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ABSTRACT 
Fermi statistics and velocity anisotropy give a surprisingly rich structure to massive neutrino dark matter 

halos. If a spherically symmetric halo has an anisotropic phase space, then hollow halos with a minimum of 
the mass density at the center are possible. Hollowness of a halo is controlled by a dimensionless constant 

= [9^n)(m2/Mp)(Lo/h2)(c/\ji]í¡2) involving the fermion mass, m, the Planck mass Mp, and parameters L0 and ju /2 fixing the halo anisotropy. All dependence of a halo on fermion mass and the maximum phase-space 
density is contained in K0. For K0 1, i.e., for small enough fermion mass and effective core size, most halos 
must be hollow to satisfy Fermi statistics. Thus, existing neutrino lower mass bounds not only are overly 
restrictive but become inapplicable. It follows that neutrinos or other fermions in the mass range m < 100 eV 
are viable candidates for galactic dark matter. A flat rotation curve is also shown to be a generic result of 
anisotropy in the same limit of interest. We discuss observable consequences of the possibility that isolated 
dwarf galaxies are associated with hollow dark matter halos. 
Subject headings: dark matter — elementary particles — galaxies: structure — neutrinos 

I. INTRODUCTION 
Neutrinos may have a nonzero rest mass. Most modern 

unified theories predict a neutrino mass which is naturally 
small compared with the charged lepton mass due to the 
seesaw mechanism (Yanagida 1979; Gell-Mann, Ramond, and 
Slansky 1980). The order of the masses is thought to follow 
that of the leptons, i.e., the tau neutrino should be more 
massive than the electron neutrino. Current limits from labo- 
ratory experiments are that the tau neutrino, the muon, and the 
electron neutrino have masses less than about 35 MeV, 270 
keV, and 20 eV, respectively (Particle Data Group 1988). 

Massive neutrinos and the big bang theory lead to a dark 
matter problem. This is because there must exist a certain 
cosmological abundance of neutrinos from the big bang. The 
number density of neutrinos plus antineutrinos (nv + n^) is 
directly related to the number density of photons (ny) by 

nv + n¿ = Yiny ^ 109 cm-3 . 

A nonzero neutrino mass implies a nonzero cosmological 
mass density. Comparing the critical density (pc) needed to 
close the universe, 

pc 
= ~~ ~~~ = 1.88 x 10"29/)2 g cm“3 

8te G 

with the big bang number density, we obtain a characteristic 
mass: 

m0 = 96.8 eV . 

Since this assumes that one neutrino species dominates the 
mass, it is an upper bound (Cowsik and McClelland 1972; 
Schramm and Steigman 1981). It is a profound coincidence 
that this mass value is in the same range of values permitted for 
neutrino masses in particle physics. 

Even more compelling in the case for neutrinos as dark 
matter is that the range of masses implied above, say 10 
eV <m < 100 eY, also occurs in data for a vast hierarchy of 
distance scales much smaller than that of the universe. The 

range of distance scales extends from very large scale structures 
upward of 100 Mpc to dark matter in the Virgo supercluster to 
galactic-size halos (Binney and Tremaine 1987; Cowsik and 
Ghosh 1987). 

An independent probe of dark matter, detecting radiative 
neutrino decay with production of ionizing photons (Ey > 13.6 
eV), has recently focused attention on the same mass range 
(Melott, McKay, and Ralston 1988; Ralston, McKay, and 
Melott 1988; Ralston and McKay 1989; McKay and Ralston 
1989; Sciama 1989, 1990). Data indicating an order-of-magni- 
tude excess flux of cosmological ultraviolet photons (Reynolds 
1984; Reynolds et al 1986) has, however, recently become con- 
troversial (Songaila, Bryant, and Cowie 1989). The most prom- 
ising test of radiative neutrino decay is the presence of a 
monochromatic line (DeRujula and Glashow 1980; Stecker 
1980). 

There are two problems with neutrinos as a sole source of 
dark matter. One problem involves large-scale structure and 
galaxy formation, and early claims and arguments that gravi- 
tational evolution of neutrinos may or may not be able to 
produce objects as small as galaxies (Doroshkevich et al. 1980). 
The conclusions have been somewhat controversial and 
model-dependent and will not be studied here. Analytic argu- 
ments (Davis et al 1980; Kaiser 1983) based on large velocity 
dispersions neglected a substantial population of the low neu- 
trino velocity region. Numerical studies (e.g., White, Frenk, 
and Davis 1983) seemed to rule out a neutrino-dominated uni- 
verse. At the same time, other numerical studies (Melott 1983, 
1985; Collins, Joseph, and Robertson 1985) showed that 
galaxy-sized, low velocity dispersion objects could occur in the 
nonlinear gravitational evolution and comprise of the order of 
10% of the total mass. This is the right order of magnitude for 
galactic dark matter. Moreover, evidence was found for preser- 
vation of high phase space density regions, i.e., the absence of 
substantial phase mixing is not a very rare event (Melott 1983). 
Finally, changing the spectrum of input fluctuations (e.g., with 
cosmic strings) aflects the conclusions and is another way to 
encourage galaxy-sized objects to form (Scherrer, Melott, and 
Bertschinger 1989). The upshot of all this is that neutrino hot 
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dark matter has certainly not been ruled out and has been 
gradually regaining popularity. 

The other problem involves dwarf galaxies and the con- 
straints from Fermi statistics. It has been proposed that galaxy 
data could rule out neutrinos as dark matter, at least in iso- 
lated dwarf galaxies (Cowsik and McClelland 1973; Tremaine 
and Gunn 1979; Aaronson 1983; Lin and Faber 1983; Spergel, 
Weinberg, and Gott 1988). In this paper we will see how such a 
conclusion does not really follow and that dwarf galaxies 
might be understood as natural consequences of neutrino dark 
matter. 

Cowsik and McClelland (1973) formulated an early lower 
bound on the neutrino mass assuming Fermi statistics in the 
sense that the phase-space density should not be larger than a 
maximum determined by h. Several other authors (Aaronson 
1983; Lin and Faber 1983; Madsen and Epstein 1984, 1985) 
followed the same logic. In these discussions, a neutrino is 
defined as light, collisionless fermion, so the results apply to 
any such system. For this paper we summarize the gist of the 
arguments as follows. 

The phase-space density dN/d3x d3p should be less than that 
from neutrinos evolving after the big bang, 

dN <-£? ^ < gy a) 
d3xd3p (2nh)3 exp (p/kT) + 1 2(2nh)3 ’ 

where gv is the number of occupied spin states, 1 < gv <2. 
Note that this density is of the order of the uncertainty prin- 
ciple value using A3xA3p>ft3. For an estimate, dN/ 
d3x d3p ^ p(x)/m4(v2)3/2 in order of magnitude, where v2 is a 
characteristic velocity-squared scale in the distribution and 
p(x) is the mass density of neutrinos of mass m. We imme- 
diately obtain a bound on m : 

p(x) 2(2nhÿ 
> (v2)312 g 

For a dark matter galaxy halo p(x) is “measurable,” or at 
least changes of the integral of p, the total enclosed mass deter- 
mining the gravitational field, are measurable with rotation 
curves. For an order of magnitude it is also plausible (if not 
rigorous) to relate the velocities of orbiting neutrinos to that of 
the stars, to estimate v2. For example, Tremaine and Gunn 
(1979) assumed an isothermal sphere neutrino distribution 
with core size r2 = 9<72/47tG/?(0) to relate the neutrino velocity 
distribution to the stellar velocity dispersion <r2> = a2. The 
Tremaine-Gunn (TG) limit, using this assumption in equation 
(2), and assuming equal numbers of one species of neutrino and 
antineutrino, is 

ïïï ^ — 

mT = 120 eVI 

9727 ft3 _ 
2gvr

2aG ’ 

100 km s^Y'Vl kpcj V1/2 (3) 
-1/4 

Certain isolated dwarf galaxies have comparatively small 
values of a and small core sizes rc. Recently Spergel, Weinberg, 
and Gott (1988) observed that the parameters measured for 
DDO 154 by Carignan and Freeman (1988) imply a value of m 
that is inconsistent with the upper bound on m due to the 
flatness of the universe, if equation (3) is taken literally. 

It is accepted that the neutrino mass constraint (3) becomes 
weaker if the neutrino velocities are much larger than the 

stellar velocities (Cowsik and Ghosh 1986, 1987; Kormendy 
1985; Silk 1985). However, if the neutrino rms velocities were 
as much as 10 times the stellar velocities, the bound is 
weakened only by a factor of 10“1/4 = 0.57. Another imme- 
diate consequence is that the neutrino halos will extend far 
beyond the stellar system. 

The phase-space bounds have loopholes, however. Neu- 
trinos streaming into a halo under formation carry angular 
momentum. If the system collapses in a roughly spherical way, 
the angular momentum must be conserved. A collisionless 
system under such circumstances should generally develop an 
anisotropic velocity distribution, meaning that some com- 
ponents of the velocity can be much larger than others. This 
has been known in general for stellar dynamics for some time 
(Binney 1982; Binney and Tremaine 1987). For neutrinos it 
follows that the case of large radial velocities—caused by 
limited angular momentum at the beginning of the halo 
formation—naturally weakens the neutrino mass bounds by 
spreading the neutrinos over a larger phase-space volume 
(Madsen and Epstein 1985; Ralston 1989). 

Anisotropy in collisionless self-gravitating systems is not a 
new subject. Michie (1963) studied anisotropic models for 
stellar systems some time ago. Kent and Gunn (1982) used a 
Michie anisotropic model for the dark matter in the Coma 
Cluster without imposing Fermi statistics. That anisotropy 
developed in the nonlinear evolution of neutrinos producing 
galaxy-sized objects was observed in numerical studies by 
Melott (1983). 

One consequence of dark matter velocity anisotropy is 
rather drastic. Hollow halos can form in which the central 
density is less than that away from the center. Considering that 
the angular momentum potential barrier VL(r) = L2/2mr2 is 
more singular than the gravitational attraction, hollow halos 
for the collisionless system are an obvious possibility. A hollow 
halo can contain a much greater mass (for the same maximum 
density) because the highest density occurs in an entire shell. 
Thus the usual neutrino mass bounds immediately become 
invalid. 

Another unexpected consequence of anisotropy is the truly 
generic occurrence of a flat rotation curve. Of course, the iso- 
thermal sphere also generates acceptable flat rotation curves, 
and consequently a large number of data have been analyzed 
assuming an isothermal distribution. But if the isothermal dis- 
tribution constitutes one acceptable point in the space of all 
distributions, the anisotropic distribution is an entire subspace, 
an infinitely larger class. Any anisotropic distribution of any 
shape will give a flat rotation curve provided only that there are 
cutoffs in the angular momentum and energy ranges. This may 
explain why nature did not need to conspire to exhibit so many 
flat rotation curves. 

Surprisingly, when Fermi statistics are imposed, we can 
show that the case of anisotropy and a small neutrino mass 
requires a hollow halo and a flat rotation curve. Thus, it turns 
out that a hollow fermionic halo is an entirely distinctive 
object. In relating neutrino velocities to star velocities, rela- 
tions such as the TG limit (3) might be misapplied. The range 
of parameters for which hollow halos are implied is the range 
indicated for isolated dwarf galaxies. We will conclude that if 
isolated dwarf galaxies are gravitationally dominated by neu- 
trinos, then their dark matter distributions are almost certainly 
hollow. Indeed, we do not know for sure that normal-size 
spiral galaxies are not hollow. 

The paper is organized as follows. Section II reviews the 
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formalism for collisionless systems and reduces the anisotropic 
problem to one involving dimensionless variables. The usual 
dimensional analysis which relates the core size, central 
density, and velocity dispersion is revised when anisotropy is 
present. Halos can be classified by a dimensionless constant 
which is the ratio of two size scales, this ratio being of order 
unity for the isotropic case. The analysis of a model anisotropic 
distribution is then presented, and stability of solutions is dis- 
cussed. Numerical work is presented in § III. 

The analysis is complete and self-contained because the 
concept of a hollow dark matter halo is new. However, readers 
wishing to preview the general results may wish to skip ahead 
to § IV, where results are listed. 

II. PHASE-SPACE ANISOTROPY 
A review of the formalism for collisionless systems is given 

by Binney and Tremaine (1987). We consider solutions to the 
Poisson-Vlasov (PV) equation for the velocity-position space 
distributionf(x, v) < gvm

3/2(2nh)3. Solutions obeying this con- 
dition will be called Fermi-allowed. The steady state, time- 
independent solutions are functions of conserved variables, 
which for spherical symmetry are limited to be the energy per 
mass and the magnitude of the angular momentum L2 : 

f(x, v) =m L2), = ±v2 + lAW , 

L2 = m2r2r2[l — (v • r)2] . 

The number density n(r) is equal to J d3vf(x, v). We assume 
spherical symmetry, so that the gravitational potential i/f is a 
function of the radial coordinate r; f is the radial unit vector. 
Our convention for the zero of i¡/(r) will be ^(0) = 0. 

The PV equation is 

V2i/f = 47rGm J d3vf(x, v). (4) 

Since/=/(<f(i/f(x), v)9 L
2) to be time-independent, the system is 

nonlinear and must be treated numerically. Before doing this, 
we make the following observations to gain some insight into 
the problem. 

a) Dimensional Analysis 
First we use dimensional analysis. Dimensionless variables 

will be denoted by a tilde. From the discussion the natural 
units of/(x, v) are gv m3/2(2nh)3 ; thus we define 

f(x, v) = fix, v)!y , y = 2i2nh)3/m3gv , 

The mass density /?(r) = mn(r) can be written p = p0p9 where p 
is dimensionless. Letting the velocity-squared in the distribu- 
tion range up to a value 2p, the natural size of p0 is np3l2mly. 
Here we have dropped a factor of 27/2/3 in the volume of the 
velocity sphere to simplify definitions. We use the symbol p 
rather than o2 to emphasize the distinction between the neu- 
trino velocities and gas or star velocities measured in rotation 
curves. The units of \¡/ are velocity-squared, conveniently 
expressed in units of p. The PV equation of such a dimension- 
less variable is 

4nGp0 
Pir)- 

Dimensional analysis dictates that the constant p/4nGp0 in 

this equation sets a squared-distance scale of the halo. This is 
exactly as in the isothermal sphere, where the “ core size ” r2 = 
9<72/47iG/?(0). For any isotropic distribution, the same type of 
dimensional analysis applies. The dominance of dimensional 
analysis explains why there is not much difference between the 
neutrino mass bounds for the isothermal sphere and other 
isotropic distributions. 

On the other hand, an anisotropic halo has two independent 
scale sizes: the usual core size and an impact parameter size 
scale. Let Ll be an angular momentum scale in the distribu- 
tion, i.e.,/(x, v) =fi$, lî/Ll). The presence of Ll is equivalent 
to the presence of the impact parameter scale a, with L0 = 
mip)1,2a. A natural dimensionless unit of distance will be 
f = r/a. The dimensionless PV equation for anisotropically dis- 
tributed fermions is 

V2${r) = K0 p(f), 

V = a2V2, p = £-- K0 = 
P Po 

4tiGLqP0 

p2m2 

Evidently the dimensionless constant K0 plays a decisive role 
in the PV equation for fermions. If we ignore the distinction 
between stellar and neutrino velocity dispersions, then, to 
order of magnitude, K0 ^ a2/r2. Consequently K0 will be 
called the scale ratio. In any situation where K0 is much differ- 
ent from unity, isothermal sphere physics is liable to be mis- 
applied. 

K0 depends on quantum mechanics through Planck’s con- 
stant. With no approximations K0 may be written 

_ gv Ll m2 c 
0 4n h2 M2 p112 ’ 

where Mp = (ftc/G)1/2 = 1.22 x 1019 GeV is the Planck mass. 
For a numerical estimate of K0 using m = 30 eV, we consider a 
normal galaxy, where stellar rotation curves give us apparent 
velocities p1/2 ~ 300 km s-1 and apparent core sizes a ^ 10 
kpc, so L0 = mip)1,2a ^ 4.7 x 1025ft. These are typical values 
(Kormendy 1985; Rubin 1985). Putting all the factors together, 
one finds 

Ko = 1.060, 
L0 

4.7 x 1025ft/ V30eV 
300 km s 

The cancellation of large numbers above to give K0 of order 
unity for a normal galaxy cannot be ignored. Turning the rela- 
tions around, the condition K0 ~ 1 so that the core size equals 
the impact parameter allows us to calculate a typical galactic 
core size (10 kpc). This is the conventional result of isotropy, 
and another enormous coincidence of neutrino dark matter. 

There is an intimate relation between the scale ratio K0 and 
the usual phase-space mass bounds. Let mTG be the maximum 
neutrino mass with the usual isothermal sphere assumptions 
(3); m is the actual neutrino mass. Eliminating constants in 
equation (3), one obtains a revised bound : 

m4 > 0.56 ^1/2 K0mjG . (5) 

Now, even retaining the usual assumption that the neutrino 
and stellar velocities are comparable, o/p112 ^ 1, and assigning 
the ratio rja^ 1, the mass bound is drastically weakened if 
K0 1. (Numerical work in § III will demonstrate that scaling 
halos in units of a is the natural choice. Many halos over a 
wide range of K0 still have comparable core sizes in these 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

36
7.

 . 
.5

4R
 

HOLLOW GALACTIC HALOS OF DARK MATTER 57 No. 1, 1991 

units.) Put another way, the revised bound says that if we 
already know m4 m4

G, then we should study halos with 
K0^l. 

We will see below that hollowness of a Fermi-allowed solu- 
tion to the PV equation occurs when K0 is small compared 
with unity. Dwarf galaxies are small, so we expect the angular 
momentum scale L0 to be small, and K0 <0 is indicated. For 
example, reducing the core size a to 1 kpc and apparent veloc- 
ity //1/2 to 30 km s-1, we find K0 ~ 10-3 for neutrino mass 
m = 30 eV. Note that we anticipate K0 1 for a normal 
galaxy if the neutrino mass is much smaller than 30 eV. Conse- 
quently we concentrate on the cases K0 <0 and K0 ä 1 in this 
paper. 

b) The Momentum Tensor 

Returning to the PV equation, if it is solved we automati- 
cally solve the Jeans equations for hydrostatic equilibrium : 

^ (Kfr » + ^ (2<«V2> <^>2 - <t>2» = 
GM(r)p(r) 

(6) 

Here (vr, v^,) are the velocity components in spherical coor- 
dinates, and <í;2> = J d3vv^:f(x, v)/n(r), etc. Properties of the 
Jeans equations can tell us properties of the Poisson-Vlasov 
system. We focus on the effects of anisotropy, <y2) / <y|), 
while (vjy = <t;2> from symmetry. First note that the term 
going as 2 <t;2> — (vj} — <u2> represents an extra centrifugal 
force density. Expanding equation (6) around r = 0, we find 
some conditions for solutions to exist (Ralston 1989). The con- 
ditions are most simply expressed in terms of momentum 
tensor components Ty, 71, 

"W = P(r)<v?(r)) , TL(r) = jp(r)«vj) + <>¿» . 

Together these form the most general spherically symmetric 
momentum tensor 7^ = T¡| r^j + T^d^ — rff7). Expanding 

W) = Tj|(0) + rT'niO) + ^ 71(0), 

T±(r) = 71(0) + rT'±(0) + y Tl(0), 

we find that equation (6) is satisfied only if the following condi- 
tions are met : 

71(0) = TyiO), Tl(0) = (f)r||(0), 

T'1(0) = 2T||(0) -h 4nGp2(0)ß . 

The first relation above shows that if 7^ is finite at the center, 
then it must be isotropic. However, if 71(0) = 71(0) = 0, then 
there is no need for isotropy. Put another way, if the distribu- 
tion is anisotropic, then either we have zero central density or 
the distribution becomes isotropic at the center. The relation 
between the first derivatives shows that the origin can then be a 
minimum of the momentum tensor. For reasonable distribu- 
tions this is tantamount to a local minimum of the density at 
the center. 

For a hollow halo we need Ty > 71 in a large enough region 
to give dp/dr > 0. After reaching a maximum value, p will then 
decrease as the gravitational attraction overcomes the centrifu- 
gal barrier (Ralston 1989). Recently Madsen (1989) has studied 
hollow solutions to the Jeans equations (6) assuming an aniso- 
tropic Fermi ellipsoid equation of state. This and other work 
with similar assumptions (Madsen and Epstein 1984,1985) will 

generally not satisfy the PV equation and therefore will give a 
time-dependent halo which may be of interest for other pur- 
poses. 

c) Hollowness 
We can learn more by examining the expansion of the PV 

equation near the origin. In this paper we comsider distribu- 
tions of the form 

m L2) =mg(L2/L2) . (7) 

Isotropic distributions are the special case g(L2/Ll) = 
constant. For the case of physical interest we have already 
assumed that $ ranges up to some maximum p in the distribu- 
tion, with a fairly sharp cutoff. A specific example (physically 
motivated below) is/(<f) = S(p — $). Other examples would be 
any strongly damped function of S/p. The following observa- 
tions apply to any such cutoff distribution. 

As r -► 0, g(l3) for L2 -► 0 dominates the physics. This is 
because $ = jv2 + jl}/m2r2 + i¡/ < p requires L2 to be small: 
L2 < 2pm2r2 to permit any volume in velocity space. Thus g(0) 
and its derivative g'(0) determine the character of the density 
n(r) and the momentum tensor T^r) near r = 0. 

To make this quantitative, we expand 

m L2/L2) = S(p- mo) + g'(0)L2 + 0"(O)L4/2 !] (8) 

and calculate n(r). The result, after a certain amount of integra- 
tion and algebra, is 

n(r) = (2ß)3l2g(0) + 25/2tc^3/2 

X 
• g 29/2 

— g'(0)m2n - — n2Gm(ß)ll2g2(0) + 0(r4) . (9) 

Thus the expansion of n(r) is coupled to the expansion of g(L?). 
In deriving this, the potential {¡/(r) has been expanded with the 
boundary conditions i¡/(0) = i^'(0) = 0, and its second deriv- 
ative has been eliminated using V2i/^(r) = 4nGp(r). 

From equation (9) we see that if g(0) = 0, then n(0) = 0, i.e., 
we have a solution with zero central density. Conversely, if 
0(0) ^0, then the central density is finite. Next, if ri'(0) > 0, 
then the density increases with r near r = 0. The condition of 
n"(0) > 0 gives a condition on g'(0) in terms of 02(O) : 

0'(O) > 
«g2(0)G 
m(p)112 (10) 

with a = 10^/2712/3. When this inequality is satisfied, we have a 
hollow halo. The factors contributing to inequality (10) are of 
rather general origin, so formula (10) applies as a criterion to 
any factored distribution (7) with a finite range of energies per 
mass $ < p, allowing a to be varied somewhat for a particular 
distribution. 

The hollowness condition (10) has the following interpreta- 
tion. Dividing by 0(0), on the left-hand side the logarithmic 
derivative dln0(O)/dL2 represents a typical inverse angular 
momentum scale in the distribution. In an order-of-magnitude 
estimate this scale can be identified with I/Lq. On the right- 
hand side 0(0) carries the dimensions of the distribution, which 
to order of magnitude is 1/y. Thus, from formula (10), the halo 
is hollow if 

ocGm2Ll 
2(2n)3h3(p)112 
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The combination on the left-hand side above is (5/3^2)*: 0 = 
1.18/i0. We conclude that K0 < 1 determines that a halo is 
hollow. This is rather general, allowing for some variation in 
the critical value of K0 for particular distributions. 

The details of a particular distribution do have an effect in 
determining the critical value of K0 for hollowness. The family 
of functions we study numerically is given by 

i(^ + i>)exp 
(H) 

where A, B, and Lf, are parameters. 
We demand that the phase-space density be consistent with 

Fermi statistics (eq. [1]). Finding the maximum of g(L2) in 
equation (11), which coincides with the maximum of/(<?, I}) for 
the cases we study, and imposing Fermi statistics with 

g(L2/L2) < l/y , 

we obtain conditions on A and B: 

2AeBI2A~1 < 1 , B <2A , 

B<1 , B > 2A . (12) 

Solving for B, Fermi statistics requires 

5<2A[l-ln(2A)], A > ¿ , 

< 1 , 0 < A < i . (1;i) 

Next we examine hollowness. Using equations (10) and (11), 
the halo is hollow if K(A, B) < 1, where 

K(A, B) = 
B1 aGL2 

A — B/2 m(ji)il2y ’ 
B <2A , 

A-B/23^
K°- (14) 

Combining equations (13) and (14), we can classify halos. All 
neutrino halos must satisfy equations (13); the subset satisfying 
K(A, B) < 1 are hollow. There is also the case of B>2A which 
is not hollow for any K0. The results are shown graphically in 
Figure 1. 

In the figure, parameters B and A satisfying Fermi statistics 

Dashed curves determine hollowness. For fixed values of K0 shown, param- 
eters A and B below each dashed curve give hollow halos. For K0 < 1 most 
Fermi-allowed halos are hollow. 

(eqs. [13]) lie in the region of positive values below the solid 
curve. Also shown in dashed lines are curves of constant 
K(A, B) = 1 for different fixed values of K0. The region of 
B and A values below each dashed curve corresponds to 
K(A, B) < 1 or hollow halos, and those above the curve to 
K(A, B) > 1. Note that if K0 ^ 1, then most of the Fermi- 
allowed region lies below the dashed curve, so almost all of 
the halos are hollow. (In the limit K0 —► 0 the dashed curves 
approach the line B = 2A.) For K0 > 1, the dashed curve cuts 
through the Fermi-allowed region, dividing it into sectors 
of halos which are hollow and those that are not. Again, 
X0 ä 1 is a critical value for Fermi-allowed halos. 

For parameter A < ^ the phase-space distribution has its 
maximum at L = 0; for A > | the maximum point is away 
from L = 0. Maximal halos, i.e., the maximum density allowed 
by Fermi statistics, correspond to equality in equations (13) 
and the solid line in Figure 1. The plots show the effect of 
parameter A, which controls the location of the peak in the 
angular momentum distribution. The case A = 1.3 is close to 
the limiting value A = e/2 that gives the most hollow halo 
WO) = 0]; the case A = 0.3 is a nonhollow halo for any K0. 
Numerical work presented below will study several cases: 
A = 0.3,1.0, and 1.3. 

d) Asymptotic Behavior 
Data on dark matter in galactic halos show nominally flat 

rotation curves. This occurs both in the more easily studied 
spiral galaxies and in dwarf galaxies (Kormendy 1985; Rubin 
1985). Consequently, the isothermal sphere, in which a flat 
rotation curve arises as a detailed nonlinear special effect, has 
dominated discussions of dark matter. The isothermal sphere is 
not a realistic model because it has infinite mass and is per- 
fectly isotropic. Under what circumstances will an anisotropic 
phase-space distribution give a flat rotation curve? 

In the region where the rotation curve is flat, the number 
density n(r) goes roughly as 1/r2. This is an approximate behav- 
ior over some large but finite region. 

Thus we consider the large-r behavior of 

n(x) = J d3vf(x, v), 

n(r) = (n/m2r2) J dvrdl3f(S, tf/L2) . 

Here we have used the Jeans theorem and assumed spherical 
symmetry, orienting cylindrical coordinates in velocity space 
along r. Evidently the statement that n(r) goes as 1/r2 is equiva- 
lent to the integral above being slowly varying in r. 

Again we assume that the range of S’ is cut off, < //, and 
with anisotropy the range of L is cut off, B < Ll. We wish to 
study the generic behavior of such distributions. Dropping 
constant factors, the density goes as 

H(r) ~ ^ J dvrdL2^v2 + -^<2[p- i/Ar)]|'9(L2 < L2) 

Iff I2 l1/2 

~^JdL2|^-^)-—J ,9(Z? < L2). 

The square root allows L2 to range up to as much as 
2m2r2\ji - ^(r)]. For example, near the origin where ^ % 0 the 
L2 integral could give us a contribution going as r2, giving a 
constant density. This accounts for the complicated behavior 
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Fig. 2.—Cylindrical plug argument that an angular momentum cutoff and 
energy cutoff give a flat circular velocity curve. The figure shows the velocity 
volume v2 <2\ji — ^(r)] as spheres at different radii r in coordinate space. The 
angular momentum L2 = m2v\ r2 < Lq constrains the transverse velocity v± to 
be within the cylindrical plugs cut inside the spheres. The angular momentum 
constraint forces the diameter of each plug to decrease as L0/r. The number 
density, which is the allowed velocity space volume, goes as the volume of the 
plugs, i.e., 1/r2 for \jx — ij/(r)]1/2 slowly varying. A 1/r2 density gives a flat 
rotation curve. 

of the nonlinear problem in the central region. The L2 cutoff 
is not important in this region; 2m2r2\ji — i/^(r)] < L%. 

For large r2, any L2 cutoff simplifies the problem consider- 
ably. For 2m2r2(ju — i//) > L% we can ignore the L dependence 
in the square root. There is a generic factorization (Ralston 
1989): 

1 CL°2 

n(r) ~ ^ [2(p - -A)]1'2 dL2 . 
r Jo 

Thus, anisotropy generates a rather flat rotation curve, if only 
\jjl — iA(r)]1/2 is slowly varying. The region of interest is large r, 
where L < L0 is being “ restricted ” below its typical isotropic 
value mr{fi — i¡/)1/2. 

This simple result can be understood in a simple way. In 
Figure 2 the velocity space is sketched at several points in 
coordinate space. The neutrino mass density goes as the 
volume of the velocity space. Thus the figure shows a series of 
spheres for the energy cutoff condition S’ < ¡i, or v2 < 2(/¿ — ij/). 
The volume of the spheres is fairly constant as \¡/ is slowly 
varying. The figure also shows the angular momentum cutoff 
L2 < Lo, which means the transverse velocity vj + < 
Ll/m2r2. This constraint can be represented inside each sphere 
as cylindrical plugs of diameter going as L0/r. Evidently the 
velocity volume allowed by both constraints goes as the plug’s 
length {/i — i/01/2 times its cross-sectional area, nLllm2r2, 
which gives a density that goes as 1/r2. This density implies a 
flat rotation curve. 

We now turn to the spatial variation of [//— iA(r)]1/2, 
assumed to be slow above, but really a self-consistency issue. 
Suppose K0 <0. The dimensionless PV equation, 

V2$ = K0p, 

where ÿ = {¡//p, shows that the scale ratio K0 acts somewhat 
like Newton’s constant. The potential $ grows from zero at 
r = 0 in proportion to the size of p and K0. The size of p is of 
order unity owing to the choice earlier of the largest velocity 

volume scale (p0 = %p2l2m/y). Thus small K0 forces small \j/. It 
will be a good approximation to think of (// — i/r)1/2 = 
p(l — 4f)1/2 as slowly varying. 

To add detail to this, from n(r) ~ 1/r2 we know ij/ ~ K0 Inr. 
Thus \j/ is not only small, because K0 1, but it remains small 
over many units of r/a because it only varies logarithmically. 

Thus we see that a rather long, flat rotation curve is a kine- 
matic effect of an anisotropic halo with K0 1. Anisotropy 
alone generates n(r) ~ 1/r2 provided that the cutoff Ll domi- 
nates the integrals; K0 <0 guarantees that the other factors 
are slowly varying over a large region. The behavior is mainly 
of geometrical origin. The numerical work presented below 
(§ III) confirms this analysis and also gives counterexamples 
(the case K0 > 1). N-body numerical simulations of halo for- 
mation (Dobyns 1988) also generally show velocity anisotropy 
and a behavior for n(r) close to 1/r2, but the simple connection 
seems to have gone unnoticed. 

We remark that the region over which n(r) ~ 1/r2 is finite, 
unlike the isothermal sphere. Provided that there is a cutoff 
S < pin the halo, the largest extent of the halo can be found 
thus: at the outer halo edge r*, i/^r*) = p occurs, leaving no 
phase space and forcing n(r*) = 0. This is an outer Fermi 
radius where the potential energy is p. The 1/r2 behavior is not 
a good approximation when r becomes so large that i/f(r) ^ 
p — Ll/2m2r2. Thus the inner core and outer edge of an aniso- 
tropic halo are determined by nonlinear effects, which require a 
numerical treatment, while K0 <0 guarantees a long interme- 
diate region with a flat rotation curve. We do not present 
results here on the halo edge value r* versus K0, which would 
determine the total halo mass. This project requires slightly 
more sophisticated numerical work in the extrapolation of 
small p over many units of f than the present numerical 
method allows. It will be studied elsewhere. 

e) Stability 
It is easy to verify that our distributions (eqs. [7] and [15]) 

give halos that are stable under the Antonov tests (Antonov 
1962; Binney and Tremaine 1987) when applied to distribu- 
tions of the form f(S, L). This shows stability under general 
radial perturbations. However, no systematic method exists for 
studying the stability of collisionless systems to nonradial per- 
turbations. 

In spite of extensive investigation (Fridman and Polya- 
chenko 1984), the general problem of stability has not been 
resolved analytically. A certain (Fridman and Polyachenko 
1984) criterion for stability has been shown to be invalid by a 
counterexample (Palmer and Papaloizou 1987). Numerical 
studies (Merritt and Aguilar 1985; Barnes 1986) have demon- 
strated some radial-orbit instability in some highly anisotropic 
models of stars in galaxies. Since encounters between stars give 
a big perturbation that does not occur for neutrinos, the 
studies do not really apply, but they do show that a particular 
instability might exist. 

We note that the models previously studied have been solid 
anisotropic halos, which we have seen are in the minority for 
K0 1. Since there is more “function space” with hollow 
halos, it is not too surprising that the privileged solid aniso- 
tropic halos might sometimes be found to be unstable. 

More physically, consider the origin of radial orbit insta- 
bility. A particle on a radial orbit and far from the center can 
receive the smallest sideways “kick” to its velocity, but gain 
large angular momentum. On its next pass the angular 
momentum barrier will keep a particle away from the density 
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peak at the center of a conventional solid halo. One might 
expect such a perturbation to grow, producing a barlike or 
triaxial instability that moves density away from the center. 
The growth of barlike instabilities has recently been discussed 
by Lynden-Bell (1979). 

On the other hand, if there is already considerable density 
away from the center, as in a hollow halo, then the fractional 
density perturbation bpjp is naturally smaller in effect. A parti- 
cle kicked sideways far from the center simply enters the 
stream of those other particles already present. Thus, it is inter- 
esting to speculate that a hollow halo might be a planned 
superposition of instabilities creating a form that is itself natu- 
rally stable. This speculation is beyond the scope of this work, 
but it might be checked with iV-body codes. Care is needed in 
such checks, because one must be able to watch the system for 
a long time, and because pointlike encounters must be elimi- 
nated properly. 

III. NUMERICAL WORK 
Here we study the properties of numerical solutions to the 

PV equation (4). For the anisotropic phase-space distribution 
we use the factored form (7) with 

/K i?) =/(<%(^i), 

m = 
 1  
1 + exp {ß{S - //)] ’ (15) 

and g(l}/Ll) as given by equation (11). The motivation for 
equations (15) describing fermions should be obvious. We take 
parameters ßp^> 1, so that equations (15) correspond to the 
degenerate situation /((f)~%-<f). Thus p is the Fermi 
energy per mass. 

In Figures 3-5 we show the numerical results of maximal 
Fermi-allowed halos, where B = 2A[1 — ln(2A)]. With B 
eliminated the halos are functions of A and K0. We study both 
hollow and nonhollow halos. In each figure, A is fixed, and 
halos for different values of K0 are plotted. K0$> 1 corre- 
sponds to an isotropic degenerate Fermi phase space L0 -► oo. 

Not surprisingly, halos of large K0 are more compact: recall 
that K0 acts somewhat like Newton’s constant. The case of 
small K0, which corresponds either to small m2, small Ll, large 
p, or a combination of these (recall eq. [5]), gives a rather 
extended halo with a long region of rather flat rotation curve. 
This confirms the analytic argument of § lid. As A is varied, the 
conditions for a hollow halo change according to equation (14) 
and Figure 2. The case A = 0.3, a nonhollow halo, can be 
compared with the rather hollow case A = 1.3. 

Rotation curves are plotted in Figures 3h, 4h, and 5b. We 
have plotted the circular velocity vc in dimensionless form, 
defining vc = vjp112. Then 

where the enclosed mass M(r) is equal to Jo d3x p(r) has been 
eliminated by M(r) = p0 a3M(r). Note that K0 controls vc9 so 
that, all other things being equal, halos with smaller K0 have 
smaller circular velocities. (To avoid misunderstanding, we 
remark that in general p1'2 and K0 are independent.) The 
curves show that in the case 1, there is a wide region over 
which the rotation curve is nominally flat. The rotation curves 
for nonhollow (A = 0.3) and hollow halos {A = 1.3) are similar 
for K0 ^ 1, differing in shape only in the core region. The 
nonhollow halo with K0 <0 is a generalization of a case of 
radial orbits considered before (Ralston 1989), giving flat rota- 
tion curves. The large r/a dependence of the density, shown in 
Figure 6a in a logarithmic plot, displays the similar power-law 
decrease for the hollow or nonhollow halos with small K0. 
Fixing K0 = 1/20, the rotation curves for hollow and non- 
hollow halos are compared in Figure 6b. More mass is con- 
tained in a hollow halo at large radius because the point of 
maximum density is farther from the center; thus vc is larger. 

The flat rotation curves for K0 1 suggest that this case 
may be applicable to data for dwarf galaxy rotation curves. 
Indeed, the variety of the curves for K0 = 1/20 and different A 
parameters is strongly reminiscent of the type I, II, and III 
dark matter halo classifications observed empirically by Rubin 
(1985). A thorough job of curve fitting also requires informa- 

Fig. 3a 
radius r/a 

Fig. 3b 
Fig. 3.—Mass density and circular velocity curves vs. scaled radius for maximal Fermi-allowed halos, (a) Curves show the scaled density p{r)/p0 vs. f = r/a for 

K0 = 1/20,1, and 5 and ^ = 0.3. (h) Scaled circular velocities vc = vjp'12 vs. r for ^ = 0.3 and K0 = 1/20, 1, and 5. The circular velocity curves are nominally flat for 
K0 = 1/20. 
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radius r/a 
Fig. 4a 

Fig. 4.—Same as Fig. 3, but for A = 1.0 

radius r/a 
Fig. 5a 

Fig. 5.—Same as Fig. 3, but for ,4 = 1.3 

Fig. 6.—(a) Logarithmic plots of the density profiles of halos with different yl-values and K0 = 1/20. The dependence of the density at large r is similar for hollow 
and nonhollow halos, (b) Circular velocity curves for K0 = 1/20 and various values of A as shown. For K0 1, a flat rotation curve is obtained for large r/a 
regardless of the hollow (A = 1.0,1.3) or nonhollow (A = 0.3) behavior of the density near the origin. 
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tion on dynamical autonomy (Aaronson 1983; Kuhn and 
Miller 1989) and a detailed model of the visible matter dis- 
tribution (Kormendy 1985), and is not the purpose of this 
paper. Instead the curves provide “existence proofs” that a 
halo of given core size can be made for a given neutrino mass. 
If m and a are held fixed, K0 1 requires a small Fermi veloc- 
ity //1/2. If m and L0 are fixed, then K0 1 requires a large //1/2, 
the case studied in less generality earlier (Ralston 1989). Since 
K0 contains so much information in a dimensionless form, care 
must be used to take limits such as these in a physically realis- 
tic manner. 

To investigate the distribution of observable stars or gas 
moving in an anisotropic halo, the following procedure was 
used. Assume that the gas or stars have an isothermal distribu- 
tion /(<^gas) ~ exp (—ßg$gas). Then if the dark matter domi- 
nates, the gas number density ng & exp (—ßgii\jf). For the 
neutrinos we have already assumed /?//>!, i.e., the Fermi 
energy is larger than the temperature. Since it seems reason- 
able to study ßg ^ /?, we set ßgti= 10 and plot ng(r)/ng(0) in 
Figure 7 for various cases: A = 0.3, 1.0, and 1.3 with K0 = 
1/20. This is a preliminary test that shows that the hollow 
halos will have the capability of fitting data for the luminous 
core. This, and the range of parameters K0, etc., that will fit the 
data, will be investigated further elsewhere. 

IV. DISCUSSION 

There are several significant results of this work: 
1. A dimensionless constant, the scale ratio K0, is of decisive 

importance in fixing the configuration of a Fermi-allowed 
halo. The constant K0 is defined by 

fc _ gy Lo m2 c 
0 4?! h2 Mf fiil2 

K0 summarizes all dependence of the halo on the neutrino 
mass m (in units of the Planck mass MP), the neutrino Fermi 
velocity scale /i1,29 and the angular momentum scale of the 
haloLo- 

2. The case K0 <0 tends to give a hollow halo. This was 
shown by expanding the PV equations near the origin. It is 

confirmed by numerical work studying a family of distribu- 
tions (eq. [11]) as shown in Figures 3a, 4a, and 5a. 

3. For the entire region where the growth of the potential \¡/ 
is slow, a nominally flat rotation curve generically comes from 
a cutoff in the large-L behavior of the angular momentum 
distribution. The analysis of § lid (Fig. 2) shows this in some 
generality. The limit K0 <0 is the limit where the L0 cutoff is 
small and the growth of ^(r) is slow, extending the region of flat 
rotation curve (Figs. 3b, 4b, and 5b; Fig. 6). 

4. Phase-space bounds such as the TG bound apply to the 
case K0 ^ 1. When neutrinos become crowded, however, the 
phase space becomes enlarged in the radial orbit direction, 
giving K0 1. The region where the density maximum occurs 
moves away from the center to a spherical shell. Consequently, 
the halo can contain more mass than its isotropic counterpart 
with the same maximum phase-space density. A revised phase- 
space mass bound is obtained. In the conservative case where 
neutrino velocities are comparable to stellar ones, the bound 
(3) becomes 

m > K¿/4mXG = K¿,4( 120 eV)T—— 
1/2 

g -1/4 
v 

The upshot is that small neutrino mass implies K0 <0. 
5. It is difficult to distinguish a hollow halo from a solid one 

on the basis of rotational velocity curves. This is shown in 
Figures 6 and 7. The central density region, which constitutes 
only a small volume, is not very important in determining the 
enclosed mass for velocity curves except in the rather problem- 
atic “ core ” region. 

6. A number of questions arise. We have not considered the 
possibilities of three mass scales for three neutrinos. If the light- 
est neutrinos are relevant, could these lead to distinctly new 
dark matter objects? We have not discussed the probability of 
anisotropic halo formation. Could one phrase this as an effec- 
tive probability distribution of the values of K0 ? Small aniso- 
tropic objects are not very rare (Melott 1983), but much more 
study with high resolution is needed to come to any conclu- 
sions on the statistical likelihood of hollow halos. Perhaps 
two-dimensional simulations will offer sufficient statistics and 
resolution (Melott and Shandarin 1989). 

It is interesting to speculate on the observational conse- 
quences of hollow neutrino halos. For small objects such as 
dwarf galaxies, it is possible that uncertainties in the visible 
matter distribution will make the hollowness or nonhollowness 
of a halo difficult to ascertain. A very large hollow halo might 
be observable in association with a galactic disk. The disk will 
be stabilized as usual outside the core region, but stars and gas 
could be unusually disorganized inside the core region. Is the 
Sombrero galaxy (NGC 4954) (Bajaja et al. 1984) an example 
of a large hollow halo? This is speculative and requires further 
study. How do we know for sure that the dark matter in our 
own or other spiral galaxies is not in a hollow halo? 

The number of coincidences indicating neutrino dark matter 
has increased. Besides providing a natural explanation for the 
overall flatness of the universe, the size of a galaxy can be 
obtained from K0 ~ 1 ; smaller, dwarf galaxy-like objects 
apparently come from K0 1. 

radius r/a 
Fig. 7.—Comparison of isothermal distribution of stars or gas dominated 

by the dark matter density scaled by its central value: ng(r)/ng(0). The curves are 
barely distinguishable for hollow or nonhollow halos [larger A gives smaller 
ng(r) for r/a > 1]. Upper curves (dotted) show the dark matter density for 
comparison. 
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