priority areas for conservation 
shifted, appeared, and disappeared as a function of our manipulations. That is, differences in density of data can 
affect the position and complexity of areas of high conservation priority that are identified using distributional 
areas of species derived from ecological niche modeling. The effects of data density on prioritizations become 
more diffuse when considerations of existing protected areas and costs related to human intervention are taken 
into account, but changes are still manifested. Appropriate considerations of sampling density when constructing 
ecological niche models to identify distributional areas of species are key to preventing artifactual biases from 
entering into and affecting results of analyses of conservation priority.   

1. Introduction 

An important paradigm in biodiversity conservation is that of 
quantitative prioritizations of geographic regions for biodiversity con-
servation efforts (Brooks et al., 2006). In these initiatives, distributional 
information for a group of species of conservation concern is fed 
in—often in the form of raster-format maps that represent outputs of 
ecological niche modeling or species distribution modeling efforts—to 
algorithms that optimize area selection to produce solutions that are 
maximally efficient in protecting distributional areas of species (Nori 
et al., 2016; Zhang et al., 2012). These analyses have now been enabled 
by development of diverse analytical platforms (Moilanen et al., 2005; 

Watts et al., 2009), and also allow incorporation of additional details, 
such as existing protected areas networks or human-perturbed areas that 
are not fertile options for conservation action (Justus and Sarkar, 2002; 
Moilanen et al., 2009). Place-prioritization analyses have been imple-
mented for many taxa in many parts of the world, such that they have 
provided valuable insights into geographic priorities for conservation 
effort (Gardner et al., 2018; Nori et al., 2016; Velazco et al., 2022). 

These place-prioritization efforts, however, are developed against a 
backdrop of massive imbalances and contrasts in primary biodiversity 
data availability (Peterson and Soberón, 2018). Regions such as North 
America, Australia, South Africa, and Europe enjoy massive densities of 
biodiversity data, whereas other regions have data resources that are 
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considerably more sparse. These data disparities exist in some cases 
because such information is lacking (Daru et al., 2018; Funk et al., 
2005), in other cases because data exist but in formats that are not 
readily readable or usable (Peterson et al., 2018), and in still other cases 
because sociological or political will prevents data sharing (Huang et al., 
2012; Scoble, 2000). A relevant area of inquiry is therefore whether 
these regional or national imbalances in biodiversity data density affect 
the outcomes of place-prioritization analyses. More generally, we are, in 
effect, assessing the effects of the Wallacean knowledge shortfall (Beck 
et al., 2013; Bini et al., 2006) on the outcomes of place-prioritization 
analyses. 

This contribution aims to test the proposition that geographic pat-
terns of occurrence data density, and biases in that density that interact 
with Wallacean knowledge shortfalls, have consistent and predictable 
effects that propagate through the conservation prioritization process. 
That is, regions or species with low data densities will manifest simpler 
and less detailed potential distributional areas reconstructed using 
ecological niche modeling or species distribution modeling. These 
simpler model summary outputs in turn propagate through the conser-
vation prioritization process, yielding prioritization schemes that differ 
markedly as a function of data density. We discuss the implications of 
these phenomena for development of effective biodiversity conservation 
strategies on regional, continental, and global scales (e.g., Nori et al., 
2020; Zeller et al., 2013). 

2. Methods 

This paper consists of a lengthy and complicated sequence of ana-
lyses. To maximize their replicability, we have executed all steps on the 
R platform (R Core Team, 2022). We have provided the data and R 
scripts used in a Figshare repository (accessible at doi:https://doi.org 
/10.6084/m9.figshare.21787226), in the hopes that others will be 
able to take maximum advantage of the methods that we have followed 
in developing these analyses. 

2.1. Data and data manipulations 

2.1.1. Occurrence data 
We used New World blackbirds (Icteridae; hereafter referred to as 

“blackbirds”) across the contiguous continental (“Lower 48”) United 
States as a hypothetical example of a lineage with reasonable species 
diversity that might be the subject of a conservation prioritization effort. 
Our goal in this paper is not to assemble strategies for blackbird con-
servation, but rather to test and replicate the effects of different data 
densities on such prioritization efforts. As such, we present analyses of 
blackbirds simply to illustrate the effects of occurrence data density on 
such prioritization exercises. 

Blackbird species across the Lower 48 United States offer an example 
of a suite of densely sampled species on which to perform a series of 
manipulations in which data density is reduced experimentally. Black-
birds are widespread, easily detectable, and (mostly) easily identifiable 
across the entire study region. Blackbird species also cover a wide range 
of conservation categories, with taxa in this group ranging from among 
the most numerous of all North American birds (i.e., Agelaius phoeniceus, 
with an estimated 1.5 × 108 individuals across the United States and 
Canada) to some of the most imperiled in the United States (e.g., 
A. tricolor is Endangered, with estimates of <2 × 105 individuals left in 
California; Beedy et al., 2020; Meese, 2017; Neff, 1937; Rosenberg et al., 
2016). Furthermore, blackbirds are for the most part easily detectable, 
and the more localized taxa (e.g., Icterus parisorum) are highly sought by 
birdwatchers, such that data densities are high for all species. With this 
rich data resource for US blackbirds, we could then proceed to manip-
ulate data density across the Lower 48 United States to mimic the data 
imbalances that are manifested across many borders (e.g., between 
countries) around the world. 

We obtained occurrence records from eBird (Sullivan et al., 2009) for 

the period 1 January 2002 through 30 June 2022 (eBird Basic Dataset, 
2022). We filtered the data to exclude records with no coordinates or 
that represented exact duplicates of other records; we retained records 
from the months May through July, to keep a set of records related to 
breeding periods. To exclude erroneous records (e.g., vagrants), we 
removed records outside areas considered to be the actual breeding 
range of each species based on consultation of key literature references 
(Del Hoyo et al., 2011). Considering that our aim was to test effects of 
reduced data density in conservation prioritizations, we applied a spatial 
filter of points per species to keep only one record per pixel (pixel size 4 
km, see below), but did not apply any other spatial rarefaction to our 
data. We performed these analyses using base R functions and the terra 
package (Hijmans, 2022). 

2.1.2. Data manipulations 
To assess effects of density of occurrence data on results from exer-

cises to determine areas of priority for conservation, as are very frequent 
across international borders around the world, we manipulated data 
based on a suite of random sampling protocols. Three of the treatments 
were as follows: (1) the complete set of records (i.e., 100 % data den-
sity), (2) a 10 % random subsample of available records; and (3) a 1 % 
random subsample of available records. Note that with the latter, most 
extreme reduction, it was necessary to remove two species (Icterus 
graduacauda and I. gularis), as only single records were available for 
them at these reduced densities. 

Two other treatments explored the effect of differential data density 
across a region on the pattern of conservation priority areas that is 
reconstructed. To this end, we mimicked an imaginary national border, 
with 100-fold more or less data on either side. We used 101.77◦ W 
longitude as the position of this border, as it represents a relative trough 
in data density across North America, running more or less continuously 
from the Mexican border to the Canadian border (Fig. 1). As such, in one 
treatment, (4) we used full data density west of this border and 1 % data 
density to the east, and in the other, (5) we used full data density east of 
this border and 1 % data density to the west. 

As such, we have created a series of illustrative and informative 
pseudo-experimental manipulations of data densities across the United 
States. Comparing conservation prioritizations based on treatments (1) 
and (2) shows the effect of a 90 % reduction in data availability, and 
comparing treatments (1) and (3) shows the effect of a 99 % reduction in 
data availability, on prioritizations. Comparing treatments (1) and (3) 
with treatments (4) and (5) will illustrate the importance of regional 
imbalances in data density. 

2.1.3. Environmental data 
As environmental data inputs, we used the following climate vari-

ables: precipitation, temperature (mean, minimum, and maximum), and 
vapor pressure deficit (maximum and minimum), from PRISM (PRISM 
Climate Group, 2022). We used 30-year normals (1991–2020) to 
represent climatic conditions across the Lower 48 United States during 
May–July (spatial resolution 4 km). To reduce dimensionality and 
multicollinearity, we performed a principal component analysis (PCA) 
on these variables, and retained the first four principal components 
(PCs), which together reflected 96.6 % of the total variance in the 
overall dataset for further analysis (Table S1). We downloaded envi-
ronmental data using the R package prism (Hart and Bell, 2015), and 
performed PCA with the package kuenm (Cobos et al., 2019a). 

2.2. Geographic distributions of species 

For each blackbird species, we created a customized hypothesis of 
the accessible area (M in the BAM diagram; Soberón and Peterson, 
2005), which is most appropriate as a delimitation of an area for model 
calibration (Barve et al., 2011). The BAM framework gives a theoretical 
basis by which to understand scenarios of how biotic (B), abiotic (A), 
and dispersal (M, mobility) factors determine species distributions 
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(Soberón and Peterson, 2005). Our M hypotheses were based on 
dispersal simulations using the grinnell R package (Machado-Stredel 
et al., 2021). We used occurrence records spatially thinned to a mini-
mum point-to-point distance of ~30 km. We also used raw environ-
mental variables (i.e., not the PCs), as required for calculations of 
suitability using simple ellipsoid models in these simulations. We tested 
different values for two parameters: number of dispersal events (125 and 
250) and dispersal kernel standard deviation (1, 2, 3, 4, and 5 pixels); 
simulations were run under stable environmental conditions, using a 
normal dispersal kernel, with four as a maximum number of dispersers, 
and 5 % as the threshold for accessibility. We selected calibration areas 
to be used in model selection based on agreement among multiple 
parameter settings (i.e., relative invariance with respect to parameter 
values), as well as general correspondence to known biogeographic 
breaks. Model calibration was performed using only the environmental 
information inside the M area for each species. 

For each of the five sets of occurrence data corresponding to the five 
treatments described above, we used ecological niche modeling with a 
maximum entropy algorithm (Phillips et al., 2017; Phillips et al., 2006) 
to derive suitability layers and estimate distributional areas, as follows. 
We started with model selection processes, in which we tested distinct 
candidate models created with variations of algorithm parameter com-
binations and sets of predictor variables. We produced 198 candidate 
models, representing all possible combinations of 3 feature classes (i.e., 
lq, lp, lqp; l = linear, q = quadratic, p = product), 6 regularization 
multiplier values (0.1, 0.3, 0.6, 1, 2, 3), and 11 sets of predictors rep-
resenting all combinations of two or more of the PCs. Feature classes 
determine the expected type of response of suitability to each of the 
predictors (the combinations used aim for simple, unimodal responses), 
and regularization multiplier controls how adjusted the response is to 
the observed values of presence (higher values make for more relaxed 
adjustments). We evaluated models based on an ordered set of three 
criteria (Cobos et al., 2019a): (1) statistical significance based on partial 
ROC analyses (Peterson et al., 2008), (2) model predictive performance 
as reflected in omission rates (using a maximum acceptable omission 
rate criterion of E = 5 %; Anderson et al., 2003), and (3) low model 
complexity using the Akaike Information Criterion corrected for small 
sample sizes (AICc; Warren and Seifert, 2011). We therefore selected 
models that were statistically significant, had omission rates <0.05, and 
that had AICc values within 2 AICc units of the minimum value among 
the significant and well-performing models (Cobos et al., 2019b). 

For each species, we created final models using all parameter settings 
and sets of variables selected as described above, with 5 replicates via 
bootstrap, and clog-log outputs. We calculated a consensus model using 
the median across all results from the final models for each species. We 

binarized consensus results via minimum training presence thresholding 
approaches with a maximum allowable omission rate of E = 5 % 
(Anderson et al., 2003). To use ecological niche models to approximate 
the occupied distributional area (GO) of each species (Loiselle et al., 
2003), we retained areas meeting the threshold with a value of 1 within 
M, but set to 0 at all sites outside of M, as such sites would not be 
accessible to the species for dispersal and colonization. Steps of model 
calibration and projections, as well as development of consensus models, 
were performed in R using the kuenm package; raster processing to 
restrict distributional areas was performed using the package terra 
(Hijmans, 2022). 

2.3. Conservation area prioritizations 

We used Zonation v4 (Moilanen et al., 2014; Moilanen et al., 2005) to 
run analyses to prioritize areas as more or less important for conserva-
tion efforts, aimed at protecting a set percentage of the range area of 
each of our species. Analyses were performed using the conservation 
model “basic core-area,” in two ways. (1) We used only the thresholded 
(binarized) distributional hypothesis for each species, as described 
above. In the second approach, (2) we considered existing protected 
areas as a starting point for conservation action (“mask” layer), and 
existing human-modified areas as areas in which such action is not 
feasible (“cost” layer), in tandem with the binarized distributional area 
hypotheses, with details as follows. For existing protected areas, we used 
all categories of terrestrial protected areas from the layer of world 
protected areas (UNEP-WCMC and IUCN, 2022) updated as of 
November 2022 (available at www.protectedplanet.net) as areas 
already under protection. To summarize areas already beyond hope of 
protection, we used information from the “human footprint” data layer 
(available at https://sedac.ciesin.columbia.edu/; see details of data 
management below; Venter et al., 2016). 

We rasterized the layer of protected areas to match the extent and 
resolution of the raster layers representing distributions of species. 
Values in this raster layer were one and two representing non-protected 
and protected regions, respectively. The layer of human footprint was 
aggregated and masked to match the resolution and extent of all layers 
to be used in prioritizations. The original values in this later layer ranged 
0–50 in terrestrial areas; we replaced values of zero by 1.1 × 10− 8, as 
Zonation requires the cost layer not to contain values of zero. As our data 
came from multiple sources, we created a consensus layer to mask all 
raster inputs to be used in further analyses. This consensus layer grouped 
cells with no values from all raster layers used, which allowed us to mask 
out those cells that had information in some layers but not in others. All 
prioritization analyses were performed for the five data treatments 

Fig. 1. Summary of geographic patterns of blackbird species richness across the Lower 48 United States under five distinct treatments of the available occurrence 
data, as propagated through detailed ecological niche modeling steps. 
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described above using the package zonator (Lehtomaki, 2018) in R. The 
zonator package allows users to run Zonation with most of its features 
from the R interface. 

To visualize priority areas identified as an outcome of the different 
data manipulations, we needed to binarize the prioritization results to a 
single threshold with a similar “meaning” across different treatments. To 
that end, we set three priority thresholds to achieve at least 1 %, 5 %, 
and 10 % of range representation for all of the species in the analysis in 
each prioritization exercise. We derived these threshold values from the 
curves representing the relationship of percent range representation 
versus prioritization value for all species, produced within zonator. 
Specifically, we determined the prioritization value that yielded ≥1 %, 
5 %, and 10 % representation for all species, and used that value as a 
threshold for creating a binary output for the prioritization. Raster 
processing to prepare data and process results in this section were done 
using the terra package in R. 

3. Results 

Initial occurrence datasets covered 21 blackbird species in the Lower 
48 United States, and yielded a grand total of 10,699,387 occurrence 
records, with per-species totals ranging from 3257 (I. graduacauda) to 
3,562,404 (A. phoeniceus). With data cleaning and reduction steps, these 
numbers were reduced to a total of 532,906, with per-species totals 
ranging from 123 (I. graduacauda) to 112,130 (A. phoeniceus). The 
pseudo-experimental treatments reduced the per-species numbers in 
different ways. For instance, the 90 % data reduction ranged from 12 
(I. graduacauda) to 11,205 (A. phoeniceus) records, and the 99 % data 
reduction ranged from 1 (I. graduacauda) to 1120 (A. phoeniceus) re-
cords. Further, the 99 % data reduction in the eastern half of the country 
resulted in 1 (I. graduacauda) to 27,472 (A. phoeniceus) records, and the 
99 % data reduction in the western half of the country gave 11 
(A. tricolor) to 85,696 (A. phoeniceus) records. Indeed, for three of the 
five manipulations, two species (I. graduacauda and I. gularis) were 
reduced to single records; these species were therefore excluded from 
subsequent analyses, to assure comparability among prioritization ef-
forts. As such, our different manipulations of the occurrence data had 
significant implications for data densities of occurrence data for black-
bird species that would be fed into ecological niche models. 

Ecological niche modeling steps were conducted independently for 
each species in the study—i.e., model calibration areas were established 
via simulations, and optimal parameter values were chosen by detailed, 
species-specific model selection exercises. Given that the details of these 

steps are not central to the point of this paper, which focuses on the 
effects of data density on conservation prioritizations, we have provided 
the species-specific results of the M simulations (Table S2; Figs. S1–S17), 
model-selection exercises (Tables S3–S7), and model geographic pro-
jections (Figs. S18-S22) in the Supplementary Materials. 

For the three initial treatments of data density, ecological niche 
model outputs translated into maps of species richness that showed 
complex patterns across the country (Fig. 1, top row). At full data den-
sity, estimated species richness was highest in central and southern 
California, across much of the Great Plains, and eastward through the 
Great Lakes region to New England. Those patterns seem largely unaf-
fected by data density, except that areas of higher species richness 
shifted somewhat northward at lowest data density. The two treatments 
in which data density was only reduced in one-half of the country 
showed a reduction in species richness in the half where data density 
was reduced, reaching a maximum of only 7 species. 

As the occurrence data were passed through the workflow of M 
simulation in grinnell, ecological niche model evaluation and selection 
in kuenm, and area prioritization in Zonation, patterns changed and 
differences among treatments became more pronounced. That is, using 
all data available (Fig. 2, top-left panel), priority regions were in central 
and southern California, New Mexico, Minnesota, northern Iowa, and 
along the Gulf Coast into Florida. For the 10 % data-density analyses (90 
% data reduction), however, the Gulf Coast and Florida priority regions 
disappeared, and priority was elevated in southern New England. With 
1 % data density, priority regions consisted of odd, north-to-south zig- 
zag patterns across the central and southern United States, clearly 
reflecting very simple distributional summaries underlying the 
prioritizations. 

Priority patterns were considerably more complex when protected 
areas and human-modified areas were included in the place- 
prioritization analyses (Fig. 2, bottom row), as expected given the 
interaction between those “mask” and “cost” areas and patterns of 
presence and absence of species. Differences do exist—for instance, 
priority areas in New Mexico and westernmost Texas in the two higher- 
data-density prioritizations shift eastward in Texas in the 1 % data 
density prioritization. Overall, though, the differences are less dramat-
ic—or at least are less clear and obvious—in the analyses that take into 
account existing protected areas and existing patterns of human domi-
nance of landscapes. 

In the treatments in which we created data disparities longitudinally 
across the Lower 48 United States, we observed many of the same 
contrasts (Fig. 3). Major observations were that the priority zones 

Fig. 2. Conservation prioritization regions as a function of (1) occurrence data density (columns left-to-right represent prioritizations based on all occurrence data, 
10 % data density, and 1 % data density), and (2) inclusion of information on existing protected and human-modified areas in the analyses (i.e., top row does not 
include such information and depends only on species’ distributional patterns, bottom row includes that information). 
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shifted longitudinally towards the region with greater data density (see, 
e.g., Texas). Also, the Gulf Coast and Florida priority area disappears in 
the treatment in which the eastern half of the country is at 1 % data 
density. Certain instabilities are noteworthy, such as a very “cold” spot 
in the central Midwest when the east is at full density, turning into a very 
“hot” spot when the east is at 1 % density. These contrasts are man-
ifested also—albeit possibly less visibly—when protected areas and 
human-impacted areas are included in the place prioritization exercise 

(Fig. 3, bottom row). 
Areas of greatest instability in the prioritization exercises were 

distributed nonrandomly (Fig. 4), and more or less in accord with the 
descriptions of the individual prioritization outcomes above. That is, 
areas of greatest instability in the manipulations of overall data density 
were in the central Midwest and Gulf Coast regions of the eastern United 
States (Fig. 4, top row). Areas of instability in the east-west data density 
manipulations were similarly in the eastern United States, as well as in 

Fig. 3. Conservation prioritization zones based on 1:100 data density imbalances between eastern and western halves of the country. The top row of maps shows 
prioritizations developed based only on species’ distributional information. The second row of maps shows prioritizations developed based on the species’ distri-
butional information, plus information on current protected areas and current areas of high human impact. 

Fig. 4. Variability in prioritizations deriving from different treatments to the data and information used as input to place-prioritization analyses. The left column 
shows variance calculations across the three data-density treatments (1 %, 10 %, and 100 %), whereas the right column shows the difference in prioritization value 
between the two manipulations (i.e., east reduced, west reduced) in the regional analyses. 
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the Pacific Northwest and in the southern Great Plains and Texas, as 
described above (Fig. 4, bottom row). 

We established priority-value cutoffs (thresholds) for each of the 10 
prioritizations that were developed based on ≥1 %, 5 %, and 10 % range 
representation for all species (examples for a 5 % threshold in 
Figs. S23–S32). Threshold values across the 10 prioritizations ranged 

from 0.80 to 0.98 (Table S8), and the species that determined the 
threshold value found varied across our multiple treatments. The 
resulting maps of high-priority areas (Fig. 5, Fig. S33) illustrate the 
points above more clearly, showing how the high-priority areas shift 
among different treatments. 

Fig. 5. Areas of priority for conservation according to distinct data used in prioritizations and threshold values to protect different percentages of species ranges. The 
threshold values used are 1 %, 5 %, and 10 %, and they represent values of priority resulting from zonation exercises that allow protection of at least those given 
percentages of all species ranges. Results for treatments using all species data, and data reduced to 10 % and 1 % are shown here. Results for treatments reducing data 
in half of the country are presented in Fig. S33. 
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4. Discussion 

This paper set out very specifically to test effects of data density on 
outcomes of place-prioritization analyses. That is, instead of imple-
menting analyses on blackbirds or conservation strategies for birds of 
the United States, we rather focus on the subtle (or not so subtle) biases 
that manifest in situations of low data density, or in regions of low 
density even when high-density regions exist nearby, and as such this 
study assesses phenomena of interest in many regions around the world. 
This study is intended to guide users of such tools towards effective use 
of place-prioritization analyses in situations in which data-density ef-
fects have the potential to affect the results of their work. 

The outcomes of our analyses were as predicted at the outset of the 
project, but with some added complexity. That is, when ecological niche 
models are properly calibrated to create the distributional summaries for 
species in place-prioritization exercises, models based on relatively few 
occurrence points will often produce more generalized and simpler 
summaries of ranges of species (see also Muscatello et al., 2021). The 
simpler nature of these range summaries propagates through the place- 
prioritization analyses to produce conservation prioritizations that have 
less detail; indeed, at times, they even take on a geometric and very non- 
biological aspect (Figs. 2, 5). Of perhaps greater concern is that the 
differences are not solely in terms of detail, but rather are large-scale 
differences in which an area of high priority at full data density is 
ignored at lower data densities—these more qualitative differences are 
of greatest concern, as they reflect deep instability in place-prioritization 
analyses with respect to occurrence data density (Fig. 4). 

Our analyses, in which we created a 1:100 difference in data density 
across an imaginary “border” in the middle of the US, also demonstrated 
deep instabilities and dramatic effects caused by the differences in data 
density (Fig. 3–4). Such “borders” associated with dramatic differences 
in biodiversity data density are actually quite common around the world 
(Hughes et al., 2021). As examples, we have illustrated biodiversity data 
densities along the border between the United States and Mexico, the 
border between Western Europe and Eastern Europe and the Former 
Soviet Union, contrasts between Australia and New Guinea, and con-
trasts between South Africa and neighboring countries in Fig. 6. As such, 
the effect that we created with an artificial “border” within the United 
States is indeed a phenomenon that exists in many places around the 
world. 

Exploring the ways in which these data-density effects are man-
ifested, and reflecting a bit on the species-richness maps (Fig. 1, bottom 
row), it is clear that models for widespread species are being truncated 
spatially at the dividing line between low- and high-density regions. This 
large-scale effect might seem to be something that would get detected in 
some data- or model-quality assessment step (e.g., explorations of 
spatial correlation of data; Crase et al., 2012), were this study to be a 
real-world prioritization effort. In fact, one would expect that it would 
be noticed immediately, as this study is being developed in the United 
States with a taxon as well-known as birds, although niche-related an-
alyses for United States vertebrate taxa have made such errors in the 
past, as in the case of niche-centroid calculations for a rodent species in 
the southwestern United States [(Dallas et al., 2017); see Soberón et al., 
2018]. Nonetheless, for many taxa in many regions of the world, the 
Wallacean Shortfall (Lomolino, 2004) is significant, such that range- 
estimate truncations may not be noticed at all, particularly in large- 
scale prioritization analyses based on hundreds or thousands of spe-
cies (e.g., Brum et al., 2017; Nori et al., 2020). Although previous results 
suggest that including more species in prioritizations will increase the 
stability of spatial prioritizations in this type of analyses (Kujala et al., 
2018), biases from using poor characterizations of the distributional 
potential of species will remain in the data used for such analyses and 
propagate through the analyses into the final prioritizations. 

At first glance, our results would appear to be positive in nature as 
regards the addition of protected areas and human-influenced areas to 
the analysis. That is, the effects of our manipulations of data densities 

were far more pronounced in analyses in which protected areas and 
human-influenced areas were not included, such that one might 
conclude that the inclusion of those considerations moderated the ef-
fects of uneven data density. Although the inclusion of such consider-
ations is indeed necessary to produce more realistic and effective 
prioritizations (Kukkala and Moilanen, 2013), we, come to the conclu-
sion that, in our study, the more detailed nature of the results from 
analyses incorporating existing protected and disturbed areas simply 
obscures the same effects that are more easily perceived in the more 
basic analyses. This effect is significant for the outcomes of real-world 
analyses that are designed to result in conservation action: genuinely 
concerning effects of low data density may not be visible in such detailed 
analyses. 

The question, then, is what to do about such data imbalances. On the 
simplest level, as biases detected in our prioritizations derive from data 
density imbalances, researchers using such approaches should therefore 
inspect their input data carefully via graphical explorations to identify if 
such problems exist. Data cleaning steps and appropriate applications of 
spatial thinning could help solve some of the imbalances. Balancing the 
data via differential sampling according to administrative borders or 
according to borders that show distinct sampling effort should be 
considered if problems persist after initial steps of data processing (e.g., 
Ingenloff et al., 2017; Nuñez-Penichet et al., 2021). Part of our methods 

Fig. 6. Example world regions showing variations in data density across 
“borders,” such as those mimicked in our regional data-density manipulations. 
For these examples, we used all records of birds (class Aves) from the Global 
Biodiversity Information Facility (GBIF.org, 2022a, 2022b, 2022c, 2022d). a) 
the United States and Mexico; b) the transition from Western Europe through 
Eastern Europe to the Former Soviet Union; c) northern South Africa and 
neighboring parts of Mozambique, Botswana, and Zimbabwe; and d) northern 
Australia and New Guinea, Indonesia, and off-lying islands. Data densities are 
visualized as linear, log10-based color ramps from no data (white) to high data 
density (dark teal). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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included delimitation of areas for model calibration according to 
dispersal factors, and model calibration to select algorithm parameter-
izations that produce good models. These two methodological steps help 
to create models that are appropriately fitted to the data (i.e., non 
overfitted) and prevent increasing biases if unnoticeable density im-
balances remain. Nonetheless, to the degree that data imbalances are 
dramatic, it may prove impossible to thin data sufficiently to remove the 
negative effects of the imbalance. 

When data reduction is not an option, and perhaps more positive in 
general is the step of improving data densities in the under-represented 
regions. That is, on a project-by-project basis, it is possible to scour the 
literature and other biodiversity data resources for additional data from 
the undersampled regions. This step can provide additional occurrence 
data for poorly represented regions, and as such may alleviate some of 
the problems of imbalances in data density. Most productively in terms 
of creating permanent science resources, however, is the much larger 
task of improving biodiversity data resources for undersampled regions. 
In this sense, the example of Mexico stands out: a country invested 
heavily in marshaling, improving, and sharing data about its biodiver-
sity, and transformed itself from undersampled to the status of being a 
global leader (Soberón, 2022). Strategic assessments may identify 
crucial points at which a relatively small investment may free up or 
generate large amounts of data that would be immediately useful 
(Peterson et al., 2018). Although this process is not rapid, it will have the 
most permanent and pervasive impacts on the ability of researchers to 
conduct analyses of this sort, and thus improve the status of biodiversity 
science for the region in question. 

In sum, in this contribution, we have explored how data density 
regarding primary biodiversity data characterizations of species’ dis-
tributions propagates through analysis workflows to affect results of 
place-prioritization analyses for biodiversity conservation. Reduced 
data density—either overall or regionally—can lead researchers to use 
overly simple distributional estimates for species in prioritization ef-
forts. The errors in distributional summaries propagate through the 
place-prioritization algorithms to produce prioritizations that are 
distinct from the outcomes when full data density is used, likely an effect 
of the relative simplicity and lack of detail in the input range summaries. 
Indeed, major priority areas can “blink on” and “blink off” in the face of 
changes in data density. As such, and given that the world is charac-
terized by major disparities and imbalances in biodiversity data density, 
place-prioritization efforts must necessarily consider data densities 
available with which to characterize species distributions rigorously and 
in sufficient detail, as well as any disparities across a region of analyses. 
Failing to do so will result in unanticipated bias in results and inter-
pretation, affecting decision making in conservation efforts. 
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