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ABSTRACT

Aims. We discuss a new method for measuring the distances to astronomical objects and their transverse proper velocities.
Methods. The phenomenon of interferometric parallax identifies a component of 2- and 4-point amplitude and the intensity correla-
tions that can be observed at frequencies ranging from radio to optical. The calculation hinges on terms depending on the source to
receiver separation that are conventionally neglected in the Van Cittert-Zernicke theorem.
Results. Order of magnitude estimates find that the baselines of Earth-bound VLBI systems might be capable of measuring
10−100 kpc distance scales. In either the optical or radio regime, space-borne detectors with fine baseline control might resolve
source distances of Gigaparsec order. We discuss the possibility that an independent distance ladder based directly on experimental
measurement might be constructed on multiple scales.

Key words. techniques: interferometric – astrometry – instrumentation: interferometers

1. Introduction

No problem in astronomy is more important than resolving the
third dimension of source distances. Measurements of transverse
proper velocities of distant objects has been equally elusive.
Here we discuss a new and attractive method that is model-
independent and needs no special assumptions about source
properties.

Finding distances by the traditional method of trigonometric
parallax is a geometrical procedure requiring precise resolution
of angular positions. The most ambitious distances measured
with trigonometric parallax are currently of order kpc (Bradshaw
et al. 1999; Hachisuka et al. 2006; Bartel 1988; Brisken et al.
2002; Campbell et al. 1996; Dodson et al. 2003; Honma et al.
2000; Sjouwerman et al. 2004; van Langevelde et al. 1999;
Vlemmings et al. 2005). A future Space Interferometry Mission1

(SIM) aims to extend this range to 10 kpc. Methods to measure
distances beyond trigonometric parallax do exist: Pulsars pro-
vide an independent approach via observation of the phase of
their periodic signal (Gwinn et al. 1986a,b). Larger distances are
measured by a method based on “standard candles”, which relies
on assumptions and models concerning the absolute luminosity
of objects.

The new method developed here exploits a phenomenon we
call interferometric parallax. The mechanism differs substan-
tially from traditional parallax used for centuries. With interfer-
ometric parallax no precise measurement of object angular po-
sitions is needed. It is remarkable that the individual sources do
not need to be resolved by the instruments. Moreover, a mea-
surement of transverse source velocities relative to the observer
are not inherently limited by the ability to track the source’s

1 SIM is reviewed in http://planetquest.jpl.nasa.gov/SIM/
sim_index.cfm

angular position. While it may seem impossible to develop par-
allax between unresolved sources, it is a simple consequence of
established physics used in a new way. Sources should be close
to one another in angular position, by criteria listed below, but
few restrictions exist otherwise. Finding sources that meet the
necessary conditions does not appear to be a barrier. Pulsars or
radio maser sources in our galaxy can be compared to a distant
galaxy, whose distance at apparent infinity drops out of the mea-
surement. A galaxy, in turn, can be measured relative to AGN
at apparent infinity. A cosmologically distant source at redshift
z ∼ 1 might be compared to one with z ∼ 2.5, and so on. It seems
possible to build up an independent “distance ladder” using the
method without needing to refer to other methods of distance
determination.

In Sect. 2 we extend the Van Cittert-Zernicke (VCZ) the-
orem, which describes the correlations between receiver pairs
that monitor uncorrelated sources. The VCZ theorem has long
been developed in plane wave approximation that might seem
exact for very distant sources (Mandel & Wolf 1995; Scully &
Zubairy 1997; Gupta & Dwarakanath 1999). Actually astronom-
ical wave fronts are slightly curved. The effects of curvature can
be observed by monitoring the interference of both amplitude
and intensity correlations. We will show that the translational
dependence of receiver correlations leads directly to determina-
tion of the distance to a source.

Since everything about wave optics is established physics,
several “working parts” of our analysis can be found in one con-
text or other in the literature. The novelty of our approach lies in
how the parts are assembled. In Sect. 2 we identify the curvature
corrections to the VCZ theorem, given in Eqs. (3) and (6) be-
low. The Taylor expansions of the phase shifts necessary for this
task have been done many times before. They are closely related
to Fresnel-zone corrections. Curvature corrections also appear
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in the precision calculations of VLBI time delays in the solar
system (Kopeikin & Schäfer 1999) and gravitationally-induced
curvature of wave fronts (Samuel 2004). A prestigious review
article on radio astronometry and geodesy (Sovers et al. 1998)
also discuss the order of magnitude of curvature corrections.
The curvature corrections contain everything needed for parallax
measurements. Yet those working in optical and radio astronomy
continue to rely on making images in plane-wave approximation.
Upon initiating the image-making process, trigonometric paral-
lax is then limited by image resolution (Kurayama et al. 2005;
Dodson et al. 2003; Vlemmings et al. 2003, 2005). Image mak-
ing in radio astronomy is a data-intensive process of combining
many “slices” from correlated detector pairs crossing an object
multiple times and normally accumulated over a long running
period (Thompson et al. 2001). A great deal of redundancy, sig-
nal processing and heuristic cross-checks go into making even
the simplest images.

There is a gap between accounting for wave-curvature effects
and parallax effects. A likely explanation for neglecting curva-
ture effects is the order of magnitude estimates that picosecond
time resolution cannot resolve distances larger than about 10 pc
(Sovers et al. 1998). It turns out that a simple change of vari-
ables revises the order of magnitude. The cumulative run-out
of phase shifts is not taken into account by simple dimensional
analysis, so that wave curvature can sense distances of unlim-
ited extent. As we will show it is also completely unnecessary
to make images. The time-intensive procedures of scanning in
the “u − v” plane of wave numbers can be eliminated in order
to focus on much more simple and basic measurements of the
particular phase shifts that distance measurements pinpoint.

The possibility to use intensity correlations for distance
measurements is also fascinating. Two-point and multi-point in-
tensity correlations at optical frequencies can be measured by
instruments that simply count photons. Since the wavelengths
are shorter than radio the ability to measure fine effects is corre-
spondingly increased. Intensity correlations were used decades
ago to measure stellar diameters (Hanbury-Brown & Twiss
1954, 1956), but the technique has gone out of fashion. We find
special features of two and four-point correlations that suggest
direct determination of distances can be automated using “data
against data” to remove unwanted effects.

The wavelength regime for “best application” depends on
many technical details, and it would be premature for us to en-
gage those questions in this paper. Rather than unwisely restrict
the applications, we concentrate on developing general features
without favoring any particular realization. We also choose not
to discuss general relativity and its framework of interpretation.
It is a straightforward but model dependent task to explore how
the local wavefront curvatures are related to cosmological fea-
tures such as the Hubble expansion. We nevertheless give a brief
exposition of the most exciting prospects for contributing to the
current debate over cosmological distance determination, which
seems to us possible using existing technology.

Section 2 starts with a simple example highlighting distance
determination with pairs of detectors too crude to possibly form
any images. This is followed by our extension of the VCZ the-
orem. After developing the mathematics a simple physical in-
terpretation is given in Sect. 2.3. There are naturally complica-
tions, of which the main problem is controlling the fluctuations
of a large, leading order phase. A new method for canceling
this phase using data against data is given in Sect. 2.5. Because
so much about the topic is conceptual, it would be ill-advised
to get involved with technological or instrumental questions,
which also lie beyond our expertise. We discuss conceptual

applications in Sect. 3. Section 4 gives a brief summary and
some conclusions. An Appendix discusses finite source size ef-
fects, and a strategy of optimal alignment.

2. Interferometric parallax

To begin our development we describe a conceptual example.
Consider a primitive array consisting of two to four dipole ra-
dio receivers separated by typical distances Δx. Direct a single-
channel time-dependent signal of wavelength λ from a distant
source into each instrument. A relative phase φ can be extracted
between each receiver pair. One pair suffices for discussion,
while there are interesting advantages to two or more pairs. In no
event is the information from one phase sufficient to create any
kind of image, much less resolve the sources. Unlike the situa-
tion in which images are synthesized by repeated passes through
many different relative orientations, the entire information will
be limited to a few phase shifts, which however (by concentrat-
ing all effort on them) might be very well resolved. Now trans-
late the array by a vectorΔX, and measure the phase shifts again.
Subtract two phase shifts to get a difference-of differences Δφ.
Then to order of magnitude the distance to the nearest source is

r ∼ ΔXΔx
Δφλ

· (1)

This summarizes the non-obvious workings of our new approach
to measuring astronomical distances.

We mentioned earlier that phase shifts from wave curvature
have been developed before. Several works, including Sovers
et al. (1998) estimate the effects as follows. The lowest non-
trivial effects of the curvature correction must go like 1/r.
Explicit evaluation of the Taylor expansion identifies the cur-
vature terms that might be resolved with 16-digit computer ac-
curacy. The curvature time delay Δt for receivers separated by
Δx is then of order Δt ∼ Δx2/(rc). With terrestrial receivers sep-
arated by Δx <∼ 104 km, and resolving Δt ∼ picosec the effects of
curvature are ignorable for r >∼ 10 pc (Sovers et al. 1998). The
estimate is technically correct as written for receivers at fixed
locations. Yet it overlooks the translational dependence, which
represents a cumulative run-out of the curvature-induced phase
shift. The translational dependence appears explicitly in Eq. (1)
where ΔXΔx replaces Δx2 in estimating the cumulative effect.
One astronomical unit of ΔX is about 22 000 Earth radii, so that
neglecting the cumulative run-out is not a small effect. Moreover,
the appearance of 1 picosec, a radio gold-standard, tends to ob-
scure the much more rapid phase shifts of wave curvature at op-
tical frequencies.

It is somewhat subtle, and long overlooked, that the
Van Cittert-Zernicke theorem itself does not predict any parallax
at all. The theorem makes asymptotic distance approximations in
the first step, which instructs the mathematics that all sources are
at infinity. It is left to the ingenuity of the astronomer to ignore
the literal theorem and interpret a shift in an image position as
due to parallax. In reality the asymptotic plane wave approxima-
tion is inexact and wave curvature is responsible for all rendi-
tions of “parallax”, whether measured by images or phase shifts.
Once saddled with an inconsistent theorem and rules for image-
making, the traditional approach cannot proceed without images
of superb quality, whereby the determination of distances is en-
tirely dependent on the resolution and overall image quality sub-
ject to many degrading factors.

Our first task is to extend the derivation of the
Van Cittert-Zernicke theorem with a Taylor series expansion.
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Fig. 1. Coordinate conventions of receivers and sources. The curvature
phase depends on the net translation ΔX12 of a receiver pair relative to
sources. The figure shows an advantageous configuration of 4 receivers
as discussed in the text.

We identify the essential degrees of freedom for distance deter-
mination which involves separating out the translational depen-
dence. That simple step makes our first point of departure. Our
second point of departure finds that there is no need for any im-
ages, nor image imperfections, nor the long running time needed
to develop high quality images. This frees the astronomer to de-
termine the particular phases that are relevant, without the over-
load of determining numerous pieces of information not directly
related to the task.

2.1. Extending the VCZ theorem

We will present the material in self-contained fashion starting
at the most basic level. Some care in defining coordinates and
symbols is needed.

Let X0 be a local coordinate origin in the vicinity of the
detectors. Consider for discussion two sources S , S ′ at po-
sitions r, r ′ relative to the local origin (Fig. 1). We assume
these to be point sources. Finite size effects are discussed in the
Appendix. We use primed symbols consistently, with r = r̂r,
r′ = r̂′r′ defining the source distances r, r′ and unit vectors r̂, r̂′
relative to X0. Let xJ be the position vector of the Jth detector.
Relative to the detectors the sources are located at

rJ = r − xJ;

r ′J = r ′ − xJ .

The distance rJ from the Jth detector to the source is

rJ = r − r̂ · xJ +
1
2r

3∑
i, j=1

xi
Jδ

i j
T (r)x j

J + O(1/r2), (2)

where δi j
T (r) = δi j − r̂i r̂ j. Upper indices denote vector compo-

nents. Observe that δi j
T (r) is a projector that removes the compo-

nents of vectors parallel to r̂. Vectors multiplied by δi j
T (r) effec-

tively lie in the tangent plane of the sky.
Each source emits a given polarization of electric field ES,

E′S, with wave number k and intensities IS = 〈ESE∗S〉, I′S =
〈E′SE

′∗
S 〉. Each detector responds to the total field ES(xJ) +

ES ′ (xJ). Assuming the correlation of unrelated sources vanishes,
the amplitude correlation 〈E1E∗2〉 between a pair of detectors 1,
2 is

〈E1E∗2〉 = e−ikψ

[
ISΛS + I′SΛ

′
Se−iφtot

12

]
. (3)

A quantum mechanical calculation gives a similar result
(Mandel & Wolf 1995) and incorporates photon bunching, an ef-
fect known for sources with intrinsic coherence (e.g. astrophys-
ical masers). In Eq. (3) ΛS and Λ′S are constants that absorb the
1/r2 attenuation factors plus finite size effects normally of or-
der unity (Appendix A.1). Symbol φtot

12 is the total phase differ-
ence from propagation between source and detectors, and ψ is
an “overall phase” factored out for convenience.

The phases are developed using the Green function for prop-
agation of light from source to detectors. In the frequency-
domain the Helmoltz Green function GxJ , r is

GxJ ,r =
1

4π
eik|r−xJ |

|r − xJ | ∼
eikr

4πr
e−ik r̂·xJ exp

(
ik
2r

3∑
i, j=1

xi
Jδ

i j
T x j

J

)
.

We can drop eikr henceforth. Change variables to the detector
separation Δx12 and “detector center of mass” or average coor-
dinate X12:

Δx12 = x2 − x1;

X12 = (x1 + x2)/2.

By algebra

φtot = φ0
12 + φ

parallax
12 ;

φ0
12 = kΔx12 · (r̂ − r̂′); (4)

φ
parallax
12 = −k

(
1
r
− 1

r′

)
Δx12 · δT · X12. (5)

The last line uses matrix notation. Equations (4), (5) organize
the phase into a series in powers of 1/r, 1/r′. It can be extended
straightforwardly to higher orders. Only one symbol δT occurs
in Eq. (5) because δT(r)i j ∼ δT(r′)i j ∼ δT plus negligible terms
of even higher order in 1/r or 1/r′ relative to the order retained.
To the same order of approximation the overall phase ψ is

ψ = r̂ · (x1 − x2) −
3∑

i, j=1

(
xi

1x j
1 − xi

2x j
2

)
δ

i j
T (r)/2r.

This phase cancels under many circumstances, as we discuss
below.

All higher order correlations from two sources can
be expressed as products of two point amplitude correla-
tions. The pairwise intensity-intensity correlations 〈I1I2〉 =
〈|E(x1)|2|E(x2)|2〉 is:

〈I1I2〉 =
(
ISΛS + I′SΛ

′
S

)2
+ I2

SΛ
2
S + I′2SΛ

′2
S

+2ISI′SΛSΛ
′
SRe

(
eiφtot

12

)
. (6)

Intensity correlations can be used at both radio and optical fre-
quencies, and have certain advantages in automatically canceling
the overall phase. Higher order correlations have been proposed
to improve the sensitivity in intensity correlations (Ofir & Ribak
2006).

2.2. Distance and relative velocity measurement

Distance and relative velocity measurement is based on noticing
that (1) correlations can be measured, (2) φparallax exists, and (3)
the changes in φparallax can be extracted experimentally on the
basis of translational properties. Two sources at exactly the same
distance r, r′ yield negligible effect. It is simplest to consider

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078669&pdf_id=1
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two sources at sufficiently different distances that one may be
considered to lie at infinity. The various cases of two sources at
comparable distances can also be developed when needed.

We will call the more distant object a “reference” for the
source whose distance we aim to measure. The process of using a
far source as a “phase reference” is standard in radio astronomy.
Gwinn et al. (1986a,b) give a thorough discussion, and it is the
topic of current textbooks (Thompson et al. 2001). The kind of
referencing we are discussing is extremely direct, and absolutely
primitive compared to the processes used in image formation.

We turn to using Eq. (5) to determine distances from the
translational dependence of φparallax

12 . Both the sources and the
detector pair can translate, and only the relative translation is
observable. Although obvious on basic grounds, the way that
translational symmetry is maintained is rather subtle. It is good
to go through the exercise of finding the relative translation in
two conceptually different situations:

– Consider a translation of the detectors with the sources
fixed. Physically the detectors are translated across regions
of slightly different curvature that are “fixed in space” by the
distant sources. Then Eq. (5) gives

X12 → X12 + ΔX12;

φ0
12 → φ0

12;

φ
parallax
12 → φ

parallax
12 + Δφ

parallax
12 ;

Δφ
parallax
12 = −k

(
1
r
− 1

r′

)
Δx12 · δT · ΔX12. (7)

The correlation phase φtot
12 therefore has a constant part, plus

a term changing linearly under detector translations. Since
kΔx12 are known, then extracting dependence of Δφtot

12 on
ΔX12 yields the (1/r − 1/r′) term to measure distances.

– Consider a translation of the sources, with the detectors
fixed. Physically the local wave curvatures at the detectors
change slightly from source motions in the past reaching
them. Then r̂, r̂′ and φ0

12 also develop corrections of order
1/r or 1/r′ that must be taken into account:

r(r ′) → r(r ′) + Δr;

φ0
12 → φ0

12 + k

(
1
r
− 1

r′

)
Δx12 · δT · Δr;

φ
parallax
12 → φ

parallax
12 .

This produces the same shift in φtot as obtained from Eq. (5)
if we replace ΔX12 → −Δr.

– Finally if both the source and the detectors are translated
by the same vector then φtot is invariant due to translational
symmetry.

The upshot is that physical observables depend on ΔX12, which
is the net translation of the detector center of mass relative to a
source-reference center of mass, which is naturally independent
of the coordinate origin. With this concept issue settled, the ob-
server can fix the zero points of phases and origins in any con-
sistent way he choses. Multiple determination of phases using
more than one reference is also possible, and may be important.
Its use for improving image qualities has been demonstrated in
Fomalont & Kopeikin (2002).

2.3. Curved wave geometry

In this subsection we give a qualitative interpretation which cap-
tures the origin of the parallax phase shift, and its effects on cor-
relations from random sources.

Fig. 2. Curved versus plane wave geometry. Independent fluctuations
(beads or boxes) from sources A, B are observed at x, t and x ′, t′. The
plane wave approximation (dashed wavefronts) predicts slightly differ-
ent correlations compared to including the effects of wave curvature,
which are described by φparallax

12 .

Consider the wave geometry of Fig. 2. A fluctuation from
source B is pictured as a propagating series of “boxes” measured
at points x, time t and also at x′, time t′. The fluctuations of B
are random and correlated with nothing but themselves. Random
fluctuations from source A (“dots“in Fig. 2) also occur and prop-
agate independently. The coincidence of a B-fluctuation with one
from A depends on the orientation of the sources and detectors,
the detector separations, and the source distances. In the plane
wave approximation trigonometry gives “Bragg’s Law” for cor-
relations centered on c(t − t′) ∼ |x − x′| sin θ (Fig. 2). This is
precisely the time-domain representation of φ0

12 and Eq. (4) in a
detector with infinite bandwidth. Due to curvature of wave fronts
(Fig. 2) the plane wave approximation breaks down as the trans-
lational baseline is changed. The extra phase difference taking
into account curved wave propagation is of order 1/r, is cumula-
tive under steady translation, and is proportional to the distance
translated ΔX. The two point correlation itself scales like the de-
tector separation Δx/λ, for wavelength λ. Overall the geometry
of curved waves causes a phase φparallax

12 ∼ ΔXΔx/λr.
We then outline the conceptual steps of an interferometric

parallax distance measurement:

– the observer measures the two point correlation at a particu-
lar location of the detector pair. The phase of the correlation
depends on the location of the detector pair, which can be set
arbitrarily;

– the observer measures the two point correlation at a trans-
lated location of the detector pair;

– the two measurements are compared. They will disagree by
the effects of net translations;

– assume that the two baselines are aligned to sufficient accu-
racy such that the change in the leading order phase is neg-
ligible. Then the difference of correlations is proportional to
cos(2kΔx · δT · ΔX(1/r − 1/r′)). Assuming one source at r
is relatively closer than the other, the distance r is directly
extracted.
Note that dependence of orientation of Δx relative to ΔX is
explicit in the formulas. It is interesting and important that
the distance factor (1/r − 1/r′) is not particular sensitive to
the relative orientation of the detectors and source. A gross
orientation error of one degree would only develop a relative
error in the distance of order 10−2 or smaller.

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361:20078669&pdf_id=2
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Thus the distance to the more nearby source is determined when
the phase shift from parallax effects accumulates to an observ-
able value.

2.4. Orders of magnitude

Here we consider order of magnitude estimates on the relative
size of interferometric parallax effects.

Values to estimate ΔX come from two causes: a uniformly
translating part from the transverse projection of source proper
velocity, and an annually oscillating part from the pair center X12
orbiting the Sun. Each term is independently observable over
time as in traditional trigonometric parallax. A transverse rela-
tive velocity of order 200 km s−1 translates to about 40 AU/year,
while the annual oscillation of ΔX is of order 1 AU.

Finite source size is important, and reviewed in the
Appendix. Suppose the apparent angular extent of the source is
δθs. The source will appear pointlike and not be resolved by a
detector of effective aperture Δx so long as δθs <∼ Δx/λ. Let the
projected transverse source size be a = δθsr. For maximal co-
herence with a source that appears pointlike, kΔx <∼ r/a, which
with Eq. (5) gives φparallax

12
<∼ (X/a)(1 − r/r′). To order of magni-

tude, the parallax phase for r 	 r′ is approximately the distance
translated in units of the source size. Small sources are best.
Fortunately QSO/AGN sources are believed to be sufficiently
small that translations over scales of AU will resolve them.

Next we consider the relative size of the parallax and leading
order phase. Let Δθ be the angular separation of a source pair.
From Eq. (5) we have the leading order phase

φ0
12 ∼ Δθ/(λ/Δx12).

Let ΔL be the typical magnitude of ΔX (including source motion
Δr(Δr′)) over the running time of the experiment. The integrated
change due to translations is

Δφ
parallax
12 ∼ ΔL/r/(λ/Δx12).

Both phases depend on λ/Δx12, the typical angular resolution
from optics. The parallax phase change is of order one if the
transverse baseline of translation δT · ΔL can be resolved by
an instrument of aperture Δx observing from distance r. Since
ΔL 	 Δx is always possible, the parallax resolution is domi-
nated by the translation scale, not the apparent correlation aper-
ture of the instrument.

Numerical evaluation gives

φ0
12 ∼ 104 rad

(
Δθ

arcsec

) (
1 cm
λ

) (
Δx12

104 km

)
;

φ
parallax
12 ∼ 10−1 rad

(
ΔX
AU

) (
100 kpc

r

) (
1 cm
λ

) (
Δx12

104 km

)
· (8)

Let δφerr represent the typical error in observed phases. To or-
der of magnitude the parallax phase can be measured when
φ

parallax
12

>∼ δφerr. Expressing δφerr in units of degrees, the order
of magnitude of the maximum distance observable rmax yields

rmax ∼ 1 Mpc

(
1◦

δφerr

) (
ΔL
AU

) (
Δx

104 km

) (
1 cm
λ

)
·

Concrete estimates of δφerr depend on many factors of in-
strument calibration and running time. Using picosecond over-
all resolution at 10 Ghz frequencies and ΔL ∼ 1 AU gives
rmax ∼ 1 Mpc. Optical wavelengths 105 times smaller lead to
a correspondingly larger estimate of rmax, suggesting it may be

possible in principle to measure distances to the observable edge
of the Universe.

The relative size of the leading order phase φ0
12 is a serious

complication. One means to control uses a source-separation Δθ
that is as small as possible. The usual image-making restriction
that two sources be resolved at different positions of the baseline
is absolutely not necessary to maintain. The leading order phase
cancels in the 4-point correlations, as we discuss next.

2.5. 4-point correlations

In this section we consider the situation where rapid variations
of the leading phase might tend to wash out the more slowly
varying parallax phase. To control the effects of φ0 we can (in
effect) measure it twice, using another pair of detectors (3, 4),
separated by nearly the same offset:

Δx34 = Δx12 + η.

It is clear that |η | � |Δx12| can be made relatively small with
great precision.

Consider the product of 〈I1I2〉〈I3I4〉, which is one of the
terms in the 4-point intensity correlation. Denoting the overall
normalizations by N1 and N2 we write

〈I1I2〉 = N1 + N2 cos(A + B) (9)

where A = φ0
12, B = φ

parallax
12 . Express A = Ā + δA, where Ā

and δA denote a constant and a fluctuating or variable compo-
nent, respectively. Due to the large typical size of A compared
to B, we must assume that δA 	 B causes a problem and might
wipe out the signal. Isolate rapidly varying factors, writing

〈I1I2〉 = N1 + N2

[
cos(Ā + B) cosδA − sin(Ā + B) sin δA

]
. (10)

Write a similar relation for 〈I3I4〉 = N′1 + N′2 cos(A′ + B′), where
A′ = Ā′ + δA′. Then 〈I1I2〉〈I3I4〉 contains 9 terms, which consist
of constants, terms linear in a rapidly varying cosines or sines,
and terms bilinear.

The detection strategy allows the rapid variations to occur,
while averaging over K 	 1 cycles of cos δA.... cos δA′. Let
〈〈 〉〉 denote this average. As clear from Sect. 2.4, the value of K
may be millions or more while accumulating a single oscillation
of φparallax. Then products with an odd number of rapid cosines
or sines can be dropped with a relative error of order 1/K. The
remaining term with two cosines gives

〈〈 cos(A + B) cos(A′ + B′) 〉〉 = 〈〈 cos A cos A′ 〉〉 cos B cos B′

+〈〈 sin A sin A′ 〉〉 sin B sin B′.

We may arrange the geometry such that A ≈ A′ to order one over
the averaging period. Then have

〈〈 cos A cos A′ 〉〉 = 〈〈 sin A sin A′ 〉〉 = 1/2.

The calculation receives a non-zero contribution from those
regimes when the rapidly varying terms coincide. The final re-
sult is

〈〈 〈I1I2〉〈I3I4〉 〉〉 = N1N′1 + N2N′2 cos(B − B′)

= N1N′1 + N2N′2 cos
(
φ

parallax
12 − φparallax

34

)
.

Thus with a 4-point correlation the parallax phase is isolated
from the rapidly varying background.

Note that the net translation of the 3−4 receiver pair is gen-
erally independent of the 1−2 pair. Then it is straightforward to
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arrange for the surviving slow oscillation to produce a net signal.
A simple configuration (Fig. 1) puts Δx12 = Δx34 = Δx, x3 =
−ΔX − Δx/2, x4 = −ΔX + Δx/2. The difference term η is rela-
tively negligible and was dropped. The parallax terms add, pro-
ducing an oscillation going like cos(2kΔx · δT · ΔX(1/r − 1/r′)).
Again the parallax phase is isolated from a rapidly varying
background.

There may be advantages to directly correlating the signal
from four receivers, either at the amplitude or the intensity level.
Let 〈I1 I2 I3 I4〉 be the raw four-point intensity correlation. It is
the product of 44 terms, many of which average to zero or are
similar to those terms evaluated for the two-point intensity cor-
relation. We spare the reader extensive algebra. Dropping terms
that oscillate rapidly, and with η → 0, a direct calculation
gives

〈I1 I2 I3 I4〉 = N1 +N2 cos
(
φ

parallax
12 − φparallax

34

)
. (11)

Here N1 and N2 are normalizations depending on the intensity
of the two sources. The other terms in the four point correlation
either vanish after statistical averaging or reduce to the two terms
given in Eq. (11). The remarkable cancellations in the 4-point in-
tensity correlation show that the parallax phase can be measured
in terms of a standard statistical description of raw data.

Similarly, the 4-point amplitude correlation (observable at
radio frequencies) consists of sums of terms with phases φ0

and φparallax, along with “sum-phases” of the form (k1 + k2) ·
Δx. Sum-phases in conventional long-baseline interferometry
(Mandel & Wolf 1995; Scully & Zubairy 1997; Thompson et al.
2001) tend to cause difficulty due to atmospheric fluctuation ef-
fects. Intensity interferometry is much less sensitive, as position-
ing accuracy is set by the coherence time and not the wavelength
(LeBohec & Holder 2005).

Continuing with higher order correlations, the prospects of
multiple-detection (overdetermination) of phases is absolutely
relevant. Multiple determination in radio synthesis (say) is al-
ready a highly-developed art, which simply need the parallax
phase effects to be incorporated.

2.6. Comparison with trigonometric parallax

Trigonometric parallax of 61 Cygni was first demonstrated by
Bessel in 1838. Its basic principles remain unchanged to this day.
The analysis of trigonometric parallax is elementary yet interest-
ing to compare to interferometric parallax.

Consider a single point source at distance r∗ at an angle θ∗.
The star’s angular position is first measured by making an image
with an angular resolution of order Δθres ∼ λ/D, where λ is the
wavelength and D is the aperture. Under a translation by ΔX of
the telescope relative to the star, the angle changes by2 δθ∗, of
order

δθ∗ ∼ ΔX/r∗.

An unambiguous measurement of parallax requires that the ap-
parent shift δθ∗ be larger than the resolution, giving

ΔX
r∗

>∼ λ

D
;

ΔXD
λr∗

>∼ 1.

With modern instruments performance better than the Rayleigh
resolution criteria can be achieved. The position of a peak in an

2 More precisely, the unit vector r̂∗ → r̂∗ + δT(r1) · X/r∗ + O(1/r2).

image map can be fit to better accuracy than the naive resolution.
The errors of fitting depend on the signal to noise. By combining
a number of techniques, very impressive parallax measurements
to kpc distances have been demonstrated with VLBI radio tele-
scope arrays (Felli & Spencer 1989; Hachisuka et al. 2006). All
of these methods depend on generating a very high quality image
with precisely known systematic errors.

What differs between trigonometric and interferomet-
ric parallax? There are several points that depend on the
realization.

– Interferometry is nearly unique in ability to measure small
effects. While the extensive signal processing to go from
thousands to millions of separate phases to images contains
one generalized form of “phase information”, it is clearly
advantageous to isolate those particular and special phase
shifts uniquely associated with distance and transverse ve-
locity measurements;

– with interferometric parallax it is not necessary to make
a high precision measurement of the angular position of
the source, nor even necessary to image the source at
all;

– a host of “pointing” variables associated with precisely locat-
ing the position of an object might be entirely sidestepped by
parallax phase measurements;

– high precision of baseline alignments is nevertheless needed
in interferometric parallax. In some sense this is the analog
of precise angular position and image quality measurement
in trigonometric parallax. Note that modern astrometry can
achieve stunning precision of alignments in the solar system
– errors comparable to a few meters over an astronomical
unit;

– in some special cases the leading phase φ0 may be very
small, so that the requirement of baseline alignment is not
very stringent. This may happen if the two sources under
consideration have very small angular separation;

– by using phase information more directly and efficiently,
one should be able to make better direct distance mea-
surements in any given running time than when statistical
weight is invested in constructing images. We have inves-
tigated questions of signal/noise, and consulted with experts
(Mutel 2007) in an attempt to quantify what might be achiev-
able. In the end signal/noise estimates depend strongly on
experimental “reality” factors which require intimate infor-
mation about detector performance best left for specialized
studies;

– complications can be minimized when one is extracting a
small amount of information rather than a detailed image.
The complicating role of fluctuations of the “sum phase”
in amplitude correlations is well known (Thompson et al.
2001). Meanwhile intensity correlations self-cancel the over-
all phase, while directly yielding the difference and paral-
lax phase. Without making any images, Hanbury-Brown &
Twiss (1954, 1956) were able to measure intensity corre-
lations on 100 m length scales with an Earth-bound detec-
tor using crude photodetectors more than 4 decades ago.
Coherent (Michelson) interferometry on such a scale was
impossible at the time, if only because of atmospheric fluc-
tuations. Many of the precision instrumental requirements
of interferometry are ameliorated with intensity correlations.
Indeed intensity correlations at optical frequencies can be
developed by counting photons that enter widely separated
detectors. This suggests that intensity correlations may find
new applications to distance measurements.
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3. Conceptual applications

While most of our analysis is necessarily conceptual, we exam-
ined a few specific cases in order to assess the feasibility of dis-
tance and velocity measurements using interferometric parallax.

3.1. Specific examples

3.1.1. Water masers: a galactic pilot experiment at radio
frequencies

Consider measurement of a water maser source in our galaxy
referenced by a distant AGN. Hachisuka et al. (2006) report par-
allax measurements of the star-forming region W3(OH) using
VLBA measurements of unprecedented accuracy. The measured
annual parallax is 0.489± 0.017 milli-arcsec (mas), correspond-
ing to a distance of 2.04±0.07 kpc. Hachisuka et al. (2006) made
7 measurements of 4 h duration spaced over the period of about
a year. After making image maps and using JMFIT to fit multi-
ple power peaks the position errors of each measurement on the
best source is about 0.1 mas (Fig. 5 in Hachisuka et al. 2006).
With the global fit to the annual periodicity, errors in the overall
measurement drop to the values reported of order 10 μas. Maser
source with high power and stability, plus sufficient running time
to achieve good signal to noise, is a key to achieving such high
resolution.

Using frequency 22.5 Ghz, ΔX = 1 AU, and δx = 104 km,
we estimate the parallax phase change φparallax ∼ 5 rad. Over
time the rate of accumulation is dφparallax/dt ∼ 5◦/day. Since the
error δr/r ∼ δφparallax one would estimate that a 2% relative error
in r, comparable to Hachisuka et al. (2006), might be achieved
with an error φparallax ∼ 1◦. This is perhaps naive, yet reasonably
consistent with the Hachisuka et al. (2006) measurement.

We believe it would be interesting to perform a pilot experi-
ment measuring φparallax and bypassing the steps of image reduc-
tion. Note that the accuracy obtained from fitting image maps
is inherently limited by signal/noise. The extraction of φparallax

12
should be quite robust even integrating over conditions of vary-
ing source intensity. More efficient use of phase information
without the intermediate complications of maps might credibly
reduce the need for long running times. Long running times are
not only impractical use of facilities, but also impossible with the
high time variability of H2O masers whose features often change
over a one-year time scale. Perhaps intensity correlations at ra-
dio frequencies, which have but one phase to measure, and no
overburden of overall phase to account for, might also be partic-
ularly efficient. It is interesting in this regard that the dominant
errors cited in Hachisuka et al. (2006) are due to atmospheric
corrections to which intensity correlations are rather insensitive.

3.1.2. Optical interferometric pilot experiment

SIM is an ambitious space-borne optical interferometer with
launch planned in 2015. As with radio parallax the thrust of
SIM for distance measurements lies in first establishing highly
precise angular positions and then tracking changes over time.
SIM is basically an optical Michelson interferometer with aper-
ture Δx ∼ 9 m and operating in the wavelength range of λ ∼
0.4−0.9 μm.

An instrument with the size and wavelength parameters of
SIM should develop φparallax ∼ 0.02 rad (1 kpc/r) for ΔX =
1 AU. If the source and its reference are chosen to be sepa-
rated by order arc-sec, the fluctuations in the leading phase φ0

due to baseline angular orientation errors are comparable to the

parallax phase for distance of order 1 Mpc. Hence measurement
of distances of order Mpc may be possible using interferometric
parallax with SIM. If we arbitrarily degrade this estimate by a
factor of 1000, measurements at kpc distances remain extremely
interesting. Measurement may also be facilitated by using an op-
timal alignment discussed in the Appendix.

Most impressively one need not make the estimated
$500 million investment of SIM to run a test. Intensity
correlations on the 10-m distance scale and using recycled
searchlight mirrors were demonstrated about 50 years ago by
Hanbury-Brown & Twiss (1954, 1956), yet without ever refer-
ring to the parallax phase. We suggest that a reasonable distance-
measuring pilot experiment might be conducted with cosmic ray
facilities such as the HESS or WHIPPLE experiments (LeBohec
& Holder 2005).

3.1.3. Gigaparsec ambitions

The ultimate ambition for distance measurement would reach
to the Gpc scale of interest in Big Bang cosmology. For Gpc
distances, one needs to measure a relatively small phase shift or
push the limits of baselines to much larger than 104 km or extend
wavelength to the sub-mm range. Such ambitions would require
a dedicated observatory, but still appear to be within the reach of
current day technology.

As previously mentioned, quasar sources are believed to
have physical sizes extending to the range of 1 AU, whereby
δθs ∼ 10−9 arcsec. Black hole, supernova and GRB sources are
of course even smaller than QSO’s, with correspondingly larger
coherence zones. It may be possible to find another source at a
comparable distance within an acceptable angular separation. It
might also be possible to measure gravitationally lensed single
objects, exploiting two path lengths r, r′. Admittedly such coin-
cidences are rare, but a single direct measurement of the distance
to a QSO at Gpc distance would be revolutionary. If sources sat-
isfy finite size criteria, there remains the need to maintain high
detector orientation accuracy.

The scale of accuracy needed depends on the detector
separation Δx. The joint Japanese/US VS OP (VLBI Space
Observatory Program) mission had a 21 000 km orbit and an
8 m telescope (Horiuchi et al. 2004). The Russian program
RADIOASTRON proposes very large orbits (see the website,
www.asc.rssi.ru/radioastron/). It is at least possible to
conceive Δx ∼ AU with a collection of satellites in solar
orbit. Establishing correlations retrospectively between widely
separated detectors requires exacting knowledge of orienta-
tion and relative position errors. Just how demanding are the
requirements?

Note that φ0 is translationally invariant and stands as an ir-
relevant constant when extracting φparallax

12 under translations. The
variation due to experimental error on φ0 is important. The most
stringent requirement is imposed by the need to accurately align
baselines. With a source separation Δθ ∼ 1 arcsec and r ∼ Gpc
the ratio φ0/Δφparallax ∼ 109. If Δφparallax ∼ 10−3 can be measured
an error δφ0/φ0 <∼ 10−6 is tolerable. This in turn requires angular
orientation errors of Δx, ΔX <∼ 10−6. The angular orientation er-
rors reported for SIM already lie below this level. At the time of
the review of Sovers et al. (1998), Earth-based VLBI had already
established an absolute inertial frame with sub-milliarcsecond
accuracy. In terms of distances an error δx ∼ 100 m is tolera-
ble for Δx ∼ 1 AU separation baselines. Proven satellite rang-
ing techniques (Thornton & Border 2003) have achieved accu-
racies superior by orders of magnitude. The optimal alignment

www.asc.rssi.ru/radioastron/
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technique discussed in the Appendix offers further advantages
that cancel first order angular errors.

Therefore, to the extent that we can foresee barriers of prin-
ciple, we cannot find a reason that a determined effort by the
present or future civilization could not directly measure dis-
tances on the entire scale of the Universe.

3.1.4. Photon counting estimates

There appears to be a prejudice in present day astronomy that
intensity correlations are disfavored due to “low signal/noise.”
Statements to this effect appear in textbooks (Thompson et al.
2001) without much elaboration. Consulting Eq. (6), intensity
correlations have a constant background of the same order as
the oscillating signal, which is somewhat less favorable than a
purely oscillating signal with zero background. Yet such details
are small effects compared to wide variations of different terms
in our study, suggesting optical intensity correlations deserve a
fresh re-examination.

The signal/noise S/N of intensity correlation measurements
(Hanbury-Brown & Twiss 1956; LeBohec & Holder 2005)
scales like

S/N ∼ αAγ2
d

dNγ

dAdtd f

√
Δ f T/2,

∼ αAγ2
d√

2

√
T
Δ f

∫ f0+Δ f

f0

dNγ

dAdtd f
· (12)

Here A is the detector area, γ2
d the degree of coherence, α the

quantum efficiency,Δ f is the bandwidth of the correlation, and T
the running time on source. The number of photons per area per
frequency is dNγ/dAdtd f . The second line in Eq. (12) shows that
decreasing the bandwidth increases S/N, which was exploited
by Hanbury-Brown & Twiss (1954, 1956) using simple optical
filters. Using Eq. (12) is more specific and considerably more
conservative than the photon-counting phase error δφ/φ ∼ 1/

√
n

for n photons that is commonly used in astrometry (Lindegren
1978, 2005).

For the photon flux we rescaled the calculations of Ulmer
et al. (2004). We assumed a 100 m2 aperture with 10% through-
put and detection efficiency, and Hubble constant H = 0.7 ×
100 km s−1 Mpc−1. There are 20 photons per second in Hα light
for a typical bright galaxy with power 1042 ergs/s at redshift
z ∼ 1. This determines A (dN/dAdtd f )Δ f . Using Δλ ∼ 1 A0

for efficient Hα filters, and point-like sources with γ2
d ∼ 1, then

S/N <∼ 10−4
√

T/s. The relative error in a phase Δφ/φ ∼ N/S ∼
104/

√
T/s. Again the leading order phase must be cancelled, ei-

ther with the 4-point scheme or some other mechanism, to make
such an ambitious measurement. If we conservatively choose
sources separated by Δθ ∼ arcsec, take Δx ∼ 104 km, and
λ ∼ 6 × 10−4 mm, then φparallax ∼ 1. Then measurement with
Δφparallax/φparallax ∼ 1 needs T ∼ 108 s ∼ 3 years on this basis.
(Using δφ/φ ∼ 1/

√
n would give T >∼ 106 s, about one day.) The

number of photons detectable increases for smaller r somewhat
faster than 1/r2. A similar source at 100 Mpc range has about
100 times the flux, decreasing the time on source T → 0.3 years.

Finer estimates can undoubtedly be made given intimate
knowledge of detector position errors and phase measurement
technology beyond our expertise. It is also interesting to increase
signal/noise by developing the highest possible collection area.
There are obvious limits to collection areas of single channels.
Perhaps modern signal- processing techniques might make cor-
relations from a large number of modest-area detectors more

effective than the traditional practice of using a small number
of large-area detectors.

4. Conclusion

We have introduced a new technique for direct measurement
of astronomical distances and proper motions. The technique
is based on detecting wavefront curvature using interferome-
try. The technique may provide optimal utilization of observa-
tion time by focusing data-taking on the particular phase needed
for distance measurements. Numerous topics in conventional as-
tronomy would benefit enormously from direct measurements of
distances of order kpc to Mpc. From near Earth-orbit, or perhaps
with detectors fixed on Earth, it should be possible to measure
distances to r ≥ Mpc, which would be magnificent. A number
of radio telescopes in orbit can make mutual correlations, and
correlations with ground-based receivers, to develop distance
resolution well beyond any we have seen published. There is
every reason to believe that a dedicated project might in princi-
ple measure Gpc distances using interferometric parallax. While
there are a host of challenging technical issues for measurement
of such large distances, there is every reason to believe that it
should be feasible with current technology.
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Appendix A: Finite source size and optimal
alignment effects

In this Appendix we add information on finite source effects.
Extending the analysis towards imaging a finite source is omit-
ted, as it is a standard application of the plane-wave VCZ theo-
rem. We also discuss a technique of optimal alignments.

A.1. Finite source size effects

The basic two point amplitude correlation for a single incoherent
source is given by

〈E(x1)E∗(x2)〉 =
∫

d2y 〈ES(y )E∗S(y)〉

× eik[|r1+y|−|r2+y| ]

|r1 + y ||r2 + y | · (A.1)

The argument of the exponential integrand is expanded as

|r1 + y | − |r2 + y | = r1 − r2 + r̂1 · y − r̂2 · y
−(y · r̂1)2/2r + (y · r̂2)2/2r. (A.2)

By inspection the last two terms give negligible contribution.
Let a be the projected transverse size of the “source”, as mea-
sured by those Fourier components having significant contribu-
tions to the integral. A QSO, for example, may have an effective
source size of order AU, while being associated with much larger
extended structure. All terms involved in Eq. (A.2) are functions
of source angular size δθs ∼ a/r. The integrand will oscillate
rapidly if a/r 	 1/(kΔx), leading to a correlation that is ex-
ponentially small for typical source distribution. Conversely, as
long as |Δx | <∼ a/(kr) the corrections due to finite size can be
absorbed into the overall factors ISΛS, I′SΛ

′
S etc. in Eq. (3), and
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a source appears to be a point. This reproduces the usual pla-
nar source criterion (Mandel & Wolf 1995; Scully & Zubairy
1997). It is perhaps more direct to use the Rayleigh criterion that
δθs >∼ Δx/λ is the smallest angular structure an aperture of order
Δx can resolve.

A.2. Optimal alignments

The order of magnitude estimates above made no special as-
sumptions of the alignment of the detectors relative to the
sources. However the alignment properties can be used to
advantage.

Observe that the leading phase depends on the angular ori-
entation by a factor of cos(η) = Δx12 · (r̂− r̂′)→ It is maximized
when the detector pair separation is parallel to the source sepa-
ration projected onto the sky. Meanwhile the observable parallax
phase is proportional to Δx12 · δT · ΔX. The matrix δT projects
away vector components proportional to r̂, otherwise does noth-
ing. In particular the parallax phase depends on orientation of
Δx12 relative to ΔX, not relative to the sources.

It is therefore possible to measure the parallax phase under
conditions that the leading order phase remains relatively con-
stant. Let η → η + δη change by a small error δη � 1, and take
data near η ∼ 0. Then cos(η) ∼ 1 − δη2 changes only by terms
of order δη2. The second order dependence makes a substantial
suppression of order 10−4 for (say) δη ∼ 10−2.

The degree to which detector orientation can be manipulated
to maintain η ∼ 0 depends on the detector configuration, and is
clearly different for Earth-bound versus space-borne arrays. We
update the estimates above using units of degrees:

φ0
12 ∼ 1 rad

(
δη

1◦
)2 (

Δθ

arcsec

) (
1 cm
λ

) (
Δx12

104 km

)
;

φ
parallax
12 ∼ 10−1 rad

(
ΔX
AU

) (
100 kpc

r

) (
1 cm
λ

) (
Δx12

104 km

)
· (A.3)
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