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The COVID-19 pandemic demonstrated the insufficiency of a reactive approach to emerging

zoonotic pathogens. With spillover increasing in frequency as environments change and the

human footprint continues to grow, pandemic prevention will require predictive models that

can identify (i) potential zoonoses with a high likelihood of emergence and (ii) environmental

or other features that may trigger a shift in host, vector, or pathogen baselines associated with

emergence and/or spillover. Artificial intelligence (AI), and particularly its machine learning

and deep learning branches, holds enormous potential for detecting shifts in large-scale biodi-

versity and disease datasets (genomic, ecological, geospatial, etc.) [1]. Such algorithms can be

trained to identify subtle patterns in large volumes of data to yield insights into complex phe-

nomena for which we have limited knowledge of the true cause (s) or predictor (s), as is the

case for emerging infectious diseases.

Accuracy of AI or any other analytical approach, however, is limited by the quality, com-

pleteness, types, and biases of input data. Models are often hamstrung by unbalanced data. For

example, if there are many host records, but few are infected by a pathogen, there may be

insufficient information to identify a pattern. This complexity only increases when considering

multiple host species, each of which has distinctive ecological requirements, generation time,

life history, and dispersal ability (e.g., [2]). Using incomplete data to build predictive models

can increase the number of candidate predictors, unnecessarily increasing computational

complexity and processing time. Worse, it can produce overfit models that generalize poorly

on new data and, in extreme cases, may increase false signal detection [3]. Thorough explora-

tion of variable associations prior to inclusion in a larger model and transparency regarding

the limitations of model extrapolation are critical (e.g., [4,5]).

Most emerging diseases in humans come from non-model organisms; therefore, under-

standing the ecology and evolution of those host species in the wild will be key to identifying

features most informative for disease modeling and risk assessment. We focus on the enor-

mous but relatively untapped potential of non-model host biorepositories and their associated

databases to fuel predictive modeling of host–pathogen interactions, emergence risk, and pan-

demic potential across human–animal–environment interfaces. Non-model biorepositories, in

this context, including natural history, agricultural, and other biodiversity collections that pre-

serve biological materials (i.e., samples, specimens) in perpetuity. The metadata associated

with the specimens warehoused in non-model biorepositories are served publicly online
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through museum databases such as Arctos (arctos.database.museum) and Symbiota

(symbiota.org), or data aggregators like the Global Biodiversity Information Facility (GBIF,

gbif.org), iDigBio (idigbio.org), and VertNet (vertnet.org), some of which are interoperable

with other digital data streams (GenBank, MorphoBank, etc.) derived from physical speci-

mens. Through the newly established PICANTE (Pathogen Informatics Center: Analysis, Net-

working, Translation, and Education) initiative, we advocate for a multidisciplinary and,

importantly, proactive approach to pandemic prediction and prevention (e.g., [6]) that empha-

sizes strategic expansion of non-model biorepositories, particularly in biodiverse countries, to

stimulate and refine predictive modeling of emerging diseases.

GoingAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:beyond serology

Serological tests or immunoassays screen blood for the presence of specific antibodies as an

indication of historical infection. Such tests are a common tool used in disease surveillance

because they are fast and affordable, but non-lethal serological investigations rarely, if ever,

archive “voucher” specimens (e.g., preservation of host species and/or their tissues in a perma-

nent biorepository) [7]. Thus, the disconnect between biorepositories and biomedical surveil-

lance has created major gaps in knowledge and, critically, in biorepository sampling

infrastructure that now limits our understanding of the ecology and evolution of emerging

zoonoses and their wild hosts [8].

Serology requires commercially produced (“secondary”) antibody reagents capable of bind-

ing to specific immunoglobulins produced by the host. Yet, even within vertebrates, commer-

cial reagents are often unavailable for non-model host species or are, potentially, less specific.

As a result, critical model parameters such as baseline pathogen prevalence, transmission path-

ways, evidence of pathogenesis, rates of morbidity, occurrence of maternal immunity (i.e., pla-

cental, colostral transfer), and rates of recovery (e.g., [9]) remain unknown for most non-

model wild hosts. In contrast, preservation of a holistic voucher specimen at the time of sam-

pling would allow preliminary serological results to be revisited or extended at a later date,

using more sensitive or updated technologies (e.g., whole-genome sequencing, metagenomics,

RNAseq, environmental DNA) to fill information gaps. The date of serological screening is

also not equivalent to the date of infection, as infection could have occurred months prior to

screening. Thus, seropositivity cannot precisely associate a pathogen with the ecological or

environmental conditions recorded at the time of sampling. Instead, models based on sero-

prevalences must consider the breadth of conditions present during the hosts’ life span, which

severely limits resolution into biotic, abiotic, and anthropic factors that may contribute to out-

break or spillover. Again, if voucher tissues are preserved, reverse transcription polymerase

chain reaction can be used to identify active infections among seropositive individuals, with

sequencing then possible on preserved host tissues to identify strains, probe immune

responses, and investigate pathogen evolution in detail.

Work smarter, start with extension

The World Health Organization’s Blueprint [10] aims to “improve coordination between sci-

entists and global health professionals to accelerate research and development related to

emerging diseases” [11]. The Blueprint prioritizes pathogens based on their potential to cause

the next global pandemic [12]. In this case, pandemic potential is measured based on informa-

tion often available through non-model biorepositories, such as insights into human–animal

interfaces, the evolutionary potential and geographic range of the pathogen, and existence of

previous immunity [11]. The WHO Blueprint could be made more effective by including

input from biorepository professionals with expertise in field collection methods, taxonomy
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and systematics, and state-of-the-art long-term specimen preservation methods [7]. Recent,

large-scale investigations have screened >75,000 mammals for viruses, but preserved few to no

physical specimens (e.g., [13]), even in cases where hosts could not be identified to species.

Such an approach precludes verification of host and pathogen taxonomy and limits future

extension of initial work using new tools in the rapidly evolving fields of genomics, immunol-

ogy, or isotopic chemistry [14] and serves to highlight the enormous potential for bioreposi-

tories to synergize with the public health and biomedical communities.

Leveraging biorepositories for pathogen prediction

To maximize information gained, disease surveillance must be designed with verification, rep-

lication, and extension in mind [15]. Holistic collection and specimen vouchering [16,17]

involve subsampling and archiving multiple parts of an organism to not only answer an initial

question, but to also intentionally catalyze diverse scientific inquiry and facilitate integration

across disciplines by tying newly derived information (e.g., genetic sequence data, serology

results) back to a physical specimen record. Vouchering a subset or, ideally, all sampled taxa in

a non-model biorepository ensures future verification, replication, and extension of research

discoveries [15].

Biorepositories and their associated databases are rich, openly accessible sources of physical

samples and digital data useful for diagnostic testing (e.g., serology, sequencing), monitoring

change through time, and building predictive models of host–pathogen–environment interac-

tions. Such collections are assembled by the scientific community over time, through the

cumulative contributions of many researchers, agencies, and laboratories that sample natural

systems to together produce a temporally deep, geographically broad, and taxonomically

diverse global archive of biodiversity from which we can better understand host–pathogen–

environment interactions. To be maximally useful, biodiversity databases associated with non-

model biorepositories must be openly available online, machine readable, and standardized

(e.g., DarwinCore) to allow data from different sources to be combined to increase sample

sizes and, therefore, statistical power [18]. Specimens, including frozen tissue resources or cul-

tures, must be available by loan for use in research and diagnostic testing, conditional on com-

pliance with international regulations, including equitable sharing of benefits with

international partners [19].

Most modeling applications require balanced input data, yet biodiversity data streams are

rarely balanced with respect to taxonomy, sex, or geography and often do not comprehensively

represent the entire range of environmental conditions in which we are trying to make predic-

tions. Examples include larger-bodied animals and species of conservation concern that are

generally underrepresented in collections or oversampling of highly accessible areas due to

logistical constraints [20]. The gap between traditional disease surveillance efforts and sample

archival with biorepositories has exacerbated those biases by targeting specific geographic

areas or host species following an outbreak. Thus, when model focus is narrowed to a particu-

lar place, time, or species, available information may be drastically reduced (e.g., [21]). Moving

forward, vouchering specimens as a regular part of disease surveillance will help fill data gaps,

even biases, and build foundational infrastructure for biodiversity and disease-related infor-

matics research.

Non-model host–pathogen interactions, ecology, and immunology

A pathogen can only cause disease when it encounters a susceptible host in an environment

conducive to infection. Thus, capturing and understanding disease dynamics in nature

requires knowledge of all 3 vertices of the epidemiological triad [22]: pathogens, hosts (plus,
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vectors), and environments. Before applying models to predict pathogen emergence, it is best

practice to first explore the scale (e.g., temporal, geographic, taxonomic), types of variables,

and sampling intensity needed to reliably detect deviations from baseline conditions (e.g.,

[23,24]). Such information can guide strategic, holistic sampling to grow biorepository

resources, most critically in biodiverse corners of the globe where pathogen emergence may be

more likely [25]. This effort will require funding, expanded biodiversity infrastructure, exper-

tise in holistic field sampling and non-model organism taxonomy, sample archiving with pub-

licly accessible biorepositories, and collaborative, multidisciplinary perspectives (Fig 1).

Ultimately, to be proactive, the entire pipeline, from sampling to analysis to policy action,

must occur at a rate and scale relevant to public health. Top-down guidance that encourages

researchers to contact non-model biorepositories early, as a key partner in disease surveillance,

will be critical.

Once infected by a pathogen, transmission potential is determined by the host immune

response. The diversity of immune systems on Earth is astounding, yet most immunology and,

therefore, investigations of transmission potential have been based on relatively few model

species. Pathogens of pandemic potential, however, are mostly hosted by non-model organ-

isms, which have largely unexplored immune systems. The genomic era has brought unparal-

leled molecular knowledge of such non-model hosts, often illustrating substantial variation

even among related species (e.g., [26]). As such, biorepository samples are invaluable resources

that can illuminate variation in host susceptibility, transmission potential of wild species, and

overall determine the pandemic potential of zoonotic pathogens. For example, the combina-

tion of genomes, transcriptomes, and newly developed cell lines [27–29] has propelled our

understanding of how bats deal with viral pathogens and why they are common vectors of zoo-

notic diseases. Yet, this knowledge and equivalent tools are missing for most non-model hosts.

Examples include raccoon dogs and Chinese bamboo rats, which have been recently impli-

cated in the origins of the SARS-CoV-2 outbreak in Wuhan Markets [30]. Thus, predicting

emergence and potential pandemics is inextricably linked to understanding immunity across a

diversity of host species, and, if strategically built, biorepositories can be powerfully leveraged

to fill current immunological knowledge gaps.

Fig 1. Concept diagram showing an example of how the physical samples and associated data available through non-model

biorepositories can fuel diverse aspects of host–pathogen modeling, immunology, and phylodynamics, among other applications

relevant to public health. Figure generated with BioRender (biorender.com).

https://doi.org/10.1371/journal.ppat.1011410.g001
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Future directions

Pandemic prediction is both challenging and in its infancy. Successful prediction will require

proactive multidisciplinary initiatives that intentionally contribute to and expand the sampling

and informatic infrastructure of non-model biorepositories. Integrating new computational

tools with biorepository archives can be powerfully used to (1) identify new pathogens with

zoonotic potential, (2) understand key interactions among pathogens and their wild hosts, and

(3) model host–pathogen interactions and risk landscapes in geographic, genomic, and envi-

ronmental space. Transmission ultimately occurs at interfaces between people, animals, and

environments and can be triggered by subtle shifts at any of those levels. We are now tasked to

build the primary biodiversity infrastructure necessary to document and assess shifting inter-

faces and connect these data resources directly to computational pipelines to form an early

warning system leading to community-level public health action and policies (DAMA proto-

col; [6]).

PICANTE is an initiative, centered at the University of New Mexico, which aims to change

how the scientific community builds and uses biodiversity infrastructure to proactively identify

and respond to zoonotic pathogen emergence. PICANTE is accomplishing this through a series

of interdisciplinary collaborations that bridge biological science, engineering, computer science,

and the social sciences towards pandemic prediction and prevention by developing affordable,

rapid, and scalable screening methods; expanding biodiversity infrastructure and capacities in

biodiverse countries; and building predictive models that leverage biodiversity, environmental,

and human social and behavioral data to identify and then monitor high-risk interfaces through

a global network of biorepositories. PICANTE is distinctive in its proactive approach to emerg-

ing diseases—i.e., identifying pathogens and shifts in baseline conditions prior to spillover—

and, by design, the project workflow forms a positive feedback loop whereby additional sam-

pling contributes directly to biorepositories, which, in turn, increases input data volumes and

improves the accuracy of models derived from biodiversity data streams.
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Valley fever virus transmission potential across livestock hosts, quantified through a model-based anal-

ysis of host viral load and vector infection. PLoS Comput Biol. 2022; 18(7):e1010314. https://doi.org/10.

1371/journal.pcbi.1010314 PMID: 35867712

3. Sagawa S, Raghunathan A, Koh PW, Liang P. An investigation of why overparameterization exacer-

bates spurious correlations. International Conference on Machine Learning. 2020. p. 8346–8356.

4. Alkishe A, Cobos ME, Peterson AT, Samy AM. Recognizing sources of uncertainty in disease vector

ecological niche models: an example with the tick Rhipicephalus Sanguineus sensu lato. Perspect Ecol

Conserv. 2020; 18:91–102.

5. Cobos ME, Peterson AT. Detecting signals of species’ ecological niches in results and studies with

defined sampling protocols: example application to pathogen niches. Biodivers Inform. 2022; 17:50–58.

6. Brooks DR, Hoberg EP, Boeger WA. The Stockholm Paradigm: Climate Change and Emerging Dis-

ease. University of Chicago Press; 2019. p. 423.

7. Thompson C, Phelps K, Allard M, Cook JA, Dunnum JL, Ferguson A, et al. Preserve a Voucher Speci-

men! The critical need for integrating natural history collections in infectious disease studies. mBio.

2021; 12:e02698–e02620. https://doi.org/10.1128/mBio.02698-20 PMID: 33436435

8. Gilbert AT, Fooks AR, Hayman DTS, Horton DL, Müller T, Plowright R, et al. Deciphering serology to

understand the ecology of infectious diseases in wildlife. EcoHealth. 2013; 10(3):298–313. https://doi.

org/10.1007/s10393-013-0856-0 PMID: 23918033

9. Keesing F, Ostfeld RS. Impacts of biodiversity and biodiversity loss on zoonotic diseases. PNAS. 2021;

118(17):e2023540118. https://doi.org/10.1073/pnas.2023540118 PMID: 33820825

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011410 June 15, 2023 7 / 8

https://doi.org/10.1371/journal.pcbi.1010314
https://doi.org/10.1371/journal.pcbi.1010314
http://www.ncbi.nlm.nih.gov/pubmed/35867712
https://doi.org/10.1128/mBio.02698-20
http://www.ncbi.nlm.nih.gov/pubmed/33436435
https://doi.org/10.1007/s10393-013-0856-0
https://doi.org/10.1007/s10393-013-0856-0
http://www.ncbi.nlm.nih.gov/pubmed/23918033
https://doi.org/10.1073/pnas.2023540118
http://www.ncbi.nlm.nih.gov/pubmed/33820825
https://doi.org/10.1371/journal.ppat.1011410


10. World Health Organization (WHO). 2022. Available from: https://www.who.int/teams/blueprint [cited

December 2022].

11. Mehand MS, Al-Shorbaji F, Millett P, Murgue B. The WHO R&D Blueprint: 2018 review of emerging

infectious diseases requiring urgent research and development efforts. Antiviral Res. 2018; 159:63–67.

12. Kieny MP, Salama P. WHO R&D Blueprint: a global coordination mechanism for R&D preparedness.

Lancet. 2017; 389(10088):2469–2470.

13. Grange ZL, Goldstein T, Johnson CK, Anthony S, Gilardi K, Daszak P, et al. Ranking the risk of animal-

to-human spillover for newly discovered viruses. PNAS. 2021; 118(15):e2002324118. https://doi.org/

10.1073/pnas.2002324118 PMID: 33822740

14. Dunnum JL, Yanagihara R, Johnson KM, Armién B, Batsaikhan N, Morgan L, et al. Biospecimen reposi-

tories and integrated databases as critical infrastructure for pathogen discovery and pathobiology

research. PLoS Negl Trop Dis. 2017; 11:e0005133. https://doi.org/10.1371/journal.pntd.0005133

PMID: 28125619

15. Colella JP, Stephens RB, Campbell ML, Kohli BA, Parsons DJ, Mclean BS. The open-specimen move-

ment. BioScience. 2021a; 71(4):405–414.

16. Galbreath KE, Hoberg EP, Cook JA, Armién B, Bell KC, Campbell ML, et al. Building an integrated infra-

structure for exploring biodiversity: field collections and archives of mammals and parasites. J Mammal.

2019; 100:382–393. https://doi.org/10.1093/jmammal/gyz048 PMID: 31043762

17. Cook JA, Arai S, Armién B, Bates J, Carrión BC A, de Souza Cortez M. B, Soltis P S. Integrating Biodi-

versity Infrastructure into Pathogen Discovery and Mitigation of Emerging Infectious Diseases. BioSci-

ence. 2020; 70:531–534.

18. Wilkinson D, M Aalbersberg I J., Appleton G, Axton M, Baak A, Bouwman J. The FAIR guiding principles

for scientific data management and stewardship. Sci Data. 2016; 3:160018. https://doi.org/10.1038/

sdata.2016.18 PMID: 26978244

19. Colella JP, Silvestri L, Suzán G, Weksler M, Cook JA, Lessa E. Engaging with the Nagoya Protocol on

Access and Benefit-Sharing: recommendations for non-commercial biodiversity researchers. J Mam-

mal. 2023.

20. Gularnick R, Van Cleve J. Strengths and weaknesses of museum and national survey data sets for pre-

dicting regional species richness: comparative and combined approaches. Divers Distrib. 2005;

11:349–359.

21. Xepapadeas A. The spatial dimension in environmental and resource economics. Environ Dev Econ.

2010; 15(6):747–758.

22. Last JM. A Dictionary of Epidemiology. Oxford University Press; 1988.

23. Glennon EE, Bruijning M, Lessler J, Miller IF, Rice BL, Thompson RN, et al. Challenges in modeling the

emergence of novel pathogens. Epidemics. 2021; 37:100516. https://doi.org/10.1016/j.epidem.2021.

100516 PMID: 34775298

24. Salazar-Hamm PS, Montoya KN, Montoya L, Cook K, Liphardt S, Taylor JW, et al. Breathing can be

dangerous: Opportunistic fungal pathogens and the diverse community of the small mammal lung

mycobiome. Front Fungal Biol. 2022; 55.

25. Colella JP, Bates J, Burneo SF, Camacho MA, Carrión BC, Constable I, et al. Leveraging natural history

biorepositories as a global, decentralized, pathogen surveillance network. PLoS Pathog. 2021b; 17(6):

e1009583. https://doi.org/10.1371/journal.ppat.1009583 PMID: 34081744

26. Moreno SD D Lama T M, Gutiérrez Guerrero Y. T Brown A M., Donat P, Zhao H, Dávalos LM. Large-
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