
A NATURAL LANGUAGE INTERFACE

FOR THE QED TEXT EDITOR

by

Ruth Marzi

Submitted to the Department of Computer

Science and the Faculty of the Graduate

School of the University of Kansas in

partial fulfillment of the requirements

for the degree of Master of Science.

Professor in Charge

Committee Members

For the Department

Date thesis accepted

ABSTRACT

In this study a natural language interface for the QED text

editor has been designed and implemented in LISP on the Honeywell

66/60 computer. It is based on W. Woods' theory of augmented tran-

sition networks. The program is aimed at simulating the manipula-

tion of a textfile. The file is assumed to contain a document which

is subdivided into paragraphs. The input consists of a sequence of

natural language sentences, each of them a command. The program

transforms these sentences into syntactically correct QED commands.

At the end of a session a summary of the commands is given and in-

formation is provided about the structure of the changed document.

The program is not capable of handling the full variety of com-

mands usually available in text editors. The fact that program

directed interaction with the QED text editor is not possible makes

dealing with certain types of commands impossible. Also since LISP

was chosen as implementation language, some of its features hinder

processing commands in some cases. Lastly, a program that is

capable of handling the full variety of commands is too complex in

this environment.

TO MY PARENTS

ACKNOWLEDEMENTS

I wish to thank the University of Bonn for giving me a scholar-

ship that enabled me to come to the University of Kansas. I also

want to thank the Graduate School of the University of Kansas for

extending the scholarship so that I could finish the degree of

Master of Science.

I wish to express my gratitude to Dr. Albert Bethke who guided

my troughout my study and without whose help this project would not

have been possible. I also want to thank Dr. Jerzy Grzymala-Busse

and Dr. Adrian Tang for agreeing to serve as committee members.

TABLE OF CONTENTS

1. OVERVIEW OF NATURAL LANGAUAGE PROCESSING APPROACHES l

1 . 1 Keyword Matching .. 1

1.2 Chomsky's Hierarchy ... 2

I. 3 Transformational Grammars 4

1.4 Augmented Transition Networks 5

1.5 DIAGRAM, Systemic Grammar, Conceptual Dependency 8

1 . 5 . 1 DI AGRAM ... 8

1.5.2 Systemic Grammar .. 9

1.5.3 Conceptual Dependency Theory 10

1. 6 Comparison of Methods .. 14

2. PROGRAM AND ATN DESCRIPTIONS 18

2.1 High-level Descriptions of Procedures and Data Structures 18

2.2 Justification for the Approach Chosen 37

3. PERFORMANCE AND LIMITATIONS, SUGGESTIONS FOR FURTHER WORK 38

REFERENCES ... 45

APPENDICES ... 4 7

Appendix A ... 48

ATN Diagrams ... 48

Program Listings • 50

Appendix B _. 90

Sample Session of the Program 90

1. Overview of natural language processing approaches

There are several ways of processing natural language sen-

tences. One approach to parsing natural language is using augmented

transition networks (ATNs)[3]. Transformational grammars which were

introduced by Noam Chomsky in 1957 [1) are another approach. Also

there is DIAGRAM by Jane J. Robinson for interpreting English

dialogue [5]. Furthermore, in the following, the conceptual depen-

dency theory by R. Schank [6,7] and predecessors of ATNs [3] are

mentioned.

1.1. Keyword Matching

There are basically two types of parsers for natural languages.

The first group of parsers ignores syntax entirely as in STUDENT by

Bobrow and ELIZA by Weizenbaum. These systems either allow only a

small set of fixed input form, or limit understanding to what can be

handled without analysing syntax. For example in ELIZA, if the

parser finds the keyword 'mother', the program replies with "Tell me

more about your family.", no matter what the rest of the input sen-

tence looks like. The second group takes a simplified subset of

English which can be handled by a well-understood grammar like a

context free grammar or one of its variations. These systems are

not capable of handling the full complexity of natural language

though.

-1-

1.2. Chomsky's Hierarchy

Chomsky defined three classes of grammars as potential models

of natural language [1].

1. regular grammars

2. phrase structure grammars

3. transformational grammars.

Phrase structure grammars are subdivided into context sensitive

grammars and context free grammars. A transformational grammar is a

grammar for English based on rewrite rules. A sentence is rewrit-

ten as a simpler sentence or as several simpler sentences. Since

transformational grammars bear no significance for formal languages,

in formal language theory grammars are divided in a different way

[8] .

In the following a grammar is a 4-tuple G=(V,T,P,S)

where

V - the set of variables or non-terminal symbols

T - the set of terminal symbols

P - a production system

S - the start symbol, a symbol of V.

The classes are distinguished by the restrictions on their produc-

tion system. These classes are:

1. Type O or unrestricted grammars

2. Type 1 or context-sensitive grammars

-2-

3. Type 2 or context-free grammars

4. Type 3 or regular grammars.

Except for the empty string each class is, in decending numerical

order, a proper subset of the class succeeding it.

Type O grammars define the largest family of languages. These

grammars, which are also called semi Thue grammars, characterize the

recursively enumerable sets. Languages produced by type O grammars

are equivalent to languages recognized by Turing machines. The

productions of a type O grammar are of the form

A-> B

where A and Bare arbitrary strings of terminal and non-terminal

symbols and A is not the empty string.

Type 1 grammars define phrase-structure languages with restric-

tions. The productions are length preserving, i.e. in a production

A - > B

(A, Bas above) the string B has to be at least as long as the

string A. So these grammars cannot produce the empty string.

Context-sensitive languages, which are produced by type 1 grammars,

are recognized by linear bounded automata (LBA) except for the empty

string. ALBA is a Turing Machine restricted to the portion of the

input tape containing the input and two squares at either end for

special symbols. The special symbols are endmarkers, which cannot

be passed or overwritten. LBA are equivalent to Turing Machines

-3-

whose amount of tape is restricted by some linear function of the

.input.

Context-free grammars are different from type 2 grammars in

that all productions must have the form:

A - > a

where A is a single non-terminal symbol and a any string of terminal

or non-terminal symbols. These grammars are recognized by push-down

automata.

A context-free grammar, where all productions have either the

form

A - > wB or A - > w

where A and Bare variables and w a (possibly empty) string ofter-

minal symbols, is called a right regular grammar. If all produc-

tions of a context free grammar have either the form

A - > Bw or A - > w

(A, B, and w have the same meaning as above) the grammar is called

left regular. Left and right regular grammars characterize the

regular sets, which are recognized by finite automata.

1.3. Transformational Grammmars

Transformational grammars are more powerful than phrase-

structure grammars. The latter are not sufficient to handle all

sentences in a correct way, as will be shown below. Sentences with

-4-

embedded relative clauses or sentences with backward references can-

not be handled by context sensitive rules alone. Noam Chomsky

divides a sentence into its deep structure, surface structure, and

semantic interpretation, all of which have to be treated in a dif-

ferent way. He suggests three different kinds of rules which make up

the derivation rules for the grammar. In the first step of parsing

an English sentence, phrase-structure rules are applied to it; in

the next step, rules which can neither be regular nor context-free

nor context-sensitive are applied. These rules therefore constitute

the difference in power between phrase structure grammars and trans-

formational grammars. The third and last part consists of mor-

phophonemic rules. Morphophonemic rules are, for example:

take -> [teyk)

past+ take -> [tuk]

past -> [d]

These rules are tried in the order they are written.

1.4. Augmented Transition Networks

Augmented transition networks (ATNs) were introduced by William

Woods [3]. ATNs have several less powerful predecessors such as

transition networks and recursive transition networks.

An augmented transition network is a network of nodes and

directed arcs connecting them. The nodes correspond to states in a

-s-

finite state automaton and the arcs to the transitions from one

state to another.

The power of a network is determined by what kind of labels for

the arcs are allowed. The simplest labels consist of input symbols,

i.e. terminal symbols of the underlying language. These are the

labels allowed in a (simple) transition network. Transition

networks are equivalent to regular grammars. In a transition

network non-determinism is assumed. The occurrence of a specific

symbol causes a certain transition from the state at the tail of the

arc to the state at the head of the arc. For natural language

processing this is not sufficient.

The above described network can be extended by introducing

recursion. This extended network, called a recursive transition

network, is a set of directed graphs consisting of states and arcs.

One distinct state in each network is called the start state,

another distinct set of states is called final or accepting states.

The labels of the arcs may be names of networks or terminal symbols.

Labelling the arcs with network names introduces the capabilities of

a push down store. If a label which is a network name is encoun-

tered, processing proceeds as follows. The state at the end of the

arc is saved in a push down store, and control is transferred to the

start state of the specified network. This is done without ad-

vancing the input tape. Encountering a final state, the push down

-6-

store is popped and control resumed by the state at the top of the

stack. The attempt to pop an empty stack after the last input sym-

bol leads to acceptance of the input. This makes the recursive

transition network equivalent in power to context free grammars.

As pointed out earlier these are still not sufficient for dealing

with natural language. Therefore augmented transition networks were

introduced. They incorporate the features of the recursive transi-

tion networks but also allow tests and actions on a set of registers

to be associated with arcs [3]. This gives ATNs the full power of

Turing machines. In an ATN arcs from one state can lead to several

successor states, since an ATN is a non-deterministic machine. It

follows that some order in which the arcs are tried has to be

defined. There are several ways of doing so.

are

be

For example a weight could be assigned to each arc. The arcs

then tried in descending order of weights.

changed during processing depending on

These weights could

certain already

established features of a sentence. A similar approach is to as-

sociate a probability with each arc. Finally, the oldest and

easiest way to define the order is to arrange the arcs in a definite

sequence such that the program attempts each arc in that given se-

quence until it accomplishes a successful transition. This of

course has the same effect as the two approaches mentioned above, if

the arcs are ordered in decreasing probability. There is a dif-

-7-

ference however. In the former two cases the order can be changed,

that is, the change of the order can be controlled by the program

whereas in the last the order is static throughout execution. This

scheme is sufficient for simple sentence structures and for cases in

which the input does not change considerably in structure as in

dealing with commands.

1.5. DIAGRAM, Systemic Grammars, Conceptual Dependency

1.5.1. DIAGRAM

DIAGRAM is a phrase structure grammar for a large subset of

English. Its context free rules are augmented and give it limited

context sensitive capabilities. DIAGRAM is an alternative to trans-

formational grammars. J. J. Robinson distinguished four types of

sentences and represents them separately [5]. These types are

imperative sentence (e.g. Put the apples in the basket!)

declarative sentence (e.g. He put the apples in the basket.)

propositional interrogative (e.g. Did he put the apples

in the basket?)

argument interrogative (e.g. How many apples did he put

in the basket?)

DIAGRAM is only slightly different from ATNs in that tDIAGRAM allows

names of procedures as labels of arcs.

-8-

1.5.2. Systemic Grammar

Terry Winograd bases his system for dealing with the blocks

world on a theory called systemic grammar [4]. One of the basic

concepts of systemic grammar is the notion of syntactic units in the

analysis of the structure of a sentence. He distinguishes three

ranks of units in English: clause, group, and word. The largest

unit is the clause. The reason why he does not choose a sentence as

a unit, is that he considers sentences as units of discourse and

semantics rather than syntactic units. Each of the units can be

subdivided into several types, for example a group can be a noun

group, a verb group, a preposition group, or an adjective group.

The word is the basic unit and can have features. In other grammars

for example the word "dogs" is distinguished from "dog" either as

"dog"+ plural or "dog"+ "s". In systemic grammar, "dog" and

"dogs" are considered basically the same with only a difference in a

certain feature, the number. Whole groups can have features as-

signed to them. A noun group can be singular, plural, definite or

indefinite and so on. One of the basic principles of systemic gram-

mar is the rankshift. It means that any of the three ranks can ap-

pear anywhere in the structure tree. For example, a clause can be a

part of a group, as in

"The man who came to dinner"

or part of other clauses, as in

-9-

"Join the Navy to see the world"(p.18 [4]). One could think that

this makes the analysis more complicated. But certain features are

only meaningful if others have been already established. It only

makes sense to ask whether a sentence is a wh-question (like why,

which,etc.) or a yes-no-question, if it is known already that the

sentence is a question and not a declarative or imperative sentence.

The realization rules in systemic grammar play a similar role as the

transformation rules in transformational grammar.

1.5.3. Conceptual Dependency Theory

The conceptual dependency theory proposes that underlying

natural language there exists a meaning structure [7]. If this

structure is clearly defined, it should serve as a basis for all

processes that use natural language input. The claim is that people

think using some kind of meaning structure that is independent from

the words of a language.

One principal rule is that any two sentences that have the same

meaning have one and only one meaning representation underlying them

regardless of their lexical form. Therefore it is necessary to

search for primitive semantic elements, into which words with com-

plicated meanings can be mapped. If this reduction is done cor-

rectly, it should be possible to explicitly state when words overlap

or where they are equivalent in meaning. The goal is to define such

-10-

a structure to use it for the representation of the output of a

meaning analyser and as the basis of inference and memory programs.

MARGIE (Memory, Analysis, Response Generation, and Inference in

English) is a set of three programs to understand natural language

based on the conceptual dependency system. These three programs

are:

1. analysis program

2. memory program

3. generator.

The analysis program maps sentences into conceptual structures.

From these structures the memory program makes inferences and the

generator finally codes conceptual structures back into English.

These programs together function as a paraphrase and inference

system.

In [6] R. Schank describes the program SAM (Script Applier

Mechanism), which uses scripts to make inferences in a domain it

knows about. The Program was added to MARGIE.

A script is a structure that describes an appropriate sequence

of events in a particular context, i.e. a predetermined, stereotyped

sequence of actions that define a well-known situation. A script

consists of slots. Certain requirements with respect to the con-

tents of these slots have to be fulfilled. A script is an intercon-

nected structure, i.e. the contents of one slot affects what con-

-11-

tents is allowed in another. Verbs are divided into several ac-

tions, which are described by ACTs of the conceptual dependency

theory. For example the action 'propelling' covers the verbs like

pushing, throwing (propelling something or someone) or running,

walking (propelling oneself). Each action results in conditions

that enable the next action to occur. This is called the principle

of causal chaining. An action has to be completed satisfactorily

before the next action in the sequence can be performed. The

completion of an action can be prevented by either an obstacle or an

error. In either case a what-if ACT is called, i.e. a new action in

the script will be generated in order to get things moving again.

When a new script is being learned, every time an error or ob-

stacle is encountered, ways to remove this obstacle or correct that

error are stored in a what-if ACT. The restaurant script serves as

an example. It is divided into several scenes, like entering,

ordering, eating, exiting. Each scene has ACTs associated with it.

The scene 'exiting' has among others the following ACTs:

ATRANS - receive check

ATRANS - tip waitress.

SAM receives conceptual dependency structures as input, iden-

tifies the script to be used, and fills this script with the new in-

put as it is received. The structure resulting from this can be

used to make summaries or paraphrases of the original story. The

-12-

generation program maps the answers of paraphrases back into

English. In the example above, assume the customer is not satisfied

with the service and does not leave a tip. The program SAM infers

that the amount of money left as a tip is in direct correlation with

the degree of satisfaction of the customer. This dependence is not

explicitly stated in the script.

Plans are responsible for the deliberate behavior people ex-

hibit. They describe the choices a person has to achieve a goal.

Seemingly independent, disconnected sentences are often related to

the achievement of goals of the same plan. Discovering the under-

lying plan allows a person to make sense of a story.

Since we do not have scripts for every possible story, general

goal states have to be recognized. For example, once a general goal

like 'raising a lot of money' is recognized, the specific purpose

like paying for a house, or financing a child's education is of

minor importance.

In order to achieve a goal very often an intermediate goal has

to be achieved first. In the above example 'contacting a wealthy

relative' could be such an intermediate goal. Special ACTs, so

called delta-ACTs are defined for this purpose.

A sufficiently large number of scripts has to be available in

order to use SAM for a variety of scenarioes.

-13-

1.6. Comparison of Methods

Comparisons of the tools for parsing natural language sentences

are in the following always based, as stressed by some authors, on

the assumption that the natural language dealt with is English. For

other natural languages different approaches might be more

profitable due to gralllIIlatical idiosyncracies of each language.

Madeleine Bates in [2] explains ATNs using as an example the

program LUNAR. LUNAR is a question answering system that answers

questions about rock samples brought back to earth from the moon,

and was one of the first major applications of ATNs.

Madeleine Bates compares several approaches to language

processing and concludes that ATN's are the best choice for parsing

natural language sentences. Since ATNs have changeable registers

and can transfer control depending on the state of those registers,

they are equivalent to Turing Machines and therefore more powerful

than transformational gralllIIlars. Although not all of their power is

actually needed for parsing natural language, they are more con-

venient to write and use than transformational grammars. The set of

rules needed for a transformational gralllIIlar can become very complex

and difficult to comprehend.

In comparison to transformational grammars ATNs also have con-

siderable advantages in regard to execution. Firstly, transfor-

mational grammars are appropriate only to the generation of sen-

-14-

tences. The generation of sentences is performed by first con-

structing the deep structure of a sentence by means of a context

free grammar and then transforming this structure into a surface

structure by successive application of transformations. The leaves

of the tree that represents the structure constitute the final form

of the sentence. The transformational grammar approach includes al-

gorithms for analyzing sentences, too. But these algorithms are too

inefficient to be considered for practical application. The

original algorithm performs analysis by synthesis. This means that

the rules for the generation of a sentence are applied for all

possible sentences. While generating them, it is checked, whether

the sentence to be analyzed is among the sentences generated so far.

Developing more efficient algorithms leads to two different

categories. The algorithms are either too time consuming for the

analysis of a large set of sentences or are formally incomplete.

ATNs on the other hand constitute a dual model. They are well

suited for the generation as well as the analysis of sentences.

Another reason why, according to Woods, ATNs are preferable to

transformational grammars is that the transition networks derived

from a transformational grammar by a mechanical procedure are not as

efficient as the transition networks developed by hand.

The difference between the transformational and systemic grammar can

be shown by a simple example:

-15-

"Sally saw the squirrel."

"The squirrel was seen by Sally."

"Did Sally see the squirrel?" (p.21, [4])

The three sentences have a different structure in systemic grammar.

In the transformational grammar, these sentences have an almost

identical deep structure and are differentiated only by the tranfor-

mation rules.

T. Winograd also compares his system to the ATN approach. He

defies Woods' opinion that ATNs are easy to read in comparison to

transformational grammars. Winograd states that for a complete

language ATNs become very complex, too. PROGRAMMAR is a programming

language, implemented in LISP, that is based on systemic grammars

and facilitates natural language processing. According to Winograd

there is no difference in power between PROGRAMMAR and ATNs. It is

easy to translate the notation of ATNs into a program, which then

would be similar to a PROGRAMMAR program for a systemic grammar.

The difference lies in the types of analysis carried out by the two

systems. Network systems try to reproduce the deep structure of a

sentence while doing surface structure recognition. But since

PROGRAMMAR is based on systemic grammar, it identifies significant

features in the constituents being parsed. To add additional power

to the basic parser, PROGRAMMAR has demons. This interrupt

mechanism could be added also to ATNs by special labels from each

arc with a name corresponding to each demon in PROGRAMMAR. The

-16-

third difference is the backup-mechanism. Networks generally assume

nondeterminism and therefore have an automatic back-up. A more 'in-

telligent' parser on the other hand 'understands' the reason for a

failure, and backs up accordingly instead of blindly. This is the

way it is done in PROGRAMMAR. One of the inefficiencies of trans-

formational grammars consists in the fact that the syntactic tree

structures first have to be built and then transformed. After the

transformation some parts may be deleted, which makes it redundant

to build them in the first place. J. J. Robinson tries to avoid

this.

Variations of the ATN model are the Thorne system and the

system by Bobrow and Fraser. The former tries to represent simul-

taneously the deep structure and the surface structure of a sen-

tence. The latter is an elaboration of the former. According to

Bobrow the main differences between the two approaches are a

facility for mnemonic state names and the ability to transfer infor-

mation back to previously analysed constituents. Another difference

is that subroutines can be stored directly in the dictionary entry

of a word instead of merely being activated by the features stored

in the dictionary.

Altogether ATNs have to be considered the state of the art in

natural language processing.

-17-

2. Program and ATN Descriptions

2.1. High-level descriptions of procedures and data structures

The purpose of this program is to process natural language sen-

tences which represent editor commands. These commands are aimed at

manipulating a textfile or document segmented into paragraphs. The

execution of the editor commands is simulated and the list of syn-

tactically correct commands to be used for interacting with the QED

editor on the Honeywell system of KU is returned.

I first want to explain on a high level what the program does

as far as it is visible to the user. The discussion of how it works

will follow afterwards.

In the interaction with this interface the user is asked for

the name of the file she wants to work with. In order to simulate

the execution of the commands further information concerning the

number and lengths of the paragraphs is needed. Then the user can

begin to input the commands. If for any reason the command fails to

be executed, the user is informed about the reason for rejection and

any executable part of the command is ignored. In either case,

whether the command is accepted or not, the user is asked for the

next command. The work on one file can be finished by entering the

empty list -()- instead of a command. The user is then supplied

with information about the updated file, i.e. the number and lengths

-18-

of the paragraphs after the simulation of execution. Also the list

of QED commands is given. The user now has the option of working on

another file by giving its name, in which case the cycle outlined

above is repeated. By again entering the empty list-()-, the user

indicates that she wants to quit. In the latter case the user exits

the program.

Two data structures available in LISP besides atoms and con-

structed lists are used: property lists and association lists.

Properties are used to associate features of a file to its name; an

association list is used to relate the number of a paragraph with

its length.

The following assumptions concerning the structure of a text-

file are being made:

1. Each paragraph except the last one is followed by exactly

one blank line.

2. The first line of the file is not a blank line.

3. If there is a title, it is followed by exactly two blank

lines.

In my program I make the assumption that the user has a hard-

copy of the document she works with. Referring to this hardcopy

which is the original version at the beginning of the session, she

makes her changes. Therefore I assume in the numbering she always

refers to the original.

-19-

with.

The user is asked for the name of the file she intends to work

This name becomes the value of the variable filename. When

the user is asked to supply information about the file she intends

to work with, this information is stored on the property list of the

value of the variable filename. The number of paragraphs is stored

under the property nr_of_par. The length of each paragraph is

stored in an association list under the property par. The value of

the variable filename remains unchanged the whole time the user is

working on one specific file. A second variable, called //newfile

has a value derived from the value of the variable filename. If,

for example, the variable filename has the value 'f2', #newfile has

the value '#f2#' Associated with the value of //newfile are the

same property lists as with the value of filename.

There are two additional properties associated with the value

of #newfile, curr line and curr_par, which keep track of the line

and paragraph referred to most recently (with regard to the original

file). Initially they are both set to O. After the simulation of

each command these values are altered to reflect the changes that

have occurred in the file. For example adding or inserting (or

deleting) a line in paragraph x --where x is a positive integer

between 1 and the number of paragraphs-- results in an increase

(decrease) of the value for x in the association list under the

property par.

-20-

Furthermore two variables are necessary to record the exact

changes to the file during the program: ch_par for paragraphs,

ch line for lines. They both have the properties a, i, and d for

append, insert, and delete respectively. The values of the proper-

ties are lists of absolute line and paragraph numbers with respect

the original file. The elements of these lists are in ascending

numerical order. If a line is deleted, its number with respect to

the original file is added to the list under the property d of the

variable ch line while preserving the ascending numerical order of

that list. If the only remaining line of a paragraph is deleted,

not only is the value of the property d of ch_line changed, but the

value of the same property of ch_par is changed accordingly. In

that case the value of the property nr_of_par of the value of

#newfile is also decreased by 1. If a paragraph is deleted, its

number is added to the list under the property d of the variable

ch_par. Also the numbers of all lines in the deleted paragraph are

added to the list under the property d of ch line.

There are no special properties to record the effects of move

or copy commands. If a line is moved, its number is added to the

list under the property d of ch line. If it is moved before (after)

a specific line, the number of this line is added to the list under

the property i (a) of ch line. Analogous changes are made if

paragraphs are moved. If a line/paragraph is copied, it is not

removed from its original location. Therefore the only changes

-21-

recorded are adding the line/paragraph number of the new location to

the lists under the properties i or a depending on whether the

line/paragraph is copied before or after that location.

Assuming a file with name fl, no title, and 4 paragraphs with

the lengths of 4, 13, 2, 7 lines respectively, the variables have

the following values:

variable

fl

flflll

ch_par

ch line

property

nr_of_par

par

nr_of_par

par

curr line

curr_par

a

i

d

a

i

d

-22-

value

4

((1 4)(2 13)(3 2)(4 7))

4

((1 4)(2 13)(3 2)(4 7))

0

0

nil

nil

nil

nil

nil

nil

Assuming that line 3 in paragraph 4 (absolute line number 25) is

deleted, the variables change their values as follows:

variable

fl

ch_par

ch line

property

nr_of_par

par

nr_of_par

par

curr line

curr_par

a

i

d

a

i

d

value

4

((1 4)(2 13)(3 2)(4 7))

4

((1 4)(2 13)(3 2)(4 6))

25

4

nil

nil

nil

nil

nil

25

After all necessary information about the file is gathered,

the program is ready to accept commands from the user. The command

a user wants to be executed has to go through different stages of

processing before it is transformed into a proper QED command (Fig.

2.1.).

-23-

-) Ci:.il " [cornm - d...:.sf = -:, Q E]) c.o ..,,n,cu1d..
/

-24-

The command is first preprocessed in a function called prepare-

input. This function replaces text constants by the dollar sign($)

and numbers by the number sign(#). The actual values of texts and

numbers are stored in two separate variables text_list and num list.

With a number is stored an indication of whether it is a cardinal or

an ordinal number. Cardinal and ordinal numbers have to be

distinguished. If an ordinal number occurs that means the noun it

belongs to follows it whereas a cardinal number is preceeded by its

noun "paragraph 2" versus "2nd paragraph".

Therefore a phrase like

the 2 line in the 1st paragraph

is not accepted (singular and plural are not distinguished). Ex-

pressions like " ... 5 to 7 ... " " ... 5 7 8 10 ... " are replaced by

" ... 5 and 6 and 7 ... " " ... 5 and 7 and 8 and 10 ... " respectively.

The preprocessed input is then subject to the ATNs and the ATN

compiler as written by Dr. Albert D. Bethke.

Sentences are accepted or rejected according to the structure

of the ATNs (see Fig. 2.2., and Appendix A) and the entries in the

dictionary. Since the structure of sentences dealt with is not very

complicated, the networks themselves are not very complex.

-25-

-26-

The ATN compiler requires an ATN named $sentence$. The ATN

$command$ accepts declarative sentences. A sentence can begin with

an adverbial phrase as "would you please ... ". In this case control

is transferred to the ATN $polite$. It is also acceptable to start

a sentence with a prepositional phrase like "in paragraph 3 ... ".

Then the ATN $preposition$ is called. Thirdly, a sentence can begin

right with the command, e.g. "delete Either of the foregoing

cases can follow each other in different ways. For example:

"would you please in paragraph 3 delete line 4"

"delete please in paragraph 3 line 4". After the kind of command

is established and extracted, $n-p$ is called. $n-p$ is traversed

successfully, if

1. an ordinal number followed by an appropriate noun

or a sequence thereof,

2. a noun followed by a cardinal number

or a sequence thereof,

3. an adverb followed by a cardinal number followed

by a noun

or a sequence thereof

is encountered. If the sentence is exhausted on leaving $n-p$, the

sentence is accepted. Otherwise $preposition$ is called possibly

several times. The network $preposition$ is successfully traversed

if the input consists of a preposition followed by a noun phrase.

-27-

The structure of the ATNs allows the return of different struc-

tures the the calling program depending on the relationships between

noun groups. In the case of a phrase like " ... line 3 and paragraph

4 ... " $n-p$ is called and the reference to the line and to the

paragraph are both handled by this network, whereas in the case of

" ... line 3 in paragraph 4 ... " after $n-p$ is successfully traversed

and control is given back to $command$, the

$preposition$ which again calls $n-p$ (Fig. 2.3.).

latter calls

If a sentence is

accepted, some information about the structure of the command is

stored in a global variable. The ATNs are built so as to detect

which number(s) belong to which nouns. For example: "move line 3

and 5 after line 4 in paragraph 3" must be distinguished from "move

line 3 after line 4 and 5 in paragraph 3". Furthermore "delete line

3 in paragraph 4" is different from "delete line 3 and paragraph 4".

The function split gets as input the list that is passed from the

ATNs. It is responsible for partitioning the command into a se-

quence of commands, if necessary. If the command includes

references to several distinct locations (except references like

... last 3 ...) it has to be split since only one location can be

handled at a time. So for each location referred to a command is

assembled with the denotator for the command, whether it is a

paragraph or a line, and the number. Several structures of sen-

tences have to be distinguished. In the following the different

structures will be given by examples which state the inputs or out-

-28-

puts from certain stages of the processing.

Example 1

Input from user: (delete line 3 and 4)

Output from ATNs: (line 3) (line 4))

Output from split: (delete line 3) (delete line 4)).

A sentence like (delete the last 3 lines) on the other hand is

transformed into (delete line last 3).

Example 2

Input from user: (delete line 3 in paragraph 4)

Output from ATNs: ((line 3) (paragraph 4))

Output from split: (d line 3 paragraph 4)

Example 3

Input from user: (delete line 3 and 4 in paragraph 6)

Output from ATNs: ((line 3 4) (paragraph 6))

Output from split: ((d line 3 paragraph 6) (d line 4 paragraph 6))

In this case the function split detects that more than one line is

referred to. An analogous transformation is performed if several

paragraphs are referred to.

Example 4

Input from user: (delete line 3 in paragraph 4 and 5)

Output from ATNs: ((line 3)(paragraph 4 5))

Output from split: ((d line 3 paragraph 4)(d line 3 paragraph 5))

-29-

Example 5

The case of references to more than one line in more than one

paragraph is structurally the most complicated.

Input from user: (delete line 3 and 4 in paragraph 6 and 7)

Output from ATNs: ((line 3 4)(paragraph 6 7))

Output from split: ((d line 3 paragraph 6)(d line 4 paragraph 6)(d

line 3 paragraph 6) (d line 4 paragraph 7)).

Since in sentences beginning with a prepositional phrase the

order in which lines and paragraphs appear is reversed, the program

checks whether a paragraph is referred to prior to a line. If that

happens, the sequence of references to lines and paragraphs in the

list returned by the ATNs is reversed and in the following treated

like the sequences above. The transformation of 'move' and 'copy'

commands has to be different from the one above. In the ATNs the

occurrence of a word like 'after' or 'before' is checked in order to

distinguish the references to the item to be moved/copied and to the

location of the moving/copying. It is marked with a appended to

the list as it is built at the moment of the encounter. Since it is

important to know whether the item is supposed to be moved/copied

before or after the location mentioned, the name of the command is

slightly changed in order to convey this information. In the case

of moving/copying after (before) the location, the commands 'm' and

'k' are changed into 'ma' ('mi') and 'ka' ('ki') repectively. The

function 'moving' rather than 'split' is called. Here again we have

-30-

to distinguish several cases as for all other commands.

1. Input from user: (move line 4 after line 7)

Output from ATNs: ((line 4)*(line 7))

Because of the simplicity of this sentence, in moving no changes are

made to the format.

Output from moving: (ma (line 4)(line 7))

2. Input from user: (move line 4 in paragraph 3 after line 7)

Output from ATNs: ((line 4 paragraph 3)*(line 7)

Output from moving: (ma (line 4 paragraph 3) (line 7))

3. Input from user: (move line 3 and paragraph 3 after line 7)

Output from ATNs: ((line 4) (paragraph 3)"/•(line 7))

It is obvious that the reference to the paragraph is only connected

to the first item in the list, i.e. that 2 items are to be moved to

one location, and not one item to two different locations.

Output from moving: ((ma (line 4)(line 7))(ma (paragraph 3)

(line 7)))

4. Input from user: (move line 3 after line 4 and 5)

Output from ATNs: ((line3)*(1ine 4)(line 5))

If an item is to be moved to several new locations, the command is

transformed in such a way that it is moved only to the last men-

tioned location and copied to the others. This is necessary, as

discussed above, for moving an item is followed by deleting it from

its original location. An attempt to move the same item again leads

-31-

to a message that this item had been deleted before.

If this were transformed into

((ma (line 3)(line 4)) (ma (line 3)(line 5))) this couunand could

not be executed. In the simulation of a move command, the item to

be moved is deleted at the original location. So after executing

the first part of the sequence built above, line 3 does not exist

any more and the execution of the second part would lead to a mes-

sage to the user saying that line 3 had been deleted before.

Therefore

Output from moving: ((ka (line 3)(line4))(ma (line 3)(line 5)))

No problems arise with this sequence, since the 'copy' command

leaves line 3 untouched.

Also during further processing the commands to move or copy

s1ngle lines or whole paragraphs have to be treated differently from

the commands discussed earlier. The reason is that their format

differs from the format of the other commands. In these commands

two sorts of information are incorporated, one refers to the 'ob-

ject' to be moved or copied (the original location), the other to

the location which the object is to be moved/copied to (the new

location). So the new location has to be extracted from the com-

mand. The whole sequence of functions is called as described ear-

lier to determine the actual location, where the object is. Then

the same is repeated for the original location. In the case of the

move command all lists are updated by simulating the deletion of the

-32-

item from the original location and its addition at the new loca-

tion.

In the function comm-distr the provisions for correct output

according to different commands are made.

In the following I first want to discuss how commands such as

'print', 'delete', 'insert', 'append', and 'substitute' are created.

The discussion for 'move', 'copy', and 'exchange' will follow

separately since the structure of these commands differs con-

siderably from those mentioned before. The 'exchange' command is

split into the sequence consisting of the commands to move the first

item after the second, then the second after the original location

of the first and to delete both items at their original places.

There are basically five types of clauses to be distinguished,

the simplest consisting of commands which refer to a specific line

or paragraph number explicitly. These are commands containing

phrases like ... line 4 ... , ... paragraph 3 ... , ... the third line ... ,

... the 4th paragraph... These sentences can be passed on for

further processing without any changes. Equally simple and

belonging to the same category of sentences are references like

... last line ... , ... first paragraph ... , ... next line ... , ... previous

paragraph ... The adverbs last, first etc. are replaced by the ap-

propriate values; e.g., in the case of last line the function get-

dollar is called, which calculates its absolute line number from the

-33-

given information about the number of paragraphs and their lengths.

Two variables exist in which the line and paragraph numbers of the

line and paragraph most recently referred to are stored. They are

initialized to O, so that at the beginning of a session next

line/paragraph and first line/paragraph are synonymous. In later

processing it is checked whether reference to their values is

possible. There are two possible reasons that a command cannot be

executed. The first is that the line or paragraph referred to)las

previously been deleted. The second is that that line or paragraph

does not exist at all; e.g., reference to line 100 if the file only

contains 90 lines. In these cases the user is prompted with a mes-

sage explaining why the command cannot be executed. Otherwise, it

is checked whether lines or paragraphs with lower number have been

added, inserted or deleted and the line or paragraph respectively is

adjusted so that it refers to the correct line/paragraph in the up-

dated file. I.e., for each line/paragraph added or inserted the

value of the line/paragraph currently under consideration is in-

creased by 1; for each deleted line/paragraph it is decreased by 1.

This is done for lines and paragraphs in separate functions. One

value is then returned and in comm-distr the syntactically correct

command is assembled. The lists

lines/paragraphs are updated after

sembled.

-34-

for added, inserted and deleted

the complete command is as-

In the next category belong commands with references like

... first 4 lines ... , ... previous 3 paragraphs ... , ... next 2

lines ... , ... last 5 paragraphs ...

calculates the first and last

first 4 lines returns (1 4). All

Here a function is called that

line/paragraph referred to; e.g.,

following functions are called

twice, once with the lower value, once with the higher value of the

list.

In category three there are references such as ... line 3 in

paragraph 4 ... , ... the first line in the last paragraph ... , ... the

fourth line in the previous paragraph ... , etc. I choose as an ex-

ample for this category (delete line 3 in paragraph 4) This sentence

is transformed into (d line 3 paragraph 4). Then the absolute line

number with reference to the original file is calculated. It is

checked whether paragrah 4 exists in the file. If that is success-

ful, it is checked whether line 3 exists in paragraph 4. After that

as in the above cases the line number with reference to the updated

file is calculated and messages given to the user, if the line has

been deleted before.

The next category has to be divided into two subcategories.

The first contains sentences like ... line 4 in the last 3

paragraphs... Sentences of the first subcategory are treated the

following way. A list of paragraph numbers is built, e.g. if the

document that is being worked with has six paragraphs, the above ex-

-35-

ample would lead

then done for the

separately. In

to the list (4,5,6).

fourth line of each

the second subcategory

The further processing is

paragraph (4,5, and 6)

we find sentences like

... last 3 lines in paragraph 4 Here a list of two elements is

constructed. The elements of the list are the numbers of the first

and last line referred to, in the example given the list would be (5

7). Then the line numbers are calculated as if the original command

had been the sequence

((delete line 5 in paragraph 4)(delete line 7 in paragraph 4)).

The difference between a sequence of commands of category 3 and the

above is that in category 3 the commands would be treated as two

separate commands, whereas here the result of the two commands are

combined into a single command.

The last category contains references like ... last 3 lines in

the first 4 paragraphs ... Here the methods applied to the two

types of category four are combined. The paragraph numbers of the

paragraphs referred to are calculated and put into a list, in the

example (1 2 3 4), whereas for the lines only the first and last

line referred to are mentioned. Then the commands are processed for

each paragraph separately the way it is done in the second sub-

category of the previous category.

-36-

2.2. Justification for the approach chosen

The reason why I chose ATNs over transformational grammars is

threefold. ATNs are, for one thing, easier to deal with than trans-

formational grammars; they are easier to read and comprehend.

Secondly, my sentences are structurally and grammatically very

simple, in that all sentences are statements in the present tense,

no minor clauses and attributes are necessary. As mentioned in sec-

tion 1, the purpose of the program is to analyze sentences and not

to generate them. If the latter had been the purpose of the

program, transformational grammars would have probably been as ap-

propriate as ATNs; but for the analysis of sentences ATNs are

superior to transformational grammars.

-37-

3. Performance and Limitations, Suggestions for further work

The program is capable of simulating the execution of a variety of

commands. The dictionary entries allow the user to formulate the

command in different ways. For example, the user can use delete,

remove, eliminate as synonyms. Furthermore it is permissible to use

adverbial phrases like ... would you ... , ... please ,

... furthermore ... to suit the user in her desire to conduct a

natural conversation. The user has three choices of referring to a

specific line. She either refers to it explicitly by giving its ab-

solute line number as in ... line 23 ... , or in terms of the

previously referenced line, as in ... next line ... In addition she

can refer to it in relation to a paragraph as in ... line 3 in

paragraph 4 ... The first two cases are applicable similarly for

references to paragraphs.

Most of the restrictions imposed on the form of the input stem

from the fact that QED does not allow interaction directed from a

program. Therefore the commands cannot be executed but the execu-

tion can only be simulated. This is done by using the information

about the original file and keeping information about the manipula-

tions of this file. The number of lines and paragraphs being

deleted, appended, inserted, moved, or copied is stored and based on

this information line and paragraph numbers are calculated to

reflect the structure of the file as if the (preceeding) commands

-38-

had actually been executed. It would be very convenient to store

information on user files in a separate datafile or connected with

the files themselves. Then the user would be asked solely for the

name of the file and all necessary information could be retrieved by

the program. Since this is not possible, the user has to be asked to

enter number and lengths of the paragraphs explicitly.

Since in LISP every input is ans-expression, the texts in the

substitute, append and insert commands have to be surrounded by

(double) quote marks("). The LISP interpreter reduces sequences of

blanks to exactly one blank, so expressions that involve more than

one blank in sequence cannot be distinguished unless they are

treated as a text constant. That also implies that the double

quotes have to be output, which is, at the least, a nuisance for

reading the command. Furthermore, the period has a special meaning

in LISP, denoting the dotted pair, and therefore cannot be used in

input sentences. It is impossible to reflect the exac.t format of

the substitute command using LISP alone. If the text constant con-

tains symbols that are treated specially in QED like$,*, [, etc.

it is impossible to switch off the special meaning and assume the

literal meaning. To switch to the literal meaning, the special sym-

bol would have to be preceeded by \c. It is not possible to

manipulate the text constant so as to insert \c. This is especially

awkward in the case of the period. Its special meaning is that it

matches any character. If the user intends to change a period into

-39-

a comma for example, the input is transformed into s/ 11 • 11 / 11 , 11 /p. If

this is used in the form above, with just the (double) quote marks

stripped off, the result would be s/./,/p. But this is not what the

user intended. This command converts every character into a comma.

To perform what the user intended, the command should have the for-

mat s/\c./,/p. It would be nice to have an interface between the

LISP program and the editor, perhaps in the form of a PASCAL program

that could take care of these things.

Although the ATNs themselves are able to handle a broader

variety of commands and only slight changes in the rest of the

program would expand the power of the program, again QED poses

restrictions on the choice of permissable commands. After expanding

the dictionary accordingly, a command like (find "this sequence")

could be parsed successfully and transformed into /"this sequence"/.

After simulating the execution it would be impossible to assign the

correct values to the variables holding the current line and current

paragraph numbers. It is not even possible to determine whether the

context search was successful or not. If future commands refer to a

line with a certain context, it is impossible to determine whether

that line has been deleted. Updating information about the file is

therefore made impossible. Example: assume line 3 has been deleted

before and (find "this sequence"), transformed into /"this se-

quence"/, refers to line 3. In the actual execution of the command

this occurrence of the text has to be skipped (it does not exist any

-40-

more) and it has to be searched repeatedly. Another example: as-

sume the command sequence

(delete line 3)

(find "this sequence")

(delete the next line)

Furthermore assume the context search leads to line 2. Then the last

command in the above sequence would have to result in the message

"Line 3 has been previously deleted. The command cannot be ex-

ecuted.".

But since in the simulation it is not possible to receive line

numbers from the editor, it is impossible to allow the context

search. Analogous reasons apply for forbidding phrases like (sub-

stitute the first occurrence of "This" by "That") It is impossible

to determine the line and paragraph number of the first occurrence

of the text, if it appears in the file at all. In a system that al-

lows direct interactions the above mentioned problems would im-

mediately cease to exist. One way to deal with context search is to

pass the message from the editor to the user if the search fails and

otherwise determine the line number by a command equivalent to the

"=" in QED and use the returned value for further reference.

It is necessary to impose some restrictions on the format of

the document, concerning the structure of paragraphs. Some pos-

sibilities are not allowing blank lines within a paragraph, or re-

quiring markers, for the beginning of paragraphs. Another way would

-41-

be to require indentation of the first line in a paragraph or a

header "paragraph x" before each paragraph. In my program, exactly

one blank line between paragraphs is assumed. In my case blank

lines in a paragraph are treated the same way as lines that contain

text. The only entities my program deals with are lines and

paragraphs. It is not possible to refer to specific sections within

a paragraph, therefore section and paragraph are treated as

synonyms. Problems occur also with syntactical ambiguities caused

by the fact that only one command at a time can be simulated. The

user has a different intention when she types (move paragraphs 3 and

4 after paragraph 7) than when she types (move paragraph 3 after

paragraph 7) (move paragraph 4 after paragraph 7). In the former

case paragraphs 3 and 4 are together considered a single entity and

the new sequence of paragraphs would be ... 7,3,4... whereas in the

latter case the execution of the first command results in the se-

quence ... 7,3, ... and the following execution of the second command

leads to ... 7,4,3, .. I decided to treat both cases in a uniform

way. Since my program splits the first example into two distinct

commands, which are the same as the sequence of the second example,

I decided in favor of the latter alternative.

In a refinement of this program either both cases could be treated

differently or the user could be asked to specify the sequence

uniquely. E.g. if she wants the sequence 7,3,4 she should type

(move paragraph 4 after paragraph 7)(move paragraph 3 after

-42-

paragraph 7), and if she wants 7,4,3 she has to enter (move

paragraph 3 after paragraph 7) (move paragraph 4 after paragraph 7).

As pointed out earlier, in my program I make the assumption that the

user has a hardcopy of the document she works with. Referring to

this hardcopy which is the original version at the beginning of the

session, she makes her changes. Therefore I assume in the numbering

she always refers to the original. I consider this a justified

point of view, because having a written version it is easier for

the user to refer to it than to keep track of all the changes she

has made before, especially adding, deleting, inserting, moving, or

copying lines or paragraphs and therefore calculating the

line/paragraph numbers she is referring to for the up-to-date ver-

sion of her document. In an interactive mode with the editor, when

the changes are made immediately -online- we would assume that the

user refers to the current version of the document, and there would

be no need for all the calculations my program does in order to

deduce the actual line/paragraph referred to in the current version

from the original. A big part of my program would then be redun-

dant, because the work could be done by the editor directly. For

further refinement of the program more than one command could be al-

lowed at a time. In my program a phrase like

(in line 3 replace II by II and delete the next line)

is not accepted. In an extended version this sentence could be taken

apart to form two separate commands (by some mechanism relating the

-43-

verbs to the appropriate objects) which are then executed (in se-

quence).

-44-

REFERENCES

[1] Noam Chomsky Structural Grammars, 1957

[2] Madeleine Bates The Theory and Practice of Augmented

Transition Network Grammars,

in: Natural Language Communication with

Computers

p. 190-260 Berlin, Springer Verlag, 1978

[3] W.A.Woods: Transition Network Grammars for

Natural Language Analysis

CACM 13 pp.591-606 1970

[4] T. Winograd:Understanding Natural Language

Academic Press New York and London, 1976

[5] Jane J. Robinson: DIAGRAM: A Grammar for Dialogues

CACM 25,1 pp. 27-47 Jan. 1982

[6] R. C. Schank and R. P. Abelson:

Scripts, Plans, Goals and Understanding, 1977

Hillsdal, N.J.

[7] R. C. Schank et al. :

Inference and Paraphrase by Computer

Journal of the ACM 22(3), p.309-328, 1975

-45-

[8] John E. Hopcroft and Jeffrey D. Ullman:

Introduction to Automata, Theory, Languages

and Computation, Chapter 9,

Addison Wesley 1979, pp. 217-227

-46-

APPENDICES

-47-

A'P'PeNJJ\X A

A TN s

..,__..;;.......;;.,,..._..__...... s 1t '
lf-

$~~ibon$

lcdAr n.um.Lu-t:

.$ orcL- rv-4

; orcl - ca.rd...

(define-atn
$sentence$()

(sl (if $command$

)
)

)%$sentence$

(define-atn

go success

PROGRAM LISTINGS

$command$ (fix fixuplist qed-com kind check later fl ordv fix)
(sl (if (and $word$ (member 'verb $p-o-s)) -

go s2
after

(setq comm $command)
)
(if $preposition$
go sl

after
(cond (fl

(setq £2 (append £2 fl))
(setq fl nil)

)
(t

(setq f2 (append £2 (list (append (list kind) fix))))
(setq fix nil)

)
)
(setq kind nil)

)
(if $polite$
go sl
)

)
(s2 (if (and $word$ (member 'adv $p-o-s))

go s3
)

(else go s3)
)
(s3 (if $n-p$

go s4
after

(cond (fl

)
(t

(setq £2 (append £2 (list (list kind fl))))
(setq fl nil)

-so-

)
)

)

)

(setq £2 (append f2 (list (append (list kind) fix))))
(setq fix nil)

(s4 (if $preposition$
go s4

)
)

)

after

)

(cond (fl

)

(setq f2 (append f2 fl))
(setq fl nil)

(t (setq f2 (append f2 (list kind fix)))
(setq fix nil)

)

(else go success
after

(while check later
(setq check 1 (car check later))
(cond ((and-(equal check=l 'after)

(equal comm 'i))
(setq comm 'a)

)
((and (equal check 1 'before)

(equal comm Ta))
(setq comm 'i)

)
((and (equal check 1 'into)

(equal comm Tk))
(setq comm 's)

)
((or (equal comm 'm) (equal comm 'k))

(cond ((equal check 1 'before)
(setq comm (compress

(list comm 'i)))

)
)
(t nil)

)

)
(t (setq comm (compress

(list comm 'a)))
)

(setq check later (cdr check_later))
)%while

-51-

)%command

(define-atn
$polite$ ()

(s1 (if (and $word$ (member 'adv $p-o-s))
go sl
)
(if (and $word$ (member 'aux $p-o-s))
go s2
)
(else go success)

)
(s2 (if (and $word$ (member 'ppron $p-o-s))

go s3
)

)
(s3 (if (and $word$ (member 'adv $p-o-s))

go success
)
(else go success
)

)
)%polite

(define-atn
$nr-adj$ ()

(sl (if $ord-nr$
go s2
)
(else go success)

)%s1
(s2 (if (and $word$ (member 'adv $p-o-s))

go _s3
)
(if (and $word$ (equal $word'#))
go success

after

)
(if $ord-nr$
go s2
)

(setq fix (append fix (list (caar num list))))
(setq fixuplist (append (list (list (caar num_list)))

fixuplist))
(setq num_list (cdr num_list))

(else go success)
)%s2
(s3 (if $ord-nr$

-52-

go success
)

)%s3
)%$nr-adj$

(define-atn
$n-p$ ()

(s1 (if (and $word$
go s2
)
(if (and $word$
go success
)
(else go s2)

)%s1
(s2 (if $ord-card$

)%s2

go s3
)
(if (and $word$
go s3

after
(setq

)
(if $nr-adj$
go s3
)

(member 'det $p-o-s))

(equal $word '$))

(member 'adv $p-o-s))

fix (append fix (list

(s3 (if (and $word$ (member 'noun $p-o-s))
go s4

after

$word)))

(cond ((and (null (equal $word'#)) (null (equal $spec 'text)))
(setq kind $spec)

)
(t kind)

)%cond
)
(else go s4)

)%s3
(s4 (if (and $word$ (equal $word'#))

go s4
after

(setq fix (append fix (list (caar num list))))
(setq fixuplist (append (list (list (caar num_list)))

fixuplist))
(setq num_list (cdr num_list))

)
(if (and $word$ (equal $word 'and))
go s1
)

-53-

(else go success)
)%s4

)%$n-p$

(define-atn
$ord-card$ ()

(s1 (if (and $word$ (member 'adv $p-o-s))
go s2

)
)%st

after
(setq ordv $word)

(s2 (if (and $word$ (equal $word'#))
go success

after
(setq fix (append fix (list ordv (caar num list))))
(setq fixuplist (append (list (list (caar num_list) ordv))

fixuplist))
(setq num_list (cdr num_list))

)
)%s2

)%$ord-card$

(define-atn
$ord-nr$ ()

(s1 (if (and $word$ (equal $word'#))
go s2

after
(cond (fix

)

)
)

)
(t

)

(setq fix (append fix (list (caar num_list))))

(setq fix (list (caar num_list)))

(setq fixuplist (append (list (list (caar num_list)))
fixuplist))

(s2 (if (equal 't (cadar nwn_list))
go success

after

)
)%s2

)$ord-nr$

(setq num_list (cdr num_list))

-54-

(define-atn
$preposition$ ()

(sl (if (and $word$ (member 'prep $p-o-s))
go s2

)
)

after

(s2 (if $n-p$
go success

after

)
)

)%$preposition$

(cond ((and (member $word '(before after))
(member comm '(m k)))

)

)

(setq fl (append fl (list'*)))
(setq fix nil)

(t nil)

(setq check_later (append check later (list $word)))

(setq fl (append fl (list (append (list kind) fix))))

-ss-

(de inter-face()
%This program performs the dialog with the user.
%After the name of the file the user wants to work with is given,
%the program accepts commands. It gives a message if the command
%could not be executed, i.e. in the simulation of the execution
%access to a non-existing line/paragraph was detected.
%If the user inputs the empty list, the program gives a listing of the
%commands in qed that have to be given in order to do what the user
%wants to do.
%After that the user has the option to work with another file or
%to quit.
%called by -
%calls main, statistics, init

(setq temp 'temporary)
(setq sequen nil)
(setq orig nil)
(print "Give the name of the file you want to work with. 11)

(setq filename (read))
(while filename
(setq 1/newfile (compress (list'# (explode filename) '#)))
(setq sequen nil)
(remprop filename 'par)
(remprop 1/newfile 'par)
(remprop temp 'par)
(print "does your file have a title? If no, type ()")
(setq title (read))
(cond (title

)
(init)

(setq offs 3)
)
(t (setq offs 0)
)

(put f/newfile 'curr line 0)
(put temp 'curr line 0)
(put #newfile 'curr_par 0)
(put temp 'curr_par 0)
(print "Type your first command.")
(print "If you want to quit, type (). ")
(setq command (read))
(while command

(setq c (main command))
(cond (c (setq sequen (append sequen c))

)
(t nil)

)%cond
(print "If you want to quit, type (). ")
(print "Otherwise type your next command.")

-56-

(setq command (read))
)%while command
(outp sequen)
(statistics)
(print "If you want to work with another file, give its name.")
(print "Otherwise type().")
(setq filename (read))
)%while filename

)%de

(de init ()
%Performs the dialogue with the user in order to be able to
%initialize the variables properly.
%called by inter-face
%calls initl

(print "How many paragraphs does your file have?")
(setq nr (put filename 'nr_of_par (read)))
(put #newfile 'nr_of_par nr)
(put temp 'nr_of_par nr)
(initl 1 (addl nr))
(remprop 'ch line 'a)
(remprop 'ch-line 'i)
(remprop 'ch-line 'd)
(remprop 'ch-par 'a)
(remprop 'chyar 'i)
(remprop 'ch par 'd)

)%de init -

(de initl (no limit)
%Performs dialogue with the user to initialize variables.
%called by init
%calls itself recursively

(cond ((lessp no limit)

)

(prinl "How many lines does paragraph")
(prinl no)
(print " have?")
(put filename 'par (append (get filename 'par) (list

(list no (read)))))
(initl (addl no) limit)

(t (put #newfile 'par {get filename 'par))
{put temp 'par (get #newfile 'par))

)

-57-

)
)%de initl

(de statistics ()
%Prints the information about the current version of the file
%the user is working with.
%called by inter-face
%calls stat

(prinl "File ")
(prinl filename)
(prinl "now has")
(setq nr (get //newfile 'nr_of_par))
(prinl nr)
(cond ((equal nr 1)

(print" paragraph.")
)
(t (print" paragraphs.")
)

)
(terpri)
(stat 1 (addl nr))
(remprop #newfile 'par)
(remprop temp 'par)
(remprop filename 'par)

)%de statistics

(de stat (no nr)
%Prints out information of the file after all commands
%have been simulated.
%called by statistics
%calls itself recursively

(cond ((lessp no nr)
(prinl "Paragraph ")
(prinl no)
(prinl " now has ")
(setq p (cadr (assoc no (get /lnewfile 'par))))
(prinl p)
(cond ((equal p 1)

(print " line.")
)
(t (print" lines.")
)

-58-

)
(stat (addl no) nr)

)
(t nil)

)
)%de stat

(de outp (out)
%Performs the output of the qed commands.
%called by inter-face
%calls -

(print "The sequence of commands you have to use is the following:")
(print 'qed)
(prinl "r")
(print filename)
(while out

(setq outll (car out))
(while outll

(setq outl (car outll))
(while outl

(cond ((equal out! "1,$p")
(prinl out!)
(setq outl nil)

)
((member (car outl) '(a i))

(print (car outl))
(print (cadr outl))
(prinl (caddr outl))
(setq outl nil)

)
(t

(prinl (car outl))
(setq outl (cdr outl))

)
)
)%wh outl
(terpri)
(setq outll (cdr outll))

)%wh outll
(setq out (cdr out))
)%wh out

(print 'w)
(print 'q)

)%de outp

(de calc (par_nr)

-59-

%Calculates the line number of the first line in paragraph
%par nr.
%called by?
%calls itself recursively

(cond ((lessp 1 par nr)
(plus (cadr (assoc (subl par nr) (get filename 'par)))

1 (calc (subl par_nr)))
)
(t offs
)

)
)%de calc

(de? (x y)
%Returns nil if the command cannot be executed, otherwise the
%line number of line x in paragraph y.
%called by???
%calls calc, adjust, get-dollar

(prog ()

(cond ((null (numberp y))
(cond ((equal y 'last)

(setq y (get filename 'nr_of_yar))
)
((equal y 'first)

(setq y 1)
)
((equal y 'next)

)
(setq y (addl (get #newfile 'curr_par)))

((equal y 'previous)

)
(setq y (subl (get #newfile 'curr_par)))

(t nil)
%transforms last, first etc. into numbers (for paragraphs)

)
)
(t nil)

)%cond null
(cond ((and (null (numberp x)) (atom x))

(cond ((equal x 'first)
(setq x 1)

)
((and (equal x 'last) (equal y 0))

-60-

(setq x (get-dollar))
)
((equal x 'last)

(setq x (cadr (assoc y (get filename 'par))))
)
((equal x 'next)

)

(setq x (add! (get /lnewfile 'curr_line)))
(setq y O)

((equal x 'previous)

)

(setq x (subl (get /lnewfile 'curr_line)))
(setq y O)

(t nil)
%tansforms last, first etc. into numbers (for lines)

)%cond equal
)%null
(t nil)

)%cond null
(cond ((and (lessp y (addl (get filename 'nr_of_par)))

(greaterp y 0))

)

(cond ((lessp x (addl (cadr (assoc y (get filename 'par)))))
(setq orig (plus x (calc y)))

)
(t

)
)%cond x

(return (adjust orig))

(prinl "Line") (prinl x)
(prinl "does not exist in paragraph")
(prinl y) (print".")
(print" Your command cannot be executed.")

(return nil)

((equal y 0)
(cond ((atom x)

(cond ((or (lessp x 1) (greaterp x (get-dollar)))
(prinl "Line") (prinl x)

)
)

)
(t

(print" does not exist.")
(print "The command cannot be executed.")
(return nil)

(setq orig x)
(return (adjust x))

)

(t (cond ((or (lessp (car x) 1) (greaterp (car x)
(get-dollar)))

-61-

)
(t

)%t

)

)

(prinl "Line ") (prinl (car x))
(print" does not exist.")
(print "The command cannot be executed.")
(return nil)

((or (lessp (cadr x) 1) (greaterp (cadr x)

)

(get-dollar)))
(prinl "Line ")(prinl (cadr x))
(print " does not exist.")
(print "The command cannot be executed.")
(return nil)

(t (setq orig x)

)
)

(return (append (list (adjust (car x)))
(list (adjust (cadr x)))))

)

(prinl "Paragraph ") (prinl y)
(print " does not exist.")
(print "Your command cannot be executed.")
(return nil)

)%cond and
(print "at the end of? x and y are: ")
(print x) (print y)
)%prog
)%de?

(de adjust (x)
%This function finds out, what the real absolute line number is
%in the simulation.
%It returns nil if the line or paragraph referrred to is already deleted
%adjust is called by?.
%calls -

(setq subtract 0)
(setq addto 0)
(setq del line (get 'ch line 'd))
(cond ((member x del line)

(prinl "Line") (prinl x)
(print" has been previously deleted.")
(print "The command cannot be executed.")
nil

-62-

)
(t (while (and del line (lessp (car del line) x))

(setq subtract (subl subtract)) -
(setq del_line (cdr del_line))

)
(setq app line (get 'ch line 'a))
(while (and app line (lessp (car app line)x))

(setq addto (addl addto)) -
(setq app_line (cdr app_line))

)
(setq ins line (get 'ch line 'i))
(while (and ins line (lessp (car ins line) (addl x)))

(setq addto (addl addto)) -
(setq ins_line (cdr ins_line))

)
(setq line (plus x addto subtract))

)%t
)%cond

)%de adjust

(de?? (para)
%If only paragraphs and not line numbers are referred to this function
%is called.
%It is not enough to know, how many paragraphs have been deleted (for the
%counting of the blank lines), but also which ones (for the absolute
%line number).
%called by extract
%ca 11s sum-up

(prog ()
(setq par begin 0)

lab -
(cond ((atom para)

)
(t

(setq par para)

(setq par (car para))
)

)
(setq addt 0)
(setq subtr 0)
(cond ((null (numberp par))

(cond ((equal par 'last)
(setq par (get filename 'nr_of_par))

)
((equal par 'first)

(setq par 1)

-63-

)

)
((equal par 'next)

(setq par (addl (get #newfile 'curr_par)))
)
((equal par 'previous)

(setq par (subl (get #newfile 'curr_par)))
)
(t nil)

)

(t nil)
)
(setq orig (append orig (list par)))
(cond ((or (lessp par 1) (greaterp par (get filename 'nr_of_par)))

(prinl "Paragraph ") (print par)

)

(print" does not exist.")
(print "The command cannot be executed.")
(return nil)

(t nil)
)
(setq no of lines (sum-up (subl par)))
(setq del_par (get 'ch_par 'd))
(cond ((member par del par)

(prinl "Paragraph") (prinl par)

)

(print "has been previously deleted.")
(print "The command cannot be executed.")
(return nil)

(t nil)
)%cond member

(while (and del_par (lessp (car del_par) par))
(setq subtr (subl subtr))
(setq no of lines (difference no of lines (cadr (assoc

- - (car del_par)-(get filename 'par)))))
(setq del_par (cdr del_par))

)%while
(setq app_par (get 'ch_par 'a))
(while (and app_par (lessp (car app_par) par))

(setq addt (addl addt))
(setq no_of_lines (plus no_of_lines (cadr (assoc (car app par)

(get #newfile 'par)))))
(setq app_par (cdr app_par))

)
(setq ins_par {get 'ch_par 'i))
(while (and ins_par (lessp (car insyar) (addl par)))

(setq addt (addl addt))
(setq no of lines (plus no of lines (cadr (assoc (car

- - ins par) (get #newfile 'par)))))
(setq ins_par (cdr ins_par))-

-64-

)
(setq par (plus par addt subtr))
(cond ((equal (length para) 2)

(setq par begin (plus offs no of lines (subl par) subtr addt))
(setq para (cadr para))
(go lab)

)
(t (cond ((equal par begin 0)

(setq par begin (plus offs no of lines
- (subl par) subtr-addt))

)

(return (list par begin (subl (plus par begin
(cadr (assoc (plus par subtr addt)

(get #newfile 'par))))))

(t (return (list par begin
(subl (plus offs no of lines (subl par)

subtr addt (assoc-(plus par subtr
addt)(get #newfile 'par))))))

)
)

)
)

)%prog
)%de

(de sum-up (lim)
%Sums the number of lines for the first lim paragraphs.
%called by??
%calls itself recursively

(cond ((lessp O lim)
(plus (sum-up (subl lim)) (cadr (assoc lim (get filename

'par))))
)
(t 0)

)
)%de sum-up

(de merge (ab)
%Merges 2 sorted lists into 1 sorted list
%called by update-I, update-p
%calls itself recursively

(cond ((null a) b)

-65-

)

((null b) a)
(t (cond ((lessp (car a) (car b))

)
)

(cons (car a) (merge (cdr a) b))
)
(t (cons (car b) (merge a (cdr b)))
)

)%de merge

(de update-1 (x)
%Updates the property lists of ch_par, ch line and filen
%one line at a time
%called by comm-distr
%calls merge, beg, adjul, ad-asso

(setq new nil)
(put 1 ch line comm (merge (get 1 ch line comm) (list x)))

%find the par, in which the line is
(setq xl x)
(setq para 0)
(setq xl (difference xl offs))
(while (greaterp xl 0)

(setq para (addl para))
(setq xl (difference xl (plus (cadr (assoc para (get #newfile

'par))) 1)))
)%while

%insert the par-# at the right place of the property com of ch_par
(setq paral (cadr (assoc para (get #newfile 'par))))
(cond ((or (equal comm 'a) (equal comm 'i))

(setq paral (addl paral))
)
(t (setq paral (subl paral)))

)
(cond ((lessp paral 1)

(put #newfile 'nr_of_par (subl (get #newfile 'nr_of_par)))
(cond ((equal (get #newfile 'nr_of_par) 0)

)

(print "Your file does not contain any lines any more")
)
(t

)t

(put f/newfile 'par (append (beg (subl para))
(adjul par (get #newfile 'nr_of_par))))

)%lessp paral 1
(t %paral /= 0

-66-

)%cond
)%de

(ad-asso para paral)
)%t

(de update-p (p)
%Updates the properties of #newfile and ch line.
%called by
%calls merge, beg, adjul, adju2

(cond ((equal comm 'd)

)

(setq low (addl (sum-up (subl p))))
(setq high (plus low (cadr (assoc p (get filename 'par)))))
(setq c nil)
(while (greaterp high low)

)

(setq c (append c (list low)))
(setq low (addl low))

(put 'ch line 'd (menge (merge (get 'ch line 'd) c)))
(put #newfile 'par (append (beg (subl p)) (adjul p

(get #newfile 'nr of par))))
(put #newfile 'nr_of_par (subl (get #newfile 'nr_of_par)))

(t (put #newfile 'par (append (beg p)

)
)

(adju2 (addl p) (get #newfile
'nr_of_par))))

(put #newfile 'nr_of_par (addl (get #newfile 'nr_ofyar)))
(setq 111 (cu-par p))
(setq 10 0)
(setq 112 nil)
(while (lessp l0(cadr (assoc p (get #newfile 'par))))

(setq 112 (cons 111 112))
(setq 10 (addl 10))

)
(put 'ch line comm (merge 112 (get 'ch line comm)))

)%de update-p

(de adjul (lo hi)
Adjusts the association list of the property par of 1/newfile.
%called by update-1, update-p
%calls itself recursively

-67-

(cond ((lessp lo hi)
(append (list (list lo (cadr (assoc (addl lo)

(get //newfile 'par)))))
(adjul (addl lo) hi))

)
(t nil)

)
)%de adjul

(de adju2 (lo hi)
%Adjusts the association list of the property par of #newfile.
%called by update-p
%calls itself recursively

(cond ((lessp lo hi)
(append (adju2 lo (subl hi))
(list (list (addl hi) (cadr (assoc hi

(get #newfile 'par))))))
)
(t nil)

)
)%de adju2

(de beg (count)
%Copies the part of the association list before the paragraph
%being worked on.
%called by update-I, update-p
%calls itself recursively

(cond ((lessp O count)
(append (beg (subl count))
(list (list count (cadr (assoc count

(get #newfile 'par))))))
)
(t nil)

)
)%de beg

(de ad-asso (pl p)
%Adds a new element to the association list of par of #newfile
%called by update-I
%calls -

-68-

(setq countl 1)
(setq res nil)
(while (lessp countl pl)

(setq res (append res (list (assoc countl (get #newfile 'par)))))
(setq countl (addl countl))

)
(setq res (append res (list (list pl p))))
(while (lessp countl (get flnewfile 'nr_of_par))

(setq countl (addl countl))
(setq res (append res (list (assoc countl (get #newfile 'par)))))

)
(put #newfile 'par res)

)%de ad-asso

(de cu-line (x)
%Calculates current paragraph number from current line number
%called by comm-distr
'¼,calls -

(setq p 0)
(put flnewfile 'curr line x)
(while (greaterp x ~1)

(setq p (addl p))
(setq x (difference (subl x) (cadr (assoc p (get filename 'par)))))

)%while
(put #newfile 'curr_par p)

)%de cu-line

(de cu-par (p)
%Calculates the current line number from the current paragraph
%called by comm-distr
%calls -

(setq x 0)
(put 1/newfile 'curr_par p)
(while (greaterp p 1)

(setq p (subl p))
(setq x (plus x 1 (cadr (assoc p (get filename 'par)))))

)
(put 1/newfile 'curr line x)

)%de cu-par

-69-

(de menge (x)
%Transforms an ordered list into an ordered set
%called by??
%calls itself recursively

(cond ((null (cdr x))
X

)
((equal (car x) (cadr x))

(menge (cons (car x) (cddr x)))
)
(t (cons (car x) (menge (cdr x)))
)

)
)%de menge

(de main (sen)
%Initializes all necessary variables.
%called by inter-face
%calls prepare-input

(setq c num '(one two three four five six seven eight nine ten
eleven twelve))%cardinal numbers

(setq o num '(first second third fourth fifth sixth seventh
eighth ninth tenth eleventh twelvth))

(prepare-input sen)
)%de main

(de prepare-input (sen)%for the atn's
%This program scans an input sentence. If a number is encountered
%trace nwn is called.
%The number is replaced by# and is added to num list.
%Nwn_list consists of all numbers in the sentence in the original
%sequence and indicators, whether the number is a cardinal number (t)
%or an ordinal number.
%If text in" is encountered, it is put on the text list and its
%occurrence is marked by a$ in the sentence. -
%If an identifier is encountered, build-word is called.
%Punctuation marks in a sentenc'e are ignored and
%eliminated.
%called by main
%calls add-and, parse, comm-distr, trace-nwn, build-word, split

(prog (inp comm mun list input retl text list)
(setq punct_marks-'(!' !: !; !? !!))

-70-

10

11

(setq input nil)
(setq retl nil)
(setq inp sen)

(cond ((null inp)
(setq input (add-and input))
(terpri)(terpri)(terpri)
(setq f2 nil)
(cond ((parse input)

(setq orig nil)

)

(setq f2 (rem f2 '(nil)))
(cond ((member comm '(ma mi ka ki))

(setq seql (moving £2))
)
((member 'file input)

(setq seql (list (cons comm
(list 'file))))

)
(t

(setq seql (split £2))
)

)
(setq r 't)
(while (and seql r)

)

(setq comm (caar seql))
(setq r (comm-distr (car seql)))
(setq retl (append retl (list r)))
(setq seql (cdr seql))

(cond (r

)
(t

)
)

(trans£ temp filen)
(transfl 'ch 1 'ch line)
(transfl 'chy 'chyar)
(return (list retl))

(transf filen temp)
(transfl 'ch line 'ch 1)
(transfl 'chyar 'ch_p)
(return nil)

(t nil)
)

)%input is traced till the end
((numberp (car inp))

(setq num list (append num list
- (trace-num)))-

-71-

)

(setq input (append input (list'#)))
(setq inp (cdr inp))
(go 11)

((equal (car (explode (car inp))) '!")(setq text_list

)

(append text list (list (car inp))))
(setq input {append input (list'$)))
(setq inp (cdr inp))
(go 11)

((member (car inp) punct marks) (set inp (cdr inp)) (go 11))
((idp (car inp)) (setq input (append input

)

(list (build-word))))
(setq inp (cdr inp))
(go 11)

(t (print "error"))
)%cond

)%prog
)%de prepare-input

(de trace-nwn ()
%If a number is a cardinal number, a list of the number and nil
%is returned.
%If the number is an ordinal number, which is detected by
%checking whether the next word in the sentence is st, nd, rd,
%or th, a list of the nwnber and tis returned.
%called by prepare-input
%calls -

(prog()
(setq i (car inp))
(cond ((and (cdr inp) (member (cadr inp) '(st nd rd th)))

(setq inp (cdr inp))
(return (list(list i 't)))

)
(t (return (list (list i nil))))

)%cond
)%prog
)%de trace-nwn

(de build-word()
%If a punctuation mark follows a word without a blank,
%this punctuation marks is deleted.
%If a word is a number-word(l-12), its meaning is found out

-72-

%and a list of the number and tor nil,
%depending on whether the number is an ordinal or
%cardinal number is returned. The word is set to#.
%Otherwise the word is returned unchanged.
%called by prepare-input
%calls -

(prog ()
(setq word (car inp))
(cond ((member (car (reverse (explode word))) punct marks)

(setq word (compress (reverse (cdr (reverse (explode
))))))))

%get rid of punct mark
(cond ((member word c num)

word

(cond ((equal word 'one) (setq num list (append num list
(list (list '1 'nil)))))

((equal word 'two) (setq num list (append nwn list
(list (list '2 'nil)))))

((equal word 'three) (setq num list (append nwn list
(list (list '3 'nil)))))

((equal word 'four) (setq num list (append nwn list
(list (list '3 'nil)))))

((equal word 'five) (setq num list (append num list
(list (list '5 'nil)))))

((equal word 'six) (setq num list (append num list
(list (list '6 'nil)))))

((equal word 'seven) (setq num list (append nwn list
(list (list '7 'nil)))))

((equal word 'eight) (setq num list (append nwn list
(list (list '8 'nil)))))

((equal word 'nine) (setq num list (append num list
(list (list '9 'nil)))))

((equal word 'ten) (setq num list (append num list
(list (list '10 'nil)))))

((equal word 'eleven) (setq num list (append num list
(list (list '11 'nil)))))

((equal word 'twelve) (setq num list (append num list
(list (list '12 'nil))))

)
)%word
(return '#)

)%cond cardinal mumber
((member word o num)

(cond ({equal word 'first)
(cond ((and (numberp (cadr inp))(null(member

(cddar inp) '(st nd rd th))))
(return word))

(t (setq num list (append nwn list
- (list (list '1 't)))))

-73-

)
)%prog

)%cond
)%equal
({equal word

({equal word

((equal word

({equal word

((equal word

((equal word

{(equal word

{(equal word

((equal word

((equal word

((equal word

)
(return 'II)

)%cond ordinal number
(t (return word))

)%de build-word

(de add-and (sentence)

'second) (setq num list (append num list
(list (list '2 't))))-)

'third) (setq num list (append num list
(list {list '3 't)))))

'fourth) (setq num list (append num list
(list (list '4 't))))-)

'fifth) (setq num list (append num list
(list (list 'S 't)))))

'sixth) (setq num list (append num list
(list (list '6 't)))))

'seventh) (setq nwn list (append num list
(list-(list '7 't)))))

'eighth) (setq num list (append num list
(list (list '8 't))))-)

'ninth) (setq num list (append num list
(list (list '9 't)))))

'tenth) (setq num list (append num list
(list (list 'IO 't)))))

'eleventh)(setq nurn list (append num list
(list (list '11 't)))))

'twelvth) (setq num list (append num list
(liit (list '12 't)))))

%After a sentence is scanned, it is checked, whether 2 numbers follow
%each other without an 'and' in between. In this case the 'and' is
%fit in.
%If 2 numbers are connected by 'to', 'thru', or 'through', the
%intermediate values connected with and are added in between.
%The num_list is changed appropriately for both cases-.
%called by prepare-input
%calls -

(prog (sent lower_bound upper_bound help nl)
11

(cond ((and sentence (cdr sentence))
(cond ((and (equal (car sentence) '#)

(equal (cadr sentence) '#))

-74-

)

(setq sent (append sent (list (car sentence)
'and)))

(setq nl (append nl (list (car num_list))))
(setq num list (cdr num list))
(setq sentence (cdr sentence))
(go 11)

((and (equal (car sentence) '#)
(member (cadr sentence) '(thru through to))
(equal (caddr sentence) '#))

%e.g. 7 thru 9 -> 7 and 8 and 9
(setq lower bound (caar nurn list))
(setq upper-bound (caadr num list))
(cond ((equal lower bound upper bound)

(setq sent (append sent

)%cond

(list (car sentence))))
(setq num list (cdr num list))
(setq sentence (cdddr sentence))
(go 11)

)%equal
((greaterp lower bound upper bound)

(setq help lower bound) -
(setq lower bound upper bound)
(setq upper-bound help)-

)%gt -
(t nil)

(setq num list (cdr num list))
(while (lessp lower bound upper bound)

)%while

(setq sent (append sent-(list '# 'and)))
(setq nl (append nl (list

(list lower bound
(cadar nwn list)))))

(setq lower_bound (addl lower_bound))

(setq sentence (cddr sentence))
(setq nwn list (append (list (list upper bound

(cadar num_list)))(cdr num_list)))
(go 11)

)%and or
(t (setq

(cond
sent (append sent (list (car sentence))))
((equal (car sentence) '#)

)

(setq nl (append nl (list
(car nwn list))))

)
(setq num_list (cdr nurn_list))

(t nil)

(setq sentence (cdr sentence))
(go 11)

-75-

)%t
)%cond
(go 11)

)%and
(sentence (setq sent (append sent sentence))

(cond ((equal (car sentence) '#)

)%sentence

(setq nl (append nl (list (car num_list))))
)

(t nil)
)
(setq nwn list nl)
(return sent)

(t (setq num list nl) (return sent))
)%cond -

)%prog
)%de add-and

(de split (arg)
%Splits the command in a sequence of commands, each referring to
%one location.
%called by prepare-input, moving
%calls matchl, match2, match3, x-change

(setq m2 nil)
(setq ret nil)
(cond ((equal (length arg) 1)

)

(cond ((and (caar arg) (member (car arg) 'file))
(setq ret (list (cons comm (car arg))))
(setq mi nil)

)

)
(t

(setq mi (matchl (car arg)))
)

((equal (length arg) 2)
(cond ((and (member 'paragraph (car arg))

(null (member 'paragraph
(cadr arg))))

(setq mi (match2 (cadr arg) (car arg) nil))
)
((setq mi (match3 (car arg) (cadr arg)))

nil
)
(t (setq mi (match2 (car arg) (cadr arg) nil))
)

-76-

)
)

)
)
((equal (length arg) 4)

)
(t

)

(cond ((and (member 'paragraph (car arg))
(null (member 'paragraph

)

(cadr arg))))
(setq mi (match2 (cadr arg) (car arg) nil))

)
(t (setq mi (match2 (car arg) (cadr arg) nil))
)

(cond ((and (member 'paragraph (caddr arg))
(null (member 'paragraph

(cadddr arg))))

)

)

(setq mi (match2 (caddr arg)
(caddr arg) nil))

(t (setq mi (match2 (caddr arg)
(cadddr arg) nil))

)

(cond ((member 'paragraph (car arg))
(setq m2 (match2 (cadr arg)

(car arg) nil))
(setq mi (match2 (caddr arg)

(car arg) nil))
)
(t (setq m2 (match! (car arg)))

)

(cond ((member 'paragraph (cadr arg))
(setq mi (match2 (caddr arg)

(cadr arg) nil))
)

)

(t (setq mi (match2 (cadr ·arg)
(caddr arg) nil))

)

(cond (m2
(while m2

(setq m3 mi)
(while m3

(setq ret (append ret (list (list
comm (car m2) (car m3)))))

(setq m3 (cdr m3))
)%while

-77-

)

(setq m2 (cdr m2))
)%while m2

(t (while mi
(setq ret (append ret (list

(cons comm (car mi)))))
(setq mi (cdr mi))

)%wh
)

)
)%de split

(de matchl (lp)
%Builds the proper sequence of commands if referring
%to several locations.
%called by split
%calls -

(setq seq nil)
(setq 11 (car lp))
(setq lr (cdr lp))
(while lr

(cond ((or (numberp (car lr)) (null (cdr lr)))
(setq seq (append seq (list

)
)%wh
seq

)%de matchl

)

(list 11 (car lr)))))
(setq lr (cdr lr))

(t (setq seq (append seq (list (list

)

11 (car lr) (cadr lr)))))
(setq lr (cddr lr))

(de match2 (1 p x)
%Builds the proper sequence of commands if referring to
%several distinct locations.
%called by split, match3
%calls -

(setq 11 (cdr 1))
(setq p2 (cdr p))

-78-

(setq 1 (car 1))
(setq p (car p))
(setq seq nil)
(while 11

(cond ((or (numberp (car ll))(null (cdr 11)))
(setq pl p2)

)%t

(while pl
(cond ((or (numberp (car pl))

(null (cdr pl)))
(cond (x

(setq seq (append seq (list
(list (list 1 (car 11))
(list p (car pl))))))
)
(t

(setq seq (append seq (list
(list 1 (car 11) p (car pl)

))))

)%cond

)%t

(setq pl (cdr pl))
)

(t (cond (x
(setq seq (append seq (list

(list (list 1 (car 11))
(list p (car pl)

(cadr pl))))))
)
(t
(setq seq (append seq (list

(list 1 (car 11) p (car pl)
(cadr pl)))))

)%cond

)
)

(setq pl (cddr pl))
)

(setq 11 (cdr 11))
)
(t (setq pl p2)

(while pl
(cond ((or (numberp (car pl)

(null (cdr pl)))
(cond (x

)

(setq seq (append seq (list
(list (list 1

(car 11) (cadr 11))
(list p (car pl))))))

-79-

(t

)
)

(setq seq (append seq (list
(list 1 (car 11)

(cadr 11) p (car pl)
))))

(setq pl (cdr pl))
)

(t (cond (x

)

(setq seq (append setq (list (list (list
1 (car 11) (cadr 11))

(list p (car pl) (cadr pl))))))
)
(t (setq seq (append seq (list (list 1 (car 11)

(cadr 11) p (car pl) (cadr pl)))))
)

(setq pl (cddr pl))
)

)
)
(setq 11 (cddr 11))
)%t

)%cond
)%wh
seq

)%de match2

(de match3 (1 p)
%Is called if references to lines or paragraphs
%are connected by 'and'.
%called by split
%calls match2

(cond ((or (and (member 'line 1)

)

(member 'line p))
(and (member 'paragraph 1)

(member 'paragraph p)))
(match2 1 p 't)

(t nil)
)

)%de match3

-80-

(de rem (x y)
%Removes item y from the list x
%called by inter-face
%calls itself recursively

(cond ((null x) x)
((equal (car x) y)

)
)%de rem

(rem (cdr x) y)
)
(t (cons (car x) (rem (cdr x) y)))
)

(de comm-distr (qed)
%Calls different functions depending on the command and
%then assembles the command in a syntactically correct form.
%called by prepare-input
%calls extract, update-I, cu-line, update-p

(prog (what where)
(setq
(cond

)

ql (car qed))
((member 'file qed)

(cond ((equal ql 's)

)

(setq ret nil)
(while text list

(setq ret (append
(car text_list)

ret (list "1,$s/"
"/" (cadr text list)
"/"))) -

(setq text list (cddr text list))
)%while - -
(put filen 'curr line (get-dollar))
(put filen 'curryar (get filen 'nr_of_par))
(return ret)

((equal ql 'p)

)

(put filen 'curr_par (get filen 'nr_of_par))
(put filen 'curr line (get-dollar))
(return "I,$p")

(t nil)
)

)%cond member
(t nil)

(cond ((equal ql 'mi)

-81-

)

(setq where (extract (caddr qed)))
(cond ((null where)

)

(return nil)
)
((atom where)

where
)
(t (setq where (car where))
)

(setq qed (cons 'i (cadr qed)))
(setq ql "zmO")
(setq cl 'd)
(setq c2 'i)

((equal ql 'ma)

)

(setq where (extract (caddr qed)))
(cond ((null where)

(return nil)
)
((atom where)

where
)
(t (setq where (cadr where))
)

)
(setq qed (cons 'a (cadr qed)))
(setq ql "zmO")
(setq c2 'a)
(setq cl 'd)

((equal ql 'ki)

)

(setq where (extract (caddr qed)))
(cond ((null where)

(return nil)
)
((atom where)

(setq where (subl where))
)
(t (setq where (car where))
)

)
(setq qed (cons 'i (cadr qed)))
(setq ql "zkO")
(setq cl nil)
(setq c2 'i)

((equal ql 'ka)
(setq where (extract (caddr qed)))
(cond ((null where)

-82-

)

)

(return nil)
)
((atom where)

where
)
(t (setq where (cadr where))
)

(setq qed (cons 'a (cadr qed)))
(setq ql "zkO")
(setq cl nil)
(setq c2 'a)

(t nil)
)
(setq what (extract (cdr qed)))
(cond ((null what)

(return nil)
)
((atom what)

(cond ((equal ql 's)

)

(setq ret (list what ql "/" (car text_list)
"/" (cadr text list) "/p"))

(setq text list (cddr text_list))
(cu-line what)

((or (equal ql 'i)(equal ql 'a))

)

(setq ret (list what ql (car text list) "\f"))
(setq text list (cdr text_list)) -
(update-I what)
(cu-line what)

(t (cond (where

)

(setq ret (list where "p" what ql))
(cond (cl

)

)

(setq comm 'd)
(update-I what)
(setq comm c2)
(update-I where)

(t (setq comm c2)
(update-I where)

)

(cu-line where)

(t (setq ret (list what ql))
(update-I orig)
(cu-line orig)

)

-83-

)
)

)
)

((equal ql 'i)

)

(setq ret (list (car what) ql
(car text list) "\f"))

(setq text list (cdr text list))
(update-1 (car what)) -
(cu-line (car what))

((equal ql 'a)

)

(setq ret (list (cadr what) ql
(car text list) "\f"))

(setq text list (cdr text list))
(update-1 (cadr what)) -
(cu-line (cadr what))

((equal ql 's)

)
(t

(setq ret (list (car what)"," (cadr what) ql "I°
(car text list)"/" (cadr text list)"/"))

(setq text list-(cddr text list)) -
(cu-line (~adr what)) -

(cond (where
(setq ret

(cond (cl

)

(list where "p" (car what)
(cadr what) ql))

(setq comm cl)
(cu-line (car what))

II II

'

(update-p (get filen 'curr_yar))
(setq low (car what))
(setq high (cadr what))
(while (lessp low (addl high))

(update-1 low)
(setq low (addl low))

)
(setq comm c2)
(cu-line where)
(update-p (get filen 'curr_par))
(setq low (car what))
(setq high (cadr what))
(while (lessp low (addl high))

(update-1 where)
(setq low (addl low))

)

(t %cl= nil
(setq comm c2)
(cu-line where)

-84-

)

)
)

(return ret)
)%prog
)%de comm-distr

(de extract (q)

)
)

)

(update-p (get filen 'curr_par))
(setq low (car what))
(setq high (cadr what))
(while (lessp low (addl high))

(update-I where)
(setq low (addl low))

)

(t (setq ret (list (car what) (cadr what) ql))
(cu-line (cadr what))
(update-p (get filen 'curr_par))

)

%Extracts the line and paragraph numbers from the different
%formats of input.
%is called by comm-distr
%calls?, ??, upd, buildllist, buildplist, ???

(setq 1 nil)
(setq p nil)
(setq orig nil)
(cond ((equal (length q) 2)

)

(cond ((equal (car q) 'line)

)

(setq 1 (? (cadr q) 0))
)
(t (setq p (?? (cadr q)))
)

((equal (length q) 3)

)

(cond ((equal (car q) 'line)

)

(setq 1 (? (buildllist (cdr q)) O))
)
(t (setq pp (buildplist (cdr q)))

(setq p (?? pp))
)

-85-

((equal (length q) 4)
(setq 1 (? (cadr q) (car (reverse q))))

)
((equal (length q) 5)

(cond ((equal (cadr (reverse q)) 'paragraph)
(setq 1 (? (buildllist (list (cadr q) (caddr q)))

(car (reverse q))))
)
(t (setq p (??? (cadr q) (buildplis t

(list (cadr (reverse q))
(car (reverse q))))))

)
)

)
(t (setq ql (buildllist (list (cadr q) (caddr q))))

(setq q2 (buildplist

)
)

(setq

(cond (1 1)
(p p)
(t nil)

)

1 (??? ql q2))

%to return the correct values
)%de extract

(de upd (1)

(list

%1 is a par-# w.r.t the original file

(cadr (reverse q))
(car (reverse q)))))

%upd returns the par-# w.r.t. the current file
%called by extract
%calls -

(setq h 0)
(setq help (get 'ch_par 'd))
(while (and help (lessp (car help) 1))

(setq h (subl h))
(setq help (cdr help))

)
(setq help (get 'ch_par 'a))
(while (and help (lessp (car help) 1))

(setq h (addl h))
(setq help (cdr help))

)
(setq help (get 'ch_par 'i))
(while (and help (lessp (car help) (addl 1)))

(setq h (addl h))

-86-

(setq help (cdr help))
)
(plus 1 h)

)%de upd

(de??? (ln ph)
%For references to more than one paragraph this function
%calls? repeatedly.
%called by extract
%calls ?

(prog 0
(setq s nil)
(setq resl nil)

labl
(cond ((lessp (car ph) (addl (cadr ph)))

(setq s (? ln (car ph)))
(cond (s

(setq resl (append resl s))
(set (car ph) (addl (car ph)))
(go labl)

)
(t (return nil)
)

)
)
(t (return resl)
)

)
)%prog
)%de???

(de buildplist (listl)
%For refernces to more than one paragraph this function builds
%the appropriate list of paragraph numbers.
%called by extract
%calls -

(setq adv (car listl))
(setq num (cadr listl))
(cond ((equal adv 'first)

(list 1 num)
)
((equal adv 'last)

-87-

(list (addl (difference (get filename 'nr_of_par) num))
(get filename 'nr_of_par))

)
((equal adv 'previous)

(list (difference (get filen 'curr_par) num)
(subl (get filen 'curr_par)))

)

)

(t (list (addl (get filen 'curr_par))
(plus (get filen 'curr_par) num))

)

)%de buildplist

(de buildllist (list!)
%For references to more than one line this function returns
%the appropriate list of line numbers.
%called by extract
%calls get-dollar

(setq adv (car listl))
(setq num (cadr listl))
(cond ((equal adv 'first)

(list 1 num)
)
((equal adv 'last)

(setq x (get-dollar))

)

(list (addl (difference x num)) x)
)
((equal adv 'previous)

)
(t

)

(list (difference (get filen 'curr line)
(subl (get filen 'curr_line)))

(list (addl (get filen 'curr line))
(plus (get filen 'curr=line) num))

)%de buildllist

(de get-dollar()
%Gets the last line in the file.
%called by?, buildllist
%calls -

(setq res O)

-88-

num)

(setq cnt 0)
(while (lessp cnt (get filename 'nr of par))

(setq cnt (addl cnt)) - -
(setq res (plus res (cadr (assoc cnt (get filename 'par)))))

)
(plus res (subl cnt) offs)

)%de get-dollar

-89-

APPENDIX B

The following is a sample session of the interface program.
The user intends to work on four files with the names docul, docu2,
docu3 and docu4.
This demonstration gives a selection of the variety of commands possible.
Commands that refer to lines are also accepted, if the same format is used
referring to paragraphs instead of lines and vice versa.

>>START JOURNALIZING
>(inter-face)
"give the name of the file you want to work with."
docul
"does your file have a title? if no, type ()"
y
"how many paragraphs does your file have?"
3
"how many lines does paragraph "1" have?"
5
"how many lines does paragraph "2" have?"
3
"how many lines does paragraph "3" have?"
8
"type your first command."
"if you want to quit, type () . "
(in my file substitute" it" by" they" and" we" by" you")
Collecting

Collecting
Collecting
Collecting

((in my file substitute$ by$ and$ by$) accepted)

"if you want to quit, type () . "
"otherwise type your next command."
(also replace"" by" "in paragraph two)

Collecting
Collecting

-90-

((also replace$ by$ in paragraph#) accepted)

Collecting
"if you want to quit, type ()."
"otherwise type your next command."
(furthermore exchange line 5 and 7)

Collecting

((furthermore exchange line# and#) accepted)

Collecting
Collecting
"if you want to quit, type ()."
"otherwise type your next command."
(would you remove line 2 in para 1)

Collecting
Collecting

((would you remove line# in para#) accepted)

Collecting
"line "5" has been previously deleted."
"the command cannot be executed."
"if you want to quit, type ()."
"otherwise type your next command."
(please display my file)

Collecting

((please display my file) accepted)

"if you want to quit, type ()."
"otherwise type your next command."
0
"the sequence of commands you have to use is the following:"
qed

-91-

"r "docul
"1,$s/'"' it""/"'' they '"'/""1,$s/"" we 1111

/
1111 you 1111

/
11

9", "lls"/"" '"'/"Collecting
II 1111 /II

7"p"S "zkO"
5 "p"7"zk0"
Sd
7d
"1,$p"
w
q
"file "docul" now has "3" paragraphs."

"paragraph "1" now has "5" lines."
"paragraph "2" now has 11311 lines."
"paragraph "3" now has 11 811 lines."
"if you want to work with another file, give its name."
"otherwise type (). 11

docu2
"does your file have a title? if no, type
()
"how many paragraphs does your file have?"
3
"how many lines does paragraph "1" have?"
2
"how many lines does paragraph "2 II have?"
4
"how many lines does paragraph 1t3 II have?"
5
"type your first command."
"if you want to quit, type () . "
(delete the last paragraph)

Collecting

((delete the last paragraph) accepted)

Collecting
"if you want to quit, type ()."
"otherwise type your next command."
(add "the" after the 2nd line)

Collecting
Collecting

-92-

() II

Collecting

((add$ after the# line) accepted)

"if you want to quit, type ()."
"otherwise type your next command."
(delete line 2 in para 3)

Collecting
Collecting

((delete line# in para#) accepted)

"line "10" has been previously deleted."
"the command cannot be executed."
"if you want to quit, type ()."
"otherwise type your next command."
(put "this" before the previous line)

Collecting

((put$ before the previous line) accepted)

"if you want to quit, type () . 11

"otherwise type your next command."
(insert "end" after the last line)
Collecting

Collecting

((insert$ after the last line) accepted)

Collecting
"if you want to quit, type ()."
"otherwise type your next command."
(move line 5 after line 7)

-93-

Collecting
Collecting

((move line# after line#) accepted)

"line "7" has been previously deleted."
"the command cannot be executed."
"if you want to quit, type () . 11

"otherwise type your next command."
0
"the sequence of commands you have to use is the following:"
qed
"r "docu2
8", 11 12d
2a
"the"
"\f"
1i
"this"
"\f"
10a
"end"
II\ f"
w
q
"file "docu2" now has "2" paragraphs."

"paragraph "l" now has "4" lines."
"paragraph "2" now has "5" lines."
"if you want to work with another file, give its name."
"otherwise type ()."
docu3
"does your file have a title? if no, type ()"
()
"how many paragraphs does your file have?"
3
"how many lines does paragraph II J II have?"
10
"how many lines does paragraph "2" have?"
6
"how many lines does paragraph "3" have?"
7
"type your first command."
"if you want to quit, type ()."
(please remove line 3 from paragraph 2)

-94-

Collecting
Collecting

((please remove line# from paragraph#) accepted)

Collecting
"if you want to quit, type ()."
"otherwise type your next command."
(copy line 3 before line 7)
Collecting

Collecting

((copy line# before line#) accepted)

Collecting
"if you want to quit, type O . "
"otherwise type your next command."
(in the second paragraph would you please erase line 3)
Collecting

Collecting
Collecting

((in the# paragraph would you please erase line#) accepted)

"line "14" has been previously deleted."
"the command cannot be executed."
"if you want to quit, type ()."
"otherwise type your next command."
(in para 4 please delete the first line)
Collecting

Collecting

((in para# please delete the# line) accepted)

-95-

Collecting
"paragraph 11 411 does not exist."
"your command cannot be executed."
"if you want to quit, type ()."
"otherwise type your next command."
(put "end" after line 30)

Collecting

((put$ after line#) accepted)

"line "30" does not exist."
"the command cannot be executed."
Collecting
"if you want to quit, type (). 11

"otherwise type your next command."
(show the file)

((show the file) accepted)

Collecting
"if you want to quit, type ()."
"otherwise type your next command."
()
"the sequence of coIIDDands you have to use is the following:"
qed
"r "docu3
14Collecting
d
6"p"3"zk0"
"I,$p"
w
q
"file "docu3" now has "3" paragraphs."

"paragraph "I" now has "11" lines."
"paragraph "2" now has "5" lines."
"paragraph "3" now has "7" lines."
"if you want to work with another file, give its name."
"otherwise type ()."
docu4

-96-

"does your file have a title? if no, type
0
"how many paragraphs does your file have?"
5
"how many lines does paragraph
3
"how many lines does paragraph
7
"how many lines does paragraph
5
"how many lines does paragraph
9
"how many lines does paragraph
4
Collecting
"type your first command."
"if you want to quit, type ()•II
(delete line 4 in para 3 and 4)

Collecting
Collecting
Collecting

"1" have?"

"2" have?"

"3" have?"

"4" have?"

115 II have?"

((delete line# in para# and#) accepted)

Collecting
"if you want to quit, type ()."
"otherwise type your next command."
(delete the next 3 lines)

Collecting

((delete the next# lines) accepted)

Collecting
"if you want to quit, type ()."
"otherwise type your next command."
(delete the previous para)
Collecting

-97-

0"

((delete the previous para) accepted)

Collecting
"if you want to quit, type ()."
"otherwise type your next command."
(delete the first 3 lines)
Collecting

Collecting

Since the first paragraph consists of 3 lines, this command
has the same effect as the command "delete the first paragraph".

((delete the first# lines) accepted)

"if you want to quit, type () . "
"otherwise type your next command."
(delete line 4 and 3 in para 2)

Collecting
Collecting

((delete line# and# in para#) accepted)

"line "16" has been previously deleted."
"the command cannot be executed."
"if you want to quit, type ()."
"otherwise type your next command."
()
"the sequence of commands you have to use is the following:"
qed
"r "docu4
16d
21d
21","23d
12","lSd
1", "3d
w
q
"file "docu4" now has "2" paragraphs."

"paragraph "1" now has "7" lines."
Collecting

-98-

"paragraph "2" now has "4" lines."
"if you want to work with another file, give its name."
"otherwise type ()."
()
nil
>!jour off
>>STOP JOURNALIZING

-99-

	FN-000001
	FN-000002
	FN-000003
	FN-000004
	FN-000005
	FN-000006
	FN-000007
	FN-000008
	FN-000009
	FN-000010
	FN-000011
	FN-000012
	FN-000013
	FN-000014
	FN-000015
	FN-000016
	FN-000017
	FN-000018
	FN-000019
	FN-000020
	FN-000021
	FN-000022
	FN-000023
	FN-000024
	FN-000025
	FN-000026
	FN-000027
	FN-000028
	FN-000029
	FN-000030
	FN-000031
	FN-000032
	FN-000033
	FN-000034
	FN-000035
	FN-000036
	FN-000037
	FN-000038
	FN-000039
	FN-000040
	FN-000041
	FN-000042
	FN-000043
	FN-000044
	FN-000045
	FN-000046
	FN-000047
	FN-000048
	FN-000049
	FN-000050
	FN-000051
	FN-000052
	FN-000053
	FN-000054
	FN-000055
	FN-000056
	FN-000057
	FN-000058
	FN-000059
	FN-000060
	FN-000061
	FN-000062
	FN-000063
	FN-000064
	FN-000065
	FN-000066
	FN-000067
	FN-000068
	FN-000069
	FN-000070
	FN-000071
	FN-000072
	FN-000073
	FN-000074
	FN-000075
	FN-000076
	FN-000077
	FN-000078
	FN-000079
	FN-000080
	FN-000081
	FN-000082
	FN-000083
	FN-000084
	FN-000085
	FN-000086
	FN-000087
	FN-000088
	FN-000089
	FN-000090
	FN-000091
	FN-000092
	FN-000093
	FN-000094
	FN-000095
	FN-000096
	FN-000097
	FN-000098
	FN-000099
	FN-000100
	FN-000101
	FN-000102
	FN-000103
	FN-000104

