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Abstract

Previous studies used techniques from network science to identify individual nodes and a

set of nodes that were “important” in a network of phonological word-forms from English. In

the present study we used a network simplification process—known as the backbone—that

removed redundant edges to extract a subnetwork of “important” words from the network of

phonological word-forms. The backbone procedure removed 68.5% of the edges in the orig-

inal network to extract a backbone with a giant component containing 6,211 words. We com-

pared psycholinguistic and network measures of the words in the backbone to the words

that did not survive the backbone extraction procedure. Words in the backbone occurred

more frequently in the language, were shorter in length, were similar to more phonological

neighbors, and were closer to other words than words that did not survive the backbone

extraction procedure. Words in the backbone of the phonological network might form a “ker-

nel lexicon”—a small but essential set of words that allows one to communicate in a wide-

range of situations—and may provide guidance to clinicians and researchers on which

words to focus on to facilitate typical development, or to accelerate rehabilitation efforts. The

backbone extraction method may also prove useful in other applications of network science

to the speech, language, hearing and cognitive sciences.

Introduction

The mathematical tools of network science are being used increasingly in the speech, language,

hearing, and cognitive sciences to better understand typical processing as well as various disor-

ders that affect speech, language, and hearing (e.g., [1–5]). An early application of network sci-

ence to language mapped the phonological similarity that existed among 19,340 words

believed to be stored in the mental lexicon of a typical adult [6, 7]. Nodes represented phono-

logical word forms, and edges connected words that were phonologically similar based on the

addition, deletion, or substitution of a phoneme to form a web-like network, a portion of

which is shown in Fig 1 (see [8, 9] for other ways to define phonological similarity).

A central tenant of network science is that the structure of the network influences process-

ing in that system [10–12]. Computational analyses of several other languages by [13] found

the same structural features in the networks of those languages that were previously observed

in the phonological network of English [6], suggesting that the structure of phonological
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networks is not unique to English. Subsequent psycholinguistic experiments in English found

that various measures of the phonological network influenced spoken word recognition [14],

speech production [15], word-learning [16], long- and short-term memory [17], and percep-

tion of the speech to song illusion [18] in typically-developing language users as well as in peo-

ple who stutter [19] and in people with aphasia [20].

Among the various measures one can make of individual nodes in a network (i.e., the

micro-level), of a subset of nodes in the network (i.e., the meso-level), or of the whole network

(i.e., the macro-level), are metrics that allow one to identify nodes that are “important” in the

network in some way. Two previous studies used different methods to identify individual

nodes and a subset of nodes in the phonological network that were “important” in some way.

In [21] the network science measure known as closeness centrality was used to identify

“important” nodes in the network. Closeness centrality measures the average distance between

a node and all other nodes in the network, and is therefore considered a characteristic of an

individual node [22]. In [21] it was found that words like can with high closeness centrality

(i.e., it is close to many other words in the lexicon) were responded to more quickly in several

psycholinguistic tasks than words like cure that were similar in several important psycholin-

guistic variables (e.g., frequency of occurrence, word-length, etc.), but had low closeness cen-

trality (i.e., it is far from other words in the lexicon), demonstrating that a micro-level measure

of “importance” can influence processing.

In a different study [23], an algorithm developed by [24] was used to identify a set of

“important” nodes in the network called keyplayers. Keyplayers are considered “important”

because the removal of this set of nodes results in the maximal fracturing of the network. It

Fig 1. Nodes represent words, and edges are placed between words that sound similar to each other. In this

network, phonological similarity is defined by a simple computational metric (add, delete, or substitute a phoneme in a

word to form another word), but phonological similarity can be defined in other ways (e.g., [8, 9]).

https://doi.org/10.1371/journal.pone.0287197.g001
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was found in [23] that the set of words identified as keyplayers were responded to more quickly

in several psycholinguistic tasks than words that were similar to the keyplayer words in several

important psycholinguistic variables (e.g., frequency of occurrence, word-length, etc.), but

which were not in the set of keyplayers. Importantly, being a keyplayer is a characteristic of a

set of nodes, not of individual nodes as in the closeness centrality measure used in [21]. Thus,

the findings in [23] demonstrate that a meso-level measure of “importance” can influence

processing.

In the present study we used another approach—extracting the backbone—to identify

“important” nodes in the phonological network. In contrast to identifying individual nodes

[21] or a set of nodes [23] that are “important” in the network, the backbone approach can be

thought of as a whole-network/macro-level approach to identify “important” nodes. In the

backbone approach, the essence of a larger, complex network is distilled into a smaller, simpli-

fied subnetwork that maintains the basic and crucial features of the original network [25]. The

smaller, simplified subnetwork is obtained by discarding redundant or unnecessary edges.

Thus, the nodes and edges that appear in the subnetwork that is extracted via the backbone

method can be considered a way to identify “important” nodes/edges in the network at the

whole-network/macro-level.

One thing that makes the backbone method appealing to use is that often, the smaller, sim-

plified subnetwork reveals relationships that may have been hidden in the larger, more com-

plex network. For example, backbone extraction was used on a network of US Senators who

co-sponsored bills to reveal a smaller, simplified subnetwork that provided evidence for parti-

san polarization in the Senate, which was not evident using other network measures or in the

larger, complex network [25]. In the context of a network of phonologically related word-

forms, the backbone may capture the distinctive (i.e., marked) phonological features that must

be retained to differentiate between phonemes in words, and the redundant edges removed by

the backbone procedure may reflect the “default” features of phonemes in words that are easily

predicted by phonological rules (and can therefore be discarded) as proposed by various theo-

ries of phonological underspecification [26–29].

In the present study we used the backbone package in R [25] to extract the backbone of the

phonological network first examined in [6], and then compared the lexical and network char-

acteristics of the words in the backbone to the words that were not in the backbone. The

“important” nodes and edges that remain in the backbone might point to a set of essential

words and phonological relationships (i.e., a kernel vocabulary [30]) that may prove useful to

researchers and clinicians working in various areas including language development, second

language learning, and aphasia, and which might not have been revealed using other measures

from network science or using more traditional measures from psycholinguistics.

Methods

The phonological network in [6] was a unipartite network that contained 19,340 nodes repre-

senting words, and 31,267 undirected edges. Edges connected words if the addition, deletion,

or substitution of a single phoneme changed one word into the other. Additional details about

the structure of the original phonological network can be found in the results section in the

comparisons between the original network and the extracted backbone.

The backbone package for R (v2.1.1; [25]) was used to extract the unweighted backbone

from the whole network of 19,340 nodes. The backbone of a network is essentially a simplified

and smaller subnetwork that is obtained by removing redundant or unnecessary edges (see

[25] for a more technical account of the procedure). There are a variety of backbone models

that can be used depending on several factors, including whether the edges are weighted or
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unweighted, whether one is interested in preserving a hidden hub-and-spoke structure or in

revealing a hidden community structure, etc. (for guidance see [25, 31, 32]). Because previous

work demonstrated the importance of community structure in the intact phonological network

of English [33], we wished to maintain and examine further the simplified community structure

that might be revealed in the backbone. Therefore, we used the local graph sparsification model

(L-spar; [34]) with the following R command and parameter settings: sparsify(escore =
"jaccard", normalize = "rank", filter = "degree", umst = FALSE.

The escore parameter determines how to score the importance of the edges with the

jaccard coefficient being used to assess the similarity between the neighborhoods of the

endpoints of each edge (from 0, no overlap, to 1, complete overlap). The normalize param-

eter determines the method to normalize the edge scores (from 0 to 1) with the rank setting

being used to assign the value of 1 to the strongest edge. The filter parameter determines

which edges are retained, with degree indicating that the ds most important edges are

retained (s = sparsification parameter, ranging from 0 to 1, with 0 leading to the sparsest back-

bone where only the strongest edge of each node is retained). In order to obtain the sparsest

network possible, we selected s = 0 as the sparsification parameter, which resulted in 68.5% of

the edges being removed (and 0% reduction in the number of connected nodes). We used

Gephi (0.9.2; [35]) to measure various structural features of the original and backbone net-

works. Additional analyses were performed with JASP (Version 0.16.3 [36]).

Results

The original phonological network from [6] was a unipartite network that contained 19,340

nodes representing words, and 31,267 undirected edges. It had a giant component (i.e., the

largest cluster of interconnected nodes in the network) of 6,508 nodes and 29,627 edges. There

were 10,256 nodes, such as the words obtuse or spinach, that were not connected to any other

word in the network. Unconnected nodes are called isolates in the network science literature,

however, in the context of the phonological network they were referred to as “lexical hermits”

[6]. The remaining 2,567 words were connected to each other in 1,019 smaller components

that were not connected to other smaller components or to the giant component. These com-

ponents ranged in size from 2 to 53 nodes in a component, and in the context of the phonolog-

ical network they were referred to as “lexical islands” [6].

After the extraction of the backbone, the 19,340 nodes were connected via 9,843 edges.

Table 1 shows various network values for the original (intact) network, and for the network

after the backbone had been extracted. The values reported in Table 1 confirm that the phono-

logical network has been significantly “simplified” by the backbone extraction procedure.

To determine what enabled some words to “survive” the extraction process and remain in

the simplified giant component after the backbone sparcification process, we compared several

psycholinguistic characteristics and several network science measures (that have previously

been shown to influence language-related processes) of (1) the words in the giant component

of the original network (Original GC), (2) the words that remained in the giant component

after the backbone was extracted (GC of Backbone), and (3) words that were previously in the

giant component of the original network, but that did not make it in to the giant component

of the backbone (Orig. GC/Not Bb). For the network science measures, the values of each mea-

sure are for the words before the backbone was extracted. To adjust for the unequal sample

sizes and unequal variances the Welch correction for independent sample ANOVA (with

adjusted degrees of freedom) was used for all comparisons. The Tukey correction was used to

adjust for multiple post-hoc comparisons. Table 2 shows the mean (and standard deviation)

values for the analyses reported in this section.

PLOS ONE Phonological backbone

PLOS ONE | https://doi.org/10.1371/journal.pone.0287197 June 23, 2023 4 / 11

https://doi.org/10.1371/journal.pone.0287197


Familiarity was measured on a seven-point scale, with 1 = don’t know the word to 7 = know
the word [37]. There was no difference in familiarity ratings among the three different condi-

tions of words (F (2, 801.71) = 1.82, p = .16).

Word frequency refers to the average occurrence of a word (per million words) in the lan-

guage [38]. Because word frequency counts are not normally distributed, a log10 transforma-

tion was used. A significant difference overall was observed among the three conditions of

words (F (2, 822.15) = 9.10, p< .001). Post hoc comparisons revealed that there was no differ-

ence between the words in the original GC and the words in the GC of the backbone (t (1) =

0.55, p = .85). However, the words that were originally in the GC but ended up not in the back-

bone were significantly different from the words in the original GC (t (1) = -3.42, p = .002) and

the words in the GC of the backbone (t (1) = 3.58, p = .001), suggesting that words that typi-

cally occur less often in the language did not “survive” the backbone extraction process.

Table 2. Psycholinguistic and network science characteristics of words that remained in the giant component

after the backbone process and of words outside of the giant component.

Original GC GC of Backbone Orig. GC/Not Bb

Number of nodes 6,508 6,211 297

Familiarity 5.97 (1.45) 5.98 (1.44) 5.80 (1.54)

Frequency (log10) 0.80 (0.80) 0.81 (0.80) 0.64 (0.66)

Word length (# of phonemes) 4.06 (0.93) 4.02 (0.92) 4.83 (1.05)

Degree 9.11 (8.30) 9.32 (8.34) 4.63 (5.68)

Clustering Coefficient 0.28 (0.25) 0.28 (0.24) 0.27 (0.32)

Closeness Centrality 0.174 (0.03) 0.175 (0.03) 0.136 (0.04)

Note: Original GC = words in the giant component before the backbone sparcification process. GC of

Backbone = words that remained in the giant component after the backbone sparcification process. Orig. GC/Not

Bb = words that were in the giant component before the backbone sparcification process, but that did not survive the

backbone extraction process and were no longer in the giant component of the extracted backbone. Degree is the

network science term for phonological neighborhood density in psycholinguistics. Means (and standard deviation)

values are reported. The values for the network science measures are reported for the words before the backbone was

extracted.

https://doi.org/10.1371/journal.pone.0287197.t002

Table 1. Comparison of network characteristics in the original network and the extracted backbone network.

Original Network Backbone Network

Number of nodes in network 19,340 19,340

Number of edges in network 31,267 9,843

Number of nodes in GC 6,508 (34%) 6,211 (32%)

Number of edges in GC 29,627 (95%) 7,968 (81%)

Average Degree in network 3.23 1.02

Average Degree in GC 9.11 2.57

Network Diameter 29 47

Average Shortest Path Length 6.04 13.34

Number of connected components 1,019 1,071

Size of components (min.-max.) 2–53 nodes 2–48 nodes

Number of Isolates 10,256 (53%) 10,265 (53%)

Average Clustering Coefficient .32 .087

Number of communities in network 11,309 (Q = .71) 11,386 (Q = .89)

Note: GC = giant component.

https://doi.org/10.1371/journal.pone.0287197.t001
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Word length was measured as the number of phonemes in the word. A significant difference

overall was observed among the three conditions of words (F (2, 798.36) = 84.77, p< .001).

Post hoc comparisons revealed that there was no difference between the words in the original

GC and the words in the GC of the backbone (t (1) = -2.23, p = .06). However, the words that

were originally in the GC but ended up not in the backbone were significantly different from

the words in the original GC (t (1) = 13.96, p< .001) and the words in the GC of the backbone

(t (1) = -14.61, p = .001), suggesting that longer words did not “survive” the backbone extrac-

tion process.

Degree refers in network science to the number of nodes that are directly connected to a

given node. In psycholinguistic terms this measure in the phonological network is equivalent

to phonological neighborhood density, or the number of words that are similar to a given word

based on the substitution, deletion, or addition of a single phoneme in any position of the tar-

get item [8]. For a review of how degree/neighborhood density influences speech perception

and production see [39]. A significant difference overall was observed among the three condi-

tions of words (F (2, 846.63) = 92.88, p< .001). Post hoc comparisons revealed that there was

no difference between the words in the original GC and the words in the GC of the backbone

(t (1) = 1.46, p = .31). However, the words that were originally in the GC but ended up not in

the backbone were significantly different from the words in the original GC (t (1) = -9.11, p<
.001) and the words in the GC of the backbone (t (1) = 9.54, p< .001), suggesting that words

with fewer phonological neighbors did not “survive” the backbone extraction process.

Clustering Coefficient in the phonological network measures the extent to which phonologi-

cal neighbors are also neighbors of each other. More precisely, the clustering coefficient (C) is

the ratio of the actual number of edges existing among neighbors of a given word to the num-

ber of all possible edges among neighbors if every neighbor was connected. C has a range from

0 to 1. When C = 0, none of the neighbors of a given node are neighbors of each other. When

C = 1, the neighbors are fully interconnected, meaning every neighbor is also a neighbor of all

the other neighbors of a given word. This variable has been shown to influence spoken word

recognition [14], speech production [15], word-learning [16], long- and short-term memory

[17], and perception of the speech to song illusion [18]. There was no difference in the cluster-

ing coefficient values among the three different conditions of words (F (2, 791.84) = 0.13, p =

.88).

Closeness Centrality measures the average distance from one node to all other nodes in the

network (following the shortest path between any two nodes being considered). This variable

has been shown to influence language processing in healthy young adults [21], adults who stut-

ter [19], and adults with aphasia [20]. A significant difference overall was observed among the

three conditions of words (F (2, 789.61) = 117.62, p< .001). Post hoc comparisons revealed

that each condition was significantly different from the others: Original GC and the words in

the GC of the backbone (t (1) = 3.14 p = .005); Original GC and the words not in the GC of the

backbone (t (1) = -19.62, p< .001); Words in the GC of the backbone and words not in the

GC of the backbone (t (1) = 20.53, p< .001). These results suggest that words that (on average)

are farther away from other words (as indicated by the lower normalized inverse measure of

the average distance to all other nodes) do not “survive” the backbone extraction process.

Finally, we examined the community structure of words in the giant component before and

after the backbone had been extracted [40]. Communities are smaller sub-groups of nodes that

tend to be more connected to each other than to nodes found in another community (see

[33]). Using the Louvain community detection algorithm, a commonly used community

detection algorithm [41–43], we found that before the backbone procedure was executed the

giant component contained 26 communities. Modularity, Q, is typically used to measure the

extent to which clear, well-defined communities are found in a network [44]. For a formal
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definition of Q see [40]. Positive Q values close to the maximum of +1.0 indicate the presence

of clear, well-defined communities in the network. The community detection analyses in the

giant component before the backbone procedure had Q = .68. For the words in the (smaller)

giant component that emerged after the backbone procedure was executed, the words were

distributed among 60 communities, with Q = .87.

Fig 2 shows the 60 communities in the giant component from the backbone (only the 10

largest communities are colored). And Fig 3 shows a single, representative community with

words labeling the nodes. Visual inspection of Fig 3 confirms that words in the same commu-

nity have several phonological sequences in common (e.g., /et/ as in the words bet, debt, pet,
wet, set, etc.), consistent with the initial observation in [33].

Conclusion

Previous studies have identified at the micro-level individual nodes [21] and at the meso-level

a set of nodes [23] in a phonological network that were “important” for lexical processing. In

the present study we used a whole-network/macro-level approach to identify “important”

nodes. Namely, we extracted the backbone from the phonological network of English words.

In the backbone approach, a larger, complex network is distilled into a smaller, simplified sub-

network that maintains the basic and crucial features of the original network [25].

Fig 2. The 60 communities found in the giant component extracted from the backbone procedure. Only the 10 largest communities are

colored; all other nodes/communities are grey.

https://doi.org/10.1371/journal.pone.0287197.g002
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The backbone extraction process removed 68.5% of the redundant and unnecessary edges

in the phonological network examined in [6]. We compared the psycholinguistic and network

measures of the 6,211 words that remained in the giant component (which originally con-

tained 6,508 words) to words were originally in the giant component but were not in the back-

bone after the sparcification procedure. Words that remained in the giant component of the

backbone occurred more frequently in the language, were shorter in length, were similar to

more phonological neighbors, and were closer to other words compared to the words that did

not “survive” extraction of the backbone. These lexical characteristics suggest that the words in

the backbone of the phonological network might form a “kernel lexicon,” or a small but essen-

tial set of words that allows one to function (although perhaps not optimally) in a wide-range

of situations. Consider the analysis of 4.45 million words extracted from Massive Open Online

Courses by [30], who found that the ~5000 most frequent words covered 95% of the course

content, and that the ~9000 most frequent words covered 98% of the course content (see also

Up Goer Five https://xkcd.com/1133/ and The Thing Explainer https://xkcd.com/thing-

explainer/). Perhaps the words in the phonological backbone constitute a “kernel lexicon” of

phonological words-forms that allows a typical speaker to navigate most day-to-day situations.

The edges that remained after the backbone extraction process may reflect important rela-

tionships or distinctions between words that cannot be obtained in some other way, such as

through phonological rules (e.g., underspecification theories by [26–29]), semantic informa-

tion, context, or visual features of the lips and jaw in the articulation of the words (as might be

used during lip-reading; [45]). Thus, the nodes and edges in the phonological backbone may

Fig 3. The words found in one of the communities identified in the giant component after the backbone procedure.

https://doi.org/10.1371/journal.pone.0287197.g003
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constitute words and phonological distinctions that are crucial for successful word recognition

under less-than-ideal situations, such as when listening to a speaker who is wearing a mask in

the era of COVID-19 [46].

Analyses of several network science measures revealed that the removal of redundant edges

in the backbone extraction procedure significantly reduced the values for degree, and cluster-

ing coefficient, and increased the number of communities, indicating that the network was

becoming less interconnected overall. Although the removal of 68.5% of the edges by the back-

bone extraction procedure significantly reduced the overall connectivity of the network, no

words became isolates (i.e., lexical hermits). Rather, any words that were severed from their

original structure in the original network formed smaller components (i.e., lexical islands; see

[20, 47] for the influence of “lexical islands” on language processing). The fact that the removal

of a large percentage of edges resulted in such little damage to the system speaks to the resil-

ience of the phonological network (see also [48]).

Finding a resilient kernel lexicon in the phonological network could be useful for scientists

and clinicians in the speech, language, and hearing sciences. The set of words identified in the

backbone may provide guidance on which words to focus on to facilitate typical development,

and to accelerate rehabilitation efforts. Finally, with the increased application of network sci-

ence to the speech, language, hearing and cognitive sciences, the backbone extraction method

that we explored in the present study may prove useful in other applications of network sci-

ence. We hope that researchers studying typically developing children (e.g., [3]), children with

language disorders (e.g., [1, 2], or the process of reading (e.g., [49] will consider how the vari-

ous techniques of identifying “important” nodes in a network might be fruitful for advancing

those and other research areas.

Author Contributions

Conceptualization: Michael S. Vitevitch.

Data curation: Michael S. Vitevitch.

Formal analysis: Michael S. Vitevitch, Mary Sale.

Investigation: Mary Sale.

Software: Michael S. Vitevitch.

Supervision: Michael S. Vitevitch.

Writing – original draft: Michael S. Vitevitch, Mary Sale.

Writing – review & editing: Michael S. Vitevitch, Mary Sale.

References
1. Beckage N., Smith L., & Hills T. (2011). Small worlds and semantic network growth in typical and late

talkers. PLoS ONE, 6(5), e19348. https://doi.org/10.1371/journal.pone.0019348 PMID: 21589924

2. Benham S., Goffman L. & Schweickert R. (2018). An application of network science to phonological

sequence learning in children with developmental language Disorder. Journal of Speech Language

Hearing Research, 61, 2275–2291. https://doi.org/10.1044/2018_JSLHR-L-18-0036 PMID: 30167667

3. Bower C.A., Mix K.S., Yuan L. & Smith L.B. (2022). A network analysis of children’s emerging place-

value concepts. Psychological Science, 33(7), 1112–1127. https://doi.org/10.1177/

09567976211070242 PMID: 35699572

4. Siew C.S.Q.; Pelczarski K.M.; Yaruss J.S.; Vitevitch M.S. (2017). Using the OASES-A to illustrate how

network analysis can be applied to understand the experience of stuttering. Journal of Communication

Disorders, 65, 1–9. https://doi.org/10.1016/j.jcomdis.2016.11.001 PMID: 27907811

5. Vitevitch M. S. (ed.) (2019). Network Science in Cognitive Psychology. Routledge.

PLOS ONE Phonological backbone

PLOS ONE | https://doi.org/10.1371/journal.pone.0287197 June 23, 2023 9 / 11

https://doi.org/10.1371/journal.pone.0019348
http://www.ncbi.nlm.nih.gov/pubmed/21589924
https://doi.org/10.1044/2018%5FJSLHR-L-18-0036
http://www.ncbi.nlm.nih.gov/pubmed/30167667
https://doi.org/10.1177/09567976211070242
https://doi.org/10.1177/09567976211070242
http://www.ncbi.nlm.nih.gov/pubmed/35699572
https://doi.org/10.1016/j.jcomdis.2016.11.001
http://www.ncbi.nlm.nih.gov/pubmed/27907811
https://doi.org/10.1371/journal.pone.0287197


6. Vitevitch M.S. (2008). What can graph theory tell us about word learning and lexical retrieval? Journal of

Speech Language Hearing Research, 51, 408–422. https://doi.org/10.1044/1092-4388(2008/030)

PMID: 18367686

7. Vitevitch M.S. (2022). What Can Network Science Tell Us About Phonology and Language Processing?

Topics in Cognitive Science, 14: 127–142. https://doi.org/10.1111/tops.12532 PMID: 33836120

8. Luce P.A.; Pisoni D.B. (1998). Recognizing spoken words: the neighborhood activation model. Ear &

Hearing, 19, 1–36. https://doi.org/10.1097/00003446-199802000-00001 PMID: 9504270

9. Castro N. & Vitevitch M.S. (2022). Using network science and psycholinguistic megastudies to examine

the dimensions of phonological similarity. Language & Speech, https://doi.org/10.1177/

00238309221095455 PMID: 35586894

10. Kleinberg J.M. (2000). Navigation in a small world. Nature, 406, 845. https://doi.org/10.1038/35022643

PMID: 10972276

11. Latora V.; Marchiori M. (2001) Efficient behavior of small-world networks. Physical Review Letters, 87,

198701. https://doi.org/10.1103/PhysRevLett.87.198701 PMID: 11690461

12. Watts D.J. & Strogatz S.H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–

442. https://doi.org/10.1038/30918 PMID: 9623998

13. Arbesman S., Strogatz S.H. & Vitevitch M.S. (2010). The Structure of Phonological Networks Across

Multiple Languages. International Journal of Bifurcation & Chaos, 20, 679–685.

14. Chan K.Y. & Vitevitch M.S. (2009). The Influence of the Phonological Neighborhood Clustering-Coeffi-

cient on Spoken Word Recognition. Journal of Experimental Psychology: Human Perception & Perfor-

mance, 35, 1934–1949. https://doi.org/10.1037/a0016902 PMID: 19968444

15. Chan K. Y., & Vitevitch M. S. (2010). Network structure influences speech production. Cognitive Sci-

ence, 34, 685–697. https://doi.org/10.1111/j.1551-6709.2010.01100.x PMID: 21564230

16. Goldstein R., & Vitevitch M. S. (2014). The influence of clustering coefficient on word-learning: How

groups of similar sounding words facilitate acquisition. Frontiers in Language Sciences, 5, 01307.

https://doi.org/10.3389/fpsyg.2014.01307 PMID: 25477837

17. Vitevitch M.S.; Chan K.Y. & Roodenrys S. (2012) Complex network structure influences processing in

long-term and short-term memory. Journal of Memory & Language, 67, 30–44. https://doi.org/10.1016/

j.jml.2012.02.008 PMID: 22745522

18. Vitevitch M.S.; Ng J.W.; Hatley E. & Castro N. (2021). Phonological but not semantic influences on the

speech-to-song illusion. Quarterly Journal of Experimental Psychology, 74, 585–597.

19. Castro N., Pelczarski K.M. & Vitevitch M.S. (2017). Using network science measures to predict lexical

decision performance of adults who stutter. Journal of Speech, Language, and Hearing Research, 60,

1911–1918.

20. Vitevitch M.S. & Castro N. (2015). Using network science in the language sciences and clinic. Interna-

tional Journal of Speech Language Pathology, 17, 13–25. https://doi.org/10.3109/17549507.2014.

987819 PMID: 25539473

21. Goldstein R. & Vitevitch M.S. (2017). The Influence of Closeness Centrality on Lexical Processing.

Frontiers in Psychology, 8, https://doi.org/10.3389/fpsyg.2017.01683 PMID: 29018396

22. Borgatti S. P. (2005). Centrality and network flow. Social Networks, 27, 55–71

23. Vitevitch M. S., & Goldstein R. (2014). Keywords in the mental lexicon. Journal of Memory & Language,

73, 131–147.

24. Borgatti S. P. (2006). Identifying sets of key players in a network. Computational, Mathematical and

Organizational Theory, 12, 21–34.

25. Neal Z.P. (2022). Backbone: An R Package to Extract Network Backbones. PLOS ONE, 17 (5), https://

doi.org/10.1371/journal.pone.0269137.

26. Archangeli D. (1988). Aspects of underspecification theory. Phonology 5, 183–207.

27. Kiparsky P. (1985). Some consequences of lexical phonology. Phonological Yearbook, 2, 85–138.

28. Mohanan K. P. (1991). On the bases of radical underspecification. Natural Language & Linguistic The-

ory, 9, 285–325.

29. Steriade D. (1995). “Underspecification and markedness,” in The Handbook of Phonological Theory, ed

Goldsmith J. A. ( Oxford and Cambridge, MA: Blackwell Publishing), 114–174.

30. Xodabande I., Ebrahimi H. & Karimpour S. (2022). How much vocabulary is needed for comprehension

of video lectures in MOOCs: A corpus-based study. Frontiers in Psychology, 13:992638. https://doi.

org/10.3389/fpsyg.2022.992638 PMID: 36248503

PLOS ONE Phonological backbone

PLOS ONE | https://doi.org/10.1371/journal.pone.0287197 June 23, 2023 10 / 11

https://doi.org/10.1044/1092-4388%282008/030%29
http://www.ncbi.nlm.nih.gov/pubmed/18367686
https://doi.org/10.1111/tops.12532
http://www.ncbi.nlm.nih.gov/pubmed/33836120
https://doi.org/10.1097/00003446-199802000-00001
http://www.ncbi.nlm.nih.gov/pubmed/9504270
https://doi.org/10.1177/00238309221095455
https://doi.org/10.1177/00238309221095455
http://www.ncbi.nlm.nih.gov/pubmed/35586894
https://doi.org/10.1038/35022643
http://www.ncbi.nlm.nih.gov/pubmed/10972276
https://doi.org/10.1103/PhysRevLett.87.198701
http://www.ncbi.nlm.nih.gov/pubmed/11690461
https://doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
https://doi.org/10.1037/a0016902
http://www.ncbi.nlm.nih.gov/pubmed/19968444
https://doi.org/10.1111/j.1551-6709.2010.01100.x
http://www.ncbi.nlm.nih.gov/pubmed/21564230
https://doi.org/10.3389/fpsyg.2014.01307
http://www.ncbi.nlm.nih.gov/pubmed/25477837
https://doi.org/10.1016/j.jml.2012.02.008
https://doi.org/10.1016/j.jml.2012.02.008
http://www.ncbi.nlm.nih.gov/pubmed/22745522
https://doi.org/10.3109/17549507.2014.987819
https://doi.org/10.3109/17549507.2014.987819
http://www.ncbi.nlm.nih.gov/pubmed/25539473
https://doi.org/10.3389/fpsyg.2017.01683
http://www.ncbi.nlm.nih.gov/pubmed/29018396
https://doi.org/10.1371/journal.pone.0269137
https://doi.org/10.1371/journal.pone.0269137
https://doi.org/10.3389/fpsyg.2022.992638
https://doi.org/10.3389/fpsyg.2022.992638
http://www.ncbi.nlm.nih.gov/pubmed/36248503
https://doi.org/10.1371/journal.pone.0287197


31. Gomes Ferreira C.H., Murai F., Silva A.P.C., Trevisan M., Vassio L., Drago I., et al. (2022). On network

backbone extraction for modeling online collective behavior. PLoS ONE 17(9): e0274218. https://doi.

org/10.1371/journal.pone.0274218 PMID: 36107952

32. Hamann M., Lindner G., Meyerhenke H., Staudt C. L., & Wagner D. (2016). Structure-preserving sparsi-

fication methods for social networks. Social Network Analysis and Mining, 6(1), 22. https:://10.1007/

s13278-016-0332-2

33. Siew C. S. (2013). Community structure in the phonological network. Frontiers in psychology, 4, 553.

https://doi.org/10.3389/fpsyg.2013.00553 PMID: 23986735

34. Satuluri, V., Parthasarathy, S., & Ruan, Y. (2011). Local graph sparsification for scalable clustering. In

Proceedings of the 2011 ACM SIGMOD International Conference on Management of data (SIGMOD

’11). Association for Computing Machinery, New York, NY, USA, 721–732. https://doi.org/10.1145/

1989323.1989399

35. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An open source software for exploring and

manipulating networks. In Proceedings of the 3rd International AAAI Conference on Weblogs and

Social Media; San Jose, CA, pp. 361–362.

36. Team JASP (2022). JASP (Version 0.16.3) [Computer software].

37. Nusbaum H. C., Pisoni D. B., & Davis C. K. (1984). Sizing up the Hoosier Mental Lexicon: Measuring

the familiarity of 20,000 words. Research on Speech Perception Progress Report, 10, 357–376.

38. Kučera H., & Francis W. N. (1967). Computational analysis of present day American English. Provi-

dence, RI: Brown University Press.

39. Vitevitch M.S. & Luce P. (2016). Phonological neighborhood effects in spoken word perception and pro-

duction. Annual Review of Linguistics, 2, 75–94.

40. Newman M. E. J. (2004). Detecting community structure in networks. Eur. Phys. J. B 38, 321–330.

https://doi.org/10.1140/epjb/e2004-00124-y

41. Blondel V.D., Guillaume J.L., Lambiotte R. & Lefebvre E. (2008). Fast unfolding of communities in large

networks. Journal of Statistical Mechanics: Theory and Experiment, 10, P10008.

42. Girvan M., and Newman M. E. J. (2002). Community structure in social and biological networks. Proc.

Natl. Acad. Sci. U.S.A. 99, 7821–7826. https://doi.org/10.1073/pnas.122653799 PMID: 12060727

43. Newman M. E. J., and Girvan M. (2004). Finding and evaluating community structure in networks.

Phys. Rev. E 69:026113. https://doi.org/10.1103/PhysRevE.69.026113 PMID: 14995526

44. Fortunato S. (2010). Community detection in graphs. Physics Reports, 486(3), 75–174.

45. Fisher C. G. (1968). Confusions among visually perceived consonants. Journal of Speech and Hearing

Research, 11(4), 796–804. https://doi.org/10.1044/jshr.1104.796 PMID: 5719234

46. Cox B., Tuft S. E., Morich J., & McLennan C. T. (2023). EXPRESS: Examining listeners’ perception of

spoken words with different face masks. Quarterly Journal of Experimental Psychology, 0(ja). https://

doi.org/10.1177/17470218231175631

47. Siew C.S.Q. & Vitevitch M.S. (2016). Spoken word recognition and serial recall of words from compo-

nents in the phonological network. Journal of Experimental Psychology: Learning, Memory, and Cogni-

tion, 42, 394–410. https://doi.org/10.1037/xlm0000139 PMID: 26301962

48. Vitevitch M.S., Castro N., Mullin G.J.D. & Kulphongpatana Z. (2023). Exploring the resilience of the pho-

nological network: Implications for developmental and acquired disorders. Brain Sciences, 13(2), 188.

49. Siew C.S.Q. & Vitevitch M.S. (2019). The phonographic language network: Using network science to

investigate the phonological and orthographic similarity structure of language. Journal of Experimental

Psychology: General, 148, 475–500. https://doi.org/10.1037/xge0000575 PMID: 30802126

PLOS ONE Phonological backbone

PLOS ONE | https://doi.org/10.1371/journal.pone.0287197 June 23, 2023 11 / 11

https://doi.org/10.1371/journal.pone.0274218
https://doi.org/10.1371/journal.pone.0274218
http://www.ncbi.nlm.nih.gov/pubmed/36107952
https:://10.1007/s13278-016-0332-2
https:://10.1007/s13278-016-0332-2
https://doi.org/10.3389/fpsyg.2013.00553
http://www.ncbi.nlm.nih.gov/pubmed/23986735
https://doi.org/10.1145/1989323.1989399
https://doi.org/10.1145/1989323.1989399
https://doi.org/10.1140/epjb/e2004-00124-y
https://doi.org/10.1073/pnas.122653799
http://www.ncbi.nlm.nih.gov/pubmed/12060727
https://doi.org/10.1103/PhysRevE.69.026113
http://www.ncbi.nlm.nih.gov/pubmed/14995526
https://doi.org/10.1044/jshr.1104.796
http://www.ncbi.nlm.nih.gov/pubmed/5719234
https://doi.org/10.1177/17470218231175631
https://doi.org/10.1177/17470218231175631
https://doi.org/10.1037/xlm0000139
http://www.ncbi.nlm.nih.gov/pubmed/26301962
https://doi.org/10.1037/xge0000575
http://www.ncbi.nlm.nih.gov/pubmed/30802126
https://doi.org/10.1371/journal.pone.0287197

